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Abstract

Nanopteron-Stegoton Traveling Waves in Mass and Spring Dimer
Fermi-Pasta-Ulam-Tsingou Lattices

Timothy E. Faver
J. Douglas Wright, PhD

We study the existence of traveling waves in mass and spring dimer Fermi-Pasta-

Ulam-Tsingou (FPUT) lattices. These are infinite, one-dimensional lattices of parti-

cles connected by nonlinear springs, in which either the masses alternate (the mass

dimer or diatomic lattice) or the spring forces alternate (the spring dimer). Under

the classical “long wave” scaling, the lattice equations of motion turn out to be sin-

gularly perturbed. In response to this complication, we apply a method of Beale to

produce nanopteron traveling wave solutions with wave speed slightly greater than

the lattice’s speed of sound. The nanopteron wave profiles are the superposition of an

exponentially decaying term (which itself is a small perturbation of a KdV sech2-type

soliton) and a periodic term of very small amplitude.

This dissertation builds on the previous work of Faver and Wright on mass dimer

lattices to treat spring dimer lattices. Further generalizing the spring forces from the

mass dimer case, we allow the springs’ nonlinearity to contain higher order terms be-

yond the quadratic. This necessitates the use of composition operators to phrase the

long wave problem, and these operators require delicate estimates due to the char-

acteristic superposition of different function types from Beale’s ansatz. Additionally,

the value of the leading order term in the spring dimer traveling wave profiles al-

ternates between particle sites, so that, unlike in the mass dimer, the spring dimer

traveling waves are also “stegotons.”
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Chapter 1. Introduction

1.1. The Fermi-Pasta-Ulam-Tsingou lattice. We assemble a one-dimensional

lattice by placing infinitely many particles on a horizontal line and connecting each

particle to the particles on its immediate left and right by springs. (That is, we assume

that the only forces in the lattice will be due to “nearest-neighbor” interactions.) Such

a construct is a Fermi-Pasta-Ulam-Tsingou (FPUT) lattice [FPU55].

Suppose that we index the particles by integers j 2 Z and denote the mass of the

jth particle by mj > 0. We also label the springs by the same integers j so that the

jth spring connects the jth particle to the (j + 1)st particle. We assume that the

jth spring has length `j > 0 when the lattice is at rest and that this spring exerts

the force Fj(r) when stretched a distance r from this equilibrium length. Finally, let

uj(t) be the position of the jth particle at time t. Newton’s second law then implies

that uj satisfies

mj

d
2
uj

dt2
= Fj(rj � `j)� Fj�1(rj�1 � `j�1), rj := uj+1 � uj. (1.1.1)

Depending on the material properties that we ascribe to the lattice — how we

choose the values of the masses mj and how we define the force functions Fj — we

can vary the lattice’s behavior considerably. Our way of proceeding is to assume

that these material properties vary periodically: there is an integer N � 1 such that

mj+N = mj and Fj+N = Fj for all j. This is a polyatomic or polymer lattice. Special

cases are the monatomic lattice, in which N = 1 and all the masses and springs are

identical, and the dimer, in which N = 2 and the masses and springs alternate; Figure

1.1.1 contains a sketch of this lattice.

This dissertation discusses the existence and properties of certain kinds of trav-

eling waves in the distinct cases of the mass and spring dimer lattices, which are
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m1 m2 m1 m2

uj�1

rj�1

uj

rj

uj+1

rj+1

uj+2

F1(r) F2(r)

Figure 1.1.1: The general dimer

the simplest nontrivial generalizations of the well-understood monatomic lattice. In

the mass dimer, which the mass values alternate but the spring forces are identical

(Figure 1.4.2), and the spring dimer, in which the springs alternate but the masses

are constant (Figure 1.4.1). The main result of this dissertation, stated somewhat

informally in Theorem 1.1.1 below and more precisely in Theorems 1.4.1 and 1.4.2

is that the mass and spring dimer lattices possess nanopteron traveling waves, which

are traveling waves whose profile is the superposition of an exponentially decaying

function (the “core”) and a small-amplitude periodic function (the “ripple”) [Boy98].

Boyd introduced this terminology in [Boy90] and provides a rich, extensive discus-

sion of nanopterons in mathematics and nature in [Boy98]. The word “nanopteron”

emerges from the Greek for “dwarf-wing,” [Boy89] the “wings” of the wave being the

periodic ripples, which are extremely small compared to the core (the “body”) of the

wave. The nanopteron need not decay to zero at infinity but can instead asymptote

to a nonvanishing oscillation (Figure 1.1.2). This differs from the well-established

results for the monatomic lattice, which has solitary traveling waves that necessarily

decay exponentially fast to zero at infinity [FW94], [FP99].

1.1.1 Theorem. Under suitable conditions on the spring forces Fj, for each mass

dimer and spring dimer lattice there exists a lower bound cs (the “speed of sound”),

which depends on the lattice, such that for wave speeds c slightly greater than cs, there

are traveling wave solutions for (1.1.1) of the form
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X

&j(X) + �j(X)

the core

amplitude ⇠ O(✏2)

wavelength ⇠ O(✏�1)

the ripple

amplitude ⇠ O(✏1)

Figure 1.1.2: The nanopteron (O(✏1) = “small beyond all orders of ✏”)

rj(t) = &j(j � ct) + �j(j � ct).

Both &j and �j are smooth and satisfy &j+2(X) = &j(X) and �j+2(X) = �j(X) for

all X 2 R. Moreover, &j is exponentially decaying and has amplitude proportional to

✏
2 := c

2 � c
2
s

and wavelength proportional to ✏�1; �j is periodic with amplitude small

beyond all orders of ✏ and period O(1) in ✏.

1.2. History and applications of lattices. Although the modern form of the

FPUT lattice emerged with the advent of numerical computing in the 1950s, it

appears, under various guises, in many historical and contemporary applications.

Newton discretized air as a lattice of particles connected by springs to study the

propagation of sound waves, and Cauchy did the same to study light waves [Bri53];

today, lattices model such diverse phenomena as DNA strand dynamics, electrical

circuits, Bose-Einstein condensates, and the nonlinear dynamics of granular crystals

and metamaterials [Kev11], [CPKD16].

The 1955 numerical study of Fermi, Pasta, Ulam [FPU55], and Tsingou [Dau08]

reported unexpected behavior in the energy of a finite lattice of identical particles and

nonlinear springs: energy did not “thermalize” or equidistribute among the modes of
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the system but instead exhibited “recurrence” and returned periodically to its initial

conditions. Ten years later, a numerical report by Zabusky and Kruskal [ZK65]

established the first link between the FPUT lattice and and the Korteweg-de Vries

equation, given in (1.2.1). As outlined in their report and explored in more detail by

Zabusky and Kruskal separately in [Zab62, Kru65, Kru74], let uj(t) be the position of

the jth particle at time t, and consider the lattice as the discretization of a continuous

string, so that uj(t) = u(jh, t). Here h is the space between successive particles in

the lattice and u = u(x, t) is a function of space and time. Taylor-expanding the

lattice equations (1.1.1) in h, making a few deft changes of variables, and ignoring

most higher-order terms suggests that, at a highly formal level, u will satisfy1 the

partial differential equation

ut + 6uux + uxxx = 0. (1.2.1)

This is the Korteweg-de Vries (KdV) equation, which is well-known as a model of

small-amplitude water waves whose length is long compared to the depth of the

water. It possesses traveling wave solutions of the form

u(x, t) =
c

2
sech2

✓p
c

2
(x� ct)

◆
, (1.2.2)

with c 2 R fixed. These are solitary waves in the classical sense of the ones first

observed by Scott Russell [Rus44] in a shallow canal: they possess only one extremum

and decay rapidly to zero at spatial infinity. Since the Taylor expansion above arises

from thinking of the lattice as a continuous string, the resulting KdV equation is

often called the “continuum limit” of the lattice.

1
“If this story seems confusing, that is because it is.” So claims Truesdall [Tru84] in an intriguing

philosophical and historical reflection on the KdV limit. The historical sketch offered here is indeed

a considerable simplification of a complicated derivation that only came to fully rigorous fruition in

the results of Friesecke and Pego; in particular, see their remarks in [FP99] after Theorem 1.1. See

also the remarks of Friesecke and Mikikits-Leitner [FML15] and James and Pelinovsky [JP14] for

additional perspectives on the continuum limit with the long-wave scaling. Ablowitz [Abl11] offers

a modern, systematic treatment of the transition from FPUT to KdV, and Porter et al. [PZHC09]

describe the FPUT-KdV connection from a physics-grounded viewpoint that is accessible to the

nonspecialist.
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Much subsequent analysis has provided rigorous confirmation that solutions to the

KdV equation are indeed valid approximations to the equations of motion for infinite

lattices. Usually this work is done at the level of relative displacements, rather than

position: set

rj(t) := uj+1(t)� uj(t), (1.2.3)

so that rj measures the distance between sucessive particles, and the equations of

motion (1.1.1) become2

r̈j =
1

mj+1
Fj+1(rj+1)�

✓
1

mj

+
1

mj+1

◆
Fj(rj) +

1

mj

Fj�1(rj�1). (1.2.4)

There are many possible expressions for the forces Fj; we will take them to be smooth

functions with the Taylor expansions

Fj(r) = {jr + �jr
2 +O(r3), {j > 0. (1.2.5)

For the monatomic lattice (mj = mj+1 and Fj = Fj+1 for all j), Schneider and

Wayne [SW00a] prove the estimate

sup
0t✏3

sup
j2Z

��rj(t)�
�
✏
2
f(✏(j � cst), ✏

3
t) + ✏

2
g(✏(j + cst), ✏

3
t)
��� = O(✏7/2). (1.2.6)

Here f and g solve a pair of KdV equations whose coefficients depend on the spring

force of the lattice and cs =
p

F 0(0) is the “speed of sound”3 for the lattice. The

scaling of f and g by ✏ in (1.2.6), which originates in a perturbation ansatz for the

water wave problem [SW00b], is the “long wave scaling.” This has consistently proved

to be a highly useful change of variables.

This approximation result begs the following question: since the KdV equation has

solitary wave solutions, and since KdV solutions are good approximations to traveling

2
We may assume that the equilibrium spring lengths `j are all zero; see the nondimensionalization

in (1.3.2).

3
That is, cs is the maximum speed ! of any plane wave solution rj(t) = ei(kj�!t)

to the linearization

of (1.2.4).
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waves for monatomic FPUT lattices, do there exist solitary traveling wave solutions

for the monatomic lattice? That is, can one find a function p = p(x) that decays to 0

as x ! ±1 and that satisfies rj(t) = p(j�ct) for all times t? This was first answered

affirmatively by Friesecke and Wattis [FW94] using variational techniques.

The series of papers [FP99, FP02, FP04a, FP04b] by Friesecke and Pego offers

a different approach to the problem of solitary traveling waves, which has directly

motivated this research on dimer lattices. In [FP99], Friesecke and Pego prove the

existence of traveling wave solutions for (1.2.4) of the form

rj(t) = ✏
2
v✏(✏(j � c✏t)). (1.2.7)

The wave speed c✏ is “near-sonic” (more precisely, “supersonic”) in that c =

cs +O(✏2). Evaluating the lattice equations (1.2.4) at the ansatz (1.2.7) and Taylor

expanding in ✏ suggests that v✏ satisfies a differential equation that gives the traveling

wave profiles for a KdV equation whose coefficients depend on constants in the lattice

equation. Friesecke and Pego then rigorously reinterpret the problem in a functional

analytic setting and use a quantitative inverse function theorem argument to prove

that the profile v✏ satisfies the estimate

kv✏ � �k
H1(R) = O(✏2),

where � is the exact sech2-type solution to this KdV equation.

All of this historical narration, so far, has concerned monatomic lattices. How-

ever, polymer lattices arise naturally and frequently in applications; for example,

lattice models of DNA [Kev11], electrical lines [Bri53], and granular metamaterials

[CPKD16] all require material heterogeneities. There are also substantial mathemat-

ical results on the dynamics of polymer lattices. Pankov [Pan05] conducts a thorough

overview of the formulation of the general lattice equations (1.1.1) as a Hamiltonian

system and a discussion of the related Cauchy problem in `2(Z) under even more gen-

eral conditions on the masses and springs than the polymer set-up above. There are

myriad contemporary studies of traveling waves in mass dimers, including [BP13] on
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the existence of periodic waves in granular crystals with a nonsmooth potential as the

mass ratio m1/m2 tends to 0; [CBCPS12], which uses Bloch wave transforms to obtain

KdV approximations; and [Qin15], which uses variational methods to construct pe-

riodic solutions for lattices whose forces contain linear and cubic, but not quadratic,

terms. And using methods from homogenization theory, Gaison, Moskow, Wright,

and Zhang [GMWZ14] have generalized the KdV approximation of monatomic lat-

tices by Schneider and Wayne to polymer lattices. A natural question, then, is if

there exist solitary traveling waves in polymer lattices, as Friesecke and Pego found

for monatomic lattices. As discussed in Theorem 1.1.1, we do find traveling waves,

but their nanopteron structure prevents them from necessarily being solitary waves.

1.3. Equations of motion for the dimers. We specialize the equations of motion

(1.1.1) to the dimer case. For now, we allow both masses and spring forces to vary; in

Section 1.4, we summarize results separately for mass and spring dimers; in Section

2.7, we explain why we specialize separately to mass and spring dimers; and beginning

in Chapter 3, we will treat solely the spring dimer, the results for the mass dimer

being contained in [FW18].

Our lattice consists of (potentially) alternating masses and spring forces indexed

by integers j 2 Z. The jth mass is

mj =

(
m1 > 0, j is odd
m2 > 0, j is even;

the jth spring length at equilibrium is

`j =

(
`1 > 0, j is odd
`2 > 0, j is even;

and the jth spring exerts a force Fj(r) when stretched a length r from its equilibrium

length, where

Fj(r) =

(
{1r + �1r

2 + r
3
N1(r), j is odd

{2r + �2r
2 + r

3
N2(r), j is even.

Here {1, {2 > 0 and we require at least one of �1 and �2 to be nonzero. We assume
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N j 2 C1(R). Then with uj(t) as the position of the jth particle at time t, (1.1.1)

becomes

8
>>>><

>>>>:

m1
d
2
u2j+1

dt
2 = F1(u2j+2 � u2j+1 � `1)� F2(u2j+1 � u2j � `2)

m2
d
2
u2j

dt
2 = F2(u2j+1 � u2j � `2)� F1(u2j � u2j�1 � `1).

(1.3.1)

We nondimensionalize this system in several ways. First, we can eliminate the

spring lengths `1 and `2 by writing

u2j+1 = ŭ2j+1 + j`1 + j`2 and u2j = ŭ2j + j`1 + (j � 1)`2. (1.3.2)

Then

u2j+1 � u2j � `2 = ŭ2j+1 � ŭ2j and u2j � u2j�1 � `1 = ŭ2j � ŭ2j�1,

and clearly

d
2
uj

dt
2 =

d
2
ŭj

dt
2

for all j.

We next express the system in terms of relative displacements by setting

r̆j := ŭj+1 � ŭj.

Then (1.3.1) becomes
8
>>>><

>>>>:

m1
d
2
ŭ2j+1

dt
2 = F1(r̆2j+1)� F2(r̆2j)

m2
d
2
ŭ2j

dt
2 = F2(r̆2j)� F1(r̆2j�1).

(1.3.3)

Now we rescale the position functions ŭj. Let

� :=

(
�1/�2, �2 6= 0

0, �2 = 0
and a1 :=

r
{2

m1
. (1.3.4)

Suppose for the moment that �2 6= 0; we will address the (very similar) case �2 = 0

in Appendix F.5. Then define



1. Introduction 9

a2 :=
{2

�2
(1.3.5)

and write

ŭj(t) = a2uj(a1t) and rj := uj+1 � uj, (1.3.6)

where uj = uj(t). After canceling some common factors and setting

w :=
m1

m2
, { :=

{1

{2
, and Nj(r) :=

a
2
2

{2
N j(a1r), j = 1, 2,

we convert the system (1.3.3) to the nondimensionalized equations

8
>><

>>:

ü2j+1 = {r2j+1 + �r
2
2j+1 + r

3
2j+1N1(r2j+1)� r2j � r

2
2j � r

3
2jN2(r2j)

1

w
ü2j = r2j + r

2
2j + r

3
2jN2(r2j)� {r2j�1 � �r

2
2j�1 � r

3
2j�1N1(r2j�1).

(1.3.7)

From these we can compute the equations of motion solely in terms of relative dis-

placement:

8
>>>>>><

>>>>>>:

r̈2j+1 = �(1 + w)
�
{r2j+1 + �r

2
2j+1 + r

3
2j+1N1(r2j+1)

�

+w
�
(r2j+2 + r

2
2j+2 + r

3
2j+2N2(r2j+2)

�

+
�
r2j + r

2
2j + r

3
2jN2(r2j)

�

r̈2j = �(1 + w)
�
r2j + r

2
2j + r

3
2jN2(r2j)

�
+
�
{r2j+1 + �r

2
2j+1 + r

3
2j+1N1(r2j+1)

�

+w
�
{r2j�1 + �r

2
2j�1 + r

3
2j�1N1(r2j�1)

�
.

(1.3.8)

In Chapter 2 we will make a traveling wave ansatz on this system and proceed to

construct its nanopteron solutions. In the next section, we state and discuss our main

results.

1.4. Main results. We now translate the fixed point solutions of Theorem 1.1.1

and Beale’s ansatz into the language of relative displacements for our lattice problem

1.3.8.

1.4.1 Theorem (Existence of nanopterons in spring dimers). Let w = 1 and

take { > 1 and � 2 R to satisfy � 6= �{3. There exist ✏?, q? > 0 such that for all ✏ 2
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1 1 1 1

F1(r) = {r + �r
2 +O(r3)

F2(r) = r + r
2 +O(r3)

Figure 1.4.1: The spring dimer

(0, ✏?), there is a solution for the relative displacements rj(t) of the nondimensionalized

lattice equations (1.3.8) in the form

rj(t) = {((�1)j+1)/2 3{({ + 1)

c2{(� + {3)
✏
2 sech2

✓
✏(j � c✏t)

2
p
↵{

◆

| {z }
Note the extra factor of { for j even.

+v
✏

j
(✏(j � c✏t)) + p

✏

j
(j � c✏t),

(1.4.1)

where c{ = c?(1,{) from (2.2.6), ↵{ = ↵?(1,{) from (2.5.2), and

(i) v
✏

1, v
✏

2 2 \1
r=1H

r

q?
.

(ii) p
✏

1, p
✏

2 2 \1
r=1W

r,1.

(iii) For each r � 0 there is a constant Cr > 0 such that

��v✏
j

��
Hr

q?

 Cr✏
3 and

��p✏
j

��
W r,1  Cr✏

r

for all ✏ 2 (0, ✏?) and j = 1, 2.

(iv) p
✏

1 and p
✏

2 are periodic with period P✏, and there is a constant C > 0 such that

|P✏|  C for all ✏ 2 (0, ✏?).

We prove this theorem in Appendix F.1 using the existence of periodic solutions

from Theorem 3.1.1 and the existence of homoclinic connections to these solutions

from Theorem 4.3.2. We discuss the case � = {3 in Remark 3.1.2.

1.4.2 Theorem (Existence of nanopterons in mass dimers). Let { = � = 1
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m1 m2 m1 m2

Figure 1.4.2: The mass dimer

and take w > 1. There exist ✏?, q? > 0 such that for all ✏ 2 (0, ✏?), there is a solution

for the relative displacements rj(t) of the nondimensionalized lattice equations (1.3.8)

in the form

rj(t) =
3✏2

2c2
w

sech2

✓
✏

2
p
↵w

(j � c✏t)

◆
+ v

✏

j
(✏(j � c✏t)) + p

✏

j
(j � c✏t), (1.4.2)

where cw = c?(w, 1) from (2.2.6), ↵w = ↵?(w, 1) from (2.5.2), and v
✏

j
and p

✏

j
have the

same properties as their spring dimer analogues in Theorem 1.4.1.

This theorem was proved in [FW18] under the additional restriction Fj(r) = r+r
2

on the spring forces. The techniques in this dissertation developed for higher-order

terms in the spring dimer’s forces carry over easily to more complicated forces Fj(r) =

r + r
2 +O(r3) in the mass dimer.

1.5. Stegotons. We note that in the expression (1.4.1) for relative displacement, the

leading order term in ✏ differs by a factor of { depending on whether j is even or odd.

This is a feature not present in the relative displacements for the mass dimers, per

(1.4.2), and if we fix time t and graph the leading order terms in rj(t) over a range

of lattice indices j 2 Z, it leads to the ridged graphs evocatively called “stegotons”4

in [LY03a, LY03b]. We sketch these graphs in Figure 1.5.1 (with time fixed at t = 0,

w = 2 for the mass dimer, and { = 2 for the spring dimer). These sketches suggest

that successive pairs of particles in the mass dimer are roughly the same distance

apart (rj(t) ⇡ rj+1(t)), while in the spring dimer successive pairs are at varying

4
From [LY03b], this “com[es] from the Greek root ‘stego-,’ meaning roof or ridge, and suggested by

the rough resemblance of these. . .waves. . . to the back of a stegosaurus.”
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Mass dimer (w = 2)
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Spring dimer ({ = 2)
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Figure 1.5.1: Relative displacements for mass and spring dimers

distances from each other. Such behavior for lattices with alternating spring forces

was observed in [GMWZ14]; the leading order term in (1.4.1) confirms this behavior

in the long wave limit.

Moreover, the estimates in Theorems 1.4.1 and 1.4.2 are consistent with the results

of [GMWZ14], which establishes

rj(t) =
✏
2

Kj

�
U�(✏(j � c{t), ✏

3
t) + U+(✏(j + c{t), ✏

3
t)
�
+O(✏5/2), (1.5.1)

where

Kj =

(
1, j is even
{, j is odd

and U± = U±(X, T ) solve the KdV equations

⌥ 1

c?
@T [U±] +

↵?

2c?
@
3
X
[U±] +

� + {3

{2(1 + {)U±@X [U±] = 0. (1.5.2)

We define c? in (2.2.6) and ↵? in (2.5.2). We discuss this consistency further in

Appendix F.2.
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Chapter 2. The Traveling Wave Problem in Dimers

2.1. The traveling wave ansatz. Set

rj(t) =

(
p1(j � ct), j is odd
p2(j � ct), j is even,

(2.1.1)

where p1 = p1(x) and p2 = p2(x) are the traveling wave profiles and c 2 R is the wave

speed. With S
d as the “shift by d 2 R” operator, i.e.,

(Sd
f)(x) = f(x+ d),

the system (1.3.8) becomes

8
>>>><

>>>>:

c
2
p
00
1 = �(1 + w)({p1 + �p

2
1 + p

3
1N1(p1)) + wS

1(p2 + p
2
2 + p

3
2N2(p2))

+S
�1(p2 + p

2
2 + p

3
2N2(p2))

c
2
p
00
2 = �(1 + w)(p2 + p

2
2 + p

3
2N2(p2)) + S

1({p1 + �p
2
1 + p

3
1N1(p1))

+wS
�1({p1 + �p

2
1 + p

3
1N1(p1)).

We rewrite these equations for p1 and p2 in matrix-vector form. Let

p :=

✓
p1

p2

◆
and N(p) :=

✓
N1(p1)
N2(p2)

◆
.

Then p satisfies

c
2p00 + L[{, w]p+ L[�, w]p.2 + L[1, w](p.3

.N(p)) = 0, (2.1.2)

where, given ↵ 2 R, we set

L[↵, w] :=


↵(1 + w) �(wS1 + S

�1)
�↵(S1 + wS

�1) (1 + w)

�
.

Note that we have the useful factorization

L[↵, w] =


(1 + w) �(wS1 + S

�1)
�(S1 + wS

�1) (1 + w)

�

| {z }
L1


↵ 0
0 1

�

| {z }
M↵

. (2.1.3)

The “dot” notation in (2.1.2) is componentwise squaring, cubing, or multiplication in

the spirit of Matlab, e.g.,

p.2 :=

✓
p
2
1

p
2
2

◆
.
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We can rewrite (2.1.2) so that the operator L[{, w] appears as the leading factor

in the two nonlinear terms, which will be convenient in some later manipulations.

The factorization (2.1.3) gives

L[�, w] = L[1, w]M� = L[1, w]M{M
�1
{ M� = L[{, w]M�/{

and likewise L[1, w] = L[{, w]M1/{. Then (2.1.2) is equivalent to

c
2p00 + L[{, w]p+ L[{, w]M�/{p

.2 + L[{, w]M1/{(p
.3
.N(p)) = 0. (2.1.4)

2.2. Diagonalization. We treat the operator L[{, w] as a Fourier multiplier (cf.

Appendix D), so that for a function f = (f1, f2) we have

F[L[{, w]f ](k) = eL[{, w](k)F[f ](k),

with

eL[{, w](k) :=


{(1 + w) �(weik + e
�ik)

�{(eik + we
�ik) (1 + w)

�
2 C2⇥2

.

Here F[f ](k) = bf(k) is the Fourier transform of f at k, defined in (B.1.1) for periodic

functions and in (B.2.1) for L2-functions.

We wish to diagonalize L[{, w], and we begin by computing the eigenvalues of

eL[{, w](k); they are

e�±(k) :=
(1 + {)(1 + w)

2
± e%(k)

2
, (2.2.1)

with

e%(k) :=
p

(1 + w)2(1� {)2 + 4{((1� w)2 + 4w cos2(k)).

In the language of [Bri53], we sometimes refer to the curve e��(k) as the “acoustic

band” of the system and to e�+(k) as the “optical band.”

The function e% is “symmetric” in the parameters w and { in the sense that

(1+w)2(1�{)2+4{((1�w)2+4w cos2(k)) = (1+{)2(1�w)2+4w((1�{)2+4{ cos2(k)).

This is a source of much convenience in many proofs to come. For legibility, though,
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we suppress further dependence on { and w.

To find the corresponding eigenvectors, we set, in the case w 6= 1,

ev�(k) :=
1 + w � e��(k)
{(eik + we�ik)

and ev+(k) :=
{(1 + w)� e�+(k)

weik + e�ik
(2.2.2)

and

ev�(k) :=

✓
ev�(k)
1

◆
and ev+(k) :=

✓
1

ev+(k)

◆
. (2.2.3)

Then ev±(k) are eigenvectors of eL[{, w] corresponding to the eigenvalues e�±(k).

It is also convenient to be able to scale the eigenvectors, at least in the case

{ = 1. For now, we let e�±(k) be complex-valued functions that are analytic and

vanish nowhere on some horizontal strip | Im(z)|  ⌧0. With

eJ(k) :=
⇥
e��(k)ev�(k) e�+(k)ev+(k)

⇤
, eJ1(k) := eJ(k)�1

,

and e⇤(k) :=
"
e��(k) 0

0 e�+(k)

#
, (2.2.4)

we have

eL[{, w](k) = eJ(k)e⇤(k) eJ1(k).

Taking J , J1, and ⇤ to be the Fourier multipliers with the symbols eJ , eJ1, and e⇤, we

diagonalize the operator L[{, w]:

L[{, w] = J⇤J1.

Before we exploit this diagonalization, we summarize the essential properties of these

various Fourier multipliers.

2.2.1 Proposition. Let w, { > 0 with either w > 1 or { > 1.

(i) For q > 0, let ⌃q be the strip

⌃q :={z 2 C | | Im(z)| < q}

and let ⌃q be its closure. There exists q0 > 0 such that e�± and ev± extend to 2⇡-

periodic, bounded, complex-valued analytic functions on ⌃q0. The functions e�± are
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also even and real-valued at real inputs.

(ii) e��(0) = 0 and e�+(0) = (1 + w)(1 + {).

(iii) For all k 2 R we have

0  e��(k)  e��
⇣
⇡

2

⌘
< e�+

⇣
⇡

2

⌘
 e�+(k)  (1 + w)(1 + {). (2.2.5)

(iv) e�00±(0) = ⌥ 8{w
(1 + w)(1 + {) .

(v) For all k 2 R we have

|e�0±(k)|  min

⇢
4w

1 + w
,

4{
1 + { , 2c2

?
|k|
�
,

where

c? = c?(w,{) :=

s
e�00�(0)
2

=

s
4{w

(1 + w)(1 + {) . (2.2.6)

is the “speed of sound” of the lattice.

(vi) If c2 > c
2
?
, then

e⇠c(k) := �c
2
k
2 + e��(k) < 0 (2.2.7)

for all k 6= 0.

(vii) There exist c� 2 (0, 1) and b0 > 0 such that if c > c�, then there is a unique

⌦c 2 (0,1) such that c2⌦2
c
� e�+(⌦c) = 0. Moreover,

q
e�+(⇡/2)

c
 ⌦c 

p
(1 + w)(1 + {)

c
(2.2.8)

and

|2c2⌦c � e�0+(⌦c)| � b0 > 0. (2.2.9)

Now, using the factorization L[{, w] = J⇤J1, we diagonalize the system (2.1.4).

Set

h = J1p, h(x) =

✓
h1(x)
h2(x)

◆
. (2.2.10)
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Then (2.1.4) is equivalent to

(c2@2
x
+ ⇤)h+ ⇤J1M�/{[(Jh)

.2] + ⇤J1M1/{[(Jh)
.3
.N(Jh)] = 0 (2.2.11)

With

B(h, h̀) =

✓
B1(h, h̀)
B2(h, h̀)

◆
:= J1M�/{[(Jh).(Jh̀)], (2.2.12)

N (h) := h.N(h), (2.2.13)

and

Q(h, h̀, h̆) =

✓
Q1(h, h̀, h̆)
Q2(h, h̀, h̆)

◆
:= J1M1/{[(Jh).(Jh̀).N (Jh̆)] (2.2.14)

we further compress (2.2.11) to

(c2@2
x
+ ⇤)h+ ⇤B(h,h) + ⇤Q(h,h,h) = 0. (2.2.15)

2.3. The Friesecke-Pego cancelation. The first component of (2.2.15) is

(c2@2
x
+ ��)h1 + ��B1(h,h) + ��Q1(h,h,h) = 0. (2.3.1)

Applying the Fourier transform, this becomes

� (c2k2 � e��(k))bh1(k) + e��(k)F[B1(h,h)](k) + e��(k)F[Q1(h,h,h)](k) = 0. (2.3.2)

By Proposition 2.2.1 (vi), we have c
2
k
2 � e��(k) > 0 for all k 6= 0, as long as c

2
> c

2
?
.

We assume this lower bound on c
2 from now on, so that (2.3.2) becomes

bh1(k) + e$c(k)F[B1(h,h)](k) + e$c(k)F[Q1(h,h,h)](k) = 0, (2.3.3)

where

e$c(k) := �
e��(k)

c2k2 � e��(k)
.

Since e�00�(0) 6= 0 by Proposition 2.2.1 (iv) , we see that e$c has a removable singularity

at k = 0, so e$c extends to an even, ⇡-periodic, bounded complex-valued analytic

function on the strip ⌃q0 from above.

We refer to the division by c
2
k
2 � e��(k) that converts (2.3.2) into (2.3.3) as the
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“Friesecke-Pego cancelation” because Friesecke and Pego [FP99] performed a similar

division (cancelation) in setting up their fixed point problem for the monatomic lat-

tice. Their analogue of our symbol e$c(k) was sin2(k/2)/(c2k2� 4 sin2(k/2)), which is

also analytic and has a removable singularity at k = 0.

Let $c be the Fourier multiplier with symbol e$c. Then any function h = (h1, h2)

that solves

h1 +$cB1(h,h) +$cQ1(h,h,h) = 0,

will solve (2.3.1), and so we can find solutions to the entire system (2.2.15) by studying

Hc(h) :=


1 0
0 c

2
@
2
x
+ �+

�
h+


$c 0
0 �+

�
B(h,h) +


$c 0
0 �+

�
Q(h,h,h) = 0. (2.3.4)

2.4. The long wave scaling. This is our final change of variables. We set

h(x) = ✏
2✓(✏x), (2.4.1)

where ✓(X) = (✓1(X), ✓2(X)), and we take the wave speed c to satisfy

c
2 = c

2
✏
:= c

2
?
+ ✏

2
.

That is, we intend to solve

Hc✏(✏
2✓(✏·)) = 0 (2.4.2)

for ✓ with ✏ small.

Let $✏ be the Fourier multiplier with symbol

f$✏(K) := ✏
2 e$c✏(✏k) = � ✏

2e��(✏k)
c2
✏
(✏k)2 � e��(✏k)

. (2.4.3)

Per the convention outlined in Appendix D, for any other Fourier multiplier µ in the

definition of Hc, let µ✏ have the symbol eµ✏(k) = eµ(✏k), where of course eµ is the symbol

of µ. Let

B
✏(✓, ✓̀) =

✓
B

✏

1(✓, ✓̀)
B

✏

2(✓, ✓̀)

◆
:= J

✏

1M�/{[(J
✏✓).(J ✏✓̀)] (2.4.4)

and
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Q✏(✓, ✓̀, ✓̆) =

✓
Q✏

1(✓, ✓̀, ✓̆)
Q✏

2(✓, ✓̀, ✓̆)

◆
:= J

✏

1M�/{

⇣
(J ✏✓).(J ✏✓̀).N (✏2J ✏✓̆)

⌘
. (2.4.5)

Then by the scaling properties of Fourier multipliers, our problem (2.4.2) is equivalent

to

⇥✏(✓) := D✏

1✓ +D✏

2B
✏(✓,✓) +D✏

2Q✏(✓,✓,✓) = 0, (2.4.6)

where

D✏

1 :=


1 0
0 c

2
✏
✏
2
@
2
X
+ �

✏

+

�
and D✏

2 :=


$

✏ 0
0 ✏

2
�
✏

+

�
. (2.4.7)

Note that because the small parameter ✏2 multiplies the second derivative operator

@
2
X

in D✏

1, our problem (2.4.2) is singularly perturbed. This was not a feature of the

monatomic problem in [FP99], as the long wave problem there involved only an equa-

tion analogous to (2.3.1); a subsequent factoring and cancelation, which proceeded

like ours in Section 2.3, removed that singularity.

2.5. The formal long wave limit. In this section we formally define what ⇥0

should be by assigning meaning to D0
1, D0

2, B0, and Q0 in a natural way. As a first

step toward solving (2.4.6), we then solve the equation ⇥0(✓) = 0 explicitly.

In general, if µ is a Fourier multiplier with symbol eµ(k), and µ
✏ is the multiplier

with symbol eµ(✏k), then µ
0 should be the multiplier with “constant” symbol eµ(0), i.e.,

µf = eµ(0)f for any function f . Proposition 2.2.1 (ii) then implies

D0
1 =


1 0
0 (1 + w)(1 + {)

�
.

To define D0
2, we need to specify $0, and here we need to be careful because the

factor of ✏ appears in several places in (2.4.3). Since e�� is analytic, we can write

e��(k) = c
2
?
k
2 �

e�(4)� (0)

4!
k
4 + k

6R(k), R 2 L
1
, (2.5.1)

and we have
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e�(4)� (0)

4!
=

1

3
c?
({ + 1)2 + 2({2 � 4{ + 1)w + ({ + 1)2w2

(1 + w)2(1 + {)2 =: ↵?(w,{) = ↵?. (2.5.2)

The minus sign on k
4 in (2.5.1) is for convenience, so that ↵? > 0. Then (for ✏, k 6= 0)

we can factor and simplify e$✏(k) as

e$✏(k) = � ✏
2
c
2
?
(✏k)2 � ✏

2
↵?(✏k)4 + ✏

2(✏k)6R(✏k)

(c2
?
+ ✏2)(✏k)2 � c2

?
(✏k)2 + ↵?(✏k)4 � (✏k)6R(✏k)

= �c
2
?
� ✏

2
↵?k

2 + ✏
4
k
6R(✏k)

1 + ↵?k
2 + ✏2k4R(✏k)

.

Setting ✏ = 0, we find

e$0(k) = � c
2
?

1 + ↵?k
2
,

and so we set

$
0 := �c

2
?
(1� ↵?@

2
X
)�1

.

Then

D0
2 :=


$

0 0
0 0

�
.

We continue to use Proposition 2.2.1, along with (2.2.2) and (2.2.4), to compute

eJ(0) =

1/{ 1

1 �1

� 
e��(0) 0
0 e�+(0)

�

| {z }
e�(0)

eJ1(0) =
1

{ + 1


1/e��(0) 0

0 1/e�+(0)

� 
1 1
{ �1

�
.

(2.5.3)

This motivates the definition of the Fourier multipliers J
0 and J

0
1 as the “constant”

operators J
0 := eJ(0) and J

0
1 := eJ1(0). From this and (2.4.4) we have

B
0(✓, ✓̀) := J

0
1M�/{[(J

0✓).(J0✓̀)]. (2.5.4)

We could define Q0 in the same way using J
0 and J

0
1 , but it is straightforward to

see that Q0 will be identically zero thanks to the extra factor of ✏2 that Q✏ carries
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within N , per (2.4.5) and (2.2.13). This factor of ✏2 will resurface frequently in the

depths of the estimates to come.

All together, this implies (formally) that

⇥0(✓) =


1 0
0 (1 + w)(1 + {)

�
✓ +


$

0 0
0 0

�
B

0(✓,✓). (2.5.5)

Now we consider the problem ⇥0(✓) = 0 with ✓ = (✓1, ✓2). We find from the second

component of (2.5.5) that

(1 + w)(1 + {)✓2 = 0,

so ✓2 = 0. Then using (2.5.4), the first component reduces to

0 = ✓1 +$
0


e��(0)

� + {3

{2(1 + {)✓
2
1

�
= ✓1 � c

2
?
e��(0)

� + {3

{2(1 + {)(1� ↵?@
2
X
)�1[✓21].

Applying 1� ↵?@
2
X

to both sides, we get

↵?✓
00
2 � ✓2 + c

2
?

e��(0)
{2(1 + {)(� + {3)✓22 = 0. (2.5.6)

This is a rescaling of the ordinary differential equation that gives the sech2-type

traveling wave profiles for the KdV equation, provided that

� 6= �{3 (2.5.7)

to keep the nonlinear term ✓
2
2 present. If we require � and { to satisfy (2.5.7), then

the solution to (2.5.6) is

✓2(X) = �(X) :=
3{2(1 + {)

2c2
?
e��(0)(� + {3)

sech2

✓
X

2
p
↵?

◆
. (2.5.8)

2.6. Motivation for Beale’s nanopteron ansatz. So far, we have followed the

set-up of Friesecke and Pego [FP99] for the monatomic lattice: we converted the

equations of motion for position into equations for relative displacement; we made a

traveling wave ansatz; and we introduced the long wave scaling. Friesecke and Pego

used the same long wave scaling as well as a cancelation analogous to the one in

Section 2.3 for the acoustic band and converted their traveling wave problem into a
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fixed point equation of the form � = �✏(�); they subsequently applied a quantitative

inverse function theorem argument to the map � 7! � � �✏(�) to solve this fixed

point problem. Our attempt to turn the dimer’s long wave problem (2.4.6) into a

fixed point problem will fail, but this failure is quite instructive. Write (2.4.6) as

⇥✏(✓) =


1 0
0 T✏

�
✓ �

✓
R✏

1(✓)
R✏

2(✓)

◆
, T✏ := c

2
✏
✏
2
@
2
X
+ �

✏

+. (2.6.1)

Here we have collected all of the nonlinear terms into �R✏

1 and �R✏

2 for convenience.

We are interested in the long wave problem for ✏ small, so we expect our solution ✓

to be close to the sech2-type solution �, which satisfies ⇥0(�) = 0 from the preceding

section. We can quantify this by looking for ✓ in the form ✓ = � + ⌘, where ⌘ =

(⌘1, ⌘2) 2 H
2
q
⇥ H

2
q

for a suitable q > 0; the Sobolev space H
2
q

of exponentially

decaying H
2-functions is discussed in Appendix C.3. Then (2.6.1) is equivalent to

8
><

>:

⌘1 = R✏

1(� + ⌘)� �

T✏⌘2 = R✏

2(� + ⌘).

(2.6.2)

If we could invert T✏, then (2.6.1) would be equivalent to a fixed point problem,

to which we could conceivably apply some kind of contraction mapping method.

However, Theorem 2.2.1 furnishes a (unique) ⌦c✏ > 0 such that

�c
2
✏
(±⌦c✏)

2 + e�+(±⌦c✏) = 0.

Set

!✏ :=
⌦c✏

✏
. (2.6.3)

Then with

eT✏(k) = �c
2
✏
(✏k)2 + e�+(✏k)

as the symbol of T✏, we have

eT✏(±!✏) = 0. (2.6.4)

We also have

eT 0
✏
(±!✏) = ✏

d

dk

⇣
�2c2

✏
(✏k) + e�0+(✏k)

⌘ ����
k=!✏

6= 0,
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and so we conclude that 1/eT✏ has poles of order one at k = ±!✏. We therefore cannot

define a Fourier multiplier with symbol 1/eT✏ on H
2
q
, and so it is not immediately clear

how to proceed in the vein of Friesecke and Pego.

Another, somewhat more informal, way to view (2.6.2) is that it consists ostensibly

of two equations in the two unknowns ⌘1 and ⌘2, but the second equation T✏⌘2 =

R✏

2(� + ⌘) forces two more equations:

T✏⌘2 = R✏

2(� + ⌘) =) \R✏

2(� + ⌘)(±!✏) = dT✏⌘2(±!✏) = eT✏(±!✏)b⌘2(±!✏) = 0.

(Note that since ⌘2 2 H
1
q
✓ L

1 for q > 0 by Proposition C.3.12, the pointwise Fourier

transform of ⌘2 at ±!✏ is unambiguously defined.) That is, we have the “solvability

conditions” \R✏

2(� + ⌘)(±!✏) = 0. It turns out that, at least in the cases of the mass

and spring dimers, we can remove one of these equations by exploiting a “symmetry”

in the underlying lattice’s structure and restricting ⌘1 and ⌘2 to be even or odd. We

would still be left, though, with solving the three equations
8
>>>>>><

>>>>>>:

⌘1 = R✏

1(� + ⌘)

T✏⌘2 = R✏

2(� + ⌘)

\R✏

2(� + ⌘)(!✏) = 0

(2.6.5)

in only the two unknowns ⌘1 and ⌘2. A solution, then, is to introduce a third unknown

into the problem, making for the classically optimistic situation of “three equations

in three unknowns.”

We make this precise by following the nanopteron ansatz introduced by Beale

[Bea91a] for the water waves problem and subsequently adapted by Amick and Toland

[AT92] for a singularly perturbed model equation derived from the Euler equations

for water waves. That is, we revise the ansatz ✓ = � + ⌘ to

✓ = � + a'
a
+ ⌘,

where now ⌘ 2 H
2
q
⇥H

2
q
, a 2 R, and '

a
(X) = �

a
(!aX) for some �

a
2 H

2
per⇥H

2
per and
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!a 2 R with ⇥✏(a'a
) = 0. The periodic Sobolev space H

2
per is defined in Appendix

C.2.

The success of this ansatz first hinges, of course, on the existence of such a and

'
a

satisfying ⇥✏(a'a
) = 0. The existence of such periodic solutions is the content of

Chapter 3. Then we rearrange the problem ⇥✏(� + a'
a
+ ⌘) = 0 into a fixed point

problem for a and ⌘, which incorporates the solvability condition from (2.6.5) so that

we have three equations in three unknowns. This is the content of Chapter 4.

2.7. Specialization to mass and spring dimers. We need to make one further

specialization before implementing Beale’s ansatz. This chapter has derived the long

wave problem for a general dimer lattice, which allows both masses and springs to

vary. The original intention of this dissertation was to address the nanopteron prob-

lem in the general dimer, requiring only w > 1 and { 6= 0 or { > 1 and w 6= 0. To

date, this remains an open problem, chiefly due to the following technical difficulty.

The existence of periodic solutions is based on a fixed point argument originat-

ing from the proof of the Crandall-Rabinowitz-Zeidler theorem on bifurcation from a

simple eigenvalue (stated as Theorem 3.2.1). To apply the theorem or to construct

the fixed point equations as we do in Section 3.3 requires, fundamentally, that the

linearization of the nonlinear operator ⇥✏ from the long wave equations in (2.4.6)

have a one-dimensional kernel. The Friesecke-Pego cancelation is a key step in this

direction, as it removes “constant” elements from the kernel. We discuss this in more

precise detail in Section 3.2 and especially in Remark 3.2.2. Merely removing these

constant solutions from the kernel of D✏

1, however, does not reduce the kernel’s dimen-

sion sufficiently, as (2.6.4) turns out to guarantee that without further restrictions on

our function space, D✏

1 will always be at least two dimensional. Instead, we will be

able to decrease the kernel’s dimension down to one by restricting to spaces of certain

even and/or odd functions.
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2.7.1 Lemma. Recall the definition of Hc from (2.3.4) and the eigenvector scalings

e�±(k) from (2.2.3).

(i) (Mass dimer) Suppose w > 1 and { = 1. Let

e�+(k) = e
�ik +

e
ike%(k)

weik + e�ik
and e��(k) =

we
ik + e

�ik

e%(k) e�+(k). (2.7.1)

If h1 is even and h2 is odd and h = (h1, h2), then Hc(h) · i is even and Hc(h) · j

is odd. Furthermore, in the long wave coordinates, if ✓1 is even and ✓2 is odd and

✓ = (✓1, ✓2), then ⇥✏,1(✓) is even and ⇥✏,2(✓) is odd.

(ii) (Spring dimer) Suppose w = 1 and { > 1. Let e�±(k) = 1. If h1 and h2 are both

even and h = (h1, h2), then the components of Hc(h) are also both even. If ✓1 and ✓2

are even and ✓ = (✓1, ✓2), then ⇥✏,1(✓) and ⇥✏,2(✓) are odd.

Proof. (i) This was proved as Lemma 2.8 in [FW18].

(ii) We use the fact that if the symbol of a Fourier multiplier µ is even and f is an

even function, then µf is even. Observe that the Fourier multipliers in the definition

of Hc — which are c
2
@
2
x
+ �+, �+, $c, J1, and J — all have even symbols. More-

over, multiplication and composition of even functions of course preserves evenness.

Together with the structure of Hc, this proves the parity result for Hc(h). Likewise,

every Fourier multiplier in the definition of ⇥✏ has an even symbol, since the rescal-

ing of eµ(k) to eµ(✏k) does not change the parity of an arbitrary symbol eµ, and so the

components of ⇥✏(✓) are also both even when ✓1 and ✓2 are even. ⌅

We have found no such “symmetry” condition for the general dimer. There, the

components (2.2.2) of the eigenvectors of L[w,{] are neither even (nor odd) as in the

spring dimer. Likewise, a rescaling of the eigenvectors in the vein of (2.7.1) for the

mass dimer fails to yield any symmetry in the general dimer due to the presence of the

matrix M�/{, which in the general dimer’s traveling wave equations is no longer the
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identity matrix. It remains entirely possible that there do not exist periodic solutions

to the long wave problem (2.4.6), in which case Beale’s ansatz is no longer valid, and

we would not expect nanopteron solutions to exist.

At this point it is appropriate to mention a different formulation of the lattice

nanopteron problem. Making a clever change of variables, Iooss and Kirchgässner con-

vert the traveling wave problems for the monatomic lattice [Ioo00] and a monatomic

lattice with coupling [IK00] to an evolution equation of the form
dU

dt
= L(U, µ) +M(U, µ), (2.7.2)

where U belongs to a Hilbert space X , µ 2 R, L is linear in U , and M is quadratic in

U . They then appeal to the work of Lombardi [Lom00], who has proved the existence

of nanopteron solutions for a broad class of equations like (2.7.2). One of Lombardi’s

key hypotheses is the existence of a “symmetry” S 2 B(X ) that anticommutes with L

and M and satisfies S2 = 1. This is the so-called “reversibility” of the system (2.7.2).

Venney and Zimmer [VZ14] have used the Iooss-Kirchgässner variables and Lom-

bardi’s results to prove the existence of nanopterons in lattices with both nearest and

next-to-nearest neighbor spring connections, and we expect that the methods of Ven-

ney and Zimmer will carry over to the mass and spring dimers. It is relatively straight-

forward to identify the appropriate symmetry operator S for the mass and spring

dimers when their traveling wave problems are written in the Iooss-Kirchgässner vari-

able, although the symmetry is a different operator for each dimer. It is not apparent

at all, however, that the general dimer’s equation has any such anticommuting sym-

metry. While this is certainly not a proof of the nonexistence of nanopteron solutions,

it certainly adds to the complications in finding them.

For these reasons, we restrict ourselves to the mass and spring dimers only. The

main existence theorem for mass dimers, Theorem 1.4.1, was proved in [FW18], and

so we will focus on the case of the spring dimer in this dissertation. These results,

leading to the proof of Theorem 1.4.2, are also contained in the forthcoming [Fav].
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Chapter 3. Existence of Periodic Solutions

3.1. The periodic existence theorem. The goal of this chapter is to prove the

following existence theorem for periodic solutions to (2.4.6) in the spring dimer case.

3.1.1 Theorem. There exist ✏per, aper > 0 such that for all ✏ 2 (0, ✏per), there are

maps

[�aper, aper] ! R : a 7! !
a

✏

[�aper, aper] ! C1
per \ {even functions} : a 7!  

a

✏,1

[�aper, aper] ! C1
per \ {even functions} : a 7!  

a

✏,2

such that the following hold.

(i) If

⌫ := cos(·)j,  a

✏
:=

✓
 

a

✏,1

 
a

✏,2

◆
, and 'a

✏
(X) := ⌫(!a

✏
X) + a

✏
(!a

✏
X),

then ✓ := a'a

✏
solves (2.4.6) for all |a|  aper and ✏ 2 (0, ✏per).

(ii) The frequency !
0
✏

satisfies !0
✏
= !✏ as defined in (2.6.3) above. We say that

!✏ = O(1/✏) in the sense that there are constants C1, C2 > 0 such that
C1

✏
< !✏ <

C2

✏

for all ✏ 2 (0, ✏per).

(iii)  
0
✏,1 =  

0
✏,2 = 0.

(iv) For all r � 0, there is Cr > 0 such that

|✏!a

✏
|+ k a

✏
kCr

per⇥Cr
per

 Cr

and

|!a

✏
� !

à

✏
|+
�� a

✏
� à

✏

��
Cr
per⇥Cr

per
 Cr|a� à|
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for all |a|, |à|  aper and 0 < ✏ < ✏per.

3.1.2 Remark. We wish to point out that the restriction � 6= �{3 in Theorem 1.4.1

is absent from the hypotheses of Theorem 3.1.1, which gives the existence of exact

periodic traveling wave solutions. That is, periodic solutions exist under the more

general conditions { > 1 and � 6= 0; the condition � 6= �{3 only enters from the

formal long wave limit in Section 2.5, from which the useful sech2-type KdV soliton �

arises and without which Beale’s ansatz simply does not make sense.s When � = �{3,

the KdV equation (2.5.6) reduces to

↵{✓
00
2 � ✓2 = 0,

which has no nontrivial exponentially decaying solutions, and so we have no natural

analogue for �.

3.2. Bifurcation from a simple eigenvalue. We introduce a periodic profile and

a frequency scaling: let ✓(X) = �(!X), where � = �(Y ) is 2⇡-periodic and ! 2 R.

Then the problem of (2.4.6), ⇥✏(�(!·)) = 0, converts to

�✏(�,!) :=


1 0
0 ✏

2
!
2(c2{ + ✏

2)@2
Y
+ �

✏!

+

�
�+


$

✏,! 0
0 ✏

2
�
✏!

+

�
B

✏!(�,�)

+


$

✏,! 0
0 ✏

2
�
✏!

+

�
Q✏!(�,�,�) = 0, (3.2.1)

where $✏,! has the symbol

g$✏,!(k) = e$✏,!(k) := e$✏(!k)

with e$✏ defined in (2.4.3) and the other Fourier multipliers are defined per Section

2.4 and the scaling properties in Appendix D.

At this point we could appeal to the following version of the Crandall-Rabinowitz-

Zeidler theorem (stated, with some modifications, in [AAW13]) to prove, for each fixed

✏, the existence of a family of nontrivial solutions to (3.2.1).
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3.2.1 Theorem (Crandall-Rabinowitz-Zeidler). Let X and Y be Hilbert spaces

and � : X ⇥ R ! Y be a function with the following properties. Suppose that

(i) The partial derivatives D��, D!�, and D�!� exist and are continuous.

(ii) �(0,!) = 0 for all ! 2 R.

(iii) There is !? 2 R such that D := D��(0,!?) has a one-dimensional kernel and

has Fredholm index equal to zero.

(iv) If �? 2 X spans ker(D) and  ? 2 Y spans ker(D⇤), where D⇤ : Y ! X is the

adjoint of D, then hD�!�(0,!?)�?, ?iY 6= 0.

Then there is a sequence
�
(�n,!n)

�
in X ⇥ R such that �(�n,!n) = 0 with �n 6= 0

for all n and limn!1(�n,!n) = (�?,!?).

To apply this theorem, we would work in the Hilbert spaces E
2
per ⇥ E

2
per and

E
0
per ⇥ E

0
per, where

E
r

per :=
�
f 2 H

r

per

�� f is even
 
.

The necessary regularity on �✏ follows from Proposition D.3.1. We have �✏(0,!) = 0

for all ! and we noted in Section 3 that D��✏(0,!✏) cos(·)j = 0.

Now, take !? = !✏, where !✏ > 0 was defined in (2.6.3) and satisfies

c
2
✏
(±✏!✏)

2 � e�+(±✏!✏) = 0. (3.2.2)

Moreover, !✏ is the unique (positive) root of

c
2
✏
(±✏k)2 � e�+(±✏k) = 0.

Suppose

D��✏(0,!✏)� =


1 0
0 ✏

2
!
2
✏
(c2{ + ✏

2)@2
Y
+ �

✏!✏
+

�
� = 0.

Then �1 = 0 and
�
c
2
✏
(✏!✏k)

2 � e�+(✏!✏k)
�b�2(k) = 0
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for all k 2 Z. We know

c
2
✏
(✏!✏k)

2 � e�+(✏!✏k) 6= 0

for |k| 6= 1, so b�2(k) = 0 for |k| 6= 1. By (3.2.2) we need not have b�2(±1) = 0, and so

kerD��✏(0,!✏) = span({cos(·), sin(·)}) \
�
E

2
per ⇥ E

2
per

�
= span({cos(·)}).

A similar calculation shows that kerD��✏(0,!✏) = span({cos(·)}) as well, and

checking condition (iii) in the Crandall-Rabinowitz-Zeidler theorem ultimately rests

on the inequality (2.2.9). So, for each ✏ > 0, there is a family {(�✏

n
,!

✏

n
)} of solutions

to �✏(�, ✏) = 0 satisfying the properties in Theorem 3.2.1.

3.2.2 Remark. We can now explain the full utility of the Friesecke-Pego cancelation

and the restriction to supersonic wave speeds and “even ⇥ even” functions. We could

have looked for periodic solutions to (2.2.15) before the Friesecke-Pego cancelation

and without the hypothesis c
2
> c

2
{. The linearization of (2.2.15) is

Dc :=


c
2
@
2
x
+ �� 0
0 c

2
@
2
x
+ �+

�
.

Studying the dimension of kerDc amounts to determining the number of intersec-

tions of the curves c
2
k
2 and e�+(k) and c

2
k
2 and e��(k). By Proposition 2.2.1, the

parabola c
2
k
2 will always intersect the acoustic band e��(k) at k = 0, and so Dci = 0.

This parabola will also intersect the optical band e�+(k) at least twice; this is unavoid-

able since c
2
k
2 is strictly increasing and unbounded. For c

2
< c

2
{, the parabola c

2
k
2

can intersect the acoustic band e��(k) too many times; effectively, when c
2 is “too

small,” the parabola c
2
k
2 is “too wide.” All together, without further modifications of

our system and our function spaces, there will be at least five intersections, as sketched

in Figure 3.2.1.

However, after the Friesecke-Pego cancelation, it is clear that D��✏(0,!)i 6= 0 for

all !. More broadly, D✏

1i 6= 0, where D✏

1 is defined in (2.4.7). At the same time, the

hypothesis c
2
> c

2
{ — which we also needed for the Friesecke-Pego cancelation, due
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k

e�+(k)

e��(k)

c
2
k
2

1

2

3

4

5

Figure 3.2.1: Intersections of c2k2 with e�±(k) when c
2
< c

2
{

to the division in (2.4.3) — ensures that the parabola c
2
k
2 intersects e��(k) only at

the origin. We label this as #2 in Figure 3.2.2. The Friesecke-Pego cancelation then

removes this intersection from “counting” toward the dimension of the kernel.

Last, the restriction to “even ⇥ even” functions removes one of the intersections

#1 and #3 in Figure 3.2.2, which correspond to the roots ±✏!✏ in (3.2.2). Then we

are down to one intersection and a one-dimensional kernel.

3.3. Conversion to a fixed-point problem. We seek estimates on the solutions to

(3.2.1) that are uniform in ✏ for use in the subsequent nanopteron problem of Chapter

4. The Crandall-Rabinowitz-Zeidler approach given above will only work for a single

fixed ✏ at a time, and this will not ostensibly provide the desired uniformity. Instead,

we follow the proof of the original version of Theorem 3.2.1 given in [CR71], and we

rewrite the problem (3.2.1) in fixed point form. With ⌫ = cos(·)j as in Theorem 3.1.1,

let

Z :=
n
 2 E

2
per ⇥ E

2
per

��� b 1(±1) = 0
o
= {⌫}?.

In other words, Z = {⌫}?, the orthogonal complement of {⌫} in E
2
per ⇥ E

2
per. We

recall the definitions and properties of periodic Sobolev spaces from Appendix C.2.



3. Existence of Periodic Solutions 32

k

e�+(k)

e��(k)

c
2
k
2

1

2

3

Figure 3.2.2: Intersections of c2k2 with e�±(k) when c
2
> c

2
{

Then with the ansatz

� = a⌫ + a ,  2 Z and ! = !✏ + t, t 2 R,

which is inspired by the proof in [CR71], the system (3.2.1) becomes


1 0

0 ✏
2(!✏ + t)2c2

✏
@
2
Y
+ �

✏(!✏+t)
+

�
(⌫ + ) + a


$

✏,!✏+t

c✏
0

0 ✏
2
�
✏(!✏+t)
+

�
B✏( , t)

+ a


$

✏,!✏+t

c✏
0

0 ✏
2
�
✏(!✏+t)
+

�
E ✏( , t, a) = 0. (3.3.1)

Here we have abbreviated

B✏( , t) =

✓
B✏

1( , t)
B✏

2( , t)

◆
:= B

✏(!✏+t)(⌫ + ,⌫ + )

and

E ✏( , t, a) =

✓
E ✏

1( , t, a)
E ✏

2( , t, a)

◆

:= a✏
2
J
✏(!✏+t)
1 M1/{

h�
J
✏(!✏+t)(⌫ + )

�.3
.N(a✏2J ✏(!✏+t)(⌫ + ))

i
.

Let ⇧1 be the multiplier with symbol
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e⇧1(k) := �|k|,1 =

(
1, |k| = 1

0, |k| 6= 1

and let ⇧2 := 1 � ⇧1. That is, ⇧ projects onto span({cos(·)}). Then

⇧1 cos(·) = cos(·), ⇧2 cos(·) = 0, ⇧1 = 0, and ⇧2 (3.3.2)

for any  2 E
2
per with b (1) = 0.

Let ⇠c be the multiplier with symbol

e⇠c(k) := �c
2
k
2 + e�+(k),

which we first encountered in (2.2.7), and let

⇠
✏,t := ⇠

✏(!✏+t)
c✏

= ✏
2(!✏ + t)2c2

✏
@
2
Y
+ �

✏(!✏+t)
+ ,

so ⇠✏,t has the symbol

f⇠✏,t(k) = e⇠c✏(✏(!✏ + t)k).

After we apply ⇧1 and ⇧2 to the second component of (3.3.1) and use (3.3.2), we

see that (3.3.1) is equivalent to the three equations

 1 + a$
✏,!✏+t (B✏

1( , t) + E ✏

1( , t, a)) = 0. (3.3.3)

⇠
✏,t
 2 + a✏

2⇧2�
✏(!✏+t)
+ (B✏

2( , t) + E ✏

2( , t, a)) = 0, (3.3.4)

and

⇠
✏,t cos(·) + a✏

2⇧1�
✏(!✏+t)
+ (B✏

2( , t) + E ✏

2( , t, a)) = 0. (3.3.5)

The first equation, (3.3.3), immediately converts to the fixed-point form

 1 = �a$
✏,!✏+t (B✏

1( , t) + E ✏

1( , t, a)) =:  ✏

1( , t, a). (3.3.6)

The invertibility of ⇠✏,t on the range of ⇧2, as detailed in Proposition G.1.1, means

that (3.3.4) is equivalent to

 2 = �a✏
2
�
⇠
✏,t
��1

⇧2�
✏(!✏+t)
+ (B✏

2( , t) + E ✏

2( , t, a)) =:  ✏

2( , t, a). (3.3.7)

Last, if  is even, then (3.3.5) holds if and only if the Fourier transform of its left
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side evaluated at k = 1 is equal to zero. We use (G.1.1) below to write

F[⇠✏,t cos(·)](1) =
e⇠c✏(✏!✏ + ✏t)

2
=

(✏t)⌥✏

2
+

(✏t)2R✏(✏t)

2
,

where ⌥✏ is bounded away from zero. We conclude that (3.3.3) is equivalent to

t = � ✏

⌥✏

R✏(✏t)t
2 � 2✏a

⌥✏

F
h
�
✏(!✏+t)
+ (B✏

2( , t) + E ✏

2( , t, a))
i
(1) =:  ✏

3( , t, a). (3.3.8)

Now we are ready to pose our fixed point problem. Let

Wr =
�
E

r

per ⇥ E
r

per

�
\ Z and k k

r
:= k kWr = k 1kHr

per
+ k 2kHr

per

We will find an interval [�aper, aper] ✓ R and maps

[�aper, aper] ! W2 : a 7!  a

✏
= ( a

✏,1, 
a

✏,2) and [�aper, aper] ! R : t 7! t
a

✏

such that
0

@
 

a

1,✏

 
a

2,✏

t
a

✏

1

A =

0

@
 ✏

1( 
a

✏
, t

a

✏
, a)

 ✏

2( 
a

✏
, t

a

✏
, a)

 ✏

3( 
a

✏
, t

a

✏
, a)

1

A =:  ✏( a

✏
, t

a

✏
, a)

for all ✏ in the interval (0, ✏per), where ✏per comes from Proposition G.1.1. Once

we show the existence of these maps, we will prove the additional properties and

estimates in Theorem 3.1.1.

3.4. The fixed point lemma. We will use the following lemma, proved in Appendix

F.4, to solve the fixed point problem and obtain the various estimates and smoothness

properties.

3.4.1 Lemma. Let X be a Banach space and and let F✏ : X ⇥ R ! X , 0 < ✏ <

✏0, be a family of maps with the following properties: there exist continuous maps

Mmap : R+ ! R+, Mlip : R2
+ ! R+, and Mmax : R+ ! R+ and a constant a1 > 0

such that if |a|, |à|  a1, then

sup
0<✏<✏0

kF✏(x, a)k  Mmap[kxk]
�
|a|+ kxk2

�
, (3.4.1)
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sup
0<✏<✏0

kF✏(x, a)� F✏(x̀, a)k  Mlip[kxk , kx̀k] (|a|+ kxk+ kx̀k) kx� x̀k , (3.4.2)

and

sup
0<✏<✏0

kF✏(x, a)� F✏(x, à)k  Mmax[kxk]|a� à| (3.4.3)

for any x, x̀ 2 X . Then there are constants a0, r0 such that if |a|  a0 and 0 < ✏ < ✏0,

there exists a unique x
a

✏
2 B(r0) :={x 2 X | kxk  r0} such that

kxa

✏
k  r0 and F✏(x

a

✏
, a) = x

a

✏
. (3.4.4)

Moreover, there is a constant C > 0 such that if |a|, |à|  a0, then

sup
0<✏<✏0

��xa

✏
� x

à

✏

��  C|a� à|. (3.4.5)

3.5. Solution of the fixed-point problem. It is convenient to introduce some new

notation. Let

L✏

1(t) :=


$

✏,!✏+t 0

0 ✏
2
�
⇠
✏,t
��1

⇧2

�
,

L✏

2(t) := �

1 0

0 �
✏(!✏+t)
+

�
,

L✏

3(t) := J
✏(!✏+t)

,

L✏

4(t) := J
✏(!✏+t)
1 ,

G✏( , t, a) := L✏

2(t) (B✏( , t) + E ✏( , t, a)) ,

and

F✏( , t, a) := aL✏

1(t)G✏( , t, a) =

✓
 ✏

1( , t; a)
 ✏

2( , t; a)

◆
.

We obtain the estimates (3.4.1), (3.4.2), and (3.4.3) for the function  ✏ by showing

they hold for the function F✏ just defined and then, separately, for  ✏

3, for which the

map G✏ will be useful. In our application of Lemma 3.4.1 we will take the Banach

space to be X = W2. However, we will prove various estimates in the spaces Wr for

the sake of the subsequent bootstrap arguments.
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3.5.1. Estimates for G✏.

3.5.1 Proposition. Let ✏per > 0 be as in Proposition G.1.1. We have the following

estimates for all r � 2.

(i) There exists an increasing function MG
map,r : R+ ! R+ such that

sup
0<✏<✏per

|t|1

kG✏( , t, a)kr  MG
map,r[k kr] (3.5.1)

for any  2 Wr and |a|  1.

(ii) There exists a radially increasing5 function MG
lip,r : R2

+ ! R+ such that

sup
0<✏<✏per

���G✏( , t, a)� G✏( ̀, t̀, a)
���
r�1

 MG
lip,r[k kr ,

�� ̀
��
r
]
⇣�� �  ̀

��
r
+ |t� t̀|

⌘

(3.5.2)

for any  ,  ̀ 2 Wr, |t|, |t̀|  1, and |a|  1.

In the proof of this proposition and others in this section, we will often rely on

the Lipschitz estimates for operator norms of Fourier multipliers on periodic spaces

given in Proposition D.3.1.

Proof. Throughout this proof, we assume ✏, |t|, |t̀|, |a|  1 and  2 Wr.

(i) A first pass using (G.1.4) shows

kG✏( , t, a)kr  |a| kL✏

2(t)kB(Wr,Wr) (kB
✏( , t)k

r
+ kE ✏( , t, a)k

r
)

 |a|C2
map (kB✏( , t)k

r
+ kE ✏( , t, a)k

r
) .

Since r � 2, we can use the Sobolev embedding to estimate the products in B✏ and

E ✏:

kB✏( , t)k
r
=
��B✏(!✏+t)(⌫ + ,⌫ + )

��
r

5
See Remark E.1.2.
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=
���L✏(!✏+t)

4 M�/{[L✏

3(t)(⌫ + )].2
���
r

 Cmap
�

{ kL✏

3(t)(⌫ + )k2
r

 C
3
map

�

{
�
k⌫k2

r
+ 2 k⌫k

r
k k

r
+ k k2

r

�

 C
3
mapCr

�

{
�
1 + k k

r
+ k k2

r

�

and, similarly,

kE ✏( , t, a)k
r
=
��L✏

4(t)M1/{[(L✏

3(t)(⌫ + )).3.N(a✏2L✏

3(t)(⌫ + ))]
��
r

 C
2
map

1

{ k⌫ + k3
r

��N(a✏2L✏

3(t)(⌫ + ))
��
r
.

We apply Proposition E.5.1 to estimate
��N(a✏2L✏

3(t)(⌫ + ))
��
r
 Mr[|a|✏2 kL✏

3(t)(⌫ + )k
r
]

for some increasing function Mr : R+ ! R+. Since

sup
|a|,|t|1
0<✏<✏per

|a|✏2 kL✏

3(t)(⌫ + )k
r�1  Cr (1 + k k

r
)

and Mr is increasing, we have
��N(a✏2L✏

3(t)(⌫ + ))
��
r
 Mr[k kr].

This bound, together with the estimate on kB✏( , t)k
r

above, produces (3.5.1).

(ii) We have

��G✏( , t, a)� G✏( ̀, t̀, a)
��
r�1

=
��(L✏

2(t)� L✏

2(t̀))(B✏( , t) + E ✏( , t, a))
��
r�1| {z }

�1

+
��L✏

2(t̀)(B✏( , t)� B✏( ̀, t̀))
��
r�1| {z }

�2
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+
��L✏

2(t̀)(E ✏( , t, a)� E ✏( ̀, t̀, a))
��
r�1| {z }

�3

.

It is straightforward to estimate �1 using (G.1.7) and Proposition E.5.1:

�1 
��L✏

2(t)� L✏

2(t̀)
��
B(Wr,Wr�1)

kB✏( , t) + E ✏( , t, a)k
r

 Clip|t� t̀| kB✏( , t) + E ✏( , t, a)k
r

 Clip|t� t̀|Mr[k kr].

We handle �2 and �3 in essentially the same way; we estimated

�2  Clip

�
|t� t̀|+

�� �  ̀
��
r�1

�

in [FW18], so we provide some more detail only for �3 here. First,

�3 
��L✏

2(t̀)
��
B(Wr�1,Wr�1)

��E ✏( , t, a)� E ✏( ̀, t̀, a)
��
r�1

 Cmap

��E ✏( , t, a)� E ✏( ̀, t̀, a)
��
r�1| {z }

�4

,

where

E ✏( , t, a)� E ✏( ̀, t̀, a) = L✏

4(t)M1/{[(L✏

3(t)(⌫ + )).3.N(a✏2L✏

3(t)(⌫ + ))]

� L✏

4(t̀)M1/{[(L✏

3(t̀)(⌫ +  ̀)).3.N(a✏2L✏

3(t̀)(⌫ +  ̀))].

Then, adding a number of zeroes, we can bound �4 in the natural way, and the only

term the likes of which we have not seen before, either here or in [FW18], will be

��L✏

4(t̀)M1/{[(L✏

3(t̀)(⌫ +  ̀)).3.(N(a✏2L✏

3(t)(⌫ + ))�N(a✏2L✏

3(t̀)(⌫ +  ̀)))]
��
r�1

.

After factoring out the operators L✏

4(t̀)M1/{ and using the Sobolev inequality (C.2.3)

for products, we invoke Proposition E.5.2 to bound
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��N(a✏2L3(t)(⌫ + ))�N(a✏2L✏

3(t̀)(⌫ +  ̀))
��
r�1

 Mr�1[
��a✏2L✏

3(t)(⌫ + )
��
r�1

,
��a✏2L✏

3(t̀)(⌫+ ̀)
��
r�1

]
��L3(t)(⌫+ )�L✏

3(t̀)(⌫+ ̀)
��
r�1

.

Since Mr�1 is radially increasing, the uniform bound on L✏

3 and the triangle inequality

allow us to bound this by

Mr�1[k kr ,
�� ̀
��
r
]
⇣��(L✏

3(t)� L✏

3(t̀))⌫
��
r�1

+
��(L✏

3(t)� L✏

3(t̀)) 
��
r�1

+
��L✏

3(t̀)( �  ̀)
��
r�1

⌘
,

and we estimate these terms easily enough using (G.1.7) to achieve (3.5.2). ⌅

3.5.2. Estimates for F✏. We will obtain the estimates (3.4.1), (3.4.2), and (3.4.3) for

F✏ directly from the following proposition.

3.5.2 Proposition. Let ✏per > 0 be as in Proposition G.1.1. The following estimates

hold for all r � 2.

(i) There exists an increasing function MF
map,r : R+ ! R+ such that

sup
0<✏<✏per

|t|1

kF✏( , t, a)kr  |a|MF
map,r[k kr�1] (3.5.3)

for any  2 Wr and |a|  1.

(ii) There exists a radially increasing function MF
lip,r : R2

+ ! R+ such that

sup
0<✏<✏per

��F✏( , t, a)� F✏( ̀, t̀, a)
��
r
 |a|MF

lip,r[k kr ,
�� ̀
��
r
]
⇣�� �  ̀

��
r�1

+ |t� t̀|
⌘

(3.5.4)

for any  ,  ̀ 2 Wr, |t|, |t̀|  1, and |a|  1.

(iii) There exists a continuous function MF
max,r : R+ ! R+ such that

sup
0<✏<✏per

|t|1

kF✏( , t, a)� F✏( , t, à)kr  MG
max,r[k kr]|a� à|. (3.5.5)



3. Existence of Periodic Solutions 40

Proof. (i) We use the smoothing property of L✏

1(t), (G.1.3), and (3.5.1) to find

kF✏( , t, a)kr = |a| kL✏

1(t)G✏( , t, a)kr

 |a| kL✏

1(t)kB(Wr�1,Wr) kG✏( , t, a)kr�1

 Cmap|a|MG
map,r�1[k kr�1].

(ii) First, we have

��F✏( , t, a)� F✏( ̀, t̀, a)
��
r
= |a|

���L✏

1(t)G✏( , t, a)� L✏

1(t̀)G✏( ̀, t̀, a)
���
r

 |a|
��(L✏

1(t)� L✏

1(t̀))G✏( , t, a)
��
r| {z }

�1

+ |a|
��L✏

1(t̀)(G✏( , t, a)� G✏( ̀, t̀, a))
��
r| {z }

�2

.

We apply (G.1.6) to �1 and then (3.5.1) to find

�1  |a|
��L✏

1(t)� L✏

1(t̀)
��
B(Wr,Wr)

kG✏( , t, a)kr

 |a|Clip|t� t̀|MG
map,r[k kr].

For �2, we need the smoothing property of L✏

1(t̀):

�2  |a|
��L✏

1(t̀)
��
B(Wr�2,Wr)

��G✏( , t, a)� G✏( ̀, t̀, a)
��
r�2

 Cmap|a|MG
lip,r[k kr ,

�� ̀
��
r
]
⇣�� �  ̀

��
r�1

+ |t� t̀|
⌘
.

(iii) The necessary estimates are straightfoward and similar enough to the proof of

(3.5.4) that we omit them; they rely fundamentally on the mapping and Lipschitz

estimates (3.5.1) and (3.5.2) for G✏ and on the Lipschitz composition estimate in

Proposition E.5.2. ⌅
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3.5.3. Estimates for  ✏

3. We take r = 2 and ✏ 2 (0, ✏per).

Proof of (3.4.1) for  ✏

3. The triangle inequality gives

| ✏

3( , t, a)| 
1

⌥✏

|R✏(✏t)|t2 +
2|a|
⌥✏

���F
h
�
✏(!✏+t)
+ (B✏

2( , t) + E ✏

2( , t, a))
i
(1)
���

The bound (G.1.2) on ⌥✏ and (G.1.5) bound the first term above by t
2
/b0, and

elementary properties of the Fourier transform, the Sobolev embedding, and (3.5.1)

imply

���F
h
�
✏(!✏+t)
+ (B✏

2( , t) + E ✏

2( , t, a))
i
(1)
��� 

����✏(!✏+t)
+ (B✏

2( , t) + E ✏

2( , t, a))
���
L1

 C

����✏(!✏+t)
+ (B✏

2( , t) + E ✏

2( , t, a))
���
2

 C kL✏

2(t)(B✏( , t) + E ✏( , t, a))k2

= C kG✏( , t, a)k2

 CMG
map,2[k k2].

All together, we have

| ✏

3( , t, a)|  Cmapt
2 + 2C|a|MG

map,2[k k2].

Proof of (3.4.2) for  ✏

3. We use the triangle inequality to estimate

| ✏

3( , t, a)� ✏

3( ̀, t̀, a)|  Ct
2|R✏(✏t)�R✏(✏t̀)|+ |R✏(✏t̀)||t2 � t̀

2|

+ C|a|
���G✏( , t, a)� G✏( ̀, t̀, a)

���
1
.

Here we have used the Sobolev embedding inequality (C.2.5) to bound the Fourier

transform terms by their W1-norm instead of the W2-norm as we did above with the

mapping estimate. This allows us to use (3.5.2) to bound

���G✏( , t, a)� G✏( ̀, t̀, a)
���
1
 MG

lip,2[k k2 ,
�� ̀
��
2
]
⇣�� �  ̀

��
2
+ |t� t̀|

⌘
.
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We estimate the first term with (G.1.8):

|R✏(✏t)�R✏(✏t̀)|  Clip|t� t̀|

and the second by the difference of squares and (G.1.5).

Proof of (3.4.3) for  ✏

3. The proof is the same as that of (3.5.5) above.

3.5.4. Proof of the remainder of Theorem 3.1.1. Taking r = 2 in Proposition 3.5.2

and using the estimates for  ✏

3 in Section 3.5.3, we find that the map  ✏ satisfies

the estimates of Lemma 3.4.1 on the space W2 =
�
H

2
per ⇥H

2
per

�
\ Z. So, there exist

r0, ✏per, aper 2 (0, 1) such that for all 0 < ✏ < ✏per and |a|  aper, there is a unique

( a

✏
, t

a

✏
) = ( a

1,✏, 
a

2,✏, t
a

✏
) 2 W2 ⇥ R satisfying

 ✏( 
a

✏
, t

a

✏
, a) = ( a

✏
, t

a

✏
)

and

k( a

✏
, t

a

✏
)kW2⇥R =

�� a

✏,1

��
H2

per
+
�� a

✏,2

��
H2

per
+ |ta

✏
|  r0.

There is also a constant C2 > 0 such that for |a|, |à|  aper and 0 < ✏ < ✏per, we have
��( a

✏
, t

a

✏
)� ( à

✏
, t

à

✏
)
��
W2⇥R  C2|a� à| (3.5.6)

Set

!
a

✏
:= !✏ + t

a

✏
.

We are ready to prove the rest of Theorem 3.1.1.

Proof of (i). Undoing the fixed point set-up of Section 3.3, we find that

✓(X) := a'a

✏
(X) := a⌫(!a

✏
X) + a a

✏
(!a

✏
X)

solves (2.4.6).

Proof of (ii) and (iii). Recalling the definitions of the components of  ✏ in (3.3.6),

(3.3.7), and (3.3.8), we compute

( 0
1,✏, 

0
2,✏, t

0
✏
) =  ✏( 

0
✏
, t

0
✏
, 0) = (0, 0, 0),

and so  0
✏
= 0 and t

0
✏
= 0, hence !0

✏
= !✏ + t

0
✏
= !✏.
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For the O(✏) bound on !✏, we know from (2.2.8) that with c✏ =
p
c2{ + ✏2 and

!✏ = ⌦c✏/✏, we have

1

✏

 p
2{p

c2{ + ✏2per

!
 1

✏

p
2{p

c2{ + ✏2
 !✏ 

1

✏

p
2 + 2{p
c2{ + ✏2

 1

✏

✓p
2 + 2{
c{

◆
.

Proof of (iv). Since  a

✏
= F✏( 

a

✏
, t

a

✏
, a), we use (3.5.3) to estimate

k a

✏
k
r
 MF

map,r[k a

✏
k
r�1].

When r = 3, we know that k a

✏
k2  r0, so the continuity of MF

map,2 implies

k a

✏
k3  aper max

0sr0

MF
map,2[s] < 1.

Induction on r then furnishes a constant Cr > 0 such that

k a

✏
k
r
 Cr, r � 3.

Next,

�� a

✏
� à

✏

��
r
=
��F✏( 

a

✏
, t

a

✏
, a)� F✏( 

à

✏
, t

à

✏
, à)
��
r


��F✏( 

a

✏
, t

a

✏
, a)� F✏( 

à

✏
, t

à

✏
, a)
��
r| {z }

�1,r

+
��F✏( 

à

✏
, t

à

✏
, a)� F✏( 

à

✏
, t

à

✏
, à)
��
r| {z }

�2,r

.

We bound �1,r using (3.5.4):

�1,r  MF
lip,r[k a

✏
k
r
,
�� à

✏

��
r
]
⇣�� a

✏
� à

✏

��
r�1

+ |ta
✏
� t

à

✏
|
⌘

and �2,r using (3.5.5):

�2,r  MF
max,r[

�� à

✏

��
r
]|a� à|.

The uniform bounds on k a

✏
k
r

and k a

✏
k
r

and the continuity of MF
lip,r and MF

max,r

then allow us to bound

�1,r +�2,r  Cr

⇣�� a

✏
� à

✏

��
r�1

+ |ta
✏
� t

à

✏
|+ |a� à|

⌘
.

All that remains is to induct on r using the base case (3.5.6).
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Chapter 4. The Nanopteron Equations

4.1. Beale’s ansatz. As detailed in Appendix C.3, we define E
1
q

to be the space of

even, exponentially decaying functions in H
1, i.e.,

E
1
q
:=
�
f 2 H

1
�� f is even and cosh(q·)f 2 H

1
 
,

with norm

kfk1,q := kcosh(q·)fk
H1 .

We return to our main problem ⇥✏(✓) = 0 from (2.4.6) and make Beale’s ansatz:

✓ = A✏(⌘, a) := � + a'a

✏
+ ⌘, (4.1.1)

where

• ⌘ = (⌘1, ⌘2) 2 E
1
q
⇥ E

1
q
;

• a 2 R;

• 'a

✏
is periodic and a'a

✏
satisfies ⇥✏(a'

a

✏
) = 0, per Theorem 3.1.1;

• � := (�, 0), where � solves the KdV profile equation (2.5.6).

Beale’s ansatz introduces three unknowns into our problem: the amplitude a of the

periodic ripple and the decaying terms ⌘1 and ⌘2.

We find that ⇥✏(A✏(⌘, a)) = 0 is componentwise equivalent to
8
>>>><

>>>>:

⌘1 = �
5X

k=1

�
j ✏
k1(⌘, a) + j ✏

k2(⌘, a)
�
� j ✏6(⌘, a) =: R✏

1(⌘, a)

T✏⌘2 = �
5X

k=1

(l ✏

k1(⌘, a) + l ✏

k2(⌘, a))� l ✏

6 (⌘, a) =: R✏

2(⌘, a).

(4.1.2)

where we have used the bilinearity of B✏ and of Q✏(·, ·,A✏(⌘, a)) in its first two argu-

ments to break up the terms as

j ✏11(⌘, a) := � +$
✏
B

✏

1(�,�) j ✏12(⌘, a) := $
✏Q✏

2(�,�,A✏(⌘, a))
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j ✏21(⌘, a) := 2$✏
B

✏

1(�,⌘) j ✏22(⌘, a) := $
✏Q✏

1(�,⌘,A✏(⌘, a))

j ✏31(⌘, a) := 2a$✏
B

✏

1(�,'
a

✏
) j ✏32(⌘, a) := 2a$✏Q✏

1(�,'
a

✏
,A✏(⌘, a))

j ✏41(⌘, a) := 2a$✏
B

✏

1(⌘,'
a

✏
) j ✏42(⌘, a) = 2a$✏Q✏

1(⌘,'
a

✏
,A✏(⌘, a))

j ✏51(⌘, a) := 2$✏
B

✏

1(⌘,⌘) j ✏52(⌘, a) := 2$✏Q✏

1(⌘,⌘,A✏(⌘, a)),

l ✏

11(⌘, a) := �
✏

+B
✏

2(�,�) l ✏

12(⌘, a) := �
✏

+Q✏

2(�,�,A✏(⌘, a))

l ✏

21(⌘, a) := 2�✏+B
✏

2(�,⌘) l ✏

22(⌘, a) := 2�✏+Q✏

2(�,⌘,A✏(⌘, a))

l ✏

31(⌘, a) := 2a�✏+B
✏

2(�,'
a

✏
) l ✏

32(⌘, a) := 2a�✏+Q✏

2(�,'
a

✏
,A✏(⌘, a))

l ✏

41(⌘, a) := 2a�✏+B
✏

2(⌘,'
a

✏
) l ✏

42(⌘, a) := 2a�✏+Q✏

2(⌘,'
a

✏
,A✏(⌘, a))

l ✏

51(⌘, a) := �
✏

+B
✏

2(⌘,⌘) l ✏

52(⌘, a) := �
✏

+Q✏

2(⌘,⌘,A✏(⌘, a)),

T✏ := c
2
✏
@
2
X
+ �

✏

+

and

j ✏6(⌘, a) := a
2
$

✏ [Q✏

1('
a

✏
,'a

✏
,A✏(⌘, a))�Q✏

1('
a

✏
,'a

✏
, a'a

✏
)]

l ✏

6 (⌘, a) := a
2
�
✏

+ [Q✏

2('
a

✏
,'a

✏
,A✏(⌘, a))�Q✏

2('
a

✏
,'a

✏
, a'a

✏
)] .

4.2. Adjustments to the nanopteron equations. We need to modify the system

(4.1.2) in several ways before it becomes amenable to our intended quantitative con-

traction mapping argument. First, as it stands, the term j ✏21 is O(1) in ✏, which will

be inadequate for our later estimates. So, we add the term 2$0
B

0
1(�,⌘) to both sides

of the equation for ⌘1. Expanding B
0
1(�,⌘) from its definition in (2.5.4), we have

2$0
B

0
1(�,⌘) =

2(� + {3)

{2({ + 1)
$

0(�⌘1)

| {z }
K1⌘1

+
2(� � {2)

{({ + 1)
$

0(�⌘2)

| {z }
K2⌘2

. (4.2.1)

Then subtracting K1⌘1 from both sides, we find

⌘1 �K1⌘1| {z }
A⌘1

= R✏,mod
1 (⌘, a)�K2⌘2, (4.2.2)

where

R✏,mod
1 (⌘, a) := �

5X

k=1

⇣
j ✏,mod
k1 (⌘, a) + j ✏

k2(⌘, a)
⌘
� j ✏6(⌘, a)

and
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j ✏,mod
1k (⌘, a) :=

8
><

>:

2$✏
B

✏

1(�,⌘)� 2$0
B

0
1(�,⌘), k = 2

j ✏1k(⌘, a), k 6= 2.

The operator A given in (4.2.2) is invertible on E
1
q

by Proposition D.5.2 for q suffi-

ciently small, and so we may solve for ⌘1:

⌘1 = A�1R✏,mod
1 (⌘, a)�A�1K2⌘2. (4.2.3)

The term A�1K2⌘2 is still O(1) in ✏, which will ruin our contraction estimates. How-

ever, once we establish our fixed point equation for ⌘2, we will rewrite the system yet

again in a manner that eliminates this difficulty.

Next, we know from Section 2.6 that the operator T✏ is not invertible since (2.6.4)

implies

dT✏f(±!✏) = 0

for any f 2 E
1
q
. That is, T✏ is not surjective. Equivalently, if g is an even function in

the range of T✏, then
Z 1

�1
g(X) cos(!✏X) dX

| {z }
◆✏[g]

= bg(±!✏) = 0. (4.2.4)

So, if ⇥✏(A✏(⌘, a)) = 0, then (⌘, a) must meet the “solvability condition”

◆✏[R
✏

2(⌘, a)] = 0.

Then since we cannot merely invert T✏ to solve for ⌘2 in (4.1.2), we instead follow

the route established and motivated in [FW18] to convert the pair of equations
8
><

>:

T✏⌘2 = R✏

2(⌘, a)

◆✏[R
✏

2(⌘, a)] = 0

(4.2.5)

into a pair of fixed point equations for ⌘2 and a.

Let
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⌫✏ := '
0
✏
:= cos(!✏·)j

�✏ := �
✏

+J
✏

1[(J
0�).(J ✏⌫✏)] · j

�✏ := ◆✏[�✏].

(4.2.6)

Subsequent estimates, which we detail in Proposition G.2.1, reveal that �✏ is bounded

away from zero and that T✏ is invertible on E
1
q
\ ker(◆✏) for q sufficiently small. It is

an easy calculation that if f 2 E
1
q
, then

◆✏


f � 1

�✏
◆✏[f ]�✏

�
= 0,

and so we may define

P✏f := T �1
✏

✓
f � 1

�✏
◆✏[f ]�✏

◆
(4.2.7)

on E
1
q
. Then with

l ✏,mod
k1 (⌘, a) :=

8
><

>:

�2a�✏ + l ✏

31(⌘, a), k = 3

l ✏

k1(⌘, a), k 6= 3,

and

R✏,mod
2 (⌘, a) :=

5X

k=1

l ✏,mod
k1 (⌘, a) +

5X

k=1

l ✏

k2(⌘, a) + l ✏

6 (⌘, a),

the pair of equations (4.2.5) is equivalent to
8
>><

>>:

⌘2 = ✏
2P✏R

✏,mod
2 (⌘, a) =: N✏

2(⌘, a)

a =
1

2�✏
◆✏

⇥
R✏,mod

2 (⌘, a)
⇤
=: N✏

3(⌘, a).

(4.2.8)

Combining (4.2.3) and (4.2.8), our problem ⇥✏(A✏(⌘, a)) = 0 is equivalent to the

fixed point problem
8
>>>>>><

>>>>>>:

⌘1 = A�1R✏,mod
1 (⌘, a)�A�1K2⌘2

⌘2 = N✏

2(⌘, a)

a = N✏

3(⌘, a).

(4.2.9)

Now we can eliminate the difficulty with the term A�1K2⌘2. A pair (⌘, a) 2
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E
1
q
⇥ E

1
q
⇥ R is a fixed point solution to (4.2.9) if and only if (⌘, a) solves
8
>>>>>><

>>>>>>:

⌘1 = A�1R✏,mod
1 (⌘, a)�A�1K2N

✏

2(⌘, a) =: N✏

1(⌘, a)

⌘2 = N✏

2(⌘, a)

a = N✏

3(⌘, a).

(4.2.10)

The term A�1K2N
✏

2(⌘, a) in the revised equation for ⌘1 turns out to have the “right”

estimates in ✏ for our contraction mapping argument below. We conclude that

⇥✏(A✏(⌘, a)) = 0 if and only if

(⌘, a) = (N✏

1(⌘, a),N
✏

2(⌘, a),N
✏

3(⌘, a)) =: N✏(⌘, a), (⌘, a) 2 E
1
q
⇥ E

1
q
⇥ R, (4.2.11)

and we will solve this fixed point problem in the following section.

4.2.1 Remark. That N✏

j
(⌘, a) 2 E

1
q

for j = 1, 2 is ultimately a consequence of

Lemma D.4.1 applied to all of the Fourier multipliers that constitute N✏

j
; to invoke

Lemma D.4.1, we use the boundedness of the symbols of these operators on strips as

detailed in Lemma 2.2.1.

4.3. Existence and properties of solutions. We model our existence proof on

the approach of [HW17] for the small mass ratio, which in turn is a refinement of the

contraction mapping proof in [FW18]. Let q? > 0 be as in Appendix G.2. For r � 0,

set

X r :=

8
><

>:

E
1
q?/2 ⇥ E

1
q?/2 ⇥ R, r = 0

E
r

q?
⇥ E

r

q?
⇥ R, r > 1.

Note that the X r spaces are Hilbert spaces and that X s ✓ X r for any 0  r  s.

Next, for r, ✏, ⌧ > 0, let

U r

✏,⌧
:=
n
(⌘, a) 2 X r

��� k⌘k
r,q?

 ⌧✏, |a|  ⌧✏
r

o
.

We base our contraction mapping argument on the following collection of esti-

mates, which are proved in Section 4.4.
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4.3.1 Proposition. There exists ✏? > 0 with the following properties.

(i) There exists ⌧? > 0 such that if ✏ 2 (0, ✏?), then

(⌘, a) 2 U1
✏,⌧?

=) N✏(⌘, a) 2 U1
✏,⌧?

(4.3.1)

and

(⌘, a), (⌘̀, à) 2 U1
✏,⌧?

=) kN✏(⌘, a)�N✏(⌘̀, à)kX 0 
1

2
k(⌘, a)� (⌘̀, à)kX 0 . (4.3.2)

(ii) For all r � 1 and ⌧ > 0, there exists ⌧ = ⌧(⌧, r) > 0 such that if ✏ 2 (0, ✏?), then

(⌘, a) 2 U1
✏,⌧?

\ U r

✏,⌧
=) N✏(⌘, a) 2 U r+1

✏,⌧
. (4.3.3)

These estimates are essentially the same as the ones achieved in Lemma 8.1 of

[HW17], and a proof similar to that of their principal result, Theorem 8.2, produces

the following solution to our ultimate fixed point problem (4.2.11). For completeness,

we include the proof below.

4.3.2 Theorem. Let ✏ 2 (0, ✏?). There exists a unique pair (⌘
✏
, a✏) 2 U1

✏,⌧?
such that

N✏(⌘
✏
, a✏) = (⌘

✏
, a✏). This solution (⌘

✏
, a✏) has the following additional properties:

(i) ⌘
✏
2 \1

r=1E
r

q?
⇥ E

r

q?
;

(ii) For all r � 0, there is Cr > 0 such that

k⌘
✏
k
r,q?

 Cr✏ and |a✏|  Cr✏
r (4.3.4)

for all ✏ 2 (0, ✏?).

Proof. Let ✏ 2 (0, ✏?) and define ⌘0 := 0 (i.e., ⌘0 is the zero vector in E
r

q
⇥ E

r

q
for

any q and r) and a0 = 0 2 R. Set

(⌘
n+1, an+1) := N✏(⌘

n
, an), n � 0.

Property (4.3.1) above tells us that (⌘
n
, an) 2 U1

✏,⌧?
for all n, and so

k(⌘
n
, an)kX 1  2⌧?✏ (4.3.5)
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for all n. That is, the sequence
�
(⌘

n
, an)

�
is bounded in X 1. Since X 1 is a Hilbert

space,
�
(⌘

n
, an)

�
has a subsequence that converges weakly to (⌘

✏
, a✏) 2 X 1. We

denote this subsequence by
�
(⌘

n
, an)

�
as well.

That is, (⌘
n
) converges weakly to ⌘

✏
in E

1
q?
⇥E

1
q?

and (an) simply converges to a✏

in R. It follows from the definition of weak convergence that

k⌘
✏
k
E1

q?⇥E1
q?

 lim sup
n!1

k⌘
n
k
E1

q?⇥E1
q?

 ⌧?✏

and from properties of regular convergence in R that |a✏|  ⌧?✏. Consequently,

(⌘
✏
, a✏) 2 U1

✏,⌧?
.

Next, we induct with property (4.3.2) to show
��(⌘

n+1, an+1)� (⌘
n
, an)

��
X 0 

1

2n
k(⌘1, a1)kX 0 , n � 1.

Then standard arguments imply that
�
(⌘

n
, an)

�
is Cauchy in X 0. Since X 0 is a Hilbert

space,
�
(⌘

n
, an)

�
converges to some (⌘̀

✏
, à✏) 2 X 0. It then follows from Lemma C.3.3

that (⌘
✏
, a✏) = (⌘̀

✏
, à✏).

Using this equality, the convergence of
�
(⌘

n
, an)

�
to (⌘̀

✏
, à✏) in X 0, and the conti-

nuity of the norm, we have

k(⌘
✏
, a✏)�N✏(⌘

✏
, a✏)kX 0 = lim

n!1
k(⌘

n
, an)�N✏(⌘

✏
, a✏)kX 0

= lim
n!1

��N✏(⌘
n�1, an�1)�N✏(⌘

✏
, a✏)

��
X 0 by (4.3.5)

 lim sup
n!1

1

2

��(⌘
n�1, an�1)� (⌘

✏
, a✏)

��
X 0 by (4.3.2)

=
1

2
lim
n!1

k(⌘
n
, an)� (⌘

✏
, a✏)kX 0

= 0.

Uniqueness follows from (4.3.2), as usual in a contraction mapping argument. For

the bootstrapping and small beyond all orders estimate of (4.3.4), we can use (4.3.3)
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and induct on r, since we have (⌘
✏
, a✏) 2 U1

✏,⌧?
. ⌅

4.3.3 Remark. The estimate (4.3.4) shows that the amplitude a✏ of the nanopteron’s

ripple is small beyond all orders of ✏. We may ask for more refined estimates on a✏

in two ways.

1. First, is a✏ exponentially small in ✏? That is, do we have

|a✏|  C exp
⇣
q

✏r

⌘

for some C, q, r > 0? This is true for the ripple in Beale’s water wave problem

[Bea91a] as proved later by Sun and Shen [SS93].

2. Second, are there any values of ✏ for which a✏ = 0? In such cases, the ripple is not

present, and so the nanopteron reduces to the classical solitary wave. Intriguingly,

asymptotics in [VSWP16] for the mass dimer and [SV17] for the spring dimer suggest

that, when the wave speed c is fixed, the traveling wave for each kind of dimer is almost

always a nanopteron when the ratio 1/w for the mass dimer and { for the spring dimer

is sufficiently small. But these asymptotics also indicate a countable number of ratios

1/w and { for which the ripple vanishes and the nanopteron becomes a solitary wave.

These questions are common to many nanopteron problems; see Sections 6.4 and

6.5 of [Boy98] for a comprehensive account of their prevalence. While the methods

of this dissertation do not yet extend to answer either of them, we expect that the

alternative framework provided by the Iooss-Kirchgässner variables in conjunction

with Lombardi’s theory, as detailed at the end of Section 2.7, will address both problems

for the separate cases of mass and spring dimers. If successful, we will then need to

translate our results from the Iooss-Kirchgässner-Lombardi framework of reversible

systems into the language of our fixed-point, functional analytic approach.

4.4. Proof of Proposition 4.3.1. We first need a new collection of estimates.
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4.4.1 Proposition. Let ✏ 2 (0, ✏per) be as in Proposition G.2.1.

(i) There exists an increasing function Mmap : R+ ! R+ such that

kN✏(⌘, a)kX 1  Mmap[k⌘k1,q? ]
�
✏+ ✏ k(⌘, a)kX 1 + k(⌘, a)k2X 1

�
(4.4.1)

for all ⌘ 2 E
1
q?
⇥ E

1
q?

, |a|  aper, and 0 < ✏ < ✏.

(ii) There exists a radially increasing function Mlip : R2
+ ! R+ such that

kN✏(⌘, a)�N✏(⌘̀, à)kX 0

 Mlip[k⌘k1,q? , k⌘̀k1,q? ] (✏+ k(⌘, a)kX 1 + k(⌘̀, à)kX 1) k(⌘, a)� (⌘̀, à)kX 0 (4.4.2)

for all ⌘, ⌘̀ 2 E
1
q?
⇥ E

1
q?

, |a|  aper, and 0 < ✏ < ✏.

(iii) For all integers r � 1 there exists an increasing function Mboot,r : R+ ! R+

such that

kN✏(⌘, a)k
r+1,q?

 Mboot,r[k⌘kr,q? ]
⇣
✏+ k⌘k

r,q?
+ |a|✏�r k⌘k

r,q?
+ |a|✏1�r + a

2
✏
1�2r + |a|3✏1�3r

⌘

(4.4.3)

and

|N✏

3(⌘, a)|  Mboot,r[k⌘kr,q? ]
⇣
✏
r+1 + ✏

r k⌘k
r,q?

+ |a| k⌘k
r,q?

+ ✏|a|+ a
2
✏
1�r + |a|3✏1�2r

⌘

(4.4.4)

for all ⌘ 2 E
r

q?
⇥ E

r

q?
, |a|  aper, and 0 < ✏ < ✏.

The proof of (4.4.1) is developed in Section 4.5, of (4.4.2) in Section 4.6, and of

(4.4.3) and (4.4.4) in Section 4.7. Now we are ready to to prove Proposition 4.3.1.

Let M? > 0 be such that

|Mmap[k⌘k1,q? ]|  M? and |Mlip[k⌘k1,q? , k⌘̀k1,q? ]|  M?

whenever k⌘k1,q?  1 and k⌘̀k1,q?  1. Set ⌧? = M? + 2 and
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✏? = min

⇢
1

M?(M? + 2)
,

1

M?(M? + 2)2
,

1

2M?(M? + 5)
,

1

M? + 2
, ✏,

aper

M? + 2
,
1

2

�

(4.4.5)

Observe that if (⌘, a) 2 U1
✏,⌧?

, then

k⌘k1,q?  k(⌘, a)kX 1  ✏(M? + 2)  ✏?(M? + 2)  1. (4.4.6)

Moreover if (⌘, a) 2 U r

✏,⌧?
and r � 1, then

|a|  ⌧?✏
r  (M? + 2)✏r

?
 (M? + 2)✏?  (M? + 2)

aper

M? + 2
= aper. (4.4.7)

This estimate is important because the four estimates in Proposition 4.4.1 only hold

when |a|  aper.

Proof of (4.3.1). Let 0 < ✏ < ✏? and (⌘, a) 2 U1
✏,⌧?

. Then (4.4.6), (4.4.7), and (4.4.1)

allow us to estimate

kN✏(⌘, a)kX 1  M?

�
✏+ ✏

2(M? + 2) + ✏
2(M? + 2)2

�

= ✏
�
M? +M?(M? + 2)✏+M?(M? + 2)2✏

�

 ✏
�
M? +M?(M? + 2)✏? +M?(M? + 2)2✏?

�

 ✏ (M? + 1 + 1)

= (M? + 2)✏.

Hence N✏(⌘, a) 2 U1
✏,⌧?

.

Proof of (4.3.2). Take 0 < ✏ < ✏? and (⌘, a), (⌘̀, à) 2 U1
✏,⌧?

. Then (4.4.6), (4.4.7), and

(4.4.2) imply

kN✏(⌘, a)�N✏(⌘̀, à)kX 0  M? (✏+ k(⌘, a)kX 1 + k(⌘̀, à)kX 1) k(⌘, a)� (⌘̀, à)kX 0

 M? (✏+ 2✏(M? + 2)) k(⌘, a)� (⌘̀, à)kX 0
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= ✏M?(5 +M?) k(⌘, a)� (⌘̀, à)kX 0

 ✏?M?(5 +M?) k(⌘, a)� (⌘̀, à)kX 0

 1

2
k(⌘, a)� (⌘̀, à)kX 0 .

Proof of (4.3.3). That N✏(⌘, a) 2 X r+1 if (⌘, a) 2 X r follows from the smoothing

properties of P✏ and $✏. Given ⌧ > 0, let

Mr,⌧ = max
k⌘kr,q?⌧✏?

Mboot,r[⌘].

Let 0 < ✏ < ✏? and take (⌘, a) 2 U1
✏,⌧?

\ U r

✏,⌧
, so that k⌘k

r,q?
 ⌧✏  ⌧✏? and

|a|  min{⌧✏r, aper}. Then (4.4.3) and (4.4.7) imply

kN✏(⌘, a)kX r+1  Mr,⌧

�
✏+ ⌧✏+ ⌧✏

r(✏1�r) + (⌧✏)2✏1�2r + (⌧✏r)✏�r(⌧✏) + (⌧✏r)3✏1�3r
�

= Mr,⌧

�
✏+ 2⌧✏+ 2⌧ 2✏+ ⌧

3
✏
�

= Mr,⌧

�
1 + 2⌧ + 2⌧ 3 + ⌧

3
�
✏.

In particular, we find

k(N✏

1(⌘, a),N
✏

2(⌘, a))kr+1,q?
 kN✏(⌘, a)kX r+1  Mr,⌧

�
1 + 2⌧ + 2⌧ 3 + ⌧

3
�
✏.

We need to refine this estimate, however, for N✏

3(⌘, a). Using (4.4.4), we find

|N✏

3(⌘, a)|  M⌧,r

�
✏
r+1 + ✏

r(⌧✏) + (⌧✏r)(⌧✏) + ✏(⌧✏r) + (⌧✏r)2✏1�r + (⌧✏)3✏1�2r
�

= M⌧,r

�
✏
r+1 + 2⌧✏r+1 + 2⌧ 2✏r+1 + ⌧

3
✏
r+1
�

= M⌧,r

�
1 + 2⌧ + 2⌧ 2 + ⌧

3
�
✏
r+1

.

So, we take

⌧ := M⌧,r

�
1 + 2⌧ + 2⌧ 2 + ⌧

3
�
,

to conclude that if (⌘, a) 2 U1
✏,⌧?

\ U r

✏,⌧
, then N✏(⌘, a) 2 U r+1

✏,⌧
.
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This concludes the proof of Proposition 4.3.1. In the remaining sections in this

chapter we prove the estimates in Proposition 4.4.1.

4.5. The mapping estimates. Let

R✏

map(⌘, a) = ✏+ ✏ k⌘k1,q? + ✏|a|+ k⌘k21,q? + |a|2. (4.5.1)

Observe that

R✏

map(⌘, a)  ✏+ ✏ k(⌘, a)k1,q? + k(⌘, a)k21,q? ,

so to obtain (4.4.1) it suffices to prove the existence of an increasing function Mmap : R+ !

R+ such that

kN✏(⌘, a)kX 1  Mmap[k⌘k1,q? ]R
✏

map(⌘, a).

4.5.1. General strategy. The bounds on A�1, K2, P✏, ◆✏, and �✏ from Proposition

G.2.1 let us estimate

���R✏,mod
2 (⌘, a)

��� 
5X

k=1

��l ✏,mod
k1 (⌘, a)

��
1,q?

+
5X

k=1

��l ✏

k,2(⌘, a)
��
1,q?

+ kl ✏

6 (⌘, a)k1,q? ,

kN✏

2(⌘, a)k1,q? = ✏
2
��P✏R

✏,mod
2 (⌘, a)

��
1,q?

 C

5X

k=1

✏
��l ✏,mod

k1 (⌘, a)
��
1,q?

+ C

5X

k=1

✏
��l ✏

k,2(⌘, a)
��
1,q?

+ C✏ kl ✏

6 (⌘, a)k1,q?

|N✏

3(⌘, a)| =
1

2�✏

��◆✏
⇥
R✏,mod

2 (⌘, a)
⇤��

1,q?

 C

5X

k=1

✏

���l ✏,mod
k1 (⌘, a)

���
1,q?

+ C

5X

k=1

✏
��l ✏

k,2(⌘, a)
��
1,q?

+ C✏ kl ✏

6 (⌘, a)k1,q? ,

and

kN✏

1(⌘, a)k1,q? 
��A�1R✏,mod

1 (⌘, a)
��
1,q?

+
��A�1K2[N

✏

2(⌘, a)
��
1,q?
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 C

5X

k=1

✓��j ✏,mod
k1 (⌘, a)

��
1,q?

+ ✏

���l ✏,mod
k1 (⌘, a)

���
1,q?

◆

+ C

5X

k=1

⇣��j ✏
k2(⌘, a)

��
1,q?

+ ✏
��l ✏

k,2(⌘, a)
��
1,q?

⌘

+ C

⇣��j ✏6(⌘, a)
��
1,q?

+ ✏ kl ✏

6 (⌘, a)k1,q?
⌘
.

We saw in [FW18] that the terms
���j ✏,mod

1k (⌘, a)
���
1,q?

and ✏

���l ✏,mod
1k (⌘, a)

���
1,q?

, k = 1, . . . , 5

are bounded above, up to a constant, by R✏

map(⌘, a). (To be fair, of course the mass

dimer versions of j ✏,mod
1k and l ✏,mod

1k were entirely different functions, but the structure

of the necessary estimates is exactly the same.) Now we show that the terms

��j ✏2k(⌘, a)
��
1,q?

, ✏ kl ✏

2k(⌘, a)k1,q? , k = 1, . . . , 5,
��j ✏6(⌘, a)

��
1,q?

, and ✏ kl ✏

6 (⌘, a)k1,q?

are bounded above by Mmap[k⌘k1,q? ]R
✏

map(⌘, a).

4.5.1 Remark. Here and elsewhere in these appendices, we will write

k'k
W r,1 := k'1kW r,1 + k'2kW r,1

for a function ' = ('1,'2) 2 W
r,1 ⇥W

r,1.

4.5.2. Mapping estimates for j12 and l12. We present this first series of estimates in

detail to show the general techniques and reliance on Proposition E.1.1 that will

permeate the subsequent mapping estimates. We have

��j ✏12(⌘, a)
��
1,q?

= k$✏Q✏

2(�,�,A✏(⌘, a))k1,q?

 C kQ✏

2(�,�,A✏(⌘, a))k1,q?

 C kQ✏(�,�,A✏(⌘, a))k1,q?
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= C
��J ✏

1M1/{
�
(J ✏�).2.N (✏2J ✏A✏(⌘, a))

���
1,q?

 C
��(J ✏�).2.N (✏2J ✏A✏(⌘, a))

��
1,q?

.

We remark that

(J ✏�).2.N (✏2J ✏A✏(⌘, a)) = (J ✏�).2| {z }
H

1
q?

.N
✓
✏
�
✏J

✏(� + ⌘)| {z }
H

1
q?

+a (✏J ✏'a

✏
)| {z }

W
1,1

�◆
,

and so we could control this quantity with Proposition E.1.1. However, that would be

premature, as the resulting estimate would not have the conducive form of R✏

map(⌘, a).

Instead, in order to factor out an all-important power of ✏ (a recurring theme in these

estimates), we expand N and find

C
��(J ✏�).2.N (✏2J ✏A✏(⌘, a))

��
1,q?

= C
��(J ✏�).2.(✏2J ✏A✏(⌘, a)).N(✏2J ✏A✏(⌘, a))

��
1,q?

= C✏
��(J ✏�).2.(✏J ✏A✏(⌘, a)).N(✏2J ✏A✏(⌘, a))

��
1,q?

.

Next, we use the definition of A✏(⌘, a) and the triangle inequality to break this norm

into two terms:

C✏
��(J ✏�).2.(✏J ✏A✏(⌘, a)).N(✏2J ✏A✏(⌘, a))

��
1,q?

 C✏
��(J ✏�).2.(✏J ✏(� + ⌘)).N(✏2J ✏A✏(⌘, a))

��
1,q?| {z }

⇧1

+ C✏
��(J ✏�).2.(✏J ✏(a'a

✏
)).N(✏2J ✏A✏(⌘, a))

��
1,q?| {z }

⇧2

.

Observe that the product in ⇧1 really has the form of the factors in the estimate in

Proposition E.1.1:

(J ✏�).2.(✏J ✏(� + ⌘)).N(✏2J ✏A✏(⌘, a))

= (J ✏�).2.(✏J ✏(� + ⌘))| {z }
H

1
q

.N

✓
✏
�
J
✏(� + ⌘)| {z }
H

1
q

+a(✏J ✏'a

✏| {z }
W

1,1

)
�◆

.
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That proposition implies

⇧1  C✏M[kJ ✏(� + ⌘)k1,q? ]
�
1 + |a|✏1�1

� ��(J ✏�).2.(✏J ✏(� + ⌘))
��
1,q?

,

for some increasing function M : R+ ! R+. The triangle inequality and the uniform

bound on J
✏ from Proposition G.2.1 give constants C1, C2 > 0 such that

M[kJ ✏(� + ⌘)k1,q? ]
��(J ✏�).2.(✏J ✏(� + ⌘))

��
1,q?

 M[C1 k⌘k1,q? ]C2(1 + k⌘k1,q?| {z }
Ml12 [k⌘k1,q? ]

.

That is, Ml12 is increasing with

⇧1  Ml12 [k⌘k1,q? ]✏,

and this bound has the desired form of R✏

map(⌘, a) from (4.5.1).

The estimate on ⇧2 proceeds just as the one for ⇧1, except first we factor

⇧2  C✏ k✏J ✏(a'a

✏
)k

W 1,1

��(J ✏�).2.N(✏2J ✏A✏(⌘, a))
��
1,q?

 C✏
��(J ✏�).2.N(✏2J ✏A✏(⌘, a))

��
1,q?

and then apply Proposition E.1.1 to the term on the right. The whole estimate for

l12 follows in an identical way, so we omit it.

4.5.3. Mapping estimates for j22 and l22. These estimates are essentially the same as

the ones for j12 and l12, except wherever we had a factor of (J ✏�).2 in the previous

section, now we have a factor of (J ✏�).(J ✏⌘). We omit the details.

4.5.4. Mapping estimates for j32 and l32. To handle the new presence of 'a

✏
, which

costs a factor of ✏ each time we estimate its W
1,1-norm, we need to expose an

additional factor of ✏ in the estimates. We achieve this via the smoothing property

of $✏ for j32 and the extra ✏ that naturally comes along with l32. We have

��j ✏32(⌘, a)
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2|a| k$✏Q✏

2(�,'
a

✏
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.

We estimate the factor in the H
0
q
-norm above with Proposition E.1.1 and bound that

as in the case of j12 to find, ultimately,
��j ✏32(⌘, a)

��
1,q?

 Mj32 [k⌘k1,q? ]✏|a|.

For the l32 estimate, we stay in the H
1
q

norm but use our extra factor of ✏ to

counterbalance the J
✏'a

✏
factor. Specifically,

✏ kl ✏
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We finish by applying Proposition E.1.1 to the last term above in the H
1
q

norm and

find

kl ✏

32(⌘, a)k1,q?  Ml32 [k⌘k1,q? ]✏|a|.

4.5.5. Mapping estimates for j42 and l42. These estimates are the same as those for

j32 and l32, except all factors of J ✏� are replaced by J
✏⌘.

4.5.6. Mapping estimates for j52 and l52. These estimates are the same as those for

j12 and l12 with the factor of (J ✏�).2 replaced by (J ✏⌘).2.
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4.5.7. Mapping estimates for j6 and l6. It is for these terms that we designed the

estimate in Proposition E.2.1. We begin with a straightforward estimate on j6:

��j ✏6(⌘, a)
��
1,q?

 Ca
2 kQ✏('a

✏
,'a

✏
,A✏(⌘, a))�Q✏('a

✏
,'a

✏
, a'a

✏
)k1,q?

= Ca
2
��(J ✏'a

✏
).2.(N (✏2J ✏A✏(⌘, a))�N (✏2J ✏(a'a

✏
)))
��
1,q?

 Ca
2 kJ ✏'a

✏
k2
W 1,1

��N (✏2J ✏A✏(⌘, a))�N (✏2J ✏(a'a

✏
))
��
1,q?

.

Since
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✏
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2
J
✏(a'a

✏
))�N (0+ ✏

2
J
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✏
)),

Proposition E.2.1 applies to give
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Then estimating kJ ✏'a

✏
k
W 1,1  C✏

�2, we find
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Taking the supremum over 0 < ✏ < ✏ gives a bound of the form
��j ✏6(⌘, a)

��
1,q?

 Mj6 [k⌘k1,q? ]a
2
.

The estimate for l6 follows in the same way.

4.6. The Lipschitz estimates. Let

R✏

lip(⌘, ⌘̀, a, à) = (✏+ k(⌘, a)kX 1 + k(⌘̀, à)kX 1) k(⌘, a)� (⌘̀, à)kX 0 . (4.6.1)

We prove the existence of an increasing function Mlip : R2
+ ! R+ such that
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kN✏(⌘, a)�N✏(⌘̀, à)kX 0  Mlip[k⌘k1,q? , k⌘̀k1,q? ]R
✏

lip(⌘, ⌘̀, a, à) (4.6.2)

for all ⌘, ⌘̀ 2 E
1
q?
⇥ E

1
q?

, |a|  aper, and 0 < ✏ < ✏.

4.6.1. General strategy. A first pass using the estimates in Proposition G.2.1 gives
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1(⌘̀, à)k1,q?/2  C

5X

k=1

��j ✏,mod
k1 (⌘, a)� j ✏,mod

k1 (⌘̀, à)
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and
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In [FW18] we bounded the differences
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, k = 1, . . . , 5

by R✏

lip(⌘, ⌘̀, a, à). We just need to show that
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are all bounded by Mlip[k⌘k1,q? , k⌘̀k1,q? ]R
✏

lip(⌘, ⌘̀, a, à).

We will use a particular consequence of the essential estimate (G.2.2) often enough

that it is worthwhile to single it out here.

4.6.1 Lemma. For each r � 0 there is Cr > 0 such that for all ✏ 2 (0, ✏) and |a|,

|à|  aper, we have
���sech
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� à'à
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 Cr✏
�r|a� à|.

4.6.2. Lipschitz estimates for j12 and l12. As with the mapping estimates, we spell out

this first estimate in detail to show our reliance on the general Lipschitz estimates of

Appendices E.2, E.3, and E.4. We begin with

��j ✏12(⌘, a)� j ✏12(⌘̀, à)
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1,q?/2
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4. The Nanopteron Equations 63

 C
��(J ✏�).2.(N (✏2J ✏A✏(⌘, a))�N (✏2J ✏A✏(⌘̀, à)))
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we can use Proposition E.2.1 to bound
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where M1 : R2
+ ! R+ is radially increasing. We have
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We see that M2 is also radially increasing. Then

�1  M2[k⌘k1,q? , k⌘̀k1,q? ]✏
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For �2, we first note
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✏(à'à
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Then we can use the estimate of Proposition E.4.1:
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where M3 : R3
+ ! R+ is radially increasing. Taking the supremum over ✏, a, and à

and using the estimate in Lemma 4.6.1 on the W
1,1-factor, we find

�2  M4[k⌘̀k1,q? ]✏|a� à|.

for an increasing function M4. We conclude that the sum �1 + �2 has an upper

bound of the form R✏

lip(⌘, ⌘̀, a, à) from (4.6.1), and the estimate for l12 is the same.

4.6.3. Lipschitz estimates for j22 and l22. These estimates are mostly the same as the

ones for j12 and l12 with a few small changes that are worth pointing out. We estimate

j22 to illustrate them:
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 kQ✏(�,⌘,A✏(⌘, a))�Q✏(�, ⌘̀,A✏(⌘, a))k1,q?/2| {z }
�1

+ kQ✏(�, ⌘̀,A✏(⌘, a))�Q✏(�, ⌘̀,A✏(⌘̀, a))k1,q?/2| {z }
�2

+ kQ✏(�, ⌘̀,A✏(⌘̀, a))�Q✏(�, ⌘̀,A✏(⌘̀, à))k1,q?/2| {z }
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We have
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We can bound the factor ⇧ using Proposition E.1.1 effectively as we did in Appendix

4.5.2 for the mapping estimates on j12 and l12. Then
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and then Proposition

E.2.1 as we did in (4.6.3) for the Lipschitz estimates on j21 and l21. Finally, the

estimate for �3 uses Proposition E.4.1.

The estimate for l22 is identical.

4.6.4. Lipschitz estimates for j32 and l33. As with the mapping estimates, we need

to exploit the smoothing operator $✏ on j32 and the extra ✏ on l33 to manage the
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We handle �1 easily using the mapping estimate of Proposition E.1.1:
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�2  C|à|
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We factor �3 and then employ Proposition E.2.1:
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� à'à
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4.6.5. Lipschitz estimates for j42 and l42. Again, we smooth with $
✏ on j42 and use

the extra ✏ on l42 to our advantage; the mechanics are the same as the estimates for

j32 and l32 with one exception, which we highlight below. We bound
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0,q?/2

The first term above can be bounded with our standard mapping estimate from

Proposition E.1.1. The last three terms above are analogous to �2, �3, and �4 in

Appendix 4.6.4. The exception is the term that we have labeled � above:

�  C|à|
��(J ✏(⌘ � ⌘̀)).(J ✏'a

✏
).N (✏2J ✏A✏(⌘, a))

��
0,q?/2

 C✏|à| kJ ✏'a

✏
k
W 0,1 k✏J ✏A✏(⌘, a)kW 0,1

��(J ✏(⌘ � ⌘̀)).N(✏2J ✏A✏(⌘, a))
��
0,q?/2

 C✏|à|
��(J ✏(⌘ � ⌘̀)).N(✏2J ✏A✏(⌘, a))

��
0,q?/2

 C✏|à|M[k⌘k1,q? ] k⌘ � ⌘̀k0,q?/2 .
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For the last inequality we have used Proposition E.3.1. The estimate for l42 goes

through in the same way.

4.6.6. Lipschitz estimates for j52 and l52. As we have no factor of 'a

✏
here, we do not

need to use smoothing or an extra factor of ✏ to avoid problems. We bound

��j ✏52(⌘, a)� j ✏52(⌘̀, à)
��
1,q?/2

 C kQ✏(⌘,⌘,A✏(⌘, a))�Q✏(⌘̀, ⌘̀,A✏(⌘̀, à))k1,q?/2

 C kQ✏(⌘,⌘,A✏(⌘, a))�Q✏(⌘̀, ⌘̀,A✏(⌘, a))k1,q?/2| {z }
�

+ C kQ✏(⌘̀, ⌘̀,A✏(⌘, a))�Q✏(⌘̀, ⌘̀,A✏(⌘̀, a))k1,q?/2

+ C kQ✏(⌘̀, ⌘̀,A✏(⌘̀, a))�Q✏(⌘̀, ⌘̀,A✏(⌘̀, à))k1,q?/2 .

Of the three terms above, we know how to estimate the second and third using

Propositions E.2.1 and E.4.1; we bound � by

�  C
��((J ✏⌘).2 � (J ✏⌘̀).2).A✏(⌘, a)

��
1,q?/2

 C✏ kJ ✏(⌘ + ⌘̀)k1,q?/2
��(J ✏(⌘ � ⌘̀)).(✏J ✏A✏(⌘, a)).N(✏2J ✏A✏(⌘, a))

��
1,q?/2

 M[k⌘k1,q? , k⌘̀k1,q? ]✏ k⌘ � ⌘̀k1,q?/2 .

For the second inequality, we factored the difference of squares and used the algebra

property of H1
q?/2 and for the third we used Proposition E.3.1. The estimate for l52 is

the same.

4.6.7. Lipschitz estimates for j6 and l6. We work on j6; the strategy for l6 is the same.

We have

��j ✏6(⌘, a)� j ✏6(⌘̀, à)
��
1,q?/2

 C

5X

k=1

k�kk1,q?/2 ,
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where

�1 = (a2 � à
2)(Q✏('a

✏
,'a

✏
,A✏(⌘, a))�Q✏('a

✏
,'a

✏
, a'a

✏
))

�2 = à
2(Q✏('a

✏
,'a

✏
,A✏(⌘, a))�Q✏('a

✏
,'a

✏
, a'a

✏
)

� (Q✏('à

✏
,'a

✏
,A✏(⌘, a))�Q✏('à

✏
,'a

✏
, a'a

✏
)))

�3 = à
2((Q✏('à

✏
,'a

✏
,A✏(⌘, a))�Q✏('à

✏
,'a

✏
, a'a

✏
)))

� (Q✏('à

✏
,'à

✏
,A✏(⌘, a))�Q✏('à

✏
,'à

✏
, a'a

✏
))

�4 = à
2((Q✏('à

✏
,'à

✏
,A✏(⌘, a))�Q✏('à

✏
,'à

✏
, a'a

✏
))

� (Q✏('à

✏
,'à

✏
,A✏(⌘̀, a))�Q✏('à

✏
,'à

✏
, a'a

✏
)))

�5 = à
2((Q✏('à

✏
,'à

✏
,A✏(⌘̀, a))�Q✏('à

✏
,'à

✏
, a'a

✏
))

� (Q✏('à

✏
,'à

✏
,A✏(⌘̀, à))�Q✏('à

✏
,'à

✏
, à'à

✏
)))

Proposition E.2.1 lets us bound �1 as

k�1k1,q?/2  M[k⌘k1,q? ]✏|a� à|.

We use this proposition again on �2:

k�2k1,q?/2  Cà
2
��(J ✏('a

✏
�'à

✏
)).(J ✏'a

✏
).(N (✏2J ✏A✏(⌘, a))�N (✏2J ✏(a'a

✏
)))
��
1,q?/2

 Cà
2
��J ✏('a

✏
�'à

✏
)
��
W 1,1 kJ ✏'a

✏
k
W 1,1

⇥
��N (✏2J ✏A✏(⌘, a))�N (✏2J ✏(a'a

✏
)))
��
1,q?/2

 à
2
✏
�2|a� à|M[k⌘k1,q? ]✏

2

= M[k⌘k1,q? ]|à|
2|a� à|

 M[k⌘k1,q? ]|a� à|

since |à|  aper < 1.

The estimate for �3 is exactly the same as the one for �2, while for �4 the

±Q✏('à

✏
,'à

✏
, a'a

✏
) terms nicely cancel to give us
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k�4k1,q?/2  Cà
2
��(J ✏'à

✏
).2.(N (✏2J ✏A✏(⌘, a))�N (✏2J ✏A✏(⌘̀, a)))

��
1,q?/2

 à
2
✏
�2M[k⌘k1,q? , k⌘̀k1,q? ]✏

2 k⌘ � ⌘̀k1,q?/2

 M[k⌘k1,q? , k⌘̀k1,q? ]|à| k⌘ � ⌘̀k1,q?/2 .

After factoring out (J ✏'à

✏
).2, we bound k�5k1,q?/2 above by a form amenable to

Proposition E.4.2:

Cà
2
✏
�2
��(N (✏2J ✏A✏(⌘̀, a))�N (✏2J ✏(a'a

✏
)))� (N (✏2J ✏A✏(⌘̀, à))�N (✏2J ✏(à'à

✏
)))
��
1,q?/2

 M[k⌘̀k1,q? ]|à|✏
�2
���sech

⇣
q?

2
·
⌘
✏
2(aJ ✏'a

✏
� àJ

✏'à

✏
)
���
W 1,1

��✏2J ✏(� + ⌘̀)
��
1,q?

 M[k⌘̀k1,q? ]|à|✏|a� à|.

4.7. The bootstrap estimates. Let

R✏

boot,r(⌘, a) := ✏+ |a|✏1�r + a
2
✏
1�2r + |a|3✏1�3r + k⌘k

r,?
+ |a| k⌘k

r,q?
✏
�r
. (4.7.1)

We prove the existence of increasing functions Mboot,r : R+ ! R+ such that

k(N✏

1(⌘, a),N
✏

2(⌘, a))kr+1,q?
 Mboot,r[k⌘kr,q? ]R

✏

boot,r(⌘, a) (4.7.2)

and

|N✏

3(⌘, a)|  Mboot,r[k⌘kr,q? ]✏
rR✏

boot,r(⌘, a) (4.7.3)

for all ⌘ 2 X r |a|  aper, and 0 < ✏ < ✏.

4.7.1. General strategy. It is for the sake of these bootstrap estimates that we proved

Propositions E.1.1 and E.2.1 for arbitrary r (thereby complicating the proofs consid-

erably as opposed to doing them for just r = 1). In these sections r will always be a

positive integer.
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The smoothing property (G.2.6) of P✏ gives

kN✏

2(⌘, a)kr+1,q?
 Cr

5X

k=1

��l ✏,mod
k1 (⌘, a)

��
r+1,q?

+Cr

5X

k=1

kl ✏

k2(⌘, a)kr+1,q?
+kl ✏

6 (⌘, a)kr+1,q?
,

and this along with the boundedness of A�1 implies

kN✏

1(⌘, a)kr+1,q?
 Cr

5X

k=1

⇣��j ✏,mod
k1 (⌘, a)

��
r+1,q?

+
��l ✏,mod

k1 (⌘, a)
��
r,q?

⌘

+ Cr

5X

k=1

⇣��j ✏
k2(⌘, a)

��
r+1,q?

+ kl ✏

k2(⌘, a)kr,q?
⌘

+ Cr

⇣��j ✏6(⌘, a)
��
r+1,q?

+ kl ✏

6 (⌘, a)kr,q?
⌘
.

Last, the estimate (G.2.3) on ◆✏ and the boundedness of �✏ from (G.2.4) give

|N✏

3(⌘, a)|  C✏
r

5X

k=1

⇣��l ✏,mod
k1 (⌘, a)

��
r,q?

+ kl ✏

k2(⌘, a)kr,q?
⌘
+ C✏

r kl ✏

6 (⌘, a)kr,q? .

In [FW18] we saw that the terms
��j ✏,mod

1k (⌘, a)
��
r+1,q?

and
��l ✏,mod

1k (⌘, a)
��
r,q?

, k = 1, . . . , 5

are all bounded by R✏

boot,r(⌘, a). Now we bound the remaining terms

��j ✏2k(⌘, a)
��
r+1,q?

, kl ✏

2k(⌘, a)kr,q? , k = 1, . . . , 5,
��j ✏6(⌘, a)

��
r+1,q?

, and kl ✏

6 (⌘, a)kr,q?

by Mboot,r[k⌘kr,q? ]R
✏

boot,r(⌘, a).

We will only show the estimates for the j terms, as once we have smoothed by $✏

on a j term, the resulting upper bound is a constant multiple of the upper bound for

the corresponding l term.

4.7.2. Bootstrap estimates for j12. As with the mapping and Lipschitz estimates, we

write this section in particular detail to illustrate our techniques. Smoothing by $✏
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per (G.2.8), we have

��j ✏12(⌘, a)
��
r+1,q?

 C kQ✏(�,�,A✏(⌘, a))kr,q?

 C
��(J ✏�).2.N (✏2J ✏A✏(⌘, a))

��
r,q?

 C✏
2
��(J ✏�).2.(J ✏(� + ⌘)).N(✏2J ✏A✏(⌘, a))

��
r,q?| {z }

⇧1

+ C✏
2
��(J ✏�).2.(aJ ✏'a

✏
).N(✏2J ✏A✏(⌘, a))

��
r,q?| {z }

⇧2

.

Then Proposition E.1.1 with C? = max{C1, . . . , Cr} and C1, . . . , Cr satisfying the

estimate (G.2.1) implies

⇧1  ✏
2M1,r[✏

2 kJ ✏(� + ⌘)k
r,q?

]
�
1 + |a|✏1�r

� ��(J ✏�).2.(J ✏(� + ⌘))
��
r,q?

.

After factoring, the same proposition gives

⇧2  ✏
2|a| kJ ✏'a

✏
k
W r,1

��(J ✏�).2.N(✏2J ✏A✏(⌘, a))
��
r,q?

 Cr✏
2�r|a|M2,r[

��✏2J ✏(� + ⌘)
��
r,q?

]
�
1 + |a|✏1�r

� ��(J ✏�).2
��
r,q?

.

Since we can assume M1,r and M2,r are increasing, we take the supremum over

0 < ✏ < ✏ < 1 and find

⇧1  fM1,r[k⌘kr,q? ]✏
�
1 + |a|✏1�r

�
(4.7.4)

and

⇧2  fM2,r[k⌘kr,q? ]✏
2�r|a|

�
1 + |a|✏1�r

�
 fM2,r[k⌘kr,q? ]|a|✏

1�r + a
2
✏
1�2r (4.7.5)

for increasing functions fM1,r and fM2,r. All together, these estimates give an upper

bound on
��j ✏12(⌘, a)

��
r+1,q?

of the form M[k⌘k
r,q?

]R✏

boot,r(⌘, a) given in (4.7.1).
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4.7.3. Bootstrap estimates for j22. We have

��j ✏22(⌘, a)
��
r+1,q?

 C kQ✏(�,⌘,A✏(⌘, a))kr,q?

 C
��(J ✏�).(J ✏⌘).N (✏2J ✏A✏(⌘, a))

��
r,q?

 C kJ ✏⌘k
r,q?

��(J ✏�).N (✏2J ✏A✏(⌘, a))
��
r,q?

 Mr[k⌘kr,q? ]
�
1 + |a|✏1�r

�
k⌘k

r,q?
,

using Proposition E.1.1 for the last inequality.

4.7.4. Bootstrap estimates for j32. We begin with

��j ✏32(⌘, a)
��
r+1,q?

 C|a| kQ✏(�,'a

✏
,A✏(⌘, a))kr,q?

 C|a|
��(J ✏�).(J ✏'a

✏
).N (✏2J ✏A✏(⌘, a))

��
r,q?

 C|a|✏�r
��(J ✏�).N (✏2J ✏A✏(⌘, a))

��
r,q?

.

Expanding N into its product form, we find

��j ✏32(⌘, a)
��
r+1,q?

 C|a|✏2�r
��(J ✏�).(J ✏(� + ⌘)).N(✏2J ✏A✏(⌘, a))

��
r,q?

+ C|a|✏2�r
��(J ✏�).(aJ ✏'a

✏
).N(✏2J ✏A✏(⌘, a))

��
r,q?

.

We estimate these terms as we did ⇧1 and ⇧2 in (4.7.4) and (4.7.5) and find
��j ✏32(⌘, a)

��
r+1,q?

 Mr[k⌘kr,q? ]
�
|a|✏1�r + a

2
✏
1�2r

�
.

4.7.5. Bootstrap estimates for j42. Routine estimates give

��j ✏42(⌘, a)
��
r+1,q?

 C|a| kQ✏(⌘,'a

✏
,A✏(⌘, a))kr,q?
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 C|a|
��(J ✏⌘).(J ✏'a

✏
).N (✏2J ✏A✏(⌘, a))

��
r,q?

 C|a|✏�r
��(J ✏⌘).N (✏2J ✏A✏(⌘, a))

��
r,q?

.

From here we follow the j32 estimates with � replaced by ⌘.

4.7.6. Bootstrap estimates for j52. Straightforward estimates and one invocation of

Proposition E.1.1 give

��j ✏52(⌘, a)
��
r+1,q?

 C kQ✏(⌘,⌘,A✏(⌘, a))kr,q?

 C
��(J ✏⌘).2.N (✏2J ✏A✏(⌘, a))

��
r,q?

 Mr[✏
2 kJ ✏(� + ⌘)k

r,q?
]
�
1 + |a|✏1�r

� ��(J ✏⌘).2
��
r,q?

 Mr[k⌘kr,q? ]
�
1 + |a|✏1�r

�
k⌘k2

r,q?
.

4.7.7. Bootstrap estimates for j6. We rely on Proposition E.2.1:

��j ✏6(⌘, a)
��
r+1,q?

 Ca
2 kQ✏('a

✏
,'a

✏
,A✏(⌘, a))�Q✏('a

✏
,'a

✏
, a'a

✏
)k

r,q?

 Ca
2
��(J ✏'a

✏
).2.
�
N (✏2J ✏A✏(⌘, a))�N (✏2J ✏(a'a

✏
))
���

r,q?

 Ca
2
✏
�2r
��N (✏2J ✏A✏(⌘, a))�N (✏2J ✏(a'a

✏
))
��
r,q?

 Ca
2
✏
2�2rMr[kJ ✏(� + ⌘)k

r,q?
]
�
1 + |a|✏1�r

�
kJ ✏(� + ⌘)k

r,q?
.

Taking the supremum over ✏ 2 (0, ✏) in the Mr factor, we conclude

��j ✏6(⌘, a)
��
r+1,q?

 Mr[k⌘kr,q? ]a
2
✏
2�2r

�
1 + |a|✏1�r

�
 Mr[k⌘kr,q? ]

�
a
2
✏
1�2r + |a|3✏1�3r

�
.
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Appendix A. Calculus

A.1. Leibniz’s rule. We will often use Leibniz’s rule for an arbitrary derivative of

a product:

@
r

X
[fg] =

rX

k=0

✓
r

k

◆
@
k

X
[f ]@r�k

X
[g]. (A.1.1)

A.2. Faá di Bruno’s formula. We employ the convenient expression of Faá di

Bruno’s formula for the chain rule found in [Mor13]. For k, r 2 N with k  r, let

⌃r

k
=
�
� 2 Nk

�� �1 � �2 � · · · � �k � 1, |�| = r
 
,

where

|�| :=
kX

j=1

�j.

A.2.1 Remark. (i) It is apparent from the definition that ⌃r

1 = {r}.

(ii) If � 2 ⌃r

k
with 2  k  r, then �j < r for all j.

A.2.2 Theorem (Faá di Bruno). Let N, f 2 Cr(R). Then

@
r

X
[N(f)] =

rX

k=1

@
k

X
[N ](f)

X

�2⌃r
k

C�

kY

j=1

@
�j

X
[f ],

where the C� are positive constants that depend on r and k but are independent of f

and X.
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Appendix B. The Fourier Transform

B.1. The periodic Fourier transform. For an integrable, 2P -periodic function f

defined on R, we set

F[f ](k) = bf(k) =:
1p
2P

Z
P

�P

f(X)eik⇡X/P
dX. (B.1.1)

Then

f(X) =
1X

k=�1

e
ik⇡X/P eµ

✓
k⇡

P

◆
bf(k),

where the sum converges in the L
2
per-norm defined in (C.2.1).

B.2. The Fourier transform on R. For a function f 2 L
1, we set

F[f ](k) = bf(k) := 1p
2⇡

Z 1

�1
f(X)e�ikX

dX (B.2.1)

and

F�1[f ](k) =

b
f(k) :=

1p
2⇡

Z 1

�1
f(X)eikX dX. (B.2.2)

We extend the Fourier transform to L
2 by the density of L1 \ L

2 in L
2, cf. [Eva10].

B.3. The complex Fourier transform. We will need the Fourier transform for a

function of a complex variable. Our preferred development of these results is contained

in Chapter 5 of [Fis99] and Chapter 8 of [Det84]. Let q > 0 and

L
p

q
:={f 2 L

p(R) | cosh(q·)f 2 L
p(R)} . (B.3.1)

Let ⌃q be the strip

⌃q :={z 2 C | | Im(z)| < q} .

Then for any f 2 L
1
q

and z 2 ⌃q, we define the Fourier transform of f at z to be

F[f ](z) = bf(z) = 1p
2⇡

Z 1

�1
f(X)e�izX

dX. (B.3.2)

It follows that bf is analytic on ⌃q, and it is a direct calculation that if |y| < q, then
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F[ey·f ](k) = bf(k + iy) (B.3.3)

for any k 2 R.

The integral in (B.3.2) need not converge when | Im(z)| = q. However, we can

still ascribe meaning to bf(k ± iq) for a function f 2 L
2
q
\
�
\0y<qL

1
y

�
, which will be

our concern later. In this case, we have the estimate

e
yX |f(X)|  e

qX |f(X)| = cosh(qX)|f(X)| sech(qX)|e±qX  cosh(qX)|f(X)|,
(B.3.4)

so that e
y·
f 2 L

2 for |y|  q since f 2 L
2
q
. By (B.3.3), we have bf(· + iy) 2 L

2 for

|y| < q.

Then motivated by (B.3.3), we define

bf(k ± iq) := F[eq·f ](k). (B.3.5)

To see that this is the “correct” definition, observe that by Plancherel’s theorem, if

|y| < q, then

kF[ey·f ]� F[eq·f ]k
L2 = k(ey· � e

q·
f)k

L2

and clearly we have the pointwise convergence

lim
y!q

�
e
yX � e

qX
�
f(X) = 0.

We can also dominate pointwise for |y| < q by (B.3.4):
���eyX � e

qX
�
f(X)

��  2| cosh(qX)f(X)|.

Since cosh(q·)f 2 L
2, we conclude

lim
y!q

kF[ey·f ]� F[eq·f ]k
L2 = lim

y!q

key·f � e
q·
fk

L2 = 0. (B.3.6)

That is,

lim
y!q

bf(·+ iy) = bf(·+ iq) (B.3.7)

in L
2, which is certainly a reasonable expectation of how (B.3.5) should behave.
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Appendix C. Sobolev Spaces

C.1. Basic definitions. We follow the treatment of [Ada75] for this material; our

other standard, preferred references are [Eva10] and [EG16]. Let U ✓ R. We denote

by W
m,p the the set of all functions f 2 L

p(R) such that the weak partial derivatives

@
j

X
[f ] exist for all 0  j  m. We have

kfk
Wm,p :=

 
mX

j=0

��@j
X
[f ]
��p
Lp

!1/p

.

The space W
m,p

0 is the closure of C1
c
(R) in the W

m,p-norm, where C1
c

is the subspace

of functions in C1(R) with compact support. By Corollary 3.19 in [Ada75], Wm,p

0 =

W
m,p.

We set

|f |j,p :=
��@j

X
[f ]
��
Lp

for f 2 W
m,p

, 1  p < 1 and 0  j  m. Then

kfk
Wm,p =

 
mX

j=0

|f |p
j,p

!1/p

and |f |0,p = kfk
W 0,p = kfk

Lp .

The mappings | · |j, j = 1, . . . , r, are seminorms on W
m,p.

By Corollary 4.16 in [Ada75], the map

|||f |||
m,p

:=
�
|f |p0,p + |f |p

m,p

�1/p
=

0

@kfkp
Lp +

X

|↵|=m

k@↵
X
[f ]k

Lp

1

A
1/p

is a norm on W
m,p

0 that is equivalent to the Wm,p

0 -norm, i.e., the Wm,p-norm on W
m,p

0 .

In particular, the norms |||·|||
m,p

and k·k
Wm,p are equivalent since W

m,p

0 = W
m,p.

We also set Wm,1 to be the space of all functions f 2 L
1(R) whose weak deriva-

tives @j
X
[f ] exist for j = 0, . . . ,m with @j

X
[f ] 2 L

1(R) for each j. Its norm is

kfk
W r,1 :=

mX

j=0

��@j
X
[f ]
��
L1 .

Specializing to the case of Hr := W
r,2, we see that the norms
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f 7!
 

rX

j=0

��@j
X
[f ]
��2
L2

!1/2

and f 7! kfk
L2 + k@r

X
[f ]k

L2

are equivalent. Here we have used the equivalence of the norms

(x1, x2) 7!
�
x
2
1 + x

2
2

�1/2 and (x1, x2) 7! |x1|+ |x2|

on R2. We write

kfk
Hr = kfk

L2 + k@r
X
[f ]k

L2 (C.1.1)

from now on. Note that because we only include the lowest (zeroth) and highest

(rth) derivatives in our definition of k·k
Hr , we must keep track of a constant when

bounding lower Sobolev norms by higher ones: if r  s, then

kfk
Hr  Cr

 
rX

j=0

��@j
X
[f ]
��2
L2

!1/2

 Cr

 
sX

j=0

��@j
X
[f ]
��2
L2

!1/2

 Cr,s kfkHs . (C.1.2)

We also mention the Fourier transform characterization of Hr: given f 2 L
2(R),

we have f 2 H
r if and only if

Z 1

�1
(1 + k

2)r| bf(k)|2 dk < 1,

and k·k
Hr is equivalent to the norm f 7!

R1
�1(1 + k

2)r| bf(k)|2 dk.

C.2. Periodic Sobolev spaces. Our preferred references are [Kre89] and [HN01].

We set

Cr

per :={f 2 Cr([�⇡, ⇡]) | f(�⇡) = f(⇡)} and kfkCr
per

:=
rX

j=0

��@j
X
[f ]
��
L1 .

Then we define

C1
per := \1

r=0Cr

per

and, for f 2 C1
per,

kfk
L2
per

:=
1p
2⇡

Z
⇡

�⇡

|f(x)|2 dx. (C.2.1)
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We denote by L
2
per the completion of C1

per in the norm k·k
L2
per

. For f 2 L
2
per and k 2 Z,

the kth Fourier coefficient of f is

bf(k) := 1p
2⇡

Z
⇡

�⇡

f(X)e�ikX
dX.

Then for f 2 L
2
per, we set

kfk
Hr

per
:=

 
X

k2Z

(1 + k
2)r| bf(k)|2

!1/2

,

hf, gi
Hr

per
:=
X

k2Z

(1 + k
2)r bf(k)bg(k),

and

H
r

per :=
n
f 2 L

2
per

��� kfk
Hr

per
< 1

o
.

For r = 0 we let H
0
per = L

2
per.

Theorem 8.4 in [Kre89] states that k·k
Hr

per
is equivalent to

f 7!
⇣
kfk2

L2
per

+ k@r
X
[f ]k2

L2
per

⌘1/2
,

which is in turn equivalent to

f 7! kfk
L2
per

+ k@r
X
[f ]k

L2
per

. (C.2.2)

This is our preferred norm for H
r

per due to its similarity to the convenient structure

of (C.1.1).

We will also need three familiar estimates:

(i) The Sobolev product estimate

kfgk
Hr

per
 Cr kfkHr

per
kgk

Hr
per

; (C.2.3)

(ii) The Sobolev embedding estimate

kfkCr�1
per

 Cr kfkHr
per

(C.2.4)

for r � 1;

(iii) And the Fourier transform estimate

| bf(k)| 
p
2⇡ kfk

L1  Cr kfkHr
per

. (C.2.5)
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C.3. Sobolev spaces of exponentially decaying functions. For r, q � 0 we set

H
r

q
:={f 2 H

r | cosh(q·)f 2 H
r}

and, for integer r (which is the only kind of r we consider), we use the norm

kfk
r,q

:= kcosh(q·)fk
L2 + kcosh(q·)@r

X
[f ]k

L2 . (C.3.1)

That cosh(q·)f 2 L
2 if f 2 H

r

q
is the result of Lemma C.3.9. See Appendix C.3.1 for

a thorough discussion of several other equivalent norms on and definitions of Hr

q
. Set

H
0
q
= L

2
q

as in (B.3.1).

Each H
r

q
space is a Hilbert space with inner product

hf, gi
r,q

:= hcosh(q·)f, cosh(q·)gi
Hr ,

which we now demonstrate.

C.3.1 Lemma. Let f 2 H
r

q
for some q � 0 and r � 1. Let (fn) be a sequence in H

r

q

such that fn ! f in L
2
q

and @j
X
[fn] ! gj in L

2
q

for some 0 < j  r and some gj 2 L
2
q
.

Then gj = @
j

X
[f ].

Proof. Let ' 2 C
1
c
(R). Then

Z 1

�1
'(X)(@j

X
[f ](X)� gj(X)) dX =

Z 1

�1
'(X)(@j

X
[f ](X)� @

j

X
[fn](X)) dX

| {z }
I1

+

Z 1

�1
'(X)(@j

X
[fn](X)� gj(X)) dX

| {z }
I2

.

The definition of the weak derivative gives
Z 1

�1
'(X)@j

X
[f ](X) dX = (�1)j

Z 1

�1
@
j

X
['](X)fn(X) dX

and
Z 1

�1
'(X)@j

X
[fn](X) = (�1)j

Z 1

�1
@
j

X
['](X)fn(X) dX.

Hence
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I1 = (�1)j
Z 1

�1
@
j

X
['](f � fn),

and so, using the Cauchy-Schwarz inequality,

����
Z 1

�1
'(X)(@j

X
[f ](X)� gj(X)) dX

����  |I1|+ |I2|


��@j

X
[']
��
L2 kfn � fk

L2 + k'k
L2

��@j
X
[fn]� gj

��
L2


��@j

X
[']
��
L2 kfn � fk

L2
q
+ k'k

L2

��@j
X
[fn]� gj

��
L2
q
.

Thus
Z 1

�1
'(X)(@j

X
[f ](X)� gj(X)) dX = 0

for all ' 2 C
1
c
(R), and so @j

X
[f ] = gj. ⌅

C.3.2 Proposition. Each space H
r

q
is a Banach space.

Proof. Let (fn) be a Cauchy sequence in H
r

q
. It follows that the sequences (fn),

(cosh(q·)fn), (@rX [fn]), and (cosh(q·)@r
X
[fn]) are all L2-Cauchy, and so they have L

2-

limits F1, F2, F3, and F4, respectively. We may extract subsequences (which we still

denote by fn) so that the convergence is also pointwise a.e; this is Theorem VII.1.4

in [Lan93]. By Lemma C.3.1 with q = 0, we have @r
X
[F1] = F3. Then, pointwise a.e.

in X, we have both

cosh(qX)F1(X) = cosh(qX) lim
n!1

fn(X) = lim
n!1

cosh(qX)fn(X) = F2(X)

and likewise

cosh(qX)@r
X
[F1](X) = cosh(qX)F3(X) = cosh(qX) lim

n!1
@
r

X
[fn](X)

= lim
n!1

cosh(qX)@r
X
[fn](X) = F4(X).

So, cosh(q·)F1 = F2 2 L
2 and cosh(q·)@r

X
[F1] = F4 2 L

2. Finally,
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kfn � F1kr,q = kcosh(q·)fn � cosh(q·)F1kL2 + kcosh(q·)@r
X
[fn]� cosh(q·)@r

X
[F1]kL2

= kcosh(q·)fn � F2kL2 + kcosh(q·)@r
X
[fn]� F4kL2 ! 0. ⌅

That is, fn ! F1 in H
r

q
, so H

r

q
is complete.

We also record here a lemma that we need for the proof of Theorem 4.3.2.

C.3.3 Lemma. Let (fn) be a sequence in H
r1
q1

that converges weakly in H
r1
q1

to F1

and strongly in H
r2
q2

to F2. Suppose q1 � q2 and r1 � r2. Then F1 = F2.

Proof. Fix h 2 L
2 and define

'h : H
r1
q1

! C : f 7! hf, hi
L2 .

Then 'h is a bounded linear functional on H
r1
q1

, as

|'h(f)| = | hf, hi
L2 |  kfk

L2 khkL2  Cr1,q1 kfkr1,q1 khkL2 .

Hence

0 = lim
n!1

'h(fn � F1) = lim
n!1

hfn � F1, hiL2

in C. Since h 2 L
2 was arbitrary, we conclude that fn ! F1 weakly in L

2. But since

kfk
L2  Cr2,q2 kfkr2,q2 , we know that fn ! F2 strongly in L

2 and so also weakly. By

the uniqueness of weak limits, we have F1 = F2 in L
2, which means F1 = F2 a.e., and

so kF1 � F2kr1,q1 = kF1 � F2kr2,q2 = 0. ⌅

C.3.1. Equivalent definitions of some weighted Sobolev spaces. We can replace the

weight cosh(q·) with coshq(·) in the definition of Hr

q
and retain the same space and an

equivalent norm. This turns out to be convenient for a variety of proofs and estimates.

For q > 0 and r 2 N, let

X r

q
={f 2 H

r | cosh(q·)f 2 H
r} ,

Yr

q
={f 2 H

r | coshq(·)f 2 H
r} ,

kfkX r
q
= kcosh(q·)fk

Hr ,
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kfkYr
q
= kcoshq(·)fk

Hr ,

|||f |||X r
q
= kcosh(q·)fk

L2 + kcosh(q·)@r
X
[f ]k

L2 ,

and

|||f |||Yr
q
= kcoshq(·)fk

L2 + kcoshq(·)@r
X
[f ]k

L2 .

Note that |||f |||X r
q
= kfk

r,q
from (C.3.1).

C.3.4 Proposition. X r

q
= Yr

q
and the norms k·kX r

q
, k·kYr

q
, |||·|||X r

q
, and |||·|||Yr

q
are all

equivalent.

We prove this in Lemmas C.3.5, C.3.6, and C.3.7 below. We use whichever of the

four norms k·kX r
q
, k·kYr

q
, |||·|||X r

q
, and |||·|||Yr

q
we find convenient and always denote this

norm by k·k
r,q

as before.

C.3.5 Lemma. The norms k·kX r
q

and |||·|||X r
q

are equivalent on H
r

q
.

Proof. First we show there is Cr,q > 0 such that

kfkX r
q
 Cr,q |||f |||X r

q
, f 2 X r

q
.

We have

k@r
X
[cosh(q·)f ]k

L2 = kF[@r
X
[cosh(q·)f ]]k

L2

and6

F[@r
X
[cosh(q·)f ]](k) = (ik)rF[cosh(q·)f ](k)

= (ik)r
bf(k + iq) + bf(k � iq)

2

= (ik � q + q)r
bf(k + iq)

2
+ (ik + q � q)

bf(k � iq)

2

6
We interpret the following calculations as equalities in L2(R), per Theorem 3.4.5 in [Mik98], which

gives the Fourier transform relation F[@X [f ]](k) = (ik) bf(k) when @X [f ] is the weak derivative of f .
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=
rX

j=0

✓
r

j

◆
(ik � q)jqr�j

bf(k + iq)

2

+
rX

j=0

✓
r

j

◆
(ik + q)j(�q)r�j

bf(k � iq)

2
.

Using (C.3.9) and Lemma C.3.10, we find

�����(k ± iq)j
bf(k ± iq)

2

����� 
| bf(k ± iq)|

2
+

|(k ± iq)r bf(k ± iq)|
2

=
|[e±q·f(k)|

2
+

|[@r
X
[f ](k ± iq)|

2

=
|[e±q·f(k)|

2
+

| \e±q@
r

X
[f ](k)|
2

,

and so

k@r
X
[cosh(q·)f ]k

L2  Cr,q

⇣���deq·f
���
L2

���[e�q·f
���
L2

+
��� \eq·@r

X
[f ]
���
L2

+
��� \e�q·@r

X
[f ]
���
L2

⌘

= Cr,q

�
keq·fk

L2 +
��e�q·

f
��
L2 + keq·@r

X
[f ]k

L2 +
��e�q·

@
r

X
[f ]
��
L2

�

 Cr,q (kcosh(q·)fkL2 + kcosh(q·)@r
X
[f ]k

L2)

= Cr,q |||f |||r,q .

Hence

kfkX r
q
= kcosh(q·)fk

Hr = kcosh(q·)fk
L2 + k@r

X
[cosh(q·)f ]k

L2  Cr,q |||f |||r,q .

Now we show

|||f |||X r
q
 Cr,q kfkX r

q
(C.3.2)

by induction on r. We will use the essential inequality
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| sinh(X)| =
����
e
X � e

�X

2

���� 
e
X + e

�X

2
= cosh(X) (C.3.3)

and the equality

@X [cosh(·)] = sinh(·). (C.3.4)

When r = 1,

kcosh(q·)@X [f ]kL2  k@X [cosh(q·)f ]kL2 + q ksinh(q·)fk
L2

 kcosh(q·)fk
H1 + q kcosh(q·)f)k

L2

 (1 + q) kcosh(q·)fk
H1

= (1 + q) kfkX 1
q
,

and so

|||f |||X 1
q
 (1 + q) kfkX 1

q
.

Assume that (C.3.2) holds for some r � 1. Then Leibniz’s rule (A.1.1) gives

cosh(q·)@r+1
X

[f ] = @
r+1
X

[cosh(q·)f ]�
r+1X

j=1

✓
r + 1

j

◆
@
j

X
[cosh(q·)]@r+1�j

X
[f ],

where @r+1
X

[cosh(q·)f ] 2 L
2 and, for 1  j  r + 1, we have 0  r + 1� j  r, hence

��@j
X
[cosh(q·)]@r+1�j

X
[f ]
��
L2  q

j
��cosh(q·)@r+1�j

X
[f ]
��
L2 by (C.3.3) and (C.3.4)

 q
j |||f |||X r+1�j

q

 Cr,q,j kfkX r+1�j
q

by the induction hypothesis

= Cr,q,j kcosh(q·)fkHr+1�j

 Cr,q,j kcosh(q·)fkHr+1 by (C.1.2)

 Cr,q kfkX r+1
q

.
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Thus

��cosh(q·)@r+1
X

[f ]
��
L2 

��@r+1
X

[cosh(q·)f ]
��
L2 + Cr,q kfkX r+1

q

 kcosh(q·)fk
Hr+1 + Cr,q kfkX r+1

q

 Cr,q kfkX r+1
q

,

and so we conclude

|||f |||X r+1
q

= kcosh(q·)fk
L2 +

��cosh(q·)@r+1
X

[f ]
��
L2  Cr,q kfkX r+1

q
. (C.3.5)

⌅

C.3.6 Lemma. For all q > 0 there exists a constant Cq > 0 such that
1

Cq

cosh(qX)  coshq(X)  2 cosh(qX), X 2 R. (C.3.6)

Proof. For the second inequality, recall that if A,B > 0, then

(A+B)q  2q(Aq +B
q). (C.3.7)

Then

coshq(X) =
1

2q
(eX + e

�X)q  e
qX + e

�qX = 2 cosh(qX).

For the first inequality, set

f(X) = coshq(X)� 1

c
cosh(qX),

where

c = q2q�1 + 2 > 1.

Then

f(0) = 1� 1

c
> 0

since c > 1. We will show that f
0(X) > 0 for X > 0, so that f(X) � f(0) > 0 for

X > 0. And since f is even, this means f(X) � 0 for all X. Then we will have the

first inequality in (C.3.6).
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We compute

f
0(X) = q coshq�1(X) sinh(X)� q

c
sinh(qX),

so f
0(X) > 0 if and only if

0 <

✓
e
X + e

�X

2

◆q�1

(eX � e
�X)� 1

c
(eqX � e

�qX)

Since e
X � e

�X
> 0 for X > 0, this rearranges to

f
0(X) > 0 () 2q�1

c

e
qX � e

�qX

eX � e�X
< (eX + e

�X)q�1
. (C.3.8)

Set

g(Y ) = Y
q
.

The mean value theorem implies

e
qX � e

�qX

eX � e�X
=

g(eX)� g(e�X)

eX � e�X

 max
e�XYeX

g
0(Y )

= q max
e�XYeX

Y
q�1

=

(
qe

(1�q)X
, 0 < q < 1

qe
(q�1)X

, q � 1.

When 0 < q < 1, we have

e
(1�q)X = (eX)1�q

< (eX + e
�X)1�q

and likewise

e
(q�1)X

< (eX + e
�X)q�1

when q � 1. So, for any q > 1, we find

e
qX � e

�qX

eX � e�X
 q(eX + e

�X)q�1
.

Then
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2q�1

c

e
qX � e

�qX

eX � e�X
 2q�1

q

c
(eX + e

�X)q�1

=
q2q�1

q2q�1 + 2
(eX + e

�X)q�1

< (eX + e
�X)q�1

,

and this is (C.3.8), which implies f
0(X) > 0 for any X > 0. ⌅

An immediate consequence of this lemma is that the norms |||·|||X r
q

and |||·|||Yr
q

are

equivalent.

C.3.7 Lemma. The norms k·kYr
q

and |||·|||Yr
q

are equivalent on H
r

q
.

Proof. We rely on

|@r
X
[coshq(·)]|  Cr,q cosh

q(·),

per Lemma C.3.11 below. First,

k@r
X
[coshq(·)f ]k

L2  Cr

rX

j=0

��@j
X
[coshq(·)]@r�j

X
[f ]
��
L2

 Cr,q

rX

j=0

��coshq(·)@j
X
[f ]
��
L2

 Cr,q

rX

j=0

��cosh(q·)@j
X
[f ]
��
L2 by Lemma (C.3.6)

 Cr,q

rX

j=0

|||f |||X j
q

 Cr,q

rX

j=0

kfkX j
q

by Lemma C.3.5
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 Cr,q kfkX r
q

by (C.1.2)

 Cr,q |||f |||X r
q

 Cr,q |||f |||Yr
q

by the equivalence of k·kX r
q

and k·kYr
q
.

Hence there is Cr,q > 0 such that

kfkYr
q
= kcoshq(·)fk

Hr = kcoshq(·)fk
L2 + k@r

X
[coshq(·)f ]k

L2  Cr,q |||f |||Yr
q
, f 2 H

r

q
.

For the other inequality, we induct. When r = 1, we have

kcoshq(·)f 0k
L2  k@X [coshq(·)f ]k

L2 + k@X [coshq(·)]fk
L2

 k@X [coshq(·)f ]k
L2 + Cq kcoshq(·)fk

L2 by (C.3.11)

 Cq kfkY1
q
.

Assume there are r � 1 and Cj,q > 0 such that

|||f |||Yj
q
 Cj,q kfkYj

q
, j = 0, . . . , r.

Then, just as with the induction in the proof of Lemma C.3.5, we have

��coshq(·)@r+1
X

[f ]
��
L2 

��@r+1
X

[cosh(q·)f ]
��
L2 + Cr

r+1X

j=1

��@X [coshq(·)]@r+1�j

X
[f ]
��
L2

 kcosh(q·)fk
Hr+1 + Cr,q

rX

j=0

��coshq(·)@j
X
[f ]
��
L2

 kfkYr+1
q

+ Cr,q

rX

j=0

|||f |||Yj
q

 Cr,q

r+1X

j=0

kfkYj
q
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 Cr,q kfkYr+1
q

by (C.1.2). ⌅

C.3.2. Lemmas for the proof of the equivalent norms. Here we collect several lemmas

that played a support role in Appendix C.3.1.

C.3.8 Lemma. Let r > 0. Then

|k|j < 1 + |k|r (C.3.9)

for all k 2 C and j 2 [0, r].

Proof. If |k| < 1, then

|k|j < 1 < 1 + |k|r,

and if |k| � 1, then

|k|j  |k|r < 1 + |k|r. ⌅

C.3.9 Lemma. Let cosh(q·)f 2 H
r. Then

lim
y!q

k(ey· � e
q·)fk

Hr = 0.

Proof. We need to take limits on two L
2-norms:

k(ey· � e
q·)fk

Hr = k(ey· � e
q·)fk

L2 + k@r
X
[(ey· � e

q·)f ]k
L2 .

The pointwise convergence to 0 as y ! q is obvious, so we check for domination: first,

k(ey· � e
q·)fk

L2  key·fk
L2 + keq·fk

L2

 2 kcosh(y·)fk
L2 + 2 kcosh(q·)fk

L2

 4 kcosh(q·)fk
L2 ,

where we are using the inequality

e
yx = 2

e
yx

2
 2

e
yx + e

�yx

2
= 2 cosh(yx)  2 cosh(qx).
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Also, and similarly,

k@r
X
[(ey· � e

q·)f ]k
L2 

rX

j=0

✓
r

j

◆��(yjey· � q
j
e
q·)@r�j

X
[f ]
��
L2

 Cr

rX

j=0

�
|y|j

��ey·@r�j

X
[f ]
��
L2 + q

j
��eq·@r�j

X
[f ]
��
L2

�

 Cr

rX

j=0

q
j
��cosh(q·)@r�j

X
[f ]
��
L2 .

So, the limit follows from the dominated convergence theorem. ⌅

With these lemmas, we can show that we preserve the familiar identity for the

derivative when we extend the Fourier transform to complex values: if f 2 H
r

q
for

some integer r � 1 and q � 0, then

F[@r
X
f ](z) = (iz)r bf(z), z 2 ⌃q, .

where ⌃q is the closure of ⌃q. The proof for | Im(z)| < q is Theorem 8.4.4 in [Det84].

We prove the | Im(z)| = q case here as an equality in L
2.

C.3.10 Lemma. Let f 2 H
r

q
. Then [

@
j

X
[f ](k ± iq) = (i(k ± iq))j bf(k ± iq).

Proof. Since H
r

q
✓ H

r�1
q

, we give the proof just for r = r. Let |y| < q. We have

d@r
X
f(k + iq)� (i(k + iq))r bf(k + iq) = d@r

X
f(k + iq)� d@r

X
f(k + iy)

| {z }
�1(k, y)

+ d@r
X
f(k + iy)� (i(k + iq))r bf(k + iq)

| {z }
�2(k, y)

.

Immediately (B.3.7) gives

lim
y!q

k�1(·, y)kL2 = 0.

Next, rewrite �2(y) as
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�2(y) = (i(k + iy))r bf(k + iy)� (i(k + iy))r bf(k + iq)| {z }
�3(k, y)

+ (i(k + iy))r bf(k + iq)� (i(k + iq))r bf(k + iq)| {z }
�4(k, y)

.

Then (C.3.9) implies

|�3(k, y)| = i
r

rX

`=0

✓
r

`

◆
k
`(�y)r�`

⇣
dey·f(k)�deq·f(k)

⌘

 Cr,q

⇣���dey·f(k)�deq·f(k)
���+
���(ik)r

⇣
dey·f(k)�deq·f(k)

⌘���
⌘

= Cr,q (|F[(ey· � e
q·)f ](k)|+ |F[@r

X
[(ey· � e

q·)f ]](k)|) ,

and so

k�3(·, y)kL2  Cr,q (kF[(ey· � e
q·)f ]k

L2 + kF[@r
X
[(ey· � e

q·)f ]]k
L2)

= Cr,q (k(ey· � e
q·)fk

L2 + k@r
X
[(ey· � e

q·)]k
L2)

= Cr,q k(ey· � e
q·)fk

Hr .

Hence k�3(·, y)kL2 ! 0 as y ! q by Lemma C.3.9.

Last, we rewrite

�4(k, y) = i
r ((k + iy)r � (k + iq)r) bf(k + iq)

= i
r

rX

`=0

�
k
`(iy)r�` � k

`(iq)r�`
�deq·f(k)

and so

k�4(·, y)kL2  Cr

rX

`=0

|yr�` � q
r�`|

Z 1

�1
(1 + k

2)r
���deq·f(k)

���
2

dk
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= Cr

rX

`=0

|yr�` � q
r�`| keq·fk

Hr

Then k�4(·, y)kL2 ! 0 as y ! q. ⌅

C.3.11 Lemma. For all r, q � 0, there is a constant Cr,q > 0 such that

|@r
X
[coshq(·)]|  Cr,q cosh

q(·). (C.3.10)

Proof. Use Faá di Bruno’s rule with N(X) = X
q to write

@
r

X
[coshq(·)] =

rX

k=1

 
k�1Y

j=0

q � k

!
coshq�k(·)

X

�2⌃r
k

kY

j=1

@
�j

X
[cosh(·)] (C.3.11)

and observe that since cosh(X) � 0,
�����

kY

`=1

@
�j

X
[cosh(·)]

����� 
kY

`=1

cosh(·) = coshk(·).

This and (C.3.11) imply the desired inequality (C.3.10). ⌅

C.3.3. Estimates for H
r

q
.

C.3.12 Proposition. Let r � 1 be an integer and q > 0.

(i) kfk
L1  Cr kfkHr .

(ii) If f 2 H
r

q
, then |f(X)|  Cr kfkr,q sech

q(X).

(iii) kfgk
Hr  Cr kfkW r,1 kgk

Hr .

(iv)
��@k

X
[cosh(q·)f ]

��
L1  Cr�k kfkr,q.

(v) kfk
Hr  Cr,q kfkr,q.

(vi) kfgk
r,q

 Cr,q kfkr,q kgkr,q.

(vii) kfgk
r,q

 Cr kgkW r,1 kfk
r,q

.

(viii) kfk
r,q

 Cr,q0�q kfkr,q0 , q  q
0.
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Proof. (i) This is the Sobolev embedding.

(ii) We have

|f(X)| = sechq(X) coshq(X)|f(X)|  Cr sech
q(X) kcoshq(·)fk

Hr = Cr kfkr,q sech
q(X).

(iii) We compute

kfgk
Hr =

rX

k=0

k@r
X
[fg]k

L2


rX

k=0

kX

j=0

✓
k

j

◆���@jX [f ]@
k�j

X
[g]
���
L2


rX

k=0

kX

j=0

✓
k

j

◆��@j
X
[f ]
��
L1

���@k�j

X
[g]
���
L2

 kfk
W r,1

rX

k=0

kX

j=0

✓
k

j

◆���@k�j

X
[g]
���
L2

 kfk
W r,1 kgk

Hr

rX

k=0

kX

j=0

✓
k

j

◆

| {z }
Cr

(iv) This is essentially the Sobolev embedding:

��@k
X
[cosh(q·)f ]

��
L1  Cr�k

��@k
X
[cosh(q·)f ]

��
Hr�k

 Cr�k kcosh(q·)fkHr

= Cr�k kfkr,q .

(v) Here we use (ii):
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kfk
Hr = ksechq(·)f coshq(·)fk

Hr

 Cr ksechq(·)k
W r,1 kcoshq(·)fk

Hr

= Cr ksech(·)kqW r,1| {z }
Cr,q

kfk
r,q

.

(vi) This relies on the fact that H
r is an algebra:

kfgk
r,q

= kcosh(q·)fgk
Hr

 Cr kcosh(q·)fkHr kgkHr

 Cr,q kfkr,q kgkr,q .

(vii) Again we use (ii):

kfgk
r,q

= kcosh(q·)fgk
Hr

 Cr kfkW r,1 kcosh(q·)gk
Hr

= Cr kfkW r,1 kgk
r,q

.

(viii) We have

kfk
r,q

= kcoshq(·)fk
Hr

=
���coshq�q

0
(·) coshq

0
(·)f

���
Hr

=
���sechq

0�q(·) coshq
0
(·)f

���
Hr
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���sechq

0�q(·)
���
W r,1| {z }

Cr,q0�q

���coshq
0
(·)f

���
Hr

= Cr,q0�q kfkr,q0 .

Note that since q
0 � q, we do indeed have sechq

0�q(·) 2 W
r,1. ⌅

C.3.4. The compact embedding of Hr

q
into H

r�1
q

.

C.3.13 Remark. We adopt the following notation for sequences: a sequence in a

set X is a function f : N ! X , and a subsequence of f is a sequence g of the form

g(n) = f('(n)), where ' : N ! N is strictly increasing. We will use the following

familiar construction of “diagonal” sequences: let f : N2 ! X be a function such that

f(·, k+1) is a subsequence of f(·, k) for each k 2 N. Then the function g(n) := f(n, n)

is a subsequence of f(·, 1). Indeed, suppose that for each k 2 N we have a strictly

increasing function ◆k : N ! N with f(n, k+1) = f(◆k(n), k). Note that ◆k(n) � n for

all k and n.

We need to write g(n) = f(◆(n), 1) for ◆ : N ! N strictly increasing. The illustra-

tive calculations

g(2) = f(2, 2) = f(2, 1 + 1) = f(◆1(2), 1)

and

g(3) = f(3, 3) = f(3, 2 + 1) = f(◆2(3), 2) = f(◆2(3), 1 + 1) = f(◆1(◆2(3)), 1)

suggest that we define

◆(n) = ◆1 � ◆2 � · · · � ◆n�1(n);

we prove by induction that ◆ is increasing.

C.3.14 Lemma. Let b, q > 0. The space H
1
q+b

is compactly embedded in L
2
q
.
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Proof. Let (fn) be a bounded sequence in H
1
q+b

, so (fn) is a bounded sequence in

H
1 with

M := sup
n2N

kfnk1,q+b
< 1.

Then

|fn(X)|  C kfnk1,q+b
 C? sech

q+b(X), C? := CM. (C.3.12)

Fix N 2 N. Since H
1([�N,N ]) embeds compactly into L

2([�N,N ]), there exists

a subsequence (f'N (n)) of (fn) such that (f'N (n)) converges to some function F(N) in

L
2([�N,N ]). Here, each map 'N : N ! N is strictly increasing. We may select these

subsequences inductively so that (f'N+1(n)) is a subsequence of (f'N (n)) and (f'N (n))

also converges pointwise a.e. on [�N,N ] to F(N). Observe the following.

(i) Since (f'N+1(n)) is a subsequence of (f'N (n)), we have F(N+1) = F(N) on [�N,N ].

(ii) The pointwise convergence on [�N,N ] combines with (C.3.12) to produce

|F(N)(X)| = lim
n!1

|f'N (n)(X)|  C? sech
q+b(X) (C.3.13)

a.e. on [�N,N ].

(iii) Since coshq(·) is bounded on [�N,N ], there is an integer  (N) large enough

that if n �  (N), then
��coshq(·)(f'N (n) � F(N))

��
L2([�N,N ])

<
1p
N
. (C.3.14)

We may take  (N) <  (N + 1) for each N .

Let �(N) = 'N( (N)), so that by the diagonal construction in Remark C.3.13

(f�(N)) is a subsequence of (fn). Now let

f(X) = F(|dXe|)(X),

where dXe is the least integer greater than or equal to X. That is,

f(X) = F(N)(X) if |X|  N.

We see from (C.3.13) that
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|f(X)|  C? sech
q+b(X) (C.3.15)

a.e. on R. If we know that f is measurable, then we will have coshq(·)f 2 L
2 from

this inequality. Given E ✓ R measurable, we have

f
�1(E) =

1[

N=1

f
�1(E) \ [�N,N ] =

1[

N=1

F
�1
(N)(E) \ [�N,N ].

Each set F
�1
(N)(E \ [�N,N ]) is measurable since F(N) 2 L

2([�N,N ]). And so f is

measurable. Hence f 2 L
2
b
.

Now we can show that

lim
N!1

��f�(N) � f
��
L
2
b
= 0. (C.3.16)

Let ✏ > 0 and take N✏ 2 N so large that

max

⇢
1

N✏

, 8C2
?

Z 1

N✏

sech2b(x) dx

�
<
✏

2
.

Then for N � N✏, we have

��coshq(·)(f�(N) � f)
��2
L2 =

Z �N

�1
cosh2q(X)|f�(N)(X)� f(X)|2 dX

+

Z
N

�N

cosh2q(X)|f�(N)(X)� f(X)|2 dX

+

Z 1

N

cosh2q(X)|f�(N)(X)� f(X)|2 dX.

We estimate the second integral using (C.3.14):

Z
N

�N

cosh2q(X)|f�(N)(X)� f(X)|2 dX =
��coshq(·)(f�(N) � f)

��2
L2([�N,N ])

<
1

N
 1

N✏

<
✏

2
. (C.3.17)

For the first and third integrals, we use (C.3.12) and (C.3.15):

cosh2q(X)|f�(N)(X)� f(X)|2  cosh2q(X)|f�(N)(X)|2 + 2 cosh2q(X)|f�(N)(X)||f(X)|
+ cosh2q(X)|f(X)|2



C. Sobolev Spaces 100

 C
2
?
cosh2q(X) sech2q+2b(X) + 2C2

?
cosh2q sech2q+2b(X)

+ C
2
?
cosh2q(X) sech2q+2b(X)

= 4C2
?
sech2b(X).

Thus

Z �N

�1
cosh2b(X)|f�(N)(X)� f(X)|2 dx+

Z 1

N

cosh2b(X)|f�(N)(X)� f(X)|2 dX

 4C2
?

Z �N

�1
sech2✏(X) dX + 4C2

?

Z 1

N

sech2✏(X) dX

= 8C2
?

Z 1

N

sech2b(X) dX  8C2
?

Z 1

N✏

sech2b(X) dX <
✏

2
. (C.3.18)

We combine this with (C.3.17) to conclude that for N � N✏, we have
��coshq(·)(f�(N) � f)

��2
L2 < ✏,

and so the limit (C.3.16) holds. ⌅

C.3.15 Proposition. Let b > 0, q � 0 and r 2 N. Then H
r+1
q+b

is compactly embedded

in H
r

q
.

Proof. We have proved the r = 0 case in Lemma C.3.14 and so we induct on r.

Suppose the proposition is true for k = 0, . . . , r. Let (fn) be a bounded sequence in

H
r+1
q+b

, so (@k
X
[fn]) is bounded in H

1
q+b

for k = 0, . . . , r. Passing to subsequences and

relabeling as needed, by Lemma C.3.14 there exist a subsequence (fnj) of (fn) and

functions g0, . . . , gr 2 L
2
q

such that @k
X
[fnj ] ! gk in L

2
q
. By Lemma C.3.1, we have

gk = @
k

X
[g0]. Hence

lim
j!1

��fnj � g0

��
Hr

q
= lim

j!1

rX

k=0

��@k
X
[fnj � g0]

��
L2
q
= 0,

and so fnj ! g0 in H
r

q
. ⌅
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It will be useful to know that a certain composition of smoothing and multiplica-

tion operators is compact when the multiplication induces decay.

C.3.16 Lemma. Let r � 1 be an integer, q � 0, b > 0, and & 2 H
r

q
. There exists a

constant C > 0 such that

k&fk
r,q+b

 C kfk
r,q

(C.3.19)

for all f 2 H
r. That is, multiplication by & is a bounded operator from H

r

q
to H

r

q+b
.

Proof. We have

k&fk
r,q+b

=
��coshq+b(·)&f

��
L2 +

��coshq+b(·)@r
X
[&f ]
��
L2 ,

with
��coshq+b(·)&f

��
L2 

��coshb(·)&
��
L1 kcoshq(·)fk

L2 (C.3.20)

and

��coshq+b(·)@r
X
[&f ]
��
L2  Cr,q+b

rX

k=0

��coshq+b(·)@k
X
[&]@r�k

X
[f ]
��
L2 .

Here we have used Leibniz’s rule and (C.3.10). When k = 0, this is
��coshq+b(·)&@r

X
[f ]
��
L2 

��coshb(·)&
��
L1 kcoshq(·)@r

X
[f ]k

L2 (C.3.21)

and for 1  k  r,

��coshq+b(·)@k
X
[&]@r�k

X
[f ]
��
L2 

��coshq(·)@r�k

X
[f ]
��
L1

��coshb(·)@k
X
[&]
��
L2 . (C.3.22)

Combining (C.3.20), (C.3.21), and (C.3.22), we arrive at the bound (C.3.19). ⌅

C.3.17 Proposition. Let b > 0, q � 0, $ 2 B(Hr�1
q

, H
r

q
), and & 2 H

r

b
. The operator

f 7! $(&f) is compact from H
r

q
to H

r

q
.

Proof. The following diagram summarizes the proof:

H
r

q

f 7!&f���! H
r

q+b

&f 7!&f

,���! H
r�1
q

&f 7!$(&f)������! H
r

q
.

By Lemma C.3.16, we know that f 7! &f is a bounded operator from H
r

q
to H

r

q+b
.

Then Proposition C.3.15 implies that the identity mapping &f 7! &f is compact from
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H
r

q+b
to H

r�1
q

. Hence f 7! $(&f) is also compact from H
r

q
to H

r

q
. ⌅
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Appendix D. Fourier Multipliers

D.1. Definitions. Let eµ 2 L
1. For f 2 L

2, we define the Fourier multiplier operator

µ with symbol eµ by

µf := F�1[eµ bf ]. (D.1.1)

That is, cµf(k) = eµ(k) bf(k) for all k 2 R. Since eµ 2 L
1, we have eµ bf 2 L

2, so (D.1.1)

is defined.

Similarly, for an integrable, 2P -periodic f on R, we define µf to be the function

whose Fourier coefficients are eµ(k⇡/P ) bf(k), which is to say,

µf(X) :=
X

k2Z

e
ik⇡X/P eµ

✓
k⇡

P

◆
bf(k). (D.1.2)

The series converges in L
2
per since eµ is bounded.

Finally, if f 2 L
2 and g is integrable and 2P -periodic, then we set

µ(f + g) := µf + µg,

where µf is defined per (D.1.1) and µg by (D.1.2).

We will use the following properties of Fourier multipliers frequently; their proofs

are straightforward computations with the definitions (D.1.1) and (D.1.2).

D.1.1 Proposition. Let µ be the Fourier multiplier with symbol eµ 2 L
1. Let f be

a function so that µf is defined (either in L
2 or L

2
per).

(i) If eµ is even and f is even (odd), then µf is even (odd).

(ii) If eµ(k) = eµ(�k) and f is real-valued, then µf is real-valued.

(iii) Let ! 2 R and let µ
! be the Fourier multiplier with symbol fµ!(k) := eµ(!k).

Then

µ[f(!·)] = (µ!
f)(!·),
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D.2. Operator norms of Fourier multipliers. Next we calculate exactly7 the

operator norm of a Fourier multiplier between Sobolev spaces.

D.2.1 Lemma. Let µ be a Fourier multiplier with symbol eµ. Then

(i) kµkB(Hr
per,H

s
per)

= sup
k2Z

|eµ(k)|
(1 + k2)(r�s)/2

(ii) kµkB(Hr,Hs) = sup
k2R

|eµ(k)|
(1 + k2)(r�s)/2

Proof. (i) One direction of this inequality is a direct computation. For f 2 H
r

per,

we have

kµfk2
Hs

per
=
X

k2Z

(1 + k
2)s|eµ(k)|2| bf(k)|2

=
X

k2Z

�
(1 + k

2)s�r|eµ(k)|2
��
(1 + k

2)r| bf(k)|2
�


✓
sup
k2Z

|eµ(k)|2
(1 + k2)r�s

◆X

k2Z

(1 + k
2)r| bf(k)|2

=

✓
sup
k2Z

|eµ(k)|
(1 + k2)(r�s)/2

◆2

kfk2
Hr

per
.

To get the reverse inequality, let

L = sup
k2Z

|eµ(k)|
(1 + k2)(r�s)/2

.

and let (kj) be a sequence in Z such that

lim
j!1

|eµ(kj)|
(1 + k

2
j
)(r�s)/2

= L.

Set

bfj(X) = e
ikjX ,

7
I am grateful to the authors of [FML15] for stating the full equality, rather than just the easy “”

inequality. This led me on the amusing path of proving the reverse inequalities.
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so bfj(k) = �k,kj . Then

kfjk2Hr
per

= (1 + kj)
2 and kµfjk2Hs

per
= (1 + kj)

2|eµ(kj)|2,

and so

lim
j!1

kµfjk2Hs
per

kfjk2Hr
per

= lim
j!1

|eµ(kj)|2
(1 + k

2
j
)r�s

= L
2
.

Since we already know kµkB(Hr
per,H

s
per)

 L, this forces equality.

(ii) First we need a straightforward fact: if E ✓ R is bounded and measurable, then

F�1[1E] 2 H
r \ {0} (although 1E 62 H

r, in general). This is true because

��F�1[1E]
��2
Hr =

Z 1

�1
(1 + |k|2)r| \F�1[1E](k)|2 dk =

Z 1

�1
(1 + |k|2)r|1E(k)|2 dk

=

Z

E

(1 + |k|2)r dk < 1.

We have the last inequality because E is bounded.

Now let

M(k) =
|eµ(k)|

(1 + k2)(r�s)/2
.

From here we follow the proof of Theorem 8.14 in [Kna05] to show kMk
L1 =

kµkB(Hr,Hs). First observe that if c > 0 and M(k) � c on a bounded, measurable set

E, then Then F�1[1E] 2 H
r and

��µF�1[1E]
��2
Hs =

Z 1

�1
(1 + k

2)r|M(k)|21E(k) dk � c
2

Z 1

�1
(1 + k

2)r1E(k) dk

= c
2
��F�1[1E]

��2
Hr .

Hence

c  kµF�1[1E]kHs

kF�1[1E]kHr

 sup
f2Hr\{0}

kµfk
Hs

kfk
Hr

= kµkB(Hr,Hs) .

Now consider the case kMk
L1 = 1. Then for all c > 0, there is a set Ec ✓ R

of positive measure such that M(k) � c for k 2 Ec. Using the calculation above, we
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conclude that c  kµkB(Hr,Hs) for all c > 0, hence kµkB(Hr,Hs) = 1.

Last, suppose kMk
L1 < 1. Take 0 < c < kMk

L1 and let

Ec =
�
k 2 Rd

�� |M(k)| > c
 
.

If Ec has measure 0, then |M(k)|  c a.e., and so kMk
L1  c. So, Ec has positive

measure, and, repeating the estimates above, we find c  kµkB(Hr,Hs). Since this was

true for all 0 < c < kMk
L1 , we must have kMk

L1  kµkB(Hr,Hs). Conversely, if

f 2 H
r, then

kµfk2
Hs =

Z 1

�1
M(k)2(1 + k

2)r| bf(k)|2 dk  kMk2
L1 kfk2

Hr ,

and so kµkB(Hr,Hs)  kMk
L1 . ⌅

D.3. Calculus on Fourier multipliers. For a function f : X ! Y between normed

spaces X and Y , we set

Lip(f) := sup
x,x̀2X
x 6=x̀

kf(x)� f(x̀k
kx� x̀k .

We recall

C0,1(X ,Y) :={f 2 C(X ,Y) | Lip(f) < 1}

and

C1,1(X ,Y) :=
�
f 2 C1(X ,Y)

�� Lip(Df) < 1
 
,

with Df 2 B(X ,Y) denoting the derivative of f .

D.3.1 Proposition. Let µ be a Fourier multiplier with symbol eµ 2 L
1 and, for

! 2 R, let µ! be the Fourier multiplier with symbol eµ!(k) := eµ(!k). Define

µ
(·) : R ! B(Hr

per, H
s

per) : ! 7! µ
!
.

(i) sup
r,!2R

kµ!kB(Hr
per)

 keµk
L1.

(ii) If r � s+ 1 and eµ 2 C(R), then µ
(·) 2 C(R,B(Hr

per, H
s

per)).

(iii) If r � s+ 1 and eµ 2 C0,1(R), then µ
(·) 2 C0,1(R,B(Hr

per, H
s

per)) with Lip(µ(·)) 
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Lip(eµ).

(iv) If r � s+2 and eµ is differentiable with keµ0k
L1 < 1, then µ

(·) is differentiable as

a function R ! B(Hr

per, H
s

per) and its derivative
d

d!
µ
!

����
!=!⇤

2 B(Hr

per, H
s

per) satisfies

F

✓
d

d!
µ
!

◆ ����
!=!⇤

f

�
(k) = keµ0(!⇤k bf(k).

(v) If r � s+ 2 and eµ 2 C1(R) with keµ0k
L1 < 1, then µ

(·) 2 C1(R,B(Hr

per, H
s

per)).

(vi) If r � s+2 and eµ 2 C1,1(R), then µ
(·) 2 C1,1(R,B(Hr

per, H
s

per)) with Lip

✓
d

d!
µ
!

◆


Lip(eµ0).

Proof. (i) From Lemma D.2.1,

sup
r,!2R

kµ!kB(Hr
per)

 sup
r,!2R

sup
k2Z

|eµ(!k)|
(1 + k2)(r�r)/2

= sup
r,!2R

sup
k2Z

|eµ(!k)|  kµk
L1 .

(ii) Fix !⇤ 2 R and let ✏ > 0. Since r � s � 1, there is K 2 N such that
1

(1 + k2)(r�s)/2
<

✏

2 keµk
L1

. (D.3.1)

when |k| > K. Since eµ is continuous, there exist ��K , . . . , �K > 0 such that if

|! � !⇤| < �k, then |eµ(!k)� eµ(!⇤k)| < ✏, for k = �K, . . . ,K. Set � = min�KkK �k

and let |! � !⇤| < �. Lemma D.2.1 implies

kµ! � µ
!⇤kB(Hr

per,H
s
per)

 sup
k2Z

|eµ(!k)� eµ(!⇤k)|
(1 + k2)(r�s)/2

.

If |k|  K, then our choice of � and the hypothesis r � s � 1 imply
|eµ(!k)� eµ(!⇤k)|
(1 + k2)(r�s)/2

 |eµ(!k � eµ(!⇤k)| < ✏,

while for |k| > K, (D.3.1) gives
|eµ(!k)� eµ(!⇤k)|
(1 + k2)(r�s)/2

 2 keµk
L1

(1 + k2)(r�s)/2
< ✏.

(iii) We compute

��µ! � µ
!̀
��
B(Hr

per,H
s
per)

 sup
k2Z

1

(1 + k2)r�s
|eµ(!k)� eµ(!̀k)|
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 sup
k2Z

Lip(eµ)|!k � !̀k|
(1 + k2)(r�s)/2

= Lip(eµ)|! � !̀| sup
k2Z

|k|
(1 + k2)(r�s)/2

 Lip(eµ)|! � !̀| sup
k2Z

|k|p
1 + k2

 Lip(eµ)|! � !̀|.

(iv) Fix !⇤ 2 R. We begin by observing that if ⌫! is the multiplier with symbol

e⌫! := keµ0(!k), then Lemma D.2.1 implies

����
µ
! � µ

!⇤

! � !⇤
� ⌫

!

����
B(Hr

per,H
s
per)

 sup
k2Z

1

(1 + k2)(r�s)/2

����
eµ(!k)� eµ(!⇤k)

! � !⇤
� keµ0(!⇤k)

���� .

(D.3.2)

Also, the mean value theorem implies

sup
k1,k2,k32R

k1 6=k2

����
eµ(k1)� eµ(k2)

k1 � k2
� eµ0(k3)

����  2 keµ0k
L1 . (D.3.3)

Choose ✏ > 0 and K 2 N such that if |k| > K then
|k|

(1 + k2)(r�s)/2
 ✏

2 keµ0k
L1

. (D.3.4)

The differentiability of eµ implies, for �K  k  K, the existence of �k > 0 such that

if |! � !⇤| < �k, then
����
eµ(!k)� eµ(!⇤k)

! � !⇤
� keµ0(!⇤k)

���� < ✏.

Take � = min�KkK �k and |! � !⇤| < �. If |k|  K, then the choice of � implies

1

(1 + k2)(r�s)/2

����
eµ(!k)� eµ(!⇤k)

! � !⇤
� keµ0(!⇤k)

���� 
����
eµ(!k)� eµ(!⇤k)

! � !⇤
� keµ0(!⇤k)

���� < ✏.

If |k| > K, then k 6= 0 and we can combine (D.3.3) and (D.3.4) along with the

hypothesis r � s� 2 � 0 to reach
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1

(1 + k2)(r�s)/2

����
eµ(!k)� eµ(!⇤k)

! � !⇤
� keµ0(!⇤k)

����

=
|k|

(1 + k2)(r�s)/2

����
eµ(!k)� eµ(!⇤k)

!k � !⇤k
� eµ0(!⇤k)

����

 |k|
(1 + k2)(r�s)/2

2 keµ0k
L1 < ✏.

(v) Fix !⇤ 2 R. We again denote by ⌫! the multiplier with symbol e⌫! := keµ0(!k),

take ✏ > 0, and choose K 2 N such that (D.3.4) holds for |k| > K. Since eµ0 is

continuous, there are �k > 0, |k|  K, such that if |! � !⇤| < �k, then |eµ0(!k) �

eµ0(!⇤k)| < ✏. Take � = min�KkK �k. Lemma D.2.1 provides

k⌫! � ⌫
!⇤kB(Hr

per,H
s
per)

 sup
k2Z

|k|
(1 + k2)(r�s)/2

|eµ0(!k)� eµ0(!⇤k)|.

Take |! � !⇤| < �. For |k|  K, we have
|k|

(1 + k2)(r�s)/2
|eµ0(!k)� eµ0(!⇤k)| <

|k|
(1 + k2)(r�s)/2

✏  ✏

by choice of � and the hypothesis r � s � 2. For |k| > K, we have
|k|

(1 + k2)(r�s)/2
|eµ0(!k)� eµ0(!⇤k)| 

|k|
(1 + k2)(r�s)/2

2 keµ0k
L1 < ✏

by (D.3.4).

(vi) Using the notation ⌫! from part (v), we compute

��⌫! � ⌫
!̀
��
B(Hr

per,H
s
per)

 sup
k2Z

1

(1 + k2)(r�s)/2
|keµ0(!k)� keµ0(!̀k)|

 sup
k2Z

Lip(eµ0)|!k � !̀k||k|
(1 + k2)(r�s)/2

= Lip(eµ0)|! � !̀| sup
k2Z

k
2

(1 + k2)(r�s)/2
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 Lip(eµ0)|! � !̀| sup
k2Z

k
2

1 + k2

 Lip(eµ0)|! � !̀|. ⌅

D.4. Operator conjugation. Our goal in this section is to extend a Fourier mul-

tiplier defined on H
r to map (a subspace of) H

r

q
into H

r

q
. With these preliminaries

underway, we can now state our major tool, which is a lemma by Beale [Bea91a]

(Lemma 3), [Bea91b] (Lemma 5.1).

D.4.1 Lemma (Beale). Let q > 0 and let eµ be meromorphic on the strip

⌃q ={z 2 C | | Im(z)|  q}

with the following properties.

(i) Let Pµ be the set of poles of eµ in ⌃q. Suppose that eµ has a finite number of poles

in ⌃q, all of which are real and simple.

(ii) Let s � 0 and C, z0 > 0 such that if |z| � z0, then

|eµ(z)|  C

|Re(z)|s .

Then for r � 0, set

Dr

µ,q
:=
n
f 2 H

r

q

��� z 2 Pµ =) bf(z) = 0
o

and let µ be the Fourier multiplier with symbol eµ. Then µ 2 B(Dr

µ,q
, H

r+s

q
) and

kµfk
r+s,q



0

@ sup
z2C

| Im(z)|=q

(1 + |Re(z)|2)s/2|eµ(z)|

1

A kfk
r,q

.

D.4.2 Remark. For f 2 H
r

q
we have f 2 \0y<qL

1
y

by part (ii) of Proposition

C.3.12, so bf(z) is defined pointwise by (B.3.2) for all z 2 ⌃q. In particular, bf(z) is

defined pointwise at all z 2 Pµ, since Pµ ✓ R. This makes the definition of Dr

µ,q

unambiguous.
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We apply Beale’s lemma to prove the following.

D.4.3 Proposition (Operator conjugation). Suppose that eµ satisfies the hypothe-

ses of Beale’s lemma on the closed strip ⌃q0 and that there is a constant C > 0 with

|eµ(k + iq)� eµ(k)|  C|q| (D.4.1)

for all |q|  q0. Let µ be the Fourier multiplier with symbol eµ and define

µqf := cosh(q·)µ[sech(q·)f ].

Then µq 2 B(Hr) and

lim
q!0+

kµq � µkB(Hr) = 0. (D.4.2)

Proof. For convenience we abbreviate

cq := cosh(q·) and sq := sech(q·).

First we show that µq is a well-defined operator on H
r. Fix f 2 H

r, so sqf 2 H
r

q
.

Beale’s lemma tells us that µ maps H
r

q
to H

r

q
for |q|  q0, so µ[sqf ] 2 H

r

q
, and

consequently µqf = cqµ[sqf ] 2 H
r, too.

For the limit, we compute, for f 2 H
r with kfk

Hr  1,

kcqµ[sqf ]� µfk2
Hr =

Z 1

�1
(1 + k

2)r|F[cqµ[sqf ]� µ[f ]](k)|2 dk.

By (B.3.5), we have

F[cqµ[sqf ]](k) =
F[µ[sqf ]](k + iq) + F[µ[sqf ]](k � iq)

2
,

and since µ is a Fourier multiplier, this becomes

F[cqµ[sqf ]](k) =
eµ(k + iq)csqf(k + iq) + eµ(k � iq)csqf(k � iq)

2
.

Next, since cqsq = 1, we have

bf(k) = [cqsqf(k) =
csqf(k + iq) + csqf(k � iq)

2
,

and so

cµf(k) = eµ(k) bf(k) = eµ(k)
csqf(k + iq) + csqf(k � iq)

2
.
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Then

F[cqµ[sqf ]� µf ](k) =
eµ(k + iq)csqf(k + iq) + eµ(k � iq)csqf(k � iq)

2

� eµ(k)
csqf(k + iq) + csqf(k � iq)

2

= (eµ(k + iq)� eµ(k))
csqf(k + iq)

2

+ (eµ(k � iq)� eµ(k))
csqf(k � iq)

2
.

By hypothesis on eµ, we have

�����(eµ(k ± iq)� eµ(k))
csqf(k ± iq)

2

�����  C|q|
��� csqf(k ± iq)

��� = C|q||F[e±q·
sqf ](k)|.

Now define the multiplication operator

Tq : H
r ! H

r : f 7! e
q·
sqf.

To be clear, this is not a Fourier multiplier, and

kTqkB(Hr)  Cr keq·sqkW r,1 .

We conclude

kcqµ[sqf ]� µ[f ]k2
Hr =

Z 1

�1
(1 + k

2)r|F[cqµ[sqf ]� µf ](k)|2 dk

=

Z 1

�1
(1 + k

2)r

�����(eµ(k + iq)� eµ(k))
csqf(k + iq)

2

�����

2

dk

+

Z 1

�1
(1 + k

2)r

�����(eµ(k � iq)� eµ(k))
csqf(k � iq)

2

�����

2

dk

 C|q|
Z 1

�1
(1 + k

2)r|dTqf(k)|2 dk

+ C|q|
Z 1

�1
(1 + k

2)r|[T�qf(k)|2 dk
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= C|q| kTqfk2Hr + C|q| kT�qfk2Hr

 Cq kTqk2B(Hr) + Cq kT�qk2B(Hr) since kfk
Hr  1

 Cr|q|.

We used (D.4.5) to get the last inequality, and, taking q ! 0, this proves the limit

(D.4.2). ⌅

D.4.4 Remark. The proof above could proceed just as well if we replaced the con-

dition (D.4.1) with |eµ(k + iq) � eµ(k)| = O(qp) uniformly in k for some p > 0. We

will have precisely (D.4.1) in our intended application below to the Friesecke-Pego

operator A, so we leave the statement as it is.

D.4.5 Lemma. For all r � 0 there is a constant Cr > 0 such that

sup
|q|1

keq·sqkW r,1  Cr.

Proof. Set f(x) = e
x, N(X) = X

�1, and g(x) = (ex + e
�x)/2, so

@
r

x
[exs1(x)] = @

r

x
[f(x)N(g(x))]

=
rX

k=0

✓
r

k

◆
@
r�k

x
[f ]@k

X
[N(g)]

=
rX

k=0

✓
r

k

◆
@
r�k

x
[f ]

kX

j=1

@
j

X
[N ](g)

X

�2⌃k
j

C�

jY

`=1

@
�j
x
[g]

=
rX

k=0

✓
r

k

◆
e
x

kX

j=1

(�1)jj!

✓
e
x + e

�x

2

◆�(j+1) X

�2⌃k
j

C�

jY

`=1

e
x + (�1)�je

�x

2
.

The kth term of this sum is bounded by

Cr

e
x

ex + e�x
 C2. ⌅
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D.5. The Friesecke-Pego operator. Our goal in this section is to prove — from

scratch — that the operator

Af := f +
2(� + {3)

{2({ + 1)
$

0[�f ]

| {z }
�K[�f ]

, $
0 = �c

2
{(1� ↵{@

2
X
)�1

,

is invertible on E
r

q
=
�
f 2 H

r

q

�� f is even
 
. This operator arose in (4.2.2) when we

constructed the nanopteron fixed point equations from Beale’s ansatz. Our method

follows exactly the proof in [FP99] for a differently scaled version of A.

To see that A maps E
r to E

r for arbitrary r � 1, fix f 2 E
r. Then �f 2 E

r

since � 2 W
r,1 is even, so $0[�f ] 2 E

r since $0 “smooths by two” and has an even

symbol. Hence K[�f ] 2 E
r and so also Af 2 E

r.

We will control the kernel of A with the following lemma.

D.5.1 Lemma. Let � > 0 and & 2 C0(R). Then the second-order differential equation

 
00(t) + �(&(t)� 1) (t) = 0, t 2 [0,1) (D.5.1)

does not have two linearly independent bounded solutions.

Proof. Suppose instead that (D.5.1) has two bounded, linearly independent solutions

f1 and f2. Since the coefficients of (D.5.1) are continuous, there exist scalars ↵1,↵2

such that f := ↵1f1 + ↵2f2 solves
(
f
00(t) + �(&(t)� 1)f(t) = 0, t 2 [0,1)

f(t0) = f
0(t0) = 1,

(D.5.2)

where by the hypothesis on &, we have chosen t0 � 0 such that if t � t0, then

|&(t)| < 1/2.

Let

S ={t > t0 | t0 < s < t =) f(s) > 0} .

Since f(t0) = 1, by the continuity of f the set S is nonempty, and so T := sup(S) 2

(t0,1]. We first show that (t0, T ) ✓ S and then that T = 1.

For the first claim, let t 2 (t0, T ). Then there must exist t1 2 S such that t < t1,



D. Fourier Multipliers 115

as otherwise T  t. So, t 2 (t0, t1), where f(s) > 0 for all s 2 (t0, t1). Hence f(s) > 0

for all s 2 (t0, t] ✓ (t0, t1), and so t 2 S. In particular, note that f(t) > 0 for all

t 2 (t0, T ).

For the second claim, let t 2 (t0, T ) and compute

f
00(t) = �(1� &(t))f(t) � �f(t)� �

f(t)

2
= �

f(t)

2
> 0.

Hence f
0 is increasing on (t0,1), and so, using the initial conditions of (D.5.2)

f(t) = f(t0) +

Z
t

t0

f
0(s) ds � f(t0) + f

0(t0)(t� t0) = 1 + t� t0. (D.5.3)

Then

f(T ) = lim
t!T�

f(t) � lim
t!T�

1 + t� t0 = 1 + T � t0 > 0.

By continuity, there is � > 0 such that f(t) > 0 for t 2 [T, T + �). Hence T + � 2 S,

which is a contradiction unless T = 1.

So, we have S = (t0,1), and therefore f(t) > 0 for all t 2 (t0,1). But then

(D.5.3) holds for all t > t0, and so f is unbounded, a contradiction. ⌅

Now suppose Af = 0, f 2 H
r. That is,

f � 2(� + {3)

{2({ + 1)
c
2
{(1� ↵{@

2
X
)�1[�f ] = 0. (D.5.4)

It is straightforward to rearrange this to

f
00 +

1

↵{

✓
2(� + {3)

{2({ + 1)
c
2
{� � 1

◆
f = 0, (D.5.5)

and then Lemma (D.5.1) applies to show that (D.5.5) has at most one nontrivial

bounded solution. Since (D.5.4) and (D.5.5) are equivalent, the dimension of the

kernel of A (as an operator from H
r to H

r) is at most one. Now we show the

dimension is precisely one.

We know from (2.5.6) that � solves the KdV-type equation

� � 1

2
K[�2] = � � c

2
{

� + {3

{2(1 + {)(1� ↵{@
2
X
)�1[�] = 0.

Then since derivatives commute with Fourier multipliers,
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A�0 = �
0 � 2(� + {3)

{2({ + 1)
$

0[��0]

= �
0 � � + {3

{2({ + 1)
c
2
{(1� ↵{@

2
X
)�1[2��0]

= @X [�]�
� + {3

{2({ + 1)
c
2
{(1� ↵{@

2
X
)�1(@X [�

2])

= @X


� � 1

2
K[�2]

�

= 0.

That is, ker(A) = span({�0}). Since � is even, �0 is odd, and so if we restrict A to

E
r, then ker(A) is trivial. Finally, since A = 1 � K[�·], where K[�·] is compact by

Proposition C.3.17, the Fredholm alternative guarantees that A
��
Er is also surjective,

hence A
��
Er is invertible.

D.5.2 Proposition. There exists qFP > 0 such that for each integer r � 1 and each

q 2 [0, qFP) the operator A maps E
r

q
bijectively onto E

r

q
and

sup
0q<qFP

n
kAkB(Er

q )
,
��A�1

��
B(Er

q )

o
< Cr < 1. (D.5.6)

Proof. We proved the case q = 0 above. Recall that the symbol of $0 is

e$0(k) := f$0(k) =
1

1 + ↵{k2
, (D.5.7)

where ↵{ > 0. The function e$0 has no singularities in the strip ⌃p
↵{ , and clearly the

other hypotheses of Beale’s lemma (Lemma D.4.1) apply to it. Hence $0 maps H
r

q

into H
r

q
for q 2 (0,

p
↵{), and since e$0 is even, $0 in fact maps E

r

q
into E

r

q
. Next, �

is even and � 2 H
r

q
for all r � 0 and all q 2 (0, 1/2

p
↵{) by definition of � in (2.5.8)

and Lemma C.3.6. Then Lemma C.3.19 implies that multiplication by � maps Er

q
to

E
r

q
, so the composition $

0(�·) also maps E
r

q
into E

r

q
. Hence K 2 B(Er

q
) and so also
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A 2 B(Er

q
).

It remains for us to show that A is bijective from E
r

q
to E

r

q
. We provide two

proofs.

(i) One easy way to do this is to note first that A has trivial kernel on E
r

q
: A has

trivial kernel on E
r, and E

r

q
✓ E

r. Next, we note that Corollary C.3.17 implies that

K is compact from E
r

q
to E

r

q
. The Fredholm alternative applies (once again) to show

that A is invertible on E
r

q
. This approach does not, however, provide the uniform

estimates in (D.5.6).

(ii) A longer proof illustrates the method of operator conjugation. Let

Aqf := cqA(sqf) = f �Kq[�f ], Kq[g] := cqK[sqg],

with cq = cosh(q·) and sq = sech(q·). First we show that Aq 2 B(Er). Beale’s

lemma tells us that if f 2 E
r, then sqf 2 E

r

q
, so K[�sqf ] 2 E

r

q
as well, and then

cqK[�sqf ] 2 E
r. So, Aq maps E

r to E
r. For its boundedness, we only need to

estimate

kcqK[�sqf ]kEr = kK[�sqf ]kEr
q
 kKkB(Er

q )
k�sqfkEr

q
 Cr,q kKkB(Er

q )
k�k

W r,1 kfk
Er .

Next, we show that A is invertible on E
r

q
if and only if Aq is invertible on E

r.

Given f , g 2 E
r

q
, we can write f = sq

ef and g = sqeg for some ef , eg 2 E
r. Then

Af = Ag () cqA(sq ef) = cqA(sqeg) () Aq
ef = Aqeg. (D.5.8)

and

Af = g () A(sq ef) = sqeg () cqA(sq ef) = eg () Aq
ef = eg (D.5.9)

Since f and g (equivalently ef and eg) are arbitrary, the problems of injectivity (D.5.8)

and surjectivity (D.5.9) for A on E
r

q
are equivalent to establishing injectivity and

surjectivity of Aq on E
r.

Now, we compute
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1

1 + (k + iq)2
� 1

1 + k2
=

q
2(1� 3k2 � q

2)

(k2 + 1)((k2 � q2 + 1)2 + (2kq)2| {z }
Rq(k)

�i
2kq

(k2 � q2 + 1)2 + (2kq)2| {z }
Iq(k)

.

If we restrict q 2 (0, 1/2), then
✓
3

4
+ k

2

◆2

 (k2 � q
2 + 1)2 + (2kq)2,

in which case

|Rq(k)|  |q| |1� 3k2|
(3/4 + k2)2

+
|q|
4

1

(3/4 + k2)2
 4|q|

and

|Iq(k)|  |q|
����

2k

(3/4 + k2)2

����  2|q|.

Rescaling Rq(k) and Iq(k) to Rq(↵{k) and Iq(↵{k), we see that e$0(k) from (D.5.7)

satisfies the hypothesis (D.4.1) for operator conjugation on the Fourier multiplier $0
.

It follows that

kAq �AkB(Er) = kKq[�·]�K[�·]kB(Er)  Cr k�kW r,1 kKq �KkB(Er) ! 0 (D.5.10)

as q ! 0. The constant Cr > 0, which is independent of q, comes from Proposition

C.3.12 (vii). Since A is invertible, this shows that for q sufficiently small Aq is

invertible as well.

For the estimates in (D.5.6), we take f 2 E
r

q
, so cqf 2 E

r, and compute

kAfk
Er

q
= kcqAfk

Er

= kcqA(sqcqf)kEr

= kAq(cqf)kEr

 kAqkB(Er) kcqfkEr
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= kAqkB(Er) kfkEr
q
.

Hence

kAkB(Er
q )
 kAqkB(Er)  kAq �AkB(Er) + kAkB(Er) ,

and so taking q sufficiently close to 0, we have the uniform bound on kAkB(Er
q )

.

Replacing A and Aq with A�1 and A�1
q

in the calculations above and using the

convergence A�1
q

! A�1 in B(Er), which follows from (D.5.10), we have the estimates

on
��A�1

��
B(Er

q )
. ⌅
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Appendix E. Composition Operators

In this appendix we prove a number of estimates that directly facilitate our treatment

of the higher-order terms in the spring forces. All of these estimates treat composition

operators: given a map N and functions f and f̀ , we need to control the norms of

N(f) and N(f)�N(f̀) in a suitable function space. If our functions were always in

H
r, this would be a well-understood problem [BM01]; to bound N(f), we could rely

on, for example, the proof of estimate (2.4) in [Mos66] or Proposition 3.9 in [Tay11],

both of which state, roughly, that if N 2 C1(R) and N(0) = 0, then

kN(f)k
Hr  C(1 + kfk

Hr),

where C depends on kfk
L1 .

However, our functions will always be the superposition of a function f 2 H
r

q
with

a function ' 2 W
r,1. Since @r

X
[f ] need not be bounded and ' need not be square-

integrable, the sum f + ' belongs to neither of the spaces H
r

q
nor W

r,1. Moreover,

the W
r,1-norm of ' will depend delicately on the small parameter ✏, and we want

careful, uniform estimates in ✏. So, we develop our composition operator estimates

ab ovo.

E.1. A mapping estimate.

E.1.1 Proposition. Let r 2 N, N 2 Cr(R), and C?, q > 0. There exists an increas-

ing map M : (0,1) ! (0,1) with the following property. Let a, ✏ 2 (0, 1). Suppose

f , g 2 H
r

q
and ' 2 W

r,1 with
��@j

X
[']
��
L1  C?✏

�j for j = 0, . . . , r. Then

kfN(✏(g + a'))k
r,q

 M[kgk
r,q
](1 + |a|✏1�r) kfk

r,q
. (E.1.1)

The function M depends on N , r, q, and C?, but not on f , ✏, or '.

E.1.2 Remark. Each of the estimates that we prove in this appendix will include a

nonnegative factor M that depends, by its (convoluted) construction, on the norms
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of one or more functions involved in the estimate. So, we can think of M as a map

from Rn

+ to R+ for some n � 1, where R+ = [0,1). It turns out that M will always

have the property that

sup
v2Rn

+
|v|r

M[v] < 1 (E.1.2)

for any r > 0, where |v| =
nX

k=1

vk. Then we may define a new map M? : Rn

+ ! R+

by

M?[u] := sup
v2Rn

+
|v||u|

M[v].

This map M? enjoys three properties:

(i) M? is “radially increasing” in the sense that if |u|  |ù|, then M?[u]  M?[ù].

In particular, if n = 1, then M is increasing in the usual sense.

(ii) As a consequence of the first property, M? is locally bounded in the sense that

sup
u2Rn

+|u|r

M?[u] < 1

for any r > 0.

(iii) It is obvious from the definition of M? that M[u]  M?[u].

The first two properties of M? above will be very useful for the nanopteron estimates.

The third property allows us to replace the function M that we construct in a given

proof by its relative M?, and we will do so without further comment. So, for example,

when we prove Proposition E.1.1, our proof will only demonstrate the property (E.1.2).

E.1.3 Remark. In the proof of Proposition E.1.1 and the following proofs we will

have a great many constants that depend more or less innocuously on different pa-

rameters. A constant Cr depends only on r; a constant Cr,q depends only on r and

q; and a constant C?,r,q depends only on C?, r, and q. The value of these constants

may change from line to line, but their dependence remains rests firmly and solely on
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their subscripts.

Now we are ready to prove Proposition E.1.1.

Proof. We will construct three functions M0, M1, and M2 in this proof as we

progress toward the ultimate M that satisfies (E.1.1). To simplify notation, we will

write M0[g] = M[kgk
r,q
], etc. Since

kfN(✏(g + '))k
r,q

= kcosh(q·)fN(✏(g + a'))k
L2 + kcosh(q·)@r

X
[fN(✏(g + a'))]k

L2 .

(E.1.3)

it suffices to verify that each L
2-norm in the sum above has an upper bound of the

form given on the right side of (E.1.1).

First, let

I(g) =
n
Y 2 R

��� |Y |  Cr,q kgkr,q + C?

o
.

Since

✏|g(X) + a'(X)|  kgk
L1 + |a| k'k

L1

 Cr,q kgkr,q + C?✏
0

 Cr,q kgkr,q + C?,

we have
��@k

X
[N ](✏(g + a'))

��
L1  kNk

W r,1(I(g)) .

Then the first term in (E.1.3) is easy to handle:

kcosh(q·)fN(✏(g + a'))k
L2  kN(✏(g + a'))k

L1 kcosh(q·)fk
L2

 kNk
W r,1(I(g)) kcosh(q·)fkr,q .

Next, Leibniz’s rule reduces the study of the second term in (E.1.3) to estimating

terms of the form
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kcosh(q·)@m
X
[f ]@n

X
[N(✏(g + a'))]k

L2 ,

where 0  m,n  r and m + n  r. It turns out that estimating the m = 0, n = r

term is both the most complicated and the most instructive term, so we do it first.

That is, we estimate

kcosh(q·)f@r
X
[N(✏(g + a'))]k

L2 .

We use Faá di Bruno’s rule to expand

@
r

X
[N(✏(g + a'))] =

rX

k=1

@
k

X
[N ](✏(g + a'))

X

�2⌃r
k

C�

kY

j=1

@
�j

X
[✏(g + a')].

A first pass then reduces our estimate to

kcosh(q·)f@r
X
[N(✏(g + a'))]k

L2

 Cr kNk
W r,1(I(g))

rX

k=1

X

�2⌃r
k

�����cosh(q·)f
kY

j=1

✏@
�j

X
[g + a']

�����
L2

. (E.1.4)

When k = 1, we have ⌃r

1 = {r} by Remark A.2.1, and

kcosh(q·)f✏@r
X
[g + a']k

L2  kcosh(q·)fk
L1 k@r

X
[g]k

L2 + kcosh(q·)fk
L2 ✏|a| k@rX [']kL1

 Cr,q kfkr,q kgkr,q + kfk
r,q

|a|C?✏
1�r

 M0[g]
�
1 + |a|✏1�r

�
kfk

r,q
,

where we have set

M0[g] = max
n
Cr,q kgkr,q , C?

o
.

When 2  k  r, all of the factors in the product in (E.1.4) will be L
1 because

the order of each derivative @�j

X
[g] will be at most r � 1. Then
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�����

kY

j=1

✏@
�j

X
[g + a']

�����
L1


kY

j=1

⇣
Cr,q kgkr,q + ✏|a|

��@�j

X
[']
��
L1

⌘

 C?,r,q

kY

j=1

⇣
kgk

r,q
+ |a|✏1��j

⌘
.

(E.1.5)

We use Lemma E.6.1 to write this product as

kY

j=1

⇣
kgk

r,q
+ |a|✏1��j

⌘
=

X

↵,�2{0,1}k
↵j+�j=1 8j

kY

j=1

kgk↵j

r,q

�
|a|✏1��j

��j

= kgkk
r,q

+
X

↵,�2{0,1}k
↵j+�j=1 8j

� 6=0

kY

j=1

kgk↵j

r,q

�
|a|✏1��j

��j
.

(E.1.6)

We focus on the second term. First, because 0 
P

k

j=1↵j  k, we have
kY

j=1

kgk↵j

r,q
= kgk

Pk
j=1 ↵j

r,q


kX

j=0

kgkj
r,q

=: M1[g]. (E.1.7)

Next, because |a| < 1 and ✏ < 1, we have
kY

j=1

�
|a|✏1��j

��j  |a|✏
kY

j=1

✏
��j�j = |a|✏✏�

Pk
j=1 �j�j .

Since 0  �j�j  �j, this in turn becomes

|a|✏✏�
Pk

j=1 �j�j  |a|✏✏�
Pk

j=1 �j = |a|✏✏|�| = |a|✏1�r
. (E.1.8)

Here we have used the stipulation |�| = r from Remark A.2.1.

All together, (E.1.7) and (E.1.8) imply

X

↵,�2{0,1}k
↵j+�j=1 8j

� 6=0

kY

j=1

kgk↵j

r,q

�
|a|✏1��j

��j  M1[g]
X

↵,�2{0,1}k
↵j+�j=1 8j

� 6=0

|a|✏1�r  r
2M1[g]|a|✏1�r

,

and so (E.1.5) and (E.1.6) imply
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�����

kY

j=1

✏@
�j

X
[g + a']

�����
L1

 M1[g] + r
2M1[g]|a|✏1�r  M2[g]

�
1 + |a|✏1�r

�
, (E.1.9)

where M2[g] = r
2M1[g]. Returning to (E.1.4), we find

kcosh(q·)f@r
X
[N(✏(g + a'))]k

L2  Cr kNk
W r,1(I(g)) M0[g]

�
1 + |a|✏1�r

�
kfk

r,q

+ Cr kNk
W r,1(I(g))

rX

k=2

X

�2⌃r
k

kcosh(q·)fk
L2 M2[g]

�
1 + |a|✏1�r

�

 Cr kNk
W r,1(I(g)) M2[g]

| {z }
M[g]

�
1 + |a|✏1�r

�
kfk

r,q
.

This estimate has the same form as the right side of (E.1.1), so we have completed

our work on kcosh(q·)f@r
X
[N(✏(g + a'))]k

L2 . To treat the other terms

kcosh(q·)@m
X
[f ]@n

X
[N(✏(g + a'))]k

L2

where 0  m,n  r,m + n  r, and (m,n) 6= (0, r), note that these strictures on m

and n imply n  r�1. So, when we expand @n
X
[N(✏(g+a'))] with Faà di Bruno’s rule,

all derivatives @j
X
[g + '] will be L

1, while of course cosh(q·)@m
X
[f ] will be L

2. Then

we proceed exactly as we did above in the long treatment of the case 2  k  r. ⌅

E.2. A Lipschitz estimate in H
r

q
.

E.2.1 Proposition. Let r 2 N, N 2 Cr+1(R), and C?, q > 0. There exists a radially

increasing map M : R2
+ ! R+ with the following property. Let a, ✏ 2 (0, 1). Suppose

f , f̀ 2 H
r

q
and ' 2 W

r,1 with
��@j

X
[']
��
L1  C?✏

�j for j = 0, . . . , r. Then

��N(✏(f+a'))�N(✏(f̀+a'))
��
r,q

 M[kfk
r,q

,
��f̀
��
r,q
]
�
1 + |a|✏1�r

� ��f�f̀
��
r,q
. (E.2.1)

The function M depends on N , r, q, and C? but not on f , f̀ , ✏, or '.

Proof. Following our notation in the proof of Proposition E.1.1, we will build M out
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of several functions M0, . . . ,M5, and suppress norms within these functions, writing,

for example,

M0[kfkr,q ,
��f̀
��
r,q
] = M0[f, f̀ ] and M1[kfkr,q] = M1[f ].

We have

N(✏(f + a'))�N(✏(f̀ + a')) = cosh(q·)
⇣
N(✏(f + a'))�N(✏(f̀ + a'))

⌘

| {z }
�1

+ cosh(q·)@r
X

h
N(✏(f + a'))�N(✏(f̀ + a'))

i

| {z }
�2

.

Since

|✏(f(X) + a'(X))|  kfk
L1 + k'k

L1  Cr,q kfkr,q + C?,

for any 0  k  r we have
��@k

X
[N ](✏(f + a'))

��
L1  kNk

W r+1,1(I(f,f̀)) =: M0[f, f̀ ], (E.2.2)

where

I(f, f̀) =
n
Y 2 R

��� |Y |  Cr,q kfkr,q + Cr,q

��f̀
��
r,q

+ 2C?

o
.

If we replace f with f̀ in (E.2.2), the same estimate still holds. We will use this

estimate frequently throughout the rest of the proof, starting with a bound on �2
1:

k�1k2L2 =

Z 1

�1
cosh2(qX)

���N(✏(f(X) + a'(X)))�N(✏(f̀(X) + a'(X)))
���
2

dX

 k@X [N ]k2
L1(I(f,f̀))

Z 1

�1
cosh2(qX)|f(X)� f̀(X)|2 dX

 kNk2
W r+1,1(I(f,f̀))

��f � f̀
��2
r,q
.

(E.2.3)

So, k�1kL2 has the bound

k�1kL2  M0[f, f̀ ]
��f � f̀

��
r,q
. (E.2.4)
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To estimate �2, we first rewrite

�2 =
rX

k=1

@
k

X
[N ](✏(f + a'))

X

�2⌃r
k

C�

kY

j=1

@
�j

X
[✏(f + a')]

�
rX

k=1

@
k

X
[N ](✏(f̀ + a'))

X

�2⌃r
k

C�

kY

j=1

@
�j

X
[✏(f̀ + a')]

=
rX

k=1

⇣
@
k

X
[N ](✏(f + a'))� @

k

X
[N ](✏(f̀ + a'))

⌘

| {z }
�3(k)

X

�2⌃r
k

kY

j=1

@
�j

X
[✏(f + a')]

| {z }
⇧(�)

+
rX

k=1

@
k

X
[N ](✏(f̀ + a'))

X

�2⌃r
k

 
kY

j=1

@
�j

X
[✏(f + a')]�

kY

j=1

@
�j

X
[✏(f̀ + a')]

!

| {z }
�4(�)

.

So, now we need to estimate

k�2kL2  Cr

rX

k=1

X

�2⌃r
k

kcosh(q·)�3(k)⇧(�)kL2| {z }
T1(�, k)

+
��cosh(q·)@k

X
[N ](✏(f + a'))�4(�)

��
L2| {z }

T2(�, k)

.

(E.2.5)

When k = 1, � = {r}, and so

T1({r}, 1) =
�� cosh(q·) (@X [N ](✏(f + a'))� @X [N ](✏(f + a'))) @r

X
[✏(f + a')]

��
L2


�� (@X [N ](✏(f + a'))� @X [N ](✏(f + a'))) cosh(q·)@r

X
[f ]
��
L2

+
�� cosh(q·) (@X [N ](✏(f + a'))� @X [N ](✏(f + a'))) @r

X
[']
��
L2


��@X [N ](✏(f + a'))� @X [N ](✏(f + a'))

��
L1 kcosh(q·)@r

X
[f ]k

L2

+
�� cosh(q·) (@X [N ](✏(f + a'))� @X [N ](✏(f + a')))

��
L2 k@rX [']kL1
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��N
��
W r+1,1(I(f,f̀))

��f � f̀
��
r,q

kfk
r,q

+ kNk
W r+1,1(I(f,f̀))

��f � f̀
��
r,q
C?✏

�r

 M0[f, f̀ ](1 + |a|✏1�r)
��f � f̀

��
r,q
.

Similarly, T2({r}, 1) is bounded by

�� cosh(q·)@X [N ](✏(f + a'))�4(r)
��
L2

=
�� cosh(q·)@X [N ](✏(f + a')) (@r

X
[✏(f + a')]� @

r

X
[✏(f + a')])

��
L2


��@X [N ](✏(f + a'))

��
L1

�� cosh(q·)@X [f � f̀ ]
��
L2

 M0[f, f̀ ](1 + |a|✏1�r)
��f � f̀

��
r,q
.

Now let 2  k  r. Since all of the derivatives @�j

X
[f ] are at most order r�1 when

� 2 ⌃r

k
, they are L

1. So we estimate

T1(�, k) 
�� cosh(q·)

�
@
k

X
[N ](✏(f + a'))� @

k

X
[N ](✏(f + a'))

� ��
L2

⇥
kY

j=1

��@�j

X
[✏(f + a')]

��
L1

We bound the L
2 factor above using (E.2.2):

�� cosh(q·)
�
@
k

X
[N ](✏(f + a'))� @

k

X
[N ](✏(f + a'))

� ��
L2  M0[f, f̀ ]

��f � f̀
��
r,q
.

And we bound the product using exactly the same reasoning that led to the estimate

(E.1.9) in the proof of Proposition E.1.1. That is, we find
kY

j=1

��@�j

X
[✏(f + a')]

��
L1  M1[f ]

�
1 + |a|✏1�r

�
,

where M1 : R+ ! R+ is a continuous function that depends on r, q, and C?, but not

on a, ✏, ', or f . Thus

T1(�, k)  M0[f, f̀ ]M1[f ]
�
1 + |a|✏1�r

� ��f � f̀
��
r,q

(E.2.6)
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for 2  k  r and � 2 ⌃r

k
.

Next, a first glance at T2(�, k) shows

T2(�, k)  M0[f, f̀ ] k�4(�)kL2 .

We use Lemma E.6.2 to rewrite

�4(�) =
kY

j=1

@
�j

X
[✏(f + a')]�

kY

j=1

@
�j

X
[✏(f + a')]

=
kX

j=1

�
@
�j

X
[✏(f + a')]� @

�j

X
[✏(f + a')]

�
| {z }

�5(�j)

j�1Y

`=1

@
�`
X
[✏(f + a')]

| {z }
⇧j�1(�)

kY

`=j+1

@
�`
X
[✏(f + a')]

| {z }
⇧j+1(�)

.

(E.2.7)

We easily estimate

kcosh(q·)�5(�j)kL2  M0[f, f̀ ]
��f � f̀

��
r,q
.

The products ⇧j�1(�) and ⇧j+1(�) require a little more care. Since the derivatives

@
�j

X
[f ] and @j

X
[f̀ ] are still order at most r� 1, these products are L

1. More precisely,

we can carefully replicate the steps that led to the estimate (E.1.9) to find

k⇧j�1(�)kL1  M2[f ]
⇣
1 + |a|✏1�

Pj�1
`=1 �`

⌘

and
��⇧j+1(�)

��
L1  M3[f̀ ]

⇣
1 + |a|✏1�

Pk
`=j+1 �j

⌘
.

Multiplying these estimates and using, as always, the assumptions 0 < ✏ < 1 and

|a| < 1 and the relation r = |�| =
P

k

j=1�j, we find
��⇧j�1(�)⇧

j+1(�)
��
L1  M4[f, f̀ ]

�
1 + |a|✏1�r

�
. (E.2.8)

Then (E.2.7) and (E.2.8) together yield

T2(�, k)  rM0[f, f̀ ]
2M3[f, f̀ ]

�
1 + |a|✏1�r

� ��f � f̀
��
r,q
. (E.2.9)

Now that we have bounded both T1(�, k) and T2(�k, k) for k = 2, . . . , r and

� 2 ⌃r

k
, we can use (E.2.6) and (E.2.9) to our estimate (E.2.5) for �2 and conclude
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k�2kL2  M5[f, f̀ ]
�
1 + |a|✏1�r

� ��f � f̀
��
r,q
.

for some continuous map M5 : R2
+ ! R+ that is independent of ✏, |a|, and ' (but

dependent on r and q). This, together with (E.2.4), gives (E.2.1). ⌅

By taking ' = 0 and ✏ = a = 1/2 in Proposition E.2.1, we obtain the following

simpler estimate.

E.2.2 Corollary. Let N 2 Cr+1(R). There exists a radially increasing map M : R4
+ !

R+ such that
��N(f)�N(f̀)

��
r,q

 M[kfk
r,q

,
��f̀
��
r,q
, k'k

W r,1 , k'̀k
W r,1 ]

��f � f̀
��
r,q

for all f, f̀ 2 H
r

q
.

E.3. A Lipschitz estimate in H
1
q
.

E.3.1 Proposition. Let N 2 C1(R). There exists a radially increasing map R4
+ !

R+ such that

��(f � f̀)(g + ')N(h+ '̀)
��
1,q

 M[kgk1,q , khk1,q , k'kW 1,1 , k'̀k
W 1,1 ]

��f � f̀
��
1,q

for all f , f̀ , g, h 2 H
1
q

and ', '̀ 2 W
1,1.

Proof. This is a straightforward calculation that requires only one pass with the

chain rule, so we omit the details. ⌅

E.4. Lipschitz estimates in W
1,1. The estimates in this section are much simpler

than the preceding H
r

q
mapping and Lipschitz estimates because we work only with

r = 1 and so do not need to keep careful track of powers of ✏. However, we do need a

“decay borrowing” product estimate, which we take from Lemma A.2 in [FW18]: for

r � 0 and q > 0, we have

kfgk
r,q/2  Cr kfkr,q

���sech
⇣
q

2
·
⌘
g

���
W r,1

. (E.4.1)
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E.4.1 Proposition. Let N 2 C2(R). There exists a radially increasing map

M : R3
+ ! R+ such that

kf · (N(g + ')�N(g + '̀))k1,q/2  M[g,', '̀]
���sech

⇣
q

2
·
⌘
('� '̀)

���
W 1,1

kfk1,q
(E.4.2)

for all f , g 2 H
1
q

and ', '̀ 2 W
1,1.

Proof. We have

kf · (N(g + ')�N(g + '̀))k1,q/2 =
���cosh

⇣
q

2
·
⌘
f · (N(g + ')�N(g + '̀))

���
L2| {z }

�1

+
���cosh

⇣
q

2
·
⌘
@X [f · (N(g + ')�N(g + '̀))]

���
L2| {z }

�2

.

The first estimate for �2
1 is similar to that for �2

1 in the proof of Proposition E.2.1,

i.e., a direct calculation with the integral yields

�1  kNk
W 2,1(I(g,','̀))

���cosh
⇣
q

2
·
⌘
f('� '̀)

���
L2

.

Next, we use the decay-borrowing estimate (E.4.1):

�1  kNk
W 2,1(I(g,','̀)) kf('� '̀)k0,q/2

 C kNk
W 2,1(I(g,','̀)) kfk0,q

���sech
⇣���q �

q

2

��� ·
⌘
('� '̀)

���
W 0,1

 C kNk
W 2,1(I(g,','̀)) kfk1,q

���sech
⇣
q

2
·
⌘
('� '̀)

���
W 1,1

.

This is exactly the kind of estimate we want for �1, and so we move on to �2. Since

we only ever take one derivative in this proof, we write N
0 = @X [N ], etc. We have

�2 
���cosh

⇣
q

2
·
⌘
f
0 · (N(g + ')�N(g + '̀))

���
L2| {z }

�3
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+
���cosh

⇣
q

2
·
⌘
f · (N 0(g + ')(g0 + '

0)�N
0(g + '̀)(g0 + '̀

0))
���
L2| {z }

�4

.

We get an estimate on �3 of the form in (E.4.2) by working directly with the integral,

and we have

�4 
���cosh

⇣
q

2
·
⌘
fN

0(g + ')('0 � '̀
0)
���
L2| {z }

�5

+
���cosh

⇣
q

2
·
⌘
f · (N 0(g + ')�N

0(g + '̀))g0
���
L2| {z }

�6

+
���cosh

⇣
q

2
·
⌘
f · (N 0(g + ')�N

0(g + '̀))'̀0
���
L2| {z }

�7

.

For �5, we have

�5 = kfN 0(g + ')('0 � '̀
0)k0,q/2

 kN 0(g + ')k
L1 kf('0 � '̀

0)k0,q/2

 C kNk
W 2,1(I(g,','̀)) kfk0,q

���sech
⇣
q

2
·
⌘
('0 � '̀

0)
���
W 1,1

.

For �6, we have

�6  kcosh(q·)fk
L1 k(N 0(g + ')�N

0(g + '̀))g0k
L2

= kcosh(q·)fk
L1 k(N 0(g + ')�N

0(g + '̀))g0k0,0

 Cq kfk1,q kg
0k0,q/2

���sech
⇣
q

2
·
⌘
(N 0(g + ')�N

0(g + '̀))
���
W 0,1

 Cq kfk1,q kgk1,q kNk
W 2,1(I(g,','̀))

���sech
⇣
q

2
·
⌘
('� '̀)

���
W 1,1

.
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For the last Lipschitz estimate on N
0, we just work pointwise to get the estimate in

W
0,1 = L

1.

Finally, for �7, we use the same techniques as above to produce

�7  k'̀0k
L1 kf(N 0(g + ')�N

0(g + '̀))k0,q/2

 k'̀k
W 1,1 kfk0,q

���sech
⇣
q

2
·
⌘
(N 0(g + ')�N

0(g + '̀))
���
W 0,1

 k'̀k
W 1,1 kfk1,q kNk

W 2,1(I(g,','̀))

���sech
⇣
q

2
·
⌘
('� '̀)

���
W 1,1

.

Combining the estimates on �1 through �7, we have (E.4.2). ⌅

E.4.2 Proposition. Let N 2 C3(R). There exists a radially increasing map

M : R3
+ ! R+ such that

k(N(f + ')�N('))� (N(f + '̀)�N('̀))k1,q/2
 M[f,', '̀]

���sech
⇣
q

2
·
⌘
('� '̀)

���
W 1,1

kfk1,q .

Proof. We use the fundamental theorem of calculus twice to rewrite

(N(f+')�N('))�(N(f+'̀)�N('̀)) = f('�'̀)
Z 1

0

Z 1

0

N
00(tf+'̀+s('�'̀)) ds dt.

The necessary estimates are then similar to those in Proposition E.4.1. Of these

estimates, arguably the most complicated involves controlling the L
2-norm of

cosh
⇣
q

2
·
⌘
f('� '̀)@X

Z 1

0

Z 1

0

N
00(tf + '̀+ s('� '̀)) ds dt

�
. (E.4.3)

After differentiating under the integral in (E.4.3), the terms that we need to bound

are by now routine; we remove a number of factors in the L
1-norm and then use

decay borrowing on the rest. For example, one of these terms is
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�hard = cosh
⇣
q

2
·
⌘
f('� '̀)('0 � '̀

0)

Z 1

0

Z 1

0

|N 000(tf + '̀+ s('� '̀))| ds dt

| {z }
I

,

and we have

k�hardkL2  k'� '̀k
L1 kIk

L1

���cosh
⇣
q

2
·
⌘
f('0 � '̀

0)
���
L2

 (k'k
L1 + k'̀k

L1) kIk
L1 kfk1,q

���sech
⇣
q

2
·
⌘
('0 � '̀

0)
���
W 0,1

.

We omit the other details, as they are by now routine. ⌅

E.5. Estimates in H
r

per. All of our estimates so far have involved the space H
r

q
.

That is, we have proved estimates for functions that are square-integrable on all of R.

However, none of our proofs relied in an essential way on the domain of integration

being R, and so we can replace R with [0, 2⇡] and find that our proofs are still valid

for the space H
r

per. Specifically, by taking q = a = 0, ' = 0, and ✏ = 1/2, we can

rerun the proofs of Propositions E.1.1 and E.2.1 in H
r

per to obtain the following.

E.5.1 Proposition. Let r � 1 and N 2 Cr([0, 2⇡]). There exists an increasing map

M : R+ ! R+ such that

kN(f)k
Hr

per
 M[kfk

Hr
per
]

for all f 2 H
r

per.

E.5.2 Proposition. Let r � 1 and N 2 Cr+1([0, 2⇡]). There exists a radially in-

creasing map M : R2
+ ! R+ such that

��N(f)�N(f̀)
��
Hr

per
 M[kfk

Hr
per

,
��f̀
��
Hr

per
]
��f � f̀

��
Hr

per
.

E.6. Auxiliary identities for sums and products.

E.6.1 Lemma. Let {Aj}rj=1, {Bj}rj=1 ✓ R. Then
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rY

j=1

(Aj +Bj) =
X

↵,�2{0,1}r
↵j+�j=1, j=1,...,r

rY

i=1

A
↵i
i
B

�i
i

Proof. We induct on r. If r = 1, then
X

↵1,�12{0,1}
↵1+�1=1

A
↵1
1 B

↵1
1 = A

1
1B

0
1 + A

0
1B

1
1 = A1 +B1.

Suppose the formula holds for some r � 1. Then

r+1Y

j=1

(Aj +Bj) = (Ar+1 +Br+1)
rY

j=1

(Aj +Bj)
r

= (Ar+1 +Br+1)
X

↵,�2{0,1}r
↵j+�j=1, j=1,...,r

rY

i=1

A
↵i
i
B

�i
i

=
X

↵,�2{0,1}r
↵j+�j=1, j=1,...,r

rY

i=1

A
↵i
i
B

�i
i
Ar+1 +

X

↵,�2{0,1}r
↵j+�j=1, j=1,...,r

rY

i=1

A
↵i
i
B

�i
i
Br+1

=
X

↵,�2{0,1}r+1

↵j+�j=1, j=1,...,r+1

r+1Y

i=1

A
↵i
i
B

�i
i
. ⌅

E.6.2 Lemma. Let z1, . . . , zn, z̀1, . . . , z̀n 2 C. Then
nY

k=1

zk �
nY

k=1

z̀k =
nX

k=1

(zk � z̀k)
k�1Y

j=1

z̀j

nY

j=k+1

zj.

Proof. When n = 1 it is obvious, so assume it holds for some n and consider the

n+ 1 case:

n+1Y

k=1

zk �
n+1Y

k=1

z̀k = zn+1

nY

k=1

zk � z̀n+1

nY

k=1

z̀k

= zn+1

nY

k=1

zk � zn+1

nY

k=1

z̀k + zn+1

nY

k=1

z̀k � z̀k+1

nY

k=1

z̀k
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= zn+1

 
nY

k=1

zk �
nY

k=1

z̀k

!
+ (zn+1 � z̀n+1)

nY

k=1

z̀k

= zn+1

nX

k=1

(zk � z̀k)

 
k�1Y

j=1

z̀j

! 
nY

j=k+1

zj

!
+ (zn+1 � z̀n+1)

nY

k=1

z̀k

=
nX

k=1

(zk � z̀k)

 
k�1Y

j=1

z̀j

! 
n+1Y

j=k+1

zj

!
+ (zn+1 � z̀n+1)

nY

k=1

z̀k

=
n+1X

k=1

(zk � z̀k)

 
k�1Y

j=1

z̀k

! 
n+1Y

j=k+1

zj

!
. ⌅
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Appendix F. Assorted Proofs

F.1. Proof of Theorem 1.4.1. The traveling wave ansatz (2.1.1) with wave speed

c = c✏ =
p

c2{ + ✏2 gave

rj(t) =

(
p1(j � c✏t), j is odd
p2(j � c✏t), j is even,

and the change of variables (2.2.10) and the long wave scaling (2.4.1) converted p =

(p1, p2) into

p(x) = (Jh)(x) = ✏
2(J✓(✏·))(x) = ✏

2(J ✏✓)(✏x).

With ✓ = � + a✏'
a✏
✏
+ ⌘

✏
from Beale’s ansatz (4.1.1) and Theorem 4.3.2, we find

p(x) = ✏
2(J ✏�)(✏x) + ✏

2
a✏(J

✏'a✏
✏
)(✏x) + ✏

2(J ✏⌘
✏
)(✏x).

We now want to isolate what will be the lowest order term in ✏. With J
0 defined

in (2.5.3), we have

p(x) = ✏
2(J0�)(✏x) + ✏

2
a✏(J

✏'a✏
✏
)(✏x) + ✏

2
�
(J ✏⌘

✏
)(✏x) + ((J ✏ � J

0)�)(✏x)
�
,

where

✏
2 ka✏(J ✏'a✏

✏
)(✏·)k

W r,1  ✏
2(Cr✏

r)✏r kJ ✏'a✏
✏
k
W r,1  Cr✏

r+2 (F.1.1)

and

✏
2
��J ✏⌘

✏
+ (J ✏ � J

0)�
��
r,q?

 Cr✏
3
. (F.1.2)

by the estimates in Theorem 4.3.2 and (G.2.7). We abbreviate

✓
p
✏

1(x)
p
✏

2(x)

◆
:= ✏

2
a✏(J

✏'a✏
✏
)(✏x) and

✓
v
✏

1(x)
v
✏

2(x)

◆
:= ✏

2
�
(J ✏⌘

✏
)(x) + ((J ✏ � J

0)�)(x)
�
.

We get the estimates for pj and vj from (F.1.1) and (F.1.2). For the period of pj,

observe that by Theorem 3.1.1

(J ✏'a✏
✏
)(✏x) = (J ✏⌫(!a✏

✏
·))(✏x) + (J ✏ a✏

✏
(!a✏

✏
·))(✏x) = (J ✏⌫)(✏!a✏

✏
x) + (J ✏ a✏

✏
)(✏!a✏

✏
x),
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where ✏!a✏
✏

is uniformly bounded in ✏ and ⌫ and  a✏
✏

are 2⇡-periodic.

Finally,

J
0� =


1/{ 1

1 �1

�✓
�

0

◆
=

✓
�/{
�

◆
,

and so for j odd we have

rj(t) = ✏
2 1

{�(✏(j � c✏t)) + v
✏

1(✏(j � c✏t)) + p
✏

1(j � c✏t),

while for j even,

rj(t) = ✏
2
�(✏(j � c✏t)) + v

✏

2(✏(j � c✏t)) + p
✏

2(j � c✏t).

F.2. Consistency of Theorems 1.4.2 and 1.4.1 with [GMWZ14]. We stated

the consistency of Theorem 1.4.2 with the homogenization-based estimates of [GMWZ14]

as Remark 3.3 in [FW18]. Here we discuss in greater detail the spring dimer estimates

from Theorem 1.4.1.

Making the traveling wave ansatz

U±(X, T ) = V

✓
X ± T

2c{

◆

rearranging, and integrating, (1.5.2) in the case w = 1 becomes

↵{V
00 � V + c

2
{

� + {3

{2(1 + {)V
2 = 0,

which is precisely the ordinary differential equation (2.5.6) that we derived in our

study of the formal long wave limit at ✏ = 0. Hence V = � as defined in (2.5.8) and

U±(X, T ) = �

✓
X ± T

2c{

◆
,

and so in the approximation (1.5.1) for rj(t) we have

U�(✏(j � c{t), ✏
3
t) = �

✓
✏(j � c{t)�

✏
3
t

2c{

◆
= �

✓
✏

✓
j �

✓
c{ +

1

2c{
✏
2

◆
t

◆◆
.

Since

c✏ =
p
c2{ + ✏2 = c{ +

1

2c{
✏
2 +O(✏4)

and �0 2 L
1, we have (for |t|  T0)
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�

✓
✏

✓
j �

✓
c{ +

1

2c{
✏
2

◆
t

◆◆
= �(✏(j � c✏t)) +O(✏5).

Last, since � 2 L
1, we have

✏
2
U+(✏(j + c{t), ✏

3
t) = ✏

2
�

✓
✏(j + c{t) +

✏
3
t

2c{

◆
= O(✏2).

All together, (1.5.1) becomes

rj(t) =
✏
2

Kj

�(✏(j � c✏t)) +O(✏2),

which agrees with the expression for rj(t) in Theorem 1.4.1 and the subsequent esti-

mates.

F.3. Proof of Proposition 2.2.1.

(i) Analyticity of e% and e�± on a strip. Assume w > 1. We use the definition of

cos(z), z 2 C, to compute, for ⌧ 2 R,

Re((1 + w)2(1� {)2 + 4{((1� w)2 + 4w cos2(k + i⌧)))

= (1 + w)2({2 + 1) + 2(w � 1)2{ + 8{w cosh(2⌧) cos(2k)

� (1 + w)2({2 + 1) + 2(w � 1)2{ � 8{w cosh(2⌧) =: f(⌧).

We have

f(0) = (1 + w)2{2 + 2(w2 � 6w + 1){ + (1 + w)2 =: g({).

That is, g is quadratic in {, and the discriminant of g is

�64w(w � 1)2

This is negative for all w 6= 1, so g has constant sign. Since we are assuming w > 1

and the coefficient on {2 is (1 + w)2 > 0, we conclude that g is always positive.

Consequently, f(0) > 0, and so there is ⌧1 > 0 such that f(⌧) > 0 for all |⌧ |  ⌧1.

Thus Re((1+w)2(1�{)2 +4{((1�w)2 +4w cos2(k+ i⌧))) > 0 for all w > 1, { 6= 0,

k 2 R, and |⌧ |  ⌧1. Taking the branch cut of the square root to be the negative real

axis, we see that e%(z) is defined (and analytic) for all z 2 ⌃⌧1 . In particular, if z is
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real (i.e, z = k 2 R with ⌧ = 0 above), we have Re((1 +w)2(1�{)2 + 4{((1�w)2 +

4w cos2(k))) > 0, and so e%(k) is real-valued.

By symmetry in { and w, the same results hold if { > 1 and w > 0. We also see

that e�± are analytic on the same strip ⌃⌧1 .

Analyticity of ev± on a strip in the case w 6= 1. This depends on the zeros of f(z) =

we
iz + e

�iz on a strip. First, we compute

f(k + i⌧) = we
i(k+⌧) + e

�i(k+i⌧) = (we�⌧ + e
⌧ ) cos(k) + i(we�⌧ � e

⌧ ) sin(k).

Then f(k + i⌧) = 0 if and only if both

Re[f(k + i⌧)] = (we�⌧ + e
⌧ ) cos(k) = 0 (F.3.1)

and

Im[f(k + i⌧)] = (we�⌧ � e
⌧ ) sin(k). (F.3.2)

Since we
�⌧ + e

⌧
> 0 for all w > 0 and ⌧ 2 R, we have (F.3.1) if and only if

k =
2j + 1

2
⇡ =: kj (F.3.3)

for some j 2 Z. In that case, (F.3.2) holds if and only if we�⌧ � e
⌧ = 0. We can

compute directly that this equation has the unique solution

⌧w :=
1

2
ln(w).

Since w 6= 1, we have ⌧w 6= 0. We set ⌧2 := |⌧w|/2 and conclude that if z 2 ⌃⌧w , then

Im(f(z)) 6= 0, hence f(z) 6= 0. Consequently, we may divide by f to obtain ev± as

analytic.

Analyticity of ev± on a strip in the case w = 1. We are using the definitions of ev±

from (2.2.2). With kj from (F.3.3), we easily compute

2� e��(kj) = 2{ � e�+(kj) = 0.

Since the zeros of cos(·) are simple, we conclude that ev± have removable singularities

at k = kj. Consequently, they are analytic on the strip ⌃⌧1 from above.
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Analyticity of the eigenvector scalings e�± from (2.7.1). This follows from our proof

in part (ii) that weiz + e
�iz 6= 0 for z 2 ⌃⌧2 .

Boundedness of e%, e�±, ev±, and e�± on strips. Set q0 = min{⌧1, ⌧2}. By definition,

each of these functions has the form of a function f analytic on ⌃q0 with the property

that f(k + iy) = f(k + 2⇡ + iy) for all k, y 2 R. Consequently,

sup
z2⌃q0

|f(z)| = sup
|k|2⇡
|y|q0

|f(z)| < 1,

by the compactness of [0, 2⇡]⇥ [�q0, q0].

(ii) This is a direct computation.

(iii) These inequalities follow directly from the implication

cos2
⇣
⇡

2

⌘
= 0  cos2(k)  1 = cos2(0) =) e%

⇣
⇡

2

⌘
 e%(k)  e%(0).

(iv) This is a direct computation.

(v) We have

|e�0±(k)| =
����
e%0(k)
2

���� =
8{w| sin(k) cos(k)|

e%(k) . (F.3.4)

Proof of the inequality |e�0±(k)|  2{/(1 + {). This is equivalent to establishing

4w2 cos4(k) + 4w

✓
4{

(1 + {)2 � w

◆
cos2(k)

+
1

(1 + {)2
⇥
(1 + w)2(1� {)2 + 4{(1� w)2

⇤
� 0.

Taking x = cos2(k), we just need to show

f(x) := 4w2
x
2 + 4w

✓
4{

(1 + {)2 � w

◆
x

+
1

(1 + {)2
⇥
(1 + w)2(1� {)2 + 4{(1� w)2

⇤
� 0
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on [0, 1]. In fact, this quadratic turns out to be nonnegative on all of R. Its discrim-

inant is

�16w({ � 1)2

(1 + {)4
⇥
2(1 + {)2w + {2 + 6{ + 1

⇤

and so the discriminant is always nonpositive, as we require {, w > 0. Since the

coefficient on x
2 in f is 4w2

> 0, f is always nonnegative.

Proof of the inequality |e�0±(k)|  2w/(1+w). This follows from the previous inequality

by the symmetry of e�0±(k) in { and w.

Proof of the inequality e�0±(k)|  2c2
?
|k|. We rewrite (F.3.4) as

|e�0±(k)| =
8{w

(1 + w)(1 + {) | sin(k)|M(k), (F.3.5)

with

M(k) :=
| cos(k)|s

(1� {)2
(1 + {)2 +

4{
(1 + w)2(1 + {)2 ((1� w)2 + 4w cos2(k))

.

We claim

0  M(k)  1. (F.3.6)

Then (F.3.5) implies both

|e�0±(k)| 
8{w

(1 + w)(1 + {) · 1 = 2c2
?

and, using the inequality | sin(k)|  |k|,

|e�0±(k)|  2c?|k|.

Now we prove (F.3.6). First, we rewrite

M(k) =
|1� sin2(k)|s

(1� {)2
(1 + {)2 +

4{
(1 + w)2(1 + {)2 ((1 + w)2 � 4w sin2(k))

.

Since sin2(·) maps R onto [0, 1], it then suffices to prove
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0  sup
0s1

|1� s|s
(1� {)2
(1 + {)2 +

4{
(1 + w)2(1 + {)2 ((1 + w)2 � 4ws)

 1. (F.3.7)

We have

(1� {)2
(1 + {)2 +

4{
(1 + w)2(1 + {)2 ((1 + w)2 � 4ws) = 1� 16{w

(1 + w)2(1 + {)2 s.

Now observe that for any 0  r < 1, we have

sup
0s1

1� s

1� rs
 1. (F.3.8)

Indeed, we have

0  rs < s  1,

and so

0  1� s < 1� rs,

which implies (F.3.8). So, if we can establish
16{w

(1 + w)2(1 + {)2 < 1, (F.3.9)

then we can invoke (F.3.8) to conclude (F.3.7).

We consider three cases.

Case 1. w > 1 and { = 1. Here (F.3.9) reduces to
4w

(1 + w)2
< 1,

and this is equivalent to

0 < (1 + w)2 � 4w = (w � 1)2.

Since w > 1, the inequality above holds.

Case 2. w > 1 and { > 0 but { 6= 1. After cross-multiplying, (F.3.9) is equivalent to

(1 + w)2(1 + {)2 � 16{w| {z }
f(w,{)

> 0.
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Expanding f(w,{) as a quadratic in w, we have

f(w,{) = ({ + 1)2 + 2({2 � 6{ + 1)w + ({ + 1)2.

Clearly

f(0,{) = ({ + 1)2 > 0,

and the discriminant of f(·,{) is

�({) := 4({2 � 6{ + 1)2 � 4({ + 1)4 = �64{({ � 1)2.

Since { 6= �1, �({) < 0, so f(w,{) 6= 0 and therefore f(w,{) is always positive.

Case 3. { > 1 and w > 0. Since (F.3.9) is symmetric in { and w, this follows from

the previous two cases.

(vi) We combine the hypothesis c2 > c
2
?
, the second inequality in (i), and the funda-

mental theorem of calculus to produce

c
2
k
2 � e��(k) =

Z
k

0

(2c2s� e�0�(s)) ds >
Z

k

0

(2c2
?
s� e�0�(s)) ds � 0.

(vii) Let

k1(c) :=

q
e�+(⇡/2)

c
and k2(c) :=

p
(1 + w)(1 + {)

c
.

If k < k1(c), then

e⇠c(k) = �c
2
k
2 + e�+(k) > �e�+

⇣
⇡

2

⌘
+ e�+(k) � 0,

and if k > k2(c), then

e⇠c(k) < �(1 + w)(1 + {) + e�+(k)  0.

The intermediate value theorem then guarantees the existence of some

⌦c 2 [k1(c), k2(c)] such that e⇠c(⌦c) = 0. Moreover, the estimates above show that we

can have e⇠c(k) = 0 only for k 2 [k1(c), k2(c)].

We now show 2c2k � e�0+(k) > 0 for k > k1(c), so that e⇠0
c
(k) < 0 for k > k1(c) and

therefore this root ⌦c is unique. We prove this in the case w > 1, the result for { > 1
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arising by symmetry. Then (1 + w)/2 > 1 and

e�+
⇣
⇡

2

⌘
=

(1 + w)(1 + {)
2

+
1

2
e%
⇣
⇡

2

⌘
� (1 + w)(1 + {)

2
> 1 + {,

and we also recall

|e�0+(k)| 
4{

1 + { .

Let c� = 9/10. Then if k > k1(c) and c > c�, we have

2c2k � e�0+(k) � 2c2k1(c)�
4{

1 + {

� 2c

r
(1 + w)(1 + {)

2
� 4{

1 + {

� 2c
p
1 + { � 4{

1 + {

� 2

✓
9

10

◆p
1 + { � 4{

1 + { .

Set

f({) := 9

5

p
1 + { � 4{

1 + { � 1

4
.

We claim f({) > 0 for all { > 0. This will establish (2.2.9) with b0 = 1/4.

First, f(0) = 31/20 > 1 > 1/4. Next,

f
0({) = 9({ + 1)2 � 40

p
{ + 1

10({ + 1)5/2
.

The only critical points of f on (0,1), then, are the values of { such that

9({ + 1)2 � 40
p
{ + 1 = 0.

This is equivalent to { = �1, which we rule out, or

{ =

✓
40

9

◆2/3

� 1 =: {0.

We test the critical point {0:

f
00({) = 160

p
{ + 1� 9({ + 1)2

({ + 1)7/2
and f

00({0) = 80 3
p
15 > 0.
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Hence f has a local minimum at { = {0, and this local minimum is in fact the global

minimum of f on (0,1). Last,

f({0) =
9

5
(15)1/3 � 17

4
> 0.

This concludes the proof in the case w > 1. We take

c� :=
9

10
and b0 :=

9

5
(15)1/3 � 17

4
.

If { > 1, then we use instead the inequalities

e�+
⇣
⇡

2

⌘
> 1 + w and |e�0+(k)| 

4w

1 + w

and replace f({) with the identically defined f(w) to obtain the same conclusion.

F.4. Proof of Lemma 3.4.1. Let

M = max

⇢
max
0s1

Mmap[s], max
0s,s̀1

Mlip[s, s̀], max
0s1

Mmax[s]

�
.

Set

r0 = min

⇢
1

6M
, 1

�
and a0 = min

⇢
r0

2M
,a1,

1

6M

�
.

Observe that

r0 
1

2M
=) r

2
0 

r0

2M
=) Mr

2
0 

r0

2
.

Then for x 2 B(r0) and |a|  a0, we have

kF✏(x, a)k  Mmap[kxk]
�
|a|+ kxk2

�

 M(a0 + r
2
0)

 M

⇣
r0

2M

⌘
+Mr

2
0

 r0

2
+

r0

2

= r0.

(F.4.1)

Next, for x, x̀ 2 B(r0) and |a|  a0, we compute
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kF✏(x, a)� F✏(x̀, à)k  Mlip[kxk , kx̀k] (|a|+ kxk+ kx̀k) kx� x̀k

 M(|a|+ 2r0) kx� x̀k

 M

✓
1

6M
+

2

6M

◆
kx� x̀k

=
1

2
kx� x̀k .

(F.4.2)

Together, (F.4.1) and (F.4.2) imply that each map F✏(·, a) : B(r0) ! B(r0) is a

contraction on B(r0), which means there exists a unique x
a

✏
2 B(r0) such that

F✏(x
a

✏
, a) = x

a

✏
.

Finally, we have

��xa

✏
� x

à

✏

�� =
��F✏(x

a

✏
, a)� F✏(x

à

✏
, à)
��

 kF✏(x
a

✏
, a)� F✏(x

a

✏
, à)k+

��F✏(x
a

✏
, à)� F✏(x

à

✏
, à)
��

 Mmax[kxa

✏
k]|a� à|+Mlip[kxa

✏
k ,
��xà

✏

��]|à|
��xa

✏
� x

à

✏

��

 M |a� à|+Ma0

��xa

✏
� x

à

✏

�� .

Since

Ma0  M

✓
1

2M

◆
=

1

2
,

we can rearrange this last inequality to
1

2

��xa

✏
� x

à

✏

��  M |a� à|,

and thus
��xa

✏
� x

à

✏

��  2M |a� à|.

This proves (3.4.5).
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F.5. The traveling wave problem in the case �2 = 0. Recall that in our rescaling

(1.3.6) we assumed �2 6= 0. If �2 = 0, then we must have �1 6= 0, and we redefine a2

from (1.3.5) as

a2 :=
{2

�1
.

We can then continue with the nondimensionalization as before and obtain a slightly

different version of (1.3.7); then we proceed to write this system in terms of relative

displacements like (1.3.8) and finally make the traveling wave ansatz (2.1.1). We

obtain a system almost identical to (2.1.2):

c
2p00 + L[{, w]p+ L[1, w]


1 0
0 0

�
p.2 + L[1, w](p.3

.N(p)) = 0. (F.5.1)

Here we are writing p instead of p for the column vector of traveling wave profiles to

emphasize that (F.5.1) corresponds to a materially distinct lattice from the one that

yielded (2.1.2). Rewriting (F.5.1) to expose a factor of L[{, w] in the nonlinear terms

as in (2.1.4), we find

c
2p00 + L[{, w]p+ L[{, w]


1/{ 0
0 0

�
p.2 + L[{, w]M1/{(p

.3
.N(p)) = 0. (F.5.2)

Now we rescale p(x) = {q(x), so (F.5.2) becomes

c
2q00 + L[{, w]q+ L[{, w]


1 0
0 0

�
q.2 + L[{, w]


{2 0
0 {

�
(q.3

.N({q)) = 0. (F.5.3)

We recall from (1.3.4) that we defined � = 0 when �2 = 0, and so, to second order in

q, (F.5.3) is

c
2q00 + L[{, w]q+ L[{, w]


1 0
0 �/{

�
q.2

. (F.5.4)

This agrees with (2.1.4) to second order as well. The formal long wave limit in

Section 2.5 depended only on the linear and quadratic terms of (2.1.4), and likewise

the techniques for the existence of periodic solutions in Chapter 3 and the nanopteron

solutions in Chapter 4 relied ultimately on only the linear and quadratic terms of the
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traveling wave equation having the explicit form (F.5.4). The manipulations of and

higher-order estimates for the “higher-order terms” in these two chapters carry over

in the same way to the rescaled nonlinearity in (F.5.3).
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Appendix G. Operator Estimates from [FW18]

In this appendix we present two collections of results that we proved earlier in [FW18].

The set-up there is slightly different, of course; for example, the eigenvector operators

J and J1 are not the same, and the “symmetry” in the mass dimer problem analogous

to the “even ⇥ even” symmetry in Lemma 2.7.1 is “even ⇥ odd.” But the proofs,

happily, do not depend on these superficial differences, and so we just provide the

long litany of estimates and other properties below.

G.1. Estimates for the periodic problem.

G.1.1 Proposition. There exists ✏per 2 (0, 1) with the following properties.

(i) For ✏ 2 (0, ✏per) and t 2 R, there is a function R✏ such that

e⇠c✏(✏!✏ + t) = e⇠0
c✏
(✏!✏)| {z }
⌥✏

t+ t
2R✏(t). (G.1.1)

The constant b0 > 0 from (2.2.9) also satisfies the estimate

|⌥✏| � b0 (G.1.2)

for all ✏ 2 (0, ✏per).

(ii) For |t|  1 and ✏ 2 (0, ✏per), the multiplier ⇠✏,t maps E
r+2
per bijectively onto the

space
n
 2 E

r

per

��� b (1) = 0
o
.

In particular, if ⇧2 is the multiplier defined in Appendix 3.3 with symbol e⇧2(k) =

1� �|k|,1, then ⇠
✏,t is invertible on the range of ⇧2.

(iii) There exists Cmap > 0 such that

sup
0<✏<✏per

|t|1
r2R

kL✏

1(t)kB(Wr,Wr+2)  Cmap, (G.1.3)
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sup
0<✏<✏per

|t|1
r2R
j=2,3

��L✏

j
(t)
��
B(Wr)

 Cmap, (G.1.4)

and

sup
0<✏<✏per

t2R

|R✏(t)|  Cmap. (G.1.5)

(iv) There exists Clip > 0 such that

sup
0<✏<✏per

r2R

��L✏

1(t)� L✏

1(t̀)
��
B(Wr)

 Clip|t� t̀|, (G.1.6)

sup
0<✏<✏per

r2R
j=2,3,4

��L✏

j
(t)� L✏

j
(t̀)
��
B(Wr,Wr�1)

 Clip|t� t̀|, (G.1.7)

and

sup
0<✏<✏per

|R✏(t)�R✏(t̀)|  Clip|t� t̀|. (G.1.8)

for any |t|, |t̀|  1.

G.2. Estimates for the nanopteron equations.

G.2.1 Proposition. There exists q? 2 (0, 1/2
p
↵{) and ✏ 2 (0, ✏per) such that the

following hold.

(i) For all r � 0, there exists Cr > 0 such that for all ✏ 2 (0, ✏) and all a, à 2

[�aper, aper], the periodic solutions 'a

✏
defined in Theorem 3.1.1 satisfy

k'a

✏
k
W r,1 + kJ ✏'a

✏
k
W r,1  Cr✏

�r (G.2.1)

and

|@r
X
[J ✏('a

✏
�'à

✏
)](X)|  Cr✏

�r|a� à|(1 + |X|), X 2 R. (G.2.2)

(ii) There exists C > 0 such that for all r � 0, q > 0, ✏ 2 (0, ✏), and and f 2 H
r

q
,

the operator ◆✏ defined in (4.2.4) satisfies

|◆✏[f ]| 
C✏

r

p
q
kfk

r,q
. (G.2.3)
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(iii) There exists C > 0 such that the quantity �✏, defined in (4.2.6), satisfies

|�✏| � C (G.2.4)

for all ✏ 2 (0, ✏).

(iv) The operator T✏ defined in (2.6.1) has the following properties.

• Let r � 0 and q 2 [0, q?]. Given g 2 H
r

q
, there exists f 2 H

r+2
q

such that T✏f = g

if and only if bg(±!✏) = 0, in which case f is unique;

• Let r � 0, q 2 [0, q?], and ✏ 2 (0, ✏). For all g 2 E
r

q
, there exists a unique f 2 E

r+2
q

such that

T✏f = g � 1

�✏
◆✏[g]�✏. (G.2.5)

As in (4.2.7), we set f := P✏g. Equivalently,

P✏g := T �1
✏

✓
g � 1

�✏
◆✏[g]�✏

◆
.

• For each q 2 [0, q?], there exists Cq > 0 such that

kP✏gkr+j,q
 Cq

✏j+1
kgk

r,q
, j = 0, 1, 2 (G.2.6)

for all r � 0 and ✏ 2 (0, ✏).

(v) There exists C > 0 such that for all r � 0, ✏ 2 (0, ✏), q 2 (0, q?], and h 2 H
r

q
⇥H

r

q

��(J ✏ � J
0)h
��
r,q

 C✏ khk
r+1,q . (G.2.7)

(vi) There exists C > 0 such that for all ✏ 2 (0, ✏), q 2 (0, q?], r � 0, and f 2 H
r

q
,

the Fourier multiplier $✏, whose symbol e$✏ is given in (2.4.3), satisfies

k$✏
fk

r+2,q  C kfk
r,q

. (G.2.8)
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Appendix H. Notation

a.e. = almost everywhere with respect to Lebesgue measure on R

B(X ,Y) = space of bounded linear operators from X to Y

B(X ) = B(X ,X )

C(X ,Y) = space of continuous functions from X to Y

C(X ) = C(X ,X )

C0(R) =
⇢
f 2 C(R)

���� lim
x!�1

f(x) = lim
x!1

f(x) = 0

�

@X [f ] = strong or weak derivative of f = f(X)

F[f ] = bf = Fourier transform of a function f

H
r = Sobolev space of order r on R

H
r

per = Sobolev space of order r of 2⇡-periodic functions

H
r

q
= Sobolev space of functions that decay like e

q|x| at infinity

1 = identity operator

i = (1, 0)

j = (0, 1)

L
2 = L

2(R) = square-integrable functions on R

L
1 = L

1(R) = essentially bounded functions on R
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