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1. First-Order Differential Equations

We will not define precisely what a differential equation is for some time, as the most exact
definition will make more sense after we see a number of examples, and nonexamples. For
now, we will operate under the following terminology.

1.0.1 Undefinition.
An ordinary differential equation is an equation involving a function and one
or more of its derivatives.

The problem with this definition will be that most ambiguous word “involving.” We will
see some equations that certainly “involve” a function and its derivative and yet are not what
we are culturally expected to define as a differential equation.

1.1. Direct integration.

Perhaps the simplest class of differential equations are those which involve only the first
derivative of the unknown function and not the function itself.

1.1.1 Example.

Find all functions y such that
dy

dx
= x. (1.1.1)

Solution. We need to find all functions y whose derivative equals x. In other words, and in
other notation, we need to find all functions y such that

y′(x) = x (1.1.2)

for all x. If we assume that (1.1.2) holds, then y must be an antiderivative of x, and therefore

y(x) =

∫
x dx =

∫
x1 dx =

x1+1

1 + 1
+ C =

x2

2
+ C

by the power rule. Here C is an arbitrary, fixed constant that is independent of x.
Conversely, we can check that

d

dx

[
x2

2
+ C

]
=

d

dx

[
x2

2

]
+

d

dx
[C] =

1

2

d

dx
[x2] + 0 =

1

2
(2)x2−1 = x.

Thus the function y(x) = x2/2+C satisfies (1.1.2). Moreover, the work with the antideriva-
tive shows that any solution y to (1.1.2) must have the form y(x) = x2/2 + C for some
constant C. N

We summarize the “direct integration” method of solving ODEs in the following algorith-
mic method and formal theorem.
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1.1.2 Method: Solve
dy

dx
= g(x) for a given function g.

All solutions have the form y(x) =

∫
g(x) dx+ C, where C is a constant.

1.1.3 Theorem.
Suppose that g is continuous on the interval I, and let G be an antiderivative of g on I
(i.e., G′(x) = g(x) for all x in I.). Then a function f on I solves

f ′(x) = g(x) for x in I

if and only if there is a constant C such that f(x) = G(x) + C for all x in I.

Proof. (=⇒) Suppose that f satisfies f ′(x) = g(x) for all x in I. Then f is an antiderivative
of g. Since G is also an antiderivative of g, calculus tells us that f and G differ by a constant.
Thus there is a real number C such that f(x) = G(x) + C for all x.

(⇐=) Suppose that f has the form f(x) = G(x) + C, where C is a constant and G′ = g.
Then by the linearity of the derivative,

f ′(x) = G′(x) + 0 = g(x). �

1.1.4 Remark.
One peril of the indefinite integral is the ambiguity of the “dummy” variable of integration.
If g is a function, the symbols∫

g(x) dx,

∫
g(s) ds, and

∫
g(t) dt

all mean the same: they denote the set of all functions whose derivatives equal g. Thus
we expect ∫

g(x) dx =

∫
g(s) ds =

∫
g(t) dt.

If we try to define a specific function f by setting

f(x) =

∫
g(x) dx,

then we might also expect

f(x) =

∫
g(t) dt = f(t). (?!)

This sort of variable-switching can cause endless, and unnecessary, and avoidable, headaches.
If and when we want to consider a particular antiderivative of a function g, we will fre-
quently give it a name, like G (thus G′(x) = g(x) for all x) that does not involve that most
beautiful, and mystifying, of symbols,

∫
.
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We constructed infinitely many solutions to the differential equation (1.1.1). This is
wholly typical of differential equations: they usually have many solutions. If we impose
additional requirements or data on the differential equation, then we can often winnow down
to one particular solution.

This is where we finished on Monday, January 10, 2022 (Section 53).

1.1.5 Example.

Find all solutions to the initial value problem
dy

dx
= x

y(0) = 0.

Solution. Now we are seeking a function y with two properties. First, we need y′(x) = x
for all x. Second, we need y(0) = 0.

We already know that the only functions y satisfying y′(x) = x for all x have the form
y(x) = x2/2+C for some constant C. We want to choose C so that y(0) = 0. This demands

0 = y(0) =
02

2
+ C = C.

Thus C = 0 and y(x) = x2/2 solves the initial value problem. Also, this is the only solution
to the initial value problem; all solutions are determined by the value of C, and only one
value for C works here (C = 0). N

This is where we finished on Monday, January 10, 2022 (Section 54).

1.2. Explorations with exponentials.

Never underestimate the value of “fooling around” when learning something new. To review
some essential calculus concepts, and to motivate some techniques and tricks for the future,
we will “fool around” with several differential equations that are the least difficult ones that
cannot be solved via direct integration.

1.2.1 Example.

Find all solutions to the differential equation f ′ = f .

Solution. We break our treatment of this (very simple) differential equation into a number
of (very wordy) steps.



1. First-Order Differential Equations 7

1. First, one might rewrite this problem as

“Find all functions f such that f ′(x) = f(x) for all x”

or
“Find all y such that

dy

dx
= y.

Purely in words, with no symbols, we need to find all functions that differentiate back to
themselves.

2. Without a calculus course behind us, we might not have a clue as to what functions could
solve the differential equation, let alone how to be sure that we have found “all” solutions.
(Although, without a calculus course, the words “derivatives” and “differentiate” probably
will not make mathematical sense.) With a calculus course earlier in life, we might remember
something useful: the function f(x) := ex satisfies f ′(x) = ex. Equivalently,

d

dx
[ex] = ex.

That is, the exponential is its own derivative. And so one solution to f ′ = f is f(x) = ex.

3. Are there other solutions? Our immediate past experience with “direct integration” differ-
ential equations suggests that perhaps we should have an arbitrary constant in our answer.
Perhaps we can “build” more solutions from this one solution f(x) = ex? If we use the
“linearity” of the derivative, we certainly can. Recall that if f is differentiable and C is a
constant, then the function g(x) := Cf(x) is differentiable, and g′(x) = Cf ′(x). In other
words,

d

dx
[Cf(x)] = Cf ′(x) or (Cf(x))′ = Cf ′(x).

Returning to our specific solution f(x) = ex, we let C be any constant and we define
g(x) = Cex to see that

g′(x) =
d

dx
[Cex] = C

d

dx
[ex] = Cex = g(x).

Consequently, g(x) = Cex also solves the differential equation. (A reasonable, but bad, idea
would be to guess instead g(x) = ex + C, which yields g′(x) = ex 6= g(x), unless C = 0.)

4. We now have an infinite family of solutions to the problem f ′ = f . For every real number,
the map f(x) = Cex is a solution. Can there be any other solutions? That is, can there exist
a solution f to f ′ = f such that there does not exist a real number C such that f(x) = Cex

for all x? More plainly, are there non-exponential solutions?

5. The answer is no, although the justification of this answer relies on a non-obvious trick.
Suppose that f does satisfy f ′ = f . We want to force the existence of a real number C such
that f(x) = Cex for all x. We know that

f ′(x) = f(x) (1.2.1)
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for all x. Then we can multiply both sides of (1.2.1) by e−x to find

f ′(x)e−x = f(x)e−x. (1.2.2)

Why would we do this? Because it works. Because someone else told us to. Because we will
revisit this later.

Now subtract the right side of (1.2.2) from the left to find

f ′(x)e−x − f(x)e−x = 0. (1.2.3)

The left side of (1.2.3) has a very special form. Recall that if g is another differentiable
function, then the product rule tells us

d

dx
[fg](x) = f ′(x)g(x) + f(x)g′(x).

We rewrite (1.2.3) very slightly as

f ′(x)e−x + f(x)[−e−x] = 0. (1.2.4)

This, hopefully, looks very much like the product rule, if we recall that

d

dx
[e−x] = −e−x

from the chain rule. Thus (1.2.4) is really

d

dx
[f(x)e−x] = 0. (1.2.5)

We need yet another calculus fact: if h is a differentiable function and h′(x) = 0 for
all x, then h is constant — there is a real number C such that h(x) = C for all x. The
statement (1.2.5) is really saying that if h(x) = f(x)e−x, then h is constant. Thus there is a
real number C such that

f(x)e−x = C (1.2.6)

for all x. We solve1 for f(x) as
f(x) = Cex.

Thus f must be a constant multiple of the exponential, and there are no other solutions to
the differential equation. N

How should we pick the constant C? Without further “data” in our problem it is impos-
sible to tell, but with additional data imposed, we may be directed to a particular value for
C.

1If it helps with the algebra, rewrite (1.2.6) as

f(x)

ex
= C

and then multiply both sides by ex.



1. First-Order Differential Equations 9

1.2.2 Example.

Find all functions f satisfying both f ′ = f and f(0) = 1.

Solution. We now know that if f ′ = f , then there is a constant C such that f(x) = Cex for
all x. We want f(0) = 1, so that demands Ce0 = 1. Since e0 = 1, we have C = 1, and thus
f(x) = ex. In particular, f(x) = ex is the only function satisfying both f ′ = f and f(0) = 1.

N

We see that while a differential equation may have infinitely many solutions, imposing
an “initial” or “pointwise” condition on the solution can radically reduce the number of
permissible solutions — and maybe even make the solution unique.

1.2.3 Example.

Let a be a fixed real number. Find all functions f satisfying f ′ = af .

Solution. The number a is a parameter of our differential equation, and any solution
that we find must somehow incorporate a. The equation f ′ = f , which we solved previously,
is the special case a = 1.

Requiring f ′ = af means that f and its derivative should be proportional, a word that
might evoke, again, the exponential from our memory of calculus. If we guess f(x) = Ceax,
where C is an arbitrary constant (and a is not arbitrary, but rather the same parameter that
appears in our problem), we compute

f ′(x) =
d

dx
[Ceax] = C

d

dx
[eax] = Ceax

d

dx
[ax] = Ceaxa

d

dx
[x] = Ceaxa = a(Ceax) = af(x).

Thus we have found an infinite family of solutions to our problem. We can check that any
solution to f ′ = af must have the form f(x) = Ceax for some real number C using a trick
similar to our solution of f ′ = f (multiply both sides of f ′(x) = f(x) by e−ax and work until
the product rule appears), which we leave as an exercise. N

This is where we finished on Wednesday, January 12, 2022.

1.2.4 Example.

Find all functions f satisfying f ′(x) = xf(x) for all x.

Solution. We previously solved f ′(x) = f(x) and, more generally, f ′(x) = af(x), but
now the coefficient on f is not constant. Nonetheless, since our previous solutions were
f(x) = Cex and f(x) = Ceax, we might be led to guess that here we should have a solution
of the form f(x) = CeH(x) for some function H. (The letter H is for “hope,” as in “we
hope that this is the case.”) We can try to suss out what H is by evaluating our differential
equation at this guess. We have

f ′(x) =
d

dx
[CeH(x)] = C

d

dx
[eH(x)] = CeH(x)H ′(x).
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Since we want f ′(x) = xf(x), this means that we need

CeH(x)H ′(x) = x[CeH(x)].

We can divide eH(x) from both sides, since it is always the case that eH(x) > 0. Thus we
want

CH ′(x) = Cx.

Next, we should eliminate C, and of course we can do so via division if C 6= 0. (If C = 0,
then f(x) = CeH(x) = 0 · eH(x) = 0, and we can check that f(x) = 0 is a solution to the
differential equation.) In the case C 6= 0, we find

H ′(x) = x.

This is a separate, auxiliary differential equation for H, and it is one that we have solved
before. We find that H must be the function

H(x) =
x2

2
+K,

where K is a constant of integration. (We have already used C as a constant, so we are
writing the constant of integration differently.)

Thus
f(x) = CeH(x) = Cex

2/2+K = CeKex
2/2.

Since K can be any real number, eK can be any positive real number, and since C can be any
real number, the product CeK can be any real number. So, we abuse notation and replace
CeK by just C, where C is, once again, understood to be an arbitrary constant. Thus a
family of solutions to f ′(x) = xf(x) is

f(x) = Cex
2/2.

Last, we need to establish that there are no other solutions. We can do this by assum-
ing that f ′(x) = xf(x) and then multiplying both sides by e−x

2/2 to obtain f ′(x)e−x
2/2 =

(xe−x
2/2)f(x). This rearranges, once more, into the product rule. We leave this as an

exercise. N

We have now solved the differential equation

f ′(x) = h(x)f(x),

where h is a given function, in three different cases. Here is a summary.

h(x) Solution to f ′(x) = h(x)f(x)
h(x) = 1 f(x) = Cex

h(x) = a f(x) = Ceax

h(x) = x f(x) = Cex
2/2

Perhaps we see a pattern emerging: the solutions always have the form f(x) = CeH(x),
where H ′(x) = h(x). That is, H is an antiderivative of h. These observations generalize in a
substantial way, which we state formally. Before proceeding, though, we need to recall that
if a function h is continuous on an interval I, then h has an antiderivative on I: there is a
differentiable function H defined on I such that H ′(x) = h(x) for all x in I.
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1.2.5 Theorem.
Let h be continuous on an interval I and let H be an antiderivative of h. Then a
differentiable function f defined on I solves

f ′(x) = h(x)f(x)

for all x in I if and only if there is a number C such that f(x) = CeH(x) for all x in I.

Proof. (⇐=) Fix a real number C and let f(x) = CeH(x). We need to show that f ′(x) =
h(x)f(x). The chain rule tells us

f ′(x) =
d

dx
[CeH(x)] = C

d

dx
[eH(x)] = CeH(x)H ′(x) = CeH(x)h(x) = h(x)[CeH(x)] = h(x)f(x).

(=⇒) Suppose that f is a differentiable function defined on I and f ′(x) = h(x)f(x) for all x
in I. We need to find a constant C such that f(x) = CeH(x) for all x in I. We claim that

d

dx
[f(x)e−H(x)] = 0,

and that this forces the existence of such a C. We leave the details as an exercise but mention
that it follows, broadly, the pattern of Step 5 in the solution of Example 1.2.1. �

1.2.6 Method: Solve f ′(x) = h(x)f(x), where h is continuous.

All solutions have the form f(x) = CeH(x), where H ′(x) = h(x). Take

H(x) =

∫
h(x) dx.

Omit the constant of integration.

1.2.7 Example.

(i) Find all functions f defined on (0,∞) that satisfy

f ′(x) =
f(x)

x
. (1.2.7)

(ii) Find all functions f defined on (0,∞) that satisfyf ′(x) =
f(x)

x
f(1) = 0.

Solution. (i) The differential equation (1.2.7) has the form f ′(x) = h(x)f(x), where h(x) =
1/x. Note that h is defined on the interval (0,∞) but not on (−∞,∞). An antiderivative
of h is

H(x) =

∫
1

x
dx =

∫
dx

x
= ln(|x|).



1. First-Order Differential Equations 12

Here we need only one antiderivative, and we may (shockingly) omit the constant of integra-
tion. Also, we are abusing notation (see Remark 1.1.4) by taking the independent variable
of H and the dummy variable of integration both to be x. Life is a series of compromises.

We can simplify H slightly because we are working with x > 0: we have H(x) = ln(|x|) =
ln(x). Thus any solution to (1.2.7) has the form

f(x) = CeH(x) = Celn(x) = Cx.

We check our work:

f ′(x) =
d

dx
[Cx] = C and

f(x)

x
=
Cx

x
= C.

Thus we have the equality in (1.2.7). Note also that we had no qualms about dividing by x
above, since we are assuming that x > 0 all along.

(ii) We know that the solution f has the form f(x) = Cx, and we want f(1) = 0, thus
C · 1 = 0 and therefore C = 0. That is, f(x) = 0 · x = 0 is the solution. N

This is where we finished on Friday, January 14, 2022.

1.3. Linear first-order differential equations.

1.3.1 Definition.
Let p and q be functions defined on the same interval I. A linear first-order
ordinary differential equation is an equation of the form

f ′(x) + p(x)f(x) = g(x). (1.3.1)

A solution f to (1.3.1) is a differentiable function f defined on I that satisfies (1.3.1)
for each x in I. The equation (1.3.1) is homogeneous if g(x) = 0 for all x in I.
Otherwise, the equation (1.3.1) is nonhomogeneous.

We will sometimes suppress the “(x)” dependence in (1.3.1) and write instead

f ′ + p(x)f = g(x).

We will keep the “(x)” notation on p and g to emphasize that these functions are not neces-
sarily constant. A linear homogeneous first-order ODE then has the form

f ′ + p(x)f = 0.

Often the interval I on which p and g, and later f , are defined will be implicit, i.e., not
stated explicitly, but occasionally we will want to refer to it (as we did in Example 1.2.7).



1. First-Order Differential Equations 13

1.3.2 Example.

The differential equation
f ′(x) + 3xf(x) = ex

is linear, first-order, and nonhomogeneous, while

f ′(x) + 2f(x) = 0

is linear, first-order, and homogeneous.

Linear ODEs are important for at least three reasons.

• They appear in a variety of physical models, some of which we will meet later (like popu-
lation growth and temperature distribution).

• They can be solved explicitly in the sense that we can develop a formula for every solution
to (1.3.1).

• Their solutions exhibit rich theoretical behavior that can provide insight into solutions to
much more complicated differential equations.

Toward the second point, we have already solved the homogeneous problem, in the slightly
disguised form of Theorem 1.2.5.

1.3.3 Example.

Find all functions f satisfying

f ′(x) + x sin(x2)f(x) = 0.

Solution. This equation is the same as

f ′(x) = −x sin(x2)f(x).

Theorem 1.2.5 tells us that all solutions of this “new” equation have the form f(x) = CeH(x),
where H ′(x) = −x sin(x2). That is, we need to calculate

H(x) =

∫
x sin(x2) dx.

We substitute u = x2 to find du = 2x dx, so du/2 = x dx and therefore∫
x sin(x2) dx =

1

2

∫
sin(u) du = −1

2
cos(u) + C = −1

2
cos(x2) + C.

Since we only need one antiderivative, we will take C = 0. Then all solutions have the form

f(x) = C exp

(
−
[
−1

2
cos(x2)

])
= C exp

(
cos(x2)

2

)
.

Here we are writing exp(X) instead of eX . N
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Here is the general result for homogeneous first-order linear equations.

1.3.4 Corollary.

Let p be continuous on the interval I and let P be an antiderivative of p. Then a differ-
entiable function f defined on I solves

f ′(x) + p(x)f(x) = 0 (1.3.2)

for all x in I if and only if there is a constant C such that

f(x) = Ce−P (x).

Proof. It is a worthwhile exercise in calculus and algebra to check directly that

d

dx
[Ce−P (x)] + p(x)[Ce−P (x)] = 0.

However, we can also rewrite (1.3.2) as

f ′(x) = −p(x)f(x).

In the notation of Theorem 1.2.5, we would use h(x) = −p(x). An antiderivative of h is −P ,
and so all solutions have the form f(x) = Ce−P (x), as claimed. �

1.3.5 Method: Solve f ′(x) + p(x)f(x) = 0.

All solutions have the form f(x) = Ce−P (x), where P ′(x) = p(x). Take

P (x) =

∫
p(x) dx.

Omit the constant of integration.

Being able to solve the homogeneous problem f ′ + p(x)f = 0 does not immediately
hand us a solution for the general nonhomogeneous problem (1.3.1). Instead, the solution
procedure that we will develop relies on the following key, but perhaps wholly nonobvious,
insights.

1. The left side of (1.3.1) is f ′(x)+p(x)f(x), and this looks vaguely like the product rule.
Recall that if u is some function (some unknown function at this moment), then

d

dx
[f(x)u(x)] = f ′(x)u(x) + f(x)u′(x).

There are two terms, one of which has a factor of f ′(x) and the other a factor of f(x). In
f ′(x) + p(x)f(x), there are two terms, and f ′(x) appears in one and f(x) in the other. Is
it possible to “convert” (1.3.1) into a problem in which the product rule appears?
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2. Suppose that µ is a function such that µ(x) 6= 0 for all x. Then f solves

f ′(x) + p(x)f(x) = g(x)

if and only if f also solves

f ′(x)µ(x) + p(x)f(x)µ(x) = g(x)µ(x). (1.3.3)

We have simply multiplied both sides of the original problem (1.3.1). That is, if (1.3.1) is
true, then (1.3.3) must be true as well.

Conversely, if (1.3.3) is true, then because µ(x) 6= 0 for all x, we can divide both sides
of (1.3.3) by µ(x) to recover our original problem (1.3.1). It is culturally traditional to
use the letter µ here, possibly to evoke “multiply” (or, perhaps, “µltiply”).

This is where we finished on Wednesday, January 19, 2022.

3. The expression
f ′(x) + p(x)f(x) = f ′(x) + f(x)p(x)

looks “almost” like the product rule involving the derivative of the product of f and another
function. This expression is the sum of two terms, one of which has f ′ and the other of
which has f .

The expression on the left of (1.3.3),

f ′(x)µ(x) + p(x)f(x)µ(x) = f ′(x)µ(x) + f(x)[p(x)µ(x)],

also looks like the product rule. Ideally, the product pµ should be the derivative of µ.
That is, if µ satisfies

µ′(x) = p(x)µ(x),

then
f ′(x)µ(x) + f(x)[p(x)µ(x)] = f ′(x)µ(x) + f(x)µ′(x) =

d

dx
[f(x)µ(x)].

4. So, suppose that we have a function µ with two properties: µ(x) 6= 0 for all x and
µ′(x) = p(x)µ(x). Then our original problem f ′(x) + p(x)f(x) = g(x) is equivalent to

f ′(x)µ(x) + f(x)[p(x)µ(x)] = µ(x)g(x),

and this problem in turn is equivalent to

d

dx
[f(x)µ(x)] = µ(x)g(x).

We can solve this third problem by direct integration:

f(x)µ(x) =

∫
µ(x)g(x) dx+ C.
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Here we are abusing notation (see, again, Remark 1.1.4) by using x for both the indepen-
dent variable of f and µ and the dummy variable of integration on the right. Also, we are
abusing

∫
by letting

∫
µ(x)g(x) dx denote one particular antiderivative of the product µg,

rather than a whole family. This is why we explicitly write the constant of integration C,
as well.

Since µ(x) 6= 0 for all x, we can solve for f :

f(x) =
1

µ(x)

∫
µ(x)g(x) dx+

C

µ(x)
. (1.3.4)

5. Everything above seems to hinge on the existence of this function µ. Happily, existence
is quite easy to establish. We first want µ to solve

µ′(x) = p(x)µ(x). (1.3.5)

We know how to solve this equation, thanks to Theorem 1.2.5: take

µ(x) = eP (x),

where P is an antiderivative of p. (We might write µ(x) = e
∫
p(x) dx, again using

∫
p(x) dx

to denote one particular antiderivative of p. Also, Theorem 1.2.5 provides all solutions to
(1.3.5); here we just need one, so there is no arbitrary constant in µ.)

Furthermore, we wanted µ(x) 6= 0 for all x. Since µ is an exponential, we have some-
thing even stronger: µ(x) = eP (x) > 0 for all x. Thus we have satisfied the two con-
ditions on µ from Step 4 above, and so we can proceed to solve the general problem
f ′ + p(x)f = g(x) via the formula in (1.3.4).

We will first apply the method sketched above to a concrete problem and then distill the
general procedure.

1.3.6 Example.

Solve f ′(x) + 2xf(x) = e−x
2

.

Solution. This equation has the form f ′(x)+p(x)f(x) = g(x) for p(x) = 2x and g(x) = e−x
2

.
We want to multiply the left side of the equation by a special function µ so that the resulting
product equals the product rule derivative (fµ)′. We take

µ(x) = e
∫
p(x) dx = e

∫
2x dx = ex

2

.

We do not bother including the constant of integration, since the method above only called
for one particular antiderivative of p.

Then f ′(x) + 2xf(x) = e−x
2

is equivalent to

f ′(x)ex
2

+ 2xf(x)ex
2

= e−x
2

ex
2

.
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Simplified and rearranged, this is

f ′(x)ex
2

+ f(x)[2xex
2

] = 1.

The left side is
f ′(x)ex

2

+ f(x)[2xex
2

] =
d

dx
[f(x)ex

2

].

Thus our original problem is the same as
d

dx
[f(x)ex

2

] = 1.

We integrate both sides with respect to x and collect the constant of integration on the
right side: ∫

d

dx
[f(x)ex

2

] dx =

∫
1 dx+ C.

The integral and derivative on the left cancel each other out, and the right side is easy to
integrate with the power rule. We find

f(x)ex
2

= x+ C.

We solve for f :
f(x) = xe−x

2

+ Ce−x
2

. N

1.3.7 Example.

Revisit Example 1.3.6 and match each calculation there with an operation on the general
equation f ′(x) + p(x)f(x) = g(x), as sketched in Steps 1 through 5 above.

Solution. We work everything out in parallel. On the left we act on f ′(x)+p(x)f(x) = g(x)

and on the right we solve the concrete problem f ′(x) + 2xf(x) = e−x
2

.

f ′(x) + p(x)f(x) = g(x) f ′(x) + 2xf(x) = e−x
2

f ′(x)µ(x) + p(x)f(x)µ(x) = g(x)µ(x) f ′(x)µ(x) + 2xf(x)µ(x) = µ(x)e−x
2

f ′(x)µ(x) + f(x)[p(x)µ(x)] = µ(x)g(x) f ′(x)µ(x) + f(x)[2xµ(x)] = µ(x)e−x
2

Goal: µ′(x) = p(x)µ(x) Goal: µ′(x) = 2xµ(x)

µ(x) = eP (x), P (x) =
∫
p(x) dx µ(x) = e

∫
2x dx = ex

2

f ′(x)eP (x) + f(x)[p(x)eP (x)] = eP (x)g(x) f ′(x)ex
2

+ f(x)[2xex
2

] = ex
2

e−x
2

d

dx
[f(x)eP (x)] = eP (x)g(x)

d

dx
[f(x)ex

2

] = 1∫
d

dx
[f(x)eP (x)] dx =

∫
eP (x)g(x) dx+ C

∫
d

dx
[f(x)ex

2

] dx =

∫
1 dx+ C

f(x)eP (x) =
∫
eP (x)g(x) dx+ C f(x)ex

2

= x+ C

f(x) = Ce−P (x) + e−P (x)
∫
eP (x)g(x) dx f(x) = Ce−x

2

+ e−x
2

x
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Arguably the most important steps were (1) figuring out what that special function µ should
be and (2) multiplying through by µ to see the product rule on the left side. After that, the
problem almost wrote itself with the direct integration. N

This “special function” µ has a very special name.

1.3.8 Definition.

An integrating factor for the differential equation f ′(x) + p(x)f(x) = g(x) is a
function of the form µ(x) = eP (x), where P is an antiderivative of p.

1.3.9 Method: Solve f ′(x) + p(x)f(x) = g(x).

1. Find an integrating factor µ(x) = e
∫
p(x) dx. Omit the constant of integration in the

antiderivative.

2. Multiply both sides of the differential equation by µ and recognize the left side as the
product rule:

f ′(x)µ(x) + p(x)f(x)µ(x) = g(x)µ(x) ⇐⇒ d

dx
[f(x)µ(x)] = g(x)µ(x).

3. Integrate both sides and cancel the derivative on the left:

d

dx
[f(x)µ(x)] = g(x)µ(x) ⇐⇒

∫
d

dx
[f(x)µ(x)] dx =

∫
g(x)µ(x) dx+ C

⇐⇒ f(x)µ(x) =

∫
g(x)µ(x) dx+ C.

4. Solve for f :

f(x) =
1

µ(x)

∫
g(x)µ(x) dx+

C

µ(x)
.

1.3.10 Example.

Find all functions f satisfyingf ′(x) +
f(x)

x
= x, x > 0

f(1) = 1.

Solution. This equation has the form f ′(x) + p(x)f(x) = g(x), where p(x) = 1/x and
g(x) = x. We calculate the integrating factor:

µ(x) = e
∫
(1/x) dx = eln(|x|) = |x| = x,

since we are assuming x > 0 here.
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We multiply both sides of our equation by µ(x) = x to find that f satisfies

f ′(x)x+ f(x) = x2.

The left side really is a perfect derivative:

f ′(x)x+ f(x) = f ′(x)x+ f(x) · 1 =
d

dx
[f(x)x],

and so f satisfies
d

dx
[f(x)x] = x2.

We integrate both sides to find∫
d

dx
[f(x)x] dx =

∫
x2 dx+ C,

which gives

f(x)x =
x3

3
+ C.

Since x > 0, we may divide to find

f(x) =
x2

3
+
C

x
.

To meet the initial condition f(1) = 1, we need

12

3
+
C

1
= 1,

or
1

3
+ C = 1.

We solve for C = 2/3 and thus

f(x) =
x2

3
+

2

3x

solves the full initial value problem. N

This is where we finished on Friday, January 21, 2022.

1.3.11 Example.

Let r be any real number. Find all solutions to

f ′(x)− rf(x) = erx.
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Solution. This equation has the form f ′(x) + p(x)f(x) = g(x), where p(x) = −r and
g(x) = erx. (It is vitally important to include the minus sign on r in p.) The integrating
factor is

µ(x) = e
∫
−r dx = e−rx.

Multiplying both sides by µ, we find

f ′(x)e−rx − rf(x)e−rx = erxe−rx.

This simplifies to
f ′(x)e−rx + f(x)[−re−rx] = 1.

Recognizing the product rule, we have

d

dx
[f(x)e−rx] = 1.

Integrating both sides, we find

f(x)e−rx =

∫
1 dx+ C = x+ C.

We solve for f :
f(x) = xerx + Cerx. N

1.3.12 Example.

Discuss the structure of solutions to

f ′(x) + 3x2f(x) = ex
2−x3 .

Solution. This is a linear equation, and the coefficient on the f term is p(x) = 3x2. The
integrating factor is

µ(x) = e
∫
3x2 dx = ex

3

.

Multiplying both sides by µ, we find

f ′(x)ex
3

+ 3x2f(x)ex
3

= ex
2−x3ex

3

,

and this simplifies to
f ′(x)ex

3

+ f(x)[3x2ex
3

] = ex
2

,

which in turn is equivalent to
d

dx
[f(x)ex

3

] = ex
2

.

We integrate both sides to find

f(x)ex
3

=

∫
ex

2

dx+ C. (1.3.6)

Unfortunately, we cannot evaluate the integral on the right in terms of “elementary func-
tions.” The function h(x) := ex

2

is continuous at each number x and consequently has an
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antiderivative defined on the whole real line; we just cannot find an “elementary” formula for
this antiderivative. However, we recall the (perhaps less popular part of) the fundamental
theorem of calculus, which tells us that the function

H(x) :=

∫ x

0

es
2

ds (1.3.7)

is (1) defined for each real number x, since the integrand is continuous at all real numbers;
(2) differentiable at all x; and (3) an antiderivative of h, since

H ′(x) =
d

dx

[∫ x

0

es
2

ds

]
= ex

2

.

The symbol
∫
ex

2
dx in (1.3.6) represents one particular antiderivative of h(x) = ex

2

, so
we may as well replace it by the antiderivative H from (1.3.7). Thus our solution f satisfies

f(x)ex
3

=

∫ x

0

es
2

ds+ C,

and so
f(x) = e−x

3

∫ x

0

es
2

ds+ Ce−x
3

.

This may not seem much better than (1.3.6), since we cannot evaluate the definite integral∫ x
0
es

2
ds any more explicitly. However, numerical techniques could help us find approximate

values to the integral for any given x. Additionally, we note that H(0) = 0; there was no
need to take the lower limit of integration to be 0 — it could be any number — but a deft
choice of lower limit can be helpful in solving initial value problems. Fundamentally, we
should not be too concerned if we cannot evaluate an antiderivative explicitly, for we always
have recourse to the definite integral; if h is continuous on an interval I, and x0 is a point
in I, then H(x) :=

∫ x
x0
h(s) ds is an antiderivative of h on I. N

Sometimes a differential equation may be given in the form

r(x)f ′(x) + p(x)f(x) = g(x). (1.3.8)

At the values of x where r(x) 6= 0, this equation is equivalent to the linear problem

f ′(x) +
p(x)

r(x)
f(x) =

g(x)

r(x)
, (1.3.9)

and, in principle, we can solve (1.3.9) using the integrating factor method.
However, we must pay careful attention to the zeros (roots) of the function r. If g, p,

and r are continuous, then the quotients p/r and g/r will only be continuous at those values
of x for which r(x) 6= 0. Since continuity is a critical hypothesis to establish the existence
of antiderivatives, and since (both abstractly and concretely) the integrating factor method
hinges on the existence of antiderivatives, the location of the zeros of r, if they even exist,
will determine the intervals on which solutions to (1.3.9) can be constructed.
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1.3.13 Example.

Find all solutions to xf ′(x) + f(x) = xex
2

that are defined on (0,∞).

Solution. This equation is not in the “standard form” f ′(x) + p(x)f(x) = g(x) because of
the coefficient of x on f(x). Since we are only interested in x > 0, we may divide by x to
find that if f solves the given equation, then f also solves

f ′(x) +
f(x)

x
= ex

2

.

We previously encountered the same left side in Example 1.3.10. As we did there, we take
the integrating factor to be

µ(x) = e
∫
(1/x) dx = eln(|x|) = |x| = x,

since we are assuming x > 0 here. Multiplying both sides by µ, we find

f ′(x)x+ f(x) = xex
2

,

which is exactly (and frustratingly) our original equation.
In other words, dividing by x and then beginning the integrating factor method took us

back to where we started. However, perhaps doing so taught us that our original equation
already had the form of the product rule:

xf ′(x) + f(x) =
d

dx
[f(x)x].

Thus f satisfies
d

dx
[f(x)x] = xex

2

,

and so
f(x)x =

∫
xex

2

dx+ C.

Substituting u = x2 and du = 2 dx, we have∫
xex

2

dx =

∫
eu

2
du =

eu

2
+ C =

ex
2

2
+ C.

Thus

f(x)x =
ex

2

2
+ C,

and so

f(x) =
ex

2

2x
+
C

x
.

It should be clear that this function f is not defined at x = 0. In fact, even if we take
the very simple case of C = 0, we have

lim
x→0+

f(x) = lim
x→0+

ex
2

2x
=∞.
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Curiously, if we could extend our solution to be defined at x = 0, the original differential
equation would suggest very tame behavior. Evaluating the original ODE at x = 0, we find
0 ·f ′(0)+f(0) = 0 ·e02 . That is, we would expect f(0) = 0. The moral of this example is that
we should not intuit behavior of f strictly from the problem r(x)f ′(x) + p(x)f(x) = g(x),
which may not have solutions defined at all the values of x for which r is defined. N

This is where we finished on Monday, January 24, 2022.

We summarize all of our work above in the following theorem.

1.3.14 Theorem.
Suppose that p and g are continuous functions on the interval I. Let P be an antiderivative
of p and B be an antiderivative of eP (·)g, i.e.,

P ′(x) = p(x) and B′(x) = eP (x)g(x). (1.3.10)

Then all solutions f to
f ′(x) + p(x)f(x) = g(x) (1.3.11)

on the interval I have the form

f(x) = Ce−P (x) + e−P (x)B(x) (1.3.12)

for some constant C. Conversely, any function of the form (1.3.12) solves (1.3.11).

Proof. To show that a function of the form (1.3.12) solves (1.3.11), one first needs to
calculate f ′(x). This requires the identities, the product and chain rules, and some careful
algebra; we leave this as an exercise.

To show that all solutions to (1.3.11) have the form (1.3.12), we use the ideas of Steps 1
through 5 above. Assume that f satisfies

f ′(x) + p(x)f(x) = g(x).

Since p is continuous on I, there is an antiderivative P of p defined on I. Then

g(x)eP (x) = f ′(x)eP (x) + f(x)[p(x)eP (x)] =
d

dx
[f(x)eP (x)].

Thus feP (·) is an antiderivative of geP (·), while B is another antiderivative of geP (·). Conse-
quently, there is a constant C such that

f(x)eP (x) = B(x) + C,

and so
f(x) = Ce−P (x) + e−P (x)B(x). �

Here is how we interpret the structure (1.3.12) of solutions to the linear first-order problem
(1.3.11).
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1.3.15 Remark.

Theorem 1.3.14 tells us that every solution to f ′(x) + p(x)f(x) = g(x) has the form
f(x) = Ce−P (x) + B(x)e−P (x), where P is an antiderivative of p and B is a slightly more
complicated function. Taking C = 0 here, we see that f(x) = B(x)e−P (x) is a “particular”
solution to the nonhomogeneous problem f ′(x)+p(x)f(x) = g(x). Corollary 1.3.4 reminds
us that taking f(x) = e−P (x) solves the homogeneous problem f ′(x) + p(x)f(x) = 0. Thus
the “general” solution to the nonhomogeneous problem is the sum of (1) a constant multiple
of a (nontrivial!) solution to the homogeneous problem [Ce−P (x)] and (2) a “variable-
coefficient” multiple of the same solution to the homogeneous problem [B(x)e−P (x)]. This
structure will be very useful to keep in mind when we study equations with higher-order
derivatives.

All of the initial value problems that we have so far considered have had unique solutions.
This is no accident.

1.3.16 Corollary.

Suppose that p and g are continuous functions on the interval I. Let x0 be a point in I
and let y0 be any real number. Then the initial value problem{

f ′(x) + p(x)f(x) = g(x)

f(x0) = y0
(1.3.13)

has a unique solution that is defined on I.

Proof. First we establish the existence of such a solution. Theorem 1.3.14 tells us that
any solution to f ′(x) + p(x)f(x) = g(x) has the form f(x) = Ce−P (x) + B(x)e−P (x), where
P ′(x) = p(x) and B′(x) = eP (x)g(x). We are free to use any of the (infinitely many possible)
antiderivatives P and B here. We will pick them so that P (x0) = B(x0) = 0. Then we will
have

f(x0) = Ce−P (x0) +B(x0)e
−P (x0) = Ce0 + 0 · e0 = C,

and so we should take C = y0.
Here is how we choose the antiderivatives. Put

P (x) :=

∫ x

x0

p(s) ds and B(x) :=

∫ x

x0

eP (s)g(s) ds =

∫ x

x0

e
∫ s
x0
p(t) dt

g(s) ds. (1.3.14)

Since
∫ x0
x0
h(s) ds = 0 for any function h, it follows that P (x0) = B(x0) = 0, as desired. Thus

a solution to the initial value problem is

f(x) = y0e
−P (x) +B(x)e−P (x) (1.3.15)

with P and B defined in (1.3.14).
To establish the uniqueness of the solution, suppose that f1 is also a solution to (1.3.13).

Define h(x) := f(x) − f1(x), where f is defined in (1.3.15). We leave it as an exercise to
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verify that h solves the homogeneous initial value problem{
h′(x) + p(x)h(x) = 0

h(x0) = 0
(1.3.16)

and, moreover, that the only solution to (1.3.16) is the zero function. That is, h(x) = 0 for
all x, and so f(x) = f1(x) for all x. �

1.4. Nonlinear first-order equations I: separable equations.

1.4.1 Undefinition.
An equation involving a function and its first derivative that cannot be written as a linear
equation (Definition 1.3.1) is nonlinear.

Typically nonlinear equations involve “powers” on the unknown function or “composition”
of the unknown function with some other, given function. For example,

f ′(x) + [f(x)]2 = 0

cannot be written in the form f ′(x) + p(x)f(x) = g(x) for some functions p and g. There is
simply no way to do this because of the squared term.

The outcomes for a nonlinear differential equation — whether or not solutions exist, just
how unique those solutions are — can be fairly vast. We will study a few families of nonlinear
equations that arise rather naturally and frequently in applications.

1.4.2 Definition.
Let p and q be functions. A separable first-order differential equation is
an equation of the form

f ′(x) = p(x)q(f(x)). (1.4.1)

In Leibniz notation, this reads
dy

dx
= p(x)q(y), (1.4.2)

where on the right y is a function of x.

Differential equations like (1.4.1) and (1.4.2) are called “separable” because the product
structure of their right sides “separates” the dependence on x from the dependence on y. It
may not be clear where to start in solving a separable equation, but the following example
suggests searching for some easy solutions.

1.4.3 Example.

Verify2that y = 0 solves
dy

dx
= −2xy2.
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Solution. Since y = 0 is constant, we have

dy

dx
=

d

dx
[0] = 0.

Also, we calculate
−2xy2 = −2x · 02 = 0

for all x. Thus
dy

dx
= 0 = −2xy2

for all x, and so y = 0 solves the equation. N

Here is the generalization of this example.

1.4.4 Theorem.

Suppose that p and q are functions and y0 is a real number such that q(y0) = 0. Then the
constant function y = y0 solves the separable equation

dy

dx
= p(x)q(y).

A constant solution to this equation is an equilibrium solution for the equation.

This is where we finished on Wednesday, January 26, 2022.

Proof. Since y = y0 is constant, we have

dy

dx
=

d

dx
[y0] = 0.

And since q(y0) = 0, we also have

p(x)q(y) = p(x)q(y0) = p(x) · 0 = 0

for all x. Thus
dy

dx
= 0 = p(x)q(y)

for all x, and so y = y0 satisfies the equation. �

Of course, we should try to find more dynamic solutions than just the equilibrium ones.

2One might wish to keep in mind a distinction between the commands “Verify/check that y solves an equation”
and “Solve the equation.” For example, to verify that y = 2 solves 2y + 1 = 5, one simply computes
(2 · 2) + 1 = 4 + 1 = 5. To solve the equation 2y + 1 = 5, one first subtracts 1 from both sides to obtain
2y = 4 and then divides by 2 to conclude y = 2. Using calculus and algebra, we should be able to check
that a given function solves a differential equation even if we have no clue how to generate the solution in
the first place.
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1.4.5 Example.

Find solutions y 6= 0 to
dy

dx
= −2xy2.

Solution. 1. We work backwards: suppose that y is a solution. What can we discover
about y? A natural idea is to try to integrate both sides:∫

dy

dx
dx =

∫
−2xy2 dx,

but this only leads to

y = −2
∫
xy2 dx+ C.

Since y should depend on x, we cannot factor y2 out of the indefinite integral, and there is
no hope of solving further for y.

2. However, since we are looking for nonzero solutions, let us also suppose that y(x) 6= 0, at
least for all x in some interval I. Then we can divide by y2:

dy

dx

1

y2
= −2x. (1.4.3)

Here is a key observation: the left side is the product of a function of x (namely, 1/y(x)2)
and a derivative with respect to x. This is exactly what the chain rule says: if G is a function
and y is a function of x, then

d

dx
[G(y)] = G′(y)

dy

dx
.

3. Suppose that we have a function G such that

G′(y) =
1

y2
. (1.4.4)

Then
d

dx
[G(y)] = G′(y)

dy

dx
=

1

y2
dy

dx
.

This allows us to rewrite (1.4.3) as

d

dx
[G(y)] = −2x. (1.4.5)

4. We integrate both sides of (1.4.5) with respect to x to find∫
d

dx
[G(y)] dx =

∫
−2x dx+ C

and thus
G(y) = −x2 + C. (1.4.6)

This is an implicit equation for y as a function of x. If we know more about G, perhaps it
will be possible to solve for y explicitly as a function of x.
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5. Recall from (1.4.4) that we want G′(y) = y−2, and so

G(y) =

∫
G′(y) dy +K =

∫
y−2 dy +K = −y−1 +K,

where K is a constant of integration. (We are writing K, not C, here, since we have already
used C, but we will soon absorb K into C anyway.)

Thus, per (1.4.6), we want y to satisfy

−y−1 +K = −x2 + C.

We first combine both arbitrary constants K and C into the same constant C:

−y−1 = −x2 + C.

Then we multiply both sides by −1 and absorb the −1 factor into C:

y−1 = x2 + C.

We conclude
y = (x2 + C)−1.

6. This has been a long process, so we check that y = (x2+C)−1 solves the original equation:

dy

dx
=

d

dx
[(x2 + C)−1] = −(x2 + C)

d

dx
[x2 + C] = −(x2 + C)(2x),

while
−2xy2 = −2x[(x2 + C)−1]2 = −2x(x2 + C)−2.

This y therefore works. N

1.4.6 Example.

Solve each initial value problem.

(i)


dy

dx
= −2xy2

y(0) = 0

(ii)


dy

dx
= −2xy2

y(0) = 1

(iii)


dy

dx
= −2xy2

y(0) = −1

Solution. (i) The zero solution y(x) = 0 certainly works. The other solutions do not: if
y(x) = (x2 + C)−1 satisfies y(0) = 0, then C−1 = 0. This is impossible; no real number C
satisfies C−1 = 0.
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(ii) The zero solution y(x) = 0 definitely does not work. Let us try y(x) = (x2 + C)−1. We
need

1 = y(0) = (02 + C)−1 = C−1,

and so C = 1. Thus
y(x) = (x2 + 1)−1 =

1

x2 + 1

solves the initial value problem.

(iii) Again, the zero solution y(x) = 0 cannot work. We try y(x) = (x2 + C)−1 and find

−1 = y(0) = C−1

and thus C = −1. Hence
y(x) = (x2 − 1)−1 =

1

x2 − 1

solves the initial value problem. N

1.4.7 Remark.
In Example 1.4.5, we found two kinds of solutions to

dy

dx
= −2xy2,

the constant solution y(x) = 0 and the infinite family of nonconstant functions y(x) =
(x2 + C)−1. There is no choice of C such that (x2 + C)−1 = 0 for all x, and so these two
groups of solutions are distinct.

Moreover, we saw in Example 1.4.6 that depending on the choice of C, the solution
may or may not be defined for all x. The solution y(x) = (x2 + 1)−1 is defined for all x,
while y(x) = (x2 − 1)−1 is not defined at x = ±1. This contrasts with the solutions to the
first-order linear problem: if p and g are defined on the interval I, then all solutions to
f ′(x) + p(x)f ′(x) = g(x) are defined on I (and maybe on a larger interval). In particular,
all solutions are defined on the same interval. In the nonlinear problem of Examples 1.4.5-
1.4.6, not all solutions are defined on the same interval. This is one illustration of the
many ways that nonlinear problems can diverge from linear ones.

1.4.8 Method: Solve
dy

dx
= p(x)q(y)

1. Check for equilibrium solutions: solve q(y) = 0 if possible. The roots (zeros) of q, if q
has any, are the equilibrium solutions.

2. Assume q(y) 6= 0 and rewrite the problem as

1

q(y)

dy

dx
= p(x).
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3. Integrate both sides with respect to x:∫ (
1

q(y)

dy

dx

)
dx =

∫
p(x) dx+ C.

Simplify
∫
p(x) dx as much as possible.

4. Change variables in the integral on the left:∫ (
1

q(y)

dy

dx

)
dx =

∫
1

q(y)
dy.

Simplify this integral as much as possible.

5. Obtain an implicit equation for y as a function of x:∫
1

q(y)
dy =

∫
p(x) dx+ C. (1.4.7)

Try to solve for y explicitly as a function of x. Keep track of multiple distinct solutions.

This is where we finished on Friday, January 28, 2022.

1.4.9 Example.

Find all solutions to
dy

dx
= sin(x)(y − 1)3.

Solution. We follow exactly the steps of Method 1.4.8.

1. The differential equation has the form

dy

dx
= p(x)q(y), where p(x) = sin(x) and q(y) = (y − 1)2.

We solve q(y) = 0, which is (y − 1)3 = 0. This implies y − 1 = 0 and thus y = 1. That is,
y(x) = 1 is an (and the only) equilibrium solution.

2. We assume (y − 1)3 6= 0 and rewrite the problem as

1

(y − 1)3
dy

dx
= sin(x).

3. We integrate both sides with respect to x:∫ (
1

(y − 1)3
dy

dx

)
dx =

∫
sin(x) dx+ C.
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We evaluate ∫
sin(x) dx+ C = − cos(x) + C.

4. We evaluate∫ (
1

(y − 1)3
dy

dx

)
dx =

∫
1

(y − 1)3
dy =

∫
(y − 1)−3 dy = −(y − 1)−2

2
.

5. We have therefore found

− (y − 1)−2

2
= − cos(x) + C. (1.4.8)

Now we solve for y. First we have

(y − 1)2 =
1

2 cos(x) + C
.

We need to undo a square, so we will want to keep track of the positive and negative roots:

y − 1 = ±
(

1

2 cos(x) + C

)1/2

and so there are two families of solutions:

y =

(
1

2 cos(x) + C

)1/2

+ 1 and y = −
(

1

2 cos(x) + C

)1/2

+ 1.

For the square root to be defined, we really need 2 cos(x) + C ≥ 0, and for the quotient
to be defined, we really need 2 cos(x) + C 6= 0. Thus our solutions only make sense if
2 cos(x) + C > 0. There are a variety of ways to achieve this, depending on what value of
C we choose. For example, since −1 ≤ cos(x) ≤ 1 for all x, if we take C > 2, we will have
2 cos(x) + C > 0, and all will be well. N

In Examples 1.4.5, 1.4.6, and 1.4.9, we derived nonconstant solutions to our separable
problems by first assuming the existence of a solution to

dy

dx
= p(x)q(y)

and then forcing x and y to satisfy an implicit relation of the form

F (x, y) = C

for some constant C. For example, if we put

F (x, y) := −(y − 1)−2

2
+ cos(x),

then any solution y to
dy

dx
= sin(x)(y − 1)3
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must satisfy F (x, y) = C for some real number C, per (1.4.8). More precisely, the function
y, which depends on x, satisfies

F (x, y(x)) = C

for all x in the domain of y. This is really just another way of rewriting the final conclusion
(1.4.7) in Step 5 of Method 1.4.8.

We may or may not be successful in solving F (x, y) = C “explicitly” for y as a “formula”
depending on x. Nonetheless, since the expression F (x, y) = C no longer involves derivatives,
solving F (x, y) = C is usually an “easier” problem than our original ODE.

1.4.10 Example.

(i) Determine an expression F (x, y) that depends on the variables x and y such that any
solution y to

dy

dx
=

3x2

2(y − 1)

satisfies F (x, y) = C for some constant C.

(ii) Solve the initial value problem
dy

dx
=

3x2

2(y − 1)

y(0) = −1.

Solution. (i) This equation has the form

dy

dx
= p(x)q(y), where p(x) = 3x2 and q(y) =

1

2(y − 1)
.

Consequently, q(y) 6= 0 for all y 6= 1, and q is not defined at y = 1. Thus there are no
equilibrium solutions to consider.

We separate variables to find the nonconstant solutions:

2(y − 1)
dy

dx
= 3x2

and integrate: ∫
2(y − 1)

dy

dx
dx =

∫
3x2 dx+ C = x3 + C.

We simplify the y-integral:∫
2(y − 1)

dy

dx
dx = 2

∫
(y − 1) dy = y2 − 2y.

Then we want y to satisfy
y2 − 2y = x3 + C.
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In other words, y satisfies the implicit relation

y2 − 2y − x3︸ ︷︷ ︸
F (x, y)

= C. (1.4.9)

This is where we finished on Monday, January 31, 2022.

(ii) We know that any solution to the differential equation satisfies F (x, y) = C for some
constant C. That is, F (x, y(x)) = C for all x at which y is defined. Rearranged, this reads

y2 − 2y − (x3 + C) = 0.

This is really a quadratic equation in y with an x-dependent coefficient. In general, we know
that the solutions to

ay2 + by + c = 0

are

y =
−b±

√
b2 − 4ac

2a
,

and here
a = 1, b = −2, and c = −(x3 + C).

Thus the function y satisfies

y =
−(−2)±

√
(−2)2 − 4(1)(−1)(x3 + C)

2(1)
= 1±

√
x3 + C.

We therefore find two “branches” of solutions to the original differential equation:

y+(x) = 1 +
√
x3 + C and y−(x) = 1−

√
x3 + C. (1.4.10)

One of these branches will, hopefully, give us the solution to the initial value problem.
We try

−1 = y+(0) = 1 +
√
03 + C = 1 +

√
C

to find that if y+(0) = 1, then C must satisfy
√
C = −2. This is impossible, since

√
C ≥ 0

for all C ≥ 0. (Another way to look at this is to note that
√
x3 + C ≥ 0 for all x and C

satisfying x3 + C ≥ 0, and thus y+(x) ≥ 0 for all x at which y+ is defined.)
We try the other branch: to have y−(0) = −1, we need

−1 = y−(0) = 1−
√
03 + C = 1−

√
C,

which rearranges to
√
C = 2. The only value of C that works is C = 4. Thus the solution

to the initial value problem is
y(x) = 1−

√
x3 + 4.

This, incidentally, is defined only for x3 + 4 ≥ 0, which is to say, for x ≥ (−4)1/3. N
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1.4.11 Remark.

The implicit relation F (x, y) = C that a solution to a separable problem satisfies is not
exactly unique. In Example 1.4.10, we had to integrate

∫
2(y − 1) dy. If we substitute

u = y − 1, we find ∫
2(y − 1) dy = (y − 1)2.

As usual, we are omitting a constant of integration. Then the implicit relation that y
satisfies is

(y − 1)2 − x3 = C. (1.4.11)

If we expand the square and rearrange, we find

F (x, y) + 1 = C,

where F was defined in (1.4.9). Nonetheless, when we dive into the algebra and solve for
y, we still find y = y± as in (1.4.10). Indeed, in this case it is probably easier to obtain
(y−1)2 = x3+C from (1.4.11) and then take square roots. The point is that two different
approaches can still yield the same correct explicit solution(s).

This is where we finished on Wednesday, February 2, 2022.

1.5. Elementary modeling problems.

We will study two kinds of elementary models: temperature flow models and population
growth models. Both problems will lead to first-order differential equations that can be
solved via integrating factors and/or separation of variables. Our purpose here is to present
universally accessible models (we all experience temperature, we are all more or less con-
cerned with making or not making babies) that will demand and reinforce some of our
symbolic techniques.

Broadly, any experience of mathematical modeling involves the following steps.

1. Contemplate some “physical” or “real-world” situation.

2. Convert (abstractify) that situation into mathematics. The mathematics should be both
physically reasonable and theoretically tractable. We do not want a mathematical problem
that does not reflect the “real world,” nor do we want an all-encompassing model that is
impossible to analyze.

3. Study the mathematical model. For us, that will mean solving a differential equation.

4. Interpret the solution. Does it broadly behave the way we physically expect? Revise the
model of Step 2 as needed and repeat.
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1.5.1. Temperature I: an object in an environment of constant temperature.

1.5.1 Undefinition.
The temperature of an object is the number that comes out when the thermometer
goes in.

1.5.2 Example.

Consider the following two situations.

1. You take a stick of butter out of your freezer. The stick is frozen solid. You place
the stick on your kitchen countertop and walk away. Your kitchen is kept at a constant
temperature, say 70◦F. What happens to the butter?

2. You preheat a saucepan on your stovetop to some hot temperature. The surrounding
environment in the kitchen remains at a constant temperature. You take a frozen stick of
butter out of the freezer and place it in the saucepan. What happens to the butter?

Solution. (i) The butter should warm up and soften and reach, more or less, a temperature
of 70◦F. Once the butter’s temperature has reached 70◦F, it will not change. The butter
should definitely not get colder by sitting out on the counter, nor should it suddenly become
engulfed in flames and get much hotter than the ambient kitchen.

(ii) Again, the butter should get warmer. This time, the butter probably should melt
entirely rather than just soften. Moreover, it is likely that the butter will get warmer faster
in the heated saucepan than it would sitting on the countertop. In other words, it should take
less time for the butter to increase in temperature by, say, 10◦F when it is in the saucepan
then when it is on the countertop. N

Here are some principles of temperature that, hopefully, the stories of the delicious butter
illustrate.

1.5.3 Nontheorem.
An object is placed in an environment of constant temperature. The differences between the
object and the environment are so significant that the object cannot change this constant
temperature of the environment. No internal property of the object causes its temperature
to change.

(T1) Over time (possibly a long time) the object’s temperature will roughly equal that of
the environment.

(T2) If the object’s temperature ever equals the environment’s temperature, then the ob-
ject’s temperature will not change any more.

(T3) An object will change temperature faster if the difference between its temperature
and the environment’s is large. More generally, the rate at which the object’s temperature
changes should be proportional to the difference between its temperature and the environ-
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ment’s temperature.

(T4) If the temperature of the surrounding environment is greater than the object’s initial
temperature, the temperature of the object will increase. If the temperature of the sur-
rounding environment is less than the object’s initial temperature, the temperature of the
object will decrease.

Let f(t) be the temperature of the object at time t and let U∗ be the constant temperature
of the surrounding environment. We will not be bothered with assigning units to time and
temperature, but we will assume that time is always nonnegative: t ≥ 0. Principle T1
suggests that

lim
t→∞

f(t) = U∗,

while Principle T2 suggests that if f(t∗) = U∗ for some time t∗ ≥ 0, then f(t) = U∗ for all
time t ≥ t∗.

Can we say anything about the temperatures f(t) for “smaller” times than ∞ and when
we know f(t) 6= U∗? The difference between the object’s temperature and the environment’s
is f(t) − U∗. The rate of change of the object’s temperature is, of course, f ′(t). Two time-
dependent quantities A and B are proportional if there is a constant k such that A(t) = kB(t)
for all t; the constant k should not depend on time t. Thus Principle T3 above leads us to
expect there to be a constant k such that

f ′(t) = k[f(t)− U∗]

for all t. This constant k will somehow depend3 on the material and the environment; if we
change either, k should change. (The k that works for butter in your kitchen may not work
for applesauce in your basement.)

Suppose that we have an initial temperature for our object: f(0) = y0. Then temperature
must satisfy the initial value problem{

f ′(t) = k[f(t)− U∗]
f(0) = y0.

(1.5.1)

This is Newton’s law of cooling, and it is both a linear first-order problem4 and a
separable problem5. However we solve it, we find

f(t) = (y0 − U∗)ekt + U∗.

3Incidentally, although we just said that we will not care about units, the units of f ′(t) should be something
like temperature degrees per time unit, e.g., ◦F/s. Since f(t) and U∗ are measured in temperature degrees,
k should be measured in 1/time.

4Rewrite it as f ′(t)−kf(t) = −kU∗. This has the familiar linear structure with p(t) = −k and g(t) = −kU∗.
5Write y instead of f and find

dy

dt
= k(y − U∗). This has the familiar separable structure with p(t) = k and

q(y) = y − U∗; we could also take p(t) = 1 and q(y) = k(y − U∗). Either way, note that y = U∗ is the only
equilibrium solution.
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We have not said anything about the constant k. Since we want

lim
t→∞

f(t) = U∗,

we need
lim
t→∞

(y0 − U∗)ekt = 0.

If y0 6= U∗, we really need
lim
t→∞

ekt = 0.

This happens if k < 0, but the limit above is ∞ if k > 0. (And if k = 0, then nothing
interesting happens; in that case, f is constant, and f(0) = y0 forces f(t) = y0 for all t.)

In fact, we could have predicted the requirement k < 0 earlier using Principle T4. We
know that f should satisfy

f ′(t) = k[f(t)− U∗].
If for some t∗ we have f(t∗) = U∗, then f(t) = U∗ for all t ≥ t∗, and the problem is
no longer interesting. So, either f(t) < U∗ for all t or f(t) > U∗ for all t. First uppose
f(t) < U∗. Principle T4 suggests that the object’s temperature is increasing: f ′(t) > 0.
Since f(t) − U∗ < 0, we want k < 0, too. If, however, f(t) > U∗, then the object’s
temperature should be decreasing: f ′(t) < 0. Since f(t) − U∗ > 0 in this case, we want
k < 0.

Thus we conclude that the constant k should always be negative, and so from now on we
will replace k by −κ, where κ > 0.

This is where we finished on Monday, February 7, 2022.

1.5.4 Nontheorem.
Suppose that an object of initial temperature y0 is placed in an environment of constant
temperature U∗. There is a constant κ > 0 such that for all time t ≥ 0, the temperature f
satisfies the initial value problem{

f ′(t) = −κ[f(t)− U∗]
f(0) = y0,

and so f is
f(t) = (y0 − U∗)e−κt + U∗. (1.5.2)

Not only does this temperature model respect our physical intuitions from above, it also
rigorously predicts the following “comparison” situation.

1.5.5 Example.

You make a cup of coffee to drink after a Zoom meeting. During your meeting, the cup
stays in your kitchen, where the temperature is constant. You want your coffee to be as
hot as possible when you drink it. Do you add the milk right after you make the coffee or
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wait until after your meeting?

Solution. Experience probably suggests that we should add the milk after the meeting.
Mathematically, this is a tale of two initial value problems. Suppose that the fresh-out-
of-the-pot coffee has the temperature y0 and that your kitchen’s temperature is U∗. Then
there is a constant κ (which probably depends on your brand of coffee, your mug, and your
kitchen, but definitely not time) such that your coffee’s temperature, without adding the
milk, is given by (1.5.2).

However, suppose you add the milk right after making the coffee. Then your coffee’s
initial temperature is y0 −m0, where m0 is (probably) the temperature of the milk. Then
your coffee’s temperature f satisfies{

f ′(t) = −κ[f(t)− U∗]
f(0) = y0 −m0,

at least if we assume that the amount of milk added is small enough not to affect the material
constant κ from the no-milk situation above. The solution to this initial-value problem is

f̃(t) = (y0 −m0 − U∗)e−κt + U∗;

just replace y0 with y0 −m0 in (the nonproof of) Nontheorem 1.5.4. Since y0 −m0 − U∗ <
y0 −m0, we have f̃(t) < f(t) for all t. N

Our model also allows for a quick “experimental” prediction of temperature.

1.5.6 Example.

Explain why if we know the temperature of the object at two distinct points in time, then
we know it for all time.

Solution. Suppose that one of these points in time is time t = 0, so we know f(0) = y0. If
y0 = U∗, then f(t) = U∗ for all t and there is nothing further to discuss. So, let us assume
y0 6= U∗.

Suppose as well that f(t1) = y1, where t1 > 0. From (1.5.2), we have

y1 = f(t1) = (y0 − U∗)e−κt1 + U∗.

Since y0 − U∗ 6= 0, we have
y1 − U∗
y0 − U∗

= e−κt1 .

Incidentally, this presumes that both y1 − U∗ and y0 − U∗ are positive or both are negative;
we leave the details as an exercise. Thus

−κt1 = ln

(
y1 − U∗
y0 − U∗

)
,
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and so

κ = − 1

t1
ln

(
y1 − U∗
y0 − U∗

)
= ln

([
y1 − U∗
y0 − U∗

]−1/t1)
.

This allows us to cast the formula (1.5.2) for f purely in terms of the five parameters y0, y1,
y0, U∗, and t1, all of which are, in principle, experimentally verifiable. Using properties of
exponentials and natural logarithms, we could also simplify this formula for f considerably;
we leave the details as an exercise. N

Here is a possible deficiency of our model: while we certainly have

lim
t→∞

[(y0 − U∗)e−κt + U∗] = U∗,

so that over long times the object’s temperature is, roughly, the environment’s, the model
does not allow f(t) = U∗ for some t > 0 unless f(0) = U∗. That is, the object’s tempera-
ture only equals the environment’s if the object starts out at the same temperature as the
environment.

1.5.7 Example.

Show that if f is defined by (1.5.2) and y0 6= U∗, then f(t) 6= U∗ for all t ≥ 0.

Solution. Suppose to the contrary that we do have f(t) = U∗ for some time t ≥ 0. Then

U∗ = (y0 − U∗)e−κt + U∗,

and so
(y0 − U∗)e−κt = 0.

Since e−κt > 0 for all t, we must have y0 − U∗ = 0, thus y0 = U∗. This contradicts the
assumption y0 6= U∗. N

This is where we finished on Wednesday, February 9, 2022.

1.5.2. Temperature II: an object in an environment of variable temperature.

Up to now we have assumed that the environment’s temperature is constant; it is quite
reasonable, however, that the environment’s temperature should not be constant. We still
assume, though, that the object cannot influence the environment’s temperature. Say that
the environment’s temperature is now U(t) at time t. All of the reasoning above suggests
that the object’s temperature satisfies{

f ′(t) = −κ[f(t)− U(t)]
f(0) = y0.

(1.5.3)
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The integrating factor method6 tells us that

f(t) = y0e
−κt + κe−κt

∫ t

0

eκsU(s) ds; (1.5.4)

we leave the full verification as an exercise.
If the environment’s temperature is not constant, there is no reason to expect that the

object’s temperature should asymptote to some constant value, either. At the physical level,
if the environment’s temperature fluctuates, say, periodically, then the object’s temperature
too should increase and decrease with some periodicity. At the mathematical level, without
further knowledge of the function U , there is no reason to expect that that the limit

lim
t→∞

e−κt
∫ t

0

eκsU(s) ds

should even exist.

1.5.8 Example.

Over a 24-hour period, an environment has an average temperature A. Suppose that the
temperature is lowest at midnight and highest at noon. For simplicity, assume that these
extremes are “symmetric around the average temperature”: the lowest temperature is A− r
and the highest is A+ r.

Show that if we start measuring time in hours, with t = 0 corresponding to midnight,
then modeling the environment’s temperature by

U(t) = A− r cos
(
πt

12

)
(1.5.5)

has all of these features.

Solution. Since cos(·) is 2π-periodic, we check7 that

U(t+ 24) = A− r cos
(
π(t+ 24)

12

)
= A− r cos

(
πt

12
+ 2π

)
= A− r cos

(
πt

12

)
= U(t).

Thus U is 24-periodic.
We calculate the midnight temperature to be

U(0) = A− r cos(0) = A− r
6This problem is not separable, as it reads

dy

dt
= −κy + κU(t),

and the right side cannot be written as the product p(t)q(y) if U is not constant.
7If a function f is P -periodic, in the sense that f(x+P ) = f(x) for all x, and if ω 6= 0, then g(x) := f(ωx)
is P/ω-periodic. That is, g(x+ P/ω) = g(x) for all x.
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and the noon temperature to be

U(12) = A− r cos(π) = A− r(−1) = A+ r.

To see that these are the minimum and maximum temperatures, respectively, over a 24-hour
period, we would need to determine the extrema of U on the interval [0, 24]. We leave this
as an exercise.

6 12 18 24 30 36 42 48
t

U(t)

A− r
A

A+ r

Finally, the graph above suggests that A is the “average” value of U , and the rigorous
definition of average value8 leads us to calculate∫ 24

0

U(t) dt = A,

a calculation that, yet again, we leave as an exercise. N

1.5.9 Example.

A cool rock of temperature y0 is removed from a cool creek bed (at the stroke of midnight)
and placed on a dry patch of the surrounding woods. Suppose the temperature U(t) of this
part of the woods is given by (1.5.5).

8The average value of an integrable function f on the interval [a, b] is

1

b− a

∫ b

a

f(t) dt.
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(i) What will the temperature of the rock be?

(ii) Explain (in mathematical language) how the temperature of the rock behaves over long
times.

(iii) Explain (in nonmathematical language) how the temperature of the rock behaves over
long times.

Solution. (i) Using the formula (1.5.4), the rock’s temperature is

f(t) = y0e
−κt + κe−κt

∫ t

0

eκs
[
A− r cos

(πs
12

)]
ds

for some constant κ > 0. We can evaluate this integral with integration by parts (u =
A− r cos(πs/12) and dv = eκs). After a fair amount of work, which we cheerfully omit, we
find

f(t) =

(
y0 − A+

r

1 + φ2

)
e−κt + A− r√

1 + φ2
cos

(
πt

12
− ψ

)
, (1.5.6)

where
φ :=

π

12κ
and ψ := arctan(φ).

(ii) Since limt→∞e
−κt = 0, over long times the first term in (1.5.6) becomes negligible, and

the real contribution to f comes from its “periodic” part, which we call

fper(t) := A− r√
1 + φ2

cos

(
πt

12
− ψ

)
.

This function fper closely resembles the environmental temperature U , except for the denom-
inator of

√
1 + φ2 and the “phase shift” of ψ. Since κ > 0, we have φ > 0, too, and therefore

1 + φ2 > 1. Thus 1 <
√

1 + φ2, and so
r√

1 + φ2
< r.

Thus the cosine term in fper is slightly smaller than the cosine term in U . Next, since φ > 0,
we have ψ = arctan(φ) > 0, and so the graph of the cosine term in fper is shifted slightly to
the right of the graph of the cosine term in U . Here is a graph of U and fper together, where
we clearly see the “phase shift” in fper compared to U .

6 12 18 24 30 36 42 48
t

A− r
A

A+ r

U(t) fper(t)
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(iii) We might expect that the temperature of the rock should “lag behind” the temperature
of the environment. As the day dawns, first the environment heats up, and then some of
that heat transfers to the rock.

We sketch below the graphs of the environment’s temperature U and the rock’s tempera-
ture f ; we used a computer system to produce these graphs. We see that the extreme values
of f occur slightly later in time than the extreme values of U .

6 12 18 24 30 36 42 48
t

A− r
A

A+ r

y0

U(t) f(t)

The “delay” in the rock’s heating corresponds to the phase shift ψ in the cosine term of
fper. The rock will not get quite as hot as the environment, perhaps because by the time
the rock has warmed up, the environment is starting to cool, and this corresponds to the
coefficient r(1 + φ2)−1/2 < r on the cosine term in fper. N

Finally, we may want to consider the situation in which the object has some internal heat
source/sink. For example, suppose the object is a building. In addition to the effect of the
surrounding environment’s temperature U(t), the building may have an internal heating or
cooling system, which contributes H(t) temperature units per time unit. The inhabitants of
the building could also affect its temperature; we lump their contribution into this function
H. Then the building’s rate of temperature change is no longer directly proportional to
the difference between its internal temperature and the outside. Rather, a good model for
building temperature f is

f ′(t) = −κ[f(t)− U(t)] +H(t).

This is still a linear first-order equation for f , and so the integrating factor method still
applies. A natural extension of this problem is a building with multiple rooms whose temper-
atures influence each other; such a situation would require a system of differential equations,
one for each room.

1.5.3. Population growth I: exponential growth.

We consider two models for population growth. Ordinarily we think of a population as
integer-valued: 30 students in a class, 6 million people in the Atlanta metropolitan area. If
our population is very large, then it may make sense to count it using noninteger values: 5.85
million people, 61.5 thousand frisky rabbits, etc. For this reason we will model populations
by continuous functions that may take noninteger values, rather than functions that take
only staggered, “discrete” values.

First suppose that a population grows at a rate directly proportional to its current pop-
ulation. The more members there are, the faster the population grows. Let y(t) denote the
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population at time t, with t ≥ 0. Then by the assumption of direct proportionality, there is
a constant a such that

y′(t) = ay(t).

We solved this differential equation all the way back in Example 1.2.3, and we have

y(t) = Ceat

for some constant C. (We could also use separation of variables or an integrating factor.)
However, we do not quite want C to be any real number, and especially not a negative

number. The initial population is

y(0) = Cea·0 = Ce0 = C.

Thus we have an immediate physical constraint on this otherwise arbitrary constant C. Here
is what we have shown.

1.5.10 Nontheorem.
Suppose that a population grows with rate a directly proportional to its current population.
If the population at time t = 0 is y0, then the population at any time t ≥ 0 is y(t) = y0e

at.

Our model and our conclusion are unrealistic for several reasons. First, the model does not
take into account any factor that impedes population growth: limited resources, predators,
disease, inter/intra-population conflict. Second, we have the long-time behavior

lim
t→∞

y(t) = y0 lim
t→∞

eat =

{
∞, a > 0

0, a < 0.

Here we are assuming a 6= 0, as otherwise the population is the constant y(t) = y0. Thus
the population either explodes without bound or ultimately dies away, and neither of these
are realistic scenarios. However, over shorter times (perhaps on the order of a few centuries
for a nation’s population), this exponential growth model is realistic and compatible with
experimental/genealogical data.

This is where we finished on Friday, February 11, 2022.

1.5.4. Population growth II: logistic growth.

Suppose that we no longer demand that the growth rate of a population is directly propor-
tional to the current population size. Instead, we just assume that the growth rate depends
in some way on the current population. This is a very broad assumption, and mathematically
we express it by saying

y′(t) = N (y(t)), (1.5.7)

where y(t) is still the population at time t and N is some function. We will denote the
independent variable of N by y. The symbol y is now playing dual roles, sometimes as the
dependent variable of t, sometimes as the independent variable of N .
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For exponential growth we took N (y) = ay, where a is some constant. That is, N was
linear. What sort of function N models a more nuanced sort of population growth? For a
more nuanced model, we should look for a more complicated N .

Here are two guiding assumptions on the growth rate of the population and the translation
of those assumptions into “qualitative” features of N .

1. When the population is small, its growth rate is proportional to the existing population.
(This is exactly the assumption of exponential growth, but here it is only valid for a suitably
small population.) In symbols, if y ≈ 0, then y′ ≈ ry for some constant r, and so we want
N (y) ≈ ry for y ≈ 0.

y

N (y)

2. When the population is too large (for its environment, for existing resources, etc.), it
should decrease. This will prevent the unbounded sort of growth inherent to exponential
growth. In symbols, there needs to be some population size M > 0 such that if y(t) > M at
time t, then y′(t) < 0. For N , this means that if y > M , then N < 0.

y

N (y)

M

In summary, we want N to satisfy

N (0) = N (M) = 0, y ≈ 0 =⇒ N (y) ≈ ry, and y > M =⇒ N (y) < 0.

There are many, many functions N that have this sort of behavior.
After some experimentation, a historically reasonable and popular choice is to set

N (y) := ry
(
1− y

M

)
for some fixed positive constants r and M . Here is the graph of N , which is a parabola.



1. First-Order Differential Equations 46

y

N (y)

MM/2

ry

When y is close to 0, we have y2 ≈ 0, and so

N (y) = ry − ry2

M
≈ ry.

So, for y close to 0, N “grows linearly” like ry. The function N has a (global) maximum at
y =M/2, and N (y) < 0 for y > M .

Our population model y now satisfies

y′ = ry
(
1− y

M

)
. (1.5.8)

This is a separable differential equation, which we will solve shortly. It is called the logistic
equation.

We can predict many features of solutions to the logistic equation without using any
formulas at all.

1.5.11 Example.

Suppose that y satisfies the initial value problem{
y′ = ry

(
1− y

M

)
y(0) = y0,

where y0 ≥ 0. What can you say about the shape of the graph of y and, if it exists, its
limit at ∞?

Solution. We consider a number of cases on y0, motivated by the observation that the equi-
librium solutions of the underlying differential equation are y = 0 and y =M . Throughout,
we will draw conclusions from both the formula and the graph of N above.

1. y0 = 0. One solution in this case is y(t) = 0 for all t. (We do not yet have the technical
tools to claim that the only solution in this case is y = 0.) Then the population never grows
at all, which is probably unrealistic and definitely boring.

2. y0 = M . One solution in this case is y(t) = M for all t. Again, the population never
grows (or decreases) at all, which is still unlikely and still boring.
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3. 0 < y0 < M . Then y′(0) = N (y0) > 0, so the population is increasing at time t = 0.
As long as y(t) < M , we will have N (y(t)) > 0, so the population will continue to increase,
provided that it does not hit the value of M . However, as y approaches M , the values of
N (y) approach 0:

lim
y→M−

N (y) = 0.

Thus as the population approaches the value of M “from below,” its growth rate slows. We
might conjecture9 that the population’s graph then “flattens out” just below M :

lim
t→∞

y(t) =M.

To be clear, we have certainly not proved that y(t) 6=M for all t or y(t) < M for all t.
Taking into account these considerations, here is a possible graph of y.

t

y(t)

y0

M

M/2

4. M < y0. Then y′(0) = N (y0) < 0, so the population is decreasing at time t = 0. As long
as y(t) > M , we will have N (y(t)) < 0, so the population will continue to decrease, provided
that it does not hit the value of M . Again, as y decreases toward M , the values of N (y)
approach 0:

lim
y→M+

N (y) = 0.

Thus the rate of decrease of the population slows, and we might conjecture10 that the pop-
ulation’s graph asymptotes to M “from above.”

t

y(t)

y0

M

9Here is a sketch of a deeper analysis of this conjecture, just to show the power of studying the differential
equation y′ = N (y) without further consideration of a formula for y. Recall that the sign of y′′ determines
the concavity of y. We are assuming 0 < y < M , so N (y) > 0. Since y′ = N (y), we have y′′ = N ′(y)N (y).
Hence y′′ > 0 if N ′(y) > 0, and y′′ < 0 if N ′(y) < 0. Since N ′(y) = r(1 − 2y/M), we have N ′(y) > 0 if
y > M/2 and N ′(y) < 0 if y < M/2. Thus y is concave up provided that 0 < y < M/2 and concave down
when M/2 < y. In particular, if y(t)→M− as t→∞, it follows that the graph of y is eventually concave
down.

10More precisely, following the concavity reasoning of Footnote 9, we have y′′(t) < 0 whenever y(t) > M/2.
Consequently, if y(t) > M for all t, then y is concave down for all time.
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Again, this is largely a conjecture — a reasonable one, but one that we should back up with
actual solutions (the existence of which we have not yet determined!) N

The value of the analysis in the preceding example is that it may be possible to predict
features of solutions to a general differential equation of the form y′ = N (y) based on
knowledge of the initial condition of y and the function N but not using a formula for the
solution. Indeed, in many cases a formula is difficult or impossible to construct, and even
if it exists, its opaque structure may occlude any obvious observations. However, we can
certainly solve the logistic equation. We do so below with r =M = 1, for simplicity.

1.5.12 Example.

Solve the separable problem 
dy

dt
= y(1− y)

y(0) = y0.

This is where we finished on Monday, February 14, 2022.

Solution. The algebraic steps in this problem are delicate and well worth understanding
completely.

This is a separable problem, with p(t) = 1 and q(y) = y(1− y) = N (y). The equilibrium
solutions are y = 0, 1, and otherwise we separate variables to find

1

y(1− y)
dy

dt
= 1.

We integrate with respect to t to find (after changing variables on the left)∫
1

y(1− y)
dy =

∫
1 dt+ C = t+ C.

The y-integral calls for the dreaded method of partial fractions. Since11

1

y(1− y)
=

1

y
+

1

1− y
,

we have∫
1

y(1− y)
dy =

∫
1

y
dy +

∫
1

1− y
dy = ln(|y|)− ln(|1− y|) = ln

(∣∣∣∣ y

1− y

∣∣∣∣) .
11Guess

1

y(1− y)
=
A

y
+

B

1− y
.

Then
1 = A(1− y) +By = A−Ay +By = (B −A)y +A.

Each side is a polynomial in y, so the coefficients on corresponding powers must be equal. We have A = 1
and B −A = 0, so B = A = 1.
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Here we substituted u = 1− y in the second integral.
Thus

ln

(∣∣∣∣ y

1− y

∣∣∣∣) = t+ C,

and so exponentiating we find ∣∣∣∣ y

1− y

∣∣∣∣ = eCet.

Eliminating the absolute values, we have
y

1− y
= eCet or

y

1− y
= −eCet.

Since eC is an arbitrary positive number, we conclude
y

1− y
= Cet (1.5.9)

for some (other) arbitrary real number C. It may appear that we need C 6= 0, but taking
C = 0 means y/(1 − y) = 0, thus y = 0, and this is an equilibrium solution. So, it is
legitimate to say that C can be any real number.

Now we must solve for y. Multiply by 1− y to find

y = Cet(1− y) = Cet − yCet,

thus
y + Cety = Cet, (1.5.10)

and so12

y =
Cet

1 + Cet
. (1.5.11)

Taking t = 0, we have

y0 = y(0) =
Ce0

1 + Ce0
=

C

1 + C
.

We could solve this algebraically for C in terms of y0, but we would be repeating ourselves.
Instead, use (1.5.9) to calculate

C = Ce0 =
y(0)

1− y(0)
=

y0
1− y0

. (1.5.12)

Incidentally, this presumes y0 6= 1; if y0 = 1, then the equilibrium solution y(t) = 1 solves
this initial value problem. Thus

y(t) =
y0e

t

(1− y0)
(
1 +

y0e
t

(1− y0)

) . (1.5.13)

12Depending on the choice of C and t, it is possible to have 1+Cet = 0, in which case our division by 1+Cet

to convert (1.5.10) into (1.5.11) could be questionable. Namely, we would need et = −1/C. This can only
happen if C < 0. Below in (1.5.12) we will see that for our initial value problem, we have C < 0 if y0 > 1.
However, it can be shown that our ultimate solution (1.5.14) is defined for all t ≥ 0 regardless of the value
of y0.
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It will pay off later to simplify this algebraically now:

y(t) =
y0e

t

1− y0 + y0et
=

y0
y0 + (1− y0)e−t

. (1.5.14)
N

We claim that the solution to the full logistic initial value problem{
y′ = ry

(
1− y

M

)
y(0) = y0

is
y(t) =

My0
y0 + (M − y0)e−rt

.

and, moreover, that this solution can be deduced from Example 1.5.12. We defer the clever
algebraic details to the exercises. However, it is a straightforward bit of arithmetic to show,
indeed, y(0) = y0, and since

lim
t→∞

e−rt = 0,

provided that r > 0, we have

lim
t→∞

y(t) = lim
t→∞

My0
y0 + (M − y0)e−rt

=
My0

y0 + (M − y0) limt→∞ e−rt
=

My0
y0 + 0

=M.

Thus, over very long times, the population hovers around the carrying capacity, as we ex-
pected. A lengthier excursion into derivatives could also check the claims of Example 1.5.11
about the concavity of y, depending on the value of y0.

1.6. The true definition of a differential equation.

We began our study of differential equations with the well-intentioned but vague Undefinition
1.0.1: a differential equation is an equation involving a function and one or more of its
derivatives. We have now learned how to solve two broad classes of differential equations:
linear equations, which have the form

f ′(x) + p(x)f(x) = g(x) (1.6.1)

for given functions p and g, and separable equations, which have the form

f ′(x) = p(x)q(f(x)) (1.6.2)

for given functions p and q. With a little reorganization, we can rewrite both problems in
the same very general form, a form suggested by the abstract equation (1.5.7) that led to
the logistic equation. It is this general form that will be the key to stating precisely what a
differential equation is.
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1.6.1 Undefinition.
Let I and J be intervals of real numbers. A function N of two variables defined
for x in I and y in J is a rule that assigns to each number x in I and y in J a third,
unique number N (x, y).

1.6.2 Example.

(i) Setting N1(x, y) := xy gives a function defined for all real numbers x and y.

(ii) Taking N2(x, y) := xy−1 yields a function defined for all real numbers x and all y 6= 0.

(iii) Let p and g be functions defined on the same interval I. Then

N3(x, y) := g(x)− p(x)y

is defined for all x in I and all real numbers y. In particular, the linear differential equation
(1.6.1) is equivalent to

f ′(x) = N3(x, f(x)).

(iv) Let p be a function defined on I and q be a function defined on J . Then

N4(x, y) := p(x)q(y)

is a function defined for all x in I and y in J . In particular, the linear differential equation
(1.6.2) is equivalent to

f ′(x) = N4(x, f(x)).

(v) Let r and M be fixed positive numbers and define

N5(x, y) := ry
(
1− y

M

)
.

Note that N5 is really independent of x. Then the logistic equation (1.5.8) is the same as
f ′(x) = N5(x, f(x)).

This is where we finished on Wednesday, February 16, 2022.

1.6.3 Example.

(i) Let N1(x, y) := e−x
2 − 2xy. Then

N1(0, 0) = 1, N1(1, e
−1/2) = 0, and N1(x, f(x)) = e−x

2 − 2xf(x).

The differential equation in Example 1.3.6 has the structure f ′(x) = N1(x, f(x)).

(ii) Let N2(x, y) := −2xy2. Then N2(1, 2) = −8, while N2(2, 1) = −4. The differential
equation in Example 1.4.5 has the structure y′(x) = N2(x, y(x)).
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Motivated by the common structures of the (few) differential equations that we have
studied so far, we make the following sweeping definition.

1.6.4 Definition.
Let N be a function of the two variables x and y, defined for x in an interval I and y in
an interval J . A first-order ordinary differential equation (ODE) is an
equation of the form

f ′(x) = N (x, f(x)). (1.6.3)

A solution to (1.6.3) is a differentiable function such that

(i) f is defined on an interval I0 that is contained in I;

(ii) f(x) is in J for all x in I0;

(iii) The equality (1.6.3) is true for each x in I0;

(iv) f ′ is continuous on I0.

Now let x0 be a point in I and y0 be a point in J . A first-order initial value
problem (IVP) is a problem of the form{

f ′(x) = N (x, f(x))

f(x0) = y0.
(1.6.4)

A solution f to (1.6.4) is a function satisfying conditions (i), (ii), (iii), and (iv) above,
along with the final requirements

(v) f(x0) = y0;

(vi) I0 has the form I0 = (x0 − δ, x0 + δ) for some δ > 0, with δ =∞ allowed.

The initial value problem (1.6.4) is well-posed13 with respect to I and J if
it has a unique solution for each x0 in I and y0 in J .

The careful observer may question why, or if, certain aspects of the definition above are
necessary.

13This is an incomplete definition of the concept of “well-posedness.” A fuller definition would take into
account how the solutions depend on the initial conditions. Namely, if two initial conditions are “close,”
then the corresponding solutions should be “close.” This is a property called “continuous dependence on
the initial conditions,” and of course it hinges on the right definition of “close.” (If you shoot a rocket from
one position and then fire the same kind of rocket from two inches over to the right, your rockets probably
should have very similar trajectories.)
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1.6.5 Example.

(i) Why do we demand that solutions to differential equations be defined on intervals?
For example, the function

f(x) :=

{
−ex, x ≤ −1
ex, x ≥ 1

(1.6.5)

certainly satisfies f ′(x) = f(x) for all numbers x < 1 and x > 1. However, we would not
say that f is a solution to the differential equation f ′ = f .

(ii) Why do we demand that solutions to differential equations have continuous deriva-
tives?

(iii) Why do we demand that first-order differential equations be written in the structure
f ′(x) = N (x, f(x))?

Solution. (i) If we are using a differential equation to model some “physical process,” typ-
ically we expect that the solution should be defined over an unbroken interval. If the differ-
ential equation models a time-dependent process, like population growth, it would probably
be very strange to care about modeling, say, the years between 1977 and 1983, and then,
separately, the years between 1999 and 2005, with both ranges [1977, 1983] and [1999, 2005]
enjoying the same model equation. Or perhaps our differential equation takes place over a
spatial domain; it is unlikely that there would be a physical gap in the domain and that the
same model would work over both parts of the domain. Here is the graph of the function f
defined in (1.6.5), and we can very clearly see the “gap” in its domain.

x

f(x)

1−1

e

−e

At the mathematical level, working on intervals is quite nice. We integrate over intervals
(which is the theoretical heart of separation of variables) and we draw conclusions from
having derivatives valid over intervals (the integrating factor method). The structure of
abstract existence arguments for proving the existence of solutions to initial value problems
like (1.6.4) also tends to hinge on an interval basis for the problem.

(ii) At the physical level, a discontinuous first derivative suggests that the rate of change
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of the modeled phenomenon abruptly changes. Our experience suggests that this is not
typically the case; if we are studying, say, the motion of a particle along a line or track, the
particle does not suddenly teleport around (its position is continuous), nor does it abruptly
change speeds (its velocity is continuous).

At the mathematical level, imposing a continuity requirement on the derivative certainly
helps the abstract proof structure. It is also somewhat contrived to construct a function that
is continuous and differentiable but whose derivative is continuous14, and such functions do
not “naturally” occur with much frequency.

(iii) This is primarily a mathematical, not physical, decision. The structure of the problem
f ′(x) = N (x, f(x)) lends itself well to abstract existence/uniqueness arguments. There
are plenty of worthwhile models that both involve derivatives and do not have the form
f ′(x) = N (x, f(x)). N

1.6.6 Example.

Consider a population whose growth rate is proportional to the existing population. For
simplicity, measure time in years. Previously we said that a model for this population is
y′(t) = ay(t).

However, suppose now that there is a time delay between birth and being able to re-
produce (which, realistically, happens in most populations). Specifically, suppose that only
members of the population that are at least d years old can reproduce. Then the popula-
tion’s growth rate at time t really should be proportional not to the whole population at
time t but rather to the population at t− d, for it is the population at time t− d that will
be d years old at time t. Thus a revised model could be

y′(t) = ay(t− d). (1.6.6)

The presence of the delay of −d prevents this equation from being a differential equation;
we cannot find a function N of two variables such that (1.6.6) is equivalent to y′ = N (t, y).
After all, if N is just acting on the two real variables t and y, how could N introduce the
“shift” by −d?

Do all differential equations have solutions? And if there is a solution, is there only one?
Our experience with linear first-order equations and separable equations suggests that the
first question has an affirmative answer. Our experience with constants of integration and
“free parameters” suggests that the second does not always have an affirmative answer, but
our experience with initial value problems suggests that imposing an initial condition may
14Everyone’s instinct is probably to turn the absolute value, but that does not pan out here — f(x) :=∫ x

0
|s| ds is continuous and differentiable, and f ′(x) = |x| is continuous on (−∞,∞) and just not differen-

tiable at x = 0. Instead, taking

f(x) :=

x2 sin

(
1

x

)
, x 6= 0

0, x = 0

gives a function that is continuous and differentiable, yet whose derivative is not continuous (at x = 0,
unsurprisingly).



1. First-Order Differential Equations 55

tip the scales to the affirmative.
The reality is a bit more complicated than the special problems that we have studied;

it is the structure of N greatly determines existence and uniqueness properties of solutions
to (1.6.3) and (1.6.4). The most useful general conditions on N require some knowledge of
multivariable calculus, which we are hesitant to presume. Instead, here are two kinds of N
for which the corresponding initial value problem (1.6.4) does have a unique solution, i.e.,
for which it is well-posed.

1.6.7 Theorem.
Let I and J be open intervals and let N be a function defined for x in I and y in J . Then
the initial value problem {

f ′(x) = N (x, f(x))

f(x0) = y0

is well-posed on I and J if N has either of the forms below.

(i) Suppose that p0, p1, . . . , pn are continuous functions defined on I and take J = (−∞,∞).
Define

N (x, y) :=
n∑
k=0

pk(x)y
k = p0(x) + p1(x)y + p2(x)y

2 + · · ·+ pn(x)y
n.

(ii) Suppose that p is continuous on I and q is continuous and differentiable on J . Suppose
further that q′ is continuous on J . Define

N (x, y) := p(x)q(y).

Nonproof. The true proof is rather beyond the scope of our course, but we can make some
enlightening comments.

The function N defined in part (i) is essentially a polynomial in the variable y with
x-dependent coefficient. We have actually proved part (i) in the very special case of n = 1.
Here N (x, y) = p0(x)+p1(x)y, and so the problem f ′(x) = N (x, f(x)) really is the first-order
linear equation f ′(x)− p1(x)f(x) = p0(x).

In part (i), if p0 = p1 = · · · = pn, then the problem is really separable. Say that
pk(x) = akp(x) for all x and each k, where ak is a real number; then N (x, y) = p(x)q(y),
where q(y) = a0+a1y+a2y

2+ · · ·+anyn. Integrating the rational function 1/q(y), however,
may not be pleasant.

The form of N in part (ii) is, of course, also separable; while we have a method for
handling separable equations, there are no guarantees that we will be able to solve the
implicit equation that results, or that we can solve it uniquely. This abstract theorem
guarantees that we actually always can! �

1.6.8 Example.

Explain why each initial value problem has a unique solution.
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(i)

{
y′ = x2y + xy2

y(0) = 0

(ii)

y′ =
ex

2

cos(y)

y(0) = π

Solution. (i) This differential equation has the form y′ = N (x, y), where N (x, y) = x2y +
xy2. This function N is a polynomial in y, and its coefficients are continuous functions of
x, where x can be any real number. That is, N (x, y) = p1(x)y + p2(x)y

2, where p1(x) = x2

and p2(x) = x. Take I = J = (−∞,∞). Part (i) of Theorem 1.6.7 then guarantees that the
initial value problem has a unique solution on some subinterval I0 of (−∞,∞) where 0 is a
point of I0.

(ii) This differential equation has the form y′ = N (x, y), where N (x, y) = ex
2

/ cos(y2).
Take p(x) = ex

2

and q(y) = 1/ cos(y). Then p is continuous on I = (−∞,∞), and q is
continuous and differentiable, with q′ itself continuous, on any interval J , such that cos(y2) 6=
0. Determining all such intervals J could be messy, but we are just concerned with the well-
posedness of the initial value problem when x0 = 0 and y0 = π. Since cos(y) 6= 0 for
π/2 < y < 3π/2, we try J = (π/2, 3π/2). Then q is continuous and differentiable on J , and
q′(y) = sin(y)[cos(y)]−2 is also continuous on J . Thus part (ii) of Theorem 1.6.7 guarantees
that the initial value problem has a unique solution on some subinterval I0 of (−∞,∞) where
0 is a point of I0. N

The size of the interval I0 on which the unique solution to an initial value problem is
defined is quite delicate. Such an interval may be very small or very large, and this depends
on both the map N governing the differential equation and the value x0 that determines
when/where the initial condition occurs.

This is where we finished on Friday, February 18, 2022.
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2. Higher-Order Linear Differential Equations

2.1. Linear constant-coefficient homogeneous second-order equations.

2.1.1. An exponential ansatz.

The following example, while seemingly trite, will offer us valuable insight into our new
problem.

2.1.1 Example.

Let a and b be real numbers with a 6= 0.

(i) Find all real numbers r such that ar + b = 0.

(ii) Find all functions f satisfying af ′ + bf = 0.

Solution. (i) We subtract b from both sides to obtain ar = −b and then, since a 6= 0,
divide by a to find r = −b/a.

(ii) First we divide both sides by a (which is permissible since a 6= 0) to obtain

f ′ +
b

a
f = 0.

This is a first-order linear homogeneous equation. We could solve it with the integrating
factor method, or we could use something like Corollary 1.3.4 to find that the solution is

f(x) = Ce
∫
−(b/a) dx = Ce−(b/a)x,

where C is an arbitrary constant. N

Although the algebraic problem ar + b = 0 has only one solution, the real number
r = −b/a, while the differential equation af ′ + bf = 0 has infinitely many solutions (each
of which is a function, i.e., a collection of ordered pairs of real numbers), the quotient −b/a
appears in both solutions. This, combined with the fact that the solution to the differential
equation is an exponential, is one source of the ideas that will help us solve the following
problem.

2.1.2 Definition.
Let a, b, and c be real numbers, and suppose a 6= 0. A second-order constant-
coefficient linear homogeneous ordinary differential equation is an
equation of the form

af ′′(x) + bf ′(x) + cf(x) = 0. (2.1.1)

We comment on some of the adjectives present in this definition.

• The equation (2.1.1) is “constant-coefficient” because the prefactors on f ′′, f ′, and f are
real numbers, i.e., constants. We did not single out constant-coefficient first-order equations
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for particularly special attention; the integrating factor method applies just as well to a
problem of the form f ′(x) + p(x)f(x) = 0, where p is an arbitrary function, as it does to
f ′(x) + p0f(x) = 0, where p0 is an arbitrary number. It turns out that “variable-coefficient”
equations that involve derivatives of order 2 or higher are quite challenging to solve; in
particular, there is no general “integrating factor” by which we can multiply both sides of
(2.1.1) to obtain a perfect derivative.

• Of course, (2.1.1) is “second-order” because of the af ′′ term. The requirement of a 6= 0
prevents this term from disappearing, which would reduce our problem to the happy first-
order linear case.

• As before, (2.1.1) is “homogeneous” because the right side is 0. Later we will see how to
solve nonhomogeneous problems.

• Informally, (2.1.1) is “linear” because no powers (other than 1 or 0) or compositions in-
volving f ′′, f ′, or f appear. We will give a somewhat more precise definition of “linear”
later.

Linear second-order differential equations are tremendously valuable objects of study.
Here are some of their virtues.

• Many “physical” phenomena are governed by Newton’s second law, “force equals mass
times acceleration.” Since acceleration is the second derivative of position, Newton’s law
immediately induces a second-order differential equation, i.e., an equation involving a second
derivative. Many times, the right model is not just some arbitrary second-order differential
equation but a linear constant-coefficient equation. Of course, variable-coefficient problems
(replace, say, the constant b by a nonconstant function b(x)) do come up, but constant-
coefficient problems have a lot of mileage.

• Mathematically, (2.1.1) is extremely versatile. It will be possible to construct solutions to
a nonhomogeneous version of (2.1.1) using just the solutions to the homogeneous problem.
The solution techniques for (2.1.1) generalize in a very direct way to higher-order problems
in a way that our first-order techniques simply do not. (There is a sort of “discontinuity of
difficulty” when one transitions from first-order problems to second-order and higher.) In
short, if one can solve (2.1.1), one has a lot of power.

So, how does one go about solving af ′′ + bf ′ + cf = 0? Since15 the corresponding first-
order problem af ′ + bf = 0 has an exponential-type solution, we make the very lucky guess
f(x) = erx for the second-order problem. (A guess that a solution to a differential equation
has a particular “form” is often called an ansatz.) Our task is now to figure out what r
should be.

We calculate
f ′(x) = rerx and f ′′(x) = r2erx

15Here is another reason to make this guess. What function f interacts so nicely with its successive derivatives
that adding af ′′, bf ′, and cf should cancel everything out? Certainly the exponential’s derivatives “look
a lot alike,” so one might think that a suitable exponential could cause the whole sum to collapse to 0.
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so that

af ′′(x) + bf ′(x) + cf(x) = ar2erx + brerx + cerx = (ar2 + br + c)erx. (2.1.2)

So, if f(x) = erx solves af ′′+ bf ′+ cf = 0, then (ar2+ br+ c)erx = 0. Since erx > 0 for all x
and r, it must then be the case that ar2+ br+ c = 0. This is a quadratic equation, which we
may solve with the quadratic formula, and we will do so momentarily. (Pause for a moment
to appreciate the power of our exponential ansatz: we have turned a calculus problem into
an algebraic problem!)

Conversely, suppose that r satisfies ar2 + br + c = 0. Then, by (2.1.2), the function
f(x) = erx satisfies

af ′′(x) + bf ′(x) + cf(x) = (ar2 + br + c)erx = 0 · erx = 0.

That is, f(x) = erx solves our differential equation. Summing up, we have proved a nice
little lemma.

2.1.3 Lemma.

Let a, b, c, and r be real numbers. The function f(x) = erx solves the differential equation

af ′′(x) + bf ′(x) + cf(x) = 0 (2.1.3)

if and only if the real number r solves the quadratic equation

ar2 + br + c = 0. (2.1.4)

The quadratic equation (2.1.4) is the characteristic (auxiliary) equation of
the differential equation (2.1.3).

To solve this quadratic equation, we call upon the dreaded quadratic formula,
which tells us that ar2 + br + c = 0 if and only if

r =
−b±

√
b2 − 4ac

2a
.

The behavior of the solution(s) to this quadratic equation, and thus of the solution(s) to
the differential equation, hinges on the so-called discriminant of the quadratic equation
ar2 + br + c = 0, which is the number b2 − 4ac. Since a, b, and c are real numbers, so is
b2 − 4ac, and so there are three possibilities for the discriminant:

b2 − 4ac > 0 or b2 − 4ac = 0 or b2 − 4ac < 0.

Each of these possibilities will induce different behavior, both from the mathematical and
physical viewpoints, in the solutions to af ′′ + bf ′ + cf = 0. We will start with the case
of the positive discriminant, which is, in some sense, the simplest; moreover, many of the
techniques that we will use in this case carry over very nicely to the other two cases.
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2.1.2. The discriminant of the characteristic equation is positive.

Suppose that a, b, and c are real numbers with a 6= 0 and b2 − 4ac > 0. Then there are two
distinct real solutions to the quadratic equation ar2 + br + c = 0; these are

r+ :=
−b+

√
b2 − 4ac

2a
and r− :=

−b−
√
b2 − 4ac

2a
. (2.1.5)

These are “distinct” in that r+ 6= r−; in fact, r− < r+. Lemma 2.1.3 then tells us that two
solutions to af ′′ + bf ′ + cf = 0 are

f1(x) := er1x and f2(x) := er2x.

2.1.4 Example.

Find exponential-type solutions to f ′′ − f = 0.

Solution. This equation has the form af ′′ + bf ′ + cf = 0 with a = 1, b = 0, and c = −1.
Hence its characteristic equation is r2 − 1 = 0. This equation factors as the difference of
perfect squares: r2 − 1 = (r + 1)(r − 1), and so its solutions are r = 1 and r = −1. Thus
two solutions to the differential equation are f1(x) = ex and f2(x) = e−x. N

Are these two solutions the only ones? (The eagle-eyed reader might spot a third, the
“trivial” solution f(x) = 0 for all x.) Our experience with first-order equations, linear or not,
taught us to expect a “free constant” in the solution; usually this constant arose as some kind
of constant of integration. In these exponential solutions, there are no apparent constants.

Here we need a new (really, old) idea: the linearity of the derivative. Recall that the
derivative16 is linear in the following sense. Suppose that g and h are differentiable functions
and c is a real number. Then

(g + h)′ = g′ + h′ and (cg)′ = cg′.

Informally, derivatives “split up” over sums and derivatives “pull out” constants; these are
rules for differentiation that we have probably used every day of our calculus-based lives
without contemplating them too much. The linearity of the derivative suggests that we try
adding constant multiples of solutions to a differential equation together.

2.1.5 Example.

Let c1 and c2 be real numbers. Show that f(x) := c1e
x + c2e

−x solves f ′′ − f = 0.

Solution. Put f1(x) = ex and f2(x) = e−x. We just saw that f ′′1 − f1 = 0 and f ′′2 − f2 = 0.
Since

f ′ = (c1f1 + c2f2)
′ = (c1f1)

′ + (c2f2)
′ = c1f

′
1 + c2f

′
2

by the linearity of the derivative, and similarly

f ′′ = c1f
′′
1 + c2f

′′
2 ,

16And the integral and limits in general.
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a little algebra gives

f ′′ − f = c1(f
′′
1 − f1) + c2(f

′′
2 − f2) = c1 · 0 + c2 · 0 = 0. N

2.1.6 Example.

Find as many solutions as possible to f ′′ − 3f ′ + 2f = 0.

Solution. The characteristic equation is r2 − 3r + 2 = 0. Perhaps the factorization r2 −
3r+2 = (r−1)(r−2) is obvious; if not, use the quadratic formula. Either way, the solutions
are r = 1 and r = 2, so f1(x) = ex and f2(x) = e2x solve the differential equation. Then

f(x) = c1e
x + c2e

2x

is a solution for any choice of c1 and c2. N

This is where we finished on Monday, February 21, 2022.

2.1.7 Example.

Find as many solutions as possible to f ′′ − 2f ′ − 5f = 0.

Solution. The characteristic equation is r2−2r−5 = 0. This may not seem to factor easily,
so we use the quadratic formula to solve for

r± :=
−(−2)±

√
(−2)2 − 4(1)(−5)
2(1)

=
2±
√
24

2
=

2± 2
√
6

2
= 1±

√
6.

Thus f1(x) = e(1+
√
6)x and f2(x) = e(1−

√
6)x are solutions, and so

f(x) = c1e
(1+
√
6)x + c2e

(1−
√
6)x

is a solution for any choice of real numbers c1 and c2. N

We summarize our recent work.

2.1.8 Lemma.

Let a, b, and c be real numbers with a 6= 0 and assume b2 − 4ac > 0, so the quadratic
equation ar2 + br + c = 0 has the two real roots r±, given by (2.1.5). Then

f(x) := c1e
r+x + c2e

r−x (2.1.6)

solves af ′′+bf ′+cf = 0 for any real numbers c1 and c2. (In particular, taking c1 = c2 = 0
gives the trivial solution f(x) = 0.)

A natural question is now if, assuming b2−4ac > 0, all solutions to af ′′+bf ′+cf = 0 have
the form (2.1.6) for some constants c1 and c2. Recall that in our comprehensive theoretical
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treatment of the integrating factor method (Theorem 1.3.14), we showed that the solutions
to f ′ + p(x)f = 0 that arose from the integrating factor method were the only solutions. Is
the same true for these “linear combinations” of exponentials for our second-order problem?
The answer is yes, but before we see how to arrive at it, it will pay to make a detour to (yet)
another worthwhile concern: solving initial value problems.

Without further data imposed on our differential equation, there is no real way to see
how to choose the constants c1 and c2 in (2.1.6). If, however, we demand that the solution
and its derivative satisfy certain values at a certain input, then we can learn more.

2.1.9 Example.

Find a solution to 
f ′′ − f = 0

f(0) = 1

f ′(0) = −1.

Solution. We know that taking f(x) = c1e
x + c2e

−x solves f ′′ − f = 0 for any choice of
constants c1 and c2. Let us try to pick the constants so that f(0) = 1 and f ′(0) = −1. First,
we calculate

f ′(x) =
d

dx
[c1e

x + c2e
−x] = c1e

x − c2e−x.

Thus we need
1 = f(0) = c1e

0 + c2e
−0 = c1 + c2

and
−1 = f ′(0) = c1e

0 − c2e−0 = c1 − c2.

This gives a linear system of equations for c1 and c2:{
c1 + c2 = 1

c1 − c2 = −1.

There are many ways to solve such a system; here is one. The second equation requires
c1 = c2 − 1, which we substitute into the first equation to find (c2 − 1) + c2 = 1. That is,
2c2 = 2, and so c2 = 1; hence c1 = 0. The function f(x) = e−x thus solves the initial value
problem. N

Later we will see the physical value of choosing initial conditions of the form

f(x0) = y0 and f ′(x0) = y1

in modeling problems; for now, we just practice the mathematics.
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2.1.10 Example.

Solve 
f ′′ − 3f ′ + 2f = 0

f(0) = 0

f ′(0) = 1.

Solution. We know from Example 2.1.6 that taking f(x) = c1e
x+c2e

2x solves f ′′−3f ′+2f =
0. We want

0 = f(0) = c1 + c2,

and we compute
f ′(x) = c1e

x + 2c2e
2x

to find that we also need
1 = f ′(0) = c1 + 2c2.

Thus c1 and c2 need to satisfy the linear system{
c1 + c2 = 0

c1 + 2c2 = 1.

The first equation requires c1 = −c2, so the second equation becomes c2 = 1, which yields
c1 = −1. Thus a solution is f(x) = −ex + e2x. N

In the preceding two examples, we have actually done a little more than just construct
a solution to an initial value problem: we showed that there was only one choice for the
constants c1 and c2 such that a function of the form (2.1.6) would be a solution. This also
generalizes nicely.

2.1.11 Lemma.

Let a, b, and c be real numbers with a 6= 0 and assume b2 − 4ac > 0, so the quadratic
equation ar2 + br+ c = 0 has the two real roots r±, given by (2.1.5). Let x0, y0, and y1 be
real numbers. Then there exist unique c1 and c2 such that the function

f(x) := c1e
r+x + c2e

r−x (2.1.7)

solves the initial value problem 
af ′′ + bf ′ + cf = 0

f(x0) = y0

f ′(x0) = y1.

Proof. Lemma 2.1.8 tells us that f as defined in (2.1.7) solves af ′′ + bf ′ + cf = 0. We
need to determine the right values for c1 and c2 and show that only one value works for each
constant.
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The only way for a function f of the form (2.1.7) to meet both f(x0) = y0 and f ′(x0) = y1
is for c1 and c2 to satisfy the system{

er+x0c1 + er−x0c2 = y0

r+e
r+x0c1 + r−e

r−x0c2 = y1.
(2.1.8)

There are a lot of letters and not many numbers in (2.1.8). But recall that x0, y0, and y1
are all fixed numbers that are given to us in the statement of the initial value problem and
that we have constructed r1 and r2 from the quadratic formula. Thus the only unknowns in
(2.1.8) are c1 and c2.

Since r1 6= r2, it is possible to solve (2.1.8) uniquely for c1 and c2. That is, we can show
that (1) there are values for c1 and c2 that make (2.1.8) true and (2) these are the only values
that work. We leave this as an exercise, but it is essentially the sort of work that we just
did in Examples 2.1.9 and 2.1.10. �

We now know that an initial value problem has only one solution that is a linear com-
bination of exponential-type solutions. Incidentally, initial value problems are not the only
worthwhile way to impose data on a differential equation; for example, one could demand
some sort of “boundary” condition like f(x0) = f(x1) at two different points x0 6= x1. We
will not treat such “boundary value problems” in this course, as both mathematically and
physically they are more suited to a study of partial differential equations.

But, in general, are there solutions to af ′′ + bf ′ + cf = 0 that are not exponential-type?
We claim that there are not, and we will show why by conjuring up an initial value problem.
First, however, we need a specialized result.

2.1.12 Lemma.
Let a, b, c, and x0 be real numbers with a 6= 0. Suppose that f solves the homogeneous
initial value problem 

af ′′ + bf ′ + cf = 0

f(x0) = 0

f ′(x0) = 0.

Then f(x) = 0 for all x.

The proof is fairly technical, and so we leave it as optional reading in Appendix B.1. For
contrast, recall that establishing that the only solution to the corresponding homogeneous
first-order linear initial value problem (1.3.16) was so brief that we left it as an exercise. This
is another instance of the, perhaps, unexpected difficulties that arise when studying second-
order and higher-order equations. We also remark that Lemma 2.1.12 is valid for all constant-
coefficient second-order linear homogeneous problems, not just those whose characteristic
equation has a positive discriminant.

This is where we finished on Wednesday, February 23, 2022.
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2.1.13 Theorem.

Let a, b, and c be real numbers with a 6= 0 and assume b2 − 4ac > 0, so the quadratic
equation ar2 + br + c = 0 has the two real roots r±, given by (2.1.5). Then every solution
f to the differential equation af ′′ + bf ′ + cf = 0 has the form f(x) = c1e

r+x + c2e
r−x for

some constants c1 and c2.

Proof. Suppose that f is any solution to af ′′ + bf ′ + cf = 0. Pick some number x0 in the
domain of f and set y0 = f(x0) and y1 = f(x1). By Lemma 2.1.11, there exist (unique)
numbers c1 and c2 such that taking g(x) := c1e

r+x + c2e
r−x solves the initial value problem

ag′′ + bg′ + cg = 0

g(x0) = y0

g′(x0) = y1.

Now define h(x) := f(x)− g(x). Our goal is to show that h(x) = 0 for all x, as this will
give f(x) = g(x) for all x, and thus f will have the desired form f(x) = c1e

r+x + c2e
r−x. We

leave it as an exercise to check that h solves
ah′′ + bh′ + ch = 0

h(x0) = 0

h′(x0) = 0,

(2.1.9)

and so Lemma 2.1.12 implies that h(x) = 0 for all x. �

Theorem 2.1.13 guarantees that we can find all solutions to a linear homogeneous constant-
coefficient second-order differential equation by studying its characteristic equation — at
least if the characteristic equation has positive discriminant, or, equivalently, two real so-
lutions. What happens if the discriminant behaves differently? It turns out that the “ab-
stract” results above (Lemma 2.1.11 and Theorem 2.1.13) that seemed to rely very much
on the exponential-type functions er±x are still valid for zero and negative values of the
discriminant, if we replace er±x by “something else.”

2.1.3. Interlude: the Wronskian and fundamental solution sets.

It may appear that all our work in Section 2.1.2 on the equation af ′′ + bf ′ + cf = 0 hinged
on having solutions of the form f1(x) = er1x and f2(x) = er2x with r1 6= r2. This is only
superficially true. Far more important than the precise exponential form of these solutions
was being able to solve a linear system of the form{

f1(x0)c1 + f2(x0)c2 = y0

f ′1(x0)c1 + f ′2(x0)c2 = y1
(2.1.10)

where x0, y0, and y1 were given numbers. Such a system arose in treating the concrete
initial value problems in Examples 2.1.9 and 2.1.10 and the general initial value problem
in Lemma 2.1.11 and in proving that all solutions to af ′′ + bf ′ + cf = 0 had the form
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f(x) = c1e
r1x + c2e

r2x, at least for the case of a positive discriminant in the quadratic
equation ar2 + br + c = 0 (this was Theorem 2.1.13).

Systems like (2.1.10) abound in contexts wholly unrelated to differential equations, and
being able to solve them is quite worthwhile. The following lemma, whose proof we punt to
Appendix B.2, tells us exactly when we can solve a system like (2.1.10).

2.1.14 Lemma.
Let d11, d12, d21, d22, y0, and y1 be real numbers. There exist unique numbers c1 and c2
that solve {

d11c1 + d12c2 = y0

d21c1 + d22c2 = y1

if and only if
d11d22 − d12d21 6= 0.

Consequently, to be able to solve (2.1.10), it suffices to have

f1(x0)f
′
2(x0)− f2(x0)f ′1(x0) 6= 0.

The quantity on the left above is really a function of three variables: the two functions f1
and f2 and the real number x0. It has a special name, and some special properties.

2.1.15 Definition.
Let f1 and f2 be differentiable functions. The Wronskian of f1 and f2 is the function

W [f1, f2](x) := f1(x)f
′
2(x)− f ′1(x)f2(x)

2.1.16 Example.

Calculate the Wronskian W [f1, f2] of each pair of functions f1 and f2.

(i) f1(x) = er1x, f2(x) = er2x, where r1 and r2 are numbers.

(ii) f1(x) = erx and f2(x) = xerx, where r is a number.

Solution. (i) We have

f ′1(x) = r1e
r1x and f ′2(x) = r2e

r2x,

so

W [f1, f2](x) = er1x(r2e
r2x)− er2x(r1er1x)

= r2e
r1x+r2x − r1er1x+r2x

= (r2 − r1)e(r1+r2)x.

(ii) We have

f ′1(x) = rerx and f ′2(x) = 1 · erx + x(rerx) = erx + rxerx,
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so

W [f1, f2](x) = erx[erx + rxerx]− xerx(rerx)
= e2rx + rxe2rx − rxe2rx

= e2rx. N

We can now recast what Lemma 2.1.14 says about the problem (2.1.10) in the language
of the Wronskian.

2.1.17 Lemma.
Let f1 and f2 be differentiable functions and x0, y0, and y1 be numbers. There exist unique
numbers c1 and c2 that satisfy (2.1.10) if and only if W [f1, f2](x0) 6= 0.

We now make a bold claim: the proofs of Lemma 2.1.11 and Theorem 2.1.13 relied only
on the fact that if f1(x) := er1x and f2(x) := er2x with r1 6= r2, then W [f1, f2](x) 6= 0 for all
x. That is, these proofs did not really need f1 and f2 to be exponentials!

2.1.18 Theorem.

Suppose that f1 and f2 are functions that solve af ′′ + bf ′ + cf = 0 and, moreover, that
W [f1, f2](x) 6= 0 for all x.

(i) Let x0, y0, and y1 be numbers. There exist unique numbers c1 and c2 such that f(x) =
c1f1(x) + c2f2(x) solves 

af ′′ + bf ′ + cf = 0

f(x0) = y0

f ′(x0) = y1.

(ii) Every solution to af ′′ + bf ′ + cf = 0 has the form f(x) = c1f1(x) + c2f2(x) for some
(unique) numbers c1 and c2.

A pair of functions as in the theorem above deserves a special name.

2.1.19 Definition.

A fundamental solution set for af ′′+ bf ′+ cf = 0 is a pair of functions f1 and
f2 such that

af ′′1 + bf ′1 + cf1 = 0 and af ′′2 + bf ′2 + cf2 = 0

with W [f1, f2](x) 6= 0 for all x.

It appears, then, that solving af ′′ + bf ′ + cf = 0 just amounts to finding a fundamental
solution set. We have already found a fundamental solution set in the event that the char-
acteristic equation has positive discriminant; the fundamental solution set is f1(x) = er1x

and f2(x) = er2x, where r1 6= r2 are the distinct roots of the characteristic equation. (That
W [f1, f2](x) 6= 0 in this case follows from part (i) of Example 2.1.16.) We now turn to finding
fundamental solution sets in the case of a nonpositive discriminant.
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2.1.20 Remark.
The reader with a background in linear algebra will note that if f1 and f2 are differentiable
functions, then the conditionW [f1, f2](x) 6= 0 is equivalent to the invertibility of the matrix[

f1(x) f2(x)
f ′1(x) f ′2(x)

]
.

This, in turn, is equivalent to the linear independence of the set of vectors{(
f1(x)
f ′1(x)

)
,

(
f2(x)
f ′2(x)

)}
in R2. It turns out that — if f1 and f2 both solve the same differential equation af ′′ +
bf ′ + cf = 0 — then the linear independence of this set is equivalent to a third condition:
the linear independence of the set {f1, f2}, where we consider f1 and f2 as vectors in some
function space; that is, f1 is not a constant multiple of f2. We will not use any of these
concepts, however, in our course.

The reader without a background in linear algebra is strongly encouraged to obtain one;
it is life-changing.

This is where we finished on Friday, February 25, 2022.

2.1.4. The discriminant of the characteristic equation is negative.

We will spend some time in mathematical explorations before actually getting to the point.
The reader uninterested in these reflections can skip to Lemma 2.1.23 to see how to handle
our problem af ′′+ bf ′+ cf = 0 in the event that the characteristic equation ar2+ br+ c = 0
has a negative discriminant.

Suppose that a, b, and c are real numbers with a 6= 0 and b2 − 4ac < 0. In solving the
quadratic equation ar2 + br + c = 0, we want to use the quadratic formula,

r =
−b±

√
b2 − 4ac

2a
,

but this begs the question of how to interpret the square root of a negative number. The
answer is to introduce a new species of number.

2.1.21 Undefinition.

We will use the symbol i to denote the expression satisfying i2 = −1. A complex
number is an expression of the form x+ iy, where x and y are real numbers. The real
part of x+ iy is Re(x+ iy) := x and the imaginary part of x+ iy is Im(x+ iy) := y.

All arithmetical operations on complex numbers are performed “as usual,” e.g.,

(1 + 2i) + (3 + 4i) = (1 + 3) + (2i+ 4i) = 4 + 6i
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and
i(2− i) = 2i− i2 = 2i− (−1) = 1 + 2i.

The vast, beautiful field of complex analysis concerns itself with the calculus of func-
tions that are both defined on sets of complex numbers and that output complex numbers;
in particular, complex analysis provides detailed answers to questions like “What does jux-
taposing i and y in the expression x+ iy actually mean?”

The more mundane value of complex numbers for us is that they give meaning to square
roots of negative numbers. Specifically, if w ≥ 0, then we define

√
−w := i

√
w. (2.1.11)

Equivalently, if v ≤ 0, then, again, we define
√
v =

√
−|v| = i

√
|v|. (2.1.12)

We wish to emphasize that (2.1.11) and (2.1.12) are definitions; previously we had (at least
in this course) no firm grasp of how to take the square root of a negative number.

Our more mundane task is to determine a fundamental solution set for af ′′+bf ′+cf = 0
when the discriminant b2 − 4ac of the characteristic equation ar2 + br + c = 0 is negative.
The roots of the characteristic equation are

r1 := −
b

2a
+ i

√
|b2 − 4ac

2a
and r2 := −

b

2a
− i
√
|b2 − 4ac|

2a
.

Abbreviate

α := − b

2a
and β :=

√
|b2 − 4ac|

2a
(2.1.13)

to write the roots as
r1 = α + iβ and r2 = α− iβ.

The exponential ansatz of Section 2.1.1 suggests that

f1(x) := e(α+iβ)x and f2(x) := e(α−iβ)x

solve af ′′ + bf ′ + cf = 0. However, what does e(α±iβ)x mean?
Here it is worthwhile to ask ourselves a more fundamental question: what does the

symbol ex mean when x is a real number? After all, we have been using exponentials since
the beginning of our study of differential equations. We prefer to think of exponentials as
power series.

2.1.22 Theorem.
Let x be a real number. Then the sum

ex = exp(x) :=
∞∑
k=0

xk

k!
= lim

n→∞

n∑
k=0

xk

k!

always converges. Defining ex in this way yields all the usual properties of exponentials,
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including

ex+y = exey, (ex)y = exy, and
d

dx
[ex] = ex.

Thus if x and y are real numbers, a reasonable idea is to define

ex+iy :=
∞∑
k=0

(x+ iy)k

k!
= lim

n→∞

n∑
k=0

(x+ iy)k

k!
.

This, of course, begs the question if this limit actually converges in the manner of Theo-
rem 2.1.22, and what this limit means, since, presumably, we have only ever defined limits
involving real numbers. We will not get into these questions except to claim that, yes, the
limit exists.

More remarkable is that if we split the sum over even and odd integers and use the
identities

i2j = (i2)j = (−1)j and i2j+1 = (i2j)i = i(−1)j,
valid for any integer j, then we have

∞∑
k=0

(iy)k

k!
=
∞∑
j=0

(iy)2j

(2j)!
+
∞∑
j=0

(iy)2j+1

(2j + 1)!
=
∞∑
j=0

(−1)j y
2j

(2j)!
+ i

∞∑
j=0

(−1)j y2j+1

(2j + 1)!
.

But these are just the Taylor series17 for cosine and sine:

sin(y) =
∞∑
k=0

(−1)k y2k+1

(2k + 1)!
and cos(y) =

∞∑
k=0

(−1)k y2k

(2k)!

Then we have Euler’s formula:

eiy = cos(y) + i sin(y).

Now, we expect (although this, like everything else, also needs proof), that we have the
familiar property

ex+iy = exeiy.

And so we can (more or less confidently) conclude

ex+iy = ex[cos(y) + i sin(y)] = ex cos(y) + iex sin(y).

Thus, with α and β defined in (2.1.13), it appears that we have solutions to af ′′+bf ′+cf =
0 of the form

f1(x) = e(α+iβ)x = eαx+iβx = eαx[cos(βx) + i sin(βx)] = eαx cos(βx) + ieαx sin(βx) (2.1.14)

and (using the oddness of the sine to rewrite sin(−βx) = − sin(βx))

f2(x) = eαx cos(βx)− ieαx sin(βx). (2.1.15)
17More precisely, these are the true definitions of cosine and sine.
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This is strange. First, we are claiming that f1 and f2 are differentiable (actually, twice
differentiable). What does it mean for a function that maps real numbers to complex numbers
to be differentiable? Second, everything in the statement of the equation af ′′ + bf ′ + cf = 0
is real-valued; specifically, a, b, and c are real numbers. Is it fair for an equation with
real coefficients to have a complex-valued solution? (Possibly: r2 + 1 = 0 is a quadratic
equation with real coefficients and the nonreal solutions r = ±i.) If we are going to model
something “real” with a second-order linear constant-coefficient differential equation, then
having complex solutions is, at best, fishy.

There are several ways to pass from (2.1.14) and (2.1.15) to real-valued solutions of
af ′′ + bf ′ + cf = 0.

• Observe that

f1(x) + f2(x)

2
= eαx cos(βx) and

f1(x)− f2(x)
2i

= eαx sin(βx)

If we believe that (f1 + f2)/2 and (f1 − f2)/2i solve af ′′ + bf ′ + cf = 0, then we have two
real-valued solutions above.

• If we believe that Re[f ] and Im[f ] solve af ′′+bf ′+cf = 0 whenever f does, then we have,
again, the two real-valued solutions

Re[f1(x)] = eαx cos(βx) and Im[f1(x)] = eαx sin(βx).

Both of the claims above are true, but they need justification. Toward the first point, we
have never tried to add constant multiples of complex-valued solutions to af ′′+bf ′+cf = 0 to
obtain new solutions to this problem. Toward the second, why should taking real/imaginary
parts “commute with derivatives”?

Fortunately, we do not need to justify either point. (It is possible to do so, since per-
forming calculus on functions that take complex, not just real, values is essentially the same
as familiar, beloved real-valued calculus.) Rather, we now have a decent idea of what a
fundamental solution set to af ′′+ bf ′+ cf = 0 in the case of negative discriminant could be,
and once we have a candidate for a fundamental solution set, it is only a matter of time and
derivatives until we know for sure that it works.

2.1.23 Lemma.

Suppose that the quadratic equation ar2 + br + c = 0 has the distinct complex roots r =
α ± iβ, where α and β are real numbers and β 6= 0. Specifically, α and β are defined in
(2.1.13). Then the functions

f1(x) := eαx cos(βx) and f2(x) := eαx sin(βx)

form a fundamental solution set for the equation af ′′ + bf ′ + cf = 0.

Proof. We need to show two things:

af ′′1 + bf ′1 + cf1 = af ′′2 + bf ′2 + cf2 = 0
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and W [f1, f2](x) 6= 0 for all x. Both are fairly thankless calculations.
First we claim that

af ′′1 (x) + bf ′1(x) + cf1(x) = −eαx
((
a(β2 − α2)− αb− c

)
cos(βx) + 2β

(
aα +

b

2

)
sin(βx)

)
Earlier, in (2.1.13), we defined α and β in terms of a and b. Those definitions show18 that
af ′′1 + bf ′1 + cf1 = 0, and the calculation for f2 is similar.

Next, we claim that W [f1, f2](x) = βe2αx. Since β 6= 0, we have W [f1, f2](x) 6= 0 for all
x. The full verifications of both calculations are worthwhile exercises in differentiation and
algebra. �

2.1.24 Example.

Find all solutions to each differential equation.

(i) f ′′ + f = 0

(ii) f ′′ − 2f ′ + 5f = 0

Solution. (i) The characteristic equation is r2 + 1 = 0. We could solve this with the
quadratic formula, but this equation is essentially why complex numbers were invented, so
we just solve it in the straightforward way: r2 = −1 and so r = ±

√
−1 = ±i. In particular,

r = i = 0+ (1 · i) is a root of the characteristic equation, so we take α = 0 and β = 1 to find
that

f1(x) = e0·x cos(1 · x) = cos(x) and f2(x) = e0·x sin(1 · x) = sin(x)

form a fundamental solution set for f ′′+ f = 0. Thus every solution to this problem has the
form

f(x) = c1 cos(x) + c2 sin(x)

for some constants c1 and c2.

This is where we finished on Monday, February 28, 2022.

(ii) The characteristic equation is r2− 2r+5 = 0, and we use the quadratic formula to find
its roots:

r =
−(−2)±

√
(−2)2 − 4(1)(5)

2(1)
=

2±
√
4− 20

2
=

2±
√
−16

2
=

2± 4i

2
= 1± 2i.

Here α = 1 and β = 2, so

f1(x) = e1·x cos(2x) = ex cos(2x) and f2(x) = e1·x sin(2x) = ex sin(2x)

form a fundamental solution set. Thus every solution has the form

f(x) = c1e
x cos(2x) + c2e

x sin(2x)

18That β2 = (4ac− b2)/4a2 is important, and maybe subtle.
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for some constants c1 and c2. The interested reader might compare this solution to that of
Example 2.1.7, where we studied f ′′−2f ′−5f = 0, and note the difference that ±5f makes.

N

2.1.25 Example.

Let ω be a real number with ω 6= 0. Solve
f ′′ + ωf = 0

f(0) = 0

f ′(0) = 1.

Solution. This is a differential equation with a parameter, ω, and so our solutions will
depend on both x, the independent variable, and ω.

The characteristic equation is r2 + ω2 = 0, so r2 = −ω2, and therefore

r = ±
√
−ω2 = ±i

√
ω2 = ±i|ω|.

Since we do not know that ω > 0, all we can say is
√
ω2 = |ω|. (For example,

√
(−4)2 =

4 = | − 4|.)
Here α = 0 and β = |ω|, so all solutions have the form

f(x) = c1 cos(|ω|x) + c2 sin(|ω|x)

for some constants c1 and c2. We want to choose c1 and c2 so that f(0) = 0 and f ′(0) = 1.
Since sin(0) = 0 and cos(0) = 1, we calculate

0 = f(0) = c1.

Thus, whatever c2 is, we know f(x) = c2 sin(|ω|x). Then f ′(x) = c2|ω| cos(|ω|x), and so

1 = f ′(0) = |ω|c2.

Hence c2 = 1/|ω|, and therefore the (only) solution is

f(x) =
1

|ω|
sin(|ω|x).

Here it was important that ω 6= 0. In fact, we have

1

|ω|
sin(|ω|x) = 1

ω
sin(ωx);

we leave the details as an exercise. N

This is where we finished on Wednesday, March 2, 2022.



2. Higher-Order Linear Differential Equations 74

2.1.5. The discriminant of the characteristic equation is negative.

Since we are considering second-order equations with real coefficients a, b, and c, the dis-
criminant b2 − 4ac is a real number as well and can be positive, or negative, or zero. We
treat this last case here. If b2−4ac = 0, then the only solution to the characteristic equation
ar2 + br + c = 0 is, per the quadratic formula,

r = r∗ := −
b

2a
.

Such a root is sometimes called a repeated or double root of the quadratic.
This immediately tells us that f1(x) := er∗x is a solution to af ′′ + bf ′ + cf = 0, but we

know that we need another solution to construct a full fundamental solution set. By linearity,
any scalar multiple of f1 will also be a solution, but we can check that W [f1, cf1] = 0 for
any constant c. So, we need a more “interesting” second solution.

There are any number of ways to motivate the following result, and arguably none of
them are convincing unless one has already been convinced of what is the right answer. We
will sketch some of these motivations as exercises and elsewhere.

2.1.26 Lemma.

Suppose that a, b, and c are real numbers with a 6= 0 and that r∗ := −b/2a is the only root
of the quadratic equation ar2 + br + c = 0. Then the functions

f1(x) := er∗x and f2(x) = xer∗x

form a fundamental solution set for the equation af ′′ + bf ′ + cf = 0.

Proof. As before, we need to check that both

af ′′1 + bf ′1 + cf1 = af ′′2 + bf ′2 + cf2 = 0

and W [f1, f2](x) 6= 0 for all x. We already know that f1 is a solution to our homogeneous
problem thanks to our preparatory work in Section 2.1.1. For f2, we calculate

af ′′2 (x) + bf ′2(x) + cf2(x) =
(
(ar2∗ + br∗ + c)x+ (2ar∗ + b)

)
er∗x. (2.1.16)

Since r = r∗ is a solution to (indeed, the only solution of) the quadratic equation ar2+br+c =
0, we have

ar2∗ + br∗ + c = 0.

Moreover, since r∗ = −b/2a, we have 2ar∗+b = 0. Thus by (2.1.16) we have af ′′2 +bf
′
2+cf2 =

0.
As for the Wronskian, happily we have already calculated that. Part (ii) of Example

2.1.16 tells us that
W [f1, f2](x) = e2r∗x 6= 0

for all x. �
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2.1.27 Example.

Find all solutions to each differential equation.

(i) f ′′ − 2f ′ + f = 0

(ii) f ′′ − 4f ′ + 4f = 0

Solution. (i) The characteristic equation is r2−2r+1 = 0, and this factors to (r−1)2 = 0.
Hence the only root is r = 1, and so the functions f1(x) := ex and f2(x) := xex form a
fundamental solution set. Thus all solutions are

f(x) = c1e
x + c2xe

x.

(ii) The characteristic equation is r2 − 4r + 4 = 0, and this factors to (r − 2)2 = 0. Hence
the only root is r = 2, and so all solutions have the form

f(x) = c1e
2x + c2xe

2x. N

2.1.6. Summary.

The form of solutions to the second-order linear constant-coefficient homogeneous problem
af ′′+bf ′+cf = 0 hinges precisely on the behavior of the roots of the associated characteristic
equation ar2+ br+ c = 0. First we wrap up all our recent hard work into one pat statement,
which first relies on Definition B.1.4.

2.1.28 Theorem.
Let a, b, and c be real numbers with a 6= 0. Then there exists a fundamental solution
set {f1, f2} for af ′′ + bf ′ + cf = 0, so that every solution to this equation has the form
f = c1f1 + c2f2 for some constants c1 and c2.

Proof. Consider the following cases on the discriminant b2 − 4ac.

Case 1: b2 − 4ac > 0. Apply Theorem 2.1.13.

Case 2: b2 − 4ac < 0. Apply Lemma 2.1.23.

Case 3: b2 − 4ac = 0. Apply Lemma 2.1.26. �

Here is the algorithmic summary of our work.

2.1.29 Method: Solve af ′′ + bf ′ + cf = 0

1. Find the roots of the characteristic equation ar2 + br + c = 0. Factor the equation if
that is easy; the quadratic formula always works.

2. The full solution depends on the sign of the discriminant, b2 − 4ac. Below, c1 and c2
are always arbitrary constants.
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(i) Distinct real roots (b2 − 4ac > 0): if the characteristic equation has the real roots
r = r1 and r = r2, with r1 6= r2, then all solutions have the form

f(x) = c1e
r1x + c2e

r2x.

(ii) Distinct complex roots (b2− 4ac < 0): if the characteristic equation has the complex
roots r = α+ iβ and r = α− iβ, where β 6= 0 (and i2 = −1), then all solutions have the
form

f(x) = c1e
αx cos(βx) + c2e

αx sin(βx).

(iii) Repeated (double) real root (b2 − 4ac = 0): if the characteristic equation has only
one root, r = r∗, then all solutions have the form

f(x) = c1e
r∗x + c2xe

r∗x.

2.2. The undriven harmonic oscillator.

2.2.1. Construction of the model.

Suppose that an object of uniform mass m is placed on a level surface and attached by a
spring to a nearby wall. When the spring is at rest the object is ` units away19 from the
wall. We call this “mass+spring” construct a harmonic oscillator.

m

surface

wall rest

`

We pull (or, if you prefer, push) the object u0 units away from this equilibrium position and
let it go. What happens?

m

u0

t = 0

surface

wall

`

19We will not provide units in this treatment; feel free to bring your own from home. Also, we will act as
though our “object” has zero spatial dimensions, so that the spring is ` units long at rest. We might also
try saying that the object’s “center of mass” is ` units from the wall, but that would require us to define a
center of mass. Best not to think too hard about this.
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No doubt the oscillator moves back and forth along the surface. (Let us suppose that we
have rigged the universe so that the oscillator can only move horizontally, i.e., left and right,
not up, down, in, or out.) Physical experience suggests that the oscillator probably will not
move forever and also that the material properties of the oscillator and the environment —
the size of the mass, the stiffness of the spring, the friction that the surface may or may not
induce — will somehow affect the oscillator’s motion.

In order to say anything really meaningful, we should introduce some kind of mathemat-
ical language and start asking mathematical questions. Specifically, we will measure how far
the oscillator is from its equilibrium position. For time t ≥ 0, let u(t) denote the distance of
the oscillator from equilibrium. In particular, u(0) = u0.

m

u(t)

t > 0

surface

wall

Our point of departure is now Newton’s law:

force = mass× acceleration.

“Mass” is definitely m, and since acceleration is the second derivative of position, we can
expect

mu′′(t) = force.

What forces is the oscillator experiencing? The answer to this question completely de-
termines the oscillator’s behavior. Since we are studying in a mathematical world, which is
not the real world, we can start very simply: assume that only the spring exerts a force on
the oscillator. For now, there will be no friction, no air resistance, no random cat attacks —
just the tugging of the spring.

2.2.2. The undamped, undriven harmonic oscillator.

Here we assume that the oscillator only experiences force due to the spring. The oscillator
is undamped because there is no force of friction to “damp” or suppress its motion; it
is undriven or free because there is no external20 force “driving” its motion. We will
consider damped oscillators shortly and driven oscillators not so shortly.

Experience suggests that when a spring is stretched, it pulls back in the opposite direction;
that is, it exerts a force opposite to the direction of pulling. Experience also suggests that it
becomes more difficult to stretch a spring once it has already been stretched a long distance.
Thus if we pull the spring a distance r from its equilibrium length, we expect it to pull back
with a force Fspr(r) in the direction opposite to the pull, and Fspr(r) should get larger as r
20External to the universe drawn above, consisting of surface, spring, and oscillator.
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gets larger. There are many possible choices for the spring force function Fspr; perhaps the
simplest comes from Hooke’s law, which takes

Fspr(r) := −κr

for some κ > 0. Here the spring force is directly proportional to the distance pulled, which
is r, and the negative sign reflects the notion that the spring pulls in the opposite direction.

Newton’s law then tells us that

mu′′(t) = −κu(t), (2.2.1)

since u(t) is the distance that the spring has been pulled from its equilibrium length (`).
This is the second-order linear constant-coefficient homogeneous equation

mu′′ + κu = 0.

Its characteristic equation is
mλ2 + κ = 0,

where now we are using λ instead of r for the variable in the quadratic equation. Thus

λ = ±
√
− κ
m

= ±i
√
κ

m
= ±iω, ω :=

√
κ

m
.

Here it is important that κ/m > 0.
All solutions to (2.2.1) therefore have the form

u(t) = c1 cos(ωt) + c2 sin(ωt). (2.2.2)

2.2.1 Example.

Suppose that the oscillator is pulled a distance u0 from its equilibrium position and then
released “very gently,” so that no force at all is exerted in letting it go. What is its
displacement from equilibrium at time t?

Solution. One way to interpret the phrase “very gently” is to assume that the oscillator has
no initial velocity (no extra kick/flick/oomph at the start). Then its displacement u must
satisfy 

mu′′ + κu = 0

u(0) = u0

u′(0) = 0.

By (2.2.2), we have u(t) = c1 cos(ωt) + c2 sin(ωt) for some constants c1 and c2, where ω =
(κ/m)1/2 > 0. We need

u0 = u(0) = c1 cos(0) + c2 sin(0) = c1

and u′(0) = 0, where
u′(t) = −c1ω sin(ωt) + c2ω cos(ωt).
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That is, we need
0 = u′(0) = −c1ω sin(0) + c2ω cos(0) = c2ω,

and since ω > 0 we can divide to solve for c2 = 0. Thus the displacement satisfies

u(t) = u0 cos(ωt) = u0 cos

(√
κ

m
t

)
. (2.2.3)

N

This is where we finished on Monday, March 14, 2022 (π/Π/$-Day).

What are the effects of the three different parameters u0, m, and κ in the solution
(2.2.3)? How should they physically affect the oscillator’s motion, and how is that reflected
mathematically? Will the conclusions that we draw be physically realistic in (i) the context
of our lived experience or (ii) under the very limited assumptions that we have made on
the oscillator (in particular, the absence of all forces except the spring’s force)? One way
to address these questions is just to think about the function (2.2.3) with one parameter
changing and the other two fixed.

2.2.2 Example.

How does changing the value of u0 affect the behavior of the oscillator?

Solution. We graph u(t) = u0 cos(t), as defined in (2.2.3) with κ = m = 1, for several
values of u0. All graphs are over the same time interval [0, 2π].

t

u(t)
u0 = 1

π

1

−1

t

u(t)

π

2

−2

u0 = 2

The values of u(t) = u0 cos(t) can be any number in the interval [−u0, u0], and u takes
these values with 2π-periodicity. That is, the oscillator “oscillates” forever between u0 units
to the right and to the left of its equilibrium position. Note in particular that the oscillator
has reached the equilibrium position whenever the graph of u crosses the t axis; since u(t)
is the distance of the oscillator from equilibrium, the oscillator is at equilibrium if and only
if u(t) = 0.

We should immediately object to the notion of an oscillator that oscillates forever; surely
this is impossible, as all things slow down eventually. However, recall that here we are
studying an oscillator without friction or any other force to sap, or “damp,” its motion.
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t

u(t)
u0 = 1.5

π

1.5

−1.5

t

u(t)

π

.75

−.75

u0 = .75

Also, recall that the oscillator’s equilibrium position is ` units from the wall. This model
says that the oscillator can move to u0 units to the left of equilibrium, which is to say, `−u0
units from the wall. If `− u0 < 0, then the oscillator will be inside, or maybe even through,
the wall! This too is physically unrealistic (unless the oscillator is the dense wall-smashing
kind) and even more unrealistic when we consider that passing through the wall does not
stop the oscillator’s motion at all! N

2.2.3 Example.

How does changing the value of m affect the behavior of the oscillator?

Solution. We fix u0 = κ = 1 and graph um(t) := cos(t/
√
m) for several values of m. All

graphs are over the same time interval [0, 2π].

t

u(t)

π

m = 1
1

−1

t

u(t)

π

m = .5
1

−1

t

u(t)

π

m = 2
1

−1

t

u(t)

π

m = 10
1

−1

Since u0 = 1, the oscillator always moves between one unit to the right and the left of the
equilibrium position. Perhaps the most obvious difference among the graphs is that um has
more roots in the interval [0, 2π] when m is small. That is, the oscillator passes through its
equilibrium point more often in a fixed time interval for small masses than for large masses.
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Hopefully this makes sense: a small mass moves more quickly than a large mass; a large
mass moves more slowly than a small mass.

At the level of functions, the value ofm alters the periodicity (equivalently, the frequency)
of um. Specifically, um is 2π

√
m-periodic for any m > 0. If m is “large,” this means that um

has a “large” period and therefore will take a long time to complete one “repetition” of its
motion (between the extremes of one unit to the right and to the left of equilibrium); if m
is small, then the period is small, and so um cycles through its motion very quickly. N

2.2.4 Example.

How does changing the value of κ affect the behavior of the oscillator?

Solution. We fix u0 = m = κ and graph uκ(t) := cos(
√
κt) for several values of κ. All

graphs are over the same time interval [0, 2π].

t

u(t)

π

κ = 1
1

−1

t

u(t)

π

κ = 3
1

−1

t

u(t)

π

κ = .5
1

−1

t

u(t)

π

κ = 10
1

−1

Again, since u0 = 1, the oscillator moves between one unit to the right and the left of the
equilibrium position. We see that uκ has more roots in the interval [0, 2π] when κ is large.
Hence the oscillator passes through equilibrium more frequently in a fixed time interval for
springs with large κ than with small. Perhaps “large κ” is not as evocative as “large mass
m” in the previous example, so we should remember that the spring force is Fspr(r) = −κr;
when κ is large, the spring pulls back with more force when stretched a length r than it does
when stretched the same length for κ. In other words, a larger κ corresponds to a “stiffer”
spring. Now, a stiff spring is harder for us to pull, but, once pulled, it should shoot back
more quickly than a loose spring.

Again, the value of κ changes the period of uκ, which is always 2π/
√
κ. If κ is “large,”

then 2π/
√
κ is “small,” and so the oscillator completes one “cycle” of its motion (between ±1

units away from equilibrium) more times over the same time interval [0, 2π] than it does if
κ is “small,” in which case 2π/

√
κ is “large.” N
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2.2.3. The damped, undriven harmonic oscillator.

Now we will incorporate friction into our model — this is the damped oscillator, since
friction should “damp” or suppress motion — but we will assume, as before, that there are
no “external” forces (thus the oscillator is still “undriven”). Experience suggests that the
friction that a moving body experiences is proportional to its velocity. Thus we assume
there is b > 0 such that at time t, the force of friction is

Ffr(t) := −bu′(t).

Assuming that the total force that an object experiences is the sum of the individual forces
that it experiences, Newton’s law tells us now that

mu′′(t) = Fspr(u(t)) + Ffr(t) = −κu(t)− bu′(t).

That is,
mu′′ + bu′ + κu = 0. (2.2.4)

Before we attempt any solution of (2.2.4), let us predict what should happen. If friction
truly suppresses motion, then over long times the oscillator should stop moving, and its
position along the surface should become roughly constant. However, we are not working in
true “position along the surface” coordinates21 but rather “displacement from equilibrium”
coordinates. Experience, perhaps, suggests that the oscillator should settle down around its
equilibrium position, in which case u(t) should be very small for large t. That is, we predict
that if u solves (2.2.4), then

lim
t→∞

u(t) = 0. (2.2.5)

Let us try to make this rigorous. Since b 6= 0, (2.2.4) is a rather more complicated
differential equation than (2.2.1), and really its solution will depend on the sign (and value)
of the discriminant, b2 − 4mκ. As usual, we study the characteristic equation for (2.2.4),
which is

mλ2 + bλ+ κ = 0

and find

λ =
−b±

√
b2 − 4mκ

2m
.

We will consider just one possibility on the roots and leave the others as exercises.

2.2.5 Example.

What happens to the oscillator over long times in the overdamped case of b2−4mκ > 0?

Solution. Here the roots of the characteristic equation are

λ+ :=
−b+

√
b2 − 4mκ

2m
and λ− :=

−b−
√
b2 − 4mκ

2m
.

21If we take the zero coordinate to be the wall, then the oscillator’s true position along the surface at time
t is p(t) := ` + u(t) units from the wall. As we observed in Example 2.2.2, this can lead to the squicky
situation p(t) < 0, in which case the oscillator is passing through the wall.
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Since b2 − 4mκ > 0, these are both real numbers, and so displacement satisfies

u(t) = c1e
λ+t + c2e

λ−t

for some constants c1 and c2. The signs of λ+ and λ− determine the long-term behavior of
u, and if we are to have (2.2.5), then we need λ+ < 0 and λ− < 0.

The second inequality is a bit easier to see: since
√
b2 − 4mκ > 0 and b > 0, we have

−b < 0 and −
√
b2 − 4mκ < 0. Adding and dividing by 2m > 0, we find λ− > 0, as desired.

For the first inequality, we cleverly manipulate some auxiliary inequalities. Since m > 0
and κ > 0, we have 4mκ > 0, thus −4mκ < 0, and so

0 < b2 − 4mκ < b2.

Since the square root is strictly increasing, we have
√
b2 − 4mκ <

√
b2 = |b| = b,

where the last equality holds because b > 0. That is,
√
b2 − 4mκ < b, and so −b +√

b2 − 4mκ < 0. Dividing by 2m > 0, we conclude λ+ < 0.
Since λ+ < 0 and λ− < 0, we have

lim
t→∞

eλ+t = lim
t→∞

eλ−t = 0,

and thus the expected behavior (2.2.5) of u is true. N

In addition to studying the cases b2− 4mκ < 0 and b2− 4mκ = 0 and assuring ourselves
that u(t) → 0 as t → ∞, there are many other interesting22 questions that we could take
up. For example, the undamped oscillator passes through its equilibrium position infinitely
many times as t→∞. How often does the damped oscillator do so?

2.2.4. Toward more complicated differential equations.

The harmonic oscillator also motivates the study of differential equations with a number of
more challenging features than our beloved constant-coefficient linear homogeneous problem
possesses.

1. What happens if the oscillator experiences forces in addition to the spring force and
friction? Assuming that the spring force is still Fspr(r) = −κr and the friction force is still
Ffr(t) = −bu′(t), let us say that all the other forces on the oscillator at time t have the value
g(t). Then the displacement must satisfy

mu′′(t) + bu′(t) + κu(t) = g(t).

Since g is, presumably, not 0 for all t, this is a nonhomogeneous equation. While we
quickly learned how to solve nonhomogeneous linear first-order problems with the integrating
factor, all of our work with the characteristic equation above has been predicated on having
a homogeneous second-order problem. Treating nonhomogeneous second-order problems will
occupy much of the rest of our attention.
22This is, as always, something of a matter of opinion.
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2. What happens if some of the “material” properties of the oscillator and its environment
change over time? For example, what if the spring rusts (and therefore gets stiffer) or is
lubricated (and therefore gets looser)? Then instead of a constant κ in the spring force, we
could have a time-dependent function κ(t). Or what if the mass of the oscillator somehow
“leaks” and decreases, or maybe “aggregates” and increases? Then instead of the constant m
we have a function m(t). Thus we are led to study the variable-coefficient equation

m(t)u′′(t) + b(t)u′(t) + κ(t)u(t) = g(t).

Variable-coefficient equations tend to be difficult, or at least quite laborious, to solve; often
one can assume that m, b, κ, g, and u have power series expansions in t and then, given
coefficients for m, b, κ, and g, one can eke out formulas for the coefficients in u. Typically
these power series solutions do not converge to “familiar” functions but instead define new
creations.

3. What if we quibble with Hooke’s law and reject the notion that the spring force is directly,
linearly proportional to the length that the spring is pulled from equilibrium? Say that
instead of Fspr(r) = −κr, we take Fspr(r) = −κr−βr2, where now β > 0 is another constant.
Then the oscillator’s displacement satisfies the nonlinear equation

mu′′ + bu′ + κu+ βu2 = g(t). (2.2.6)

As difficult as variable-coefficient equations are to solve, there are, typically, even fewer “ex-
plicit” formulas for nonlinear equations — our success with first-order separation of variables
being something of an exception. Nonetheless, an explicit formula is not necessarily equiv-
alent to solving, let alone understanding, a differential equation. Often “abstract” existence
theorems can assure us that solutions to nonlinear problems like (2.2.6) exist; then softer
“qualitative” methods can tell us something about their properties. (By the way, m, b, κ,
and β could all be t-dependent in (2.2.6), too!)

This is where we finished on Wednesday, March 16, 2022.

2.3. Fundamental properties of linear nonhomogeneous equations.

Let g be a function and a, b, and c be real numbers with a 6= 0. Much of our efforts will now
be devoted to solving and analyzing the nonhomogeneous problem

af ′′ + bf ′ + cf = g(x). (2.3.1)

In principle, we could have g(x) = 0 for all x, and then we would be back to the homogeneous
problem; we will emphasize the dependence of g on x in (2.3.1) to remind ourselves that we
are no longer dealing with strictly homogeneous equations. Sometimes we will call the
function g the nonhomogeneity of (2.3.1); with an eye toward harmonic oscillators, we
might also call g the forcing or driving function of (2.3.1).

Before we learn some specific algorithmic methods for solving (2.3.1), it will be worthwhile
to examine two properties of nonhomogeneous problems in general.
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2.3.1 Theorem.
Let a, b, and c be real numbers. Suppose that g1 and g2 are functions and f1 and f2 solve

af ′′1 + bf ′1 + cf1 = g1(x) and af ′′2 + bf ′2 + cf2 = g2(x).

Let c1 and c2 be real numbers. Then the function h(x) := c1f1(x) + c2f2(x) solves

ah′′ + bh′ + ch = c1g1(x) + c2g2(x).

The proof, which we leave as an exercise, uses the linearity of the derivative, e.g.,

h′ = (c1f1 + c2f2)
′ = (c1f1)

′ + (c2f2)
′ = c1f

′
1 + c2f

′
2.

One consequence of superposition is that we can “break up” a problem with a “compli-
cated” nonhomogeneity if the nonhomogeneity is the sum of two or more functions. That is,
we solve the same differential equation set equal to each of the terms of the nonhomogeneity
and then add all the results together.

A more rewarding consequence of superposition, and our hard work with homogeneous
problems, is that we can find all solutions to the nonhomogeneous problem (2.3.1) if we know
but two things: one “particular” solution to the nonhomogeneous problem and a fundamental
solution set for the homogeneous problem (Definition 2.1.19). We can always construct the
latter using the characteristic equation techniques of Section 2.1; we will learn how to produce
particular solutions shortly.

2.3.2 Theorem.
Let a, b, and c be real numbers, and let g be a function. Suppose that f∗ solves

af ′′∗ + bf ′∗ + cf∗ = g(x)

and that f1 and f2 form a fundamental solution set for the corresponding homogeneous
problem

af ′′ + bf ′ + cf = 0.

Suppose that f also solves
af ′′ + bf ′ + cf = g(x).

Then there are constants c1 and c2 such that

f = f∗ + c1f1 + c2f2. (2.3.2)

Proof. Put h(x) := f(x)− f∗(x). Superposition tells us that h solves

ah′′ + bh′ + ch = g(x)− g(x) = 0. (2.3.3)

Part (ii) of Theorem 2.1.18 then tells us that h = c1f1 + c2f2 for some constants c1 and c2.
That is, f − f∗ = c1f1 + c2f2, which implies (2.3.2). �
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In the following examples, we will be given a particular nonhomogeneous solution f∗,
which we will learn how to construct later. We will then use (2.3.2) to find all solutions to
the nonhomogeneous problem.

2.3.3 Example.

Given that f∗(x) = x solves
f ′′ + f = x,

find all solutions to this equation.

Solution. It is worthwhile to take a moment to check that the claim about f∗ is true. Since
f ′∗(x) = 1 and f ′′∗ (x) = 0, we have

f ′′∗ (x) + f∗(x) = 0 + x = x,

so f∗ does indeed solve the nonhomogeneous problem.
Now we find a fundamental solution set for the homogeneous problem f ′′ + f = 0.

Actually, we did this already in part (i) of Example 2.1.24, where we saw that a fundamental
solution set is f1(x) := cos(x) and f2(x) := sin(x). Thus any solution to the nonhomogeneous
problem has the form

f(x) = x+ c1 cos(x) + c2 sin(x)

for some constants c1 and c2. N

2.3.4 Example.

Given that f∗(x) = e2x/3 solves
f ′′ − f = e2x,

solve the initial value problem 
f ′′ − f = e2x

f(0) = 0

f ′(0) = 1.

Solution. As before, we first check that f∗ is a solution. Since

f ′∗(x) =
2e2x

3
and f ′′∗ (x) =

4e2x

3
,

we have
f ′′∗ (x)− f∗(x) =

4e2x

3
− e2x

3
=

4e2x − e2x

3
=

3e2x

3
= e2x.

Next, we find a fundamental solution set for f ′′−f = 0. Actually, we did this in Example
2.1.4 and therefore just reread that solution to see that f1(x) := ex and f2(x) := e−x form a
fundamental solution set. Thus every solution to f ′′ − f = e2x has the form

f(x) =
e2x

3
+ c1e

x + c2e
−x
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for some constants c1 and c2.
Now we choose c1 and c2 to meet the initial conditions. We need

0 = f(0) =
e2·0

3
+ c1e

0 + c2e
−0 =

1

3
+ c1 + c2.

We pause to differentiate f and find

f ′(x) =
2e2x

3
+ c1e

x − c2e−x,

and so we want
1 = f ′(0) =

2e2·0

3
+ c1e

0 − c2e−0 =
2

3
+ c1 − c2.

Thus c1 and c2 must satisfy the linear system
c1 + c2 = −

1

3

c1 − c2 =
1

3
.

(2.3.4)

As usual, there are any number of ways to solve this system; one method is simply to add
the two equations together to find that 2c1 = 0 and thus c1 = 0. Then the first equation
gives c2 = −1/3, and so the solution to the initial value problem is

f(x) =
e2x

3
− e−x

3
. N

2.3.5 Method: Solve af ′′ + bf ′ + cf = g(x)

1. Find a fundamental solution set for the homogeneous problem af ′′ + bf ′ + cf = 0.
This will involving finding the roots of the characteristic equation ar2 + br + c = 0 and
interpreting their behavior. Call the functions in this fundamental solution set f1 and f2.

2. Find one “particular” solution f∗ to the nonhomogeneous problem af ′′ + bf ′ + cf = 0.

3. All solutions to the nonhomogeneous problem have the form

f = f∗ + c1f1 + c2f2

for some constants c1 and c2.

This is where we finished on Friday, March 18, 2022.
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2.4. Variation of parameters.

We should now be convinced of the superb value of having just one “particular” solution to
the nonhomogeneous problem

af ′′ + bf ′ + cf = g(x). (2.4.1)

So how do we find one?
It turns out that we do not need much more than a fundamental solution set for the

corresponding homogeneous problem to build a particular solution to a given nonhomoge-
neous problem. To see how the construction might proceed, it pays to revisit the familiar
first-order linear problem.

2.4.1 Example.

Let g be a continuous function on the interval I and let a and b be real numbers with a 6= 0.
Study the structure of solutions to the problem af ′ + bf = g(x).

Solution. We could repeat the integrating factor method on this problem, but we will
instead just read off the solution from Theorem 1.3.14. To do so, we first rewrite our
problem as

f ′ +
b

a
f =

g(x)

a
.

The coefficient function on f is p(x) := b/a, and an antiderivative for p is P (x) := (b/a)x.
Replacing g(x) by g(x)/a throughout Theorem 1.3.14, we find that every solution to f ′ +
(b/a)f = g(x)/a has the form

f(x) = u(x)e−(b/a)x + Ce−(b/a)x,

where C is a constant and the function u satisfies

u′(x) =
e(b/a)xg(x)

a
.

Motivated by Remark 1.3.15, we abbreviate f0(x) := e−(b/a)x and take C = 0 to find that

f∗(x) := u(x)e−(b/a)x = u(x)f0(x)

is a particular solution to af ′ + bf = g. The function f0 solves the homogeneous problem
af ′0 + bf0 = 0. Thus a particular solution to the nonhomogeneous problem is a “variable-
coefficient” multiple of a (nontrivial) solution to the homogeneous problem. More precisely,
this function u satisfies

u′(x) =
g(x)

af0(x)
.

In other words, u is completely determined by the nonhomogeneity g and the solution f0 to
the homogeneous problem. N
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The structure of solutions to the first-order nonhomgeneous problem (loosely) motivates
the following idea for solving the second-order nonhomogeneous problem (2.4.1). Suppose
that f1 and f2 form a fundamental solution set for the corresponding homogeneous problem
af ′′+bf ′+cf = 0; such functions always exist, thanks to our knowledge of the characteristic
equation. For (2.4.1), make the ansatz

f(x) = u1(x)f1(x) + u2(x)f2(x). (2.4.2)

We will figure out what u1 and u2 should be by working backwards. Specifically, we will
evaluate (2.4.1) with f in this form and see what u1 and u2 should be23 (or, more precisely,
what they should do). Once we have good candidates for u1 and u2, we can check that such
candidates actually produce a solution to (2.4.1) via (2.4.2). As it turns out, the calculations
are messy and tedious and not all that enlightening, and we defer them to Appendix C.

Here is what we find. If u1 and u2 satisfy the differential equations

u′1(x) = −
g(x)f2(x)

aW [f1, f2](x)
and u′2(x) =

g(x)f1(x)

aW [f1, f2](x)
, (2.4.3)

then defining f by (2.4.2) does indeed yield a solution of (2.4.1).
How do we know that these differential equations have solutions? First, they are first-

order direct integration problems. So, when does a first-order direct integration problem
have solutions? When all the functions involved are continuous (Theorem 1.1.3).

And are the functions here in (2.4.3) continuous? Since f1 and f2 form a fundamental
solution set for af ′′+ bf ′+ cf = 0, they are twice differentiable, therefore differentiable, and
therefore continuous. SinceW [f1, f2] = f1f

′
2−f ′1f2, and since f ′1 and f

′
2 are differentiable, all

the components of W [f1, f2] are continuous. Since a 6= 0 (as otherwise we would not be con-
sidering a second-order problem) and since W [f1, f2](x) 6= 0 by definition of a fundamental
solution set, we have no concerns about dividing by zero in (2.4.3). It therefore falls to g to
be continuous (note that we did not assume continuity of the nonhomogeneity g in Section
2.3).

2.4.2 Theorem (Variation of parameters24).

Let a, b, and c be real numbers with a 6= 0. Let g be continuous on the interval I and let f1
and f2 form a fundamental solution set for the homogeneous problem af ′′ + bf ′ + cf = 0.
Suppose that u1 and u2 satisfy (2.4.3) on I. Then the function f∗ := u1f1 + u2f2 solves
af ′′∗ + bf ′∗ + cf∗ = g(x) on I.

23This was exactly our philosophy in solving the homogeneous problem via the exponential ansatz. We
guessed that f(x) = erx would solve af ′′ + bf ′ + cf = 0 for some real number r; we substituted this
formula for f into the differential equation; and then we tried to learn about r. Specifically, we learned
that r had to solve the characteristic equation ar2 + br + c = 0.

24So named because we are “varying” the “parameters” c1 and c2 in the homogeneous solution f0(x) =
c1f1(x) + c2f2(x) to get the nonhomogeneous solution f∗(x) = u1(x)f1(x) + u2(x)f2(x). Since we usually
do not think of c1 and c2 as “parameters” in the differential equation af ′′+ bf ′+ cf = g(x) — if anything,
a, b, and c are the parameters — perhaps a more evocative name for the method is “variation of constants,”
which is certainly in vogue in some circles.
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Proof. The work preceding the statement of this theorem is not, in fact, a proof of it.
Rather, that work suggested the definitions of u1 and u2 via (2.4.3). The real proof is
somewhat more mundane, but still important: with f∗ = u1f1 + u2f2, we need to use the
product rule and the properties (2.4.3) to show that af ′′∗ (x) + bf ′∗(x) + cf∗(x) = g(x) for
all x ∈ I. This, like so many other things, is just a matter of calculus, algebra, and time.
Our ability to construct u1 and u2 in the first place hinges on continuity as discussed in the
paragraph preceding the statement of this theorem. For example, we could define

u1(x) := −
∫ x

x0

g(s)f2(s)

aW [f1, f2](s)
ds and u2(x) :=

∫ x

x0

g(s)f1(s)

aW [f1, f2](s)
ds

for a given point x0 of I. The continuity of g ensures that the integrals exist and, moreover,
that they differentiate as in (2.4.3), per the fundamental theorem of calculus. �

2.4.3 Example.

Revisit Example 2.3.4 and find all solutions to f ′′ − f = e2x.

Solution. A fundamental set for the homogeneous problem f ′′ − f = 0 is f1(x) := ex and
f2(x) := e−x. (In particular, note that the coefficient a here is a = 1.) The Wronskian is

W [f1, f2](x) = f1(x)f
′
2(x)− f ′1(x)f2(x) = ex(−e−x)− exe−x = −1− 1 = −2.

This agrees, by the way, with what we calculated in part (i) of Example 2.1.16.
Then a particular solution to f ′′ − f = e2x is

f∗(x) = u1(x)f1(x) + u2(x)f2(x) = u1(x)e
x + u2(x)e

−x,

where u1 and u2 satisfy

u′1(x) = −
g(x)f2(x)

1 · W [f1, f2](x)
= −e

2xe−x

−2
=
ex

2

and
u′2(x) =

g(x)f1(x)

1 · W [f1, f2](x)
=
e2xex

−2
= −e

3x

2
.

We solve these auxiliary differential equations by direct integration:

u1(x) =

∫
ex

2
dx+ C1 =

ex

2
+ C1

and
u2(x) =

∫
−e

3x

2
dx+ C2 = −

e3x

6
+ C2.

For the moment, we are keeping the constants of integration present, and we are giving
ourselves some freedom by denoting them by the different variables C1 and C2.

We see that f∗ has the form

f∗(x) =

(
ex

2
+ C1

)
ex+

(
−e

3x

6
+ C2

)
e−x =

e2x

2
−e

2x

6
+(C1e

x+C2e
−x) =

e2x

3
+(C1e

x+C2e
−x).
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In fact, since C1 and C2 are arbitrary constants of integration, this form of f∗ really contains
every possible solution to our problem.

When C1 = C2 = 0, we obtain the solution f∗(x) = e2x/3 that we were previously
given in Example 2.3.4. We could have obtained this solution by omitting the constants of
integration in solving for u1 and u2 above; we kept them in to hedge our bets, but note that
the discussion preceding the statement of Theorem 2.4.2 just calls for u1 and u2 to be some
antiderivatives, and we are free to set the constants of integration to be what we wish. If we
do take C1 = C2 = 0 when computing u1 and u2 above, then we would need to remember to
add an arbitrary linear combination of the functions in the fundamental solution set to get
all solutions to the problem. N

This is where we finished on Monday, March 21, 2022.

2.4.4 Method: Solve af ′′ + bf ′ + cf = g(x)

1. Find a fundamental solution set for the corresponding homogeneous problem af ′′ +
bf ′+ cf = 0. (Use Method 2.1.29.) Call the functions in this fundamental solution set f1
and f2.

2. Find functions u1 and u2 satisfying

u′1 = −
gf2

aW [f1, f2]
and u′2 =

gf1
aW [f1, f2]

.

Use direct integration; if necessary, express u1 and u2 as definite integrals. It is not
necessary to include constants of integration.

3. A particular solution to the nonhomogeneous problem is f∗ := u1f1 + u2f2.

4. All solutions to the nonhomogeneous problem are f = f∗ + c1f1 + c2f2 for constants
c1 and c2.

2.4.5 Example.

Revisit Example 2.3.3 and find all solutions to f ′′ + f = x.

Solution. We work through the four steps of Method 2.4.4.

1. The corresponding homogeneous problem is f ′′ + f = 0, and the characteristic equation
is r2 + 1 = 0; its roots are r = ±

√
−1 = ±i. As before, is now, and always shall be, a

fundamental solution set consists of f1(x) := cos(x) and f2(x) := sin(x).

2. We have f ′1(x) = − sin(x) and f ′2(x) = cos(x), so the Wronskian is

W [f1, f2](x) = f1(x)f
′
2(x)−f ′1(x)f2(x) = cos(x) cos(x)−[− sin(x)] sin(x) = cos2(x)+sin2(x) = 1.
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It is worthwhile to make sure that the Wronskian is never 0; this must be the case if f1 and
f2 form a fundamental solution set (after all, that is part of the definition of a fundamental
solution set), so checking can help us spot errors.

Now we need to solve
u′1(x) = −

x sin(x)

1 · 1
= −x sin(x)

and
u′2 =

x cos(x)

1 · 1
= x cos(x).

Integrating by parts25 gives

u1(x) =

∫
−x cos(x) dx+ C1 = − sin(x) + x cos(x) + C1

and
u2(x) =

∫
x sin(x) dx+ C2 = cos(x) + x sin(x) + C2.

We can feel free to leave out the constants of integration (C1 = C2 = 0).

3. A particular solution is then

f∗(x) = [− sin(x) + x cos(x)] cos(x) + [cos(x) + x sin(x)] sin(x)

= − sin(x) cos(x) + x cos2(x) + cos(x) sin(x) + x sin2(x) = x[cos2(x) + sin2(x)] = x.

4. All solutions have the form

f(x) = x+ c1 cos(x) + c2 sin(x)

for some constants c1 and c2. (Had we kept the constants of integration C1 and C2 earlier,
we would have seen this pattern of solution emerge in the preceding step.) N

2.4.6 Example.

Find all solutions to f ′′ + 2f ′ + f = ex ln(x). Where are the solutions defined?

Solution. We first work step-by-step.

1. The corresponding homogeneous problem is f ′′+2f ′+f = 0; its characteristic equation is
r2+2r+1 = 0; we have r2+2r+1 = (r+1)2; and so the only root of the characteristic equation
is r = −1. This is a double root, so a fundamental solution set consists of f1(x) := e−x and
f2(x) := xe−x.
25At the risk of overworking the vowel u, take u = x and dv = sin(x) for the first integral. Then du = dx
and v = − cos(x), so∫

x cos(x) dx = x[− cos(x)]−
∫
− cos(x) dx = −x cos(x) +

∫
cos(x) dx = sin(x)− x cos(x) + C.



2. Higher-Order Linear Differential Equations 93

2. We have f ′1(x) = −e−x and f ′2(x) = e−x − xe−x, so the Wronskian is

W [f1, f2](x) = e−x[e−x − xe−x] + (−e−x)[xe−x] = e−2x − xe−2x + xe−2x = e−2x.

This agrees with part (ii) of Example 2.1.16.
Now we must solve

u′1(x) = −
ex ln(x)[xe−x]

1 · e−2x
= −xe2x ln(x)

and
u′2(x) =

ex ln(x)[e−x]

1 · e−2x
= e2x ln(x).

We could try integrating by parts, but for variety’s sake, let us represent the antiderivatives
as definite integrals. For example, we could take u1 to be

u1(x) = −
∫ x

x0

se2s ln(s) ds,

provided that the integrand is continuous on an interval containing x0 and x. The factor of
ln(·) means that we must exclude zero negative values from this interval. In particular, our
solutions will be defined on, at best, (0,∞).

So, let us be specific and take

u1(x) := −
∫ x

1

se2s ln(s) ds and u2(x) :=

∫ x

1

e2s ln(s) ds.

3. A particular solution is

f∗(x) =

(
−
∫ x

1

se2s ln(s) ds

)
e−x +

(∫ x

1

e2s ln(s) ds

)
xe−x.

4. Every solution has the form

f(x) =

(
−
∫ x

1

se2s ln(s) ds

)
e−x +

(∫ x

1

e2s ln(s) ds

)
xe−x + c1e

−x + c2xe
−x

for some constants c1 and c2. N

This is where we finished on Wednesday, March 23, 2022.

All of our hard work on homogeneous equations and variation of parameters can be
summarized in the following result.

2.4.7 Theorem.
Let g be continuous on the interval I. Let x0 be a point in I, and let y0, y1, a, b, and c be
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real numbers with a 6= 0. There exists a unique solution f defined on I to
af ′′ + bf ′ + cf = g(x)

f(x0) = y0

f ′(x0) = y1.

Proof. We sketch the proof and leave the details as an exercise. Here is how we show
that a solution exists. Use variation of parameters to find a particular solution f∗ satisfying
af ′′∗ + bf ′∗ + cf∗ = g(x) on I. Then posit that a solution to the initial value problem has
the form f = f∗ + c1f1 + c2f2, where f1 and f2 form a fundamental solution set for the
corresponding homogeneous problem. Solve a linear system for c1 and c2 along the lines of
(2.3.4); here it will be important that W [f1, f2](x0) 6= 0.

To prove uniqueness, suppose that h is another solution of the initial value problem;
consider the initial value problem that f − h solves and use Lemma 2.1.12. �

Nonetheless, more questions still linger. The integrals that resolve (2.4.3) can be cum-
bersome and exhausting, especially if many rounds of integration by parts are needed — and
there is no guarantee that we can find an explicit formula for the antiderivative in terms of
elementary functions, anyway. Is there a faster method than variation of parameters for solv-
ing nonhomogeneous problems? The answer is yes, but we will have to restrict the permitted
nonhomogeneities g to have a fairly special structure (a structure that, nonetheless, arises
in plenty of applications). This leads to the dreaded method of undetermined coefficients,
toward which we will move in the next section.

Second, variation of parameters (like, not incidentally, the integrating factor method)
presumes that the nonhomogeneity g is continuous, precisely to ensure that the coefficients
u1 and u2 can be defined via integration. What happens if g is discontinuous? We have
not considered many (if any) discontinuous terms or coefficients in our equations yet, but
there are good physical reasons to do so for applications. This line of inquiry will lead to
the method of Laplace transforms.

2.5. Higher-order linear constant-coefficient homogeneous problems.

Let k ≥ 0 be an integer. We denote by f (k) the kth derivative of a function f . In particular,

f (0) = f, f (1) = f ′, f (2) = f ′′, and f (3) = f ′′′.

For derivatives of order k ≥ 4, this notation is much more efficient than primes.
We will study differential equations of the form

anf
(n) + an−1f

(n−1) + · · ·+ a1f
′ + a0f = 0. (2.5.1)

The coefficients a0, a1, . . . , an are constants, and in particular we assume an 6= 0. The equa-
tion (2.5.1) is then a nth order constant-coefficient linear homogeneous
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differential equation. We will often write (2.5.1) using sigma notation26:

anf
(n) + an−1f

(n−1) + · · ·+ a1f
′ + a0f =

n∑
k=0

akf
(k).

While such equations naturally arise in various modeling scenarios, we will view them
mostly as tools for an alternative method of solving certain nonhomogeneous equations with-
out the ordeal of variation of parameters. We begin by attempting to find just some solu-
tions to (2.5.1) using an idea that served us well before. Guess that a solution has the form
f(x) = erx for some number r to see that the kth derivative must be

f (k)(x) =
dk

dxk
[erx] = rkerx. (2.5.2)

Thus we must have

0 =
n∑
k=0

akr
kerx =

(
n∑
k=0

akr
k

)
erx, (2.5.3)

and so r must satisfy
n∑
k=0

akr
k = 0. (2.5.4)

Conversely, if r solves (2.5.4), then by (2.5.2) and (2.5.3), it must be the case that f(x) = erx

solves (2.5.1).
The equation (2.5.4) is the characteristic equation for the differential equation

(2.5.1), while the polynomial

p(r) :=
n∑
k=0

akr
k = anr

n + an−1r
n−1 + · · ·+ a1r + a0

is the characteristic polynomial for (2.5.1). (Note that we never really talked about
“characteristic quadratics” before in the second-order regime, but now we will need to think
about polynomials as independent entities for a while.) Such a polynomial has degree n
since the highest power of r that appears is rn; this is because an 6= 0.

26If, for each integer k ≥ 0, we have a number Ak, then we recursively define

n∑
k=0

Ak :=


A0, n = 0(

n−1∑
k=0

Ak

)
+An, n ≥ 1.

The point of sigma notation is to make precise the intuitive idea of “adding all the numbers A0 through
An,” and so we euphemistically write

n∑
k=0

Ak = A0 + · · ·+An.
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2.5.1 Example.

Find solutions to f ′′′ − f ′ = 0.

Solution. This equation has the form

3∑
k=0

akf
(k) = 0, a3 = 1, a2 = 0, a1 = −1, a0 = 0,

although it may be silly to pass to sigma notation for an equation this short. The charac-
teristic polynomial is

p(r) = r3 − r = r(r2 − 1) = r(r + 1)(r − 1),

and so its roots are r = 0, r = −1, and r = 1. Thus three solutions to the problem are

f1(x) = e0·x = 1, f2(x) = e1·x = ex, and f3(x) = e−1·x = e−x. (2.5.5)

If an equation is labeled “linear,” it better be the case that linear combinations of solutions
are also solutions, and indeed one can check that putting

f(x) = c1f1(x) + c2f2(x) + c3f3(x) = c1 + c2e
x + c3e

−x

solves f ′′′ − f ′ = 0 for any choice of constants c1, c2, and c3. N

Of course we would like to say that all solutions to the preceding problem are linear
combinations of the three functions in (2.5.5). A rigorous proof that this is true would
proceed largely along the lines of all our work in Section 2.1.2, but, frankly, working through
the details would not teach us all that much new. Instead, we will use this opportunity to
explore some properties of polynomials and just state the corresponding theory. First we
have the following classical statement on the roots of polynomials.

2.5.2 Theorem (Fundamental theorem of algebra I).

Let p(r) =
∑r

k=0akr
k be a polynomial of degree n (in particular, an 6= 0). There exist

numbers r1, . . . , rn such that the only zeros (roots) of p are r1, . . . , rn. That is,

p(r) = 0 ⇐⇒ r = r1, . . . , r = rn.

The careful wording of this result does not specify if all of the rk are all real numbers or
if there are n distinct roots. Neither needs to be the case.

2.5.3 Example.

(i) The roots of p(r) = r2 − 1 = (r + 1)(r − 1) are r = 1 and r = −1.

(ii) The only root of p(r) = r2 − 2r + 1 = (r − 1)2 is r = 1.

(iii) The roots of p(r) = r3 + 4r = r(r2 + 4) are r = 0, r = 2i, and r = −2i.
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For the purposes of solving differential equations, perhaps the simplest situation is the
one that occurred in Example 2.5.1.

2.5.4 Theorem.

Suppose that the characteristic polynomial p(r) =
∑n

k=0akr
k of the differential equation

(2.5.1) has n distinct real roots r1, . . . , rn. (That is, rj 6= rk if j 6= k.) Then every solution
f to (2.5.1) has the form

f(x) =
n∑
k=1

cke
rkx

for some constants c1, . . . , cn.

2.5.5 Example.

Suppose that the characteristic polynomial for some linear constant-coefficient homoge-
neous differential equation is

p(r) = r(r − 5)(r + 6)(r − 8).

Find all solutions to this homogeneous equation.

Solution. The roots of p, thanks to its nicely factored form, are r = 0, r = 5, r = −6, and
r = 8. That is, p has four distinct roots. Since p is the product of four linear factors, the
degree of p is 4. Thus the corresponding differential equation is fourth-order. Since we have
four distinct roots to the characteristic polynomial, all solutions to this differential equation
must have the form

f(x) = c1e
0·x + c2e

5x + c3e
−6x + c4e

8x = c1 + c2e
5x + c3e

−6x + c4e
8x. N

This is where we finished on Friday, March 25, 2022.

To handle the case where the characteristic polynomial does not have n distinct roots,
we need a more detailed version of the fundamental theorem of algebra.

2.5.6 Theorem (Fundamental theorem of algebra II).

Let p(r) =
∑n

k=0akr
k be an nth degree polynomial. There exist an integer d satisfying

1 ≤ d ≤ n; integers m1, . . . ,md satisfying

1 ≤ mk ≤ n and
d∑

k=1

mk = n;

and numbers r1, . . . , rd such that

p(r) = an(r − r1)m1 · · · (r − rd)md .

The number mk is the multiplicity of the root rk of p.



2. Higher-Order Linear Differential Equations 98

Informally, but evocatively, the multiplicity of a root r∗ of a polynomial p = p(r) is the
number of times that r − r∗ appears as a factor in the factorization of p. Such a factor
appears at least once (otherwise r∗ would not be a root of p) but no more times than the
degree of p (otherwise p would have higher degree than it really does). It will be worthwhile
to keep the two identities

r + a = r − (−a) and r2 + a2 = (r + ia)(r − ia) = (r − (−ia))(r − ia)

in mind in the future.

2.5.7 Example.

Find the roots of each polynomial and their multiplicities.

(i) p(r) = (r − 1)(r − 2)3

(ii) p(r) = r6 + r4

(iii) p(r) = (r2 − 1)2(r2 + 1)3

Solution. (i) The roots are r1 = 1 and r2 = 2. The multiplicity of r1 is m1 = 1 and the
multiplicity of r2 is m2 = 3.

(ii) First we factor

r6 + r4 = r4(r2 + 1) = (r − 0)4(r − (−i))(r − i).

Then the roots are r1 = 0 with multiplicity m1 = 4, r2 = −i with multiplicity m2 = 1, and
r3 = i with multiplicity m3 = 1. Note that m1 + m2 + m3 = 4 + 1 + 1 = 6, which is the
degree of p.

(iii) We factor

p(r) = [(r + 1)(r − 1)]2[(r − (−i))(r − i)]3 = (r − (−1))2(r − 1)2(r − (−i))3(r − i)3.

The roots are r1 = −1, r2 = 1, r3 = −i, and r4 = i. The respective multiplicities are
m1 = m2 = 2 and m3 = m4 = 3. N

Now that we are more fully equipped with the vocabulary of roots and multiplicities, we
may apply them to our study of homogeneous problems.

2.5.8 Theorem.

Any nth order homogeneous problem
∑n

k=0akf
(k) = 0 has a fundamental solution

set in the following sense. There exist functions f1, . . . , fn such that if
∑n

k=0akf
(k) = 0,

then f =
∑n

k=1ckfk for some constants ck.
Here is how the functions f1, . . . , fn are determined. Suppose that p(r) =

∑n
k=0akr

k is
the characteristic polynomial for the nth order equation

∑n
k=0akf

(k) = 0. Let r1, . . . , rd be
the roots of p, each with multiplicity mk. Each root generates functions in the fundamental
solution set as follows.
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(i) If rk is real and mk = 1, then rk generates the single function

x 7→ erkx.

(ii) If rk is real and mk > 1, then rk generates the mk functions

x 7→ erkx, x 7→ xerkx, . . . , x 7→ xmk−1erkx.

(iii) If rk = αk ± iβk is a complex conjugate pair with βk 6= 0 and mk = 1, then rk
generates the two functions

x 7→ eαkx cos(βkx) and x 7→ eαkx sin(βkx).

(iv) If rk = αk ± iβk is a complex conjugate pair with βk 6= 0 and mk > 1, then rk
generates the 2mk functions

x 7→ eαkx cos(βkx), x 7→ xeαkx cos(βkx), . . . , x 7→ xmk−1eαkx cos(βkx)

and
x 7→ eαkx sin(βkx), x 7→ xeαkx sin(βkx), . . . , x 7→ xmk−1eαkx sin(βkx).

This theorem is the ultimate nth order generalization of our prior result in Method 2.1.29
for the second-order homogeneous problem. We will first practice using it, as it is as much
an exercise in reading mathematical language and notation as it is a series of truths about
calculus. Later we will explore why it works.

2.5.9 Example.

Find all solutions to each of the following problems.

(i) f (4) + f ′′′ = 0

(ii) f ′′′ − f ′′ + 4f ′ − 4f = 0

(iii) f (5) + 2f ′′′ + f ′ = 0

(iv) f (4) + f = 0

Solution. (i) The characteristic equation is r4 + r3 = 0. We factor r4 + r3 = r3(r + 1), so
the roots of the characteristic polynomial are r1 = 0 with multiplicity m1 = 3 and r = −1
with multiplicity m2 = 1. Both of these roots are real. Thus a fundamental solution set
consists of

f1(x) = e0·x = 1, f2(x) = xe0·x = x, f3(x) = x2e0·x = x2, and f4(x) = e−x.

Every solution therefore has the form

f(x) = c1 + c2x+ c3x
2 + c4e

−x
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for some constants c1, c2, c3, and c4.

This is where we finished on Monday, March 28, 2022.

(ii) The characteristic polynomial is p(r) = r3 − r2 + 4r − r, which factors as

p(r) = r2(r − 1) + 4(r − 1) = (r2 + 4)(r − 1).

Then the roots are r1 = 1 with multiplicity m1 = 1 and the complex conjugate pair r2 = 2i
and r3 = −2i with multiplicities m2 = m3 = 1. The functions in the fundamental solutions
set are then f1(x) = ex, f2(x) = cos(2x), and f3(x) = sin(2x), so every solution has the form

f(x) = c1e
x + c2 cos(2x) + c3 sin(2x).

(iii) The characteristic polynomial is

r5 + 2r3 + r = r(r4 + 2r2 + 1) = r(r2 + 1)2.

The roots are r1 = 0 with multiplicity m1 = 1 and the complex conjugate pair r2 = i and
r3 = −i, with multiplicities m2 = m3 = 2. The functions in the fundamental solution set are
f1(x) = 1, f2(x) = cos(x), f3(x) = x cos(x), f4(x) = sin(x), and f5(x) = x sin(x), so every
solution has the form

f(x) = c1 + c2 cos(x) + c3x cos(x) + c4 sin(x) + c5x sin(x).

(iv) The characteristic polynomial is p(r) = r4 + 1, which does not have any apparent
factorization. Methods of complex analysis, however, reveal that the roots are the two
complex conjugate pairs

r1 =
1√
2
+

i√
2
, r2 =

1√
2
− i√

2
, r3 = −

1√
2
+

i√
2
, and r4 = −

1√
2
− i√

2
.

Each root turns out to have multiplicity 1. Assuming this to be true (and not worrying
further about exactly how the complex analysis works), a fundamental solution set is

f1(x) = ex/
√
2 cos

(
x√
2

)
, f2(x) = ex/

√
2 sin

(
x√
2

)
, f3(x) = e−x/

√
2 cos

(
x√
2

)
and f4(x) = e−x/

√
2 sin

(
x√
2

)
.

Thus every solution has the form

f(x) = c1e
x/
√
2 cos

(
x√
2

)
+ c2e

x/
√
2 sin

(
x√
2

)
,+c3e

−x/
√
2 cos

(
x√
2

)
+ c4e

−x/
√
2 sin

(
x√
2

)
.

This is a bulky expression, and it may be worthwhile to factor some of the trig and/or
exponentials out. N
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2.6. Linear differential operators.

The study of nth order homogeneous equations, worthwhile in its own right, is one of the two
tools that we will need for our alternative approach to solving nonhomogeneous problems.
The other tool is the notion of the linear differential operator, which we explore here. Broadly,
we can view the derivative f ′ of a function f as a new function constructed from f , but we
can also view the act of differentiating as a function on functions. After all, any function is
just a rule that pairs elements of one set (numbers, people, cats) with elements of another
set (other numbers, months, numbers) in a unique way (e.g., x 7→ 2x, human 7→ month in
which human was born, cat 7→ length of tail in inches, if one is permitted to measure). Every
differentiable function has a unique derivative, and so the derivative is a function on a set of
differentiable functions!

2.6.1. Operator theory.

Let f be differentiable. Write
Df := f ′.

For example, if f(x) = 2x, then (Df)(x) = 2x. That is, f is a function, and Df is another
function27, specifically, the derivative of f . But the act of associating f with Df is itself a
function, which we will call D.

Since functions have domains, we should specify what the domain of D is. Depending
on the precise problem at hand, there are lots of possibilities. One choice is to specify an
interval I (after all, the good parts of calculus always play out on an interval of some form)
and consider functions on I. We write f : I → R to indicate that f is a real-valued function
defined on I.

Now let C(I) denote the set of all continuous functions on I, and let C1(I) denote the
set of all differentiable functions on I whose derivatives are also continuous. (Recall from
Definition 1.6.4 and Example 1.6.5 that we like our solutions f to differential equations to
be differentiable with f ′ continuous.) If f is a function in C1(I), then f ′ is continuous, so
Df is a function in C(I). Thus D : C1(I)→ C(I) is a function.

Before calculus, we primarily met functions one at a time. After calculus, we can consider
whole classes of functions at once — and we relate those classes by functions whose inputs
and outputs are themselves functions. For example, solving the exponential growth equation

f ′ = f

is really the same as solving
Df − f = 0.

If we agree to factor Df − f = (D − 1)f , then solving exponential growth is the same
as asking for the roots, or zeros, of D − 1. Of course, the way to find these zeros is our
known techniques of separation of variables or integrating factors, so there is no apparent
computational advantage to writing (D − 1)f = 0 instead of f ′ = f . Yet.
27This is why we write the parentheses around Df in (Df)(x), to indicate that the name of this new function
is Df .
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We need some further notation to reach this advantage. For an integer k ≥ 0, define

Dkf = f (k). (2.6.1)

The function Dk is then defined on the set k-times differentiable functions. Using the word
“function” twice in the previous sentence is probably awkward, and uncomfortable, and so
we will typically refer to Dk as a map or operator.

2.6.1 Example.

Let f(x) = cos(x). Explain why D2f = −f .

Solution. We have D2f = f ′′, and here f ′(x) = − sin(x) and f ′′(x) = − cos(x) = −f(x).
Saying f ′′(x) = −f(x) for all x is the same as abbreviating f ′′ = −f , and in our new notation
this is D2f = −f . N

This is where we finished on Wednesday, March 30, 2022.

Of course, we do not usually meet one derivative by itself. Instead, just as we can add
one function of a real variable to another, or multiply a function by a constant, producing
in each case a new function, so too can we add the operators Dk and multiply them by real
numbers.

2.6.2 Definition.

An nth order linear differential operator28is a map of the form

A =
n∑
k=0

akD
k, (2.6.2)

where a0, a1, . . . , an−1, an are real numbers and an 6= 0. If f is n-times differentiable, then
we define

Af :=
n∑
k=0

akD
kf =

n∑
k=0

akf
(k).

We emphasize that if A is defined by (2.6.2) and f is an n-times differentiable function,
then the symbol Af denotes a new function defined pointwise by

(Af)(x) =
n∑
k=0

akf
(k)(x).

These operators are linear differential operators precisely because they satisfy the follow-
ing “linearity” condition.

28Strictly speaking, we should emphasize that these are constant-coefficient linear differential op-
erators, since the coefficients a0, a1, . . . , an−1, an are constant real numbers. We worked extensively
with variable-coefficient first-order linear differential operators, e.g., (Af)(x) := f ′(x) + xf(x), but our
higher-order work has been strictly constant-coefficient, for the reasons that we discussed in Section 2.2.4.
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2.6.3 Lemma.
Let A be an nth order linear differential operator, let f and g be n-times differentiable,
and let c be a real number. Then

A(f + g) = Af +Ag and A(cf) = cAf.

In particular,
A[0] = 0.

Any nth order linear homogeneous equation, then, is really asking us to solve Af = 0 for
some nth order linear differential operator. That is, homogeneous problems are quests for
the roots or zeros of an nth order linear differential operator. For example, solving

f ′′ − f = 0 (2.6.3)

is the same as solving
(D2 − 1)f = 0.

This particular equation is worth exploring quite a bit further. (Of course, we know that
every solution has the form f(x) = c1e

x + c2e
−x, but that is not quite what we are after

now.) The characteristic polynomial of (2.6.3) is p(r) = r2− 1, which looks an awful lot like
D2 − 1. In fact, we might be tempted to write D2 − 1 = p(D).

More generally, we have a one-to-one correspondence of polynomials and differential oper-
ators via the identification of a linear differential operator with its characteristic polynomial.

2.6.4 Definition.

Let A =
∑n

k=0akD
k be an nth order linear differential operator. The characteristic

polynomial of A is the polynomial

pA(r) :=
n∑
k=0

akr
k.

Returning to the concrete problem (2.6.3), its characteristic polynomial factors as

p(r) = r2 − 1 = (r + 1)(r − 1).

We might ask about first the meaning of the expression (D+1)(D− 1) and then if it equals
D2 − 1. Here is the meaning of this expression.

2.6.5 Definition.
Let A be an nth order linear differential operator and let B be an mth order linear differ-
ential operator. The composition AB of A and B is defined by

ABf := A(Bf) (2.6.4)

for any (n+m)-times differentiable function f .
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In (2.6.4), we read left-to-right but work right-to-left: first we apply B to f (which costs
m derivatives), and then we apply A to Bf (which costs an additional n derivatives, so f
should possess n + m derivatives). Usually when we are thinking about the composition
of functions defined for real numbers, we use the symbol ◦ (e.g., (f ◦ g)(x) = f(g(x)) for
functions f and g). Here we do not write A ◦ B. One motivation for defining composition
by 2.6.4 is that if j and k are integers, then

Dn+mf = f (n+m) = Dn[f (m)] = Dn[Dmf ],

and so we desire that whatever DnDm means, it should equal Dn+m. And Dn+mf and
Dn[Dmf ] certainly are the same for all (n+m)-times differentiable functions f .

Returning to the concrete problem (D2 − 1)f = f ′′ − f , we now can assign meaning to
(D + 1)(D − 1):

(D + 1)(D − 1)f = (D + 1)[(D − 1)f ].

We will use our notational baggage from above to show that (D+1)[(D−1)f ] equals exactly
what we expect. Afterward, we will never again go through such a baroque computation
and instead follow our noses. Let f be twice-differentiable. Then

(D + 1)(D − 1)f = (D + 1)[(D − 1)f ] by Definition 2.6.5
= (D + 1)(Df − f) by Definition 2.6.2
= (D + 1)(f ′ − f) by (2.6.1)
= (D + 1)f ′ − (D + 1)f by the linearity of D + 1 in Lemma 2.6.3
= f ′′ + f ′ − (f ′ − f) by (2.6.1) again
= f ′′ − f by algebra
= D2f − f by (2.6.1) once more
= (D2 − 1)f by definition 2.6.2 yet again.

Recall that functions f and g are equal if they have the same domain and if f(x) = g(x)
for all x in this shared domain. Motivated by this definition, our expectation that D2−1 and
(D+1)(D−1) are the same, and the just-established reality that (D2−1)f = (D+1)(D−1)f
for all twice-differentiable f , we make the following definition.

2.6.6 Definition.
Suppose that A and B are both nth order linear differential operators. Then A = B if
Af = Bf for all n-times differentiable functions f .

Here is why we phrase this definition as we do. First, A and B are really functions (on
functions!), and so they need to agree when evaluated at any element of their domains. This
is requiring the equality Af = Bf . Second, A and B should have the same domain, and so
they should take the same number of derivatives. This is why both A and B are nth order
operators.

Finally, the “factoring” of a composition of operators respects the factoring of the various
characteristic polynomials. For example, if

A = D + 1 and B = D − 1,



2. Higher-Order Linear Differential Equations 105

then their composition, by the work above, is

AB = D2 − 1.

The respective characteristic polynomials are

pA(r) = r + 1, pB(r) = r − 1, and pAB(r) = r2 − 1.

We have
pAB = (r + 1)(r − 1) = pA(r)pB(r).

This is true in general: the characteristic polynomial of a composition of operators is
the product of the respective characteristic polynomials of the operators. This is one reason
why we use the “juxtaposition” notation for operator composition, i.e., AB, instead of the
classical “composition” notation A ◦ B. Composition of operators proceeds in lockstep with
multiplication of characteristic polynomials.

2.6.7 Theorem.
Let A and B be differential operators with characteristic polynomials pA and pB. The
characteristic polynomial pAB of the composition AB satisfies

pAB(r) = pA(r)pB(r)

for all real numbers r.

Multiplication of polynomials is commutative: pA(r)pB(r) = pB(r)pA(r). After all, given
a real number r, this is just the multiplication of the two real numbers pA(r) and pB(r), and
order is irrelevant. The same turns out to be true for differential operators.

2.6.8 Theorem.
Let A and B be nth and mth order differential operators, respectively. Then AB = BA,
in the sense that if f is (n+m)-times differentiable, then A(Bf) = B(Af).

2.6.9 Example.

Let f(x) = sin(x), A = D, and B = D2. Check that ABf = BAf .

Solution. We have
ABf = A(Bf) = A(D2f) = A(f ′′),

and here f ′′(x) = − sin(x) = −f(x). Thus

A(f ′′) = A(−f) = −Af = −Df = −f ′.

That is,
(ABf)(x) = − cos(x).

Similarly,
BAf = B(Af) = B(Df) = B(f ′) = D2(f ′) = f ′′′,
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and f ′′′(x) = − cos(x). Hence (ABf)(x) = (BAf)(x) for all x, and so ABf = BAf . In the
preceding sentence, the first use of “=” was to state an equality of real numbers, while the
second “=” states an equality of functions. Of course, we also know that AB = BA, and
here we are using “=” to denote an equality of operators! N

This is where we finished on Friday, April 1, 2022.

We conclude with a surprising application of differential operators to a prior unresolved
issue with homogeneous equations.

2.6.10 Example.

Consider the differential equation f ′′ − 2f ′ + f = 0.

(i) Explain why this is the same as solving (D − 1)2f = 0.

(ii) Check that if f1(x) = ex, then (D − 1)f1 = 0 and thus (D − 1)2f1 = 0.

(iii) Argue that if f2 solves (D − 1)f2 = f1, then (D − 1)2f2 = 0.

(iv) Find such an f2.

(v) What does this all mean?

Solution. (i) We have

f ′′ − 2f ′ + f = (D2 − 2D + 1)f = (D − 1)2f.

(ii) We calculate
(D − 1)f1 = f ′1 − f1 = ex − ex = 0.

Thus
(D − 1)2f1 = (D − 1)[(D − 1)f1] = (D − 1)[0] = 0.

(iii) Suppose we have a function f2 that solves (D − 1)f2 = f1. Then

(D − 1)2f2 = (D − 1)[(D − 1)f2] = (D − 1)f1 = 0.

(iv) We want to find f2 such that (D − 1)f2 = f1. That is, we need to solve the first-order
problem

f ′2 − f2 = ex.

We can use the integrating factor method; multiply both sides by µ(x) = e−
∫
dx = e−x to

find
1 = exe−x = f ′2(x)e

−x − e−xf2(x) =
d

dx
[f2(x)e

−x],

and so
f2(x)e

−x = x+ C

for some constant C. Thus f2(x) = xex + Cex. Since C can be any number, and since we
want only one function f2, we take C = 0 to find f2(x) = xex.
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(v) If we try to solve f ′′−2f ′+f = 0 with the exponential ansatz f(x) = erx, we only come
up with f(x) = ex, i.e., r = 1, since the characteristic equation has the double root r = 1.
Viewing the problem f ′′−2f ′+f = 0 as the operator equation (D−1)2f = 0 and exploiting
the factorization, along with first-order techniques, gave us the second solution f2(x) = xex

and motivates the “multiply by x” technique that we deployed without explanation in Section
2.1.5. N
2.6.2. Annihilators and nonhomogeneous linear equations.

At last, we may apply our abstract work in this section and our prior work on arbitrary
homogeneous problems to the nonhomogeneous equation. Suppose that A is an nth order
linear differential operator and that we want to solve

Af = g(x) (2.6.5)

for a given function g. Suppose further — and this is a very big supposition — that there is
an mth order linear differential operator B such that

Bg = 0. (2.6.6)

Such an operator B is said to annihilate the function g; equivalently, B is an annihi-
lator of g.

Then

BAf = B(Af) by Definition 2.6.5
= Bg by (2.6.5)
= 0 by (2.6.6).

Here is the value of this calculation: BA is an (n +m)th order linear differential operator,
and as such we know all the functions f that could satisfy BAf = 0. They are the functions
delineated in Theorem 2.5.8. Consequently, f must have the form of a linear combination
of those functions — and so now we know more about f even though we did not explicitly
solve Af = g. Yet.

2.6.11 Example.

Solve, once again, f ′′ + f = x.

Solution. This equation has the “operator form”

(D2 + 1)f = x.

We need to find an annihilator for g(x) = x. Differentiating once, we have29

D[x] = 1,

29If we are given a formula but no name for a function, we will write D[formula] for applying the differential
operator D to the function given by that formula.
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and differentiating twice we have
D2[x] = 0.

So, a good30 annihilator is D2. That is,

(D2 + 1)f = x =⇒ D2(D2 + 1)f = 0. (2.6.7)

The characteristic polynomial for this homogeneous equation is p(r) = r2(r2 + 1), thanks to
Theorem 2.6.7, so its roots are r = 0 (with multiplicity 2) and r = ±i (with multiplicity 1).
Thus

f(x) = c1 cos(x) + c2 sin(x) + c3 + c4x

for some constants c1, . . . , c4.
However, we can, and should, do better. It certainly is not the case that any choice of

constants will work here. For example, if we take all four to be 0, then f(x) = 0, and that
is not a solution to this nonhomogeneous problem. That is,

D2(D2 + 1)f = 0 6=⇒ (D2 + 1)f = x. (2.6.8)

To determine more precisely the constants, recall that f still needs to solve (D2+1)f = x.
That is, we need

(D2 + 1)[c1 cos(x) + c2 sin(x) + c3 + c4x] = x.

We use linearity to calculate

(D2+1)[c1 cos(x)+ c2 sin(x)+ c3+ c4x] = (D2+1)[c1 cos(x)+ c2 sin(x)] + (D2+1)[c3+ c4x].

Now,
(D2 + 1)[c1 cos(x) + c2 sin(x)] = 0,

since f1(x) = cos(x) and f2(x) = sin(x) form a fundamental solution set for D2 + 1. Thus
we really need

(D2 + 1)[c3 + c4x] = x.

We calculate

(D2 + 1)[c3 + c4x] = D2(c3 + c4x] + (c3 + c4x) = c3 + c4x,

and so we come down to
c3 + c4x = x. (2.6.9)

We have two unknowns left, c3 and c4. We could plug in two values for x in (2.6.9), say,
x = 0 and x = 1, to find c3 = 0 and c4 = 1. Or we could rewrite (2.6.9) as

c3 + (c4 − 1)x = 0.

This is a polynomial equation, and a polynomial adds up to 0 for all values of x if and only
if all of its coefficients are 0. Thus we need c3 = 0 and c4 − 1 = 0, hence c4 = 1.
30If a differential operator B1 annihilates g, and B2 is any differential operator, then B2B1g = 0, too. Thus
the composition B2B1 is also an annihilator for g. But why annihilate with more force than necessary?
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However we do it, we must have

f(x) = c1 cos(x) + c2 sin(x) + x,

where c1 and c2 can remain arbitrary coefficients. This is wholly in agreement with Examples
2.3.3 and 2.4.5. N

This is where we finished on Monday, April 4, 2022.

2.6.12 Example.

Solve, for the third (and maybe last) time, f ′′ − f = e2x.

Solution. This equation is
(D2 − 1)f = e2x.

We need an annihilator for g(x) = e2x. Hopefully our experience suggests that if g(x) = eax

for a constant a, then g solves g′ = ag, thus (D − a)g = 0. So, if we can solve this
nonhomogeneous problem, then we must have

(D − 2)(D2 − 1)f = 0.

The characteristic polynomial is then p(r) = (r − 2)(r2 − 1), so its roots are r = 2 and
r = ±1, each with multiplicity 1. Thus

f(x) = c1e
x + c2e

−x + c3e
2x,

and so we need
(D2 − 1)[c1e

x + c2e
−x + c3e

2x] = 0.

Since f1(x) = ex and f2(x) = e−x form a fundamental solution set for D2 − 1, this collapses
to

(D2 − 1)[c3e
2x] = e2x.

We calculate

(D2 − 1)[c3e
2x] = c3(D

2 − 1)[e2x] = c3(4e
2x − e2x) = 3c3e

2x.

Thus we need
3c3e

2x = e2x,

and so
c3 =

1

3
.

That is, the solution f has the form

f(x) = c1e
x + c2e

−x +
e2x

3
,

where c1 and c2 are arbitrary constants, exactly as in Examples 2.3.4 and 2.4.3. N

This is where we finished on Wednesday, April 6, 2022.
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2.6.13 Example.

Let ω be a real number. Find all solutions to f ′′ + f = cos(ωx).

Solution. This equation has the form (D2 + 1)f = cos(ωx). We need to find a differential
operator B such that B[cos(ωx)] = 0. We try differentiating a few times:

D[cos(ωx)] = − sin(ωx)ω and D2[cos(ωx)] = −ω2 cos(ωx).

The second equality rearranges to

0 = D2[cos(ωx)] + ω2 cos(ωx) = (D2 + ω2)[cos(ωx)].

So, the operator B := D2+ω2 annihilates the nonhomogeneity here. Thus any solution f to
f ′′ + f = cos(ωx) must also solve

(D2 + ω2)(D2 + 1)f = 0. (2.6.10)

The characteristic polynomial for this homogeneous problem is p(r) = (r2 + ω2)(r2 + 1).
It has the roots r = ±iω and ±i. We must be very careful here: if ω = ±1, then really
p(r) = (r2 + 1)2, and the only roots are r = ±i, with multiplicity 2. So, from now on, we
consider two cases.

Case 1. ω 6= ±1. Here we have two distinct complex conjugate pairs: r = ±iω and r = ±i.
Hence all solutions to (2.6.10) are

f(x) = c1 cos(x) + c2 sin(x) + c3 cos(ωx) + c4 sin(ωx).

We want such an f to solve (D2 + 1)f = cos(ωx), and so we evaluate

(D2 + 1)[c1 cos(x) + c2 sin(x) + c3 cos(ωx) + c4 sin(ωx)]

= (D2 + 1)[c1 cos(x) + c2 sin(x)] + c3(D
2 + 1)[cos(ωx)] + c4(D

2 + 1)[sin(ωx)]

= c3(D
2 + 1)[cos(ωx)] + c4(D

2 + 1)[sin(ωx)].

Here we have used linearity and the fundamental solution set for D2 +1. Next, we calculate

(D2 + 1)[cos(ωx)] = (1− ω2) cos(ωx) and (D2 + 1)[sin(ωx)] = (1− ω2) sin(ωx).

Thus we need c3 and c4 to meet

c3(1− ω2) cos(ωx) + c4(1− ω2) sin(ωx) = cos(ωx). (2.6.11)

Intuitively, we probably expect that the only way that a combination of cosines and sines
can add up to a cosine is for there just to be a cosine in the sum. Let us try to see this more
rigorously. If we take x = 0, then we find

c3(1− ω2)2 = 1,
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and so, since ω 6= ±1, we may divide to solve for

c3 =
1

1− ω2
.

We replace c3 with this value in (2.6.11) to see that

cos(ωx) + c4(1− ω2) sin(ωx) = cos(ωx),

and thus
c4(1− ω2) sin(ωx) = 0.

This has to be true for all x, and it can only happen if either c4 = 0 or ω = 0. Either way,
we conclude

f(x) = c1 cos(x) + c2 sin(x) +
cos(ωx)

1− ω2

Case 2. ω = ±1. In either case, the differential equation is f ′′+f = cos(x), since cos(−x) =
cos(x). The only roots of the characteristic polynomial p(r) = (r2 + 1)2 are the repeated
conjugate pair r = ±i with multiplicity 2, and so f must have the form

f(x) = c1 cos(x) + c2 sin(x) + c3x cos(x) + c4x sin(x).

Again, we want

(D2 + 1)[c1 cos(x) + c2 sin(x) + c3x cos(x) + c4x sin(x)] = cos(x),

and this amounts to requiring c3 and c4 to satisfy

(D2 + 1)[c3x cos(x) + c4x sin(x)] = cos(x).

Believe it or not,

(D2 + 1)[x cos(x)] = −2 sin(x) and (D2 + 1)[x sin(x)] = 2 cos(x).

Thus c3 and c4 must meet

−2c3 sin(x) + 2c4 cos(x) = cos(x)

for all x.
We choose x cleverly to make some of the terms above equal to 0. If x = 0, this means

2c4 = 1, so c4 = 1/2. If x = π/2, then (because cos(π/2) = 0 and sin(π/2) = 1), we have
−2c3 = 0, thus c3 = 0. In this case

f(x) = c1 cos(x) + c2 sin(x) +
x sin(x)

2
.

Thus depending on the choice of the parameter ω, we have two radically different kinds
of solutions to f ′′ + f = cos(ωx):

f(x) =


c1 cos(x) + c2 sin(x) +

cos(ωx)

1− ω2
, ω 6= ±1

c1 cos(x) + c2 sin(x) +
x sin(x)

2
, ω = ±1.

N
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2.7. The forced harmonic oscillator.

Recall our construction of the harmonic oscillator from Section 2.2. We attached an object
of mass m to a spring that exerted the force Fspr(r) := −κr for some constant κ > 0
when stretched a distance r and then attached the spring to a wall. We measured the
oscillator’s displacement at time t from its equilibrium (rest) position by u(t) and supposed
that the oscillator experienced a friction force of the form Ffr(t) := −bu′(t) for some constant
b ≥ 0. Taking b = 0 allowed us to consider the magical situation in which there was no
friction. Assuming that no other forces acted on the oscillator, Newton’s second law (mass
× acceleration = force told us

mu′′ = Fspr(u(t)) + Ffr(t) = −κu(t)− bu′(t),

and thus
mu′′ + bu′(t) + κu(t) = 0.

Suppose now that there are some other external forces acting on the oscillator. By
“external” we mean any force that does not arise from friction or the pull of the spring.
Maybe a cat is whacking the oscillator with her beefy paw; maybe an annoying downstairs
neighbor (or, worse, family member) is playing music loudly, so that the wall to which the
oscillator is attached is vibrating. Measure all these external forces at time t by Fext(t).
Then Newton’s law really says

mu′′ = Fspr(u(t)) + Ffr(t) + Fext(t),

and this rearranges to
mu′′ + bu′ + κu = Fext(t).

This is a nonhomogeneous constant-coefficient second-order linear differential equation. If
Fext is continuous, we can use variation of parameters to solve it; if Fext has the fairly special
form “polynomial × exponential × trig,” then we can use annihilators. Neither way is pretty.

2.7.1 Example.

An has mass 1 and spring constant 1 (m = κ = 1) and there is no friction (b = 0).
The external force is periodic: Fext(t) = cos(ωt) for some real number ω. When we set
the oscillator in motion, we pulled it 1 unit to the right of equilibrium and let it go very
gently: u(0) = 1 and u′(0) = 0. What happens?

Solution. The displacement satisfies the initial value problem
u′′ + u = cos(ωt)

u(0) = 1

u′(0) = 0.

(2.7.1)
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Example 2.6.13 tells us that if u′′ + u = cos(ωt), then

u(t) =


c1 cos(t) + c2 sin(t) +

cos(ωt)

1− ω2
, ω 6= ±1

c1 cos(t) + c2 sin(t) +
t sin(t)

2
, ω = ±1

for some constants c1 and c2. The key part of that example was recognizing the “bifurcation”
in the annihilator method at ω = ±1.

To solve the full initial value problem (2.7.1), we need to select the constants c1 and c2;
some algebra reveals that the solution is

u(t) =


cos(t) +

cos(ωt)− cos(t)

1− ω2
, ω 6= ±1

cos(t) +
t sin(t)

2
, ω = ±1.

These solutions have drastically different behavior. A careful reading of their formulas will
suggest why, but it is easier (and maybe more fun) to start by looking at the graphs.

Here is the graph of u(t) = cos(t) + t sin(t)/2 for the ω = ±1 case.
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It looks like the oscillations in the graph keep getting larger and larger as t→∞. The graph
still intersects the t-axis, so it is not the case that limt→∞ u(t) = 0. That is, the oscillator
passes through equilibrium infinitely many times, but after each pass it moves further away
from equilibrium than it did before. Physically, this is wholly unrealistic; not only is the
oscillator never slowing down (no friction, after all), it is actually getting further away from
— and then returning to — equilibrium. The extreme oscillations come from the t sin(t)/2
term; take t = (2k + 1)π/2 to see that∣∣∣∣u((2k + 1)π

2

)∣∣∣∣ = (2k + 1)π

4
→∞

as k →∞.
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Here are several graphs for the ω 6= ±1 case. It is probably more interesting to see what
happens when ω is close to but not equal to 1, so we plot some of those sketches.
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It seems that as ω → 1+, the oscillations remain bounded but become larger as ω gets
closer to 1. This is not surprising, since the cosine terms in the sum

uω(t) := cos(t) +
cos(ωt)− cos(t)

1− ω2

remain bounded between 1 and −1, but the (absolute value of the ) denominator 1 − ω2

becomes increasingly large as ω → 1. That is, if uω is the solution for a given ω 6= ±1, then

max
t≥0
|uω(t)| <∞ but lim

ω→1+
max
t≥0
|uω(t)| =∞.

Why is ω = ±1 so special? Our choice of the material data for the oscillator —m = κ = 1
and b = 0 — means that the functions f1(t) = cos(t) and f2(t) = sin(t) form a fundamental
solution set for the undriven (homogeneous) problem u′′ + u = 0. These functions f1 and
f2 have frequency ω = 1. Taking the periodic forcing function to have this same frequency
excites a “resonance” in the oscillator that leads to the arbitrarily large displacements that
we first observed. Taking the periodic forcing function to have frequency very close to but
not equal to 1 — a “near resonance” forcing — permitted the resulting oscillations to become
increasingly large. N
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Consider one final forcing situation. Suppose that we initially set up the oscillator (still
with m = κ = 1 and b = 0) without the influence of any external forces for some time, say
0 ≤ t < t0 for some t0 > 0. Then from time t = t0 to some time t = t1 > t0, a fickle cat comes
by and whacks the oscillator, so that it is experiencing the force cos(ωt) for t0 ≤ t < t1. The
cat, being fickle, decides at time t = t1 to pursue her important cat business elsewhere, and
she stops whacking the oscillator as abruptly as she started. Then the external force that
the oscillator experiences is

Fext(t) :=


0, 0 ≤ t < t0

cos(ωt), t0 ≤ t < t1

0, t1 ≤ t.

We could solve u′′ + u = Fext(t) “interval by interval” and somehow “piece together by
continuity” the different solutions. This, however, is exceedingly dull, as the following toy
example of a differential equation with a “discontinuous forcing function” shows.

2.7.2 Example.

Solve the initial value problem{
u′(t) = g(t)

u(0) = 0,
where g(t) :=

{
0, t < 0

1, t ≥ 0.

Solution. For t < 0, we need u′(t) = 0, thus u(t) = c for some constant c and all t < 0. For
t ≥ 0, we need u′(t) = 1, thus u(t) = t+ k for some constant k and all t ≥ 0. We also want
u(0) = 0, so we need 0 = 0 + k = k. Thus

u(t) =

{
c, t < 0

t, t ≥ 0,

where c is arbitrary. Say c = 2. Then the graph of u is as follows.
This means that u is discontinuous at t = 0. But surely the solution to a differential

equation should be continuous on its domain. If we think for a moment, we see that we can
choose c = 0 to have

u(t) =

{
0, t < 0

t, t ≥ 0

as a continuous function that satisfies u′(t) = g(t) for t 6= 0. However, no matter what c we
choose, u will not be differentiable at t = 0, although the limits

lim
t→0−

u′(t) and lim
t→0+

u′(t)

do exist. The solution u inherits this lack of differentiability at t = 0 from the discontinuity
at t = 0 of the “forcing” function g. N
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Here is the lesson of this example. Solving differential equations with discontinuous
terms/coefficients may be physically worthwhile and meaningful, but symbolically it is an-
noying. Our final topic, the Laplace transform, will provide us with a different method
for handling such “discontinuous” equations (which will be annoying, no doubt, in different
ways).

This is where we finished on Monday, April 11, 2022.
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3. The Laplace Transform

The Laplace transform offers a very different perspective on differential equations. We start
with a special kind of improper integral, see how it talks to derivatives, and convert dif-
ferential equations into sorts of “algebraic” problems. We do not really need a new way to
solve constant-coefficient problems, but the Laplace transform plays particularly well with
the discontinuous forcing functions that previously caused us some moaning and gnashing
of teeth. It will take a bit of work to see the value of the Laplace transform for differential
equations; be patient and trust that it will be worthwhile.

3.1. Definition and elementary properties of the Laplace transform.

In calculus we studied many flavors of the improper integral; here we need just one.

3.1.1 Definition.

(i) A function f defined on the interval [0,∞) is locally integrable if f is integrable
on each interval [0, b] for all b > 0.

(ii) If f is locally integrable on [0,∞), and if the limit

lim
b→∞

∫ b

0

f(x) dx

exists, then we say that f is improperly integrable on [0,∞), and we define∫ ∞
0

f(x) dx := lim
b→∞

∫ b

0

f(x) dx.

We say that the integral
∫∞

0
f(x) dx converges if the limit above exists and is finite

and diverges if the limit above either does not exist or exists and is ±∞.

Incidentally, if f is continuous on [0, b], then f is integrable on [0, b]; thus if f is continuous
on [0,∞), then f is locally integrable on [0,∞). In particular, all differentiable functions on
[0,∞) are locally integrable on [0,∞).

3.1.2 Definition.

Let f be locally integrable on [0,∞) and let s be a real number. The Laplace trans-
form of f at s is the number

L [f ](s) :=

∫ ∞
0

f(x)e−sx dx,

if this improper integral converges. If this improper integral diverges, then we say that
L [f ](s) is undefined.
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In other words,

L [f ](s) = lim
b→∞

∫ b

0

f(x)e−sx dx.

It is important to remember that x is the dummy variable of integration, s is a parameter
in the integrand, and b is the upper limit of integration.

3.1.3 Example.

Let f(x) = e3x. Determine all values of s for which the Laplace transform L [f ](s) is
defined and calculate a formula for L [f ](s) there.

Solution. By definition,

L [f ](s) =

∫ ∞
0

e3xe−sx dx = lim
b→∞

∫ b

0

e(3−s)x dx.

First we evaluate the definite integral for b fixed:∫ b

0

e(3−s)x dx =
e(3−s)x

3− s

∣∣∣∣x=b
x=0

=
e(3−s)b

3− s
− 1

3− s
.

This, by the way, is only valid for 3 − s 6= 0; we will handle 3 − s = 0 momentarily. Hence
(if 3− s 6= 0) we have

L [f ](s) = lim
b→∞

(
e(3−s)b

3− s
− 1

3− s

)
.

Recall that for a given real number r 6= 0, we have

lim
b→∞

erb =

{
0, b < 0

∞, b > 0.

Thus if 3− s < 0, we have

L [f ](s) = lim
b→∞

(
e(3−s)b

3− s
− 1

3− s

)
= − 1

3− s
=

1

s− 3
,

while if 3− s > 0, the limit does not exist; the improper integral does not converge; and the
Laplace transform is undefined. That is,

L [f ](s) =


1

s− 3
, s > 3

undefined, s < 3.

Finally, to handle the case s− 3 = 0, or s = 3, we appeal to the definition once again:

L [f ](3) =

∫ ∞
0

e3xe−3x dx =

∫ ∞
0

1 dx = lim
b→∞

∫ b

0

1 dx = lim
b→∞

b =∞.



3. The Laplace Transform 120

Thus L [f ](3) is undefined, and we conclude

L [f ](s) =


1

s− 3
, s > 3

undefined, s ≤ 3.

N

We will always use the letter s for the variable of the Laplace transform and x for the
variable of the underlying function. It is a bit sloppy, but very evocative, to replace f in
L [f ](s) with the formula for f as a function of x; thus we would say

L [e3x](s) =
1

s− 3
, s > 3.

More generally (by replacing every instance of 3 in Example 3.1.3 with a) we have the
following result.

3.1.4 Lemma.
Let a be a real number. Then

L [eax](s) =


1

s− a
, s > a

undefined, s ≤ a.

At the best of times, the Laplace transform of a function really is another function,
possibly on a different domain. As we just saw above, while f(x) := eax is defined for
all real numbers x, its Laplace transform is only defined on the interval (a,∞). Like the
differential operator D, the Laplace transform L is a map or operator on a set of functions:
it turns functions f defined on [0,∞) into functions L [f ] defined. . .somewhere. We will give
a sufficient condition for the Laplace transform of a function to be always defined shortly. For
now, we discuss the primary reason that the Laplace transform is important for differential
equations.

3.1.5 Example.

Suppose that f is defined and differentiable on [0,∞). How can we relate the Laplace
transforms L [f ](s) and L [f ′](s)?

Solution. Without further information on f , the best that we can do is appeal to the
definitions:

L [f ′](s) =

∫ ∞
0

f ′(x)e−sx dx = lim
b→∞

∫ b

0

f ′(x)e−sx dx,

if this limit exists. So, when does this limit exist, and, if it exists, what is its value?
We are dealing here with the integral of a product, and this is exactly why we have

integration by parts. Since we want to relate this integral to f , we probably should pick
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dv = f ′(x) dx. That is, we set

u = e−sx dv = f ′(x) dx

du = −se−sx dx v = f(x)

to find∫ b

0

f ′(x)e−sx dx = e−sxf(x)
∣∣x=b
x=0
−
∫ b

0

f(x)[−se−sx] dx = e−sbf(b)− f(0)+ s

∫ b

0

f(x)e−sx dx.

This is comforting: we see the same integral over [0, b] above as appears in the limit definition
of L [f ](s).

Specifically, since

lim
b→∞

s

∫ b

0

f(x)e−sx dx = s lim
b→∞

∫ b

0

f(x)e−sx dx = sL [f ](s),

we have

lim
b→∞

(
e−sbf(b)− f(0) + s

∫ b

0

f(x)e−sx dx

)
=
(
lim
b→∞

e−sbf(b)
)
+
(
sL [f ](s)− f(0)

)
,

if the limit
lim
b→∞

e−sbf(b)

exists. In the particularly nice case that this limit is 0, we can conclude

lim
b→∞

∫ b

0

f ′(x)e−sx dx = sL [f ](s)− f(0).

We summarize our work: if the differentiable function f and the number s satisfy

lim
b→∞

e−sbf(b) = 0,

then the Laplace transform L [f ′](s) exists and, moreover, we have the identity

L [f ′](s) = sL [f ](s)− f(0).

This is definitely a relationship between L [f ′] and L [f ]. N

The work of the preceding example proves the following lemma.

3.1.6 Lemma.

Suppose that f is locally integrable and differentiable on [0,∞) and let s be a real number.
If the Laplace transform L [f ](s) converges and if

lim
b→∞

e−sbf(s) = 0,
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then the Laplace transform L [f ′](s) also converges and

L [f ′](s) = sL [f ](s)− f(0). (3.1.1)

This is where we finished on Wednesday, April 13, 2022.

The natural question, then, is for what functions f and what real numbers s do we have

lim
x→∞

e−sxf(x) = 0. (3.1.2)

One way to approach this is to work backwards: if this limit holds, then for all C > 0, there
is M > 0 such that if x ≥M , then

|e−sxf(x)| ≤ C.

Thus for x ≥M , we have
|f(x)| ≤ Cesx. (3.1.3)

However, an inequality of this form does not guarantee that the limit (3.1.2) holds. Indeed,
if we take f(x) := esx, then the inequality (3.1.3) is true with C = 1 for all x — in fact, it
holds with equality — but we have

lim
x→∞

e−sxf(x) = lim
x→∞

e−sxesx = 1.

The right idea is to avoid overworking s and to introduce a new parameter q.

3.1.7 Definition.

Let q be a real number. A function f defined on [0,∞) has exponential order q or
grows at most exponentially with rate q if there are constants C > 0 and
x0 ≥ 0 such that if x ≥ x0, then |f(x)| ≤ Ceqx.

In other words, for x ≥ x0, the graph of |f | is trapped between the x-axis and the graph of
y = Ceqx. This property31 not only guarantees the relationship (3.1.1) between the Laplace
transform of a function and the transform of its derivative; it gives us a range of s for which
L [f ](s) exists in the first place.

31Here is a more leisurely exposition of how Definition 3.1.7 entered the collective mathematical consciousness.
It would be nice to have a way of ensuring that the Laplace transform exists without checking the improper
integral for each and every real number s. The following version of the comparison test for improper
integrals is useful: if there is a locally integrable function g defined on [0,∞) and a number x0 ≥ 0 such
that e−sx|f(x)| ≤ g(x) for all x ≥ x0, and if

∫∞
0
g(x) dx converges, then L [f ](s) also converges. (This is

something that we learned in calculus, and we will simply accept that it is true here.)

One such candidate for g is the very nice function g(x) = Ce−rx, where r > 0 and C > 0; we have∫ ∞
0

e−rx dx =
1

r
.

If we have e−sx|f(x)| ≤ Ce−rx for all x greater than some x0, then L [f ](s) exists. This inequality is the
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3.1.8 Lemma.

Suppose that f is locally integrable on [0,∞) and has exponential order q.

(i) L [f ](s) converges for all s > q.

(ii) If f is also differentiable on [0,∞), then L [f ′](s) converges for all s > q and
L [f ′](s) = sL [f ](s)− f(0) for s > q.

Proof. We leave the proof of part (i) as an exercise in the comparison test for improper
integrals. For part (ii), we just need to show

lim
x→∞

e−sxf(x) = 0,

thanks to Lemma 3.1.6. (Note that we do not need to assume that f ′ has exponential order
q to apply this lemma!) We use the squeeze theorem:

0 ≤ |e−sxf(x)| ≤ Ce−sxeqx = Ce(q−s)x,

and since s > q, we have q − s < 0, thus

lim
x→∞

e(q−s)x = 0. �

The next natural question is what functions f have exponential order q and what value
of q works for those functions. The good news is that “many” of the functions that we meet
in calculus do have some exponential order, and so their Laplace transforms are defined.

3.1.9 Example.

What is the exponential order of each function below?

(i) f(x) = sin(x)

(ii) f(x) = x

Solution. (i) We know that −1 ≤ sin(x) ≤ 1 for all x, so | sin(x)| ≤ 1. And since 1 =
e0·x = 1 · e0·x, we have

| sin(x)| ≤ 1 · e0·x

for all x. So, taking x0 = 0 (purely for convenience), C = 1, and q = 0, we see that f has
exponential order 0. In particular, L [sin(x)](s) is defined for all s > 0. We will figure out a
formula later.

same as saying |f(x)| ≤ Ce(s−r)x.

Thus if there are C, r > 0 and x0 ≥ 0, and if |f(x)| ≤ Ce(s−r)x for x ≥ x0, then L [f ](s) exists. We can
clean this up a bit further, actually. Put q = s− r. Since r > 0, we have s > s− r = q.

Now, forget about r, and just suppose that for some C > 0, some x0 ≥ 0, and some real number q
(which need not be positive, or negative), we have |f(x)| ≤ Ceqx whenever x ≥ x0. Let s > q. Then
e−sx|f(x)| ≤ Ce(q−s)x, and since q − s < 0, the comparison test forces L [f ](s) to exist.
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(ii) Experience from prior calculus might suggest to us that “exponentials grow at ∞ more
quickly than polynomials” and so, given q > 0, we should be able to find C > 0 and x0 > 0
such that if x > x0, then |x| ≤ Ceqx. To make this more precise, we use L’Hospital’s rule to
calculate

lim
x→∞

x

eqx
= lim

x→∞

1

qeqx
= 0,

and so there is x0 > 0 such that if x ≥ x0, then∣∣∣ x
eqx

∣∣∣ ≤ 1.

(Here we are choosing 1 purely for convenience; we could replace 1 with any positive number
and just have to adjust x0 accordingly.) Thus for x ≥ x0, we have |x| ≤ eqx, and so f(x) = x
has exponential order q.

What is nice here is that q > 0 was arbitrary. So, given s > 0, let q = s/2. Then q > 0
and s > q, so L [x](s) converges. That is, L [x](s) converges for all s ≥ 0. N

The results in this example can be strengthened: any bounded function has exponen-
tial order 0 and any polynomial has exponential order 0, too. Lemma 3.1.8 says that any
exponential of the form f(x) = eax has exponential order a.

3.1.10 Example.

Calculate L [x](s) without evaluating any integrals. For what values of s does this con-
verge?

Solution. First, f(x) = x is a polynomial, so f has exponential order 0, and therefore
L [f ](s) converges for all s > 0. We have f ′(x) = 1 = e0·x, and Lemma 3.1.4 tells us that

L [e0·x](s) =
1

s

for s > 0. On the other hand, we know

L [f ′](s) = sL [f ](s)− f(0) = sL [f ](s),

since f(0) = 0. Thus

sL [f ](s) = L [f ′](s) = L [e0·x](s) =
1

s
,

and so
L [x](s) =

1

s2
. N

There is one other property of the transform that we need, and it is, hopefully, glaringly
obvious. The Laplace transform is linear.
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3.1.11 Lemma.

Suppose that f and g are locally integrable on [0,∞) and that the Laplace transforms
L [f ](s) and L [g](s) converge for some s.

(i) The transform L [f + g](s) converges and L [f + g](s) = L [f ](s) + L [g](s).

(ii) Let c be any real number. Then the transform L [cf ](s) converges and L [cf ](s) =
cL [f ](s).

The Laplace transform is not multiplicative: in general L [fg](s) 6= L [f ](s) ·
L [g](s). That is, “the transform of a product is not the product of the transforms.” This
should be unsurprising; most things in calculus are linear, but relatively few play nicely with
multiplication of nonconstant functions. (The derivative of a product is not the product of
derivatives.)

Now that we know a few Laplace transforms and the all-important property L [f ′](s) =
sL [f ](s)− f(0), we are ready to solve some (toy) differential equations with the transform.
We will introduce more refined properties of the transform and a few more formulas as we
need them.

3.2. Solving differential equations with the Laplace transform.

3.2.1 Example.

Pretend that we do not know how to solve{
f ′ + f = ex

f(0) = 0.

with the integrating factor method. Instead, make the two large assumptions that (1) this
problem does have a solution f and (2) f is of some exponential order, so that f and
f ′ have Laplace transforms for s large enough. What can we learn about the Laplace
transform of f , and what does this teach us about f?

Solution. If f ′ + f = ex, f(0) = 0, and both f and f ′ have Laplace transforms, then we
have the following chain of implications:

f ′ + f = ex =⇒ L [f ′ + f ](s) = L [ex](s)

=⇒ L [f ′](s) + L [f ](s) =
1

s− 1
, assuming s > 1

=⇒ sL [f ](s)− f(0) + L [f ](s) =
1

s− 1

=⇒ sL [f ](s) + L [f ](s) =
1

s− 1
since f(0) = 0

=⇒ (s+ 1)L [f ](s) =
1

s− 1
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=⇒ L [f ](s) =
1

(s− 1)(s+ 1)
.

So, whatever f is, we know what its Laplace transform is. Now, we only know two
transforms so far (those of g(x) = eax and h(x) = x), and the result above does not look like
either of those transforms. The right, although perhaps not obvious, idea is to appeal to the
dreaded method of partial fractions and rewrite

1

(s− 1)(s+ 1)
=

1

2(s− 1)
− 1

2(s+ 1)
.

We recognize that

1

2(s− 1)
=

1

2
L [ex](s) and

1

2(s+ 1)
=

1

2(s− (−1))
= L [e−x](s).

Thus, by linearity, f satisfies

L [f ](s) =
L [ex](s)

2
− L [e−x](s)

2
= L

[
ex − e−x

2

]
(s).

This gives us the strong suspicion that the solution to our problem is

f(x) =
ex − e−x

2
,

and a moment of calculus and algebra shows that this is indeed the case. N

This is not an exciting result. Of the many things our world needs right now, a new
method for solving constant-coefficient linear first-order equations (not even variable-coefficient
equations!) probably isn’t one of them. But it does give us a good idea: if we have no clue
about how to solve a differential equation, take the Laplace transform of everything and see
what we can learn about the Laplace transform.

This is where we finished on Friday, April 15, 2022.

Here is a slightly more challenging problem.

3.2.2 Example.

Clarice used to raise lambs, but they got to be too noisy, and now she raises rabbits. Clarice
started with 10 rabbits, and, as everyone knows, rabbit populations grow exponentially
(at least when they are not beset by disease, predators, or internecine strife with nearby
totalitarian warrens). Specifically, if the rabbit population at time t ≥ 0 months is p(t),
then p satisfies {

p′(t) = 2p(t)

p(0) = 10.
(3.2.1)

Clarice solved this equation pretty quickly using separation of variables (and she double-
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checked her work with an integrating factor) and found that after t months, she would have
p(t) = 10e2t rabbits. This is a lot of rabbits, and so after six months Clarice plans to sell
50 rabbits per month. Then the rabbit population can be modeled by

p′(t) =

{
2p(t), 0 ≤ t < 6

2p(t)− 50, t ≥ 6,
p(0) = 10. (3.2.2)

Is this a good idea? Will Clarice ever run out of rabbits?

Solution. An effective, but dull, way to approach this problem is to note that Clarice has
10e12 rabbits at time t = 6, using the formula p(t) = 10e2t for the unharvested rabbit
population. Then for times t ≥ 6, the rabbit population (subject to harvesting) must solve
the initial value problem {

p′(t) = 2p(t)− 50

p(t) = 10e12.

We could solve this with separation of variables or an integrating factor.
Suppose, however, that Clarice decided to change her harvesting pattern every six months

or so. Then the differential equation (3.2.2) would have more than just two “piecewise pieces,”
and it could become even more tedious to have to solve that equation “piece by piece.” The
method that we will now develop generalizes nicely to more varied harvesting patterns.

We will need several perhaps non-intuitive ideas. First, we rewrite (3.2.2) to remove the
piecewise notation. We introduce a function h to govern the harvesting:

h(t) :=

{
0, 0 ≤ t < 6

−50, t ≥ 6.

Then (3.2.2) collapses to {
p′(t) = 2p(t) + h(t)

p(0) = 10.
(3.2.3)

This looks much more familiar, but there will be problems if we try to solve it with an
integrating factor: h is not continuous, so we cannot just integrate h to get a differentiable
antiderivative.

Instead, we take the Laplace transform of (3.2.3) and hope we learn something about p.
(Once again, we are working backwards in assuming that (3.2.3) has a solution that has a
Laplace transform.) We find

p′(t) = 2p(t) + h(t) =⇒ L [p′](s) = L [2p+ h]

=⇒ sL [p](s)− p(0) = 2L [p](s) + L [h](s)

=⇒ (s− 2)L [p](s) = 10 + L [h](s) since p(0) = 10

=⇒ L [p](s) =
10

s− 2
+

L [h](s)

s− 2
.
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This tells us what the Laplace transform of p must do: we have

L [p](s) =
10

s− 2
+

L [h](s)

s− 2
. (3.2.4)

The denominator s− 2 might look familiar, since

L [e2t](s) =
1

s− 2
.

However, the numerator L [h](s) in the second term in (3.2.4) needs further analysis. N

We pause our work with Clarice to study the Laplace transform L [h] more carefully. It
will pay off to introduce a new, but related, function.

3.2.3 Definition.
A step function or Heaviside function is a function of the form

ua(t) :=

{
0, t < a

1, t ≥ a

for a given real number a.

t

ua(t)

1

a

Sometimes the function

u0(t) =

{
0, t < 0

1, t ≥ 0

is called the Heaviside function (not “a”) or the unit step function. One can check that

ua(t) = u0(t− a)

for all t and a.
Returning to Clarice’s problem, the harvesting function

h(t) =

{
0, t < 6

−50, t ≥ 6
(3.2.5)

satisfies
h(t) = −50u6(t).

Thus we really need to find L [u6], and we may as well do this for a arbitrary.
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3.2.4 Example.

Let a be a real number. Calculate L [ua](s) for all s at which this transform is defined.

Solution. Since |ua(t)| ≤ 1 for all t, and since ua is piecewise continuous, we see that ua is
locally integrable on [0,∞) and bounded, and so it should have a Laplace transform defined
for s > 0. This follows from part (i) of Lemma 3.1.8 with q > 0.

It is much more effective, however, just to calculate the Laplace transform from scratch:

L [ua](s) =

∫ ∞
0

ua(t)e
−st dt = lim

b→∞

∫ b

0

ua(t)e
−st dt.

We are integrating a piecewise function here, so we should rig the limits of integration to
respect the pieces.

If b < a, then ua(t) = 0 for all 0 ≤ t ≤ b. Thus if b < a, we have∫ b

0

ua(t)e
−st dt =

∫ b

0

0 · e−st dt = 0.

However, we are really interested in b large, so assume b ≥ a. Then ua(t) = 0 for 0 ≤ t < a
and ua(t) = 1 for t ≥ a, and so properties of the integral give∫ b

0

ua(t)e
−st dt =

∫ a

0

ua(t)e
−st dt+

∫ b

a

ua(t)e
−st dt =

∫ a

0

0·e−st dt+
∫ b

a

1·e−st dt =
∫ b

a

e−st dt.

t (assuming a > 0)
0 a b

ua(t) = 0 ua(t) = 1

If s 6= 0, we can antidifferentiate as usual:∫ b

a

e−st dt =
e−st

−s

∣∣∣∣t=b
t=a

=
e−sb − e−sa

−s
=
e−sa − e−sb

s
.

Since

lim
b→∞

e−sb =

{
0, −s < 0

∞, s > 0
=

{
0, s > 0

∞, s < 0,

we conclude that the integral converges if s > 0 and diverges if s < 0. We leave the divergence
at s = 0 as an exercise. Thus

L [ua](s) = lim
b→∞

e−sa − e−sb

s
=
e−sa

s
, s > 0. N

Since Clarice’s harvesting function h is h(t) = −50u6(t), we have

L [h](s) = −50e−6s

s
, s > 0.



3. The Laplace Transform 130

Thus her rabbit population p, per (3.2.4), satisfies

L [p](s) =
10

s− 2
− 50e−6s

s(s− 2)
. (3.2.6)

Hopefully the factors of s and s− 2 in the denominator above make us think of transforms
of exponentials:

L [e0·t](s) =
1

s
and L [e2t](s) =

1

s− 2
.

This, in turn, should motivate us to perform a partial fractions decomposition:

1

s(s− 2)
= − 1

2s
+

1

2(s− 2)
.

This converts (3.2.6) to

L [p](s) =
10

s− 2
+

25e−6s

s
− 25e−6s

s− 2
= 10L [e2t](s) + 25e−6sL [e0·t](s)− 25e−6sL [e2t](s).

(3.2.7)
It would be nice if we could replace the last two terms by “pure” Laplace transforms.

That is, are there functions g1 and g2 such that

e−6sL [e0·t](s) = L [g1(t)](s) and e−6sL [e2·t](s) = L [g2(t)](s)?

If so, then (3.2.7) becomes

L [p](s) = 10L [e2t](s) + 25L [g1(t)](s)− 25L [g2(t)](s) = L [10e2t + 25g1(t)− 25g2(t)](s).

A good candidate for Clarice’s rabbit population would then be

p(t) = 10e2t + 25g1(t)− 25g2(t).

Here, then, is the right (and, for now, final) question to ask.

3.2.5 Example.

Let f be a function whose Laplace transform is defined at the number s, and let a also be
a real number. Is there a function g such that

e−asL [f ](s) = L [g](s)?

This is where we finished on Monday, April 18, 2022.

Solution. We may as well try to manipulate the expression e−asL [f ](s). Since f has a
Laplace transform at s, the improper integral below is defined:

e−asL [f ](s) = e−as
∫ ∞
0

f(t)e−st dt =

∫ ∞
0

f(t)e−(a+t)s dt.
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We substitute v = a + t to find dv = dt and t = v − a (we are using v, not u, since u is
playing a role above with ua) to find∫ ∞

0

f(t)e−(a+t)s dt =

∫ ∞
a

f(v − a)e−vs dv.

This sort of substitution in improper integrals can be justified by using the limit definition
of the improper integral; we leave the details as an exercise.

We would like to relate the integral
∫∞
a
f(v − a)e−vs dv to a Laplace transform, which is

an integral over [0,∞). But here we are just integrating over [a,∞). The right, and probably
not obvious, idea is to relate everything to a Heaviside function:∫ ∞

a

f(v − a)e−vs dv = 0 +

∫ ∞
a

1 · f(v − a)e−vs dv

=

∫ a

0

0 · f(v − a)e−vs dv +
∫ ∞
a

1 · f(v − a)e−vs dv

=

∫ a

0

ua(v)f(v − a)e−vs dv +
∫ ∞
a

ua(v)f(v − a)e−vs dv

=

∫ ∞
0

ua(v)f(v − a)e−vs dv

= L [ua(v)f(v − a)](s).

We conclude (going back to our original variable t, not v)

e−asL [f ](s) = L [ua(t)f(t− a)](s). N

The graphical interpretation of the function t 7→ ua(t)f(t − a) may not be immediately
obvious from the formula, so it is worth pausing for a moment to draw. For simplicity, take
a > 0. Then the graph of t 7→ f(t− a) is the graph of f shifted a units to the right on the
t-axis.

t

f(t)

a
t

f(t− a)

a

Since

ua(t)f(t− a) =

{
0, t < a

f(t− a), t ≥ a,
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the graph of t 7→ ua(t)f(t− a) is just 0 for t < a and then, starting at t = a, the graph of f
shifted to the right by t units.

t

ua(t)f(t− a)

a

Recall, however dimly, from (3.2.7) that Clarice’s rabbit population p satisfies

L [p](t) = 10L [e2t](s) + 25e−6sL [e0·t](s)− 25e−6sL [e2t](s).

Now we see that
e−6sL [e0·t](s) = L [u6(t)e

0·(t−6)](s) = L [u6(t)](s)

and
e−6sL [e2t](s) = L [u6(t)e

2(t−6)](s),

and so

L [p](t) = 10L [e2t](s) + 25L [u6(t)](s)− 25L [u6(t)e
2(t−6)](s)

= L [10e2t + 25u6(t)− 25u6(t)e
2(t−6)](s).

This suggests that Clarice’s rabbit population, with harvesting, is

p(t) = 10e2t + 25u6(t)(1− e2(t−6)) =

{
10e2t, t < 6

10e2t + 25(1− e2(t−6)), t ≥ 6.

We can (and should) check directly that p′(t) = 2p(t)+h(t) for p 6= 6, and so p solves (3.2.3).
Now, this is a bulky formula, so here is a graph (not exactly to scale).

t

p(t)

6
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It looks like p is continuous for all t but there is a corner at t = 6, so p is probably not
differentiable there. This is in line with our toy problem from Example 2.7.2.

Now we give a more rigorous analysis of continuity and differentiability. By inspection
of its formula, p is continuous on (−∞, 6) and (6,∞), and, since p(6) = 10e12 and

lim
t→6−

p(t) = lim
t→6−

10e2t = 10e12 and lim
t→6+

p(t) = lim
t→6+

10e2t + 25(1− e2(t−6)) = 10e12,

p is also continuous at t = 6. However, we do not expect p to be differentiable at t = 6, since

lim
t→6−

p′(t) 6= lim
t→6+

p′(t);

we leave the calculation of these one-sided limits as an exercise.
Finally, we still need to figure out what happens to Clarice’s rabbit population after

harvesting. If she takes 50 hapless rabbits a month, will she ever run out? This seems
unlikely from the graph. More precisely, we have

lim
t→∞

p(t) = lim
t→∞

10e2t + 25(1− e2(t−6)) = lim
t→∞

e2t[10 + 25e−2t − 25e−12].

Since
lim
t→∞

e2t =∞ and lim
t→∞

10 + 25e−2t − 25e−12 = 10− 25e−12 > 0,

she will always have plenty of rabbits.
This was a long (terrible) story, so we pause to summarize our important auxiliary de-

velopments with the Heaviside (step) function.

3.2.6 Lemma.
For a real number a, put

ua(t) :=

{
0, t < a

1, t ≥ a.

(i) L [ua(t)](s) =
e−as

s
, s > 0

(ii) If the function f has a Laplace transform at the number s, then

L [ua(t)f(t− a)](s) = e−asL [f(t)](s).

3.2.7 Example.

Use the Laplace transform to find a reasonable candidate for the solution to{
f ′(x) = f(x) + e−x + u2(x)

f(0) = 1.
(3.2.8)

This is where we finished on Wednesday, April 20, 2022.
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Solution. We assume that the problem has a solution that has a Laplace transform and
calculate

f ′(x) = f(x) + e−x + u2(x) =⇒ L [f ′(x)](s) = L [f(x)](s) + L [e−x](s) + L [u2(x)](s)

=⇒ sL [f ](s)− f(0) = L [f ](s) +
1

s− (−1)
+
e−2s

s

=⇒ sL [f ](s)−L [f ](s) = 1 +
1

s+ 1
+
e−2s

s
since f(0) = 1

=⇒ (s− 1)L [f ](s) = 1 +
1

s+ 1
+
e−2s

s

=⇒ L [f ](s) =
1

s− 1
+

1

(s− 1)(s+ 1)
+

e−2s

s(s− 1)
.

We rewrite

1

(s− 1)(s+ 1)
=

1

2(s− 1)
− 1

2(s+ 1)
and

1

s(s− 1)
= −1

s
+

1

s− 1

so that

L [f ](s) =
1

s− 1
+

1

2(s− 1)
− 1

2(s+ 1)
− e−2s

s
+

e−2s

s− 1

=
3

2(s− 1)
− 1

2(s+ 1)
− e−2s

s
+

e−2s

s− 1

=
3

2
L [ex](s)− 1

2
L [e−x](s)− 1

2

(
e−2sL [e0·x](s)

)
+
(
e−2sL [ex](s)

)
=

3

2
L [ex](s)− 1

2
L [e−x](s)−L [u2(x)e

0·(x−2)](s) + L [u2(x)e
x−2](s)

= L

[
3ex

2
− e−x

2
− u2(x) + u2(x)e

x−2
]
(s).

This suggests that the solution is

f(x) =
3ex − e−x

2
+ u2(x)(e

x−2 − 1) (3.2.9)

and we can check that this works pointwise in x for x 6= 2. N

We could have solved the preceding problem (and Clarice’s) more or less how we treated
Example 2.7.2. Here we would need to use the integrating factor method “piecewise” over
the two intervals [0, 2) and [2,∞); this is a good review exercise. However, what if the
problem had many more pieces? Returning to Clarice’s problem, suppose she decided to
change her harvesting pattern. Before month 6, she harvests no rabbits. Starting in month
6, she harvests 50 rabbits per month; starting in month 12, she harvests 100 rabbits per
month. Of course, she could try to harvest even more rabbits on an increasing biannual
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cycle, but this situation is just complicated enough. If the rabbit population p continues to
grow exponentially as in (3.2.1), we have

p′(t) =


2p(t), 0 ≤ t < 6

2p(t)− 50, 6 ≤ t < 12

2p(t)− 100, 12 ≤ t.

Put

h̃(t) :=


0, 0 ≤ t < 6

−50, 6 ≤ t < 12

−100, 12 ≤ t

so that the initial value problem now reads{
p′(t) = 2p(t) + h̃(t)

p(0) = 10.

Calculations identical to those that gave (3.2.4) now provide

L [p](s) =
10

s− 2
+

L [h̃](s)

s− 2
. (3.2.10)

Naturally, we want a formula for the Laplace transform of h̃. A good idea is to rewrite

h̃(t) =


0, 0 ≤ t < 6

−50, 6 ≤ t < 12

−100, 12 ≤ t

=


0, 0 ≤ t < 6

−50, 6 ≤ t < 12

0, 12 ≤ t

+


0, 0 ≤ t < 6

0, 6 ≤ t < 12

−100, 12 ≤ t

=


0, 0 ≤ t < 6

−50, 6 ≤ t < 12

0, 12 ≤ t

− 100u12(t).

Abbreviate

w(t) :=


0, t < 6

1, 6 ≤ t < 12

0, 12 ≤ t,

so that 
0, 0 ≤ t < 6

−50, 6 ≤ t < 12

0, 12 ≤ t

= −50w(t).

We therefore have
h̃(t) = −50w(t)− 100u12(t), (3.2.11)
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and so
L [h](s) = −50L [w](s)− 100L [u12](s) = −50L [w](s)− 100e−12s

s
.

It then suffices to find a formula for the Laplace transform of w. (Incidentally, w and h are
bounded, locally integrable functions, and so their Laplace transforms definitely exist.)

This is where we finished on Friday, April 22, 2022.

Here is the graph of w, along with a few observations.

t

w(t)

6 12

1

w(t) = 0

u6(t) = 0

u12(t) = 0

w(t) = 1

u6(t) = 1

u12(t) = 0

w(t) = 0

u6(t) = 1

u12(t) = 1

The picture suggests, and a careful calculation proves, that

w(t) = u6(t)− u12(t).

Thus

L [w](s) = L [u6 − u12](s) = L [u6](s)−L [u12](s) =
e−6s

s
− e−12s

s
=
e−6s − e−12s

s
.

Then, using the definition of h̃ in (3.2.11), we have

L [h̃](s) = −50
(
e−6s − e−12s

s

)
− 100e−12s

s
= −50e−6s

s
− 50e−12s

s
.

Returning to Clarice’s revised problem and the Laplace transform in (3.2.10), we obtain

L [p](s) =
10

s− 2
− 50e−6s

s(s− 2)
− 50e−12s

s(s− 2)
.

There is not all that much new to be learned here; after making some partial fractions de-
compositions analogous to those above, we will recognize the Laplace transforms of products
involving exponentials and the two Heaviside functions u6 and u12. We leave the details as
an exercise; whatever the final formula, we should not be surprised to see the behavior of
the rabbit population “switching” at times t = 6 and t = 12.

We summarize our recent work more abstractly.



3. The Laplace Transform 137

3.2.8 Lemma.
Let a and b be real numbers with a < b. Then

ua(t)− ub(t) =


0, t < a

1, a ≤ t < b

0, b ≤ t,

(3.2.12)

and

L [ua − ub](s) =
e−as − e−bs

s
, s > 0. (3.2.13)

Moreover, if f is any function defined on an interval containing a and b, then

f(t) = f(t)[ua(t)− ub(t)] for a ≤ t < b (3.2.14)

and
f(t)[ua(t)− ub(t)] = 0 for r < a and t ≥ b. (3.2.15)

The identities (3.2.14) and (3.2.15) might think of ua−ub as an “indicator” or “windowing”
function for the interval [a, b). Multiplying by ua − ub “turns f on” in the interval [a, b) and
“off” elsewhere.

t

ua(t)− ub(t)

a b

1

a b

t

f(t)

a b

t

f(t)[ua(t)− ub(t)]

By the way, there is nothing really special about having the interval “open” at the right
endpoint b. This hearkens back to our definition of the Heaviside function ua as only “turning
on” when t ≥ a. We could have worked with a variant of the Heaviside function, like

ũa(t) =

{
0, t ≤ a

1, t > a
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and found more or less the same results.
Here is the deeper value of this work. First, any piecewise function can be expressed as

a sum of differences of multiples Heaviside functions. Consider, for example,

f(t) =


2, 0 ≤ t < 4

4, 4 ≤ t < 6

6, 6 ≤ t < 10

8, 8 ≤ t.

We just need to capture the separate behaviors of f on the intervals [0, 4), [4, 6), [6, 10), and
[10,∞). We can do this with the following two observations from the formula (3.2.12):

Thus

f(t) = f(t)[u2(t)− u4(t)] + f(t)[u4(t)− u6(t)] + f(t)[u6(t)− u10(t)] + f(t)u10(t)

= 2[u2(t)− u4(t)] + 4[u4(t)− u2(t)] + 6[u6(t)− u8(t)] + 8u8(t).

Imagine now that for some silly reason we had to compute the Laplace transform L [f ]. We
could just read off the transform from the expansion of f above and the formula (3.2.13)!

3.3. The inverse Laplace transform.

Here has been our strategy for solving differential equations with the Laplace transform.

1. Assume that a solution exists and that it is “nice enough” to have a Laplace transform.

2. Use the differential equation (and initial values) and properties of the Laplace transform
to determine a formula for the Laplace transform of the solution.

3. Use partial fractions and Laplace transform properties to express this formula as the sum
of Laplace transforms of known functions.

4. Guess that the solution really is the sum of these known functions. Check by differenti-
ating.

For instance, in Example 3.2.7 we saw that the solution f to the problem (3.2.8) had to
satisfy

L [f ](s) = L

[
3ex

2
− e−x

2
+
u2(x)

2
− u2(x)e

x−2

2

]
(s), (3.3.1)

and so the right idea seemed to be that

f(x) =
3ex

2
− e−x

2
+
u2(x)

2
− u2(x)e

x−2

2
. (3.3.2)

We should not put too much faith in this procedure as a mathematically rigorous method.
Remember, we are making the perilous double assumption that (1) a solution exists and (2)
it has a Laplace transform, and then we are trying to determine what that solution must be.
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As always in differential equations, once we have a candidate for a solution, we can check it
promptly.

Here is the underlying question that the passage from (3.3.1) to (3.3.2) should raise: if
f1 and f2 are functions with

L [f1](s) = L [f2](s)

for all s (at least, for all s at which these transforms are defined), do we have f1(x) = f2(x)
for all x at which f1 and f2 are defined? The unsatisfying answer is no, and it hinges on a
lovely little property of integrals.

This is where we finished on Monday, April 25, 2022.

Consider the following situation. Take

f1(x) = ex and f2(x) =

{
0, x = 0

ex, x 6= 0.

Note that f1 6= f2 since f1(0) 6= f2(0). However, it is the case that∫ b

0

f1(x) dx =

∫ b

0

ex dx and
∫ b

0

f2(x) dx =

∫ b

0

ex dx (3.3.3)

for all b ≥ 0. In words, changing the value of the integrand at one point does not change the
value of the integral, or more geometrically, the area under a point is zero. This is suggested
by the following pictures (which correspond to the integrand of the Laplace transform for
s = 0); the area of the shaded region in each picture is the same number A.

b

A

x

f1(x)

bb

x

f2(x)

From (3.3.3) and the limit definition of the Laplace transform, then, we have

L [f1](s) =
1

s− 1
= L [f2](s) (3.3.4)

for all s, even though f1 6= f2. If, however, we add the hypothesis of continuity to our
functions, then we do get a uniqueness property of the Laplace transform.
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3.3.1 Theorem.

Suppose that f1 and f2 are continuous functions on [0,∞) and there is a real number q
such that L [f1](s) = L [f2](s) for s > q. Then f1(x) = f2(x) for all x.

Embiggened with this uniqueness result, we make a formal definition.

3.3.2 Definition.

Let g be a function defined on an interval (q,∞) and suppose there is a continuous function
f defined on [0,∞) such that L [f ](s) = g(s) for all s > q. (There is at most one such
function g by Theorem 3.3.1.) Then we call f the inverse Laplace transform of
g and we write

f(x) = L −1[g](x).

3.3.3 Example.

Put
f(x) := e2x and g(s) :=

1

s− 2
, s > 2.

Then L [f ](s) = g(s) for all x > 2, and, moreover, f is continuous on [0,∞). Thus
f(x) = L −1[g](s); equivalently,

L −1
[

1

s− 2

]
(x) = e2x.

Although

h(x) :=

{
ex, x 6= 5

−1, x = 5

also satisfies L [h](s) = g(s), we do not write h = L −1[g] since h is not continuous on
[0,∞).

We can therefore amend our strategy for solving differential equations with the Laplace
transform to read: Assume there is a solution f and find a formula for its Laplace transform
as L [f ](s) = g(s) for some function g. Then a solution candidate is f(x) = L −1[g](x).

Unfortunately, given a function g, there is no “easy” or “transparent” formula for its inverse
Laplace transform, if the inverse transform exist. A semester or so of complex analysis will
produce a nice theoretical result, but for us it has little computational relevance. Instead,
we often calculate inverse Laplace transforms using the same catch-as-catch-can strategy
that we do antiderivatives: rewrite the function so that more elementary inverse transforms
appear and hope for the best. Often this rewriting involves a number of partial fractions
decompositions, and while it is worthwhile to know “conceptually” how to perform such
decompositions, any intense calculations are better left for a computer.
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3.4. Impulses and delta functions.

We will consider a new scenario for the harmonic oscillator that will lead not merely to a
problem that we can solve via the Laplace transform but rather one that we indeed must
solve with the transform. Our ordinary “time-side” mathematical language will not get us
very far with this problem, but our “Laplace-side” perspectives will.

Consider, for simplicity, an undamped harmonic oscillator of mass 1 and spring constant
1. At time t = 0 the oscillator is at its equilibrium position, and it experiences virtually no
force on being placed into motion. Then if Fext(t) is the external force on the oscillator at
time t, its displacement u(t) from equilibrium satisfies

u′′ + u = Fext(t)

u(0) = 0

u′(0) = 0.

Suppose that at time t = 4 the oscillator experiences a very brief but “massive” force.
(There is nothing special about t = 4, save that 4 does not look like the numbers 1, 2, or 3.
The number 1 is too plain; the number 2 will appear elsewhere in our model; and the number
3, when handwritten, can look like the Greek letter ε backwards.) For example, rather than
the beefy, stubby, paw of a cat paddling the oscillator, someone strikes it with a hammer,
or a homicidal coyote tosses a stick of dynamite at it; why any of this would happen is a
mystery. Such a force is sometimes called an impulse. What sort of function Fext would
model this force, beyond

Fext(t) =

{
“very large,” t ≈ 4

0, t < 4 or t > 4?

“very large”

4
t

Fext(t)

“very small” “very small”

One way of proceeding is to approximate Fext with a function that is “large” over “small”
times centered around t = 1, solve the problem for one of these approximations, and then
take a limit. There are lots of good candidates for such approximating functions; here is a
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nice and easy one. For ε > 0, put

Fε(t) :=


0, t < 4− ε
1/ε, 4− ε ≤ t < 4 + ε

0, t ≥ 4 + ε.

(3.4.1)

Here are some graphs of Fε for successively smaller ε.

t

Fε(t)

44− ε 4 + ε

1/2ε

t

Fε(t)

44− ε 4 + ε

1/2ε

t

Fε(t)

44− ε 4 + ε

1/2ε

t

Fε(t)

44− ε 4 + ε

1/2ε

It seems that taking ε→ 0 does a nice job of modeling a function that is very large when
the input is close to 4 and zero everywhere else. (The factor of 2 in the denominator of Fε
is there for a convenience that we will exploit later.) In fact, one can show that

lim
ε→0

Fε(t) =

{
∞, t = 4

0, t 6= 4
=: F0(t),

and this definition of F0 certainly fits the bill of a “very brief but ‘massive’ force.” Determining
the limit above is a little strange from a calculus perspective, since both the outputs of Fε and
the “pieces” are changing with ε. Nonetheless, it is feasible, but that symbol∞ should make
us uncomfortable — the function F0 is not “real-valued,” like everything good in calculus,
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but rather extended real-valued. Consequently, none of our prior techniques will allow us to
solve the problem 

u′′ + u = F0(t)

u(0) = 0

u′(0) = 0

(3.4.2)

since we have no results for extended real-valued forcing functions.

This is where we finished on Wednesday, April 27, 2022.

Instead, we will try to solve the approximate problem
u′′ + u = Fε(t)

u(0) = 0

u′(0) = 0.

(3.4.3)

This is a problem with a piecewise forcing function, and we could work “interval by interval,”
which would be horrible, but feasible. Another approach is to use the Laplace transform;
after all, Fε is piecewise. This would require us to interpret what L [u′′](s) is, and that turns
out to be an extension of the old idea L [u′](s) = sL [u](s)− u(0).

However we do it, suppose that we can solve (3.4.3) and get a solution uε. Then we would
like to study

lim
ε→0

uε(t)

for each time value t. Does this limit exist as a finite real number? If so, what does the limit
say about the solution to the hypothetical problem (3.4.2)?

To begin to answer these questions, we first study (3.4.3) on the Laplace side. Taking
the Laplace transform, we find

L [u′′](s) + L [u](s) = L [Fε](s). (3.4.4)

We have used the linearity of the transform on the left side. Next, we want to express
L [u′′] in terms of L [u]. This is quite easy if we use the definition of the second derivative:
u′′ = (u′)′. We find, from our formula for the interaction of a Laplace transform with a first
derivative,

L [u′′](s) = L [(u′)′](s) = sL [u′](s)− u′(0) = s
(
sL [u](s)− u(0)

)
− u′(0)

= s2L [u](s)− su(0)− u′(0).

The initial values u(0) = u′(0) = 0 from (3.4.3) then convert (3.4.4) into

s2L [u](s) + L [u](s) = L [Fε](s),

and so we find
L [u](s) =

L [Fε](s)

s2 + 1
.
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To calculate L [Fε](s), we use the definition of Fε in (3.4.1) to rewrite Fε as a window
function, as in Lemma 3.2.8:

Fε(t) = u4−ε(t)− u4+ε(t).

Thus

L [Fε](s) =
e−(4−ε)s − e−(4+ε)s

2εs
=

(
e−4s

s

)(
eεs − e−εs

2ε

)
. (3.4.5)

We have factored L [Fε] in this manner for convenience later. Then

L [u](s) =
1

s2 + 1

(
e−4s

s

)(
eεs − e−εs

2ε

)
. (3.4.6)

Now, we could try to invert this transform and get a solution u = uε to (3.4.3). But
since we are going to take the limit as ε→ 0+, a worthwhile (if wholly non-obvious) idea is
to take the limit on the Laplace side. Only the third factor in (3.4.6) is ε-dependent, and it
turns out that

lim
ε→0+

eεs − e−εs

2ε
= s

for any real number s. Here we need to use L’Hospital’s rule with respect to ε. Then, in the
limit as ε→ 0+, (3.4.6) becomes

L [u](s) =
e−4s

s2 + 1
. (3.4.7)

This suggests (but certainly does not prove) a formula for the solution to (3.4.2), which is
the “real” problem that we want to solve.

Furthermore, our prior experience with exponential factors on the Laplace side suggests
to us that if we could find a function g such that

L [g](s) =
1

s2 + 1
,

then (3.4.7) will become

L [u](s) = e−4sL [g](s) = L [u4(t)g(t− 4)](s),

and so the solution u to (3.4.2) could be

u(t) = u4(t)g(t− 4).

So, what is

L −1
[

1

s2 + 1

]
(t)?

If we stare at this for some time, the quadratic s2 + 1 in the denominator should remind
us of the characteristic polynomial of f ′′+f = 0. And this equation has sines and cosines for
solutions. For a lark, we might try computing L [sin(t)](s). We could do this via the integral
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definition of the Laplace transform, but that would involve integration by parts. Instead, we
note that if f(t) = sin(t), then f solves the initial value problem

f ′′ + f = 0

f(0) = 0

f ′(0) = 1,

and so (??) gives

0 = s2L [f ](s)− sf(0)− f ′(0) + L [f ](s) = (s2 + 1)L [f ](s)− 1.

Hence
L [sin(t)](s) = L [f ](s) =

1

s2 + 1
.

Our lucky guess worked out, and by the reasoning above, the function

u(t) = u4(t) sin(t− 4) =

{
0, t < 4

sin(t− 4), t ≥ 4

is a good candidate for the solution to (3.4.2).

3.4.1 Remark.

We have seen that with Fε defined in (3.4.1), we have

lim
ε→0+

L [Fε](s) = e−4s.

Conversely, we viewed the extended real-valued limit

lim
ε→0+

Fε(t)

as a good approximation to an impulse force occurring at time t = 4. The convention is
then to construct the extended real-valued function δ4 defined by

δ4(t) :=

{
∞, t = 4

0, t 6= 4

and to put L [δ4](s) := e−4s. This Laplace transform has no rigorous definition as an
improper integral (since integrals are only defined, as far as we know, for real-valued
functions), of course, but it allows us to (1) view the problem

u′′ + u = δ4

u(0) = 0

u′(0) = 0

as a representation of the impulse force on the “time side” and (2) to view the problem

L [u′′ + u](s) = e−4s, u(0) = u′(0) = 0
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as the incarnation of this problem on the “Laplace side.” We can solve the Laplace side
problem perfectly well and then invert to the time side.

There is nothing special about doing all this at time t = 4. If, for a real number a, we
define

δa(t) :=

{
∞, t = a

0, t 6= a

and agree that L [δa](s) = e−as, then the problem

u′′ + u = δa(t)

represents an oscillator suffering an impulse force at time t = a. We can interpret this
problem in terms of elementary functions on the Laplace side (provided we know initial
conditions).

This is where we finished on Friday, April 29, 2022.
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A. Calculus Essentials

1. A function on a real interval I is a rule that associates or pairs each number in I with
a unique (real) number. It is possible to give a much more rigorous definition of “associates”
or “pairs.” It is also possible to consider functions whose “inputs” and “outputs” are not real
numbers but far more abstract objects — including functions themselves! We will eventually
consider complex-valued functions of a real variable, i.e., rules that pair real numbers in a
unique way with complex numbers.

If f is a function on a real interval I, we will write f(x) to refer to the value of f at the
number x in I. We will typically not write f(x) to refer to the “whole” function, which we
denote just by f .

2. Differentiation is linear in the following sense. If f and g are differentiable functions
and C is a real number, then

d

dx
[f + g] =

df

dx
+
dg

dx
or (f + g)′ = f ′ + g′

and
d

dx
[Cf ] = C

df

dx
or (Cf)′ = Cf ′(x).

3. The product rule states that if f and g are differentiable functions, then their product
fg is a differentiable function, and

d

dx
[fg] = f ′g + fg′.

4. Let f be continuous on the interval I. Then f has an antiderivative on I: there is a
differentiable function F defined on I such that F ′(x) = f(x) for all x in I. Specifically, if a
is any point in I, then we can take F to be the definite integral

F (x) :=

∫ x

a

f(t) dt.

That is,

F ′(x) =
d

dx

[∫ x

a

f(t) dt

]
= f(x).

5. Let f be a function. The symbol ∫
f(x) dx

denotes the set of all functions F such that F ′ = f , and it is called the indefinite
integral of f . That is, the symbol

∫
f(x) dx denotes the set of all antiderivatives of f .

The letter x is a “dummy” variable in the sense that we can replace it with any other letter:∫
f(x) dx =

∫
f(s) ds =

∫
f(ξ) dξ.
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6. Suppose that f and g are differentiable functions defined on the same interval I. Suppose
as well that f ′(x) = g′(x) for all x in I. Then there is a real number C such that f(x) =
g(x) + C for all x in I.

7. Let f be a differentiable function on the interval I such that f ′(x) = 0 for all x in I.
Then f is constant: there is a real number C such that f(x) = C for all x in I.
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B. Assorted Proofs

B.1. The proof of Lemma 2.1.12.

For convenience, we repeat this lemma.

B.1.1 Lemma.
Let a, b, c, and x0 be real numbers with a 6= 0. Suppose that f solves the homogeneous
initial value problem 

af ′′ + bf ′ + cf = 0

f(x0) = 0

f ′(x0) = 0.

Then f(x) = 0 for all x.

The proof of this lemma is not terribly difficult, but it requires two auxiliary details.

B.1.2 Lemma (Arithmetic-geometric inequality).

Let A and B be real numbers. Then

AB ≤ A2 +B2

2
.

Proof. First, 0 ≤ (A − B)2. Second, we expand (A − B)2 = A2 − 2AB + B2. Thus
0 ≤ A2 − 2AB + B2, and so 2AB ≤ A2 + B2. We divide by 2 to conclude the desired
inequality. �

B.1.3 Lemma (Gronwall’s inequality).

Suppose that f is a function defined on the interval I with the following properties.

(i) f(x) ≥ 0 for all x in I.

(ii) There is x0 in I such that f(x0) = 0.

(iii) There is a constant C such that f ′(x)− Cf(x) ≤ 0 for all x in I.

Then f(x) = 0 for all x in I.

Proof. The inequality f ′(x) − Cf(x) ≤ 0 looks very much like a homogeneous linear first-
order differential equation, except for the presence of ≤ instead of =. Motivated by this
similarity, we multiply both sides of the inequality by the integrating factor µ(x) = e−

∫
C dx =

e−Cx. Since e−Cx > 0 for all x, of course this preserves the inequality. Thus we have

f ′(x)e−Cx + f(x)[−Ce−Cx] ≤ 0.
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The left side is, as usual, a perfect derivative:

f ′(x)e−Cx + f(x)[−Ce−Cx] = d

dx
[f(x)e−Cx].

That is, we now know
d

dx
[f(x)e−Cx] ≤ 0.

We integrate both sides of this inequality from x0 to x, where x is an arbitrary point of I.
Since definite integrals respect inequalities regarding integrands32 we find33∫ x

x0

d

dx
[f(x)e−Cx] dx ≤

∫ x

x0

0 dx. (B.1.1)

That is,
f(x)e−Cx − f(x0)e−Cx0 ≤ 0.

Since f(x0) = 0, we have f(x) ≤ 0. Earlier we assumed f(x) ≥ 0 for all x in I. The only
way that we can have both f(x) ≤ 0 and f(x) ≥ 0 is via f(x) = 0. So, it must be the case
that f(x) = 0 for all x in I. �

B.1.4 Theorem.
Let a, b, c, and x0 be real numbers with a 6= 0. Suppose that f solves

af ′′ + bf ′ + cf = 0

f(x0) = 0

f ′(x0) = 0.

Then f(x) = 0 for all x.

Proof. The differential equation af ′′+ bf ′+ cf = 0 is, since a 6= 0, equivalent to the slightly
simpler problem f ′′+βf ′+ γf = 0, where β := b/a and γ := c/a. Assume from now on that
f ′′ + βf ′ + γf = 0. Define

g(x) :=
[f(x)]2 + [f ′(x)]2

2
.

32If g and h are integrable on [a, b] and g(x) ≤ h(x) for all x in [a, b], then∫ b

a

g(x) dx ≤
∫ b

a

h(x) dx.

33The notation ∫ x

x0

d

dx
[f(x)e−Cx] dx

in (B.1.1) is terrible grammar, since we are using x both as the upper limit of integration and the dummy
variable of integration. Better phrasing might be∫ x

x0

d

ds
[f(s)e−Cs] ds.
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We will show that g satisfies the hypotheses of Gronwall’s inequality to conclude g(x) = 0
for all x. Since 0 ≤ [f(x)]2 ≤ g(x) for all x, it follows that 0 ≤ [f(x)]2 ≤ 0 for all x and thus
f(x) = 0 for all x.

First, since [f(x)]2 ≥ 0 and [f ′(x)]2 ≥ 0, we have g(x) ≥ 0. Next, since f is twice-
differentiable, g is differentiable. It remains for us to show that g satisfies an inequality of
the form g′(x)−Cg(x) ≤ 0 for all x and some C, and this will be the remainder of the proof.

The chain rule gives
g′(x) = f(x)f ′(x) + f ′(x)f ′′(x).

Since f ′′ + βf ′ + γf = 0, this means

g′(x)f(x)f ′(x) + f ′(x)[−βf ′(x)− γf(x)]
= f(x)f ′(x)− β[f ′(x)]2 − γf(x)f ′(x)
= (1− γ)f(x)f ′(x)− β[f ′(x)]2.

(B.1.2)

For any x, the arithmetic-geometric inequality with A = f(x) and B = f ′(x)gives

f(x)f ′(x) ≤ [f(x)]2

2
+

[f ′(x)]2

2
. (B.1.3)

Combine (B.1.2) and (B.1.3) to obtain

g′(x) ≤ (1− γ) [f(x)]
2

2
+ (1− γ) [f

′(x)]2

2
− β[f ′(x)]2

= (1− γ) [f(x)]
2

2
+ (1− γ − 2β)

[f ′(x)]2

2
.

Put34

C := max{1− γ, 1− γ − 2β}

to conclude

g′(x) ≤ C
[f(x)]2

2
+ C

[f ′(x)]2

2
= C

(
[f(x)]2

2
+

[f ′(x)]2

2

)
= Cg(x).

That is, g′(x) − Cg(x) ≤ 0. This is the last hypothesis of Gronwall’s inequality that we
needed to satisfy. �

B.2. The proof of Lemma 2.1.14.

Coming soon!

34To be clear, by max{A,B}, where A and B are numbers, we mean the larger of A and B; if A = B, then
max{A,B} = A.
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C. The Coefficients for Variation of Parameters

Coming eventually! See the textbook.
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