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Chapter 1

Introduction

The subject of this paper is the Fermi-Pasta-Ulam-Tsingou (FPUT) lattice. An FPUT lattice is a one-
dimensional line of masses which are interconnected by springs. Each mass is connected to its right and
left neighbour. An FPUT lattice is shown in Figure 1.1.

Figure 1.1: A monatomic FPUT lattice where all masses have value m.

The FPUT lattice is a way of modelling certain molecular structures and is applied in fields of study
such as nonlinear optics, atomic physics, granular crystals and metamaterials, but also in biology, where
DNA strand dynamics are studied. See [1] for more applications. An FPUT model can be seen as
the structure of interconnected atoms, which is why it has most of its applications in physics, since for
example energy transportation through certain materials is of utmost interest to physicists and related
fields of study.

The behavior of energy transported across the lattice is influenced by various parameters, such as
the weight of the masses and the force the springs exert on the masses. Since we will be looking closely
at the situation described in [2], our main interest is in the diatomic lattice, or mass dimer, which has
two different masses varying periodically in an alternating fashion, as seen in Figure 1.2 below. Since
monatomic lattices, where all the masses are the same, have been studied for many years now because
of its relevance in physics, its solutions are well understood. We want to gain a better understanding of
solutions to more complicated problems, such as the diatomic lattice, because studies of nonlinear wave
theory for the diatomic problem are relatively recent compared to studies of the monatomic problem,
which means there is still much to be understood about the diatomic problem and the diatomic case is
just as relevant to physics.

Figure 1.2: A diatomic FPUT lattice where masses alternate between values 1 and m.

We will describe here the situation that was set out by Giardetti, Shapiro, Windle and Wright in [2].
Let xnptq be the position of the nth particle on the lattice at time t and let mn be the mass of the nth
particle (n P Z). Each particle is connected to two massless springs, which pull from either the left or
the right side of the particle. The nth spring connects the nth and pn` 1qst particle on the lattice. The
force needed to stretch the nth spring a distance r from its equilibrium position is given by Fnprq. The
movement of the particles is one-dimensional, in line with the lattice itself. Aside from the spring forces,
there are no other forces, like gravity or friction, working on the lattice. To describe the motion of the
particles on the lattice, we use Newton’s second law:

mn:xn “ Fnpxn`1 ´ xnq ´ Fn´1pxn ´ xn´1q. (1.1)
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By varying mn and Fn, we can describe different kinds of lattices. If we take mn “ m and Fn “ F , we
get a monatomic lattice. For a diatomic lattice, we take mn “ mn`2 and Fn “ F . To describe a lattice
which is called a “spring dimer” we take mn “ m and let the forces of the springs vary periodically:
Fn “ Fn`2. For a “general dimer” we also let the masses vary, so we take mn “ mn`2 and Fn “ Fn`2.
There are many natural ways to define the spring force, see [3, 4, 5, 6, 7] for examples. We choose to
focus on Fnprq :“ κnr ` βnr

2, which has both a linear and a nonlinear term. Here, κn and βn are the
spring constants. For the most part we will take κ “ β “ 1. Later, as we will be doing simulations, we
will vary κn and βn.

If we let pn :“ 9xn and rn :“ xn`1 ´ xn, the equation of motion can be written as a system of
first-order differential equations:

9rn “ pn`1 ´ pn (1.2)

9pn “
1

mn
pFnprnq ´ Fn´1prn´1qq (1.3)

Here, the velocity of the nth particle is given by pn and the relative displacement is given by rn, which
is the same as the distance between successive particles.

There exist certain families of special solutions to these equations. We are interested in the stability of
such families of solutions, meaning we are interested in what happens, over very long times, to solutions
that start close to these families. For rigorous definitions of stability, see [8]. The goal of the thesis is to
generate data for the study of stability of said families of solutions to the lattice equations of motion. In
Chapter 3, we will describe these families of solutions and after presenting lots of data in Chapter 4, we
will make some conjectures in Chapter 5.

To give the reader a better idea where the solutions to this system of equations come from, we will
first dive into the work that other scientists have done regarding this subject.
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Chapter 2

Background

In the 1950s, the physicist Enrico Fermi had begun showing interest in a certain field of physics where
nonlinear differential equations played a role. To get a better understanding for nonlinear problems,
Fermi, together with John Pasta and Stanislaw Ulam, created the FPUT lattice problem: a finite chain
of masses connected by springs. To make it into a nonlinear problem, the restoring force of the springs
was made to be nonlinear. Because of the nonlinear nature of the problem, they needed to implement
it into the computer to study the behavior of the lattice, for it would be too hard to solve analytically
by hand. Mary Tsingou created an implementation [9] for the MANIAC, one of the earliest digital
computers. They expected that, in the long run, the starting energy of the springs would become equally
divided among the lattice. The actual results were far from the equipartitioning which was expected.
The lattice almost came back to its starting position. The energy was not being divided among the
lattice, but rather travelled along the lattice. See [10, 11] for more details.

Ten years later, Zabusky and Kruskal began studying a modified version of the FPUT lattice. They
used infinitesimally small masses and springs to represent a continuous line of deformable material, like
a string. After some changes of variables and formal Taylor series expansions, Zabusky and Kruskal
discovered that solutions to the monatomic FPUT equations of motion approximated solutions to the
Korteweg-de Vries (KdV) equation. These results were somewhat surprising, not only because of the
fact that FPUT is a discrete problem, whereas the KdV problem is a continuous one, but also because
FPUT only models a single chain, whereas the KdV equation models the motion of waves in shallow
water where the wavelength is long compared to the depth of the water [12]. The KdV equation consist
of the sum of a linear and a nonlinear term, like the equations for the FPUT lattice. Up to rescalings of
time and space, the KdV equation can be written as

ut ` 6uux ` uxxx “ 0,

which is only one of the ways to write the KdV equation. This equation has a solution of the following
form:

upx, tq “
c

2
sech2

ˆ?
c

2
px´ ctq

˙

(2.1)

where sechpyq :“ 2{pey ` e´yq. This solution to the KdV equation was discovered in 1895 by Dutch
physicists Korteweg and de Vries. It is called a “solitary wave” solution, as the graph of the solution
looks like a single wave which goes to zero at spatial infinity. This is shown in Figure 2.1.

Figure 2.1: Graph of y “ sech2
pxq.
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In the solution, observe the x´ ct part inside sech2. This is the part of the solution that makes it a
“traveling wave”. As time goes on, the peak of the graph will move to the right because ct is subtracted
from x. See Friesecke and Wattis [4] for the first proof of the existence of solitary wave solutions in
monatomic FPUT lattices.

We are interested in the FPUT problem which has solitary wave solutions, or solitons, of long wave-
length and small amplitude. This situation is called the “long wave limit” or “KdV limit” [3], since the
solutions to this problem can be closely approximated by suitably scaled solutions of the KdV equations,
which are sech2-type solutions like in (2.1), for long periods of time and, in the monatomic case, remain
close to the scaled solutions of the KdV equations for all time, as established by Schneider and Wayne
in [13].
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Chapter 3

FPUT lattice solutions

3.1 Solitary and nanopteron traveling waves

Recall the given system of differential equations:

$

&

%

9rn “ pn`1 ´ pn

9pn “
1

mn
pFnprnq ´ Fn´1prn´1qq

In this section we will be talking about either the monatomic or the diatomic lattice, which means
all the spring will be the same, so we take Fnprq “ F prq “ r ` r2. After suitable rescaling and
nondimensionalization of the problem, as described in [3, 14], we can assume that the coefficients κ and
β in the spring force are equal to 1.

For 0 ă ε ! 1, according to Gaison, Moskow, Wright and Zhang [15], a solution is given by a leading
order sech2 term, like in the solution to the KdV equation, which creates the solitary wave shape of the
solution, and a certain error term:

rnptq “ Ψm1,m2,ε
n ptq :“ 3ε2 sech2

pβεpn´ cεtqqv ` znptq, (3.1)

where

β “

d

3pm2
1 ` 2m1m2 `m2

2q

2pm2
1 ´m1m2 `m2

2q
, cε “ p1` ε

2q

c

2

m1 `m2
and v :“ p1,´c0q. (3.2)

Here, cε is what we call the wave speed and, when ε “ 0, the number c0 is called the speed of sound. It
is called the speed of sound, because of the fact that, in the monatomic lattice with linear spring forces,
where m1 “ m2 “ 1 and F prq “ r, it turns out to be the maximum wave speed of a plane wave ansatz
to its corresponding FPUT equations. This maximum wave speed is equal to 1. On the other hand, the
speed of sound is the infimum of the allowed wave speeds for the long wave diatomic FPUT solutions.
See [16, 4]. The long wave limit is sometimes called the “near-sonic” limit, since the wavespeeds cε will
be close to the speed of sound c0.

Since the solution to the KdV equations only approximate the solutions to the FPUT equations,
there is a certain error, which is given by the function zptq. The mapping t ÞÑ zptq is the mapping
R Ñ `2 ˆ `2 whose nth component is znptq “ pzn,1ptq, zn,2ptqq. See Appendix A for a discussion about
`2. The solution given in (3.1) is a very good approximation for a large amount of time:

sup
|t|ďT0ε´3

||zptq||`2ˆ`2 ď Cε5{2 (3.3)

for some constants C and T0. In the monatomic case, where m1 “ m2 ą 0, zptq is less than O`2ˆ`2pε7{2q
according to Schneider and Wayne [13]. As done in [2], the computational part of this paper will examine
the behavior of this approximated solution for times which greatly exceed T0{ε

3.
For the monatomic case, in which m1 “ m2 ą 0, according to Friesecke and Pego [3], under the

ansatz rnptq “ ppn´ ctq, where p “ ppyq is a function of the real variable y, a traveling wave solution to
the FPUT problem is a solitary wave given by

rnptq “ Σm,ε
n ptq :“ 3ε2 sech2

pβεpn´ cεtqqv ` ηεpn´ cεtq (3.4)
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with β, cε and v as in (3.2). The traveling wave profile for rn is given by 3ε2 sech2
pβεyqv ` ηεpyq. In

this solution the solitary core consists not only of the sech2 function as in (3.1), but a certain unknown

function ηεpyq is added. The function ηεpyq is particularly small, such that, for a certain rβ ą 0,

cosh prβyqηεpy{εq “ OHsˆHspε4q. This estimate holds for each s P N. If f “ fpyq is a function such

that coshprβqf P Hs for some s ě 1, then f must vanish exponentially fast. We call such a function
“exponentially localized”. For details on Hs see Appendix A. The scaling by 1{ε inside ηε is a technical
artifact of the long wave scaling Friesecke and Pego use.

For the diatomic case, according to Faver and Wright [17], a traveling wave solution is given by the
superposition of a solitary wave solution and a small ripple, which was called a nanopteron by Boyd [18]:

rnptq “ Γm1,m2,ε
n ptq :“ 3ε2 sech2

pβεpn´ cεtqqv ` ηn,εpn´ cεtq ` φn,εpn´ cεtq. (3.5)

The nanopteron profile in (3.5) is 3ε2 sech2
pβεyqv`ηn,εpyq`φn,εpyq, which is the sum of an exponentially

localized term and a periodic term. Here, φn,εpyq is the small ripple added to the solitary wave core and
β, cε and v are again the same as in (3.2). The functions ηn,εpyq and φn,εpyq have the same periodicity
as the lattice, for all n P Z and y P R we have the following: ηn,εpyq “ ηn`2,εpyq and φn,εpyq “ φn`2,εpyq.

Again, ηn,εpyq is small, such that, for a certain rβ ą 0, cosh prβyqηn,εpy{εq “ OHsˆHspε3q. The amplitude
of the ripple is extremely small. For all n, s P N we have the following:

lim
εÑ0`

ε´n||φn,ε||W s,8ˆW s,8 “ 0.

This limit is a small beyond all orders of ε estimate. For each n, s P N, it is equivalent to the existence
of a constant Cpn, sq, such that ||φn,ε||W s,8 ď Cpn, sqεn. See Appendix A for the definition of W s,8.

Figure 3.1: Sketch of a nanopteron, where Σn,εpXq :“ 3ε2 sech2
pβεXqv ` ηn,εpXq, taken from [19].

A nanopteron is also sometimes called a “generalized solitary wave” or a “weakly nonlocal solitary
wave”. Like the solitary wave, it has an intimate connection to water wave problems. The first proof of
this was given by Beale [20] and later different proofs were given by Sun [21] and Lombardi [22].

The main difference between solitary wave solutions in the monatomic case and nanopteron solutions
in the diatomic case is the ripple. By [15], both monatomic and diatomic cases have solutions of the
form (3.1), where the remainder term zn satisfies (3.3). We know from the work of Mizumachi [23] that,
for the monatomic solution, for some t1 „ 0, ε1 „ ε and as t Ñ 8, in a certain space the monatomic
solution (3.1) converges to the solitary wave solution (3.4):

Ψm,m,ε
n ptq ÝÑ Σm,ε1

n pt´ t1q.

A reasonable question is whether, if at all, the nanopteron (3.5) might converge to a relative of the
diatomic solution (3.1). While we will not purse the details in this thesis, Mizumachi’s proof for the
monatomic solitary wave rests on the following. There is a physically natural way to define the ‘me-
chanical energy’ of a lattice as a numerical quantity in such a way that the solitary wave inherently has
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‘finite’ mechanical energy, but the nanopteron’s ripples causes it to have ‘infinite’ mechanical energy.
Mizumachi’s proof relies on having finite mechanical energy. This makes it unclear whether the solution
given by (3.1) could stay close to the nanopteron solution (3.5) for infinite amounts of time.

Because ηpyq is unknown in both cases, and φpyq is unknown in the diatomic case, we must use (3.1)
to numerically calculate the solutions to the differential equations.

3.2 Numerical methods

In [2], MATLAB was used to analyse the behavior of (3.1) as time goes to infinity for m1 ‰ m2. They
used the RK4 method with a fixed time step of h “ 1{10 to approximate the solutions. The size of the
domain was chosen to be N “ 210, such that n P r´N{2` 1, N{2sXZ. For the initial condition they left
out the ripple and also took znp0q “ 0:

rnp0q “ 3ε2 sech2
pβεnqv, (3.6)

where ε, m1 and m2 had been chosen beforehand and where β and v are as in (3.1). The solution in this
case will be a traveling solitary wave which will start very close to the nanopteron, because of the fact
that ηpyq and φpyq in the nanopteron are so small. They took rN{2ptq “ r´N{2`1ptq to make the wave
move along an “infinite lattice”. Once the solution gets to the edge, it comes back around on the other
side of the domain to continue as it would on the infinite lattice. To make sure that the solitary wave
will not be disturbed by anything that succeeds the wave, as the wave comes around on the other side of
the domain, they coded in a “window”. Everything outside of the window will vanish, so anything that
reaches the edge of the window will vanish and will not interfere with the solitary wave once it loops
back around the domain.

The solution leaves behind a small amplitude ripple with relatively high frequency for all time. In
the monatomic case, the ripple will eventually disconnect from the solitary part and the solitary wave
will continue on its own. Initially, for small times, the ripple will look very chaotic, while as time goes
on, the ripple will eventually oscillate at a regular frequency. The numerical ripple is not to be mistaken
with the nanopteron’s ripple from (3.5), they are two very different things. Where the ripple in (3.5) is
an extremely small ripple, probably invisible to the naked eye, which covers the entire lattice, the ripple
in the numerical solutions seems to be far bigger and only follows the solitary wave. It also takes away
energy from the solitary wave to feed itself, so as time goes on, the solitary wave becomes smaller, while
the “oscillatory wake” takes up more space among the lattice.

In [2], they also kept track of the amplitudes of the solitary wave and the ripples. For the amplitude
of the leading solitary part, we just have to look at the maximum value of the solution on the interval
we specified and keep track of these values for each timestep. For the amplitude of the ripples, [2] used
a so-called “peak to trough” measure of the amplitude, which results in the following formula:

ampwakeptq :“
1

2

ˆ

max
n´nmaxPr´7N{8,´3N{4s

rnptq ´ min
n´nmaxPr´7N{8,´3N{4s

rnptq

˙

.

This formula gives the amplitude of the biggest ripple in an interval a fixed distance away from the
leading solitary wave. The interval in which they used is quite big. However, this is done to ensure that
they are searching for the amplitude in an area not too close to the leading solitary wave, since this part
of the ripples may be distorted. Also, the period of the ripples can get quite large, but as a large interval
was taken, this is no problem, because this will capture an entire period of the ripples regardless.

After observing the behavior of the implementation of (3.1) with various different masses and values
of ε, [2] conjectures that (3.5) is a so called “metastable” solution, whereas (3.4) was a stable solution.
A solution that starts close to a stable solution will remain close to it for all time. Solutions that start
close to a metastable solution, in our case (3.5), need not stay close for all time, but could move away
from it and come back to it again, possibly even repeating this process of moving away and coming back
again. Metastable could also mean that a solution that starts close to the metastable solution, remains
close for a very long time, but eventually as time goes to infinity, will vanish. We see in [2] that as
time goes to infinity, some cases show a clear decay in the amplitude of the leading solitary waves, while
other cases imply that the amplitude stays constant. However, r2s says that the amplitude is actually
not constant, but decays at such a slow rate, that we are unable to see it. Once the leading solitary
part has decayed to zero, the simulation which started close to the nanopteron, is clearly not close to
the nanopteron anymore, since the nanopteron will preserve its shape, which implies the metastability
of the nanopteron.
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3.2.1 Simulation goals

What we are interested in is doing some experimental mathematics on the code used in [2]. We want to
look at the following limits:

• The small mass limit;

• The equal mass limit;

• The stiff spring limit.

As discussed by Hoffman and Wright in [24] and by Faver and Hupkes in [25], the small mass limit
is the situation in which we take m1 “ 1 and m2 “ µ with µ small. We will be looking at what happens
as µÑ 0. When µ is close to 0, there are traveling wave solutions that are nanopterons similar to (3.5),
with several differences. Firstly, the wave speed does not depend on the small parameter µ, but is instead
fixed at a value slightly greater than 1. Secondly, the leading order term is not an exact sech2 term,
but is rather a genuine monatomic solitary wave profile like (3.4), with ε fixed at some small value. The
periodic ripples of the small mass solution are still small beyond all orders of µ. As seen in Figure 3.2
below, the lattice will approach a monatomic lattice with double the spring length.

Figure 3.2: Under the small mass limit, the mass dimer from Figure 1.2 turns into this monatomic lattice.

As discussed by Hoffman and Wright in [24], who proved the existence of micropteron [18] solutions,
and by Faver and Hupkes in [25], for the equal mass limit we take m1 “ 1 and m2 “ 1` µ with µ small.
Again, we let µÑ 0. The micropteron traveling wave solution has a similar structure to the nanopteron,
in the sense that it is the superposition of an exponentially localized term and a periodic term, except
now the periodic amplitude is only Opµq and not small beyond all orders of µ. The micropteron ripple is
“algebraically small”. The difference in size of the periodic term is due to a singular perturbation that
appears in the structure of the traveling wave problem for the small mass limit and the diatomic KdV
limit, but not in the equal mass traveling wave problem. The situation of the equal mass limit will again
approach a monatomic lattice, but this time with the regular spring length as seen in Figure 3.3.

Figure 3.3: Under the equal mass limit, the mass dimer from Figure 1.2 turns into this monatomic lattice.

For the stiff spring limit, we will be looking at two situations. For the first situation, we take
m1 “ m2 “ 1 and let the spring force function alternate between F prq “ r ` r2 and F prq “ κr ` βr2.
We will fix β and take κ to be increasingly large, for example first κ “ 10, then κ “ 100, and finally
κ “ 1000. We call this a “spring dimer lattice” as seen in Figure 3.4 below. See [19, 26] for more about
the spring dimer.

Figure 3.4: A spring dimer where all masses have mass m.

In the second situation, we will make the springs alternate in the same way, but now we will also
alternate the masses, such that m1 ‰ m2. For the purpose of our numerics, we will take m1 “ 1 and
m2 “ 1{2, but any two different values of m1 and m2 are permissible. This is called a “general dimer
lattice”, as seen below in Figure 3.5. Increasing κ as done above will result in the stiff spring limit,
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which is also seen below. Both situations will approach a certain monatomic lattice, where a single mass
consists of m1, m2 and the stiff spring, which means this mass now has the value m1 `m2, given that
the springs are massless.

Figure 3.5: A general dimer where the masses alternate between 1 and m.

Figure 3.6: The resulting monatomic lattice in the stiff spring limit for a general dimer where all masses
have the value 1`m.

Nanopteron solutions to the stiff spring limit in spring dimers and general dimers have not yet been
proven to exist, but we expect them to, at least in the spring dimer case. A stiff spring program has
been succesful in a breed of lattices related to the diatomic lattice called mass-in-mass lattices. See [27]
for more on this. We do know, from [19, 26], that it is proven that the spring dimer has long wave
nanopterons like (3.5), except the leading order sech2 term has an additional coefficient that depends on
n but is independent of ε.

We will also be looking at large wave speed situations in which ε is taken to be large. We know of the
existence of such waves for monatomic FPUT lattices with “Lennard-Jones-type spring forces”, as it was
proved in [5, 6, 7]. In [4], it is not implied that there is an upper bound for the wave speed of solitary
waves for monatomic FPUT, which gives some room to hope for large amplitude solitary waves. If such
waves exist, uniqueness results from Friesecke and Pego [3] prevent such solitary waves from existing in
the long wave regime and being close to sech2-type profiles. Also, in [25], it is proved that in the equal
mass limit, there exist micropteron traveling waves for arbitrary wave speeds, given suitable hypotheses
which mainly concern the existence and properties of a solitary wave solution to monatomic FPUT. It
would be interesting to see how (3.1) would behave, because for large ε, (3.1) has turned into a small
wavelength, large amplitude solitary wave, which is basically the opposite of the KdV limit.
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Chapter 4

Numerical results

4.0.1 Overview of the results

For all simulations, ε “ 1{4, so the wave speed is fixed. We take the same initial condition 3.6 as in [2]
and also take the same time steps and the same size and “windowing” for the domain. All plots are of the
r-component of the solutions against n´ nmax, where nmax is the position of the leading solitary wave.
All figures are after 105 time steps unless otherwise stated. We will show figures of the simulations done
and examine the way these limits approach the monatomic FPUT solution. In general we will see an
initial disorder in the amplitude of the leading solitary wave, and an eventual oscillation of the amplitude
around a certain value which decays very slowly. For the most part the ripples will tend towards the
localized monatomic situation in various ways.

In [17], to prove the existence of nanopterons, traveling wave ansatzes are made for even and odd
indices seperately, which look something like this:

rnptq “

#

p1pn´ ctq, n odd

p2pn´ ctq, n even

This makes it interesting to look at the graphs of the relative displacement for even and odd indices
seperately, which is why we will dedicate a section of this chapter to it. We expect slightly different
behavior for even indexed relative displacement from odd indexed ones.

In Section 4.8 there will be some results for different values of ε.

4.1 Monatomic behavior

We will first look at the behavior of (3.1) in the monatomic case. We take m1 “ m2 “ 1. We get the
following results.

Figure 4.1: The resulting monatomic wave. Figure 4.2: The monatomic wave, zoomed in
on the tail.

The results show us that in fact the amplitude of the solitary wave does decay, as seen in Figure 4.3.
If we look at Figure 4.2, we see that the tail of the solitary wave is going upward at an angle, which could
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be the result of the fact that the solution has not fully disconnected from the initial oscillatory wake.
Because of this, the solution may still be leaking energy into the tail. This leak is very slow however,
the upward slope of the tail is not to be seen in Figure 4.1.

Figure 4.3: Loglog plot of the amplitude of the
monatomic wave for all t up to 105.

Figure 4.4: Loglog plot of the monatomic ripple
amplitude for all t up to 105.

4.2 Small mass limit

For the small mass limit we take m1 “ 1 and m2 “ µ with µ “ 2´n for n P t2, 3, 4, 5, 6u. The results are
seen below.

Figure 4.5: Small mass limit with µ “ 1{4. Figure 4.6: Small mass limit with µ “ 1{4,
zoomed in on ripples.

Figure 4.7: Small mass limit with µ “ 1{4,
showing the ripple envelopes.

Figure 4.8: Loglog plot of small mass limit
leading solitary wave amplitude with µ “ 1{4
for all t up to 105.

11



Figure 4.9: Loglog plot of the small mass limit ripple amplitude with µ “ 1{4 for all t up to 105.

Figure 4.10: Small mass limit with µ “ 1{8. Figure 4.11: Small mass limit with µ “ 1{8,
zoomed in on ripples.

Figure 4.12: Small mass limit with µ “ 1{8,
showing the ripple amplitudes.

Figure 4.13: Loglog plot of small mass limit
leading solitary wave amplitude with µ “ 1{8
for all t up to 105.
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Figure 4.14: Loglog plot of the small mass limit ripple amplitude with µ “ 1{8 for all t up to 105.

Figure 4.15: Small mass limit with µ “ 1{16. Figure 4.16: Small mass limit with µ “ 1{16,
zoomed in on ripples.

Figure 4.17: Loglog plot of small mass limit
leading solitary wave amplitude with µ “ 1{16
for all t up to 105.

Figure 4.18: Loglog plot of small mass limit
ripple amplitude with µ “ 1{16 for all t up to
105.
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Figure 4.19: Small mass limit with µ “ 1{32. Figure 4.20: Small mass limit with µ “ 1{32,
zoomed in on ripples.

Figure 4.21: Loglog plot of small mass limit
leading solitary wave amplitude with µ “ 1{32
for all t up to 105.

Figure 4.22: Loglog plot of small mass limit
ripple amplitude with µ “ 1{32 for all t up to
105.

Figure 4.23: Small mass limit with µ “ 1{64.
Figure 4.24: Small mass limit with µ “ 1{64,
zoomed in on ripples.
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Figure 4.25: Loglog plot of small mass limit
leading solitary wave amplitude with µ “ 1{64
for all t up to 105.

Figure 4.26: Loglog plot of small mass limit
ripple amplitude with µ “ 1{64 for all t up to
105.

These results show us that as µÑ 0, the wave looks more and more like the monatomic wave. We see
in the amplitude plots that, at around t “ 102, the amplitudes start to swing around a certain average
value. This average value gets closer to the average value of the amplitude of the monatomic wave as
µ gets smaller. The ripple also gets smaller as µ gets smaller and displays similar behavior to the tail
of the monatomic wave. Figures 4.20 and 4.24 show a similar upward trend in the tail. Figures 4.12,
4.16 and 4.20 show how the amplitudes of the ripples seem to get smaller as the ripple gets further away
from the leading solitary wave. These amplitudes may eventually even approach zero as t Ñ 8, which
approaches the monatomic, since there are no ripples.

4.3 Equal mass limit

For the equal mass limit we take m1 “ 1 and m2 “ 1` µ with µ “ 2´n for n P t2, 3, 4, 5, 6u. The results
are seen below.

Figure 4.27: Equal mass limit with µ “ 1{4. Figure 4.28: Equal mass limit with µ “ 1{4,
zoomed in on ripples.
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Figure 4.29: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{4
for all t up to 105.

Figure 4.30: Loglog plot of small mass limit
ripple amplitude with µ “ 1{4 for all t up to
105.

Figure 4.31: Equal mass limit with µ “ 1{8. Figure 4.32: Equal mass limit with µ “ 1{8,
zoomed in on ripples.

Figure 4.33: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{8
for all t up to 105.

Figure 4.34: Loglog plot of small mass limit
ripple amplitude with µ “ 1{8 for all t up to
105.
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Figure 4.35: Equal mass limit with µ “ 1{16. Figure 4.36: Equal mass limit with µ “ 1{16,
zoomed in on ripples.

Figure 4.37: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{16
for all t up to 105.

Figure 4.38: Loglog plot of small mass limit
ripple amplitude with µ “ 1{16 for all t up to
105.

Figure 4.39: Equal mass limit with µ “ 1{32. Figure 4.40: Equal mass limit with µ “ 1{32,
zoomed in on ripples.
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Figure 4.41: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{32
for all t up to 105.

Figure 4.42: Loglog plot of small mass limit
ripple amplitude with µ “ 1{32 for all t up to
105.

Figure 4.43: Equal mass limit with µ “ 1{64. Figure 4.44: Equal mass limit with µ “ 1{64,
zoomed in on ripples.

Figure 4.45: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{64
for all t up to 105.

Figure 4.46: Loglog plot of small mass limit
ripple amplitude with µ “ 1{64 for all t up to
105.

The results show us that the equal mass limit shows somewhat similar behavior to the monatomic
case as µÑ 0. The ripple envelopes seem to get squished together, which is a certain way of approaching
the non-ripple tail of the monatomic wave. The ripple seems to oscillate around 0 more quickly as µ gets
closer to 0. The decay of amplitude of the leading solitary wave happens more quickly in the equal mass
limit as seen in the figures. The amplitude seems to rapidly decay for times beyond t “ 103 in Figures
4.29, 4.33 and 4.37, however, since these plots are loglog plots, this actually translates into algebraic
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decay in real time against real amplitude. Moreover, as we take µ smaller, this rapid decay in the loglog
plots seems to get postponed more and more. In Figures 4.41 and 4.45 the rapid decay starts around
t “ 104. Before this decay happens, the values of the amplitude actually oscillate around the same
average value as the monatomic wave amplitude. In Figure 4.47 below, a plot of the time it takes before
the amplitude has reached half its size for various values of µ is given. This plot is an interpolation of
16 data points. The plot clearly shows, as µ approaches zero, the time it takes to decay to half its size
increases drastically.

Figure 4.47: Equal mass half life time interpolation of 16 data points, for µ “ i{64 for i “ 1, . . . , 16.

4.4 Stiff spring limit

For the stiff spring limit we have two cases. In the first case, all masses are the same and we periodically
vary the spring force function such that Fnprq “ Fn`2prq for all n P Z, which results in a spring dimer.
In the second case, we periodically vary the masses, such that mn “ mn`2, while varying the spring
force function in a similar fashion, which results in a general dimer.

4.4.1 Spring dimer

We take F1prq “ κr ` r2 and F2prq “ r ` r2 where κ “ 5, 10, 15, 20, 25, 100, 300. The results are seen
below.

Figure 4.48: Spring dimer with κ “ 5.
Figure 4.49: Spring dimer ripples with κ “ 5.
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Figure 4.50: Loglog plot of spring dimer leading
solitary wave amplitude with κ “ 5 for all t up
to 105.

Figure 4.51: Loglog plot of spring dimer ripple
amplitude with κ “ 5 for all t up to 105.

Figure 4.52: Spring dimer with κ “ 10. Figure 4.53: Spring dimer ripples with κ “ 10.

Figure 4.54: Spring dimer ripples with κ “ 10,
zoomed out.

Figure 4.55: Loglog plot of spring dimer leading
solitary wave amplitude with κ “ 10 for all t
up to 105.
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Figure 4.56: Loglog plot of spring dimer ripple amplitude with κ “ 10 for all t up to 105.

Figure 4.57: Spring dimer with κ “ 15.
Figure 4.58: Spring dimer ripples with κ “ 15.

Figure 4.59: Loglog plot of spring dimer leading
solitary wave amplitude with κ “ 15 for all t
up to 105.

Figure 4.60: Loglog plot of spring dimer ripple
amplitude with κ “ 15 for all t up to 105.
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Figure 4.61: Spring dimer with κ “ 20.
Figure 4.62: Spring dimer ripples with κ “ 20.

Figure 4.63: Loglog plot of spring dimer leading
solitary wave amplitude with κ “ 20 for all t
up to 105.

Figure 4.64: Loglog plot of spring dimer ripple
amplitude with κ “ 20 for all t up to 105.

Figure 4.65: Spring dimer with κ “ 25. Figure 4.66: Spring dimer ripples with κ “ 25.
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Figure 4.67: Loglog plot of spring dimer leading
solitary wave amplitude with κ “ 25 for all t
up to 105.

Figure 4.68: Loglog plot of spring dimer ripple
amplitude with κ “ 25 for all t up to 105.

Figure 4.69: Spring dimer with κ “ 100. Figure 4.70: Spring dimer ripples with κ “ 100.

Figure 4.71: Loglog plot of spring dimer leading
solitary wave amplitude with κ “ 100 for all t
up to 105.

Figure 4.72: Loglog plot of spring dimer ripple
amplitude with κ “ 100 for all t up to 105.
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Figure 4.73: Spring dimer with κ “ 300. Figure 4.74: Spring dimer ripples with κ “ 300.

Figure 4.75: Loglog plot of spring dimer leading
solitary wave amplitude with κ “ 300 for all t
up to 105.

Figure 4.76: Loglog plot of spring dimer ripple
amplitude with κ “ 300 for all t up to 105.

For the stiff spring limit in the spring dimer case, the amplitudes of the solitary waves start oscillating
around a certain value again at around t “ 102, as seen in Figures 4.55, 4.71 and 4.75. The amplitudes
behave similarly to the monatomic wave amplitude, but the amplitudes in this case are about double the
size of the monatomic wave amplitude. For κ “ 5, the amplitude shows again this kind of rapid decay
as we have seen in the equal mass limit, which translates to algebraic decay in a regular plot. As κ gets
bigger, we see that this rapid decay gets delayed to the point where we do not see it in our limited time
period. The ripples change from one shape to the other, not showing a clear behavioral pattern, but
they eventually settle into a small, regular patterned, jagged shaped ripple. In Figures 4.70 and 4.74
there seems to be no difference in size of the ripples. As κ gets bigger, it appears that the ripples do
not change much anymore. We observe a certain jaggedness in the relative displacement figures. We
call these jagged waves “stegotons”, as mentioned in [19].The jagged phenomena resembles the behavior
of the long wave solutions to spring dimers from [19], which ultimately arises from a coefficient on the
leading order term in the nanopteron that depends on the parity of lattice index n. In the stiff spring
limit, since there are dramatic differences between successive springs, we expect such stegoton behavior
here. This behavior will “smooth out” when we consider only even/odd-indexed sites, since there the
coefficient’s behavior will be the same throughout.

4.4.2 General dimer

We take m1 “ 1 and m2 “ 1{2. F1prq “ r ` r2 and F2prq “ κr ` r2 where κ “ 5, 10, 15, 17, 20, 100, 250.
The results are seen below.

24



Figure 4.77: General dimer with κ “ 5.
Figure 4.78: General dimer ripples with κ “ 5.

Figure 4.79: Loglog plot of general dimer lead-
ing solitary wave amplitude with κ “ 5 for all
t up to 105.

Figure 4.80: Loglog plot of general dimer ripple
amplitude with κ “ 5 for all t up to 105.

Figure 4.81: General dimer with κ “ 10. Figure 4.82: General dimer ripples with κ “ 10.
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Figure 4.83: Loglog plot of general dimer lead-
ing solitary wave amplitude with κ “ 10 for all
t up to 105.

Figure 4.84: Loglog plot of general dimer ripple
amplitude with κ “ 10 for all t up to 105.

Figure 4.85: General dimer with κ “ 15.
Figure 4.86: General dimer ripples with κ “ 15.

Figure 4.87: Loglog plot of general dimer lead-
ing solitary wave amplitude with κ “ 15 for all
t up to 105.

Figure 4.88: Loglog plot of general dimer ripple
amplitude with κ “ 15 for all t up to 105.
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Figure 4.89: General dimer with κ “ 17. Figure 4.90: General dimer ripples with κ “ 17.

Figure 4.91: Loglog plot of general dimer lead-
ing solitary wave amplitude with κ “ 17 for all
t up to 105.

Figure 4.92: Loglog plot of general dimer ripple
amplitude with κ “ 17 for all t up to 105.

Figure 4.93: General dimer with κ “ 20.
Figure 4.94: General dimer ripples with κ “ 20.
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Figure 4.95: Loglog plot of general dimer lead-
ing solitary wave amplitude with κ “ 20 for all
t up to 105.

Figure 4.96: Loglog plot of general dimer ripple
amplitude with κ “ 20 for all t up to 105.

Figure 4.97: General dimer with κ “ 100. Figure 4.98: General dimer ripples with κ “
100.

Figure 4.99: Loglog plot of general dimer lead-
ing solitary wave amplitude with κ “ 5 for all
t up to 105.

Figure 4.100: Loglog plot of general dimer rip-
ple amplitude with κ “ 100 for all t up to 105.
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Figure 4.101: General dimer with κ “ 250. Figure 4.102: General dimer ripples with κ “
250.

Figure 4.103: Loglog plot of general dimer lead-
ing solitary wave amplitude with κ “ 250 for
all t up to 105.

Figure 4.104: Loglog plot of general dimer rip-
ple amplitude with κ “ 250 for all t up to 105.

For the stiff spring limit in the general dimer case, we see again the same behavior for the amplitude of
the leading solitary wave. The amplitudes starts oscillating around a certain value and decays very slowly
from t “ 102 onward, which is similar to the monatomic case, except for the fact that the amplitude is
more than doubled. The ripple shows similar behavior as in the spring dimer case. There is no clear
behavioral pattern to be seen as κ gets bigger, but eventually the ripple settles into a regular patterned,
jagged ripple. For the latter two values of κ the ripple appears to show no difference in size or pattern.
Just as in the spring dimer case, we observe again the “stegoton”-type effect in the relative displacement
figures.

4.5 Odd and even simulations

We will be looking at the behavior of the even and odd indexed relative displacements of the various
limits. For the simulations we take ε “ 1{4. The results of the simulations are seen in the following
subsections. The figures shown are at t “ 105.

4.5.1 Small mass limit

For the small mass limit we have m1 “ 1 and m2 “ µ with µ “ 2´n for n P t2, 3u.

29



Figure 4.105: Even indexed small mass limit
with µ “ 1{4.

Figure 4.106: Even indexed small mass limit
ripples with µ “ 1{4.

Figure 4.107: Odd indexed small mass limit
with µ “ 1{4.

Figure 4.108: Odd indexed small mass limit rip-
ples with µ “ 1{4.

Figure 4.109: Even indexed small mass limit
solitary wave amplitude with µ “ 1{4.

Figure 4.110: Odd indexed small mass limit
solitary wave amplitude with µ “ 1{4.
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Figure 4.111: Even indexed small mass limit
ripple amplitude with µ “ 1{4.

Figure 4.112: Odd indexed small mass limit rip-
ple amplitude with µ “ 1{4.

Figure 4.113: Even indexed small mass limit
with µ “ 1{8.

Figure 4.114: Even indexed small mass limit
ripples with µ “ 1{8.

Figure 4.115: Odd indexed small mass limit
with µ “ 1{8.

Figure 4.116: Odd indexed small mass limit rip-
ples with µ “ 1{8.
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Figure 4.117: Even indexed small mass limit
solitary wave amplitude with µ “ 1{8.

Figure 4.118: Odd indexed small mass limit
solitary wave amplitude with µ “ 1{8.

Figure 4.119: Even indexed small mass limit
ripple amplitude with µ “ 1{8.

Figure 4.120: Odd indexed small mass limit rip-
ple amplitude with µ “ 1{8.

For these values of µ we do not see a lot of differences in the amplitudes of the even and odd solitary
waves. The ripples on the other hand are completely different from one another. For µ “ 1{4, we observe
a certain jaggedness, similar to what we saw in the stegotons in the regular spring dimer and general
dimer figures. This is not a real surprise, since if we compare these ripples to the regular small mass
limit ripples in Figure 4.6, we observe similar behavior. For µ “ 1{8, we observe a calm and wavy ripple.
Comparing these to Figure 4.11, we see instead some sort of envelopes taking shape, which would be the
result of combining these even and odd graphs, since it appears that there is a peak in the even graph
where there is a trough in the odd graph, and vice versa.

4.5.2 Equal mass limit

For the equal mass limit we have m1 “ 1 and m2 “ 1 ` µ with µ “ 2´n for n P t2, 3u. In these graphs
we see how the period of the ripples gets smaller and smaller, which corresponds to the ripples getting
more squished together in the regular graphs of the equal mass limit. Here, for µ “ 1{4 the ripples show
a bigger period than for µ “ 1{8, which indicates that as µ gets smaller, the period of the ripples in
these odd and even graphs gets smaller.
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Figure 4.121: Even indexed equal mass limit
with µ “ 1{4.

Figure 4.122: Even indexed equal mass limit
ripples with µ “ 1{4.

Figure 4.123: Odd indexed equal mass limit
with µ “ 1{4.

Figure 4.124: Odd indexed equal mass limit
ripples with µ “ 1{4.

Figure 4.125: Even indexed equal mass limit
solitary wave amplitude with µ “ 1{4.

Figure 4.126: Odd indexed equal mass limit
solitary wave amplitude with µ “ 1{4.
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Figure 4.127: Even indexed equal mass limit
ripple amplitude with µ “ 1{4.

Figure 4.128: Odd indexed equal mass limit
ripple amplitude with µ “ 1{4.

Figure 4.129: Even indexed equal mass limit
with µ “ 1{8.

Figure 4.130: Even indexed equal mass limit
ripples with µ “ 1{8.

Figure 4.131: Odd indexed equal mass limit
with µ “ 1{8.

Figure 4.132: Odd indexed equal mass limit
ripples with µ “ 1{8.
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Figure 4.133: Even indexed equal mass limit
solitary wave amplitude with µ “ 1{8.

Figure 4.134: Odd indexed equal mass limit
solitary wave amplitude with µ “ 1{8.

Figure 4.135: Even indexed equal mass limit
ripple amplitude with µ “ 1{8.

Figure 4.136: Odd indexed equal mass limit
ripple amplitude with µ “ 1{8.

4.5.3 Stiff spring limit: spring dimer

For the spring dimer case of the stiff spring limit we have m1 “ m2 “ 1, F1prq “ κr`r2 and F2prq “ r`r2

with κ P t5, 10, 15, 20, 25, 100u.

Figure 4.137: Even indexed spring dimer with
κ “ 5.

Figure 4.138: Even indexed spring dimer rip-
ples with κ “ 5.
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Figure 4.139: Odd indexed spring dimer with
κ “ 5.

Figure 4.140: Odd indexed spring dimer ripples
with κ “ 5.

Figure 4.141: Even indexed spring dimer soli-
tary wave amplitude with κ “ 5.

Figure 4.142: Odd indexed spring dimer soli-
tary wave amplitude with κ “ 5.

Figure 4.143: Even indexed spring dimer ripple
amplitude with κ “ 5.

Figure 4.144: Odd indexed spring dimer ripple
amplitude with κ “ 5.
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Figure 4.145: Even indexed spring dimer with
κ “ 10.

Figure 4.146: Even indexed spring dimer rip-
ples with κ “ 10.

Figure 4.147: Odd indexed spring dimer with
κ “ 10.

Figure 4.148: Odd indexed spring dimer ripples
with κ “ 10.

Figure 4.149: Even indexed spring dimer soli-
tary wave amplitude with κ “ 10.

Figure 4.150: Odd indexed spring dimer soli-
tary wave amplitude with κ “ 10.
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Figure 4.151: Even indexed spring dimer ripple
amplitude with κ “ 10.

Figure 4.152: Odd indexed spring dimer ripple
amplitude with κ “ 10.

Figure 4.153: Even indexed spring dimer with
κ “ 15.

Figure 4.154: Even indexed spring dimer rip-
ples with κ “ 15.

Figure 4.155: Odd indexed spring dimer with
κ “ 15.

Figure 4.156: Odd indexed spring dimer ripples
with κ “ 15.
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Figure 4.157: Even indexed spring dimer soli-
tary wave amplitude with κ “ 15.

Figure 4.158: Odd indexed spring dimer soli-
tary wave amplitude with κ “ 15.

Figure 4.159: Even indexed spring dimer ripple
amplitude with κ “ 15.

Figure 4.160: Odd indexed spring dimer ripple
amplitude with κ “ 15.

Figure 4.161: Even indexed spring dimer with
κ “ 20.

Figure 4.162: Even indexed spring dimer rip-
ples with κ “ 20.
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Figure 4.163: Odd indexed spring dimer with
κ “ 20.

Figure 4.164: Odd indexed spring dimer ripples
with κ “ 20.

Figure 4.165: Even indexed spring dimer soli-
tary wave amplitude with κ “ 20.

Figure 4.166: Odd indexed spring dimer soli-
tary wave amplitude with κ “ 20.

Figure 4.167: Even indexed spring dimer ripple
amplitude with κ “ 20.

Figure 4.168: Odd indexed spring dimer ripple
amplitude with κ “ 20.
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Figure 4.169: Even indexed spring dimer with
κ “ 25.

Figure 4.170: Even indexed spring dimer rip-
ples with κ “ 25.

Figure 4.171: Odd indexed spring dimer with
κ “ 25.

Figure 4.172: Odd indexed spring dimer ripples
with κ “ 25.

Figure 4.173: Even indexed spring dimer soli-
tary wave amplitude with κ “ 25.

Figure 4.174: Odd indexed spring dimer soli-
tary wave amplitude with κ “ 25.
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Figure 4.175: Even indexed spring dimer ripple
amplitude with κ “ 25.

Figure 4.176: Odd indexed spring dimer ripple
amplitude with κ “ 25.

Figure 4.177: Even indexed spring dimer with
κ “ 100.

Figure 4.178: Even indexed spring dimer rip-
ples with κ “ 100.

Figure 4.179: Odd indexed spring dimer with
κ “ 100.

Figure 4.180: Odd indexed spring dimer ripples
with κ “ 100.
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Figure 4.181: Even indexed spring dimer soli-
tary wave amplitude with κ “ 100.

Figure 4.182: Odd indexed spring dimer soli-
tary wave amplitude with κ “ 100.

Figure 4.183: Even indexed spring dimer ripple
amplitude with κ “ 100.

Figure 4.184: Odd indexed spring dimer ripple
amplitude with κ “ 100.

We see significant changes in the graphs as κ gets bigger. The amplitude of the even indexed solitary
wave gets more and more distorted at the start, while the amplitude of the odd indexed solitary wave
only displays the regular, slight distortion. The amplitude of the even indexed solitary waves is smaller
than the amplitude of the odd indexed ones. As κ gets bigger, the ripples of the graphs show different
behavior. Starting off as a jagged ripple, the ripple suddenly changes to a very large period wave, which
does not fit our interval, just to change back again to the jagged ripples. Finally, the ripples seem to
have disappeared completely for κ “ 100. This corresponds to the fact that in the regular relative
displacement graphs, the ripples show no clear behavioral pattern as κ gets bigger. The odd indexed
ripples appear to oscillate around a higher value than the even indexed ones.
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4.5.4 Stiff spring limit: general dimer

For the general dimer case of the stiff spring limit we have m1 “ 1, m2 “ 1{2, F1prq “ κr ` r2 and
F2prq “ r ` r2 with κ P t5, 10, 15, 17, 20, 100u.

Figure 4.185: Even indexed general dimer with
κ “ 5.

Figure 4.186: Even indexed general dimer rip-
ples with κ “ 5.

Figure 4.187: Odd indexed general dimer with
κ “ 5.

Figure 4.188: Odd indexed general dimer rip-
ples with κ “ 5.

Figure 4.189: Even indexed general dimer soli-
tary wave amplitude with κ “ 5.

Figure 4.190: Odd indexed general dimer soli-
tary wave amplitude with κ “ 5.
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Figure 4.191: Even indexed general dimer rip-
ple amplitude with κ “ 5.

Figure 4.192: Odd indexed general dimer ripple
amplitude with κ “ 5.

Figure 4.193: Even indexed general dimer with
κ “ 10.

Figure 4.194: Even indexed general dimer rip-
ples with κ “ 10.

Figure 4.195: Odd indexed general dimer with
κ “ 10.

Figure 4.196: Odd indexed general dimer rip-
ples with κ “ 10.

45



Figure 4.197: Even indexed general dimer soli-
tary wave amplitude with κ “ 10.

Figure 4.198: Odd indexed general dimer soli-
tary wave amplitude with κ “ 10.

Figure 4.199: Even indexed general dimer rip-
ple amplitude with κ “ 10.

Figure 4.200: Odd indexed general dimer ripple
amplitude with κ “ 10.

Figure 4.201: Even indexed general dimer with
κ “ 15.

Figure 4.202: Even indexed general dimer rip-
ples with κ “ 15.
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Figure 4.203: Odd indexed general dimer with
κ “ 15.

Figure 4.204: Odd indexed general dimer rip-
ples with κ “ 15.

Figure 4.205: Even indexed general dimer soli-
tary wave amplitude with κ “ 15.

Figure 4.206: Odd indexed general dimer soli-
tary wave amplitude with κ “ 15.

Figure 4.207: Even indexed general dimer rip-
ple amplitude with κ “ 15.

Figure 4.208: Odd indexed general dimer ripple
amplitude with κ “ 15.
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Figure 4.209: Even indexed general dimer with
κ “ 17.

Figure 4.210: Even indexed general dimer rip-
ples with κ “ 17.

Figure 4.211: Odd indexed general dimer with
κ “ 17.

Figure 4.212: Odd indexed general dimer rip-
ples with κ “ 17.

Figure 4.213: Even indexed general dimer soli-
tary wave amplitude with κ “ 17.

Figure 4.214: Odd indexed general dimer soli-
tary wave amplitude with κ “ 17.
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Figure 4.215: Even indexed general dimer rip-
ple amplitude with κ “ 17.

Figure 4.216: Odd indexed general dimer ripple
amplitude with κ “ 17.

Figure 4.217: Even indexed general dimer with
κ “ 20.

Figure 4.218: Even indexed general dimer rip-
ples with κ “ 20.

Figure 4.219: Odd indexed general dimer with
κ “ 20.

Figure 4.220: Odd indexed general dimer rip-
ples with κ “ 20.
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Figure 4.221: Even indexed general dimer soli-
tary wave amplitude with κ “ 20.

Figure 4.222: Odd indexed general dimer soli-
tary wave amplitude with κ “ 20.

Figure 4.223: Even indexed general dimer rip-
ple amplitude with κ “ 20.

Figure 4.224: Odd indexed general dimer ripple
amplitude with κ “ 20.

Figure 4.225: Even indexed general dimer with
κ “ 100.

Figure 4.226: Even indexed general dimer rip-
ples with κ “ 100.
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Figure 4.227: Odd indexed general dimer with
κ “ 100.

Figure 4.228: Odd indexed general dimer rip-
ples with κ “ 100.

Figure 4.229: Even indexed general dimer soli-
tary wave amplitude with κ “ 100.

Figure 4.230: Odd indexed general dimer soli-
tary wave amplitude with κ “ 100.

Figure 4.231: Even indexed general dimer rip-
ple amplitude with κ “ 100.

Figure 4.232: Odd indexed general dimer ripple
amplitude with κ “ 100.

We see quite similar behavior to the spring dimer case, where the ripples showed no clear behavioral
pattern. Here, we see various ripple shapes, from jagged to regular wave shaped ripples. However, after
κ “ 10 the ripples show a decay in amplitude as the ripples get further away from the solitary wave. The
even amplitudes show a similar distorted behavior at the start to the spring dimer case. The amplitude
of the even indexed solitary wave is also smaller than the amplitude of the odd indexed ones.
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4.6 Large wave speeds

In this section, we will look at the equal mass limit when we take ε ě 1. Since the long wave theory
of [15, 17, 19, 13, 3] all presume that ε is small, there is no guarantee that the code should produce
anything reasonable for larger ε. For these ε, it turns out that the simulations we run “explode” after a
short period of time, in the sense that the solutions take on a “NaN” value in MATLAB, which means
somewhere along the way there was done one of the following operations: 0{0, 0 ¨ 8, 8{8 or 8´8. It
is hard to trace back when or why this happens, which is why we decide to look at what happens if we
turn the initial condition into

rnp0q “ 3ε21 sech2
pβε2nqv

in which we will be looking at the behavior of the simulations as we take various values of ε1 and ε2 as
opposed to the single ε in (3.6). Here, as a reminder, v “ p1,´c0q, where c0 is the speed of sound. If ε1
is large we have a large amplitude wave and if ε2 is large, we have a small wavelength. It turns out that
as long as we take ε1 ď 1{2, we can take any arbitrary large number for ε2, meaning we get results for a
small amplitude, small wavelength wave. We fix ε1 at 1{4 and take µ “ 1{4, 1{8, 1{16 in the equal mass
limit. We simulate for ε2 “ 100, 1000, 10000. The results for these values of ε2 appear to be the same
and follow below. These are figures at t “ 105.

Figure 4.233: Equal mass limit with µ “ 1{4,
ε1 “ 1{4 and ε2 “ 100, 1000, 10000.

Figure 4.234: Equal mass limit ripples with µ “
1{4, ε1 “ 1{4 and ε2 “ 100, 1000, 10000.

Figure 4.235: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{4
and ε1 “ 1{4 and ε2 “ 100, 1000, 10000.

Figure 4.236: Loglog plot of equal mass limit
ripple amplitude with µ “ 1{4 and ε1 “ 1{4
and ε2 “ 100, 1000, 10000.
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Figure 4.237: Equal mass limit with µ “ 1{8,
ε1 “ 1{4 and ε2 “ 100, 1000, 10000.

Figure 4.238: Equal mass limit ripples with µ “
1{8, ε1 “ 1{4 and ε2 “ 100, 1000, 10000.

Figure 4.239: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{8
and ε1 “ 1{4 and ε2 “ 100, 1000, 10000.

Figure 4.240: Loglog plot of equal mass limit
ripple amplitude with µ “ 1{8 and ε1 “ 1{4
and ε2 “ 100, 1000, 10000.

Figure 4.241: Equal mass limit with µ “ 1{16,
ε1 “ 1{4 and ε2 “ 100, 1000, 10000.

Figure 4.242: Equal mass limit ripples with µ “
1{16, ε1 “ 1{4 and ε2 “ 100, 1000, 10000.
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Figure 4.243: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{16
and ε1 “ 1{4 and ε2 “ 100, 1000, 10000.

Figure 4.244: Loglog plot of equal mass limit
ripple amplitude with µ “ 1{16 and ε1 “ 1{4
and ε2 “ 100, 1000, 10000.

If we compare these figures to the figures in Section 4.3, we see slight differences. We see that the
amplitude at t “ 105 is smaller in the small wavelength, small amplitude case. We also see that the
amplitude of the leading solitary wave decays faster at the start than in Section 4.3, to reach the almost
constant state at around t “ 102, after which it decays, which is comparable to the figures in Section
4.3. The amplitudes of the ripples seem to have gotten somewhat smaller, whereas in Section 4.3, the
amplitudes of the ripples for these values of µ only seem to get bigger.

4.7 Conclusions

We see similar behavior in the various limits in the sense that they all converge in to the monatomic
behavior in a certain way. Broadly, we see what they saw in [2] in the diatomic long wave problem,
namely a “solitary wave plus oscillatory wake”.

If we compare all the limits by solitary wave amplitudes over time, we see the same pattern occuring
over and over. First, there is an initial disorder in amplitude, which eventually settles into an oscillation
around a value which decays very slowly. For the equal mass limit, we see that after an extended amount
of time, there is a “rapid” decay, which, since the amplitude plots are loglog plots, translates to algebraic
decay in real time vs. real amplitude. For the stiff spring limit in both the spring dimer and general
dimer cases, we observe that the amplitude is almost double the amplitude of the monatomic, equal
mass and small mass cases. As we look at the even and odd indexed amplitudes, the same pattern of
initial disorder and settling is observed, with slight variations. In the even cases of the spring dimer and
general dimer for example, there is an extreme drop in amplitude in the initial disorder. Also, for the
spring dimer and general dimer cases, the amplitude of the even indexed solitary waves is often much
smaller than the amplitude of the odd indexed ones.

Looking at the ripples left behind, we observe different behavior in all the different limits. In the
small mass limit we see the ripples’ amplitude decaying as it moves away from the leading solitary wave
and as µ gets smaller, the amplitudes of the ripples get smaller too. In the equal mass limit we see
the ripples getting squished together and not so much decaying in amplitude. In the spring dimer and
general dimer cases of the stiff spring limit we see no clear pattern in the behavior of the ripples as κ
gets bigger, but in both cases, the ripples converge to a seemingly constant amplitude, jagged shaped
ripple. The even and odd indexed figures often show very different behavior in the ripple from their
composite counterparts. For example, for some values of κ in the spring dimer and general dimer cases,
we see the jaggedness disappear as we graph the odd and even indices separately, which is remarkable
behavior which we already hinted at at the start of this chapter. As was mentioned before, in [19] this
stegoton-type behavior is covered. The absence of the stegoton-type behavior in the equal mass limit
is due to the fact that for alternating lattice indices n, there is no difference in the equal mass limit,
as opposed to the stiff spring limit. It is peculiar, however, that the jagged behavior does not arise in
the small mass limit, since the difference in masses is pretty significant. This could mean that there is
some sort of, not yet seen before, mechanism in the stiff spring limit which induces additional differences
based on the parity of the index site n. This is only speculation, however, since there are no proofs yet
on nanopterons in the stiff spring limit, which means we are treading on uncharted territory.
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4.8 Different ε

Since we only used ε “ 1{4 in our simulations, it could be interesting to see what kind of behavior the
limits show for different values of ε. Below are a few example figures of the equal mass limit and small
mass limit for ε “ 1{8, which already show quite interesting results in comparison to what we have found
for ε “ 1{4.

Figure 4.245: Equal mass limit with µ “ 1{4
and ε “ 1{8.

Figure 4.246: Equal mass limit ripples with
µ “ 1{4 and ε “ 1{8.

Figure 4.247: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{4
and ε “ 1{8.

Figure 4.248: Loglog plot of equal mass limit
ripple amplitude with µ “ 1{4 and ε “ 1{8.

Figure 4.249: Equal mass limit with µ “ 1{8
and ε “ 1{8.

Figure 4.250: Equal mass limit ripples with
µ “ 1{8 and ε “ 1{8.
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Figure 4.251: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{8
and ε “ 1{8.

Figure 4.252: Loglog plot of equal mass limit
ripple amplitude with µ “ 1{8 and ε “ 1{8.

Figure 4.253: Equal mass limit with µ “ 1{16
and ε “ 1{8. Figure 4.254: Equal mass limit ripples with µ “

1{16 and ε “ 1{8.

Figure 4.255: Loglog plot of equal mass limit
leading solitary wave amplitude with µ “ 1{16
and ε “ 1{8.

Figure 4.256: Loglog plot of equal mass limit
ripple amplitude with µ “ 1{16 and ε “ 1{8.
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Figure 4.257: Small mass limit with µ “ 1{4
and ε “ 1{8.

Figure 4.258: Small mass limit ripples with µ “
1{4 and ε “ 1{8.

Figure 4.259: Small mass limit ripples with µ “
1{4 and ε “ 1{8, zoomed out.

Figure 4.260: Loglog plot of small mass limit
leading solitary wave amplitude with µ “ 1{4
and ε “ 1{8.

Figure 4.261: Loglog plot of small mass limit ripple amplitude with µ “ 1{4 and ε “ 1{8.
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Figure 4.262: Small mass limit with µ “ 1{8
and ε “ 1{8.

Figure 4.263: Small mass limit ripples with µ “
1{8 and ε “ 1{8.

Figure 4.264: Small mass limit ripples with µ “
1{8 and ε “ 1{8, zoomed out.

Figure 4.265: Loglog plot of small mass limit
leading solitary wave amplitude with µ “ 1{8
and ε “ 1{8.

Figure 4.266: Loglog plot of small mass limit ripple amplitude with µ “ 1{8 and ε “ 1{8.
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Figure 4.267: Small mass limit with µ “ 1{16
and ε “ 1{8.

Figure 4.268: Small mass limit ripples with µ “
1{16 and ε “ 1{8.

Figure 4.269: Small mass limit ripples with µ “
1{16 and ε “ 1{8, zoomed out.

Figure 4.270: Loglog plot of small mass limit
leading solitary wave amplitude with µ “ 1{16
and ε “ 1{8.

Figure 4.271: Loglog plot of small mass limit ripple amplitude with µ “ 1{16 and ε “ 1{8.
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Chapter 5

Further Research

5.1 Improved initial conditions

In our simulations we took the initial conditions as in [2]. While these initial conditions work well, they
may not be optimal for the small mass, equal mass and stiff spring limits. Recall that in Chapter 3 we
brought up the forms of the traveling waves for the small mass and equal mass limits. We mentioned
that the leading order terms of the small mass and equal mass solutions are not sech2-type functions, but
rather monatomic traveling waves. Ofcourse, by (3.4), a sech2-type function definitely approximates a
monatomic wave, but there is some room for improvement. For the sake of convenience, we assumed the
sech2-type initial conditions in this thesis. The suggestion for improvement on the initial condition could
be satisfied by using the Fourier multiplier theory. For this, we use the Fourier transform. If f : RÑ C is
absolutely integrable, meaning the improper integral

ş8

´8
|fpxq|dx converges, then the Fourier transform

of f is

Frf spkq “ pfpkq :“
1
?

2π

ż 8

´8

fpxqe´ikxdx

and the inverse Fourier transform is

F´1rf spxq “ qfpxq :“
1
?

2π

ż 8

´8

fpkqe´ikxdk.

Some important properties of the Fourier transform for us are the following. If f is differentiable and if
pf 1pkq is defined, then

pf 1pkq “ ik pfpkq. (5.1)

Next, let d P R and pSdfqpxq “ fpx ` dq. Then, following from the definition of the Fourier transform,
we get

ySdfpkq “ eikd pfpkq. (5.2)

If we make a traveling wave ansatz for (1.2) and (1.3) on the monatomic version of the system, that
is, with mj “ 1 for all j:

rjptq “ ρpj ´ ctq and pjptq “ φpj ´ ctq,

we obtain the following first-order system

$

’

&

’

%

ρ1 “ ´
1

c
pS1 ´ 1qφ

φ1 “ ´
1

c
pF pρq ´ F pS´1ρqq “ ´

1

c
p1´ S´1qF pρq,

where pS˘1fqpXq “ fpX ˘ 1q for any function f . Combining the Fourier transform, (5.1) and (5.2)
yields

pρ1pkq “
yS1φpkq ´ pφpkq

´c
“
eik ´ 1

´c
pφpkq “ ikpρpkq

and

pφ1pkq “
zF pρqpkq ´ {S´1F pρq

´c
“

1´ e´ik

´c
zF pρqpkq “ ikpφpkq
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which give the identities

pρpkq “
1´ eik

ick
pφpkq and pφpkq “

e´ik ´ 1

ick
zF pρqpkq. (5.3)

Combining these latter two equations gives us

pρpkq “
eik ` e´ik ´ 2

´pckq2
zF pρqpkq “

2 cospkq ´ 2

´pckq2
zF pρqpkq “

4 sin2
pk2 q

pckq2
zF pρqpkq “

sinc2
pk2 q

c2
zF pρqpkq,

where sincpKq :“ sinpKq{K. Next, assume F prq “ r `Qprq, where Qprq is roughly quadratic in r. We
get

pρpkq “
sinc2

pk2 q

c2
ppρpkq ` zQpρqpkqq “

sinc2
pk2 q

c2
pρpkq `

sinc2
pk2 q

c2
zQpρqpkq.

Bringing all pρpkq factors to one side and writing out sincpk2 q again gives us

c2pk2 q
2 ´ sin2

pk2 q

c2pk2 q
2

pρpkq “
sin2

pk2 q

c2pk2 q
2
zQpρqpkq

which in turn gives us

pρpkq “McpkqzQpρqpkq where Mcpkq :“
sin2

pk2 q

c2pk2 q
2 ´ sin2

pk2 q
.

Finally, using the inverse Fourier transform yields

ρ “ F´1rMc
zQpρqs “: Ncpρq.

It has been proved by Friesecke and Pego [3] that there exists a unique solution to this equation when
|c| is close to 1 by using Banach’s fixed point theorem. We call this solution σc. Banach’s fixed point
theorem makes sure that we can create this solution iteratively, namely for appropriate αc, βc P R, set

ρ0,cpxq :“ αc sech2
pβcxq and ρk`1,c :“ Ncpρk,cq, k ě 0.

Then pρk,cq converges to σc. Once σc has been found, φ can also be found by taking the inverse Fourier

transform of the representation for pφ in (5.3). Friesecke and Pego [3] look for long wave traveling wave
solutions, so they rescale

ρpxq “ ε2%pεxq,

where now % is the unknown function. They take c “ cε “
?

1` ε2, which turns the fixed point problem
into

% “ F´1rMε
cε
zQp%qs “: Gεp%q where Mε

cε “ ε2Mcεpεkq.

Friesecke and Pego’s findings indicate we should look for % close to

%0,εpxq “
ε2

4
sech2

p
εx

4
q.

We have attempted coding a solver to this fixed point problem in MATLAB, the code of which can
be found in Appendix B. The numerics and code from [27] could point the way to a better monatomic
FPUT solitary wave solver, but such work is beyond the scope of this thesis.

We did not explore the long wave problem for the springs dimers or the general dimers, which is still a
project that is worthwhile to explore independently of this thesis, even though we expect the simulations
for that to closely resemble the diatomic work done in [2].

5.2 Stability of the material limits

If we compare our findings to what they had found in [2], we can make some conjectures about the
stability of the solutions to the various material limits we presented here. If we allow for stegoton-
type variations in the stiff spring limit, the behaviors of the small mass and stiff spring limits closely
resemble the long wave limit in [2]. That is, solutions that start close to a nanopteron ultimately turn
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into a solitary wave and an oscillatory part, where the solitary wave amplitude and the frequency and
amplitude of the oscillatory part behave like the long wave limit in [2]. If we look at the observations
done listed on page 424, 427 and 428, we see several similarities to what we have observed.

Firstly, we see that the decay in amplitude of the solitary wave is so slow that it is indeed barely
visible. Secondly, although the shape of the oscillatory wake is different for each value of µ or κ, we see
that the frequency of the ripples is near constant as time goes on. We see also, as we zoom in more on
the oscillatory wake, that in some cases the ripples oscillate around a value not equal to zero. Thirdly,
if we compare our amplitude plots to the ones in [2], we find that we also see the initial disorder in
both solitary wake and oscillatory wake amplitudes, which is followed by a settling into a more regular
behavior. We see also the kind of linear decay in the loglog plots which corresponds to algebraic decay
in real time vs. real amplitude. After the initial disorder, all the amplitudes seem to settle around
a constant value, but they actually decay very slowly. All these observations lead us to making the
conjecture that in the small mass limit and the stiff spring limit, the solutions are metastable, which was
first conjectured for the long wave problem in Section 7 of [17].

As a reminder, the definition of metastability as quoted from [17] reads: “metastable solutions which
look for very long times like localized solitary waves but eventually converge to zero.” On the other hand,
if we observe what we have found for the equal mass limit, the results differ very much from the other
limits. If we look at the differences in theory, this might not come so much as a surprise. The equal
mass limit traveling wave problem is not singularly perturbed, and the solutions ripples are not small
beyond all orders of ε, which is to say the solutions are micropterons. These differences apparently lead
to a much more fast decay of the amplitude of the solitary wave. We conjecture instability, solutions
that start near the equal mass solution do not necessarily stay close for very long times, but erode
much faster. Any proofs or refutals of these conjectures will most likely involve the periodic term in
the nanopteron/micropteron and the singular perturbation of the stiff spring, small mass and long wave
problems, neither of which appears in the stability analyses of Mizumachi [23] and Friesecke and Pego
[28, 29, 30].
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Appendix A

Sequence and Sobolev spaces

In this appendix, we use [31] for all definitions and conventions.

Definition 1. The `2 “ `2pZq space is the space of square-summable bi-infinite sequences of complex
numbers. That is to say, it is the set of infinite sequences pznq such that

||pznq||`2 “

˜

8
ÿ

n“´8

|zn|
2

¸1{2

ă 8.

In the case of `2 ˆ `2 and a sequence zn :“ pzn,1, zn,2q the norm is

||zn||`2ˆ`2 “ ||pzn,1q||`2 ` ||pzn,2q`2 .

Definition 2. Let p P R such that 1 ă p ă 8. We set

LppΩq “
 

f : Ω Ñ R : f is measurable and |f |p P L1pΩq
(

where L1pΩq is the space of integrable functions from Ω into R. The Lp space has the following norm:

||f ||Lp “ ||f ||p “

ˆ
ż

Ω

|fpxq|pdµ

˙1{p

.

Definition 3. We set

L8pΩq “ tf : Ω Ñ R : f measurable and DC : |fpxq| ď C a.e. on Ωu

with the norm
||f ||L8 “ ||f ||8 “ inf tC : |fpxq| ď C a.e. on Ωu .

Definition 4. The space C1
c pIq is the space of once continuously differentiable functions on I with

compact support, that is,

C1
c pIq “ tf P C

1pIq : fpxq “ 0 @x P IzK, where K is compactu.

Definition 5. Let I “ pa, bq be an open interval, possibly unbounded. Let p P R such that 1 ď p ď 8.
The defintion of the Sobolev space W 1,p is given by

W 1,ppIq “

"

u P LppIq : Dg P LppIq such that

ż

I

uφ1 “ ´

ż

I

gφ @φ P C1
c pIq

*

.

We set
H1pIq “W 1,2pIq.

If there is no confusion we write W 1,p instead of W 1,ppIq and H1 instead of H1pIq. The space W 1,p has
the following equivalent norms,

||u||W 1,p “ ||u||Lp ` ||u
1||Lp ,

and if 1 ă p ă 8,
||u||W 1,p “ p||u||pLp ` ||u

1||
p
Lpq

1{p.

The norm for H1 follows from this norm.
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Definition 6. Given an integer s ě 2 and a real number 1 ď p ď 8 we can define by induction the
space

W s,ppIq “
 

u PW s´1,ppIq : u1 PW s´1,ppIq
(

and we set
HspIq “W s,2pIq.

The space W s,p is equipped with the norm

||u||W s,p “ ||u||Lp `
s
ÿ

k“1

||upkq||Lp ,

where upkq is the kth derivative of u. Again, for 1 ă p ă 8, sometimes the equivalent norm p||u||pLp `
řs
k“1 ||u

1||
p
Lpq

1{p is used. The norm for Hs follows from this norm.
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Appendix B

Monatomic FPUT fixed point solver
coding attempt

1 a = ´10000∗pi ;
2 b = 10000∗pi ;
3 eps = 1/4 ;
4 N = 2ˆ10 ;
5 n = 0 :N´1;
6 L = b´a ;
7 X = a + (L/N) ∗n ;
8 rho0 = epsˆ2/4∗ sech ( eps∗X/4) . ˆ 2 ;
9 k = 2∗pi/L ∗ [ 0 :N/2´1, 0 , Ń/2+1:´1];

10 M = sin (X/2) .ˆ2/((1+ epsˆ2) ∗(X/2) .ˆ2´ sin (X/2) . ˆ 2 ) .∗ k ;
11 rho1 = 1 ;
12

13 while ( rho0 ˜= rho1 )
14 rho1 = rho0 ;
15 Qhat = f f t ( rho0 . ˆ 2 ) ;
16 rho0 = i f f t (M.∗Qhat ) ;
17 end
18 plot (X, rho0 ) ;
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