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1. Ordinary Differential Equations

1.1. Basic concepts and definitions.

All material in this and subsequent sections on ordinary differential equations was inspired
by [3, 5, 6, 23, 29]. We presume familiarity with vector spaces (Appendix C.1) and linear
operators (Appendix C.2).

1.1.1 Definition.

If f : I ⊆ R → C is differentiable, we denote its derivative by f ′ or ∂x[f ]. If f is
k-times differentiable, we denote its kth derivative by f (k) or ∂kx [f ]. For simplicity,
we will always use the letter x as the independent variable of functions when studying
differential equations. We denote by Cn(I) the vector space of n-times differentiable
functions f : I ⊆ R→ C such that ∂nx [f ] is continuous on I. We write C(I) := C0(I) to
denote the functions that are merely continuous on I. We denote by C∞(I) the space
of infinitely differentiable functions on I, i.e., C∞(I) = ∩∞n=0Cn(I).

The following is the most natural definition of a differential equation, and it is a wrong
definition.

1.1.2 Undefinition.
An ordinary differential equation (ODE) is an equation involving one or
more derivatives of a function of a single variable.

1.1.3 Example.

Each of the following equations is an ODE according to Undefinition 1.1.2, as each is
an equation involving one or more derivatives of the function f = f(x).

(i) f ′ + xf = 0;

(ii) 2f ′′ + 4f ′ + 2f = 0;

(iii) exf ′′ + f = e2x;

(iv) f ′′ + sin(f) = 0;

(v) f ′′(x) + f(x+ 1)− 2f(x) + f(x− 1) = 0;

(vi) f ′(x) +

∫ ∞
0

f(ξ − x)e−ξ dξ =
1

1 + x2
.

Undefinition 1.1.2, however, is too broad, as not all the equations in Example 1.1.3
are “pure” differential equations. Equation (v) requires knowledge of f and its derivative
not only at one point x but also at x± 1. Physically, we might think of this equation as
demanding knowledge of f not just at the present moment/location x but also ahead/in
the future at x + 1 and behind/in the past at x − 1. This is an advance-delay
differential equation. Equation (vi) includes not only a derivative but also an
integral and therefore is an integro-differential equation. Both (v) and (vi)
are nonlocal differential equations, in that they demand knowledge of the solution



1. Ordinary Differential Equations 6

at multiple points simultaneously (the integro-differential equation here is particularly
egregious, requiring us to know how f behaves on all of [0,∞)!). Both integro-differential
equations and advance-delay equations raise mathematically rich, stimulating questions
in their own right, and, much later, we will see how techniques from Fourier theory can
help us solve some of them.

Equations (i) through (iv), however, are “differential equations” as we will ultimately
like to think of them. Namely, we can always solve for the highest derivative in the
equation as a function of the other, lower derivatives and x. We rewrite them as follows.

(i)new f ′ + xf = 0 ⇐⇒ f ′ = xf ⇐⇒ y′ = N1(x, f), where N1(x, y) := xy;

(ii)new 2f ′′ + 4f ′ + 2f = 0 ⇐⇒ f ′′ = −2f ′ − f = N2(x, f, f ′), where N2(x, y0, y1) :=
−2y1 − y0;

(iii)new exf ′′ + f = e2x ⇐⇒ f ′′ = ex − exf = N3(x, f, f ′), where N3(x, y0, y1) :=
ex − exy0;

(iv)new f ′′ + sin(f) = 0 ⇐⇒ f ′′ = − sin(f) = N4(x, f, f ′), where N4(x, y0, y1) :=
− sin(y0).

Here is what these four equations have in common: we can write them in the form
“highest derivative = function of x and the other derivatives, where this function is a
map defined on (a subset of) Rn, or even Cn, for some positive integer n.” This com-
monality ultimately drives much of the existence theory of ODEs1 and separates these
four equations from the distinct challenges of equations like (v) and (vi). While it will
be important (for reasons that will not be obvious until we study complex analysis (see
Examples 3.5.29 and 3.7.12) for us to take the independent variable x to be real, there
is no harm in assuming that coefficients in our differential equations are complex, which
may require the solution to be a complex-valued function of a real variable. And so we
come to a better2 definition of a differential equation.

1.1.4 Definition.
An nth order ordinary differential equation (ODE) is an equation for
an unknown function f of the form

∂nx [f ] = N
(
x, ∂x[f ], . . . , ∂n−1

x [f ]
)
. (1.1.1)

Here N is a function N : I ×D → C, where I ⊆ R is an interval and D ⊆ Cn−1.
A solution to (1.1.1) is a function f ∈ Cn(J), where J ⊆ I is an interval3, such

that ∂nx [f ](x) = N
(
x, ∂x[f ](x), . . . , ∂n−1

x [f ](x)
)
for all x ∈ I.

1Some people abbreviate the plural “ordinary differential equations” as ODE, too. We will not be like
those people.

2Whether or not this is really a “better” definition is admittedly subjective. One reason to view this
as “better” is that the majority of “equations involving derivatives” that we can solve explicitly and/or
easily have the form (1.1.1). Certainly all such equations that we will meet in this course do. And
the form (1.1.1) ultimately can be shown to possess powerful theoretical advantages for proving the
existence of solutions.

3There are considerable variations in the literature on what the domain of the solution to an ODE
should be; see [26] for a fascinating overview. In more theoretical treatments, obtaining a solution
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We often do not meet differential equations by themselves; instead, we will look for a
solution taking a particular value at a given point.

1.1.5 Definition.
An nth order initial value problem (IVP) consists of an nth order ODE
(1.1.1) together with an initial condition on the solution f : for some points x0 ∈ I
and y0, . . . , yn−1 ∈ C, the function f must satisfy

∂kx [f ](x0) = yk, k = 0, . . . , n− 1.

Sometimes we will study ODEs paired with a demand for behavior of f and/or some
of its derivatives at more than one point in an interval. Such a problem is called a
boundary value problem (BVP), as the points involved are typically endpoints
of a closed bounded interval. We will study a toy BVP in Example 1.2.6 and, more
thoroughly, second-order BVPs in Section 2.7, so we do not give a formal definition here.

The differential equations that we will study will be almost exclusively linear differ-
ential equations.

1.1.6 Definition.

(i) An nth order linear ODE is an equation of the form

an(x)∂nx [f ] + an−1(x)∂n−1
x [f ] + · · ·+ a0(x)f︸ ︷︷ ︸

(Af)(x)

=
n∑
k=0

ak(x)∂kx [f ](x) = g(x), x ∈ I,

(1.1.2)
where I ⊆ R is an interval, the mappings g, ak : I → C are continuous, and an(x) 6= 0
for all x ∈ R. Since an(x) 6= 0, we may solve for ∂nx [f ] as

∂nx [f ] =
g(x)

an(x)
−

n−1∑
k=0

ak(x)

an(x)
∂kx [f ] =: N

(
x, f, ∂x[f ], . . . , ∂n−1

x [f ]
)
,

where N : I × Cn−1 → C is given by

N (x, y1, . . . , yn−1) :=
g(x)

an(x)
−

n−1∑
k=0

ak(x)

an(x)
yk.

(ii) The linear ODE (1.1.2) is homogeneous if g(x) = 0 for all x and nonhomo-
geneous otherwise. The function g is sometimes called a forcing or driving4

term.

whose domain is an interval is simply the natural way of proceeding. That is, when one invokes an
abstract existence theorem, the solution produced is inherently defined on an interval. Physically, if an
ODE represents a time- or space-dependent process, requiring the solution to be defined on an interval
represents the natural “unbrokenness” or continuity (not to be confused with calculus continuity) of
time or space. At a purely symbolic level, this will not concern us too much, though; the function
f(x) = ln(|x|) clearly satisfies f ′(x) = 1/x on the non-interval (−∞, 0) ∪ (0,∞).

4In physical problems, e.g., a mass-spring oscillator, the function g can represent an external force on
the system.
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The operator A defined in (1.1.2) is a linear map from Cn(I) to C(I), which we call
a linear differential operator. Equivalently, in the parlance of Appendix C.2,
A is a linear operator in C(I) with domain D(A) = Cn(I). We will use the linearity of A
in almost all of our calculations and proofs. In particular, if Af1 = g1 and Af2 = g2 for
some f1, f2 ∈ Cn(I) and g1, g2 ∈ C(I), then

A(c1f1 + c2f2) = c1Af1 + c2Af2 = c1g1 + c2g2 (1.1.3)

for any c1, c2 ∈ C. The relation (1.1.3) is often called the superposition principle
(even though it is just the defining property of a linear operator).

1.2. First-order linear ODEs.

From Definition 1.1.6, a first-order linear differential equation has the form

f ′ + p(x)f = g(x), (1.2.1)

where p and g are given functions that are continuous on some interval5 I ⊆ R.
This is a fairly remarkable equation for a number of reasons.

• We can solve it explicitly, getting an actual formula for its solution(s) in terms of p
and q, using only techniques from elementary calculus.

• Our method of solution inherently shows that, up to one free parameter (whose role is
also explicit), the solution is unique.

• The precise form of this solution will motivate what might at the outset appear to be
a bizarre strategy for solving higher-order linear differential equations.

• The simple structure of this equation will serve as a toy model for series solutions and
Fourier transform techniques for more complicated equations.

• And, depending on some additional behavior that we will demand of f , the simple
linear mapping f 7→ f ′ + p(x)f exhibits a rich linear algebraic structure that will give
us insight into application-heavy boundary value and eigenvalue problems later in the
course.

1.2.1. Direct integration.

The easiest version of (1.2.1) arguably occurs when p(x) = 0 for all x ∈ I. In that case,
(1.2.1) becomes

f ′(x) = g(x), x ∈ I,

and so f must be an antiderivative of q. That is,

f(x) =

∫
g(x) dx+ C. (1.2.2)

5For the most part, this interval I can be any subinterval of R — open, closed, bounded, unbounded,
none of the above.
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1.2.1 Example.

Solve
dy

dx
= cos(x).

Solution. We have, of course,

y =

∫
dy

dx
dx+ C =

∫
cos(x) dx+ C = sin(x) + C. N

For quick and dirty calculations, the indefinite integral is fine. But if we want to
be mathematically precise, we will come to dislike the “indefinite integral” notation of
(1.2.2) for several reasons. First, in standard calculus, the symbol

∫
g(x) dx denotes a

set of functions, all of which differentiate to q, rather than one single function. Second,
we are taught in calculus that the “dummy variable” of integration is arbitrary, and so∫

g(x) dx =

∫
g(ξ) dξ =

∫
q(s) ds,

for all of these symbols just represent the set of antiderivatives of q. Then (1.2.2) intro-
duces the quandary

f(x) =

∫
g(x) dx+ C =

∫
g(ξ) dξ + C

?!
= f(ξ) + C.

And, third, if
∫
g(x) dx represents the set of all antiderivatives of q, is writing the +C

redundant? So, whenever we will attempt something rigorous, we will use a definite
integral. But, in examples, when we want a quick and dirty formula, we will write
indefinite integrals.

1.2.2. The integrating factor method.

Now consider (1.2.1) with p(x) 6= 0, so we cannot use direct integration. The next best
thing is to modify our ODE so that direct integration will be possible. The classical6

method of doing this is to observe that its left side somewhat resembles the product rule:
if µ is another function7 of x, then

∂x[fµ] = f ′µ+ fµ′.

If we could rewrite the left side of (1.2.1) as such a “perfect derivative,” then we could
simply antidifferentiate both sides and possibly solve for f . One thing that is missing in
(1.2.1) is a factor µ on f ′, so let us multiply both sides of this equation by some unknown
g:

f ′ + p(x)f = g(x) =⇒ f ′(x)µ(x) + p(x)µ(x)f(x) = µ(x)g(x). (1.2.3)

Now, if pµ is the derivative of µ, then the left side will be a perfect derivative (and so µ is
called an integrating factor, because we can easily integrate perfect derivatives).
That is, we want µ to satisfy

µ′(x) = p(x)µ(x). (1.2.4)
6“A mathematical technique is classical if it was proved before I went to graduate school.” —Anon.
7For nebulous historical and cultural reasons, the letter µ is often used in this approach.
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On the surface, this is no better than (1.2.1), since (1.2.4) is equivalent to

µ′(x)− p(x)µ(x) = 0,

which looks almost like (1.2.1), which is what we want to solve in the first place. On the
other hand, with enough experience in calculus, one can almost guess8 what a solution of
(1.2.4) should be: µ(x) = eP (x), where P is any antiderivative9 of p on I, i.e., P ′(x) = p(x),
x ∈ I.

This is a good guess, not only because it does solve (1.2.4), but also because (1.2.1)
is equivalent to the second ODE in (1.2.3), since eP (x) > 0 for all x. Thus, with P ′ = p,
we have

f ′+p(x)f = g(x) ⇐⇒ f ′(x)eP (x)+p(x)eP (x)f(x) = eP (x)g(x) ⇐⇒ ∂x[fe
P ](x) = eP (x)g(x).

(1.2.5)
To solve for f , let us fix a point x0 ∈ I and integrate both sides:

∂x[fe
P ](x) = eP (x)g(x) ⇐⇒

∫ x

x0

∂ξ[fe
P ](ξ) dξ =

∫ x

x0

eP (ξ)g(ξ) dξ

⇐⇒ f(x)eP (x) − f(x0)eP (x0) =

∫ x

x0

eP (ξ)g(ξ) dξ

⇐⇒ f(x) = f(x0)eP (x0)−P (x) + e−P (x)

∫ x

x0

eP (ξ)g(ξ) dξ.

(1.2.6)

Every step above was an “if and only if” step, so we know that f as defined here does
solve10 (1.2.1). But there is one piece of information missing: the value of f(x0). No data
in our problem will help us specify it, so let us write it as an arbitrary constant c ∈ C.
Also, since we can always adjust an antiderivative of p by a constant, let us assume11

that P (x0) = 0. Then, for any c ∈ C, the function

f(x) = ce−P (x) + e−P (x)

∫ x

x0

eP (ξ)g(ξ) dξ (1.2.7)

solves (1.2.1).
While this is a perfectly good abstract solution — and, indeed, this is the formula

we will exploit repeatedly later — in practice we rarely deal with a definite integral over
[x0, x].

8If one cannot almost guess this, fear not. This whole method hinges on the wholly nonobvious observa-
tion that (1.2.1) is only a multiple away from being a product rule situation. As much as it is good in
mathematical education to see where ideas naturally originate, sometimes one must simply take a leap
of faith across the intellectual Rubicon.

9Since p is continuous on I, the fundamental theorem of calculus ensures that p has an antiderivative
valid on all of I. For example, we might fix a point x0 ∈ I and take P (x) =

∫ x
x0
p(s) ds.

10Alternatively, differentiate f directly using the product rule, the fundamental theorem of calculus, the
chain rule, and our assumption P ′(x) = p(x).

11In fact, by the fundamental theorem of calculus, this is the only possible choice of P . If P ′(x) = p(x)
and P (x0) = 0, then the FTC implies P (x) = P (x0) +

∫ x
x0
p(s) ds =

∫ s
x0
p(s) ds.
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1.2.2 Example.

Let λ ∈ C. Solve
f ′ − λf = eλx.

Solution. We have p(x) = −λ and g(x) = eλx, so an integrating factor is

µ(x) = e
∫
−λ dx = e−λx.

We elected not to keep a constant of integration here; remember that P can be any
antiderivative of p. Then we have

f ′ − λf = eλx ⇐⇒ (f ′ − λf)e−λx = eλxe−λx ⇐⇒ f ′e−λx − λfe−λx︸ ︷︷ ︸
∂x[fe

−λ·]

= 1.

Thus

∂x[fe
−λ·] = 1 =⇒ f(x)e−λx =

∫
1 dx+ C = x+ C =⇒ f(x) = xeλx + Ceλx. N

1.2.3 Method: solve f ′(x) + p(x)f = g(x)

1. Let P be an antidervative of p. Take the constant of integration to be 0.

2. Multiply both sides by eP (x).

3. Recognize the resulting left side as a product-rule style derivative.

4. Antidifferentiate. Put the constant of integration on the right side.

5. Solve for f by dividing both sides by eP (x).

1.2.3. Four questions and an existence/uniqueness theorem.

Now let us return to the abstract solution (1.2.7) of our ODE (1.2.1).

1. Does every solution to (1.2.1) have the form (1.2.7)? Yes. This is the logic of (1.2.5)
and (1.2.7). If we start with a function f satisfying f ′+ pf = q, then these two chains of
“if and only if” statements force f to have this form.

2. Is the solution to (1.2.1) unique? No. Just choose two different values of c in (1.2.7).

3. Does our choice of P matter? After all, the function p has infinitely many antideriva-
tives. Let P̃ be another antiderivative of p, so P̃ ′(x) = p(x) for all x ∈ I. Then calculus
implies the existence of some constant C such that P̃ (x) = P (x) +C for all x ∈ I. If we
replace P with P̃ throughout the formula for f given in (1.2.7), our solution will now be

f̃(x) := ceP̃ (x0)−P̃ (x) + e−P̃ (x)

∫ x

x0

eP̃ (ξ)g(ξ) dξ

= ceP (x0)+C−(P (x)+C) + e−(P (x)+C)

∫ x

x0

eP (ξ)+Cg(ξ) dξ
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= ceP (x0) + e−P (x)

∫ x

x0

eP (ξ)g(ξ) dξ,

and so the “new” solution f̃ agrees with f from (1.2.6). Thus changing the antiderivative
of p will not change the solution to (1.2.1).

4. Does the point x0 from which we integrated in (1.2.6) matter? If we integrate from a
different point, say, x1, will we get a solution different from that in (1.2.7)? Yes, but we
will just have to change the value of c. By the calculations in (1.2.6), for any κ ∈ C the
function

f1(x) := κeP (x1)−P (x) + e−P (x)

∫ x

x1

eP (ξ)g(ξ) dξ

also solves (1.2.1). After some slight rearranging, we find

f1(x) =

(
κeP (x1) +

∫ x0

x1

eP (ξ)g(ξ) dξ

)
e−P (x) +

∫ x

x0

eP (ξ)g(ξ) dξ.

This is precisely the form of the solution given by (1.2.7) with c = κeP (x1)+
∫ x0
x1
eP (ξ)g(ξ) dξ.

The calculations that led to (1.2.7) and our election P (x0) = 0 now bring us to our
first existence and uniqueness theorem.

1.2.4 Theorem.

Let I ⊆ R be an interval and let p, g ∈ C(I). Let x0 ∈ I and set P (x) :=
∫ x
x0
p(s) ds.

(i) [Duhamel’s formula] For any c ∈ C, the function

f(x) := ce−P (x) + e−P (x)

∫ x

x0

eP (ξ)g(ξ) dξ︸ ︷︷ ︸
T [g;x0, c](x)

(1.2.8)

solves
f ′(x) + p(x)f(x) = g(x), x ∈ I.

(ii) Conversely, if f solves this ODE, there exists c ∈ C such that f(x) = T [g;x0, c](x)
for all x ∈ I. Thus the set of all solutions to this ODE is precisely {T [g;x0, c]}c∈C.

(iii) In particular, the IVP{
f ′(x) + p(x)f(x) = g(x), x ∈ I
f(x0) = c

has the unique solution f = T [g;x0, c].
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1.2.5 Example.

Solve the IVP f ′ +
1

x
f = x, x > 0

f(1) = 1.

Solution. We construct the integrating factor

µ(x) = e
∫

(1/x) dx = eln(|x|) = |x| = x,

since we are assuming x > 0. Then

f ′ +
1

x
f = x ⇐⇒ xf ′(x) + f(x) = x2 ⇐⇒ ∂x[xf(x)] = x2 ⇐⇒ xf(x) =

x3

3
+ C.

Hence
f(x) =

x2

3
+
C

x
.

We use the initial condition to solve for C:

f(1) = 1 ⇐⇒ 1

3
+
C

1
= 1 ⇐⇒ C =

2

3
.

So, the (unique) solution to the IVP is

f(x) =
x2

3
+

2

3x
. N

If, however, we demand that our solution to (1.2.1) satisfy conditions at two or more
distinct points in I, we may not be able to find a solution at all, or we may be able to do
so only for select g ∈ C(I). Such a problem is a boundary value problem (BVP),
and we will study them, with motivation from PDE, later in the context of second-order
ODEs.

1.2.6 Example.

Fix a number α ∈ C, real numbers 0 < 1, and g ∈ C([0, 1]). Discuss solutions to the
BVP {

f ′(x) = g(x), 0 ≤ x ≤ 1

f(0) = αf(1).

Solution. 1. First, direct integration always guarantees that putting

f(x) := f(0) +

∫ x

0

g(ξ) dξ (1.2.9)

solves the ODE. If α = 0, then the boundary condition reduces to f(0) = 0, and so we
are dealing with an initial value problem. Theorem 1.2.4 guarantees the existence and
uniqueness of a solution to this IVP, but of course we know that just from the integral
form of f above.
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2. More interesting is the case α 6= 0. In that case, to meet the boundary condition, we
need

f(0) = αf(1) =⇒
∫ 0

0

g(ξ) dξ = α

∫ 1

0

g(ξ) dξ =⇒ α

∫ 1

0

g(ξ) dξ = 0. (1.2.10)

Since α 6= 0, we may divide to find
∫ 1

0
g(ξ) dξ = 0. So, we have found a necessary

condition for the existence of a solution to this BVP: if we can solve it, then g must
satisfy

∫ 1

0
g(ξ) dξ = 0. Certainly there are some g ∈ C([0, 1]) for which this integral

condition fails, e.g., g(x) = 1. Immediately, then, we see that existence of a solution is
not always guaranteed for a BVP.

3. Next, is this integral condition sufficient for the existence of a solution? That is, if
g ∈ C([0, 1]) and

∫ 1

0
g(ξ) dξ = 0, does there exist a solution to the BVP? First, by the

fundamental theorem of calculus, the solution f must satisfy (1.2.9). That is, the only
possible formula for f is (1.2.9). But this is not really a “closed” formula for f , because
we still have not determined f(0). Let us try to use the boundary condition to do so. We
must have

f(0) = αf(1) = α

(
f(0) +

∫ 1

0

g(ξ) dξ

)
= αf(0). (1.2.11)

Then
(1− α)f(0) = 0. (1.2.12)

If α 6= 1, then f(0) = 0, and so from (1.2.9)

f(x) =

∫ x

0

g(ξ) dξ. (1.2.13)

Now let us check our work. With f defined by (1.2.13), the fundamental theorem of
calculus gives f ′ = g, and we calculate f(0) =

∫ 0

0
g(ξ) dξ = 0, while f(1) =

∫ 1

0
g(ξ) dξ = 0

by our hypothesis on g. So, f(0) = 0 = α · 0 = αf(1), and therefore f satisfies the
boundary conditions.

4. In the case α 6= 0, α 6= 1, and
∫ 1

0
g(ξ) dξ = 0, is the solution to the BVP unique? Yes:

by the fundamental theorem of calculus, the only possible solution is (1.2.9). Assuming
these conditions on α and g, the calculations in (1.2.11) and (1.2.12) force f(0) = 0, and
thus f must have the form (1.2.13).

5. What about the case α = 1 and
∫ 1

0
g(ξ) dξ = 0? In this case, we still know that f

must have the form (1.2.9), and we use
∫ 1

0
g(ξ) dξ to calculate f(0) = f(1) = 1 · f(1).

That is, regardless of what f(0) is, (1.2.9) will always solve the BVP. And so in this case
the BVP has infinitely many solutions of the form

f(x) = c+

∫ x

0

g(ξ) dξ. N

1.2.7 Remark.
We see from Example 1.2.6 that a BVP for a linear first-order ODE may have no
solutions, a unique solution, or infinitely many solutions. This is wildly unlike the
well-behaved theory for linear first-order IVPs!
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1.2.8 Linear algebraic viewpoint: first order IVPs and BVPs

Given an interval I ⊆ R and a continuous function p : I → C, define

(Af)(x) := f ′(x) + p(x)f(x), x ∈ I, f ∈ C1(I).

Then A is a linear operator from C1(I) to C(I). Equivalently, A is a linear operator in (see
Appendix C.2) X := C(I) with domain D(A) = C1(I). We will consider several standard
properties of A as a linear operator and see how both abstract linear algebra theory and
the particular ODE theory that we developed in Theorem 1.2.4 interact.

1. The kernel of A. First let us determine the kernel of A in X . Let P be an antiderivative
of p. If Af = 0, then f solves the ODE

f ′ + p(x)f = 0,

and Theorem 1.2.4 then tells us that f(x) = ce−P (x). Hence ker(A) = span({e−P (·)}),
and so ker(A) is one-dimensional.

2. The range of A. Next, Theorem 1.2.4 tells us that for any g ∈ X , there exists
f ∈ D(A) with Af = g. That is, the range of A as an operator in X with domain D(A)
is all of X .

To see this, just pick any x0 ∈ I and c ∈ C and set f = T [g;x0, c] from (1.2.8). This
solution is not unique: since A has a nontrivial kernel, spanned by e−P (·), we may take any
α ∈ C and calculate

A
(
αe−P (·) + T [g;x0, c]

)
= αAe−P (·) +AT [g;x0, c] = 0 + g = g.

Conversely, any two solutions of Af = g differ by a scalar multiple of e−P (·): if Afj = q
for j = 1, 2, then

A(f1 − f2) = Af1 −Af2 = q − q = 0, (1.2.14)

hence f1 − f2 ∈ ker(A), and so f1 − f2 = βe−P (·) for some β ∈ C.
One way to force the solution of Af = g to be unique is to restrict A to a subspace

D0(A) of D(A) such that D0(A)∩ ker(A) = {0}. For then if there exist f1, f2 ∈ D0(A)
with Afj = 0, the calculation in (1.2.14) shows f1 − f2 ∈ ker(A), hence f1 − f2 = 0. On
the other hand, we already know from Theorem 1.2.4 how to force a solution of Af = g to
be unique: fix points x0 ∈ I and c ∈ C and add the requirement that f(x0) = c. However,
the set {

f ∈ C1(I)
∣∣ f(x0) = c

}
will only be a subspace of D(A) if c = 0. So, A is one-to-one when restricted to Dx0(A) :={
f ∈ C1(I)

∣∣ f(x0) = 0
}
. Moreover, A is still onto C(I) when restricted to Dx0(A): given

g ∈ C(I), we have AT [g;x0, 0] = g.

3. The inverse of A on Dx0(A). Since A is both one-to-one on Dx0(A) and onto C(I),
it is invertible. Specifically, there is a (necessarily unique) linear operator A−1 : C(I) →
Dx0(A) such that AA−1g = g for any g ∈ C(I) and A−1Af = f for any f ∈ Dx0(I).
The work above tells us that A−1g = T [g;x0, 0].

Let us examine the formula for A−1 more closely: we have

(A−1g)(x) = T [g;x0, 0](x) =

∫ x

x0

V(x, ξ)g(ξ) dξ, V(x, ξ) := eP (ξ)−P (x).
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Thus A−1 is an integral operator, and the function V is called the kernel of this operator
(not to be confused with the kernel in the sense of the subspace (C.2.1)!). That the
inverse of A involves an integral is unsurprising; after all, A involves differentiation, and
the integral is the inverse of the derivative. We will meet integral operators again when we
study the Fourier transform.

4. Eigenvalues of A (as an operator in C(I) with domain C1(I)). Can we find scalars
λ ∈ C and functions f ∈ D(A) \ {0} such that Af = λf? This is equivalent to solving
the ODE

f ′ + p(x)f = λf ⇐⇒ f ′ + (p(x)− λ)f = 0. (1.2.15)

Replacing p(x) by p(x) − λ, we can use Theorem 1.2.4 to solve this ODE. Namely, any
solution to (1.2.15) has the form

f(x) = ceλx−P (x),

for some c ∈ C. And so every point of C is an eigenvalue of A. That is, σpt(A) = C.
Moreover, every eigenvalue of A is simple: let E(A, λ) be the eigenspace

E(A, λ) ={f ∈ D(A) | Af = λf} .

If we define νλ(x) := eλx−P (x), then the analysis above shows E(A, λ) = span({νλ}).

5. Eigenvalues of A (as an operator in C(I) with domain equal to a certain subspace
of C1(I) Later, in Example 3.2.7, we will take A to have the smaller domain{

f ∈ C1([0, 1])
∣∣ f(0) = αf(1)

}
.

There, we will show that if α = 0, then σpt(A) = ∅, while if α 6= 0, then σpt(A) can
be enumerated as {λk(α)}k∈Z, where λk1(α) 6= λk2(α) for k1 6= k2. (Doing so requires
some properties of the complex logarithm that we will not assume here.) This shows that
changing the domain of a linear operator can radically change its eigenvalues!

The material in this and subsequent linear algebraic viewpoints on ODEs was inspired
by [19].

1.3. Some nonlinear first-order equations.

An ODE that is not linear (in the sense of Definition 1.1.6) is called, of course, nonlin-
ear. In the most general sense, a nonlinear first-order ODE has the form

f ′(x) = N (x, f(x)), (1.3.1)

where N cannot be written in the form N (x, y) = p(x)y+ g(x), for then the ODE would
be linear, as in (1.2.1). There is a robust existence and uniqueness theory for first- (and
higher-) order nonlinear ODEs and IVPs that we will not pursue, but we will examine
two special situations.

First, it may be the case that we can find some y0 such that N (x, y0) = 0 for all x in
an interval I. Then defining f(x) = y0 for x ∈ I, we see that

f ′(x) = 0 = N (x, y0) = N (x, f(x)).
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This solution f(x) = y0 is an equilibrium solution of the ODE (1.3.1), since it does
not change value as x changes.

1.3.1 Example.

Fix y0 ∈ C. Find all equilibrium solutions to the ODE

y′ = y(1− y)(y − y0).

Solution. This ODE has the form y′ = N (x, y), where N (x, y) = y(1− y)(y− y0), That
is, N (x, ·) is a polynomial in y, so it has finitely many (y-)roots. Specifically, they are
y = 0, 1, y0. And so the equilibrium solutions are y(x) = 0, y(x) = 1, and y(x) = y0. N

Second, it may be the case that we can write N (x, y) as a product of a function
depending solely on x and a function depending solely on y. Such a situation leads to,
unsurprisingly, a “separable” ODE.

1.3.2 Definition.
A first-order ODE

f ′(x) = N (x, f(x))

is separable if F has the form N (x, y) = φ(x)ψ(y), where φ(·) and ψ(·) are func-
tions of a single real variable.

1.3.1. Formal solutions to separable equations.

We provide examples of a formalmethod for solving separable ODEs in the next examples.
In these cases, we prefer the more suggestive Leibniz notation dy/dx in lieu of f ′(x).

1.3.3 Example.

Solve
dy

dx
= 2x(1 + y2).

Solution. We “separate variables” to find

dy

1 + y2
= 2x dx.

Integrating both sides, we have∫
dy

1 + y2
=

∫
2x dx =⇒ arctan(y) = x2 + C. (1.3.2)

Thus
y = tan(x2 + C).

Because tan(·) is not defined at odd integer multiples of π, this solution will only be
defined on a finite interval depending on what C we choose. N

Of course, there is no rigor to the highly useful symbol-pushing of this example: the
symbol dy/dx is not a fraction to be separated into a numerator dy and a denominator
dx. Rather, one should check at the end (by differentiating directly) that putting f(x) =
tan(x2 + C) for some C ∈ R gives f ′(x) = 2x(1 + f(x)2).
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1.3.4 Example.

Solve the exponential growth equation
dy

dx
= y.

Solution. Again we separate variables and integrate both sides:

dy

dx
= y

(1)
=⇒ dy

y
= dx

(2)
=⇒

∫
dy

y
=

∫
dx

(3)
=⇒ ln(|y|) = x+ C

(4)
=⇒ |y| = eCex. (1.3.3)

This suggests that taking y = eCex or y = −eCex will solve the exponential growth
equation. A direct calculation verifies that these are indeed solutions. Since ±eC can
take any nonzero real value, if C is chosen appropriately, we are inclined to think that
y = cex solves the ODE for any c ∈ R, not just c nonzero. Indeed, putting y = 0 gives
y′ = 0, so y = 0 solves the ODE, too. (This is not surprising: the ODE has the form
y′ = N (x, y), where N (x, y) = y, so y = 0 is obviously an equilibrium solution.) N

Thinking too hard about Example 1.3.4 may lead to some weird questions.

1. If y = 0, then we cannot divide in
(1)

=⇒ to separate variables in the first place
(. . .assuming that “multiplying” both sides by dx makes sense. . .). This did not hap-
pen in the division in Example 1.3.3, since there 1+y2 > 0 for all y ∈ R. This leads us to
“miss” the zero solution y = 0 when we reach

(4)
=⇒. Here is the warning: naive separation

of variables may not reveal all the solutions.

2. At
(4)

=⇒, we arrived at |y(x)| = eCex. For a general function y, this does not imply
that y is strictly positive (y(x) = eCex for all x) or strictly negative (y(x) = −ecex for all
x). For example, the function

y?(x) =

{
−e2ex, x < 0

e2ex, x ≥ 0

satisfies |y(x)| = e2ex for all x ∈ R. But y is clearly discontinuous at x = 0, and so y
does not satisfy the exponential growth ODE on R. (Recall, from Definition 1.1.4, that
we require a solution to an nth order differential equation to be Cn on an interval. The
function y? here satisfies the ODE on (−∞, 0) and (0,∞) but not all of R.)

Here is the moral lesson: separation of variables is an extremely useful technique for
producing formulas for solutions to separable equations, but the method is not mathemat-
ically rigorous, and we should not expect too much deep analysis from it.

1.3.5 Method: solve a separable equation f ′(x) = φ(x)f (x )

1. Rewrite the problem in Leibniz notation as

1

ψ(y)

dy

dx
= φ(x).

2. Formally separate variables:
dy

ψ(y)
= φ(x) dx.
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3. Integrate both sides. Put the constant of integration on the “x”-side.∫
dy

ψ(y)
=

∫
φ(x) dx+ C.

4. Try to solve for y explicitly as a function of x. This may not be possible, or there may
be several ways to do this.

5. Check for missing “equilibrium” solutions that do not appear because of division by ψ.
These are solutions of ψ(y) = 0.

1.3.2. Some theory for separable equations.

Now we cast the formal separation of variables calculations above into rigorous language.
Consider a separable ODE

f ′(x) = φ(x)ψ(f(x)), x ∈ I (1.3.4)

where φ : I ⊆ R→ C and ψ : J ⊆ R→ C. Any root of ψ yields an equilibrium solution:
if ψ(y0) = 0 for some y0 ∈ J , set f(x) = y0, x ∈ I, to find

f ′(x) = 0 = φ(x)ψ(y0) = φ(x)ψ(f(x)), x ∈ I.
Conversely, assume ψ(y) 6= 0 for y ∈ J . We will work backwards: assume that we

already have a function f : I → J satisfying (1.3.4). What can we divine about f?
Since f(x) ∈ J for all x ∈ I, ψ(f(x)) 6= 0, and so we may divide by ψ(f(x)) to find

that f must satisfy
f ′(x)

ψ(f(x))
= φ(x). (1.3.5)

The left side looks vaguely like a chain rule-type product, especially if we split up the
factors as

f ′(x)

ψ(f(x))
=

(
1

ψ(f(x))

)
f ′(x), x ∈ I.

Indeed, let Ψ be an antiderivative of 1/ψ on J , so

Ψ′(y) =
1

ψ(y)
.

(Of course, we could be explicit, fix y0 ∈ J , and define Ψ(y) :=
∫ y
y0

(1/ψ(s)) ds.) Then
the chain rule gives

∂x[Ψ(f(x))] =
1

ψ(f(x))
f ′(x).

And so we rewrite (1.3.5) to see that f must satisfy

∂x[Ψ(f(x))] = φ(x). (1.3.6)

Then for some antiderivative12 Φ of φ, we have

Ψ(f(x)) = Φ(x). (1.3.7)
12More precisely, fix x0 ∈ I and integrate both sides of (1.3.6) from x0 to x to find

Ψ(f(x)) = Ψ(f(x0)) +

∫ x

x0

φ(s) ds︸ ︷︷ ︸
Φ(x)

.
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This is an implicit relation for f ; depending on Ψ, we may be able to solve for f(x)
explicitly — though there is no guarantee that we can do so uniquely. Such an implicit
relation appeared in (1.3.2) in Example 1.3.3 and step

(3)
=⇒ of (1.3.3) in Example 1.3.4.

Now, we could reverse the flow of the logic above: assume that f : I → C is a differ-
entiable function satisfying (1.3.7), with Φ and Ψ having the aforementioned properties.
Then, differentiating and rearranging, we would find that f solves (1.3.4). In other words,
solving the implicit relation (1.3.7) is a sufficient condition for a function to solve the
separable ODE (1.3.4). We summarize the results of this section in the next theorem.

1.3.6 Theorem.

Suppose that I, J ⊆ R and φ ∈ C(I), ψ ∈ C(J).

(i) Suppose there exist Ψ ∈ C1(J) with Φ′ = φ and Ψ′ = 1/ψ. If f ∈ C1(I, J) satisfies

Ψ(f(x)) = Φ(x) + C, x ∈ I,

for some C ∈ C, then
f ′(x) = φ(x)ψ(f(x)), x ∈ I. (1.3.8)

(ii) If there exists y0 ∈ J such that ψ(y0) = 0, then the function f(x) := y0, x ∈ I,
satisfies (1.3.8) for all x ∈ I.

1.4. Second-order linear ODEs.

The general form of a second-order linear ODE is

a2(x)f ′′ + a1(x)f + a0(x)︸ ︷︷ ︸
Af

= g(x),

where a2, a1, a0, g ∈ C(I) for some interval I ⊆ R and a2(x) 6= 0. There are several good
reasons to study second-order ODEs in detail.

1. They are ubiquitous in applications; after all, force = mass × acceleration, and accel-
eration = ∂2

x[position].

2. They are just complicated enough to be interesting, but not so complicated that we
will drown in notation. Most of the techniques that we will use on second-order problems
easily generalize to higher-order linear ODEs, except the notation there becomes more
burdensome.

3. We are able to solve certain types of second-order ODEs completely and explicitly.
Conversely, unlike our robust results on first-order ODEs, we will often fail to solve other
kinds of second-order problems in any explicit way, even though we will know a great deal
about the existence, uniqueness, and behavior of their solutions. This heady oscillation
between success and failure, between explicit formula and implicit qualitative reckonings,
is mathematically thrilling.

1.4.1. Constant-coefficient second-order linear homogeneous ODEs.

A constant-coefficient second-order linear ODE has the form

a2f
′′ + a1f

′ + a0f = g(x), (1.4.1)
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where a2, a1, a0 ∈ C and a2 6= 0. If g = 0, the ODE is homogeneous; this is simpler,
so let us begin with studying

a2f
′′ + a1f

′ + a0f = 0. (1.4.2)

We might look back to first-order equations for inspiration: the solution of

a1f
′ + a0f = 0 ⇐⇒ f ′ +

a0

a1

f = 0

is f(x) = ce−(a0/a1)x for any c ∈ C. (Of course, in the first-order case we need to assume
a1 6= 0, which is not necessary in (1.4.2).) There is no apparent algebraic combination A
of the coefficients a2, a1, a0 such that f(x) := e−Ax solves (1.4.2), but historically this led
to the good idea that we guess that (1.4.2) has a solution of the form fλ(x) = eλx, where
λ is a free parameter whose value we will determine. Since

∂kx [eλ·](x) = λkeλx,

we find that fλ solves (1.4.2) if and only if

(a2λ
2 + a1λ+ a0)eλx = 0 ⇐⇒ a2λ

2 + a1λ+ a0︸ ︷︷ ︸
χA(λ)

= 0. (1.4.3)

This polynomial χA(λ) is the characteristic polynomial for the second-order
differential operatorA, and the equation χA(λ) = 0 is the characteristic equation
for A. The fundamental theorem of algebra tells us that χA has two (possibly equal) roots
λ1, λ2 ∈ C, and so J1(x) := eλ1x and J2(x) := eλ2x both solve (1.4.2). Since A is linear,
any linear combination α1J1 + α2J2 of J1 and J2 also solves (1.4.2).

1.4.1 Example.

Find solutions for each of the following ODEs.

(i) f ′′ − f = 0.

(ii) f ′′ + f = 0.

Solution. (i) The characteristic polynomial for Af = f ′′ − f is

χA(λ) = λ2 − 1,

so its roots are ±1, and therefore solutions are J1(x) = ex, J2(x) = e−x.

(ii) The characteristic polynomial for Af = f ′′ + f is

χ(λ) = λ2 + 1,

so its roots are ±i, and therefore one solution set is J1(x) = eix, J2(x) = e−ix. Since
the coefficients in this ODE are all real, one can check that given a function f : I ⊆
R → C, we have Af = 0 if and only if A[Re(f)] = A[Im(f)] = 0. By Euler’s formula
(Theorem A.3.1), we have Re[J1(x)] = cos(x), Im[J1(x)] = sin(x), Re[J2(x)] = cos(x),
and Im[J2(x)] = − sin(x). And so J̃1(x) = cos(x), J̃2(x) = sin(x) are also solutions. N
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1.4.2 Example.

Solve the IVP 
f ′′ + 5f ′ + 4f = 0

f(0) = 0

f ′(0) = −3.

Solution. The characteristic polynomial is

χA(λ) = λ2 + 5λ+ 4 = (λ+ 1)(λ+ 4),

so solutions are J1(x) = e−x and J2(x) = e−4x. Then c1J1 + c2J2 will be a solution for
any c1, c2 ∈ C. Let us see if we can determine c1 and c2 to match the initial conditions.
First, we need

0 = c1J1(0) + c2J2(0) = c1 + c2 =⇒ c1 = −c2.

Next, taking derivatives, we need

−3 = ∂x[c1J1 + c2J2](0) = −c1e
0 − 4c2e

0 = −(c1 + 4c2) = −3c2,

hence c2 = 1 and c1 = −1. That is, y(x) = −e−x + e−4x solves the IVP. N

The computations in this last example can be cast more abstractly to prove the
following existence and uniqueness theorem.

1.4.3 Theorem.

Let Af = a2f
′′ + a1f

′ + a0f with a2 6= 0. Suppose that the characteristic polynomial
χA(λ) = a2λ

2 + a1λ + a0 has the distinct roots λ1, λ2 ∈ C. Then J1(x) := eλ1x and
J2(x) := eλ2x satisfy AJk = 0, k = 1, 2. Moreover, given x0 ∈ R and y0, y1 ∈ C, there
exist unique c1, c2 ∈ C such that putting f(x) = c1J1(x) + c2J2(x) solves the IVP

Af = 0

f(x0) = y0

f ′(x0) = y1.

(1.4.4)

Note what this theorem does and does not say.

• It does allow us to construct a solution to Af = 0 satisfying an13 initial condition.

• It does give uniqueness in the sense that no other linear combination of J1 and J2 will
satisfy both the ODE and the initial conditions.

• But it does not give uniqueness in the sense that if g ∈ C2(R) also satisfies (1.4.4), then
f(x) = g(x) for all x.

Now, here are two natural questions for us to consider.
13Technically, there are two conditions: f(x0) = y0 and f ′(x0) = y1. But the technical parlance is to
refer to these two requirements as one initial condition.
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1. The characteristic polynomials in Examples 1.4.1 and 1.4.2 have two distinct roots.
What happens if the characteristic polynomial has one repeated root? For example, this
is the case for Af = f ′′−2f ′+f , as then the characteristic polynomial is χA(λ) = (λ−1)2.
Here, the procedure of Example 1.4.2 does not produce enough “free parameters” for a
linear combination that would satisfy the initial conditions, since we only have the one
exponential solution J1(x) = ex.

2. How do we guarantee uniqueness of solutions? Since our second-order differential
operators are linear, any scalar multiple of an existing solution is also a solution, so we
expect that we must at least impose initial conditions, as in Theorem 1.4.3.

The first question is relatively straightforward to address, and we do it here. The
second is more involved, and the theory becomes no more complicated if we assume that
the ODE has nonconstant coefficients, so we defer it momentarily.

So, consider the operator
Af = f ′′ + a1f

′ + a0f

such that the characteristic polynomial

χA(λ) = λ2 + a1λ+ a0

has the repeated root λ = λ1. Then χA(λ) = (λ − λ1)2 as well, by the fundamental
theorem of algebra (see Theorem 3.8.6). Putting f1(x) = eλ1x implies Af1 = 0 by all the
work above. We want a second solution, preferably something more interesting than a
scalar multiple of f1.

Let us write the characteristic polynomial in two ways

λ2 + a1λ+ a0 = (λ− λ1)2 = λ2 − 2λ1λ+ λ2
1.

Equating coefficients in the polynomials, we have

a1 = −2λ1 and a0 = λ2
1.

This will help us “factor” A:

Af = f ′′ + a1f
′ + a0f

= f ′′ − 2λ1f
′ + λ2

1f

= (f ′′ − λ1f
′)− (λ1f

′ − λ2f)

= ∂x[f
′ − λ1f ]− λ1[f ′ − λ1f ]

= (∂x − λ1)[f ′ − λ1f ]

= (∂x − λ1)(∂x − λ1)f

= (∂x − λ1)2[f ].

Formally, then, A = χA(∂x)!
If (∂x − λ1)[f ] = 0, then certainly Af = (∂x − λ1)2[f ] = 0. This is what happens

with f1(x) = eλ1x, which satisfies (∂x − λ1)[f1] = 0. (We knew this back in Example
1.2.2.) Now we cross an intellectual Rubicon: if we have a function f2 that satisfies
(∂x − λ1)[f2] = f1, then14

Af2 = (∂x − λ1)2[f2] = (∂x − λ1)(∂x − λ1)[f2] = (∂x − λ1)[f1] = 0.

14In linear-algebraic terms, we are looking for a generalized eigenvector f2 for 0 as an eigenvalue of A,
which is to say that we are trying to construct a Jordan chain (f1, f2) for 0; see Appendix C.6.



1. Ordinary Differential Equations 24

So how can we find such an f2? We want to solve

(∂x − λ1)[f ] = f1(x) = eλ1x.

But this is simply a linear first-order ODE, and from Theorem 1.2.4 we know that any
solution has the form

f(x) = Ceλ1x + eλ1x
∫ x

0

e−λ1ξeλ1ξ dξ = Ceλ1x + xeλ1x = Cf1(x) + xeλ1x.

The first term is redundant, since (∂x− λ1)[f1] = 0. So, we set f2(x) = xeλ1x to conclude
that (∂x − λ1)[f2] = f1 and Af2 = 0.

1.4.4 Example.

Solve the IVP 
f ′′ − 4f ′ + 4f = 0

f(1) = 1

f ′(1) = 1.

Solution. The characteristic equation is

λ2 − 4λ+ 4 = 0 ⇐⇒ (λ− 2)2 = 0 ⇐⇒ λ = 2,

so two solutions are J1(x) = e2x and J2(x) = xe2x. As before, we will find constants c1

and c2 such that f(x) = c1e
2x + c2xe

2x solves the IVP. We differentiate:

f ′(x) = 2c1e
2x + c2e

2x + 2c2xe
2x = (2c1 + c2)e2x + 2c2xe

2x.

So c1 and c2 must solve{
1 = f(1) = c1e

2 + c2e
2 = (c1 + c2)e2

1 = f ′(1) = (2c1 + c2)e2 + 2c2e
2 = (2c1 + 3c2)e2.

That is, {
c1 + c2 = e−2

2c1 + 3c2 = e−2.

The solution to this system is c1 = 2e−2 and c2 = −e−2, so a solution to the IVP is

f(x) = 2e−2e2x − e−2xe2x = 2e2x−2 − xe2x−2. N

Here is the analogue of Theorem 1.4.3 for the case of repeated real roots.

1.4.5 Theorem.

Let Af = a2f
′′ + a1f

′ + a0f with a2 6= 0. Suppose that the characteristic polynomial
χA(λ) = a2λ

2 +a1λ+a0 has the repeated root λ1 ∈ C. Then the functions J1(x) = eλ1x

and J2(x) = xeλ1x solve AJk = 0. Moreover, given x0 ∈ R and y0, y1 ∈ C, there exist
unique c1, c2 ∈ C such that f = c1J1 + c2J2 solves the IVP (1.4.4).
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1.4.6 Method: solve af ′′ + bf ′ + cf = 0 (a 6= 0)

1. Solve the characteristic equation

aλ2 + bλ+ c = 0.

2. If the characteristic equation has distinct complex roots λ1 6= λ2, two solutions are

J1(x) = eλ1x and J2(x) = eλ2x.

3. If the characteristic equation has a repeated real root λ1, two solutions are

J1(x) = eλ1x and J2(x) = xeλ1x.

4. If the coefficients a, b, c are all real, and the characteristic equation has distinct nonreal
roots, then necessarily the roots are α ± βi with α, β ∈ R and β 6= 0. Two solutions are
also

J̃1(x) = eαx cos(βx) and J̃2(x) = eαx sin(βx).

1.4.2. Interlude: uniqueness for the homogeneous IVP.

Fix I ⊆ R, x0 ∈ I, y0, y1 ∈ C, and a1, a0 ∈ C(I). Write Af := f ′′ + a1(x)f ′ + a0(x)f .
Our goal is to study the existence and uniqueness of solutions to

Af = g

f(x0) = y0

f ′(x0) = y1

(1.4.5)

for a given g ∈ C(I). We do this in stages. First, in this section, we prove existence and
uniqueness in the special homogeneous case g(x) = 0, y0 = y1 = 0.

Why would we study this case first? Assume that we have two solutions to the
nonhomogeneous problem (1.4.5). Call the solutions f1 and f2. Let us try to show
f1 − f2 = 0. What do we know about f1 and f2? Only that each satisfies (1.4.5). What
does this tell us about their difference h := f1 − f2? That h satisfies the homogeneous
IVP 

Ah = 0

h(x0) = 0

h′(x0) = 0.

(1.4.6)

Now, clearly a solution to (1.4.6) is h = 0. On the other hand, if we can prove that
the only solution to (1.4.6) is h = 0, then we will have our desired equality f1 = f2. This
is indeed the case, although we will not prove it (a proof can be found in [8]).

1.4.7 Lemma (Uniqueness of solutions for zero initial conditions).

If f ∈ C2(I) solves 
Af = 0

f(x0) = 0

f ′(x0) = 0

for some x0 ∈ I, then f(x) = 0 for all x ∈ I.
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1.4.3. Linear independence and the Wronskian.

We need two auxiliary concepts to enact our proofs of existence and uniqueness for second-
order IVPs. The first is familiar from linear algebra (Definition C.1.3: a set of functions
{f1, . . . , fn} ⊆ Cr(I) is linearly independent on I if whenever

∑n
k=1αkfk(x) = 0

for some α1, . . . , αn ∈ C and all x ∈ I, then α1 = · · · = αn = 0.

1.4.8 Example.

Show that each set of functions is linearly independent on any interval I ⊆ R.

(i) f1(x) = eλ1x, f2(x) = eλ2x, where λ1 6= λ2

(ii) f1(x) = eλx, f2(x) = xeλx for any λ ∈ C

Solution. (i) Suppose α1, α2 ∈ C such that

α1e
λ1x + α2e

λ2x = 0 (1.4.7)

for all x ∈ I. We want to show that α1 = α2 = 0.
There are a number of ways to do this. For example, we could rewrite (1.4.7) as

α1e
(λ1−λ2)x = −α2.

Since λ1 6= λ2, the left side will not be constant, unless α1 = 0. But then α2 = 0, too.
This method relied on having only two functions involved. A method that generalizes

better to show the linear independence of arbitrary many exponentials with different
powers (cf. Example C.1.4) is the following. Differentiate both sides of (1.4.7) to find

α1λ1e
λ1x + α2λ2e

λ2x = 0, x ∈ I.

Fix some x0 ∈ I, so that we have a system of linear equations for α1 and α2:{
α1e

λ1x0 + α2e
λ2x0 = 0

α1λ1e
λ1x0 + α2λ2e

λ2x0 = 0.

Rewrite this system as a matrix-vector equation:[
eλ1x0 eλ2x0

λ1e
λ1x0 λ2e

λ2x0

](
α1

α2

)
=

(
0
0

)
.

The determinant of this matrix is

e(λ1+λ2)x0(λ2 − λ1) 6= 0,

so the matrix is invertible, and therefore α1 = α2 = 0.

(ii) The proof is similar to the system of equations constructed above and left as an
exercise. The matrix methods for these proofs easily generalize to show that more com-
plicated families of functions are linearly independent, e.g., differentiating m times, one
could construct an m×m system to show that

eλx, xeλx, x2eλx, . . . , xm−1eλx, xmeλx

are linearly independent on any I ⊆ R. N

The second concept is a special determinant.
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1.4.9 Definition.

The Wronskian determinant of the functions f1, f2 ∈ C1(I) is

W [f1, f2](x) := det

([
f1(x) f2(x)
f ′1(x) f ′2(x)

])
= f1(x)f ′2(x)− f ′1(x)f2(x). (1.4.8)

For the remainder of this section, fix an interval I ⊆ R, functions a1, a0 ∈ C(I), and
set

Af := f ′′ + a1(x)f ′ + a0(x)f. (1.4.9)

1.4.10 Lemma (Abel).

Suppose that f1, f2 ∈ C2(I) satisfy Afk = 0, k = 1, 2. Then their Wronskian satisfies
the first-order ODE

∂xW [f1, f2] + a1(x)W [f1, f2] = 0. (1.4.10)

In particular, one of the following two (mutually exclusive) alternatives holds.

(i) W [f1, f2](x) 6= 0 for all x ∈ I.

(ii) W [f1, f2](x) = 0 for all x ∈ I.

Proof. The proof that W [f1, f2] satisfies (1.4.10) is a direct computation using the hy-
pothesis (1.4.9) and left to the exercises. The theory of linear first-order ODEs then
implies

W [f1, f2](x) =W [f1, f2](x0)e
−

∫ x
x0
a1(ξ) dξ

for any x0 ∈ I, and so eitherW [f1, f2] is identically zero on I or nonzero15 on all of I. �

1.4.11 Theorem.

The following are equivalent when f1, f2 ∈ C2(I) satisfy Afk = 0, k = 1, 2:

(i) f1 and f2 are linearly independent on I.

(ii) W [f1, f2](x) 6= 0 for all x ∈ I.

(iii) There exists x ∈ I such that W [f1, f2](x) 6= 0.

Proof. (i) =⇒ (ii) Suppose, by way of contradiction, that W [f1, f2](x0) = 0 for some
x0 ∈ I. Then the columns of the matrix[

f1(x0) f2(x0)
f ′1(x0) f ′2(x0)

]
are linearly dependent, so there exists α ∈ R such that(

f1(x0)
f ′1(x0)

)
= α

(
f2(x0)
f ′2(x0)

)
.

15We can say more if a1(x) is real for all x: then eitherW[f1, f2](x) is positive for all x, orW[f1, f2](x) = 0
for all x, or W[f1, f2](x) < 0 for all x.



1. Ordinary Differential Equations 28

Then the function f1 − αf2 solves the IVP
A[f1 − αf2] = 0

(f1 − αf2)(x0) = 0

∂x[f1 − αf2](x0) = 0,

and so, by Lemma 1.4.7, f1 − αf2 = 0. This contradicts the linear independence of f1

and f2.

(ii) =⇒ (iii) This is obvious.

(iii) =⇒ (i) Suppose that α, β ∈ R with

αf1(x) + βf2(x) = 0 (1.4.11)

for all x ∈ I. We want to show that α = β = 0. Since (1.4.11) holds over the interval I,
we can differentiate both sides to obtain

αf ′1(x) + βf ′2(x) = 0 (1.4.12)

for all x ∈ I. These two equalities rearrange to

α

(
f1(x)
f ′1(x)

)
= −β

(
f2(x)
f ′2(x)

)
. (1.4.13)

Suppose that one of α, β is nonzero. Then the columns of the matrix

M(x) :=

[
f1(x) f2(x)
f ′1(x) f ′2(x)

]
are linearly dependent. Taking x = x0, we have W [f1, f2](x0) = det(M(x0)) = 0, a
contradiction. Consequently, we must have α = β = 0. �

The condition in the preceding proposition that f1 and f2 solve Af = 0 is essential;
there are linearly dependent functions f1 and f2 whose Wronskian vanishes on an interval,
but these functions do not (indeed, cannot) satisfy any ODE Af = 0. An example is
constructed in the exercises.

1.4.4. Existence and uniqueness theory for second-order homogeneous ODEs.

Now we return to the existence and uniqueness problem. In Lemma 1.4.7 we studied the
second-order linear homogeneous IVP with zero initial conditions. We will still consider
the homogeneous ODE but now allow for nonzero initial conditions. Once again, we fix
an interval I ⊆ R and functions a1, a0 ∈ C(I) and set Af := f ′′ + a1(x)f ′ + a0(x)f .

We begin with an existence lemma.

1.4.12 Lemma (Existence of fundamental solution set).

There exist linearly independent functions J1, J2 ∈ C(I) such that AJk = 0, k = 1, 2.
In particular, such functions satisfy W [J1, J2](x) 6= 0 for all x ∈ I.

We will not prove this lemma in full, but we already know it to be true when a1 and
a0 are constant. (See [8] again for the general proof.) In that case, we can summon up
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the functions J1 and J2 from either Theorem 1.4.3 or Theorem 1.4.5, depending on the
roots of the characteristic equation for A.

Such a pair of linearly independent functions J1, J2 ∈ C(I) satisfying AJ1 = AJ2 = 0 is
called a fundamental solution set for A on I. Why such a set is “fundamental”
will be clear shortly.

1.4.13 Theorem.

Given x0 ∈ I and y0, y1 ∈ C, there exists a unique function f ∈ C2(I) such that
Af = 0

f(x0) = y0

f ′(x0) = y1.

(1.4.14)

Specifically, this solution has the form f(x) = c1J1(x)+c2J2(x) for (unique) c1, c2 ∈ C,
where {J1, J2} is a fundamental solution set for A.

Proof. First we prove existence. Let us look for a solution of the IVP in the form
f(x) = c1J1(x) + c2J2(x) for some c1, c2 ∈ C. Clearly any such f satisfies Af = 0 by
linearity of A. If we can choose c1 and c2 to meet the initial conditions, then we have
a solution to the IVP. To do so, we will construct a linear system of equations16 that c1

and c2 must satisfy. Fix any x0 ∈ I. Then
y0 = f(x0) = c1J1(x0) + c2J2(x0) and y1 = f ′(x0) = c1J

′
1(x0) + c2J

′
2(x0).

That is, [
J1(x0) J2(x0)
J′1(x0) J′2(x0)

](
c1

c2

)
=

(
y0

y1

)
.

The determinant of this matrix is W [J1, J2](x0) 6= 0. Since J1 and J2 are linearly in-
dependent, the Wronskian is nonzero, the matrix is invertible, and therefore we have
(uniquely17) determined c1 and c2.

Now we prove uniqueness18 of this solution. Suppose g ∈ C2(I) also solves
Ag = 0

g(x0) = y0

g′(x0) = y1.

Now let h = f − g. Then h solves 
Ah = 0

h(x0) = 0

h′(x0) = 0,

16This is the same system that appeared in Examples 1.4.2 and 1.4.4. The abstract argument here is the
same that would appear in the (omitted) proofs of Theorems 1.4.3 and 1.4.5. But now we can prove
uniqueness, not merely of c1 and c2, but of the solution to (1.4.14), regardless of the solution’s form.

17We already know that c1 and c2 are unique because J1 and J2 are linearly independent. That is, if we
have a function f that satisfies both f(x) = c1J1(x) + c2J2(x) and f(x) = d1J1(x) + d2J2(x) for all
x ∈ I, then c1 = d1 and c2 = d2.

18Above we proved that a solution of the form f(x) = c1J1(x) + c2J2(x) exists. Linear independence
assures us that we cannot write f = d1J1 + d2J2 for d1 6= c1 and d2 6= c2. But linear independence
does not preclude the possibility that we could have another solution to this IVP not given by a linear
combination of J1 and J2.
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and so by Lemma 1.4.7, h = 0. That is, f(x) = g(x) = c1J1(x)+c2J2(x) for all x ∈ I. �

Observe that Theorem 1.4.13 generalizes Lemma 1.4.7 by allowing the initial condi-
tions to be nonzero. To be clear about the flow of our logic, however, we needed Lemma
1.4.7 first in order to prove this theorem.

1.4.14 Linear algebraic viewpoint: second-order kernels

1. Lemma 1.4.12 implies that ker(A) is at least two-dimensional when we consider A as
an operator in X = C(I) with domain D(A) = C2(I).

2. The constructive proof of Theorem 1.4.13 proves that ker(A) is exactly two-dimensional
when A has domain C2(I). For, if Af = 0, then we may fix x0 ∈ I and set y0 = f(x0)
and y1 = f ′(x0) to find that f satisfies an IVP of the form (1.4.14). The proof of Theorem
1.4.13 then produces c1, c2 ∈ C such that f = c1J1 + c2J2. And so

ker(A) = span({J1, J2}). (1.4.15)

This is what is “fundamental” about the fundamental solution set {J1, J2}.

3. Lemma 1.4.7, however, says that ker(A) is trivial if we restrict A to a subspace of the
form

Dx0(A) :=
{
f ∈ C2(I)

∣∣ f(x0) = f ′(x0) = 0
}

for some x0 ∈ I. Note, however, that the set{
f ∈ C2(I)

∣∣ f(x0) = y0, f
′(x0) = y1

}
is not a subspace of C2(I) unless both y0 = 0 and y1 = 0, and so it does not make sense
to talk about the kernel of A on this set.

1.4.5. Second-order nonhomogeneous ODEs: variation of parameters.

The culmination of our second-order theory will be the solution of the nonhomoge-
neous problem

f ′′ + a1(x)f ′ + a0(x)f︸ ︷︷ ︸
Af

= g (1.4.16)

for a given g ∈ C(I). As in the preceding section, we will develop our theory with a1

and a0 as arbitrary continuous functions on I, but in practice we will mostly compute
examples with a1 and a0 constant.

Now, unless we impose initial conditions, we should not expect this solution to be
unique. Indeed (supposing, of course, a1, a0 ∈ C(I)), recall that Lemma 1.4.12 and
(1.4.15) give J1, J2 ∈ C2(I) such that if Ah = 0, then h = c1J1 + c2J2 for some c1, c2 ∈ C.
Then if we have a solution f ∈ C2 to (1.4.16), we can set f̃ := f + d1J1 + d2J2 for some
d1, d2 ∈ C and calculate

Af̃ = Af + d1AJ1 + d2AJ2 = g.

Conversely, if f1, f2 ∈ C2(I) with Af1 = Af2 = g, then

A(f1 − f2) = Af1 −Af2 = g − g = 0,
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hence f1−f2 = c1J1 +c2J2 for some c1, c2 ∈ C. In other words, if we know one “particular
solution” to (1.4.16), then we know them all.

We formalize this in a lemma and definition.

1.4.15 Lemma.

Suppose that f ∈ C2(I) with Af = g. Then if f̃ ∈ C2(I) also satisfies Af̃ = g, there
exist c1, c2 ∈ C such that f̃ = f + c1J1 + c2J2.

1.4.16 Definition.

Given a particular solution f0 to Af = g and a fundamental solution set {J1, J2} to
Af = 0, the expression

f = c1J1 + c2J2 + f0, c1, c2 ∈ C,

is the general solution to Af = g.

Remarkably, if we know a fundamental solution set for the homogeneous problem,
there is a general formula for the solution to the nonhomogeneous problem that depends
only on the nonhomogeneity. To motivate the development of this formula, let us review
the more transparent situation for a linear first-order nonhomogeneous ODE.

Let p, g ∈ C(I), let P be an antiderivative of p on I, and fix x0 ∈ I. Recall from
Theorem 1.2.4 that all solutions to f ′ + p(x)f = g(x) have the form

f(x) = ce−P (x) + e−P (x)

∫ x

x0

eP (ξ)g(ξ) dξ,

for an appropriate c ∈ C. Taking g = 0, we recall that any solution to the homoge-
neous problem f ′ + p(x)f = 0 has the form f(x) = cν(x), where ν(x) := e−P (x). If
g 6= 0, we abbreviate η(x) :=

∫ x
x0
eP (ξ)g(ξ) dξ, so that we can write any solution to the

nonhomogeneous problem f ′ + p(x)f = g(x) as

f(x) = cν(x) + ν(x)η(x). (1.4.17)

In words, any solution to the nonhomogeneous problem is the sum of a scalar multiple of a
solution to the homogeneous problem (ν) and a variable-coefficient multiple of a solution
to the homogeneous problem (νη). In particular, taking c = 0 in (1.4.17), we see that
f(x) := ν(x)η(x) is a solution of the nonhomogeneous problem. And this particular
solution is a variable-coefficient multiple of a solution ν to the homogeneous problem!

The natural outgrowth of these remarks on nonhomogeneous first-order problems is
that one guesses that (1.4.16) has a particular solution of the form

f(x) = c1(x)J1(x) + c2(x)J2(x),

where c1 and c2 are nonconstant functions. One then determines formulas for c1 and
c2, with some latitude — after all, we just need one solution of (1.4.16). The precise
derivation of these formulas is not very enlightening (but see [6, 23]), so we just state the
result.
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1.4.17 Theorem (Variation of parameters).

Let {J1, J2} be a fundamental solution set for A on I ⊆ R, and let g ∈ C(I). Let V1,
V2 ∈ C1(I) satisfy19

V ′1(x) = − J2(x)g(x)

W [J1, J2](x)
and V ′2(x) =

J1(x)g(x)

W [J1, J2](x)
. (1.4.18)

Then putting
f(x) = V1(x)J1(x) + V2(x)J2(x) (1.4.19)

solves Af = g.

One can prove this theorem directly by calculating f ′ and f ′′ using the relations
(1.4.18) and the definition of the Wronskian. The formula in (1.4.19) is clearly a variable-
coefficient linear combination of J1 and J2. It is important to be consistent with what
we label as J1 and J2. The exercises will explore what happens if one selects a different
fundamental solution set {J̃1, J̃2}.

1.4.18 Example.

(i) Determine a fundamental solution set for A = ∂2
x + 3∂x + 2 on R.

(ii) Find all functions f ∈ C2(R) such that Af = 4x.

(iii) Solve the initial value problem
f ′′ + 3f ′ + 2f = 4x

f(0) = 4

f ′(0) = 2.

Solution. The characteristic polynomial for A is

λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2),

so a fundamental solution set on R is

J1(x) = e−x, J2(x) = e−2x.

The Wronskian is

W [J1, J2](x) = det

([
e−x e−2x

−e−x −2e−2x

])
= −2e−3x + e−3x = −e−3x.

Now we calculate antiderivatives:∫
J1(x)(4x)

W [J1, J2](x)
dx =

∫
4xe−x

−e−3x
dx = −4

∫
xe2x dx = −(2x− 1)e2x. (1.4.20)

19The existence of these functions V1 and V2 is predicated on the continuity of the right sides of the
equations in (1.4.18), which in turn hinges on the continuity of g. This is because the fundamental
theorem of calculus guarantees that all continuous functions have antiderivatives, whereas a discontin-
uous function may not have an antiderivative. Fourier and Laplace transform methods may be useful
in treating nonhomogeneous ODEs with discontinuous forcing functions. For a familiar problem, see
Example 2.5.20.
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and ∫
J2(x)(4x)

W [J1, J2](x)
dx =

∫
4xe−2x

−e−3x
dx = −4

∫
xex dx = −4(x− 1)ex (1.4.21)

(When taking antiderivatives for variation of parameters, we will commit the cardinal sin
of omitting the constant of integration. Including them would just add a scalar multiple
of J1 or J2, which is irrelevant for a particular solution.)

Thus variation of parameters implies that

f(x) = −J1(x)[−4(x− 1)ex] + J2(x)[−(2x− 1)e2x] = 4e−x(x− 1)ex − e−2x(2x− 1)e2x

= 4(x− 1)− (2x− 1) = 2x− 3 (1.4.22)

solves Af = 4x.
Hence the general solution to the nonhomogeneous problem Af = 4x is

f(x) = α1J1(x) + α2J2(x) + 2x− 3 = α1e
−x + α2e

−2x + 2x− 3. (1.4.23)

To choose α1 and α2 to satisfy the initial conditions, we differentiate to find

f ′(x) = −α1e
−x − 2α2e

−2x + 2,

and thus we require {
4 = f(0) = α1 + α2 − 3

2 = f ′(0) = −α1 − 2α2 + 2.

That is,

α1 + 2α2 = 0 =⇒ α1 = −2α2 =⇒ −2α2 + α2 = 7 =⇒ α2 = −7 =⇒ α1 = 14,

and so our particular solution is

f(x) = 14e−x − 7e−2x + 2x− 3. N

1.4.19 Method: solve f ′′ + a1(x)f ′ + a0(x)f = g(x)

1. Assume that a fundamental solution set {J1, J2} is known. (If a1 and a0 are constant,
use Method 1.4.6.)

2. Calculate the Wronskian determinant

W [J1, J2](x) = det

([
J1(x) J2(x)
J′1(x) J′2(x)

])
.

3. Antidifferentiate

V1 := −
∫

J2(x)g(x)

W [J1, J2](x)
dx and V2 :=

∫
J1(x)g(x)

W [J1, J2](x)
dx.

Do not include constants of integration.

4. A particular solution is

f(x) = V1(x)J1(x) + V2(x)J2(x).
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The general solution is

f(x) = c1J1(x) + c2J2(x) + V1(x)J1(x) + V2(x)J2(x).

The chief advantage to variation of parameters is that it gives us a formula for the
solution to any nonhomogeneous second-order ODE provided that we have a fundamen-
tal solution set for the homogeneous problem. And so we can effectively reduce our
workload to solving homogeneous problems. But, correspondingly, there are two obvious
disadvantages to variation of parameters.

1. We must know a fundamental solution set for the ODE. This is easy if the ODE
is constant-coefficient, for then we can use the methods of Section 1.4.1. If the ODE
has variable coefficients, then there is no standard, uniform method for producing a
fundamental solution set. When the coefficients are real analytic, we can use the power
series method (Section 1.6), but this is often cumbersome and rarely yields a “formula”
in terms of “elementary” functions for the fundamental solution set.

2. We need to calculate antiderivatives in (1.4.18). Of course, we could use a definite inte-
gral, as we do below in (1.4.25). But these antiderivatives may be difficult, or impossible,
to calculate explicitly. We will explore an alternative method for solving Af = g in Sec-
tion 1.5.2, where we assume that g has one of several very particular forms. This “method
of undetermined coefficients” is often more expedient than brute-force antidifferentiation.

Notwithstanding these disadvantages, we should take comfort (and pride) in that
variation of parameters always provides a particular solution. In fact, we can combine
variation of parameters for nonhomogeneous equations and the existence and uniqueness
theory for homogeneous ODEs from Section 1.4.4 to produce the following existence and
uniqueness result for nonhomogeneous second-order ODEs. Observe how much extra
work we had to do to produce this theorem, compared with the straightforward, explicit
analysis for first-order ODEs that gave us Theorem 1.2.4.

1.4.20 Theorem.

Suppose that I ⊆ R, a1, a0, g ∈ C(I), and y0, y1 ∈ C. Let Af = f ′′+a1(x)f ′+a0(x)f .
Then for any x0 ∈ I, the initial value problem

Af = g(x)

f(x0) = y0

f ′(x0) = y1

has a unique solution in C2(I).

Proof. Let {J1, J2} be a fundamental solution set forA from Lemma 1.4.12. By variation
of parameters, we may construct f0 ∈ C2(I) such that Af0 = g. Note, though, that
variation of parameters guarantees nothing about the initial conditions. However, for
any c1, c2 ∈ C, we have

A(c1J1 + c2J2 + f0) = g,

so we may choose c1 and c2 to satisfy the initial conditions.
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Specifically, c1 and c2 must satisfy{
f0(x0) + c1J1(x0) + c2J2(x0) = y0

f ′0(x0) + c1J
′
1(x0) + c2J

′
2(x0) = y1.

This is equivalent to the matrix-vector system[
J1(x0) J2(x0)
J′1(x0) J′2(x0)

](
c1

c2

)
=

(
y0 − f0(x0)
y1 − f ′0(x0)

)
.

Observe that the determinant of the matrix on the left is W [J1, J2](x0) 6= 0, since J1 and
J2 are linearly independent kernel elements of A, so the matrix is invertible, and we can
solve (uniquely) for c1 and c2. So, we have constructed a solution

f := c1J1 + c2J2 + f0. (1.4.24)

Now we prove uniqueness20. Suppose that h is another solution to the IVP. Put
φ := f − h. Then φ satisfies the homogeneous IVP

Aφ = 0

φ(x0) = 0

φ′(x0) = 0,

and so Lemma 1.4.7 implies that φ = 0, hence f = h. �

1.4.21 Linear algebraic viewpoint: variation of parameters

1. So that we may speak explicitly about the functions V1 and V2 in Theorem 1.4.17, fix
x0 ∈ I and set

V1(x) = −
∫ x

x0

J2(ξ)g(ξ)

W [J1, J2](ξ)
dξ and V2(x) =

∫ x

x0

J1(ξ)g(ξ)

W [J1, J2](ξ)
dξ. (1.4.25)

Then for any x0 ∈ I, the function

f(x) =

(
−
∫ x

x0

J2(ξ)g(ξ)

W [J1, J2](ξ)
dξ

)
J1(x) +

(∫ x

x0

J1(ξ)g(ξ)

W [J1, J2](ξ)
dξ

)
J2(x) (1.4.26)

solves Af = g.
We can combine the integrals in (1.4.19) and write

f(x) =

∫ x

x0

(
J1(ξ)J2(x)− J1(x)J2(ξ)

W [J1, J2](ξ)

)
g(ξ) dξ.

Putting

V [J1, J2](x, ξ) :=
J1(ξ)J2(x)− J1(x)J2(ξ)

W [J1, J2](ξ)
, (1.4.27)

20As before, we have guaranteed that f := c1J1 + c2J2 + f0 solves the IVP, and if h := d1J1 + d2J2 + f0
also solves the IVP, then c1 = d1 and c2 = d2. We have yet to rule out the possibility that there could
be a function h not of the form d1J1 + d2J2 + f0 that also solves the IVP.
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we see that the function
R[g](x) :=

∫ x

x0

V(x, ξ)g(ξ) dξ (1.4.28)

solves21 AR[g] = g. Observe that R is a linear operator on C(I). Specifically, R is an
integral operator with kernel V ; recall Item 3 in Linear Algebraic Viewpoint 1.2.8.

2. We know AR[g] = g for any g ∈ C(I). Thus A is onto C(I). And Item 3 in Linear
Algebraic Viewpoint 1.4.14 tells us ker(A) is trivial if we restrict A to the domain

Dx0(A) :=
{
f ∈ C2(I)

∣∣ f(x0) = f ′(x0) = 0
}
.

Thus A is invertible from Dx0(A) to C(I) with inverse A−1 = R.

1.5. Glimpses of higher-order ODEs and beyond.

Virtually all of the theory, formulas, and computations that we have developed for second-
order linear ODEs extends in a natural way to higher-order problems (order n ≥ 3); this is
discussed at length and in various contexts in [2, 3, 6, 8, 16, 23]. There are generalizations
of the Wronskian and variation of parameters for nonhomogeneous problems; they are
conceptually simple, especially if one has mastered the material in Section 1.4, but often
notationally and computationally cumbersome. We will not cover these generalizations
in this course, with one exception.

1.5.1. Constant-coefficient homogeneous equations.

A nth order linear constant-coefficient homogeneous ODE has the form

Af := an∂
n
x [f ] + an−1∂

n−1
x [f ] + · · ·+ a1∂x[f ] + a0f =

n∑
k=0

ak∂
k
x [f ] = 0,

where ak ∈ C and an 6= 0. We can introduce the characteristic polynomial

χA(λ) :=
n∑
k=0

akλ
k,

and, in a computation analogous to that at the start of Section 1.4.1, conclude that if
χA(λ?) = 0 for some λ? ∈ C, then f(x) := eλ?x solves Af = 0. The only difference is
that if n > 2, then χA can have more than two (distinct) roots, and so we may find more
than two exponential solutions to Af = 0.

In fact, we can always construct n linearly independent solutions to Af = 0. In the
following theorem, we say that a root λ? of χA has multiplicity m ≥ 1 if we can write

χA(λ) = (λ− λ?)mχ̃A(λ),

where χ̃A(λ?) 6= 0. (See also Section 3.8.3.)

21We know from our work above with the variation of parameters formula thatR[g] is twice differentiable,
but that may not be obvious from the form of R in (1.4.28). With suitable hypotheses on an abstract
kernel V and the function g, a mapping of the form x 7→

∫ x
x0
V(x, ξ)g(ξ) dξ can be shown to be

differentiable by combining Leibniz’s rule for differentiating under the integral (Theorem 2.4.35) with
the chain rule for functions of two variables.
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1.5.1 Theorem.
Suppose that the characteristic polynomial χA of the constant-coefficient linear differ-
ential operator A =

∑n
k=0ak∂

k
x, an 6= 0, has the r distinct roots λ1, . . . , λr ∈ C, with

1 ≤ r ≤ n. Suppose that each root has multiplicity mk, 1 ≤ k ≤ r, with
∑r

k=1mk = n.

(i) The characteristic polynomial, χA(λ) =
∑n

k=0akλ
k, factors as

χA(λ) = an(λ− λ1)m1(λ− λ2)m2 · · · (λ− λr)mr = an

r∏
k=1

(λ− λk)mk ,

and the differential operator A factors as

A = an(∂x − λ1)m1(∂x − λ2)m2 · · · (∂x − λr)mr = an

r∏
k=1

(∂x − λk)mk .

(ii) Denote by J1, . . . , Jn the n functions below:

eλ1x, xeλ1x, . . . , xm1−1eλ1x︸ ︷︷ ︸
m1 functions

, eλ2x, xeλ2x, . . . , xm2−1eλ2x︸ ︷︷ ︸
m2 functions

, . . . , eλrx, xeλrx, . . . , xmr−1eλrx︸ ︷︷ ︸
mr functions︸ ︷︷ ︸

m1 +m2 + · · ·+mr = n functions

.

Then {J1, . . . , Jn} forms a fundamental solution set for A in the sense that AJk = 0 for
each k; the set {J1, . . . , Jn} is linearly independent; and if Af = 0 for some f ∈ Cn(I),
then there exist (unique) c1, . . . , cn ∈ C such that f =

∑n
k=1ckJk.

(iii) Suppose that ak ∈ R for all k. Then χA(λk) = 0 if and only if χA(λk) = 0. In
this case, one can replace the 2mk functions

eλkx, xeλkx, . . . , xmk−1eλkx, eλkx, xeλkx, . . . , xmk−1eλkx

in the fundamental solution set from part (ii) by the 2mk functions

cos(µkx), x cos(µkx), . . . , xmk−1 cos(µkx), sin(νkx), x sin(νkx), . . . , xmk−1 sin(νkx),

where λk = µk + iνk for µk, νk ∈ R.

1.5.2 Example.

Find a fundamental solution set for Af := ∂4
x[f ]− 16f on R.

Solution. The characteristic polynomial for Af = ∂4
x[f ]− 16f is

χA(λ) = λ4 − 16 = (λ2 + 4)(λ2 − 4),

and so the roots of χA are ±2i and ±2. Hence a fundamental solution set is

J1(x) = e2ix, J2(x) = e−2ix, J3(x) = e2x, J4(x) = e−2x.

Since A has real coefficients, we can also form a fundamental solution set using strictly
real-valued functions:

J̃1(x) = cos(2x), J̃2(x) = sin(2x), J3(x) = e2x, J4(x) = e−2x. N
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1.5.3 Method: solve anf (n) + an−1f
(n−1) + · · ·+ a2f

′′ + a1f
′ + a0f = 0

0. Assume an 6= 0.

1. Form the characteristic polynomial

χ(λ) = anλ
n + an−1λ

n−1 + · · ·+ a2λ
2 + a1λ+ a0 = 0.

2. Find the roots of χ.

3. Compare the roots with part (ii) of Theorem 1.5.1 to construct a fundamental solution
set. In general, if a root λ? has multiplicity m, the “part” of the fundamental solution set
that “arises” from λ? will be the m functions

eλ?x, xeλ?x, . . . , xm−1eλ?x︸ ︷︷ ︸
m functions

.

If the coefficients ak are all real, then λ? = µ?+iν? is a root of χ if and only if λ? = µ?−iν?
is, in which case one can use the 2m functions

cos(µ?x), x cos(µ?x), . . . , xm−1 cos(µ?x), sin(µ?x), x sin(µ?x), . . . , xm−1 sin(µ?x)

in lieu of the 2m exponentials with both λ? and λ? from above.

1.5.2. The method of undetermined coefficients.

Consider the following abstract situation. Let X and Y be vector spaces and A : X → Y
be a linear operator. Suppose that we want to solve the equation Af = g for f ∈ X ,
given some g ∈ Y . And suppose we are in the happy situation of having another vector
space Z and another linear operator B : Y → Z such that Bg = 0. So, if Af = g, then
BAf = 0. That is, any solution to Af = g must be in the kernel of BA. So, perhaps we
could determine ker(BA) and then see which elements of the kernel solve Af = g.

Now, ostensibly, we have not made our work any easier. We have gone from trying to
solve the particular (nonhomogeneous) equation Af = g to the (homogeneous) problem
BAf = 0. The operator BA is probably more complicated than just A. But, maybe the
equation BAf = 0 is easy to solve!

This is the situation with certain kinds of constant-coefficient linear ODEs Af = g.
We know precisely what the kernel (that is, the fundamental solution set) of such a
problem is from Theorem 1.5.1. If the nonhomogeneous function g has a special form,
then it is “easy” to find a constant-coefficient linear differential operator B such that
Bg = 0. Then any solution to Af = g must satisfy BAf = 0, and if A and B are both
constant-coefficient operators, BA will be, too.

Specifically, we will solve ODEs when g has the special form

g(x) = eλx trig(αx)
m∑
k=0

akx
k. (1.5.1)

Here λ, ak ∈ C, α ∈ R, and trig(X) = sin(X) or cos(X). Such “forcing” functions appear
naturally in models of vibration, e.g, mass-spring systems and harmonic oscillators. Al-
though the differential operators A that we study will be second-order, the product BA
will be higher-order, hence our deferment of this topic until only now. Although variation
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of parameters always applies for nonhomogeneities like (1.5.1), calculating the requisite
antiderivatives can be enervating.

The method that we will develop is best illustrated through a number of examples.
Throughout, we will obtain ample further practice in solving constant-coefficient homo-
geneous problems and using Lemma 1.4.15 to express the general solution to a nonhomo-
geneous ODE as the sum of a particular solution to the nonhomogeneous problem and a
linear combination of the underlying fundamental solution set.

1.5.4 Example.

Find the general solution to f ′′ + f = e2x.

Solution. PutAf = f ′′+f . We know that a fundamental solution set forA is {eix, e−ix},
so from Lemma 1.4.15 and Definition 1.4.16, the general solution has the form

f(x) = c1e
ix + c2e

−ix + f0(x),

where f0 is some function such that Af0 = e2x. Another fundamental solution set is
{cos(x), sin(x)}, so, if we know a particular nonhomogeneous solution f0, we could also
write the general solution as

f(x) = d1 cos(x) + d2 sin(x) + f0(x).

Whether one works with complex exponentials or sines and cosines is largely a matter of
taste and personal preference.

Let us focus on finding this particular solution f0 to the nonhomogeneous problem.
The method outlined above tells us that we should find a constant-coefficient differential
operator B such that B[e2·] = 0. A moment’s thought (or Example 1.2.2) suggests
Bg := g′ − 2g, and, indeed, we check

B[e2·](x) = 2e2x − 2e2x = 0.

So, any function satisfying Af = f ′′ + f = e2x must satisfy

0 = BAf = (∂x − 2)(∂2
x + 1)f.

Note that BA is a third-order differential operator.
We do not bother expanding BA but instead read off its characteristic polynomial:

χBA(λ) := (λ− 2)(λ2 + 1).

The roots are λ = 1, ±i. Each has multiplicity 1, so BAf = 0 if and only if

f(x) = c1e
ix + c2e

−ix + c3e
2x (1.5.2)

for some c1, c2, c3 ∈ C. These numbers are the “undetermined coefficients” of f ; let us
determine them.

We need f in this form (1.5.2) to satisfy Af = e2x. That is, we need

e2x = Af = A
[
c1e

ix + c2e
−ix + c3e

2x
]

= c3A[e2x] = 4c3e
2x + c3e

2x = 5c3e
2x.

Here we used the fact that A[e±ix] = 0. Hence c3 must satisfy

(5c3 − 1)e2x = 0,
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and so we may divide by e2x to find c3 = 1/5. Thus

f(x) = c1e
ix + c2e

−ix +
e2x

5
.

solves Af = e2x. Note that we did not determine c1 and c2. This is unsurprising, since
e±ix solve the homogeneous problem Af = 0.

We are also free to take c1 = c2 = 0 and conclude that f0(x) := e2x/5 satisfies
Af0 = e2x. Thus another way to write the general solution to Af = e2x is the “real” form

f(x) = d1 cos(x) + d2 sin(x) +
e2x

5
. N

1.5.5 Example.

Find the general solution to f ′′ + 9f = sin(2x).

Solution. Let Af = f ′′ + 9f . We first observe that a fundamental solution set for A is
{e3ix, e−3ix}. Another is {cos(3x), sin(3x)}.

Now, we need a constant-coefficient linear differential operator B such that B[sin(2·)] =
0. Perhaps recalling that sin(2·) = Im[e2i·], we take Bg := g′′ + 4g. And so we will see
which solutions of BAf = 0 might solve Af = sin(2x). First,

BA = (∂2
x + 4)(∂2

x + 9),

and so the characteristic polynomial is

χBA(λ) = (λ2 + 4)(λ2 + 9).

Its roots are λ = ±2i, ±3i, each of which has multiplicity 1. Then f must have the form

f(x) = c1e
3ix + c2e

−3ix + c3e
2ix + c4e

−2ix.

To determine these coefficients, we will need to compute Af and set that equal to sin(2x).
We can save ourselves some time, however, by recalling that A[e±3i·] = 0. We find that
Af = sin(2x) if and only if

sin(2x) = A
[
c1e

3ix + c2e
−3ix + c3e

2ix + c4e
−2ix

]
= A

[
c3e

2ix + c4e
−2ix

]
= 5c3e

2ix + 5c4e
−2ix.

(1.5.3)
Unsurprisingly, the coefficients c1 and c1, which correspond to kernel elements of A, no
longer appear in our equation, and so we will not be able to specify them.

Now, we are mixing complex exponentials and trig functions, so let us rewrite

sin(2x) =
e2ix − e−2ix

2i
.

If we rewrite (1.5.3) using this complex form of sin(2x) and collect like terms, we find
that c3 and c4 must satisfy(

5c3 −
1

2i

)
e2ix +

(
5c4 +

1

2i

)
e−2ix = 0.
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Since the functions e±2ix are linearly independent, we must have

5c3 −
1

2i
= 5c4 +

1

2i
= 0.

Thus
c3 =

1

10i
= − i

10
and c4 = − 1

10i
=

i

10
.

We have bowed to the convention that one avoids i in the denominator of simplified
expressions.

A general solution to Af = sin(2x), therefore, is

f(x) = c1e
3ix + c2e

−3ix − ie2ix

10
+
ie−2ix

10
. (1.5.4)

A particular solution is

f0(x) := −ie
2ix

10
+
ie−2ix

10
=
i

5

(
e−2ix − e2ix

2

)
= −i

2

5

(
e2ix − e−2ix

2i

)
=

1

5
sin(2x).

And so we can also write the general solution in the form

f(x) = d1 cos(3x) + d2 sin(3x) +
1

5
sin(2x). N

1.5.6 Example.

Find the general solution to f ′′ + f = 5x2e2x.

Solution. Put Af = f ′′ + f . Once again, a fundamental solution set is {eix, e−ix}, and
another is {cos(x), sin(x)}.

The nonhomogeneity here should remind us of, per Theorem 1.5.1, the fundamental
solution set e2x, xe2x, x2e2x for the differential operator B := (∂x − 2)3. Then

BA = (∂x − 2)3(∂2
x + 1),

so its characteristic polynomial is

χBA(λ) = (λ− 2)3(λ2 + 1),

and so the roots are 2, with multiplicity 3, and ±i, each with multiplicity 1. Hence
BAf = 0 if and only if

f(x) = c1e
ix + c2e

−ix + c3e
2x + c4xe

2x + c5x
2e2x.

We compute Af = 5x2e2x if and only if

5x2e2x = A
[
c3e

2x + c4xe
2x + c5x

2e2x
]

= (5c3 + 4c4 + 2c5)e2x + (5c4 + 8c5)xe2x + 5c5x
2e2x.

That is,
(5c3 + 4c4 + 2c5)e2x + (5c3 + 8c4)xe2x + 5(c5 − 1)x2e2x = 0.
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By linear independence, c3, c4, and c5 must satisfy the linear system
5c3 + 4c4 + 2c5 = 0

5c3 + 8c4 = 0

5(c5 − 1) = 0.

This is fairly easy to solve for

c3 =
22

25
, c4 = −8

5
, and c5 = 1.

Thus the general solution is

f(x) = +c1e
ix + c2e

−ix +
22

25
e2x − 8

5
xe2x + x2e2x.

A particular solution is

f0(x) =
22

25
e2x − 8

5
xe2x + x2e2x,

and so another way to write the general solution is

f(x) = d1 cos(x) + d2 sin(x) +
22

25
e2x − 8

5
xe2x + x2e2x. N

1.5.7 Example.

Find the general solution to f ′′ − f = e−x.

Solution. Here Af = f ′′ − f , and a fundamental solution set is {ex, e−x}. Then since
A[e−x] = 0, we look first for solutions of A2f = 0, where

A2 = (∂2
x − 1)2 and χA2(x) = (λ2 − 1)2 = χA(λ)2.

The roots of χA2 are ±1, each with multiplicity 2. So our solution f must have the form

f(x) = c1e
x + c2e

−x + c3xe
x + c4xe

−x.

Then f must satisfy

e−x = Af = A
[
c3xe

x + c4xe
−x] = 2c3e

x − 2c4e
−x.

That is,
2c3e

x − (2c4 + 1)e−x = 0,

and so c3 = 0 and c4 = −1/2. Then the general solution is

f(x) = c1e
x + c2e

−x − xe−x

2
. N

Our success in all of these examples of solving Af = g was predicated on knowing (or
guessing, finding, sussing out. . .) a constant-coefficient linear differential operator B such
that Bg = 0. Such an operator B is sometimes said to be an annihilator for g. For
the classes of nonhomogeneities g that often arise, there are two particular annihilator
operators worth knowing.
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1.5.8 Lemma.
Let k ≥ 1 be an integer, α ∈ R, and λ ∈ C. Then

(i) (∂x − λ)k+1[xkeλx] = 0.

(ii) (∂2
x + α2)k+1[xk sin(αx)] = (∂2

x + α2)k+1[xk cos(αx)] = 0.

1.5.9 Method: solve Af = eλxp(x) trig(αx)

0. Assume that A is a constant-coefficient linear differential operator, λ ∈ C; p(x) =∑m
k=0bkx

k; trig(X) = sin(X), trig(X) = cos(X), or trig(X) = 1; and α ∈ R. This
method solves this ODE, term-by-term, i.e., it constructs functions fk such that Afk =
bke

λxxk trig(αx) for k = 0, . . . ,m. By superposition, a particular solution is f =
∑m

k=0fk.

1. To solve Afk = bke
λxxk trig(αx), consider the following cases.

(1-i) If λ = 0, the operator (∂2
x +α2)k+1 satisfies (∂2

x +α2)k+1[xk trig(αx)]. Use Method
1.5.3 to find the general solution to (∂2

x + α2)k+1Af = 0; denote this solution by fα,k.
It will have undetermined coefficients ck. Compute Afα,k, neglecting terms in fα,k that
correspond to terms in the fundamental solution set for A. Express the right side of
Afα,k − bkxk trig(αx) = 0 as a sum of linearly independent functions. Set the coefficients
of those functions equal to zero to determine a linear system of equations for ck. Solve this
system.

(1-ii) If trig(X) = 1, the operator (∂x − λ)k+1 satisfies (∂x − λ)k+1[xkeλx] = 0. Use
Method 1.5.3 to find the general solution to (∂x − λ)k+1Af = 0; denote this solution by
fλ,k. It will have undetermined coefficients ck. Compute Afλ,k, neglecting terms in fλ,k
that correspond to terms in the fundamental solution set for A. Express the right side of
Afλ,k − bkxkeλx = 0 as a sum of linearly independent functions. Set the coefficients of
those functions equal to zero to determine a linear system of equations for ck. Solve this
system.

(1-iii) If λ 6= 0 and trig(X) = sin(X) or trig(X) = cos(X), rewrite trig(αx) using
complex identities:

trig(αx) =
eiαx + e−iαx

2
if trig(X) = cos(X)

or

trig(αx) =
eiαx − e−iαx

2i
if trig(X) = sin(X).

Multiply and combine the eλx and e±iαx exponentials in two separate terms. Multiply
and combine the ±1/2 or ±1/2i coefficients and bk into one coefficient b̃k. Solve Af =

b̃kx
ke(λ±iα)x using Step (ii).

2. Add all solutions from Step 1 together.

3. To find a general solution, add the general solution of Af = 0 to the particular solution
constructed in Step 2.
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1.5.3. And beyond. . ..

Where might one go after mastering first- and second-order linear ODEs and constant-
coefficient higher-order problems?

• In Section 1.6 we will return to the problem of finding a fundamental solution set for
variable-coefficient problems with the power series method. That is, we will learn how to
solve ODEs like f ′(x) + exf(x) = 0.

• In Section 2.7 we will explore second-order linear ODEs with boundary conditions
instead of initial conditions, e.g., we might demand that a solution f be defined on [0, 1]
with a relation between f(0) and f(1), not separate conditions on just f(0) and f ′(0).

• Variation of parameters provides solutions to nonhomogeneous problems Af = g when
the nonhomomgeneity g is continuous. This ultimately has to do with the fundamental
theorem of calculus, which guarantees that continuous functions have antiderivatives.
A discontinuous function g may prevent us from finding the antiderivatives in (1.4.18)
for variation of parameters. Depending on the nature of the discontinuity, we could use
Fourier series techniques (Section 2.4.8) or the Laplace transform (which we will not meet
in this course).

• Perhaps we are not interested in the “local” behavior of a solution at an initial value
but rather something more “global.” We could demand that a function both solve an
ODE and be improperly integrable (Appendix B) over R. Such an integrability condition
allows us to measure the “energy” of the function in a meaningful way. In that situation,
the Fourier transform (Section 2.5.6) is the right tool.

There are plenty of other interesting problems for differential equations that we will
not consider in this course.

• One could study systems of linear or nonlinear equations. The rates of change of two
or more quantities could be related to each other via some sort of natural coupling, e.g.,
the motion of two or more coupled harmonic oscillators (perhaps with different masses
and/or spring potentials).

• Any single nth order ODE naturally reduces to a system of n first-order ODEs via
a clever substitution, like the one we now describe. (Conversely, not every system of n
ODEs needs to correspond to an nth order ODE.) Consider the familiar ODE

f ′′ + 2f ′ + f = 0

and put v = f ′. Then
v′ = f ′′ = −(2f ′ + f),

and so the functions f and v satisfy{
f ′ = v

v′ = −(2f ′ + f) = −(2v + f).

This is a system of differential equations. In fact, if we put f(x) = (f(x), v(x)) and set

A =

[
0 1
−1 −2

]
,
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then the system is equivalent to
f ′(x) = Af(x).

This looks a great deal like the first-order problem f ′ = af , and, indeed, we can solve
it if we know what the matrix exponential eAx means for A ∈ C2×2. Much of the
theory of Section 1.2.2 carries over to vector-valued first-order systems. In fact, most
proofs of the existence and/or uniqueness of solutions to general ODEs (like that of
Lemma 1.4.7) hinge on first reducing the ODE to a system of first-order ODEs and then
proving something about first-order systems.

• One can ask not merely for formulas for solutions, as we have largely done here, but for
more “qualitative” information about the behavior of solutions. For example, just given
the ODE, can one determine the behavior as x → ∞ of all solutions? Are all solutions
bounded? Given an initial condition at a point x0, what is the largest interval containing
x0 on which a solution exists? If that interval is bounded, what happens to the solution
as x approaches the boundary of the interval? Often the behavior of a related, easier
“linearized” problem can help.

1.5.10 Example.

One of the many incarnations of the one-dimensional Schrödinger equa-
tion with potential σ is

f ′′(x) + (1 + σ(x))f(x) = 0,

where σ ∈ C(R) and limx→±∞ σ(x) = 0. Such an equation has two linearly independent
solutions by Lemma 1.4.12. Use knowledge of a related linear equation to conjecture
how these solutions behave at ±∞.

Solution. When |x| is large, σ(x) is close to 0, so let us discount its effects on Schrödinger’s
equation, which then becomes

f ′′(x) + f(x) = 0. (1.5.5)

This equation has solutions J̃1(x) = eix and J̃2(x) = e−ix, and, moreover, any solution
to (1.5.5) is a linear combination of J̃1 and J̃2. We therefore conjecture that if f solves
Schrödinger’s equation, then, for |x| large, f becomes arbitrarily close to a linear com-
bination of J̃1 and J̃2. That is, given a solution f of Schrödinger’s equation, there are
constants c1, c2 ∈ C such that

lim
x→±∞

∣∣f(x)−
(
c1e

ix + c2e
−ix)∣∣ = 0.

Such a function f is sometimes said to be asymptotically sinusoidal. The solu-
tions J1, J2 to Schrödinger’s equation are its Jost solutions [27, 28]. N

1.6. Series solutions.

Variation of parameters ensures that if we know a fundamental solution set for the oper-
ator Af = f ′′ + a1(x)f ′ + a0(x)f , with a0, a1 continuous, then we can always solve the
nonhomogeneous problem Af = g. We know how to construct a fundamental solution
set when A has constant coefficients. In general, constructing a fundamental solution set
when A has continuous, but not constant, coefficients may be very difficult. However,
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when the coefficients are real analytic, it is possible to construct explicitly a fundamental
solution set via a power series ansatz. We will explore this technique for second-
order variable-coefficient linear ODEs, although it generalizes immediately to higher-order
problems.

Recall that a function f : I ⊆ R → C is real analytic22 on the interval I if at
every point in I, f has a power series expansion valid on a subinterval of I centered at
that point. That is, for each x0 ∈ I, there exist a number δ > 0 and a sequence (ak) in
C such that

f(x) =
∞∑
k=0

ak(x− x0)k if x ∈ I and x0 − δ < x < x0 + δ.

We presume familiarity with the basic calculus of power series from Appendix A.4. We
mention here only two of the most important properties of power series: the differentiation
rule

f(x) =
∞∑
k=0

ak(x− x0)k =⇒ f ′(x) =
∞∑
k=1

kak(x− x0)k

and the identity principle (part (iv) of Theorem A.4.5),

∞∑
k=0

ak(x− x0)k = 0 for all x ∈ (x0 − δ, x0 + δ) =⇒ ak = 0 for all k.

We begin with two simple, illustrative examples for equations that we know how to
solve already.

1.6.1 Example.

Solve the first-order linear ODE
f ′ = f

by making the ansatz f(x) =
∑∞

k=0akx
k and determining a formula for ak. (Of course,

we expect to recover f(x) = Cex.)

Solution. If f(x) =
∑∞

k=0akx
k, then differentiating term-by-term we have

f ′(x) =
∞∑
k=1

kakx
k−1,

and so

0 = f ′−f =
∞∑
k=1

kakx
k−1−

∞∑
k=0

akx
k =

∞∑
k=0

(k+1)ak+1x
k−

∞∑
k=0

akx
k =

∞∑
k=0

[
(k+1)ak+1−ak

]
xk.

If this is to hold for all x, then the identity principle for power series implies

(k + 1)ak+1 − ak = 0, k ≥ 0.

22See Section 3.7.1 for more details on real analyticity. The reader familiar with differentiation and
analyticity for a function of a complex variable should note that all the results of this section, including
Fuchs’s theorem (Theorem 1.6.3) below remain true for ODEs for functions defined on open subsets of
C. In general, just substitute z for x throughout.
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Thus
ak+1 =

ak
k + 1

.

This is a recursion relation for ak+1 in terms of ak, i.e., we have written ak+1 =
Φ(ak, k) for a function Φ: C× N→ R. Specifically, Φ(z, k) = z/(k + 1).

This recursion relation will not tell us a0, but we expect one free parameter in our
solution since this is a first-order ODE. We can, however, do better and write ak+1 = Ψ(k)
for a function Ψ: N→ C. That is, we will not need to determine ak in order to find ak+1.

We calculate a few terms for k small, starting with k = 1, since the formula does not
tell us what a0 should be:

a1 = a0+1 =
a0

0 + 1
=
a0

1

a2 = a1+1 =
a1

1 + 1
=
a0

2

a3 = a2+1 =
a2

2 + 1
=
a2

3
=

a0

3 · 2

a4 = a3+1 =
a3

3 + 1
=
a3

4
=

a0

4 · 3 · 2
.

Continuing in this fashion, we find23

ak+1 =
a0

(k + 1)!
, k ≥ 0. (1.6.1)

Thus

f(x) =
∞∑
k=0

a0

k!
xk = a0

∞∑
k=0

xk

k!
= a0e

x. N

1.6.2 Example.

Solve
f ′′ + f = 0

by making a power series ansatz f(x) =
∑∞

k=0akx
k. (Of course we expect to find

f = c1 cos(x) + c2 sin(x).)

Solution. Differentiating twice, we have

f ′(x) =
∞∑
k=1

kakx
k−1 and f ′′(x) =

∞∑
k=2

k(k − 1)akx
k−2.

Then

0 = f ′′ + f =
∞∑
k=2

k(k − 1)akx
k−2 +

∞∑
k=0

akx
k =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k +

∞∑
k=0

akx
k

23A formal proof of the equality (1.6.1) requires induction.
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=
∞∑
k=0

[
(k + 2)(k + 1)ak+2 + ak

]
xk.

The identity principle implies

(k + 2)(k + 1)ak+2 + ak = 0, k ≥ 0,

and thus
ak+2 = − ak

(k + 2)(k + 1)
, k ≥ 0.

We calculate a few coefficients, starting with k = 0 (i.e., with a2), noting that the formula
does not tell us what a0 or a1 should be. But we expect to have two “free” parameters in
this problem, since it is a second-order ODE.

We find

a2 = a0+2 = − a0

2 · 1

a3 = a1+2 =
a1

(1 + 2)(1 + 1)
= − a1

3 · 2

a4 = a2+2 = − a2

(2 + 2)(2 + 1)
= − a2

4 · 3
=

a0

4 · 3 · 2 · 1

a5 = a3+2 = − a3

(3 + 2)(3 + 1)
= − a3

5 · 4
=

a1

5 · 4 · 3 · 2
.

The pattern that seems to emerge is

a2k = a0
(−1)k

(2k)!
and a2k+1 = a1

(−1)k

(2k + 1)!
,

and so we are inclined to split our original series
∑∞

k=0akx
k into the sum of two series,

the even-indexed
∑∞

k=0a2kx
2k and the odd-indexed

∑∞
k=0a2k+1x

2k+1.
From Lemma A.2.7, we know that the series

∑∞
k=0akx

k converges if and only if the
series

∑∞
k=0

(
a2kx

2k + a2k+1x
2k+1

)
converges, and since the two series

∞∑
k=0

a2kx
2k = a0

∞∑
k=0

(−1)k

(2k)!
x2k = a0 cos(x)

and
∞∑
k=0

a2k+1x
2k+1 = a1

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = a1 sin(x)

both converge, the splitting is legitimate. We conclude

f(x) =
∞∑
k=0

akx
k =

∞∑
k=0

a2kx
2k +

∞∑
k=0

a2k+1x
2k+1 = a0 cos(x) + a1 sin(x). N

Now we state precisely how a power series ansatz is always a valid approach for ODEs
with analytic coefficients.
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1.6.3 Theorem (Fuchs).

Suppose that a0, a1, and g are real analytic on I ⊆ R. Let f ∈ C2(I) solve24

f ′′ + a1(x)f ′ + a0(x)f = g(x), x ∈ I. (1.6.2)

Then f is also real analytic on I, and for any x0 ∈ I the power series for f centered at
x0 converges with radius of convergence at least as large as the minimum of the radii
of convergence for the series of a0, a1, and g centered at x0.

That is, let x0 ∈ I and let r0, r1, rg > 0 be the radii of convergence of the power
series for a0, a1, and g centered at x0, respectively. Then there is a sequence (ak) in
R such that f(x) =

∑∞
k=0ak(x− x0)k for |x− x0| < min{r0, r1, rg}.

In general, the nth derivative of a solution to an ODE will be at least as differentiable
as the coefficients of that ODE. For example, if f solves (1.6.2), then f ′′ = g(x)−a1(x)f ′−
a0(x)f . By our convention (Definition 1.1.4), f must be at least C2. But suppose a1, a0,
and g are all C1. Then since f ′ and f are both C1, then sum g−a1f

′−a0f is also C1. That
is, f ′′ is C1, and so f is C3. We can bootstrap in this way to show that if f ∈ Cn(I)
solves the ODE ∂nx [f ] +

∑n−1
k=0ak(x)∂kx [f ] = g(x) with ak, g ∈ Cm(I), then f ∈ Cn+m(I).

In particular, if m =∞, then such a solution f must be infinitely differentiable. And so
it stands to reason (though, of course, it needs further proof!) that if the coefficients of
the ODE are real analytic, then the solution should be, too.

1.6.4 Example.

Find a fundamental solution set on R for Airy’s equation,

f ′′(x) + xf(x) = 0.

Solution. Since the coefficients in Airy’s equation are real analytic — specifically, they
are polynomials — we know that there exist solutions of the form f(x) =

∑∞
k=0akx

k,
where this series converges on R. We make such a power series ansatz and differentiate
twice, finding

f ′(x) =
∞∑
k=1

kakx
k−1 and f ′′(x) =

∞∑
k=2

k(k − 1)akx
k−2,

and then evaluate

0 = f ′′(x) + xf(x) =
∞∑
k=2

k(k − 1)akx
k−2 + x

∞∑
k=0

akx
k =

∞∑
k=2

k(k − 1)akx
k−2 +

∞∑
k=0

akx
k+1.

We want to combine everything into one series with a factor of xk. As before, we reindex
the first series as

∞∑
k=2

k(k − 1)akx
k−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k.

The second series is
∞∑
k=0

akx
k+1 =

∞∑
k=1

ak−1x
k.

24Such a solution exists by variation of parameters.
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Thus

0 =
∞∑
k=0

(k+ 2)(k+ 1)ak+2x
k +

∞∑
k=1

ak−1x
k = 2a2 +

∞∑
k=1

(k+ 2)(k+ 1)ak+2x
k +

∞∑
k=1

ak−1x
k

= 2a2 +
∞∑
k=1

[
(k + 2)(k + 1)ak+2 + ak−1

]
xk.

Hence a2 = 0 and
(k + 2)(k + 1)ak+2 + ak−1 = 0, k ≥ 1,

thus
ak+2 = − ak−1

(k + 2)(k + 1)
, k ≥ 1.

Note that this formula will not give us information on a2 (which we already know to be
0) nor on a0 or a1. But this is a second-order ODE, so we expect two free parameters,
which will be a0 and a1.

We compute some coefficients for small k:

a3 = a1+2 = − a1−1

(1 + 2)(1 + 1)
= − a0

3 · 2

a4 = a2+2 = − a2−1

(2 + 2)(2 + 1)
= − a1

4 · 3

a5 = a3+2 = − a3−1

(3 + 2)(3 + 1)
= − a2

5 · 4
= 0

a6 = a4+2 = − a4−1

(4 + 2)(4 + 1)
= − a3

6 · 5
=

a0

6 · 5 · 3 · 2

a7 = a5+2 = − a5−1

(5 + 2)(5 + 1)
= − a4

7 · 6
=

a1

7 · 6 · 4 · 3

a8 = a6+2 = − a6−1

(6 + 2)(6 + 1)
= − a5

8 · 7
= 0

a9 = a7+2 = − a7−1

(7 + 2)(7 + 1)
= − a6

9 · 8
= − a0

9 · 8 · 6 · 5 · 3 · 2

a10 = a8+2 = − a8−1

(8 + 2)(8 + 1)
= − a7

10 · 9
= − a1

10 · 9 · 7 · 6 · 4 · 3

a11 = a9+2 = − a9−1

(9 + 2) · (9 + 1)
= − a8

11 · 10
= 0.
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If we look closely, we see a pattern repeating in threes, and we can write any integer
k ∈ Z in the form

k = 3j or k = 3j + 1 or k = 3j + 2

for some j ∈ Z. (This is nothing more than division by 3.) Most obviously, then,

a3j+2 = 0, j ≥ 0.

Next, put α0 = β0 = 1 and, for j ≥ 1,

αj :=
(−1)j[

(3j) · (3j − 1)
]
·
[
(3j − 3) · (3j − 4)

]
· · ·
[
6 · 5

]
·
[
3 · 2

]
and

βj :=
(−1)j[

(3j + 1) · (3k)
]
·
[
(3j − 2) · (3j − 3)

]
· · ·
[
7 · 6

]
·
[
4 · 3

] .
Then

a3j = a0αj and a3j+1 =: a1βj.

Rigorous proofs that a3j, a3j+1, and a3j+2 satisfy the formulas above would all require
induction on j, which we omit.

Now, we know a priori that if f solves Airy’s equation, then we can write f(x) =∑∞
k=0akx

k, where the series
∑∞

k=0akx
k converges on R. And from the above we expect

that

f(x) =
∞∑
k=0

a3kx
3k +

∞∑
k=0

a3k+1x
3k+1 = a0

∞∑
k=0

αkx
3k

︸ ︷︷ ︸
J1(x)

+a1

∞∑
k=0

βkx
3k+1

︸ ︷︷ ︸
J2(x)

. (1.6.3)

Splitting up the series in this manner is valid: the power series
∑∞

k=0akx
k converges

absolutely for all x ∈ R by Fuchs’s theorem and Theorem A.4.3. Then we use Lemma
A.2.7 with N = 3, recalling that a3j+2 = 0 for all j.

So, the general solution to Airy’s equation is f(x) = a0J1(x) + a1J2(x), where a0 and
a1 are the first coefficients in the power series expansion f(x) =

∑∞
k=0akx

k. Can a0 and
a1 be arbitrary? Just because we did not find formulas for a0 and a1 with the identity
principle analysis above does not preclude that, perhaps, they have restricted values. For
that matter, do J1 and J2 form a fundamental solution set for Airy’s equation? The
condition A(a0J1 + a1J2) = Af = 0 does not imply25 AJ1 = AJ2 = 0. The answer to
both questions is yes; in particular, we will be able to take a0 and a1 arbitrary if we just
show that {J1, J2} is an FSS.

First, the general existence theory implies that the IVP
f ′′ + xf = 0

f(0) = 1

f ′(0) = 0

25Let X and Y be vector spaces and T : X → Y be a linear operator. Suppose f 6∈ ker(T ) and set f1 = f
and f2 = −f . Then T (f1 + f2) = 0 but Tf1 6= 0 and Tf2 6= 0.
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has a unique solution f0, and Fuchs’s theorem implies that f0 has a power series expansion
of the form f0 =

∑∞
k=0akx

k on R, where

a0 = f0(0) = 1 and a1 = f ′(0) = 0.

Our analysis above implies that

f0 = a0J1 + a1J2 = J1.

So, J1 is indeed a solution of Airy’s equation. And by similar reasoning with the IVP
f ′′ + xf = 0

f(0) = 0

f ′(0) = 1,

so is J2.
Last, we show that J1 and J2 are linearly independent. Since J1 and J2 solve a second-

order continuous-coefficient ODE, we may do this merely by demonstratingW [J1, J2](0) 6=
0. Since

J1(x) = α0 + α1x
3 +

∞∑
k=2

αkx
3k and J2(x) = β0x+ β1x

4 +
∞∑
k=2

βkx
3k+1,

we may calculate

J1(0) = α0 = 1 J2(0) = 0

J′1(0) = 0 J′2(0) = β0 = 1,

and so
W [J1, J2](0) = det

([
J1(0) J2(0)
J′1(0) J′2(0)

])
= (1 · 1)− (0 · 0) = 1.

So, J1 and J2 are linearly independent solutions to Airy’s equation on R and therefore
form a fundamental solution set. N

1.6.5 Example.

Make a power series ansatz f(x) =
∑∞

k=0akx
k for

f ′′ + e−xf = 0

and find, but do not solve, a recursion relation for the coefficients ak.

Solution. With f(x) =
∑∞

k=0akx
k, we have, as usual,

0 = f ′′ + e−xf =
∞∑
k=0

(k + 2)(k + 1)ak+2x
k + e−x

∞∑
k=0

akx
k.

Of course, we also have

e−x =
∞∑
k=0

(−x)

k!
=
∞∑
k=0

(−1)k
xk

k!
.
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Now we want to multiply the power series product(
∞∑
k=0

(−1)k
xk

k!

)(
∞∑
k=0

akx
k

)
.

To do so, we need the Cauchy product formula: if
∑∞

k=0Ak converges and∑∞
k=0|Bk| converges, then(

∞∑
k=0

Ak

)(
∞∑
k=0

Bk

)
=
∞∑
n=0

n∑
k=0

AkBn−k. (1.6.4)

Thus(
∞∑
k=0

(−1)k
xk

k!

)(
∞∑
k=0

akx
k

)
=
∞∑
n=0

n∑
k=0

(−1)k
xk

k!
an−kx

n−k =
∞∑
n=0

(
n∑
k=0

(−1)k

k!

)
an−kx

n.

Plugging this into the above, we have

0 =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

(
n∑
k=0

(−1)k

k!
an−k

)
xn

=
∞∑
k=0

[
(n+ 2)(n+ 1)an+2 +

n∑
k=0

(−1)k

k!
an−k

]
xn,

and so

(n+ 2)(n+ 1)an+2 +
n∑
k=0

(−1)k

k!
an−k = 0.

Our recursion relation is therefore

an+2 =
1

(n+ 2)(n+ 1)

n∑
k=0

(−1)k+1

k!
an−k.

It is unlikely that we could ever solve this recursion relation in the explicit form an =
Φ(a0, a1, n) for some function Φ: R2 × N → R, so we would need to use a computer to
calculate however many terms we need for an accurate solution. N

1.6.6 Method: solve f ′′ + φ(x)f ′ + ψ(x)f = 0 with power series

0. Assume φ and ψ are real analytic at 0.

1. Substitute f(x) =
∑∞

k=0akx
k and differentiate

f ′(x) =
∞∑
k=1

kakx
k−1 and f ′′(x) =

∞∑
k=2

k(k − 1)akx
k−2.

2. With f ′ and f ′′ in power series form, multiply φ(x)f ′ and ψ(x)f , possibly expressing φ
and ψ themselves as power series and using the Cauchy product formula (1.6.4).

3. Reindex the left side of the ODE to write it in the form
∑∞

k=0α(ak, k)xk, where α(ak, k)
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depends on both ak and k. (There may be “straggler” terms for small k that do not fit
nicely into a formula α(ak, k) valid only for larger k.)

4. Set α(ak, k) = 0 and try to solve explicitly for ak as a function of k, a1, and a0. An
explicit solution may not be possible, or there may be different formulas for k even and k
odd, etc.
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2. Partial Differential Equations and Fourier Analysis

2.1. Fundamentals of PDE.

Broadly, all material on PDEs was inspired by [4, 15, 24]. As with ordinary differential
equations, we will not give a precise definition of a partial differential equation
(PDE) but merely say that it is an equation involving one or more derivatives of a
function of one or more variables. If u is a function of the independent variables x and
t, we will write u = u(x, t) and denote partial derivatives (say, with respect to x) using
any one of the following symbols:

∂u

∂x
,

∂

∂x
[u], ∂x[u], ux.

The order of a PDE is, of course, the order of the highest derivative in the equation.

2.1.1 Example.

The general form of a first-order linear PDE for a function of two variables
is

a0(x, t)u(x, t) + a1(x, t)ux(x, t) + a2(x, t)ut(x, t) = g(x, t),

and the general form of a second-order linear PDE for a function of two
variables is

a0(x, t)u(x, t) + a1(x, t)ux(x, t) + a2(x, t)ut(x, t) + b11(x, t)uxx(x, t) + b12(x, t)uxt(x, t)

+ b22(x, t)utt = g(x, t).

Unlike ODEs, there is no general theory of solutions for “all” nth order linear PDEs.
Solutions depend greatly on a number of circumstances, including

• The order of the PDE: a higher-order PDE contains more terms;

• The geometry of the domain in R2 (or Rn) on which the PDE is intended to be solved:
there is much more flexibility in choosing a domain in R2 for a PDE than an interval in
R for an ODE;

• The initial conditions and/or boundary conditions that solutions of the PDE must
satisfy: these can greatly vary based on the order of the PDE and the domain in which
one works.

Due to these challenges, we will cover only very specific PDEs in this course.

2.2. Three elementary techniques.

We collect together three kinds of equations/techniques that are particularly fundamental
for our future work.

2.2.1. Equations with a missing variable.

Suppose that u = u(x, t) solves a PDE that only depends on x. Then this PDE is really
an ODE, so we can solve it by prior techniques provided that we allow all arbitrary
constants to depend on t.
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2.2.1 Example.

Find all functions u = u(x, t) such that

uxx + u = 0, (x, t) ∈ R2.

Solution. Fix t ∈ R and let g(x) = u(x, t). Then g′′ + g = 0, so

g(x) = c1 sin(x) + c2 cos(x)

for some c1, c2 ∈ R. But g depends on t, so c1 and c2 really depend on t, too. Thus the
general solution is

u(x, t) = c1(t) sin(x) + c2(t) cos(x),

where c1, c2 : R → R are arbitrary functions. (Since we only care that u is twice differ-
entiable with respect to x, the functions c1 and c2 do not even have to be continuous in
t!) N

2.2.2. The transport equation.

2.2.2 Example.

Suppose that a, b ∈ R are not both zero. Solve the transport equation

aux + but = 0, (x, t) ∈ R2

for u = u(x, t).

Solution. First suppose b 6= 0 and let us work in reverse: suppose that u solves the
transport equation. We will deduce a special form for u. It will then be a direct calculation
that any function of this form solves the transport equation.

Recall that the gradient of u : R2 → R is the vector∇u(x, t) := (ux(x, t), ut(x, t)) ∈
R2. Then

0 = aux + but = (a, b) · (ux, ut) = (a, b) · ∇u (2.2.1)

Recall that (a, b) · ∇u is the directional derivative of u in the direction of the vector26

(a, b), and so we see that u is constant along vectors parallel to (a, b). More precisely, fix
(x, t) ∈ R2 and set

z(s) = u(x+ sa, t+ sb).

Then (2.2.1) and the chain rule tell us

z′(s) = ux(x+sa, t+sb)a+ut(x+sa, t+sb)b =
(
ux(x+sa, t+sb), ut(x+sa, t+sb)

)
·(a, b)

= ∇u(x+ sa, t+ sb) · (a, b) = 0.

That is, z is constant in s, and so for any fixed s0 ∈ R, we have

u(x+ sa, t+ sb) = z(s) = z(s0) = u(x+ s0a, t+ s0b), s, x, t ∈ R.
26Technically (a, b) should be a unit vector.
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In particular, taking s = 0, we find

u(x, t) = u(x+ s0a, t+ s0b).

Let us choose s0 to be some convenient value; if we take s0 = −t/b, then we find

u(x, t) = u

(
x+

(
− t
b

)
a, t+

(
− t
b

)
b

)
= u

(
x− at

b
, 0

)
= u

(
bx− at

b
, 0

)
, x, t ∈ R.

That is, the behavior of u depends only on its first coordinate. And so we may set

f(X) := u

(
X

b
, 0

)
to find that f ∈ C1(R) and u has the form

u(x, t) = f(bx− at). (2.2.2)

Conversely, if f ∈ C1(R) is arbitrary, and we define u by (2.2.2), then a direct calculation
shows that this function u satisfies the transport equation.

Now suppose b = 0 but a 6= 0. Then the transport equation is really an ODE, which
we solve as

aux = 0 =⇒ ux = 0 =⇒ u(x, t) = C(t)

for some differentiable function C = C(t).
In fact, this solution can be put in the same form as above when b 6= 0. If u(x, t) = C(t)

and a 6= 0, b = 0, then
u(x, t) = C̃(bx− at),

where
C̃(τ) = C

(
−τ
a

)
.

And so, whether or not b = 0, the general solution to the transport equation is u(x, t) =
f(bx− at), where f = f(X) is an arbitrary differentiable function. N

The procedure above illustrates how we often solve PDEs: we assume there is a
solution and try to deduce its form. Then we must verify that the deduced form actually
solves the PDE. This is not unlike how we solved constant-coefficient ODEs: we posited
that a solution would have the form f(x) = eλx for some λ ∈ C, and then we determined
the λ that would give a solution. We never actually went back to check that f(x) = eλx

solves the ODE (although that was apparent from the characteristic equation factoring,
see, e.g., the if and only if statement in (1.4.3).)

2.2.3 Example.

Solve {
4ux − 3ut = 0, (x, t) ∈ R2

u(0, t) = t3, t ∈ R.

Solution. The general solution to the transport equation 4ux − 3ut = 0 has the form

u(x, t) = f(−3x− 4t)
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for some function f ∈ C1(R). To satisfy the boundary condition, we need

t3 = u(0, t) = f(−4t).

In fact, this gives a formula for f . Set X = −4t, so t = −X/4. Then

f(X) = f(−4t) = t3 =

(
−X

4

)3

= −X
3

64
.

Hence
u(x, t) = −(−3x− 4t)3

64
=

(3x+ 4t)3

64
. N

2.2.3. Separation of variables.

An ansatz that often yields good results on a PDE is to assume that a solution u = u(x, t)
is a product of two functions of a single variable, i.e.,

u(x, t) = X(x)T (t)

for some functions X = X(x) and T = T (t) of one variable. Then we can often derive
simple ODEs that X and T must satisfy.

2.2.4 Example.

Solve the transport equation
ux − 4ut = 0

with the ansatz u(x, t) = X(x)T (t).

Solution. To be clear about what we shall do, we are assuming we have a solution
u(x, t) = X(x)T (t) to this PDE, and we want to discern more properties of X and T .
We calculate

ux = ∂x[X(x)T (t)] = X ′(x)T (t) and ut = ∂t[X(x)T (t)] = X(x)T ′(t),

hence
0 = ux − 4ut = X ′(x)T (t)− 4X(x)T ′(t).

This rearranges to
X ′(x)

X(x)
=

4T ′(t)

T (t)
, (2.2.3)

assuming X(x) 6= 0 and T ′(t) 6= 0; note that u = 0 is a solution to the PDE, so X = 0 or
T = 0 is allowed. Since (2.2.3) must hold for any x, t ∈ R, we have

X ′(x)

X(x)
=

4T ′(t0)

T (t0)
=: λ (2.2.4)

for all x ∈ R and any fixed t0 ∈ R. That is, X must satisfy the ODE

X ′ = λX =⇒ X(x) = C1e
λx

for some constants C1 ∈ R. (Note that since X is a function of only x, we do not allow
C1 or λ to depend on t.) Similarly, fixing x0 ∈ R and letting t ∈ R be arbitrary, we have

4T ′(t)

T (t)
=
X ′(x0)

X(x0)
= λ.
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The first equality is (2.2.3), and the second is (2.2.4). Thus

T ′(t) =
λ

4
T =⇒ T (t) = C2e

λt/4,

and so
u(x, t) = X(x)T (t) =

(
C1e

λx
)(
C2e

λt/4
)

= Ceλxeλt/4.

We have combined C1 and C2 into one arbitrary constant C, and so we are left with two
“free” parameters in our solution, C and λ. This does not surprise us; an nth order ODE
in one variable has n free parameters, so a first order PDE in two variables should have
two.

Now let us compare this solution to the general solution that we expect from Example
2.2.2. This example tells us that putting u(x, t) = f(−4x−t), where f is any differentiable
function, will solve ux − 4ut = 0. We rewrite

Ceλxeλt/4 = Ceλ(x+t/4) = Ce−(λ/4)(−4x−t).

Thus putting f(ξ) := Ce−(λ/4)ξ allows us to write any product solution as u(x, t) =
f(−4x− t).

However, there are many other solutions not of this form. For example, putting
u(x, t) = sin(−4x − t) also solves ux − 4ut = 0, but we cannot write sin(ξ) = Ce(−λ/4)ξ,
no matter how we choose C and λ. The moral, then, is that separation of variables need
not give all solutions to a PDE. N

2.3. The heat equation.

The heat equation is the PDE
ut = uxx. (2.3.1)

The heat equation models the temperature u(x, t) of an idealized, one-dimensional rod at
a horizontal position x along the rod and a point in time t. The rod is assumed to have the
same “thermal conductivity” properties throughout its length. Often the heat equation is
written as ut = κuxx, where κ > 0 is a material constant derived from properties of the
rod. We will see how to “nondimensionalize” the heat equation in the exercises, so that
(2.3.1) is the only version we need to consider. We begin by finding product solutions to
the heat equation, which will naturally lead to Fourier series. Later, we will study the
heat equation for a rod of “infinite” length via the Fourier transform and also for a rod
whose thermal properties vary across the rod, which will lead to the more general theory
of boundary value problems for ODEs.

2.3.1 Example.

Determine all real-valued solutions to the heat equation of the form u(x, t) = X(x)T (t).

Solution. We will assume that X and T are real-valued here, since if u is measuring
heat, u should be real-valued. We have

ut = X(x)T ′(t), ux = X ′(x)T (t), uxx = X ′′(x)T (t),

so we find
X(x)T ′(t) = X ′′(x)T (t) =⇒ X ′′(x)

X(x)
=
T ′(t)

T (t)
.



2. Partial Differential Equations and Fourier Analysis 60

Then there is λ ∈ R (since X and T are real) such that

X ′′(x)

X(x)
= λ and

T ′(t)

T (t)
= λ,

thus
X ′′ = λX and T ′(t) = λT.

We conclude T (t) = Ceλt, but for X we need to consider cases on λ.

1. λ < 0. Write λ = −α2 for some α > 0, so X satisfies

X ′′ + α2X = 0

and consequently
X(x) = c1 cos(αx) + c2 sin(αx).

In this case we see that a solution to the heat equation is

u(x, t) = X(x)T (t) = Ce−α
2t
[
c1 cos(αx) + c2 sin(αx)

]
= e−α

2t
[
β1 cos(αx) + β2 sin(αx)

]
.

Here we have written β1 = Cc1 and β2 = Cc2.

2. λ = 0. Then X satisfies
X ′′ = 0,

so directly integrating twice we find X(x) = c1x+ c2. Thus

u(x, t) = X(x)T (t) = Ce0·t(c1x+ c2) = Cc1x+ Cc2 = β1x+ β2.

3. λ > 0. Write λ = α2 for some α > 0. Then X satisfies

X ′′ − α2X = 0,

so
X = c1e

αx + c2e
−αx,

and therefore

u(x, t) = X(x)T (t) = Ceα
2t
[
c1e

αx + c2e
−αx] = eα

2t
[
β1e

αx + β2e
−αx]. N

These “product solutions” to the heat equation are far from the only valid solutions;
we will derive a very different solution using the Fourier transform.

2.3.2 Example.

Fix P > 0. Determine all f ∈ C([0, P ]) for which there is a product solution to
ut = uxx, 0 ≤ x ≤ P, t ≥ 0

u(0, t) = u(P, t) = 0, t ≥ 0

u(x, 0) = f(x), 0 ≤ x ≤ P.

(2.3.2)

This initial/boundary value problem (IVP/BVP) roughly models the flow of heat in a
one-dimensional rod of length P in which the temperature of both ends of the rod is
maintained at 0.
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Solution. From Example 2.3.1, a product solution for the heat equation has one of the
following three forms:

u(x, t) =


e−α

2t
[
β1 cos(αx) + β2 sin(αx)

]
β1x+ β2

eα
2t
[
β1e

αx + β2e
−αx] (2.3.3)

for constants α > 0 and β1, β2 ∈ R.
We claim that if we fit the latter two cases to the boundary conditions, we obtain only

the trivial solution u(x, t) = 0. First, suppose u(x, t) = β1x + β2. Then 0 = u(0, t) = β2

and so 0 = u(P, t) = β1P . Since P > 0, we have β1 = 0, and thus u = 0. In particular,
we must have f(x) = u(x, 0) = 0.

Now suppose u(x, t) = eα
2t
[
β1e

αx + β2e
−αx]. Then

0 = u(0, t) = eα
2t(β1 + β2) =⇒ β1 + β2 = 0

and
0 = u(P, t) = eα

2P
[
β1e

αP + β2e
−αP ] =⇒ β1e

αP + β2e
−αP = 0.

Then β1 and β2 satisfy the linear system[
1 1
eαP e−αP

](
β1

β2

)
=

(
0
0

)
.

The determinant of this matrix is e−αP − eαP . Since α and P are nonzero, αP 6= −αP ,
and since the exponential is one-to-one, we have e−αP 6= eαP . So, the determinant is
nonzero, the matrix is invertible, and β1 = β2 = 0. Again, u = 0 and f = 0.

So, we focus on the first case in (2.3.3). We find

0 = u(0, t) = β1e
−α2t =⇒ β1 = 0

and
0 = u(P, t) = β2e

−α2

sin(αP ).

To avoid a trivial solution, we require sin(αP ) = 0, and thus

αP = kπ ⇐⇒ α =
kπ

P

for some k ∈ Z. Thus
u(x, t) = Ce(kπ/P )2t sin

(
kπx

P

)
for some k ∈ Z, C > 0, and α > 0. Hence

f(x) = u(x, 0) = C sin

(
kπx

P

)
. N

Since the “heat operator”
A := ∂t − ∂2

x

is linear, we see that if we take the initial condition of the heat equation to be

f(x) =
n∑
k=0

Ck sin

(
kπx

P

)
(2.3.4)
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for Ck ∈ R, then

u(x, t) :=
n∑
k=0

Cke
−(kπ/P )2t sin

(
kπx

P

)
satisfies Au = 0 and u(x, 0) = f(x). Thus if the initial condition for the heat equation is
given as a “trigonometric polynomial” like (2.3.4), we can read off the solution just from
the coefficients of f . But trigonometric polynomials constitute a very restrictive class of
functions: they are periodic, C∞, and bounded.

More broadly, we know from real and complex variable theory that it is often advan-
tageous to represent a function via its Taylor series. This does not require the function
to be a trigonometric polynomial (in particular, the function need not be periodic), but
it does require the function to be C∞ and real analytic (Section 3.7.1). Otherwise the
resemblance to a (normal) polynomial disappears; a polynomial necessarily has roots in
C and is unbounded at ±∞, whereas there are bounded and zero-free (real) analytic
functions. And so we might expect that some of the nice, but restrictive, properties of
trigonometric polynomials disappear when we consider a trigonometric series, thereby al-
lowing us to represent a wider class of functions as a limit of trigonometric polynomials.
This brings us to the theory and practice of Fourier series.

2.4. Fourier series.

This presentation draws on [4, 9, 17, 20]. In general, any omitted proofs can be found in
[9]. Familiarity with inner product spaces (Appendix C.4) and generalized Fourier series
therein (Appendix C.5) will be helpful throughout but necessary only if one wishes to
understand some of the proofs and technical language in Sections 2.4.5 and 2.4.6.

2.4.1. Trigonometric polynomials.

We begin by formalizing some of the ideas from the end of Section 2.3. First, observe
that for any P > 0 and any integer k ∈ Z, the mapping

f(x) := cos

(
kπx

P

)
+ i sin

(
kπx

P

)
= eikπx/P (2.4.1)

is 2P -periodic, i.e., f(x + 2P ) = f(x) for all x ∈ R. Next, we generalize and name the
object from (2.3.4) that proved so useful in solving the heat equation with a superposition
of product solutions.

2.4.1 Definition.

Let P > 0. A trigonometric polynomial on the interval [−P, P ] is a
function of the form

f(x) =
a0

2
+

n∑
k=1

ak cos

(
kπx

P

)
+ bk sin

(
kπx

P

)
,=

n∑
k=−n

cke
ikπx/P

for some coefficients {ak}nk=0, {bk}nk=1 ⊆ C. The factor of 1/2 on a0 is a useful con-
vention.

We will work on the “symmetric” interval [−P, P ] for quite some time. This is not
the interval [0, P ] that we met in Example 2.3.2, and it is certainly not the only interval
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we could use — indeed, all of the subsequent theory could be developed on an arbitrary
interval [a, b]. However, in that case, many calculations and definitions become much
messier. We will see in the exercises that one can always adapt, in a natural way, the
results on [−P, P ] to any interval [a, b]. Later, in Section 2.4.7, we will return to the
particular case of a “half” interval [0, P ], as well as to the situation in Example 2.3.2,
in which we only had sines in the trigonometric polynomial. That, too, will incorporate
much of our coming hard work on symmetric intervals [−P, P ].

It is always possible, and often advantageous, to express a trigonometric polynomial
in terms of complex exponentials using Euler’s formula (2.4.1).

2.4.2 Lemma.

For any set of coefficients {ak}nk=0, {bk}nk=1 ⊆ C, there are coefficients {ck}nk=−n ⊆ C
such that

a0

2
+

n∑
k=1

ak cos

(
kπx

P

)
+ bk sin

(
kπx

P

)
=

n∑
k=−n

cke
ikπx/P .

The two sets of coefficients are related via the identities

a0 = 2c0, ak = ck + c−k, k ≥ 1, and bk = i(ck − c−k), k ≥ 1. (2.4.2)

and

ck =



ak − ibk
2

, k ≥ 1

a0

2
, k = 0

a−k + ib−k
2

, k ≤ −1.

(2.4.3)

From a different point of view, if we know a priori that a function is a trigonometric
polynomial, then we can always recover its coefficients.

2.4.3 Lemma.

(i) Let {ak}nk=0, {bk}nk=1 ⊆ C and define

f(x) :=
a0

2
+

n∑
k=1

ak cos

(
kπx

P

)
+ bk sin

(
kπx

P

)
.

Then27

ak =
1

P

∫ P

−P
f(x) cos

(
kπx

P

)
dx and bk =

1

P

∫ P

−P
f(x) sin

(
kπx

P

)
dx. (2.4.4)

(ii) Let {ck}nk=−n ⊆ C and

g(x) :=
n∑

k=−n

cke
ikπx/P .

Then

ck =
1

2P

∫ P

−P
g(x)e−ikπx/P dx. (2.4.5)
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We leave the proofs of these two lemmas as (mostly) computational exercises.

2.4.2. Basic definitions.

Now, our goal is to represent a function f : [−P, P ]→ C as a trigonometric series.
That is, we would like to write

f(x) =
a0

2
+
∞∑
k=1

ak cos

(
kπx

P

)
+ bk sin

(
kπx

P

)
(2.4.6)

for two sequences (ak) and (bk) in C. Of course, by “=” in (2.4.6), we mean that the
series on the right side of “=” converges for all x ∈ [−P, P ] as a series in C, according to
Definition A.2.1, and also equals f(x). That is, we want

f(x) = lim
n→∞

a0

2
+

n∑
k=1

ak cos

(
kπx

P

)
+ bk sin

(
kπx

P

)
︸ ︷︷ ︸

Sn[f ](x)

. (2.4.7)

This is a lofty goal, and our ability to achieve it will depend greatly on certain continuity,
differentiability, and periodicity properties of f .

Per Lemma 2.4.2, we know that we can write

Sn[f ](x) =
n∑

k=−n

cke
ikπx/P (2.4.8)

for some ck ∈ C. So, we expect that if we have (2.4.6), then we also have

f(x) = lim
n→∞

Sn[f ](x) = lim
n→∞

n∑
k=−n

cke
ikπx/P . (2.4.9)

Ignoring the underlying function f for the moment and supposing that we have a sequence
(ck) in C indexed by k ∈ Z, the second limit in (2.4.9) suggests that we should define

∞∑
k=−∞

cke
ikπx/P := lim

n→∞

n∑
k=−n

cke
ikπx/P . (2.4.10)

Our goal with Fourier series, then, is to write a function f : [−P, P ] → C as a series
of either the form (2.4.6), which converges according to our usual definition of series
convergence (Definition A.2.1) or as the doubly infinite series (2.4.10), which converges
synchronously (Definition A.2.11).

Now that we know how a trigonometric series will converge, we need candidates for the
coefficients ak and bk in (2.4.6) and ck in (2.4.9). Lemma 2.4.3 provides the right intuition.
In fact, if we have the representation (2.4.6) or (2.4.9), and if we can interchange an
infinite sum and an integral, then (the proof of) Lemma 2.4.3 shows that the following
are the only reasonable candidates for the coefficients.

27If we did not put the factor of 1/2 on the a0 term, then we would have to make a special exception for
the case k = 0 in the integral formula (2.4.4). Namely, if we put f(x) := a0 +

∑n
k=1ak cos(kπx/P ) +

bk sin(kπx/P ), then

a0 =
1

2P

∫ P

−P
f(x) dx

while we retain (2.4.4) for ak and bk with k ≥ 1.
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2.4.4 Definition.

Let f : [−P, P ]→ C be integrable (in the sense of Definition A.5.3).

(i) The real Fourier coefficients of f on [−P, P ] are

ak[f ] :=
1

P

∫ P

−P
f(x) cos

(
kπx

P

)
dx, k ≥ 0

and

bk[f ] :=
1

P

∫ P

−P
f(x) sin

(
kπx

P

)
dx, k ≥ 1.

(ii) The complex Fourier coefficients of f on [−P, P ] are

f̂(k) :=
1

2P

∫ P

−P
f(x)e−ikπx/P dx, k ∈ Z.

The notation f̂(k) is standard; the symbols ak[f ] and bk[f ] are peculiar to these
notes. Since we allow f to be complex-valued in Definition 2.4.4, the adjectives “real” and
“complex” modifying “Fourier coefficients” do notmean that ak[f ] and bk[f ] are necessarily
real-valued or that f̂(k) must be complex and not real. Rather, these adjectives refer
to the functions against which we integrate f : the real-valued sine and cosine, or the
complex exponential. These symbols have one disadvantage: they do not specify what
P is. To add that in would probably overburden our notation, so we will live without it.
Euler’s formula and (the proofs of) Lemmas 2.4.2 and 2.4.3 give the following relations
between the real and complex Fourier coefficients.

2.4.5 Lemma.

Let f : [−P, P ]→ C be integrable. Then

a0[f ] = 2f̂(0), ak[f ] = f̂(k) + f̂(−k), k ≥ 1, and bk[f ] = i
(
f̂(k)− f̂(−k)

)
, k ≥ 1

and

f̂(k) =



ak[f ]− ibk[f ]

2
, k ≥ 1

a0[f ]

2
, k = 0

a−k[f ] + ib−k[f ]

2
, k ≤ −1.

At last, let us give names to the objects in (2.4.6) and (2.4.9).

2.4.6 Definition.

Let P > 0 and f : [−P, P ]→ C be integrable.
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(i) The formal real Fourier series of f on [−P, P ] is

FS[f ](x) :=
a0[f ]

2
+
∞∑
k=1

ak[f ] cos

(
kπx

P

)
+ bk[f ] sin

(
kπx

P

)
.

(ii) The formal complex Fourier series of f on [−P, P ] is

FSC[f ](x) :=
∞∑

k=−∞

f̂(k)eikπx/P .

The notation FS[f ] is again peculiar to these notes (it originates in [4]). We use the
adjective “formal” to indicate that we are not considering (yet!) whether or not these
series converge; as we know from calculus, then, we should simply think of these series
as sequences in C of the partial sums

(
Sn[f ](x)

)
from (2.4.7) or (2.4.8).

2.4.3. Computational examples.

We will defer any questions of the convergence of real and/or complex Fourier series to
Section 2.4.4 and practice calculating formal Fourier series here.

2.4.7 Example.

Let f(x) = x. Find the real and complex Fourier series for f on [−P, P ].

Solution. For the real series, we need to evaluate the integrals

ak[f ] =
1

P

∫ P

−P
x cos

(
kπx

P

)
dx and bk[f ] =

1

P

∫ P

−P
x sin

(
kπx

P

)
dx.

Integrating by parts, we have the antiderivatives∫
x cos

(
kπx

P

)
dx =

P 2

k2π2

[
cos

(
kπx

P

)
+
kπx

P
sin

(
kπx

P

)]
and ∫

x sin

(
kπx

P

)
dx =

P 2

k2π2

[
sin

(
kπx

P

)
− kπx

P
cos

(
kπx

P

)]
.

Note that these antiderivatives are only valid for k 6= 0. This is a recurring theme with
Fourier series: we often need to compute the k = 0 coefficient separately. So, we do that
first:

a0[f ] =
1

P

∫ P

−P
x dx = 0.

For k 6= 0, using the facts that

sin(±kπ) = 0 and cos(±kπ) = cos(kπ) = (−1)k,

we have

ak[f ] =
1

P

∫ P

−P
x cos

(
kπx

P

)
dx
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=
1

P

(
P 2

k2π2

)
[cos(kπ) + kπ sin(kπ)− cos(−kπ)− kπ(−1) sin(−kπ)]

=
P

k2π2
[(−1)k + kπ · 0− (−1)k + kπ · 0]

= 0

and

bk[f ] =
1

P

∫ P

−P
x sin

(
kπx

P

)
dx

=
1

P

(
P 2

k2π2

)
[sin(kπ)− kπ cos(kπ)− sin(−kπ) + kπ(−1) cos(−kπ)]

=
P

k2π2
[0− kπ(−1)k − 0 + kπ(−1)(−1)k]

=
P

k2π2
[(−1)k+1kπ + kπ(−1)k+1]

= (−1)k+1 2P

kπ
.

We conclude

FS[f ](x) =
2P

π

∞∑
k=1

(−1)k+1

k
sin

(
kπx

P

)
.

For the complex series, we need to evaluate

f̂(k) =
1

2P

∫ P

−P
xe−ikπx/P dx.

Integrating by parts with the complex-valued integrand (i.e., u = x, dv = e−ikπx/P dx)
we get, for k 6= 0, ∫

xe−ikπx/P dx =
P (ikπx+ P )e−ikπx/P

k2π2
.

Then, for k 6= 0, we have

f̂(k) =
P

2P (k2π2)

[
(ikπ(P ) + P )e−ikπ − (ikπ(−P ) + P )eikπ

]

=
1

2k2π2
[(ikπP + P )(−1)k − (−ikπP + P )(−1)k]
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=
1

2k2π2
[ikπP (−1)k + P (−1)k + ikπP (−1)k − P (−1)k]

=
1

2k2π2
[2ikπP (−1)k]

=
iP (−1)k

kπ
.

For k = 0, we have

f̂(0) =
1

2P

∫ P

−P
x dx =

1

2P

(
x2

2

) ∣∣∣∣P
x=−P

= 0.

Then

FSC[f ](x) =
iP

π

∞∑
k=−∞
k 6=0

(−1)k

k
eikπx/P . N

2.4.8 Example.

Let

f(x) =

{
0, −π ≤ x < 0

x, 0 ≤ x ≤ π.

Compute the real Fourier coefficients of f on [−π, π].

Solution. We compute

a0[f ] =
1

π

∫ π

−π
f(x) dx

=
1

π

∫ 0

−π
f(x) dx+

1

π

∫ π

0

f(x) dx

= 0 +
1

π

∫ π

0

x dx

=
1

π

(
x2

2

) ∣∣∣∣x=π

x=0

=
1

π

(
π2

2

)

=
π

2
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ak[f ] =
1

π

∫ π

−π
f(x) cos

(
kπx

π

)
dx, k ≥ 1

=
1

π

∫ 0

−π
f(x) cos(kx) dx+

1

π

∫ π

0

f(x) cos(kx) dx

=
1

π

∫ π

0

x cos(kx) dx

=
cos(kx) + kx sin(kx)

k2π

∣∣∣∣π
x=0

=
cos(kπ) + kπ sin(kπ)− cos(0)− 0

k2π

=
(−1)k − 1

k2π

bk[f ] =
1

π

∫ π

−π
f(x) sin

(
kπx

π

)
dx

=
1

π

∫ π

0

x sin(kx) dx

=
sin(kx)− kx cos(kx)

k2π

∣∣∣∣x=π

x=0

=
sin(kπ)− kπ cos(kπ)− [0− 0]

k2π

= −kπ(−1)k

k2π

=
(−1)k+1

k
.

Thus

FS[f ](x) =
π

4
+
∞∑
k=1

(−1)k − 1

k2π
cos(kx) +

(−1)k+1

k
sin(kx). N

2.4.9 Example.

Find the complex Fourier coefficients of f(x) = ex on [−π, π].
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Solution. We know

f̂(k) =
1

2π

∫ π

−π
f(x)e−ikπx/π dx =

1

2π

∫ π

−π
exe−ikx dx =

1

2π

∫ π

−π
e(1−ik)x dx.

We antidifferentiate: ∫
e(1−ik)x dx =

e(1−ik)x

1− ik
.

This is permissible since 1− ik 6= 0 for all k ∈ R. Thus

f̂(k) =
e(1−ik)x

2π(1− ik)

∣∣∣∣x=π

x=−π
=
e(1−ik)π − e−(1−ik)π

2π(1− ik)
=
eπe−ikπ − e−πeikπ

2π(1− ik)
=
eπ(−1)k − e−π(−1)k

2π(1− ik)

= (−1)k
eπ − e−π

2π(1− ik)
.

Then

FSC[f ](x) =
∞∑

k=−∞

(−1)k
eπ − e−π

2π(1− ik)
eikx. N

2.4.10 Remark.

We note that in these examples, we typically had to compute a0[f ] or f̂(0) separately
from ak[f ] or f̂(k) for k 6= 0, since the formulas for the k 6= 0 coefficients often
involved division by k. One should pay attention to this possibility when computing
Fourier coefficients. Moving beyond symbolic manipulations, the zeroth coefficient is a
scalar multiple of

∫ P
−Pf(x) dx. Such an integral is sometimes called the mean of f

on [−P, P ], and since there are no oscillatory trigonometric factors in the integrand,
morally it stands to reason that the behavior of the mean of f can be “special” or “sep-
arate” from the other Fourier coefficients. We discuss means/averages with integrals
further in Section 2.4.5, specifically at (2.4.13). Bottom line: be careful with k = 0.

2.4.4. Pointwise convergence theory.

We begin with a (hopefully) obvious result.

2.4.11 Lemma.

Let P > 0 and f : [−P, P ]→ C be integrable.

(i) For a given x ∈ [−P, P ], the real Fourier series FS[f ](x) converges (as a series
in C) if and only if the complex Fourier series FSC[f ](x) converges. In this case,
FS[f ](x) = FSC[f ](x).

(ii) FS[f ](P ) converges if and only if FS[f ](−P ) converges, in which case FS[f ](P ) =
FS[f ](−P ).

Proof. (i) By Lemmas 2.4.2 and 2.4.3, the nth partial sums Sn[f ](x) of FS[f ](x) and
FSC[f ](x) are equal:

n∑
k=−n

f̂(k)eikπx/P =
a0[f ]

2
+

n∑
k=1

ak[f ] cos

(
kπx

P

)
+ bk[f ] sin

(
kπx

P

)
. (2.4.11)
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Hence, given x ∈ [−P, P ], the limit as n → ∞ of one side exists if and only if the limit
as n → ∞ of the other side exists, and so FS[f ](x) converges if and only if FSC[f ](x)
converges. Moreover, by (2.4.11), if they converge, then they converge to the same
number.

(ii) Observe that the nth term of FS[f ](P ) is

ak cos

(
kπP

P

)
+ bk sin

(
kπP

P

)
= ak cos(kπ) + bk sin(kπ) = (−1)kak,

while the nth term of FS[f ](−P ) is also

ak cos

(
kπ(−P )

P

)
+ bk sin

(
kπ(−P )

P

)
= ak cos(−kπ) + bk sin(−kπ) = (−1)kak. �

From now on we will just refer to the Fourier series by FS[f ], to avoid writing a
subscript. Also, we have a necessary condition for the Fourier series of f to converge
to f on [−P, P ]: if FS[f ](x) = f(x) for all x ∈ [−P, P ], then f is 2P -periodic, i.e.,
f(P ) = f(−P ). Here, then, are our major convergence questions.

1. Under what conditions on f will FS[f ](x) converge as a series in C for some (all?)
x ∈ [−P, P ]?

2. If FS[f ](x) converges as a series in C, what is the relation between f(x) and FS[f ](x)?
In particular, do we have f(x) = FS[f ](x)? In the case that f(x) = FS[f ](x), we say that
the series FS[f ] converges pointwise to f at x.

Remarkably, under straightforward regularity28 conditions on f , we can both ensure
the convergence of FS[f ](x) and find a formula for FS[f ](x). From Definition A.6.1, we
recall that C1

pw([−P, P ]) is the space of all functions on [−P, P ] that are continuous and
differentiable at all but finitely many points in [−P, P ] and that do not “blow up” at the
endpoints of any subinterval of [−P, P ] on which they are continuous and differentiable.
In particular, such a function has left and right limits at all points in [−P, P ] (with right
limit only at −P and left limit only at P , of course), and, likewise, its derivative has left
and right limits at all points where the derivative is defined.

2.4.12 Theorem.

If f ∈ C1
pw([−P, P ]), then

FS[f ](x) =


f(x+) + f(x−)

2
, −P < x < P

f(−P+) + f(P−)

2
, x = ±P.

In particular, if f ∈ C1
pw([−P, P ]) is also continuous at x ∈ (−P, P ), then FS[f ](x) =

f(x). If f ∈ C1
pw([−P, P ]) is both continuous on [−P, P ] and 2P -periodic, then FS[f ](x) =

f(x) for all x ∈ [−P, P ].

This theorem is proved in [9].

28This is a fancy synonym for differentiability.
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2.4.13 Example.

Let

f(x) =

{
0, −1 ≤ x < 0

1, 0 ≤ x ≤ 1.

Find a formula for FS[f ] on [−1, 1] without actually computing any integrals.

Solution. The only discontinuity of f occurs at x = 0, so

f(0+) + f(0−)

2
=

1 + 0

2
=

1

2
.

On (−1, 0) and (0, 1), f is continuous, so for x in those intervals we have

f(x+) + f(x−)

2
= f(x).

Last, at the endpoints, we have

f(−1+) + f(1−)

2
=

0 + 1

2
=

1

2
.

We put this all together to get

FS[f ](x) =



1/2, x = −1

0, −1 < x < 0

1/2, x = 0

1, 0 < x < 1

1/2, x = 1.

N

2.4.5. L2-convergence theory.

Most of the functions that we could possibly meet in this course — indeed, most of
the functions that are “easy” to define formulaically — fall under the purview of The-
orem 2.4.12. However, if one strays but a little from this theorem’s requirements on
well-behaved piecewise derivatives, one can induce pathological Fourier behavior. The
following example29 is taken almost verbatim from Remark 8.5.20 in [17].

2.4.14 Example.

Fix P > 0.

(i) There exists a function f : [−P, P ]→ C such that |f | is integrable on [−P, P ] and
FS[f ](x) diverges (as a series in C) for every x ∈ [−P, P ].

(ii) For any countable set {xk}∞k=1 ⊆ [−P, P ], there exists a function f ∈ C([−P, P ])
such that FS[f ](xk) diverges (as a series in C) for each k.

29In some sense, this is a “nonexample,” since we do not give actual formulas for these functions. Re-
member, though, that possessing a formula for something is not the same as understanding it, and
here the functions’ behavior is much more important than a pointwise formula.
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So, can one obtain any control over the convergence of a Fourier series when f is not
necessarily in C1

pw([−P, P ])? Let us continue to suppose that f is at least integrable on
[−P, P ], so that ak[f ], bk[f ], and f̂(k) are defined.

As usual, we denote the nth partial sum of FS[f ](x) by

Sn[f ](x) :=
n∑

k=−n

f̂(k)eikπx/P =
a0[f ]

2
+

n∑
k=1

ak[f ] cos

(
kπx

P

)
+bk[f ] sin

(
kπx

P

)
. (2.4.12)

We recall that, per mathematical custom (Definition A.2.1), the symbol FS[f ](x) can
refer both to the sequence of partial sums

(
S[f ]n(x)

)
and to the limit of that sequence, if

it converges. In this notation, FS[f ] converges to f pointwise at a particular x if for that
x we have limn→∞ Sn[f ](x) = f(x).

But rather than demand that this limit hold, we might stick with n finite but large
and ask if the function Sn[f ] is, “on average,” a good approximation to f . Recall from
calculus that the average value of an integrable function g : [a, b]→ C is

1

b− a

∫ b

a

g(x) dx. (2.4.13)

And so Sn[f ] approximates, on average, f well on [−P, P ] if, on average, |f − Sn[f ]| is
small, i.e., if

1

2P

∫ P

−P
|f(x)− Sn[f ](x)| dx (2.4.14)

is small. Since we will always work on the same interval [−P, P ], and since 1/2P is a
constant factor, the integral above in (2.4.14) will be small if and only if

‖f(x)− Sn[f ]‖L1 :=

∫ P

−P
|f(x)− Sn[f ](x)| dx

is small.
We surely cannot expect this integral to be zero even for large n, and so we will have

to accept some errors. Hopefully it is reasonable that we can allow ourselves to be less
concerned with small errors and more concerned with large errors. Note that if w ∈ C
with |w| < 1, then |w|r < |w| < 1 for any r > 1. That is, if |w| is “small,” then |w|r will
be “smaller” for r > 1. We can measure how well Sn[f ] approximates, on average, f over
[−P, P ] and give more “weight” to large errors and less to small errors by measuring the
difference Sn[f ]− f with respect to the Lr-norm

‖g‖Lr :=

(∫ P

−P
|g(x)|r dx

)1/r

. (2.4.15)

We take the (1/r)th root so that if we scale g by some constant α ∈ C, then we will
scale the right side of (2.4.15) by |α|, not an r-dependent factor. Incidentally, it is a
property of the Riemann integral, which we take for granted here, that if g : [−P, P ]→ C
is integrable, then so is |g|r for any r > 0, so the integral in (2.4.15) is always defined
(see part (vii) of Theorem A.5.5 for more detail). Also, since P > 0 is always fixed, to
simplify notation we are not including the interval [−P, P ] in the subscript of ‖·‖Lr , i.e.,
we do not write ‖·‖Lr([−P,P ]).
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So, we think that if the quantity

‖f(x)− Sn[f ]‖Lr =

(∫ P

−P
|f(x)− Sn[f ](x)|r dx

)1/r

is small for some r > 1 and all n large, then Sn[f ] is, on average over [−P, P ], a good
approximation to f . Although there is no particularly obvious a priori reason for the
following choice, we can make a great deal of progress if we take r = 2. Specifically, the
following limit holds.

2.4.15 Theorem.

Let f : [−P, P ]→ C be integrable. Then

lim
n→∞

‖f − Sn[f ]‖L2 = 0. (2.4.16)

The proof of this theorem requires rather more advanced tools from analysis; see [9].
The chief advantage of Theorem 2.4.15 over the pointwise convergence in Theorem 2.4.12
is that we have removed the regularity (= continuity/differentiability) requirements on
our functions. An integrable function on [−P, P ] can fail to be continuous or differentiable
at a countably infinite sequence of points {xk}∞k=1, but still its Fourier series is a “very
good approximation on average,” per (2.4.16).

The convergence in the limit (2.4.16) often goes by a special name.

2.4.16 Definition.

If (fk) is a sequence of integrable functions on [−P, P ] and f : [−P, P ] → C is also
integrable with

lim
k→∞
‖f − fk‖L2 = 0,

then we say that (fk) converges to f in the mean.

So, per Theorem 2.4.15, the partial sums of the (real or complex) Fourier series of
an integrable function f always converge to f in the mean. Nonetheless, convergence
in the mean of a Fourier series to its does not imply pointwise convergence. First, it
may be the case that the series FS[f ](x) diverges for some x; this is possible by Example
2.4.14. Second, it may be the case that the series FS[f ](x) converges but not to f(x); this
certainly happens at x = ±P whenever FS[f ](±P ) converge and f is not 2P -periodic,
per Lemma 2.4.11. Here is another example.

2.4.17 Example.

Fix P > 0 and let

f0(x) = 0, −P ≤ x ≤ P and f1(x) =

{
0, −P ≤ x < P

1, x = P.

Clearly f̂0(k) = 0 for all k, and likewise

f̂1(k) =
1

2P

∫ P

−P
f1(x)e−ikπx/P dx =

1

2P

∫ P

−P
0 dx = 0.

Thus f̂0(k) = f̂1(k) for all k, even though f0 6= f1.
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We see, therefore, that the Fourier coefficients of a function do not uniquely determine
that function. So, not only can we lose all control over the behavior of a Fourier series
without the assumption of piecewise continuity and differentiability (and even then the
Fourier series may not converge pointwise back to the original function at all points), we
do not even have a one-to-one and onto pairing of functions and Fourier coefficients.

We conclude on a more optimistic note. Theorem 2.4.15 tells us that, “on average”
and “penalizing large errors more than small ones,” the nth partial sums of the Fourier
series of f are very good approximations to f when n is large. In fact, they are the best
possible approximations of f by trigonometric polynomials, at least if “best” is measured
by “how small the difference is with respect to ‖·‖L2 .”

2.4.18 Theorem.

Let f : [−P, P ] → C be integrable. The nth partial sum Sn[f ] of the Fourier series
for f is the best approximation to f by an nth degree trigonometric polynomial in the
L2-norm on [−P, P ]. That is, if c0, c±1, . . . , c±n ∈ C and g(x) :=

∑n
k=−ncke

ikπx/P , then

‖f − Sn[f ]‖L2 ≤ ‖f − g‖ .

This theorem is ultimately a consequence of Theorem C.5.8.

2.4.19 Linear algebraic viewpoint: Fourier series

We revisit the results of this section from the more abstract perspectives of Appendices
C.3, C.4, and C.5.

1. We first (re)introduce some notation. Fix P > 0 and denote by R([−P, P ]) the space
of all integrable functions from [−P, P ] to C. If f , g ∈ R([−P, P ]), put

〈f, g〉L2 :=

∫ P

−P
f(x)g(x) dx (2.4.17)

It is a property of the Riemann integral that if f , g ∈ R([−P, P ]), then so is the product

fg, so 〈f, g〉L2 is defined. Observe from (2.4.15) with r = 2 that ‖f‖L2 =
√
〈f, f〉L2 .

2. Then in the language of Definitions C.4.1 and C.3.1, the map 〈·, ·〉L2 is a semi-definite
inner product on R([−P, P ]), and ‖·‖L2 is a seminorm on R([−P, P ]). If we restrict to
the subspace C([−P, P ]) ⊆ R([−P, P ]), then ‖·‖L2 is a norm on C([−P, P ]) and 〈·, ·〉L2

is positive definite on C([−P, P ]). See parts (ii) and (iii) of Example C.3.2.

3. Now define

ek(x) :=
eikπx/P√

2P
, ck(x) :=


1√
2P

, k = 0

1√
P

cos

(
kπx

P

)
, k ≥ 1,

and sk(x) :=
1√
P

sin

(
kπx

P

)
.

4. The sets {sk}∞k=1, {ck}∞k=0, {ck}∞k=0∪{sk}∞k=1, and {ek}∞k=−∞ are all orthonormal with
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respect to 〈·, ·〉L2 in the sense that

〈sk, sj〉L2 = 〈ck, cj〉L2 = 〈ek, ej〉L2 =

{
1, k = j

0, k 6= j
(2.4.18)

and
〈sk, cj〉L2 = 0 for all k, j. (2.4.19)

Furthermore, if f : [−P, P ]→ C is integrable, then we can express the nth partial sum of
its Fourier series as

Sn[f ] =
n∑

k=−n

〈f, ek〉L2 ek (2.4.20)

and

Sn[f ] = 〈f, c0〉L2 c0 +
n∑
k=1

(
〈f, ck〉L2 ck + 〈f, sk〉L2 sk

)
. (2.4.21)

The proofs of (2.4.18) and (2.4.19) are direct, but lengthy, computations; it is probably
easier to do the calculations for the complex exponentials first and then adapt to real sines
and cosines. The proofs of (2.4.20) and (2.4.21) amount to just a chase through the
definition of Sn[f ] from, say, (2.4.12). Note, however, that in general ak[f ] 6= 〈f, ck〉L2 ,
bk[f ] 6= 〈f, sk〉L2 , and f̂(k) 6= 〈f, ek〉L2 ; this is due to the scalings on the functions ck, sk,
and ek, which ensures that the L2-norm of each of these functions is 1.

5. Furthermore, using the expressions for Sn[f ] from (2.4.20) and (2.4.21), we can rephrase
Theorem 2.4.15 as saying

lim
n→∞

∥∥∥∥∥f −
n∑

k=−n

〈f, ek〉L2 ek

∥∥∥∥∥
L2

= 0

or

lim
n→∞

∥∥∥∥∥f −
(
〈f, c0〉L2 c0 +

n∑
k=1

(
〈f, ck〉L2 ck + 〈f, sk〉L2 sk

)∥∥∥∥∥
L2

= 0.

Thus, per Definition C.5.4, the sets {ck}∞k=0 ∪ {sk}∞k=1 and {ek}∞k=−∞ are orthonormal
bases R([−P, P ]) with respect to 〈·, ·〉L2 . Consequently, once Theorem 2.4.15 is proved,
we unlock the many powerful properties of orthonormal bases from Appendix C.5. In
particular, we obtain the “least squares approximation” of Theorem C.5.8 also holds, which
proves Theorem 2.4.18, and also the Parseval and Plancherel identities (Theorem C.5.7),
which we state in the following section in Theorem 2.4.20.

6. There is a very important dichotomy in play here. We can think of an element f ∈
R([−P, P ]) in two ways: it is both a vector in some semi-definite inner product space and
a pointwise determined mapping of the interval [−P, P ] to C. Suppose we change the
values of f ∈ R([−P, P ]) at finitely many points x1, . . . , xn ∈ [−P, P ]. Then we obtain a
new function f̃ such that f(x) = f̃(x) for all x ∈ [−P, P ] except x = x1, . . . , xn. Then
f 6= f̃ , but properties of the integral ensure both

‖f − f̃‖L2 = 0
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From the point of view of the L2-seminorm, then, f and f̃ are the same vector. Additionally,∫ P

−P
f(x)e−ikπx/P dx =

∫ P

−P
f̃(x)e−ikπx/P dx

for all k, and so f̂(k) =
̂̃
f(k) for all k. Thus merely knowing the Fourier coefficients of an

integrable function does not uniquely determine that function.
However, if we restrict to C([−P, P ]), on which ‖·‖L2 is a norm, not a seminorm, and

〈·, ·〉L2 is a definite inner product, not semi-definite, then Lemma C.5.6 ensures that the
Fourier coefficients of f ∈ C([−P, P ]) uniquely determine f . That is, if f , g ∈ C([−P, P ])

satisfy f̂(k) = ĝ(k) for all k ∈ Z, then f = g as vectors in C([−P, P ]), and so f(x) = g(x)
for all x ∈ [−P, P ].

None of the abstract results of Appendix C.5, however, provides any apparent proof of
the pointwise convergence of Fourier series. For that, we would have to work much more
closely with properties of the orthonormal bases {ck}∞k=0 ∪ {sk}∞k=1 or {ek}∞k=−∞ as sets of
functions.

2.4.6. Parseval, Plancherel, and L2.

The following identities provide a remarkable, and efficient, way to calculate quantities
involving integrals of functions over [−P, P ] using only their Fourier coefficients.

2.4.20 Theorem.

Let f , g : [−P, P ]→ C be integrable. Then

(i) [Parseval] 〈f, g〉L2 :=

∫ P

−P
f(x)g(x) dx = 2P

∞∑
k=−∞

f̂(k)ĝ(k).

(ii) [Plancherel] ‖f‖2
L2 :=

∫ P

−P
|f(x)|2 dx = 2P

∞∑
k=−∞

|f̂(k)|2.

This theorem follows at once from Theorem C.5.7, if one believes the material dis-
cussed in Linear Algebraic Viewpoint 2.4.19. The Parseval and Plancherel identities can
be used to derive interesting identities for certain series whose values are not easy to
calculate using basic methods of calculus.

2.4.21 Example.

Let f(x) = x and recall from Example 2.4.7 that on any interval [−P, P ],

f̂(k) =


0, k = 0

iP (−1)k

kπ
, k 6= 0

Use this to show
∞∑
k=1

1

k2
=
π2

6
.
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Solution. We recall from the “p-test” for series from calculus that
∑∞

k=1k
−2 converges.

However, as with many convergence tests from calculus, this does not tell us what the
sum of the series is.

If we take P = π, then

|f̂(k)|2 =
1

k2
, k 6= 0.

Then
∞∑
k=1

1

k2
=

1

2

(
−1∑

k=−∞

1

k2
+ 0 +

∞∑
k=1

1

k2

)
=

1

2

∞∑
k=−∞

|f̂(k)|2.

Next, Plancherel’s theorem tells us

∞∑
k=−∞

|f̂(k)|2 =
1

2π
‖f‖2

L2([−π,π]) =
1

2π

∫ π

−π
|f(x)|2 dx =

1

2π

∫ π

−π
x2 dx =

x3

6π

∣∣∣∣x=π

x=−π

=
π3 − (−π3)

6π
=

2π3

6π
=
π2

3
.

We conclude
∞∑
k=1

1

k2
=

1

2

∞∑
k=−∞

|f̂(k)|2 =
π2

6
. N

We conclude with two lemmas that govern the size of a function’s Fourier coefficients.
The proofs of both are rather easy consequences of the definition of the Fourier coefficient
and Plancherel’s identity, respectively, and so we defer them to the exercises.

2.4.22 Lemma (Sobolev inequality).

If f ∈ C([−P, P ]), then

max
k∈Z
|f̂(k)| = max

k≥0

∣∣∣∣ak[f ]± ibk[f ]

2

∣∣∣∣ ≤ max
−P≤x≤P

|f(x)|.

2.4.23 Lemma (Riemann-Lebesgue30).

Let f : [−P, P ]→ C be integrable. Then the Fourier coefficients of f decay in the sense
that

lim
k→∞

ak[f ] = lim
k→∞

bk[f ] = lim
k→±∞

f̂(k) = 0.

2.4.7. Fourier sine and cosine series.

We have cast our problems of L2-based Fourier series so far on symmetric intervals of the
form [−P, P ]. This is a convenient, but artificial, restriction; one work on any arbitrary
interval [a, b]. The coefficients are simply messier.

A related, but different, issue is the following. Model problems for the heat equation,
such as Example 2.3.2 and other problems in the exercises, suggest that it is convenient to
30This result is strong enough to be called a theorem, but in the literature the convention is to refer to
it as the “Riemann-Lebesgue lemma.”
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represent an initial temperature distribution on the interval [0, P ] as linear combinations
of sines or cosines, but not both. So, we want to adapt our existing Fourier theory in two
ways: we want to work on the “half” interval [0, P ] and not [−P, P ], and we want to use
only sines, or only cosines, in our representation of a function.

Before proceeding, we need a definition and an easy lemma, whose proof we leave as
an exercise in u-substitution.

2.4.24 Definition.

Recall that a function f : [−P, P ]→ C is even if f(−x) = f(x) for all x and odd if
f(−x) = −f(x) for all x.

2.4.25 Lemma.

(i) If g : [−P, P ]→ C is integrable and even, then∫ P

−P
g(x) dx = 2

∫ P

0

g(x) dx.

(ii) If h : [−P, P ]→ C is integrable and odd, then∫ P

−P
h(x) dx = 0.

Suppose that for a function f : [0, P ]→ C we have the representation

f(x) =
∞∑
k=0

Ak cos

(
kπx

P

)
, 0 ≤ x ≤ P.

Since each term in the series is even, the series also converges for each x ∈ [−P, 0), and
we have

∞∑
k=0

Ak cos

(
−kπx

P

)
=
∞∑
k=0

Ak cos

(
kπx

P

)
.

This suggests that we extend f to an even function defined on [−P, 0).

2.4.26 Lemma.

Let f : [0, P ]→ C be a function. The even extension of f is

fe(x) :=

{
f(−x), −P ≤ x < 0

f(x), 0 ≤ x ≤ P.

The function fe is even on [−P, P ]. If f is integrable on [0, P ], then fe is integrable on
[−P, P ].

If the Fourier series of fe on [−P, P ] is a “good approximation” to fe on [−P, P ], then
since f(x) = fe(x) for x ∈ [0, P ], it stands to reason that FS[fe] will also be a good
approximation to f on [0, P ]. So, let us calculate the Fourier coefficients of fe on [−P, P ].



2. Partial Differential Equations and Fourier Analysis 80

First,

bk[fe] =
1

P

∫ P

−P
fe(x) sin

(
kπx

P

)
dx = 0,

since the integrand is odd. Next,

ak[fe] =
1

P

∫ P

−P
fe(x) cos

(
kπx

P

)
dx =

2

P

∫ P

0

fe(x) cos

(
kπx

P

)
dx

=
2

P

∫ P

0

f(x) cos

(
kπx

P

)
dx,=: Ak[f ]

since the first integrand is even. So, we have

FS[fe](x) =
a0[fe]

2
+
∞∑
k=1

ak[fe] cos

(
kπx

P

)
+bk[fe] sin

(
kπx

P

)
=

A0[f ]

2
+
∞∑
k=1

Ak[f ] cos

(
kπx

P

)
=: FCS[f ](x).

We call this series the Fourier cosine series of f on [0, P ]. In particular, this is a
series of “only cosines” that, plausibly, can represent f on [0, P ].

Now, how shall we represent f : [0, P ]→ C with a series of sines? If

f(x) =
∞∑
k=1

Bk sin

(
kπx

P

)
, 0 ≤ x ≤ P,

then since each term in the series is odd, the series also converges for each x ∈ [−P, 0),
and we have

∞∑
k=1

Bk sin

(
−kπx

P

)
= −

∞∑
k=1

Bk sin

(
kπx

P

)
.

This suggests that we extend f to an odd function defined on [−P, 0).

2.4.27 Lemma.

Let f : [0, P ]→ C be a function. The odd extension of f is

fo(x) :=


−f(−x), −P ≤ x < 0

0, x = 0

f(x), 0 < x ≤ P.

The function fo is odd on [−P, P ]. If f : [0, P ]→ C is integrable, then so is fo.

If the Fourier series of fo on [−P, P ] is a “good approximation” to fo on [−P, P ], then
since f(x) = fe(x) for x ∈ (0, P ], it stands to reason that FS[fo] will also be a good
approximation to f on (0, P ]. First,

ak[fo] =
1

P

∫ P

−P
fo(x) cos

(
kπx

P

)
dx = 0,
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since the integrand is odd. Next,

bk[fo] =
1

P

∫ P

−P
fo(x) sin

(
kπx

P

)
dx =

2

P

∫ P

0

fo(x) sin

(
kπx

P

)
dx,

since the first integrand is even. Now, we have fo(x) = f(x) for 0 < x ≤ P , but perhaps
f(0) 6= 0 = fo(0). This is immaterial from the point of view of the integral, and we have

2

P

∫ P

0

fo(x) sin

(
kπx

P

)
dx =

2

P

∫ P

0

f(x) sin

(
kπx

P

)
dx =: Bk[f ].

Then

FS[fo](x) =
∞∑
k=1

bk[fo] sin

(
kπx

P

)
=: FSS[f ](x).

We call this series the Fourier sine series of f on [0, P ]. This is a series of “only
sines” that, putatively, can represent f on [0, P ].

We summarize our work.

2.4.28 Definition.

Let f : [0, P ]→ C be integrable and define

Ak[f ] :=
2

P

∫ P

0

f(x) cos

(
kπx

P

)
dx and Bk[f ] :=

2

P

∫ P

0

f(x) sin

(
kπx

P

)
dx.

The formal Fourier cosine series of f on [0, P ] is

FCS[f ](x) :=
A0[f ]

2
+
∞∑
k=1

Ak[f ] cos

(
kπx

P

)
,

and the formal Fourier sine series of f on [0, P ] is

FSS[f ](x) :=
∞∑
k=1

Bk[f ] sin

(
kπx

P

)
.

2.4.29 Example.

Find the Fourier sine and cosine series for f(x) = x on [0, 1]. Compare this to what
we know about the Fourier series for f .

Solution. We compute A0[f ] = 2
∫ 1

0
x dx = 1 and, for k ≥ 1,

Ak[f ] = 2

∫ 1

0

x cos(kπx) dx

=
2

k2π2

[
cos(kπx) + kπx sin(kπx)

]∣∣x=1

x=0

=
2[(−1)k − 1]

k2π2
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=

0, k even

− 4

k2π2
, k odd,

so

FCS[f ](x) =
1

2
− 4

π2

∞∑
k=0

1

(2k + 1)2
cos((2k + 1)πx)

Next, for k ≥ 1, we have

Bk[f ] = 2

∫ 1

0

x sin(kπx) dx =
2

k2π2

[
sin(kπx)− kπx cos(kπx)

]∣∣x=1

x=0
=

2(−1)k+1

kπ
,

so

FSS[f ](x) =
2

π

∞∑
k=1

(−1)k+1

k
sin(kπx).

In Example 2.4.7, we computed that the Fourier series of f(x) = x on [−1, 1] is

FS[f ](x) =
2

π

∞∑
k=1

(−1)k+1

k
sin(kπx),

and so in this case
FSS[f ] = FS[f ].

This is not surprising: f(x) = x is odd, so its Fourier series on [−1, 1] should contain
only terms with a factor of sin(kπx). N

2.4.30 Example.

Compute the Fourier cosine series of f(x) = sin(x) on [0, π].

Solution. We have
Ak[f ] =

2

π

∫ π

0

sin(x) cos(kx) dx.

We antidifferentiate∫
sin(x) cos(kx) dx =

1

2

(
cos((k − 1)x)

k − 1
− cos((k + 1)x)

k + 1

)
.

This means that we will have to treat k = 1 separately from k = 0 and k ≥ 2. For k 6= 1,
we have

Ak[f ] =
1

π

[
cos((k − 1)x)

k − 1
− cos((k + 1)x)

k + 1

] ∣∣∣∣x=π

x=0

=
1

π

[
(−1)k−1

k − 1
− (−1)k+1

k + 1
− 1

k − 1
+

1

k + 1

]
.

We could try to put this all over a common denominator, but it is simpler (or, no harder),
to consider the separate cases of k even and k odd. If k is odd, then k ± 1 are even, so

(−1)k−1

k − 1
+

1

k + 1
− (−1)k+1

k + 1
− 1

k − 1
=

1

k − 1
+

1

k + 1
− 1

k + 1
− 1

k − 1
= 0,
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while if k is even, then k ± 1 are odd,

(−1)k−1

k − 1
+

1

k + 1
− (−1)k+1

k + 1
− 1

k − 1
=

(−1)

k − 1
+

1

k + 1
− (−1)

k + 1
− 1

k − 1

= 2

(
1

k + 1
− 1

k − 1

)

=
4

1− k2
.

Last, we calculate the special case of k = 1:

A1[f ] =
2

π

∫ π

0

sin(x) cos(x) dx =
1

2
sin2(x)

∣∣∣∣x=π

x=0

= 0.

We find what we obtained before for other k odd, except we had to do k = 1 separately.
Hence

Ak[f ] =


0, k odd

4

π(1− k2)
, k even

and

FCS[f ](x) =
2

π
+

4

π

∞∑
k=1

1

1− (2k)2
cos(2kx). N

One can develop a pointwise convergence theory for Fourier sine and cosine series very
much along the lines of Theorem 2.4.12; we will explore this in the exercises.

2.4.8. Solving ODEs with Fourier series.

We now take up the issue of solving differential equations with Fourier series, which
motivated our original foray into this subject. We do not immediately return to the
heat equation but instead start with ODEs. For simplicity, we will work on the interval
[−π, π], and we define a periodic analogue of our favorite function spaces from Definition
1.1.1. Put

Cnper([−π, π]) :={f ∈ Cn([−π, π]) | f(π) = f(−π)} and Cper([−π, π]) := C0
per([−π, π]).

We first observe that taking Fourier coefficients converts a differential equation into
an algebraic equation.

2.4.31 Lemma.

Suppose that f ∈ C1
per([−π, π]). Then f̂ ′(k) = ikf̂(k).

Proof. First we note that if f ∈ C1
per([−π, π]), then f and f ′ are continuous on [−π, π],

hence the integrals giving f̂(k) and f̂ ′(k) are defined. Now we integrate by parts with

u = e−ikx dv = f ′(x) dx
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du = −ike−ikx v = f(x)

to find ∫ π

−π
f ′(x)e−ikx dx = ik

(
f(π)e−ikπ − f(−π)eikπ

)
+ ik

∫ π

−π
f(x)e−ikx dx.

We factor
ik
(
f(π)e−ikπ − f(−π)eikπ

)
= −(ik)(2i)f(π) sin(kπ) = 0.

Thus
f̂ ′(k) =

1

2π

∫ π

−π
f ′(x)e−ikx dx = ik

(
1

2π

∫ π

−π
f(x)e−ikx dx

)
= ikf̂(k). �

2.4.32 Example.

Suppose f ∈ C2
per([−π, π]) solves f ′′ + f = 0 on [−π, π]. Use Fourier series to show

that, as expected, f = c1 cos(x) + c2 sin(x) for some constants c1, c2 ∈ C.

Solution. If f is 2π-periodic and f ′′ + f = 0, then set g = f ′′ + f to find that ĝ(k) = 0
for all k. But we can also write

0 = ĝ(k) = (ik)2f̂(k) + f̂(k) = (1− k2)f̂(k).

Thus for k 6= ±1, we have f̂(k) = 0.
Now, since f ′′ is defined, f is continuous on [−π, π], and so FS[f ](x) = f(x) for all

x ∈ (−π, π), and we also have equality at x = ±π since f is 2π-periodic. Hence, for all
x,

f(x) = FS[f ](x) = FSC[f ](x) = f̂(−1)e−ikx + f̂(1)eikx.

And this is easy to rearrange into a linear combination of sines and cosines:

f̂(−1)e−ikx + f̂(1)eikx = f̂(−1) cos(kx)− if̂(−1) sin(kx) + f̂(1) cos(kx) + if̂(1) sin(kx)

=
(
f̂(−1) + f̂(1)

)
cos(kx) + i

(
f̂(1)− f̂(−1)

)
sin(kx). N

2.4.33 Example.

Let g ∈ Cper([−π, π]).

(i) Suppose that f ∈ C2
per([−π, π]) solves f ′′+f = g(x) on [−π, π]. Show that ĝ(±1) =

0. Comment on this in light of the standard existence and uniqueness theorem for
ODEs.

(ii) Suppose that ĝ(±1) = 0. Use Fourier series to find a formal31 solution to f ′′+f =
g(x) on [−π, π].

31“[T]he term ‘formal’ describes any plausible result or procedure which may be unjustified or unjustifi-
able” [4, p. 249].
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Solution. (i) Suppose that f ′′ + f = f(x), so that

−k2f̂(k) + f̂(k) = ĝ(k), k ∈ Z,

thus
ĝ(k) = (1− k2)f̂(k). (2.4.22)

In particular,
ĝ(±1) = (1− (±1)2)f̂(±1) = 0.

And so we have shown that if we can solve f ′′ + f = g(x) with f ∈ C2
per([−π, π]), then g

must satisfy the “solvability conditions”∫ π

−π
g(x)e±ix dx = 0.

This seems restrictive, as the general theory of ODEs tells us that we can always solve
f ′′ + f = g(x) on [−π, π] given g ∈ C([−π, π]), which is a larger space than Cper([−π, π]).
But we have added an extra condition to our solution f : we want f to be 2π-periodic,
and so f must meet the boundary conditions f(π) = f(−π). This is not an initial value
problem, and so it is unsurprising that we can only solve it for a restricted class of forcing
functions g.

(ii) Suppose f ′′ + f = g with f ∈ C2
per([−π, π]). Then by (2.4.22) we have

f̂(k) =
ĝ(k)

1− k2

for k 6= ±1. This does not tell us what f̂(±1) are, but we are working with a second-
order ODE, so we expect to have two free parameters. Since f is 2π-periodic and C2,
convergence theory for Fourier series implies

f(x) =
∞∑

k=−∞

f̂(k)eikx =
∞∑

k=−∞
k 6=±1

ĝ(k)

1− k2
eikx

︸ ︷︷ ︸
f0(x)

+f̂(−1)e−ix + f̂(1)eix. (2.4.23)

Let us be clear about the order of the logic here: we have assumed the existence of a
solution f ∈ C2

per([−π, π]) to our ODE, and we have derived a formula for f in terms of
Fourier coefficients. If such a solution f exists, then the series f0 in (2.4.23) converges.

But does this series converge for all x, and, if so, is it differentiable? By the Sobolev
inequality, we have

max
k∈Z
|ĝ(k)| ≤ max

|x|≤P
|g(x)| := C.

Thus ∣∣∣∣ ĝ(k)

1− k2
eikx
∣∣∣∣ ≤ C

1− k2
,

and so the series f0(x) converges for each x by the comparison test.
To show that the function f0 is differentiable requires some more advanced tools from

the theory of uniform convergence for series of functions, and so we omit the details, but
we note that if we can differentiate this series term-by-term, then
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f ′′0 + f0 =
∞∑

k=−∞
k 6=±1

[
ĝ(k)

1− k2
(−k2)eikx +

ĝ(k)

1− k2
eikx
]

=
∞∑

k=−∞
k 6=±1

ĝ(k)

(
1− k2

1− k2

)
eikx

=
∞∑

k=−∞
k 6=±1

ĝ(k)eikx = g(x).

So, up to some details about uniform convergence, which we elide, we have shown that
the formal solution (2.4.23) is a genuinely convergent and differentiable solution. N

2.4.34 Method: solve an ODE with Fourier series
0. Assume that the ODE is a constant-coefficient problem of the form

Af :=
n∑
j=0

aj∂
j
x[f ] = g,

and we are interested in 2π-periodic solutions.

1. Calculate the Fourier coefficients ĝ(k) of the forcing function g on [−π, π].

2. Calculate the Fourier coefficients of Af :

Âf(k) =
n∑
j=0

(ik)jaj f̂(k).

Put Ã(k) :=
∑n

j=0(ik)jaj, so Âf(k) = Ã(k)f̂(k).

3. Find any zeros of Ã. If Ã(k) 6= 0 for all k, then the solution f has Fourier coefficients

f̂(k) =
ĝ(k)

Ã(k)

and the (formal) solution is

f(x) =
∞∑

k=−∞

ĝ(k)

Ã(k)
eikx.

If Ã(k) = 0 for some k, then the ODE has no solution if ĝ(k) 6= 0. If ĝ(k) = 0 whenever
Ã(k) = 0, then the (formal) solution is

f(x) =
∞∑

k=−∞
Ã(k)6=0

ĝ(k)

Ã(k)
eikx.

In either case, check if the series for f converges pointwise (in the sense of Definition
A.2.11).
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2.4.9. Solving PDEs with Fourier series.

In this section we will derive formal solutions to PDEs using Fourier series; that is, we
do not verify that the “solutions” we concoct actually converge (if defined as series) or
are differentiable.

First, we need a theorem that allows us to interchange differentiation and integration
in certain circumstances; this is nontrivial, as it involves interchanging two limits (the
limit giving the derivative and the limit of Riemann sums giving the integral). This
theorem is proved in many sources, including [12].

2.4.35 Theorem (Leibniz’s rule for differentiating under the integral).

Let a, b ∈ R with a < b and I ⊆ R be an interval, and let f = f(x, t) be a function
with the following properties.

(i) The function f(·, t) is continuous on [a, b] for each t ∈ I.

(ii) The partial derivative ft(x, t) exists for each (x, t) ∈ [a, b] × I and the mapping
[a, b]× I → C : (x, t) 7→ ft(x, t) is continuous.

Then the mapping I → C : t 7→
∫ b
a
f(x, t) dx is differentiable and

∂t

[∫ b

a

f(x, t) dx

]
=

∫ b

a

ft(x, t) dx.

2.4.36 Example.

Determine all functions u = u(x, t) such that

ux + ut = 0, −π ≤ x ≤ π, t ∈ R,

where u(π, t) = u(−π, t) for all t.

Solution. Suppose that we have such a solution u to this transport equation. By the
continuity and periodicity hypotheses on u, we can write

u(x, t) =
∞∑

k=−∞

û(k, t)eikx,

where we define the time-dependent “spatial” Fourier coefficient as

û(k, t) :=
1

2π

∫ π

−π
u(x, t)e−ikx dx. (2.4.24)

Thus
0 = ûx(k, t) + ût(k, t) = ikû(k, t) + ût(k, t).

To evaluate this second Fourier coefficient, we use Leibniz’s rule:

ût(k, t) =
1

2π

∫ π

−π
ut(x, t)e

−ikx dx = ∂t

[
1

2π

∫ π

−π
u(x, t)e−ikx dx

]
= ∂tû(k, t).

Then the Fourier coefficients satisfy

∂tû(k, t) + ikû(k, t) = 0.
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If we fix k ∈ Z and write h(t) := û(k, t), then h satisfies the familiar ODE

h′(t) = −ikh(t),

and so h(t) = C(k)e−ikt for some constant C(k) that depends on k. We then have

û(k, t) = C(k)e−ikt,

and so

u(x, t) =
∞∑

k=−∞

û(k, t)eikx =
∞∑

k=−∞

C(k)eikteikx =
∞∑

k=−∞

C(k)eik(x−t).

If the coefficients C(k) are chosen such that

f(ξ) :=
∞∑

k=−∞

C(k)eikξ

converges — for example, if
∑∞

k=−∞|C(k)| < ∞ — then u(x, t) = f(x − t), which is
exactly what we expect for the transport equation. In practice, a PDE would have some
more initial “data” that would tell us what C(k) should be, which would allow us to check
the convergence of f . N

2.4.37 Method: solve a PDE with Fourier series

0. Assume that the problem is posed on [−π, π] and has the form

Au = f,

where f = g(x, t) is 2π-periodic in x.

1. Calculate the Fourier coefficients f̂(k, t) of f(x, t) on [−π, π]. Evaluate the Fourier
integral with respect to x.

2. Calculate the (unknown) Fourier coefficients of (Au)(x, t) with respect to x. Use the
identities

∂̂t[u](k, t) = ∂t[û](k, t) and ∂̂x[u](k, t) = ikû(k, t).

3. Obtain an ODE for û(k, t) in which the only derivatives are taken with respect to t and
in which k is a parameter.

4. Solve this ODE for û(k, t). Any arbitrary constants from ODE methods must now
depend on k.

5. If the original PDE also has initial conditions of the form

u(x, 0) = φ(x),

calculate the Fourier coefficient φ̂(k) of φ on [−π, π]. Impose the initial condition

û(k, 0) = φ̂(k)

on the Fourier-side ODE above. (If there are further initial conditions, e.g., ut(x, 0) = ψ(x),
obtain the ODE-type initial condition ∂tû(k, 0) = ψ̂(k).) Solve for arbitrary constants.
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6. The formal solution to the PDE is then

u(x, t) =
∞∑

k=−∞

û(k, t)eikx,

where û(k, t) was determined from the Fourier-side IVP above.

When we are not working with 2π-periodic (or, more broadly, 2P -periodic, although,
for simplicity, we will not pursue that case) functions, we can still use Fourier series to
construct formal solutions to PDEs, but the series may have to be sine or cosine series.

2.4.38 Example.

We saw from Example 2.3.2 that a solution to the IVP-BVP

ut = uxx, 0 ≤ x ≤ P, t ≥ 0

u(0, t) = u(P, t) = 0, t ≥ 0

u(x, 0) =
n∑
k=1

Bk sin

(
kπx

P

)
is

u(x, t) =
n∑
k=1

Bke
−(kπ/P )2t sin

(
kπx

P

)
.

Discuss how one might solve this IVP-BVP when the initial temperature distribution
is an arbitrary function f .

Solution. If we represent f by its Fourier sine series

FSS[f ](x) =
∞∑
k=1

Bk[f ] sin

(
kπx

P

)
, (2.4.25)

the result above suggests that a solution to the IVP-BVP will be

u(x, t) =
∞∑
k=1

Bk[f ]e−(kπ/P )2t sin

(
kπx

P

)
. (2.4.26)

We call this a formal solution to the IVP-BVP. But will such a series even converge
pointwise for (x, t) ∈ [−P, P ]× [0,∞)? And, if so, will it be differentiable?

Any positive results will hinge on further properties of f that must be specified. For
example, if f ∈ C1([0, P ]), then one can infer from theory about Fourier sine and cosine
series in the exercises that FSS[f ](x) converges to f(x) for 0 < x ≤ P , so the Fourier sine
series is a justifiable representation for f . Then Plancherel’s identity for the coefficients
Bk[f ] imply that

∑∞
k=1|Bk[f ]|2 converges, hence by the test for divergence there is M > 0

such that |Bk[f ]| ≤M for all k. Then one estimates∣∣∣∣Bk[f ]e−(kπ/P )2t sin

(
kπx

P

)∣∣∣∣ ≤Me−(kπ/P )2t,
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and the ratio test can be used to show that
∑∞

k=1e
−(kπ/P )2t converges for all t > 0, thus

by the comparison test the series (2.4.26) for u converges. There remains the problem of
interchanging the infinite sum and the limit in the definition of the derivative to show
that term-by-term differentiation is permitted; if it is, i.e., if

∂t

[
∞∑
k=1

Bk[f ]e−(kπ/P )2t sin

(
kπx

P

)]
=
∞∑
k=1

∂t

[
Bk[f ]e−(kπ/P )2t sin

(
kπx

P

)]
(2.4.27)

and

∂2
x

[
∞∑
k=1

Bk[f ]e−(kπ/P )2t sin

(
kπx

P

)]
=
∞∑
k=1

∂2
x

[
Bk[f ]e−(kπ/P )2t sin

(
kπx

P

)]
, (2.4.28)

then it follows from simple calculus that u solves the IVP-BVP (one must also check the
boundary conditions, but this is easy).

Ultimately, the hypotheses32 on the initial condition f for the Fourier sine series
(2.4.26) to solve the IVP-BVP are benign: we merely need f ∈ C1

pw([0, P ]) with f(0) =
f(P ). But as the proof is rather technical, we mention that a practical approach is to
approximate f with an appropriate Fourier series, truncate the approximation to some
finite sum, and solve exactly the approximate problem in the style of Example 2.3.2. N

2.5. The Fourier transform.

As with Fourier series, this section draws on [4, 9, 17, 20]. Omitted proofs can be found
in [9].

2.5.1. Motivation for the Fourier transform.

A Fourier series representation of a function is inherently tied to a closed, bounded
interval; if we calculate the Fourier coefficients f̂(k) of a function f on an interval [−P, P ],
then the representation

f(x) =
∞∑

k=−∞

f̂(k)eikπx/P (2.5.1)

will only be valid for x ∈ [−P, P ] if f is not 2P -periodic on R. (Of course, this represen-
tation need not be valid on all of [−P, P ] if f is not sufficiently regular.) We have already
seen the utility of Fourier series in solving ODEs and PDEs; the relation f̂ ′(k) = ikf̂(k)
reduces ODEs to algebraic equations and PDEs to ODEs. So, we seek an extension of
the Fourier series representation valid for functions defined on R. This will be the Fourier
transform.

To motivate the definition of the transform, suppose that f ∈ C1(R) has compact
support: there is P > 0 such that f(x) = 0 for |x| > P . Moreover, suppose that P
is “large.” Then f will be defined on a “broad” subinterval of R, but the representation
(2.5.1) still holds for x ∈ (−P, P ). Set

g(k) :=

∫ P

−P
f(ξ)e−ikξ dξ,

32See Proposition 8.1 in [2].
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so (2.5.1) becomes

f(x) =
1

2

∞∑
k=−∞

[
g

(
π
k

P

)
ei(k/P )πx

]
1

P
.

Since P is “large,” we can think of this sum as an approximation to the improper integral

1

2

∫ ∞
−∞

g(πξ)eiπxξ dξ,

which rescales to
1

2π

∫ ∞
−∞

g(k)eikx dk =
1√
2π

∫ ∞
−∞

g(k)√
2π
eikx dk.

Since f(x) = 0 for |x| > P , we have

g(k)√
2π

=
1√
2π

∫ ∞
−∞

f(ξ)e−ikξ dξ =: F[f ](k).

We call F[f ](k) the Fourier transform of f at k ∈ R, and we have formally
motivated the identity

f(x) =
1√
2π

∫ ∞
−∞

F[f ](k)eikx dk.

This is the Fourier representation of a function defined on all of R.
This is morally similar to a Fourier series, if we think of an integral as a “continuous

superposition” instead of an infinite sum. We will see that the Fourier transform (when
it converges as an improper integral) reveals a great deal of information about a function
defined on R, just as a Fourier series (whether or not it converges) can shed much light
on a function defined on a closed, bounded interval.

2.5.2. Definition and properties of the Fourier transform.

We will need several vector spaces of improperly integrable functions and therefore pre-
sume familiarity with Appendix B. To review, for p > 0, we denote by Lp(R) the vector
space of all locally integrable (Definition B.0.1) functions f : R → C such that |f |p is
improperly integrable on R, and we set

‖f‖Lp(R) :=

(∫ ∞
−∞
|f(x)|p dx

)1/p

.

The most important cases for us will be p = 1 and p = 2. The functions in L1(R) are
often called absolutely integrable on R, while those in L2(R) are square inte-
grable. To be clear, for f to be absolutely integrable on R, the integral

∫∞
−∞|f(x)| dx

must exist, while for g to be square integrable on R, the integral
∫∞
−∞|g(x)|2 dx must

exist. It is possible for f : R → C to be improperly integrable on R but not absolutely
integrable (Example B.0.5).

2.5.1 Definition.
The Fourier transform of a locally integrable function f : R → C at k ∈ R is
the value

f̂(k) = F[f ](k) :=
1√
2π

∫ ∞
−∞

f(x)e−ikx dx, (2.5.2)
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defined for all numbers k ∈ R for which this integral converges.

Traditionally, if one works with a function f = f(x), then one uses a different letter,
like k or ξ, for the Fourier transform. The original variable x is sometimes called the
“space” variable (a term inherited from PDE problems in which a function u = u(x, t)
depends on “space” x and “time” t, and the Fourier transform is taken there “in x”) and the
variable k the “Fourier” variable. Of course the notation f̂(k) for the Fourier transform
at k ∈ R is the same as the notation for the complex Fourier series coefficient at k ∈ Z;
context will always make it clear what we mean.

The absolute integrability of f and the comparison principle for improper integrals
ensure that the integral in (2.5.2) converges whenever f ∈ L1(R), since |f(x)e−ikx| ≤
|f(x)|. The factor 1/

√
2π is somewhat arbitrary and may not appear in other definitions

of the Fourier transform; some conventions write e−2πik instead in the integrand, as well.
Some of the more robust theory will only hold for f ∈ L1(R), but nonetheless it may be
possible to define f̂ even if f is not absolutely integrable.

2.5.2 Example.

Let a > 0 and

Ea(x) :=

{
eax, x < 0

0, x ≥ 0.

Compute Êa(k).

Solution. We check in an exercise that Ea = |Ea| is improperly integrable on R. We
calculate

Êa(k) =
1√
2π

∫ ∞
−∞

Ea(x)e−ikx dx =
1√
2π

∫ 0

−∞
eaxe−ikx dx =

1√
2π

∫ 0

−∞
e(a−ik)x dx.

Now, since a > 0, we have a−ik 6= 0 for all k ∈ R, and so the function x 7→ e(a−ik)x/(a−ik)
is an antiderivative of x 7→ e(a−ik)x. Hence∫ 0

−∞
e(a−ik)x dx = lim

b→−∞

∫ 0

b

e(a−ik)x dx = lim
b→−∞

e(a−ik)x

a− ik

∣∣∣∣x=0

x=b

=
1

a− ik
.

Thus
Êa(k) =

1√
2π(a− ik)

.

Observe that Êa ∈ C∞(R) but Êa 6∈ L1(R). We make this precise in the exercises and
just note here that

√
2π|Êa(k)| = (a2 + k2)−1/2 ≈ |k|−1, and so if Êa ∈ L1(R), then by the

comparison test we would expect the divergent integral
∫∞

1
k−1 dk to converge. N

2.5.3 Example.

Fix a number t > 0 and let

f(x) =

{
1, |x| ≤ t

0, |x| > t.

Compute F[f ].
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Solution. Clearly f ∈ L1(R) since f is identically zero outside a closed, bounded interval.
We have

F[f ](k) =
1√
2π

∫ ∞
−∞

f(x)e−ikx dx =
1√
2π

∫ t

−t
e−ikx dx.

If k = 0, then

f̂(k) =
1√
2π

∫ t

−t
dx =

2t√
2π

=

√
2

π
t.

If k 6= 0, then

f̂(k) =
1√
2π

e−ikx

−ik

∣∣∣∣t
x=−t

= −e
−ikt − eikt√

2πik
=

√
2

k
√
π

(
eikt − e−ikt

2i

)
=

√
2

π

sin(kt)

k
.

L’Hospital’s rule implies

lim
k→0

sin(kt)

k
= t,

so we may as well write

F[f ](k) =

√
2

π

sin(kt)

k

for all k. We note from Example B.0.5 that f̂ 6∈ L1(R) although f̂ ∈ C∞(R). N

The next theorem describes some essential algebraic and analytic properties of the
Fourier transform.

2.5.4 Theorem.

(i) [Linearity] The Fourier transform is linear in the sense that if f , g ∈ L1(R) and
α, β ∈ C, then

F[αf + βg](k) = αf̂(k) + βĝ(k), k ∈ R.

(ii) [Shifts] Let f ∈ L1(R) and d ∈ R and denote by Sdf = f(· + d) the mapping
x 7→ f(x+ d). Then Sdf ∈ L1(R) and

F[Sdf ](k) = eikdf̂(k), k ∈ R.

(iii) [Dilations/scalings] Let f ∈ L1(R) and a ∈ R \ {0} and denote by f(a·) the
mapping x 7→ f(ax). Then f(a·) ∈ L1(R) and

F[f(a·)](k) =
1

|a|
f̂

(
k

a

)
, k ∈ R.

(iv) [Transform of derivative] Suppose that f ∈ L1(R) ∩ C1(R) and f ′ ∈ L1(R).
Then

F[f ′](k) = ikf̂(k), k ∈ R.

(v) [Derivative of transform] Suppose that f ∈ L1(R) and let 1(x) := x. If 1f ∈
L1(R) as well, then f̂ is differentiable, and

∂kf̂(k) = F[f ]′(k) = −i1̂f(k), k ∈ R.
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Proof. (i) This is obvious from the definition of the Fourier transform as an integral,
which is always linear.

(ii) We compute

F[f(·+ d)](k) =
1√
2π

∫ ∞
−∞

f(x+ d)e−ikx dx

=
1√
2π

∫ ∞
−∞

f(u)e−ik(u−d) du, u = x+ d

=
eikd√

2π

∫ ∞
−∞

f(u)e−iku du

= eikdF[f ](k).

(iii) We leave this as a practice problem.

(iv) We claim that if f ∈ L1(R) ∩ C1(R) and f ′ ∈ L1(R), then the limits limx→±∞ f(x)
exist and are both 0; the proof33 is an exercise in the fundamental theorem of calculus
and the definition of the improper integral. Assuming this to be true, we proceed to
calculate

F[f ′](k) =
1√
2π

∫ ∞
−∞

f ′(x)e−ikx dx =
1√
2π

lim
R→∞

∫ R

−R
f ′(x)e−ikx dx.

Since f ′ ∈ L1(R), we are allowed to express the improper integral as this symmetric limit.
Then we integrate by parts with

u = e−ikx dv = f ′(x) dx

du = −ike−ikx v = f(x)

to find ∫ R

−R
f ′(x)e−ikx dx =

(
f(x)e−ikx

)∣∣x=R

x=−R − (−ik)

∫ R

−R
f(x)e−ikx dx.

The squeeze theorem and the condition limx→±∞ f(x) = 0 imply

lim
R→∞

|f(±R)e∓ikR| = 0,

and so

F[f ′](k) =
1√
2π

lim
R→∞

∫ R

−R
f ′(x)e−ikx dx = ik

(
1√
2π

)
lim
R→∞

∫ R

−R
f(x)e−ikx dx = ikf̂(k).

33Here is that proof. The fundamental theorem of calculus lets us write f(x) = f(0) +
∫ x
0
f ′(ξ) dξ.

Since f ′ ∈ L1(R), the limits limx→±∞
∫ x
0
f ′(ξ) dξ exist, and so the limits L± := limx→±∞ f(x) also

exist. Suppose L+ 6= 0. Then by the definition of a limit, there is M > 0 such that if x ≥ M , then
|f(x)| ≥ |L+|/2. But then limb→∞

∫ b
M
|f(x)| dx =∞, which contradicts f ∈ L1(R). So, L+ = 0, and

likewise L− = 0.
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(v) One formally sees this by differentiating under the integral

√
2π∂kf̂(k) = ∂k

∫ ∞
−∞

f(x)e−ikx dx =

∫ ∞
−∞

∂k[f(x)e−ikx] dx = −i
∫ ∞
−∞

xf(x)e−ikx dx.

To make this precise, one would need a version of Leibniz’s rule on differentiating under
the integral (Theorem 2.4.35) for improper integrals. �

Examples 2.5.3 and 2.5.2 show that the Fourier transform does not map L1(R) back to
itself: there are functions f ∈ L1(R) such that f̂ 6∈ L1(R). However, under various other
hypotheses, the Fourier transform exhibits quite a diverse range of “mapping behaviors.”

2.5.5 Theorem.

(i) The Fourier transform is a linear functional on L1(R) in the sense that for k fixed,
the mapping L1(R)→ C : f 7→ f̂(k) is a linear operator.

(ii) [Riemann-Lebesgue lemma for Fourier transforms] The Fourier transform
is a linear operator from L1(R) to C0(R), where C0(R) is the space of continuous func-
tions that vanish at ±∞, i.e.,

C0(R) :=

{
f ∈ C(R)

∣∣∣∣ lim
x→±∞

f(x) = 0

}
.

Moreover,
max
k∈R
|f̂(k)| ≤ ‖f‖L1(R) .

(iii) If f ∈ L1(R) ∩ C2(R) with

lim
x→±∞

f(x) = 0 = lim
x→±∞

f ′(x),

then f̂ ∈ L1(R).

(iv) If f ∈ L1(R) ∩ L2(R), then f̂ ∈ L2(R).

Proof. (i) This is just a repackaging of part (i) of Theorem 2.5.4.

(ii) The global bound on |f̂(k)| follows from the triangle inequality for integrals and the
definition of ‖f‖L1(R). The proof that f̂ vanishes at ±∞ requires an “approximation-
by-C∞-functions” argument for a general f ∈ L1(R), so we only mention that a weaker
version can be proved if one assumes that (1) f ∈ L1(R) ∩ C1(R), (2) f ′ ∈ L1(R), and
(3) there is M > 0 such that |f(x)| = 0 for |x| ≥ M . In this case, one proves the limit
through an integration by parts argument, which yields the estimate |f̂(k)| ≤ C|k|−1 for
some constant C > 0. This implies the decay of f̂ for |k| large. We sketch this argument
in the exercises, along with the proof of continuity of f̂ .

(iii) Again, the idea is to integrate by parts in a clever way, similar to the proof of the
preceding property. One obtains |f̂(k)| ≤ Ck−2. This shows that f̂ is integrable on [1,∞)

and (−∞,−1] by the comparison test. Since f̂ is continuous by part (ii), f̂ is integrable
on [−1, 1].
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(iv) This requires tools from more advanced analysis (see, e.g., [10]), so we omit the
proof. �

2.5.3. The inverse Fourier transform.

If f ∈ L1(R), then the Fourier transform f̂ is also a function on R. But Example 2.5.3
indicates that we may have f ∈ L1(R) with f̂ 6∈ L1(R), and so the Fourier transform
is not a linear operator from L1(R) to L1(R). Nonetheless, it is possible to invert the
Fourier transform in a pointwise sense. The following result is proved in Section 60 of [20];
to state it, we need the Cauchy principal value of an improper integral from Definition
B.0.6.

2.5.6 Theorem.

Let f ∈ L1(R)∩ C1
pw(R). Then the Cauchy principal value P.V.

∫∞
−∞f̂(k)eikx dk exists

and
f(x+) + f(x−)

2
=

1√
2π

P.V.

∫ ∞
−∞

f̂(k)eikx dk, x ∈ R. (2.5.3)

The improper integral in (2.5.3) deserves its own name in the event that it converges
as a genuine improper integral (Definition B.0.2), not a principal value.

2.5.7 Definition.
Let f : R → C be locally integrable. The inverse Fourier transform of f at
x ∈ R is the value

F−1[f ](x) = f̂(x) :=
1√
2π

∫ ∞
−∞

f(k)eikx dk, (2.5.4)

defined for all x ∈ R for which this improper integral converges.

There is an obvious relation between the inverse Fourier integral in (2.5.4) and the
original Fourier integral in (2.5.2).

2.5.8 Lemma.

Let f : R → C be locally integrable and k ∈ R. If f̂(k) and f̂(−k) are both defined,
then f̂(k) = f̂(−k).

We can combine the results above to produce the following more palatable inversion
formula.

2.5.9 Theorem.

If f ∈ L1(R) ∩ C1
pw(R) and if f̂ ∈ L1(R), then

F−1[f̂ ](x) =
f(x+) + f(x−)

2
(2.5.5)

for all x ∈ R and

F[f̂ ](k) =
f(k+) + f(k−)

2
(2.5.6)
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for all k ∈ R.

Proof. If f̂ ∈ L1(R), then the principal value integral on the right of (2.5.3) is just
F−1[f̂ ], and so (2.5.5) follows from (2.5.3). The identity (2.5.6) is almost as immediate,
as we now show. Put (Rf)(x) := f(−x), so R is a “reflection” operator. Since f ∈ L1(R),
Rf ∈ L1(R) as well, and the scaling property of the Fourier transform (part (iii) of
Theorem 2.5.4) gives R̂f = Rf̂ . Lemma 2.5.8 now reads f̂ = Rf̂ , equivalently, f̂ = Rf̂ .
Consequently, since we are assuming f̂ ∈ L1(R), we also have f̂ ∈ L1(R). Thus

F[f̂ ](k) = F[Rf̂ ](k) = F[f̂ ](−k) = F−1[f̂ ](k) =
f(k+) + f(k−)

2

by (2.5.5). �

If f ∈ L1(R) ∩ C1
pw(R) is continuous, then F−1[f̂ ] = F[f̂ ] = f on R. Such a function

need not be continuously differentiable (i.e., f ′ need not exist at all points and/or be
continuous everywhere) for this nice result to happen. We might say that such a function
f belongs to the baroquely notated space L1(R) ∩ C1

pw(R) ∩ C(R).
The various properties of the inverse Fourier transform above often help us calculate

the actual Fourier transform of a function, with a little trickery here and there.

2.5.10 Example.

Find the Fourier transform of f(x) = sinc(x) := sin(x)/x.

Solution. Example B.0.5 shows that sinc(·) 6∈ L1(R) but also uses integration by parts
to demonstrate that the improper integral

∫∞
−∞ sinc(x) dx converges. Similar, but more

complicated, integration by parts shows that
∫∞
−∞ sinc(x)e−ikx dx converges for all k ∈ R,

and so both f̂ and f̂ are defined on R. Unfortunately, these integrals are very difficult, if
not impossible, to evaluate using standard methods of calculus. However, if we define

g(x) :=

{
1, |x| ≤ 1

0, |x| > 1,

then Example 2.5.3 yields

ĝ(k) =

√
2

π

sin(k)

k
=

√
2

π
f(k).

In particular, by the aforementioned integration by parts, the improper integrals
∫∞
−∞ĝ(k)eikx dx

exist for all x ∈ R. Consequently, both F[ĝ] and F−1[ĝ] are defined on R, although
ĝ 6∈ L1(R).

We then have

f̂(k) =

√
π

2
F[ĝ](k).

This looks no better, except we can use Lemma 2.5.8 to rephrase this as

f̂(k) = f̂(−k) =

√
π

2
F−1[ĝ](−k). (2.5.7)
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Since g ∈ L1(R) ∩ C1
pw(R) and F−1[ĝ] is defined on R, Theorem 2.5.6 tells us

F−1[ĝ](k) =
g(k+) + g(k−)

2
, x ∈ R. (2.5.8)

All we have done here is removed the principal value from (2.5.3), since the improper in-
tegrals

∫∞
−∞ĝ(k)eikx dk converge by our integration by parts claim above. We continue to

use the Fourier variable k in (2.5.8), even though we are calculating an inverse transform,
to stay in correspondence with (2.5.7).

Now, since g has discontinuities only at ±1, the formula (2.5.8) really reads

F−1[ĝ](k) =



0, k < −1

1/2, k = −1

1, −1 < k < 1

1/2, k = 1

0, 1 < k.

(2.5.9)

In particular, F−1[ĝ] is even. So, when we calculate F−1[ĝ](−k) in (2.5.7), there is nothing
special to do.

We combine (2.5.7) and (2.5.9) to conclude

f̂(k) =



√
π/2, |k| < 1

√
π/2
√

2, |k| = 1

0, |k| > 1.

Note, incidentally, that f̂ is not continuous on R. This does not, however, contradict part
(ii) of Theorem 2.5.5, since f 6∈ L1(R). N

2.5.11 Example.

Let a > 0. Find the Fourier transform of

fa(x) :=
1

x2 + a2
.

Solution. By definition,

f̂a(k) =
1√
2π

∫ ∞
−∞

e−ikx

x2 + a2
dx,

and by evenness the integral reduces to∫ ∞
−∞

cos(kx)

x2 + a2
dx,

which still looks difficult to calculate.
Instead, we will be clever and use the inverse transform. First, factor

x2 + a2 = (x+ ia)(x− ia)
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and then use partial fractions to rewrite

fa(x) =
1

x2 + a2
=

1

(x+ ia)(x− ia)
= − 1

2ia

(
1

x+ ia

)
+

1

2ia

(
1

x− ia

)
. (2.5.10)

The two functions (of x) on the right side of (2.5.10) do not belong to L1(R), but
nonetheless their products against e−ikx are improperly integrable over R for all k (inte-
grate by parts). And so their Fourier transforms are still defined. Thus

f̂a(k) = − 1

2ia
F

[
1

x+ ia

]
(k) +

1

2ia
F

[
1

x− ia

]
(k). (2.5.11)

Now, recall from Example 2.5.2 that

Ea(x) :=

{
eax, x < 0

0, x ≥ 0
=⇒ Êa(k) =

1√
2π(a− ik)

.

Similarly,

Ea(x) :=

{
0, x < 0

e−ax, x ≥ 0
=⇒ Êa(k) =

1√
2π(a+ ik)

.

Let us rewrite

1

x+ ia
=

i

ix+ i2a
=

i

−a+ ix
= − i

a− ix
= −i

√
2π

(
1√

2π(a− ix)

)
.

Then for k 6= 0, Lemma 2.5.8 and Theorem 2.5.9 imply

F

[
1

x+ ia

]
(k) = −i

√
2πF

[
1√

2π(a− ix)

]
(k) = −i

√
2πF−1

[
1√

2π(a− ix)

]
(−k)

= −i
√

2πF−1[Êa](−k) = −i
√

2πEa(−k) = −i
√

2π

{
ea(−k), −k < 0

0, −k > 0

=

{
0, k < 0

−i
√

2πe−ak, k > 0.
(2.5.12)

We claim that

F

[
1

x− ia

]
(k) =

{
i
√

2πeak, k < 0

0, k > 0.

using a calculation similar to (2.5.12).
Now we put everything together using the partial fractions decomposition from back

in (2.5.10) and the expansion (2.5.11). We have

f̂a(k) =


− 1

2ia
· 0 +

i
√

2πeak

2ia
, k < 0

−(−i)
√

2πe−ak

2ia
+

1

2ia
· 0, k > 0

=



√
π

2

(
eak

a

)
, k < 0

√
π

2

(
e−ak

a

)
, k > 0

=

√
π

2

e−a|k|

a
, k 6= 0.
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By part (ii) of Theorem 2.5.5, we know that since f ∈ L1(R), f̂ is continuous, and so

f̂a(0) = lim
k→0

f̂a(k) =
1

a

√
π

2
.

And so

f̂a(k) =

√
π

2

e−a|k|

a

for all k ∈ R.
We will also calculate this transform for a = 1 in Example 3.10.18 using residue

theory. Note that f̂a ∈ C1
pw(R) even though

∫∞
−∞|xfa(x)| dx diverges; compare this to

part (v) of Theorem 2.5.4. N

2.5.12 Remark.

In situations like (2.5.12), we will sometimes denote a Fourier transform as

F[expression involving the independent variable x](k),

without giving a name to that expression (like f). Our understanding will always be
that x is the “transformed variable,” i.e., we integrate with respect to x. This will just
save us time and space by not requiring every single function to have a name.

2.5.13 Example.

Find the Fourier transform of f(x) = e−x
2

.

Solution. Since x2 ≥ 1 for |x| ≥ 1, we have |f(x)| ≤ e−|x| for |x| ≥ 1. This shows
f ∈ L1(R), and so f̂ is defined (as is f̂). Of course,

f̂(k) =
1√
2π

∫ ∞
−∞

e−x
2

e−ikx dx,

but the integrand has no apparent antiderivative. We might note that f is even and,
since the Fourier integral is taken over a symmetric interval, reduce to∫ ∞

−∞
e−x

2

e−ikx dx =

∫ ∞
−∞

cos(kx)e−x
2

dx,

but this is no better.
There are, however, several not very obvious “tricks” one can use to calculate the im-

proper integral. Example 3.10.17 uses residue theory; here we will use a host of properties
of the Fourier transform from Theorem 2.5.4. First, we calculate

f ′(x) = −2xe−x
2

= −2xf(x).

With 1(x) := x, we note that 1f is absolutely integrable on R; this is a quick u-
substitution. Then parts (iv) and (v) of Theorem 2.5.4 imply

ikf̂(k) = f̂ ′(k) = −21̂f(k) =
2

i

(
− i1̂f(k)

)
= −2i∂kf̂(k).
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And so f̂ satisfies the ODE

∂kf̂(k) = −k
2
f̂(k).

This is a first-order linear ODE, which might look more familiar when cast in the variables

y′ = −x
2
y ⇐⇒ y′ +

x

2
y = 0.

The general solution to this ODE is y = Ce−x
2/4, where C is a constant, so f̂ must satisfy

f̂(k) = Ce−k
2/4, (2.5.13)

for some constant C to be determined.
Of course, C = f̂(0), and we have

f̂(0) =
1√
2π

∫ ∞
−∞

e−x
2

dx =
1√
2
, (2.5.14)

using from calculus the fact that
∫∞
−∞e

−x2 dx =
√
π. We conclude

f̂(k) =
e−k

2/4

√
2
.

But if we did not already know the value of the integral in (2.5.14), which usually
requires a polar coordinates trick to calculate, we could still find C via Fourier properties.
Observe that (2.5.13) gives the relation

f̂(k) = Cf

(
k

2

)
. (2.5.15)

And so f , f̂ ∈ L1(R) ∩ C(R). Then we have the following intricate calculation:

f(−k) = F−1[f̂ ](−k) by Theorem 2.5.9

= F[f̂ ](k) by Lemma 2.5.8

= F
[
Cf
( ·

2

)]
(k) by (2.5.15)

= 2Cf̂(2k) by part (iii) of Theorem 2.5.4
= 2C2f(k) by (2.5.15) once again.

In particular, f(0) = 2C2f(0), and since f(0) 6= 0, we have C2 = 1/2. To see which
square root C must be, we return to C = f̂(0) =

∫∞
−∞e

−x2 dx > 0, and so C = 1/
√

2.
This was, by no means, an easy Fourier transform to evaluate. The strategy here used

a variety of properties of the abstract transform to avoid evaluating the original integral∫∞
−∞e

−x2−ikx dx directly, which will be the path of Example 3.10.17. N

2.5.4. Convolution.

Theorem 2.5.5 tells us that the Fourier transform is a linear operator from L1(R) to
C0(R) and a linear functional in the pointwise sense that for k ∈ R fixed, the mapping
L1(R) → C : f 7→ f̂(k) is linear. But the vectors in L1(R) are also functions from R to
C, and so they interact in an additional algebraic manner: function multiplication. If f ,
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g ∈ L1(R), then their product fg is defined, although we need not have fg ∈ L1(R). It
turns out that requiring f , g ∈ L1(R)∩L2(R) is strong enough to guarantee fg ∈ L1(R);
this is a consequence of the comparison test for improper integrals, as we sketch in an
exercise.

And so, if f , g ∈ L1(R) ∩ L2(R), it makes sense to ask what the value of f̂ g(k) is.
One might expect f̂(k)ĝ(k), but this is not quite the case. However, it pays to start by
calculating this product, with the notational sleight-of-hand that we use different dummy
variables of integration in the two Fourier integrals:

f̂(k)ĝ(k) =

(
1√
2π

∫ ∞
−∞

f(x)e−ikx dx

)(
1√
2π

∫ ∞
−∞

g(y)e−iky dy

)

=
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(x)e−ikx dx

)
g(y)e−iky dy

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)e−ik(x+y) dx dy.

Fixing y ∈ R momentarily, we have∫ ∞
−∞

f(x)g(y)e−ik(x+y) dx = g(y)

∫ ∞
−∞

f(x)e−ik(x+y) dx = g(y)

∫ ∞
−∞

f(u− y)e−iku du.

Here we have substituted u = x+ y, du = dx. Then

f̂(k)ĝ(k) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(u− y)g(y)e−iku du dy.

Suppose for the moment that we can interchange the order of integration to write∫ ∞
−∞

∫ ∞
−∞

f(u− y)g(y)e−iku du dy =

∫ ∞
−∞

(∫ ∞
−∞

f(u− y)g(y) dy

)
e−iku du. (2.5.16)

Then if we abbreviate
(f ∗ g)(u) :=

∫ ∞
−∞

f(u− y)g(y) dy,

we will have

f̂(k)ĝ(k) =
f̂ ∗ g(k)√

2π
.

Let us pause from Fourier analysis for now and study this new expression f ∗ g.

2.5.14 Definition.
For functions f , g : R→ C and x ∈ R, the convolution of f and g at x is

(f ∗ g)(x) :=

∫ ∞
−∞

f(x− ξ)g(ξ) dξ,

defined whenever this improper integral converges (Definition B.0.2).

Our first question should be when f ∗ g is defined, and, if it is defined, what are some
of its properties as a function in its own right.
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2.5.15 Theorem.

(i) If f , g ∈ L2(R), then (f ∗ g)(x) is defined for every real number x.

(ii) Convolution distributes over addition in the sense that

f ∗ (g + h) = (f ∗ g) + (f ∗ h)

for any functions f , g, and h for which these convolutions are defined.

(iii) Convolution is commutative in the sense that

f ∗ g = g ∗ f.

for any functions f , g for which these convolutions are defined.

(iv) If f , g ∈ L2(R) and f ∈ Cn(R) for some n ≥ 0, then f ∗ g ∈ Cn(R). If f ,
g ∈ L2(R) and f ∈ C1

pw(R), then f ∗ g ∈ C1
pw(R).

(v) If f , g ∈ L1(R) ∩ L2(R) ∩ C(R), then f ∗ g ∈ L1(R) and

‖f ∗ g‖L1(R) ≤ ‖f‖L1(R) ‖g‖L1(R) . (2.5.17)

(vi) If f , g ∈ L1(R) ∩ L2(R) ∩ C(R), then

f̂(k)ĝ(k) =
f̂ ∗ g(k)√

2π
, k ∈ R.

Proof. (i) Fix x ∈ R. The inequality

|f(x− ξ)g(ξ)| ≤ |f(x− ξ)|2

2
+
|g(ξ)|2

2

and the assumption f , g ∈ L2(R) shows that the integral
∫∞
−∞|f(x − ξ)g(ξ)| dξ, and

so the integral
∫∞
−∞f(x − ξ)g(ξ) dξ also converges. Hence the convolution (f ∗ g)(x) is

defined.

(ii) Exercise.

(iii) Exercise.

(iv) This is quite technical to prove, so we omit it, but we mention that the general
strategy is to differentiate under the integral with a version of Leibniz’s rule (Theorem
2.4.35) for improper integrals. Also, since convolution is commutative, we would get the
same results for g ∈ Cn(R) ∪ C1

pw(R).

(v) We want to show that the integral∫ ∞
−∞
|(f ∗ g)(x)| dx =

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

f(x− ξ)g(ξ) dξ

∣∣∣∣ dx
converges. By the triangle inequality for integrals and the comparison test, it suffices to
show that the integral ∫ ∞

−∞

∫ ∞
−∞
|f(x− ξ)g(ξ)| dξ dx (2.5.18)
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converges. We will look at the “reversed” integral∫ ∞
−∞

∫ ∞
−∞
|f(x− ξ)g(ξ)| dx dξ (2.5.19)

instead and show that this double improper integral converges. Then Fubini’s theorem34

will allow us to interchange the order of integration in (2.5.19) and conclude that the
double integral (2.5.18) converges.

For ξ ∈ R fixed, we have∫ ∞
−∞
|f(x− ξ)g(ξ)| dx = |g(ξ)|

∫ ∞
−∞
|f(x− ξ)| dx = |g(ξ)|

∥∥S−ξf∥∥
L1(R)

= |g(ξ)| ‖f‖L1(R) ,

where we abbreviate (S−ξf)(x) := f(x− ξ). Since g ∈ L1(R) as well, we have∫ ∞
−∞

∫ ∞
−∞
|f(x− ξ)g(ξ)| dx dξ = ‖f‖L1(R)

∫ ∞
−∞
|g(ξ) dξ = ‖f‖L1(R) ‖g‖L1(R) ,

and so the double integral in (2.5.19) converges, as desired.

(vi) Since f , g ∈ L1(R) ∩ L2(R) ∩ C(R), part (v) ensures that f ∗ g ∈ L1(R), so f̂ ∗ g is
defined. The desired equality will then follow from the work preceding Definition 2.5.14,
provided that the interchange of integrals in (2.5.16) is valid. The integrand in (2.5.16)
satisfies

|f(u− y)g(y)e−iku| = |f(u− y)g(y)|.
Because we continue to assume f , g ∈ L1(R) ∩ L2(R), the estimates from the proof of
part (v) still hold, and since f , g ∈ C(R), we can invoke Fubini’s theorem to permit the
interchange.

�

2.5.16 Example.

Let

f(x) =

{
1, |x| ≤ 1

0, |x| > 1.

Compute f ∗ f .

Solution. We have

(f ∗ f)(x) =

∫ ∞
−∞

f(x− ξ)f(ξ) dξ =

∫ 1

−1

f(x− ξ) dξ.

Substitute u = x−ξ (remembering that x is constant and ξ is the variable of integration)
to find du = −dξ and∫ 1

−1

f(x− ξ) dξ = −
∫ x−1

x+1

f(u) du =

∫ x+1

x−1

f(u) du.

34The use of Fubini’s theorem for double improper integrals is a complicated and delicate matter; see
[21] for some of the pitfalls in trying to extend Fubination from “definite” double integrals to improper
ones. Our hypothesis that f and g are continuous allows us to invoke a version of Fubini’s theorem
proved in [4]. Restricting to f and g in the space L1(R)∩L2(R)∩ C(R) is stringent, but ultimately all
the functions we might “naturally” consider for convolution will belong to this space.
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Observe that if x ≤ −2, then x− 1 < x+ 1 ≤ −1, and so f(u) = 0 for x− 1 ≤ u < x+ 1.
Similarly, if x ≥ 2, then 1 ≤ x− 1 < x+ 1, and so, again, f(u) = 0 for x− 1 < u ≤ x+ 1.
So, we see that (f ∗ f)(x) = 0 for |x| ≥ 2.

Now restrict −2 ≤ x ≤ 2. First consider −2 ≤ x ≤ 0. Then −3 ≤ x − 1 ≤ −1 and
−1 ≤ x+ 1 ≤ 1, so

f(u) =

{
0, x− 1 ≤ u < −1

1,−1 ≤ u ≤ x+ 1,

thus ∫ x+1

x−1

f(u) du =

∫ −1

x−1

f(u) du+

∫ x+1

−1

f(u) du =

∫ x+1

−1

du = x+ 2.

Similarly, if 0 ≤ x ≤ 2, then −1 ≤ x− 1 ≤ 1 and 1 ≤ x+ 1 ≤ 3, so

f(u) =

{
1, x− 1 ≤ u ≤ 1

0, 1 < u ≤ x+ 1,

thus ∫ x+1

x−1

f(u) du =

∫ 1

x−1

f(u) du+

∫ x+1

1

f(u) du =

∫ 1

x−1

du = 2− x.

All together, we have

(f ∗ f)(x) =


0, x < −2

x+ 2, −2 ≤ x < 0

2− x, 0 ≤ x < 2

0, x ≥ 2.

N

Now we return to our original goal: calculating f̂ g(k) for f , g ∈ L1(R) ∩ L2(R).
Remember, the condition that these functions belong to L2(R) is merely to ensure that
their product is in L1(R), so the Fourier transform here is actually defined.

In order to obtain a useful expression for f̂ g in terms of f̂ and ĝ, however, we need to
assume rather more about f and g. Specifically, suppose f , g ∈ L1(R)∩L2(R)∩C1

pw(R)∩
C(R) and also assume f̂ , ĝ ∈ L1(R). Then the following equalities hold:

f(x)g(x)
(1)
=
(̂̂
f(x)

)(̂̂
g(x)

)
(2)
=
(̂̂
f(−x)

)(̂̂g(−x)
)

(3)
=

̂̂
f ∗ ĝ(−x)√

2π

(4)
=

̂

f̂ ∗ ĝ(x)√
2π

To get (1), we used Theorem 2.5.9, which we are allowed to invoke since f , g ∈
L1(R)∩C1

pw(R) and f̂ , ĝ ∈ L1(R) with f , g continuous on R. To get (2), we used Lemma
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2.5.8, which we are allowed to use since f̂ , ĝ ∈ L1(R). To get (3), we used part (v) of
Theorem 2.5.15, which is valid since f̂ , ĝ ∈ L1(R) ∩ L2(R) ∩ C(R). In turn, this holds
because we are assuming f̂ , ĝ ∈ L1(R), while part (ii) from Theorem 2.5.5 implies f̂ ,
ĝ ∈ C(R) since f , g ∈ L1(R), and part (iv) of that same theorem gives f̂ , ĝ ∈ L2(R) since
f , g ∈ L1(R) ∩ L2(R). Last, to get (4), we used Lemma 2.5.8 again, which is applicable
because f̂ ∗ ĝ ∈ L1(R) by virtue of f̂ , ĝ ∈ L1(R) ∩ L2(R) ∩ C(R).

Thus

f̂ g(k) =

̂
̂

f̂ ∗ ĝ(k)√
2π

. (2.5.20)

Of course, we want to say
̂
̂

f̂ ∗ ĝ = f̂ ∗ ĝ. (2.5.21)

That would require us to use Theorem 2.5.9, and to use that theorem we need f̂ ∗ ĝ ∈
L1(R) ∩ C1

pw(R) ∩ C(R). We already know f̂ ∗ ĝ ∈ L1(R), and, since f̂ ∈ C(R), we have
f̂ ∗ ĝ ∈ C(R) by part (iv) of Theorem 2.5.15. But do we have f̂ ∈ C1

pw(R)? That would
guarantee f̂ ∗ ĝ ∈ C1

pw(R), which is the last inclusion we need. One way to obtain this
is to assume 1f ∈ L1(R) as in part (v) in Theorem 2.5.4; then f̂ is differentiable with
derivative ∂k[f̂ ] = 1̂f , and since 1f ∈ L1(R), we also have 1̂f ∈ C(R), thus f̂ ∈ C1(R).
This, however, is overkill: we just want f̂ ∈ C1

pw(R), not necessarily f̂ ∈ C1(R).
In words, the Fourier transform turns multiplication into convolution. Or, multiplica-

tion on the “space” side is convolution on the “Fourier” side. We have now proved parts
(i) and (iii) of the corollary below; the proofs of the other two parts are left as exercises.

2.5.17 Corollary.

Let f , g ∈ L1(R) ∩ L2(R) ∩ C1
pw(R) ∩ C(R) with f̂ , ĝ ∈ L1(R) ∩ C1

pw(R). Then

(i) f̂ g =
1√
2π
f̂ ∗ ĝ;

(ii) f̂ g =
1√
2π
f̂ ∗ ĝ;

(iii) f̂ ĝ =
1√
2π
f̂ ∗ g;

(iv) f̂ ĝ =
1√
2π

̂
f ∗ g.

2.5.5. Parseval and Plancherel for the Fourier transform.

The Parseval and Plancherel identities from Fourier series (Theorem 2.4.20) have analo-
gous versions for the transform.

2.5.18 Theorem.

Suppose f , g ∈ L1(R) ∩ L2(R). Then fg, f̂ ĝ ∈ L1(R) and
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(i) [Parseval]
∫ ∞
−∞

f(x)g(x) dx =

∫ ∞
−∞

f̂(k)ĝ(k) dk.

(ii) [Plancherel]
∫ ∞
−∞
|f(x)|2 dx =

∫ ∞
−∞
|f̂(k)|2 dk.

Note the absence of any constant factor in Parseval’s and Plancherel’s equalities,
unlike in the Fourier series case of Theorem 2.4.20. This is due to our normalization of
the Fourier transform with the factor 1/

√
2π. Rephrased in terms of the L2-norm, the

Plancherel identity reads
‖f‖L2(R) = ‖f̂‖L2(R).

Just as we used Plancherel’s theorem for Fourier series to evaluate certain infinite series,
we can use Plancherel’s theorem for the Fourier transform to evaluate certain improper
integrals.

2.5.19 Example.

Let

f(x) =


0, x < −1

1 + x, −1 ≤ x < 0

1− x, 0 ≤ x < 1

0, x ≥ 1.

One can show that

f̂(k) =

√
2

π

(
1− cos(k)

k2

)
.

Use this to compute ∫ ∞
−∞

(1− cos(x))2

x4
dx.

Solution. We have
(1− cos(k))2

k4
=
π|f̂(k)|2

2
,

and therefore∫ ∞
−∞

(1− cos(k))2

k4
dk =

π

2

∫ ∞
−∞
|f̂(k)|2 dk

=
π

2

∫ ∞
−∞
|f(k)|2 dk by Plancherel

=
π

2

(∫ 0

−1

(1 + k)2 dk +

∫ 1

0

(1− k)2 dk

)

=
π

3
. N
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2.5.6. Solving ODEs and PDEs with Fourier transforms.

One of the chief virtues of the Fourier transform is the relation

F[f ′](k) = ikf̂(k)

from part (iv) of Theorem 2.5.4. As with the corresponding property for Fourier coeffi-
cients, this relation can convert ODEs into “algebraic” problems and PDEs into “ODEs
with parameters.”

2.5.20 Example.

Use the Fourier transform to construct a formal solution to

f ′′ − f = g(x).

What hypotheses on g do we need for this to work? How does the formal result compare
to what we know from variation of parameters?

Solution. Suppose that f ∈ C2(R) solves this ODE and take the Fourier transform of
both sides:

ĝ(k) = f̂ ′′(k)− f̂(k) = (ik)2f̂(k)− f̂(k) = −(1 + k2)f̂(k).

In particular, we need f̂ to be defined, so we may as well require our solution f not merely
to be in C2(R) but also to satisfy f , f ′, f ′′ ∈ L1(R). Likewise, we need g ∈ L1(R). Then

f̂(k) = − ĝ(k)

1 + k2
. (2.5.22)

Let φ(k) = 1/(1 + k2), so (2.5.22) is

f̂(k) = −ĝ(k)φ(k).

Then we expect
f(x) = −F−1[ĝφ](x) = −F[ĝφ](−x). (2.5.23)

Since g ∈ L1(R), we have |ĝ(k)| ≤ ‖g‖L1(R) for all k ∈ R, by part (ii) of Theorem 2.5.5.
Since φ ∈ L1(R), the comparison test implies that ĝφ ∈ L1(R), too, and so the (inverse)
Fourier transform in (2.5.23) is defined. That is, the right side of (2.5.23) is a good
candidate for the solution to our ODE.

But is this (inverse) Fourier transform sufficiently differentiable? A close look at part
(v) of Theorem 2.5.4 shows that F[ĝφ] will be twice-differentiable if the improper integral∫ ∞

−∞
|k2ĝ(k)φ(k)| dk =

∫ ∞
−∞

(
k2

1 + k2

)
|ĝ(k)| dk

converges. Since ∣∣∣∣ k2

1 + k2

∣∣∣∣ |ĝ(k)| ≤ |ĝ(k)|,

by the comparison test it suffices to assume ĝ ∈ L1(R).
Using the chain rule and part (v) of Theorem 2.5.4 once more, we calculate

f ′′(x) = ∂2
x

(
− F[ĝφ](−x)

)
= −(−i)2(−1)2F

[
k2ĝ(k)

1 + k2

]
(−x) = F

[
k2ĝ(k)

1 + k2

]
(−x).
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Then

f ′′(x)+f(x) = F

[
k2ĝ(k)

1 + k2

]
(−x)+F

[
ĝ(k)

1 + k2

]
(−x) = F

[
(1 + k2)ĝ(k)

1 + k2

]
(−x) = F[ĝ](−x)

= F−1[ĝ](x) = g(x)

by Theorem 2.5.9, if we assume further that g ∈ C1
pw(R) ∩ C(R). N

2.5.21 Example.

We are now assuming quite a lot about the nonhomogeneity g in Example2.5.20, espe-
cially given that we could solve the ODE f ′′ − f = g(x) rather quickly using variation
of parameters. Indeed, a fundamental solution set for this is J1(x) = ex, J2(x) = e−x,
and so a particular solution is

f0(x) :=
ex

2

∫ x

0

e−ξg(ξ) dξ − e−x

2

∫ x

0

eξg(ξ) dξ.

Then the general solution is

h(x) := c1e
x + c2e

−x +
ex

2

∫ x

0

e−ξg(ξ) dξ − e−x

2

∫ x

0

eξg(ξ) dξ. (2.5.24)

(i) Why bother assuming so much more about g to use the Fourier transform, when
we just need g ∈ C(R) to use variation of parameters?

(ii) What is the value of going through all the work above using the Fourier transform,
when we could have solved the ODE using prior techniques?

(iii) How can we write our solution in (2.5.23) in the form (2.5.24) given by variation
of parameters?

Solution. (i) Here is what is special: by using the Fourier transform, we are presuming
that the solution f to f ′′ + f = g(x) is not merely a twice-continuously differentiable
function but also absolutely integrable, as are its first and second derivatives. This
presumes a certain amount of “decay” on f . Indeed, buried in Footnote 33 as part of the
proof of part (iv) of Theorem 2.5.4 is the result that if f ∈ L1(R)∩C1(R) and f ′ ∈ L1(R),
then limx→±∞ f(x) = 0. Consequently, if f ∈ C2(R) and f , f ′, f ′′ ∈ L1(R), then we also
need limx→±∞ f

′(x) = 0, too. Thus, if we insist on using the Fourier transform to solve
the ODE, we are no longer merely interested in solving f ′′+f = g(x) but rather the BVP

f ′′ + f = g(x)

lim
x→±∞

f(x) = 0

lim
x→±∞

f ′(x) = 0.

(2.5.25)

Our heuristic experience with BVPs so far teaches us that we should not expect solutions
for all nonhomogeneities g but only ones with more stringent properties.

(ii) Our answer to part (i) explains why we need more information about g than just
the anodyne condition g ∈ C(R) from variation of parameters. But we did not provide
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a compelling reason for using the elaborate machinery of the Fourier transform — other
than its (hopefully) obvious pedagogical value in this simple problem. There may be
valid reasons stemming from an application for assuming the decay on f in a more
complicated version (2.5.25). For example, f could represent the profile of a wave whose
bulk is localized in a “core” and that vanishes far away from the core. Or f could represent
the energy of a physical system that also naturally decays and should be measured using
some integral norm. In short, for ODEs posed on all of R, “limiting” boundary conditions
that facilitate the Fourier transform may be as appropriate as classical initial conditions.

(iii) From (2.5.23), our solution is

f(x) = −F−1[ĝφ](x), φ(k) :=
1

1 + k2
.

We are assuming g ∈ L1(R) ∩ C1
pw(R) ∩ C(R) with ĝ ∈ L1(R).

Example 2.5.11 (in the a = 1 case) tells us that

φ̂(k) =

√
π

2
e−|x|,

and so φ̂ ∈ L1(R) ∩ L2(R) ∩ C1
pw(R) ∩ C(R), too. Corollary 2.5.17 then implies

f(x) = −(

̂̂
g ∗ φ̂)(x)√

2π
= −(g ∗ φ̂)(x)√

2π
,

where

φ̂(x) = φ̂(−x) =

√
π

2
e−|x|

Then

f(x) = − 1√
2π

√
π

2

∫ ∞
−∞

e−|x−ξ|g(ξ) dξ =
1

2

∫ ∞
−∞

e−|x−ξ|g(ξ) dx.

Now we use properties of absolute value to split up the integral as

f(x) = −1

2

∫ x

−∞
e−|x−ξ|g(ξ) dξ − 1

2

∫ ∞
x

e−|x−ξ|g(ξ) dξ

= −1

2

∫ x

−∞
e−(x−ξ)g(ξ) dξ − 1

2

∫ ∞
x

e−(ξ−x)g(ξ) dξ

= −e
−x

2

∫ x

−∞
eξg(ξ) dξ − ex

2

∫ ∞
x

e−ξg(ξ) dξ

= −e
−x

2

∫ x

−∞
eξg(ξ) dξ − ex

2

∫ ∞
x

e−ξg(ξ) dξ

= −e
−x

2

∫ 0

−∞
eξg(ξ) dξ − e−x

2

∫ x

0

eξg(ξ) dξ − ex

2

∫ 0

x

e−ξg(ξ) dξ − ex

2

∫ ∞
0

e−ξg(ξ) dξ
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=
ex

2

∫ x

0

e−ξg(ξ) dξ − e−x

2

∫ x

0

eξg(ξ) dξ −
(∫ ∞

0

e−ξg(ξ)

2
dξ

)
ex −

(∫ 0

−∞

eξg(ξ)

2
dξ

)
e−x,

and this is exactly the form of the solution prophesied by variation of parameters.
N

2.5.22 Method: solve an ODE with the Fourier transform
0. This method is very similar to Method 2.4.34 for solving ODEs with Fourier series.
Assume that the ODE has the form

Af :=
n∑
j=0

aj∂
j
x[f ] = g,

where g is “sufficiently nice” so that the Fourier transform ĝ is defined. We are interested
in solutions f ∈ L1(R). This method does not allow us to incorporate initial conditions.

1. Write the ODE on the “Fourier side” using the property f̂ ′(k) = ikf̂(k):

Af = g ⇐⇒
n∑
j=0

(ik)jaj f̂(k) = ĝ(k).

Put Ã(k) :=
∑n

j=0(ik)jaj, so this reads Ã(k)f̂(k) = ĝ(k).

2. If Ã(k) 6= 0 for all k, solve for f̂(k):

f̂(k) =
ĝ(k)

Ã(k)
.

If Ã(k) = 0 for some k, then the ODE only has a solution in L1(R) if ĝ(k) = 0, too. If
this is so, then the formal solution is

f(x) = F−1

[
ĝ

Ã

]
(x).

Calculate this inverse Fourier transform explicitly, if possible.

2.5.23 Example.

Use the Fourier transform to construct a formal solution for the heat equation IVP{
ut = uxx, x ∈ R, t ≥ 0

u(x, 0) = f(x), x ∈ R,

which models heat distribution in an “infinite rod.” What hypotheses do we need on f
for this to work?

Solution. Suppose that we have a solution u. We will use the Fourier transform to
deduce a formula for u, and then we must check that this formula is sufficiently differen-
tiable.
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When applying the Fourier transform to a PDE, we need to decide what variable will
receive the transform. Since the Fourier transform requires the function to be defined
on (−∞,∞), we should use the unbounded spatial variable x, as we only know time for
t ≥ 0. That is, we will consider the transforms

F[ut(·, t)](k) =
1√
2π

∫ ∞
−∞

ut(x, t)e
−ikx dx =: ût(k, t)

and
F[uxx(·, t)](k) =

1√
2π

∫ ∞
−∞

uxx(x, t)e
−ikx dx =: ûxx(k, t).

Here we first use the elaborate notation F[ut(·, t)](k) and F[uxx(·, t)](k) to indicate that
we are applying Fourier transform in the x-variable and leaving t as a parameter; subse-
quently, we will just use .̂ This is similar to what we did in Example 2.4.36. Likewise,
we will write

F[u(·, t)](k) =
1√
2π

∫ ∞
−∞

u(x, t)e−ikx dx. =: û(k, t).

Again, all integration occurs with respect to x. Then we have

ûxx(k, t) = (ik)2û(k, t) = −k2û(k, t).

Next, let us assume that differentiation under the integral with an improper integral
version of Leibniz’s rule is valid:

ût(k, t) =
1√
2π

∫ ∞
−∞

∂t[u](x, t)e−ikx] dx = ∂t

[
1√
2π

∫ ∞
−∞

u(x, t)e−ikx dx

]
= ∂t[û](k, t) = ût(k, t).

So, the function û = û(k, t) satisfies the ODE

ût(k, t) = −k2û(k, t), t ∈ R,

where now k ∈ R is a fixed parameter. Using the initial condition u(x, 0) = f(x), we find

û(k, 0) = f̂(k),

and so we really have an IVP for the function û(k, ·):{
ût(k, t) + k2û(k, t) = 0, t ≥ 0

û(k, 0) = f̂(k).

Using the integrating factor method (or separation of variables), we find

û(k, t) = f̂(k)e−k
2t.

To solve for u, we then need to take the inverse Fourier transform of û(·, t), where now
t is once again a parameter. Since û(·, t) is a product of functions, we will use convolution.
Let φ(ξ) = e−ξ

2

, so
û(k, t) = f̂(k)φ(k

√
t),

where we can take
√
t because we assume t ≥ 0. Taking the inverse transform with

respect to k and leaving t as the parameter now, we find

u(x, t) = F−1[f̂(k)φ(
√
tk)](x) =

1√
2π

(
F−1[f̂(k)] ∗ F−1[φ(

√
tk)]
)
(x). (2.5.26)
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This, of course, presumes that f and φ satisfy the myriad of hypotheses of Corollary
2.5.17. It seems that we must impose all these assumptions on f , since this initial
temperature distribution is not specified, but, happily, they are all met for φ.

Recall that we studied φ in Example 2.5.13 and found φ ∈ C∞(R) ∩ L1(R) with

φ̂(k) =
e−k

2/4

√
2

=
e−(k/2)2

√
2

=
1√
2
φ

(
k

2

)
.

Then if t > 0, the scaling property of the Fourier transform (part (iii) of Theorem 2.5.4)
implies

F−1[φ(
√
tk)](x) = F[φ(

√
tk)](−x) =

1√
t
φ̂

(
− x√

t

)
=

1√
2t
φ

(
− x

2
√
t

)
=
e−(x2/4t)

√
2t

.

Thus, for t > 0,

u(x, t) =
1√
2π

(
f∗F−1[φ(

√
t·)]
)
(x) =

1√
2π

∫ ∞
−∞

e−(x−ξ)2/4t
√

2t
f(ξ) dξ =

∫ ∞
−∞
H(x−ξ, t)f(y) dξ,

where

H(ζ, t) :=
e−ζ

2/4t

√
4πt

, (2.5.27)

is the heat kernel35 or the fundamental solution36 for the heat equation.
Incorporating the t = 0 initial temperature distribution, the full solution is

u(x, t) =


∫ ∞
−∞
H(x− ξ, t)f(ξ) dξ, x ∈ R, t > 0

f(x), x ∈ R, t = 0.

(2.5.28)

Note that ∫ ∞
−∞
H(x− ξ, t)f(ξ) dξ =

(
H(·, t) ∗ f

)
(x)

is convolution in the first variable of H. This solution of the heat equation obtained
by convolution with the heat kernel is definitely not one that arises from separation of
variables.

Now, did we really solve the problem? Not quite: we assumed there was a solution
u to the heat equation’s IVP and that this u and the initial temperature distribution
f were sufficiently well-behaved to ensure the validity of all the Fourier methods above.
One would need to differentiate under the integral to show that u as defined in (2.5.28)
does solve the equation. Then it remains to show

lim
(x,t)→(x0,0+)

u(x, t) = f(x0) (2.5.29)

for any x0 ∈ R, which provides a “continuity condition” linking the two very different
pieces of u.
35In the sense of integral operators, recall part 3 of Linear Algebraic Viewpoint 1.2.8.
36One can check via straightforward differentiation that Ht = Hζζ , and so H itself solves the heat
equation.
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Observe also from (2.5.27) that, for fixed t > 0, the kernel H decays very rapidly as
ζ → ±∞, so rapidly, in fact, that if f : R→ C is merely bounded and locally integrable,
then by the comparison test the convolution H(·, t) ∗ f is defined for all t > 0. A closer
examination of Leibniz’s rule for differentiating (under) improper integrals and some
nontrivial, more technical analysis reveal that if f is continuous and either bounded or
absolutely integrable, then (2.5.28) satisfies the heat IVP and the continuity condition
(2.5.29). These requirements on f are far less than the wearingly stringent hypotheses
of Corollary 2.5.17, which, apparently, we needed to justify (2.5.26). How can this be?
Again, note the flow of our work above: if the heat equation has a solution that is
sufficiently integrable, and if the initial temperature distribution is likewise sufficiently
smooth and integrable, then the solution has the form (2.5.28). But this says absolutely
nothing about the conditions on f under which (2.5.28) is a priori a solution — much to
our relief. N

2.5.24 Method: solve an PDE with the Fourier transform

0. Assume that the PDE is posed for an unknown function u = u(x, t) for x ∈ R. This
method can incorporate initial conditions of the form u(x, 0) = φ(x), ut(x, 0) = ψ(x), etc.,
but not boundary conditions. All Fourier transforms involving u are taken with respect to
x.

1. Using the identities

F[∂tu(·, t)](k) = ∂tû(k, t) and F[∂xu(·, t)](k) = ikû(k, t),

convert the PDE into an ODE in which the only derivatives are with respect to t and k is
a parameter.

2. Solve this ODE. Any arbitrary constants from ODE methods must now depend on k.

3. If applicable, incorporate any initial conditions of the form u(x, 0) = φ(x), ut(x, 0) =

ψ(x), etc., by rewriting them on the Fourier side, e.g., û(k, 0) = φ̂(k) and ∂t[û](k, t) =

ψ̂(k). Solve for any k-dependent arbitrary coefficients.

4. Attempt to calculate the inverse transform and solve explicitly for u as u(x, t) =
F−1[û(·, t)](x).

2.6. The wave equation.

The wave equation is

utt = c2uxx, u = u(x, t), c ∈ R \ {0}.

Unlike the heat equation, in which we took the “diffusivity constant” to be 1, we will want
to maintain this extra parameter c in the wave equation. This parameter c will have a
natural connection to wave “speed.”

2.6.1. D’Alembert’s formula and traveling waves.

We consider the wave equation on R, which models an “infinite” string.
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2.6.1 Example.

Use the Fourier transform to construct a formal solution to
utt = c2uxx, −∞ < x <∞, t ≥ 0

u(x, 0) = φ(x), −∞ < x <∞
ut(x, 0) = ψ(x), −∞ < x <∞.

(2.6.1)

Solution. Taking the Fourier transform with respect to the spatial variable x, we get an
IVP in the variable t that depends on k (and also c) as a parameter:

ûtt(k, t) + c2k2û(k, t) = 0

û(k, 0) = φ̂(k)

ût(k, 0) = ψ̂(k).

Here, of course, we need to assume φ, ψ ∈ L1(R).
If k 6= 0, then c2k2 > 0, and so the general solution to the ODE is

û(k, t) = α(k) cos(ckt) + β(k) sin(ckt). (2.6.2)

Then, still assuming k 6= 0, we use the initial condition u(x, 0) = φ(x) to find

α(k) = û(k, 0) = φ̂(k).

Differentiating (2.6.2) gives

ût(k, t) = −ckα(k) sin(ckt) + ckβ(k) cos(ckt),

and so the initial condition ut(x, 0) = ψ(x) implies

ψ̂(k) = ût(k, 0) = ckβ(k) =⇒ β(k) =
ψ̂(k)

ck
.

So, for k 6= 0, we have

û(k, t) = φ̂(k) cos(ckt) + ψ̂(k)
sin(ckt)

ck
. (2.6.3)

If k = 0, then we get the simpler IVP
ûtt(0, t) = 0

û(0, 0) = φ̂(0)

ût(0, 0) = ψ̂(0)

=⇒ û(0, t) = φ̂(0) + ψ̂(0)t.

Does this agree with the k 6= 0 result from (2.6.3)? We use a familiar limit from calculus:

lim
θ→0

sin(θ)

θ
= 1 =⇒ lim

k→0

sin(ckt)

ck
= t lim

k→0

sin(ckt)

ckt
= t.

Using the continuity of φ̂ and ψ̂ (which holds by part (ii) of Theorem 2.5.5, since φ,
ψ ∈ L1(R)), we obtain.

lim
k→0

û(k, t) = lim
k→0

(
φ̂(k) cos(ckt) + ψ̂(k)

sin(ckt)

ck

)
= φ̂(0) + ψ̂(0)t = û(0, t).
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Then, yes, our work from before agrees with the k = 0 case, and so we will only use the
formula (2.6.3) for û(k, t),

We now take the inverse Fourier transform of each term in (2.6.3) with respect to k.
To calculate

F−1[φ̂(k) cos(ckt)](x),

our first instinct might be to use a convolution identity, but k 7→ cos(ckt) is certainly not
integrable. Instead, the complex form of the cosine allows us to rewrite

φ̂(k) cos(ckt) = φ̂(k)

(
eickt + e−ickt

2

)
=
ei(ct)kφ̂(k) + ei(−ct)kφ̂(k)

2
.

Now, with (Sdφ)(x) := φ(x+ d), recall the identity Ŝdφ(k) = eikdφ̂(k) to see that

ei(±ct)kφ̂(k) = Ŝ±ctφ(k).

And so

F−1[φ̂(k) cos(ckt)](x) =
F−1[Ŝctφ](x) + F−1[Ŝ−ctφ](x)

2
=
φ(x+ ct) + φ(x− ct)

2
. (2.6.4)

To compute

F−1

[
ψ̂(k)

sin(ckt)

ck

]
(x),

we do need convolution. First, we recall Example 2.5.3:

χ(x, t) :=

{
1, |x| ≤ t

0, |x| > t,
=⇒ χ̂(k, t) =

√
2

π

sin(tk)

k
=⇒ sin(ckt)

ck
=

1

c

√
π

2
χ̂(k, ct).

As usual for a function of x and t, by χ̂(k, t) we mean F[χ(·, t)](k), i.e., the Fourier
transform in the x-variable. Then

F−1

[
ψ̂(k)

sin(ckt)

ck

]
(x) =

1

c

√
π

2
F−1
[
ψ̂(k)χ̂(k, ct)

]
(x) =

1√
2π

(
1

c

√
π

2

)(
ψ∗χ(·, ct)

)
(x).

(2.6.5)

By ψ ∗ χ(·, ct), we mean convolution in the x-variable of χ. That is,

(
ψ ∗ χ(·, ct)

)
(x) =

∫ ∞
−∞

ψ(x− ξ)χ(ξ, ct) dξ =

∫ ct

−ct
ψ(x− ξ) dξ = −

∫ x−ct

x+ct

ψ(s) ds

=

∫ x+ct

x−ct
ψ(s) ds. (2.6.6)

Inspired by the success of our formal Fourier methods for the heat equation in Example
(2.5.23), we will not attempt to justify the convolution formula used in (2.6.5) by imposing
any of the hypotheses of Corollary 2.5.17. Indeed, we would have some difficulty in doing
so, since sinc(·) 6∈ L1(R), by Example B.0.5.

We combine (2.6.4), (2.6.5), and (2.6.6) to conclude

u(x, t) = F−1[φ̂(k) cos(ckt)](x) + F−1

[
ψ̂(k)

sin(ckt)

ck

]
(x)

=
φ(x− ct) + φ(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
ψ(s) ds. N

(2.6.7)
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We emphasize that the work above does not prove that the solution to the IVP
(2.6.1) is given by (2.6.7). Instead, this works says that if a solution to (2.6.1) exists
with sufficiently well-behaved initial data φ and ψ, then that solution should have the
form (2.6.7). For u defined via this formula to be differentiable, then, we need φ to
be differentiable and ψ to be continuous (from the fundamental theorem of calculus).
For u to be twice-differentiable, we need ψ to be differentiable, as well (again from the
FTC). However, we do not need φ or ψ to be absolutely integrable; indeed, if ψ is
merely continuous, then the integral in (2.6.7) always exists. With this in mind, some
straightforward calculus formalizes (2.6.8) as a solution to the wave equation.

2.6.2 Lemma.

Let φ ∈ C2(R) and ψ ∈ C1(R). Then the function u : R2 → C defined by (2.6.7) solves
the wave equation utt = c2uxx.

Let us rewrite the solution (2.6.7) a little further as

u(x, t) =

(
φ(x− ct)

2
+

1

2c

∫ 0

x−ct
ψ(s) ds

)
︸ ︷︷ ︸

f(x− ct)

+

(
φ(x+ ct)

2
+

1

2c

∫ x+ct

0

ψ(s) ds

)
︸ ︷︷ ︸

g(x+ ct)

. (2.6.8)

The idea now is that f is a “right-moving wave” while g is a “left-moving” wave. More
precisely, consider just one function h = h(ξ) graphed below against the independent
variable ξ.

ξ

h(ξ)

If ct > 0, then the graph of h(·+ ct) is the graph of h shifted ct units to the left, and the
graph of h(· − ct) is the graph of h shifted ct units to the right.

x

h(x− ct)

ct

x

h(x+ ct)

−ct

So, if u(x, t) = h(x+ ct) with c > 0, then at each time t get the graph of u by shifting
the graph of h to the left, as though the “profile” given by the function h maintains its
shape and translates or “travels” over time. This is exactly how a water wave can behave;
on the ocean or on a canal, a wave may pulse forward, maintaining its shape, over a long
time, until it disperses or collides with an obstacle.

Returning to the full solution (2.6.8) of the wave equation , u(x, t) = f(x−ct)+g(x+
ct), we see that the solution “splits” into two waves, one with profile f that propagates
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to the right and one with profile g that propagates to the left.

x

f(x) + g(x)

x

f(x− ct1) + g(x+ ct1)

x

f(x− ct2) + g(x+ ct2)

x

f(x− ct3) + g(x+ ct3)

Moving beyond the wave equation, many PDEs involving the unknown function u =
u(x, t) may be solved by making a traveling wave ansatz u(x, t) = f(x−ct), where
f is a function of one variable, called the profile, and c is a constant number called
the wave speed. Such an ansatz typically converts the PDE for u into an ODE for f
that involves c as a parameter.

Now we return to the wave equation and show that the traveling wave solution pre-
dicted by Fourier theory is, in fact, the form the solution always takes.

2.6.3 Theorem.

(i) [D’Alembert’s formula] Suppose that u : R2 → C solves the wave equation utt =
c2uxx. Then there exist functions f , g ∈ C2(R) such that

u(x, t) = f(x− ct) + g(x+ ct).

We will sometimes refer (idiosyncratically) to the function f as the right-moving
profile and to g as the left-moving profile.

(ii) Let φ ∈ C2(R) and ψ ∈ C1(R). The unique solution to the IVP
utt = c2uxx, −∞ < x <∞, t ≥ 0

u(x, 0) = φ(x), −∞ < x <∞
ut(x, 0) = ψ(x), −∞ < x <∞,

is

u(x, t) =
φ(x− ct) + φ(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
ψ(s) ds.

Proof. (i) Suppose u is a C2-function satisfying utt = c2uxx. That is, all the partials
ut, utt, ux, uxx, and uxt = utx exist and are continuous. We need to construct twice-
differentiable functions f and g such that u(x, t) = f(x− ct) + g(x+ ct).

First, we have

utt = c2uxx ⇐⇒ utt − c2uxx = 0 ⇐⇒ (∂t − c∂x)(∂t + c∂x)u = 0.
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Set v = (∂t + c∂x)u. Then we must have

(∂t − c∂x)v = 0,

and so by our work with the transport equation in Example 2.2.2 we know

v(x, t) = F (x+ ct)

for some differentiable function F = F (X). Then we must have

(∂t + c∂x)u = F (x+ ct).

This is a nonhomogeneous transport equation, and a practice problem will guide us to
its solution:

u(x, t) = G(x− ct) +
1

c

∫ t

0

F (x− ct+ 2cs) ds, (2.6.9)

where G ∈ C1(R) is arbitrary. Substitute

w(s) = x− ct+ 2cs, w(0) = x− ct, w(t) = x+ ct, dw = 2c ds

to get ∫ t

0

F (x− ct+ 2cs) ds =
1

2c

∫ x+ct

x−ct
F (w) dw. (2.6.10)

Thus

u(x, t) = G(x− ct) +
1

2c2

∫ x+ct

x−ct
F (w) dw

=

[
G(x− ct) +

1

2c2

∫ 0

x−ct
F (w) dw

]
︸ ︷︷ ︸

f(x− ct)

+
1

2c2

∫ x+ct

0

f(w) dw︸ ︷︷ ︸
g(x+ ct)

.

(2.6.11)

Since F is differentiable, the integrals
∫ 0

x−ctF (w) dw and
∫ x+ct

0
F (w) dw are twice-

differentiable with respect to x and t by the fundamental theorem of calculus. And since
we are assuming that u is twice-differentiable from the start, we can use (2.6.9) and
(2.6.10) to write G as

G(x− ct) = u(x, t)− 1

2c

∫ x+ct

x−c
F (w) dw,

where the function on the right is twice-differentiable. HenceG is in fact twice-differentiable,
not just once differentiable as the nonhomogeneous transport equation result said. We
conclude from (2.6.11) that f and g are twice-differentiable, too.

(ii) If u solves the IVP, then utt = c2uxx, and so there are twice-differentiable functions
f and g such that

u(x, t) = f(x− ct) + g(x+ ct).

Then
φ(x) = u(x, 0) = f(x) + g(x). (2.6.12)



2. Partial Differential Equations and Fourier Analysis 120

Next,
ut(x, t) = −cf ′(x− ct) + cg′(x+ ct),

so
ψ(x) = ut(x, 0) = cg′(x)− cf ′(x).

That is, f and g must satisfy the system (of functions){
f + g = φ

cg′ − cf ′ = ψ.

Differentiating the first equation, we see that any solution pair (f, g) to this system must
also satisfy {

f ′ + g′ = φ′

g′ − f ′ = ψ/c.

We can write this as a matrix-vector equation:[
1 1
−1 1

](
f ′

g′

)
=

(
φ′

ψ/c

)
.

The matrix on the left is invertible, and we find

f ′ =
1

2

(
φ′ − ψ

c

)
and g′ =

1

2

(
φ′ +

ψ

c

)
.

We have now decoupled the equations involving f and g into two ODEs, one involving
only f , and one involving only g. The right sides of the equations involve φ and ψ, which
are given to us from the wave equation’s initial conditions.

We integrate to find

f(s)− f(0) =

∫ s

0

f ′(ξ) dξ =
1

2

∫ s

0

(
φ′(ξ)− ψ(ξ)

c

)
dξ

and
g(s)− g(0) =

∫ s

0

g′(ξ) dξ =
1

2

∫ s

0

(
φ′(ξ) +

ψ(ξ)

c

)
dξ.

We solve for f(s) and g(s):

f(s) = f(0) +
φ(s)− φ(0)

2
− 1

2c

∫ s

0

ψ(ξ) dξ

and
g(s) = g(0) +

φ(s)− φ(0)

2
+

1

2c

∫ s

0

ψ(ξ) dξ.

Now we put everything back together:

u(x, t) = f(x− ct) + g(x+ ct)

= f(0)+
φ(x− ct)− φ(0)

2
− 1

2c

∫ x−ct

0

ψ(ξ) dξ+g(0)+
φ(x+ ct)− φ(0)

2
+

1

2c

∫ x+ct

0

ψ(ξ) dξ
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= f(0) + g(0)− φ(0) +
φ(x+ ct) + φ(x− ct)

2
+

1

2c

∫ x+ct

x−ct
ψ(ξ) dξ.

Recall from (2.6.12) that f(0) + g(0) = φ(0). We conclude

u(x, t) =
φ(x+ ct) + φ(x− ct)

2
+

1

2c

∫ x+ct

x−ct
ψ(ξ) dξ. �

2.6.4 Example.

Solve the IVP 
utt = uxx, −∞ < x <∞, t ≥ 0

u(x, 0) = sin(x), −∞ < x <∞
ut(x, 0) = 0, −∞ < x <∞,

and discuss.

Solution. By D’Alembert’s formula, the solution is

u(x, t) =
sin(x+ t) + sin(x− t)

2
.

The two terms of u both have the same spatial frequency (i.e., their period in the x-
variable is the same, 2π) and amplitude (the distance between the maximum and mini-
mum value of each term is the same, namely 1) but they “propagate” in opposite direc-
tions: the term sin(x + t) moves to the left as t → +∞, while sin(x − t) moves to the
right as t→ +∞.

The situation of two waves with the same spatial frequency and amplitude but trav-
eling in opposite directions is perfectly set up to cancel out some motion. Using the trig
addition formulas, we can show

u(x, t) = sin(x) cos(t).

Thus at any point t in time and x in space, the height of the wave is just a multiple of
sin(x), and if we look at a movie of the wave, or at least a series of sketches, it looks like
the wave profile is just bouncing up and down over the same region in space; a particle
“riding” the wave would not travel to the left or right but just oscillate in place.

x

sin(x)

x

sin(x) cos(t1)

x

sin(x) cos(t2)

x

sin(x) cos(t3)
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In general, a solution u = u(x, t) to a PDE is a standing wave if u(x, t) = f(x)g(t)
for functions f and g of one variable. This is precisely the separation of variables ansatz,
to which we return shortly. So, separation of variables always yields standing wave
solutions, but our habit of using superposition and adding a bunch of solutions formed
from separation of variables can destroy the standing wave behavior (we need not be able
to write f1(x)g1(t) + f2(x)g2(t) as F (x)G(t)). N

2.6.2. Separation of variables for the wave equation.

2.6.5 Example.

Use separation of variables to find a formal solution to the IVP-BVP
utt = c2uxx, 0 ≤ x ≤ P, t ≥ 0

u(0, t) = u(P, t) = 0, t ≥ 0

u(x, 0) = φ(x), 0 ≤ x ≤ P

ut(x, 0) = ψ(x), 0 ≤ x ≤ P.

Solution. With u(x, t) = X(x)T (t), we have

X(x)T ′′(t) = c2X ′′(x)T (t)

and thus
T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= λ

for some constant λ. Then we have two second-order problems:

X ′′(x) = λX(x) and T ′′(t) = c2λT (t)

Each of these problems has three solutions, depending on the sign of λ, and so nine
possible product solutions result!

However, if λ ≥ 0, one can show that the boundary conditions only admit a trivial
product solution, and so we assume λ = −α2 < 0 for some α > 0. Then

X ′′(x) = −α2X(x),

so
X(x) = β1 cos(αx) + β2 sin(αx)

and
T ′′(t) = −c2α2T (t),

so
T (t) = γ1 cos(αct) + γ2 sin(αct).

We put this back together to find

u(x, t) =
(
β1 cos(αx) + β2 sin(αx)

)(
γ1 cos(αct) + γ2 sin(αct)

)
.

Now we work with the boundary conditions:

0 = u(0, t) = β1

(
γ1 cos(αct) + γ2 sin(αct)

)
.
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Since this must hold for all t, by linear independence of sin(·) and cos(·), we either have
β1 = 0 or γ1 = γ2 = 0. In the latter case, we reduce to a trivial solution for u, and so we
take β1 = 0. Then

u(x, t) = β2 sin(αx)
(
γ1 cos(αct) + γ2 sin(αct)

)
,

and so using the other boundary condition gives

0 = β2 sin(αP )
(
γ1 cos(αct) + γ2 sin(αct)

)
.

So, either β2 = 0, or sin(αP ) = 0, or a linear combination of sin(·) and cos(·) vanishes
for all t. The only possibility that avoids the trivial solution is taking sin(αP ) = 0, and
so

α =
kπ

P
for some k ∈ Z.

After relabeling our constants, we conclude that

u(x, t) =

(
Ak cos

(
kπct

P

)
+Bk sin

(
kπct

P

))
sin

(
kπx

P

)
.

Superposition then tells us that a solution to the BVP (not yet taking into account initial
conditions) is

u(x, t) =
n∑
k=1

(
Ak cos

(
kπct

P

)
+Bk sin

(
kπct

P

))
sin

(
kπx

P

)
(2.6.13)

for any integer n. Note that we have no k = 0 term because of the factor of sin(kπx/P ).
Now we look at the initial conditions. We have

φ(x) = u(x, 0) =
n∑
k=1

Ak sin

(
kπx

P

)
and, since the t-derivative of (2.6.13) is

ut(x, t) =
n∑
k=1

(
−Akkπc

P
sin

(
kπct

P

)
+
Bkkπ

P
cos

(
kπct

P

))
sin

(
kπx

P

)
,

we have

ψ(x) = ut(x, 0) =
n∑
k=1

Bk

(
kπc

P

)
sin

(
kπx

P

)
.

We put all this together to claim that the formal solution to the full problem
utt = c2uxx, 0 < x < P

u(0, t) = u(P, t) = 0

u(x, 0) = φ(x), 0 ≤ x ≤ P

ut(x, 0) = ψ(x), 0 ≤ x ≤ P,

where

FSS[φ](x) =
∞∑
k=1

Ak sin

(
kπx

P

)
and FSS[ψ](x) =

∞∑
k=1

Bk

(
kπc

P

)
sin

(
kπx

P

)
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is

u(x, t) =
∞∑
k=1

(
Ak cos

(
kπct

P

)
+Bk sin

(
kπct

P

))
sin

(
kπx

P

)
. (2.6.14)

It is important to note that, in this phrasing, the kth Fourier sine coefficient of ψ is not
Bk but rather Bk(kπc)/P . So, if we write instead

FSS[φ](x) =
∞∑
k=1

Ak[φ] sin

(
kπx

P

)
and FSS[ψ](x) =

∞∑
k=1

Bk[ψ]

(
kπc

P

)
sin

(
kπx

P

)
,

then the formal solution u is

u(x, t) =
∞∑
k=1

(
Ak[φ] cos

(
kπct

P

)
+

P

kπc
Bk[ψ] sin

(
kπct

P

))
sin

(
kπx

P

)
.

The individual terms(
Ak cos

(
kπct

P

)
+Bk sin

(
kπct

P

))
sin

(
kπx

P

)
.

of this formal series for u are sometimes called the harmonics or overtones of the
plucked string with ends fixed at x = 0, P . Now we manipulate an arbitrary term of this
sum in a peculiar way. Using the addition formula for sine, we have(

Ak cos

(
kπct

P

)
+Bk sin

(
kπct

P

))
sin

(
kπx

P

)

= Ak cos

(
kπct

P

)
sin

(
kπx

P

)
︸ ︷︷ ︸
=

1

2
sin

(
kπ(x− ct)

P

) +Bk sin

(
kπct

P

)
sin

(
kπx

P

)
︸ ︷︷ ︸
=

1

2
sin

(
kπ(x+ ct)

P

) .

Thus (formally!)

u(x, t) =
1

2

∞∑
k=1

Ak sin

(
kπ(x− ct)

P

)
+

1

2

∞∑
k=1

Bk sin

(
kπ(x+ ct)

P

)
.

If we put

f(X) :=
1

2

∞∑
k=1

Ak sin

(
kπX

P

)
and g(X) :=

1

2

∞∑
k=1

Bk sin

(
kπX

P

)
,

then we can rewrite (2.6.14) in D’Alembert’s formula u(x, t) = f(x− ct) + g(x+ ct). N

2.7. Boundary value problems.

The material in this section comes from [6, 7, 18, 29, 31]. Other than the motivational
problem below in Section 2.7.1, the material here does not explicitly use techniques from
PDE, but we do use notions from (generalized) Fourier series.
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2.7.1. Motivation: separation of variables for a generalized heat equation.

The following equation is a more general model of heat conduction in a rod of length P
than our original heat equation (2.3.1):

r(x)ut = ∂x[p(x)ux] +G(x, t, u(x, t)).

Here u = u(x, t) is the temperature of the rod at position x ∈ [0, P ] and time t ≥ 0, while
r, p ∈ C([0, P ]) are positive-valued functions. If r = p = 1 and G = 0, then this equation
reduces to the heat equation ut = uxx.

The term G represents a source (addition) or sink (removal) of heat throughout the
bar. We also assume heat flows through the ends of the rod at a rate proportional to the
temperature at the ends and so impose the boundary conditions

ux(0, t) + α1u(0, t) = 0 and ux(P, t) + β1u(P, t) = 0. (2.7.1)

Let us further assume that G depends linearly on u and that the coefficient of u is
independent of t:

G(x, t, u) = q(x)u+ F (x, t).

Here q ∈ C([0, P ]) is assumed to be real-valued. So, our PDE becomes

r(x)ut = ∂x[p(x)ux] + q(x)u+ F (x, t). (2.7.2)

Assume for now that F = 0 (we will treat the nonzero case in an exercise) and separate
variables with u(x, t) = X(x)T (t). We find

r(x)X(x)T ′(t) = ∂x[p(x)X]T (t) + q(x)X(x)T (t) =⇒ T ′(t)

T (t)
=
∂x[p(x)X] + q(x)X(x)

r(x)X(x)
= λ

for some λ ∈ R. (We are taking λ ∈ R since p, q, and r are real-valued.) The T equation
is, of course,

T ′(t) = λT (t) ⇐⇒ T (t) = Ceλt, (2.7.3)

as before, in Example 2.3.1.
The X equation rearranges to

∂x[p(x)X ′] + q(x)X(x) = λr(x)X(x).

Now, if we expand the ∂x term with the product rule and rearrange, this equation reads

p(x)X ′′ + p′(x)X ′ + (q(x)− λr(x)X = 0.

Since p(x) > 0 for all x, this is equivalent to

X ′′ +
p′(x)

p(x)
X ′ +

q(x)− λr(x)

p(x)
X = 0.

For each fixed λ ∈ R, this is a homogeneous second-order linear ODE with continuous
coefficients, per Definition 1.1.6, and so it has two linearly independent solutions (which
depend on λ), and any solution to this ODE must be a linear combination of these
solutions, per Theorem 1.4.13.
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So, for which (if any) λ can we meet the boundary conditions? Using the product
ansatz u(x, t) = X(x)T (t), the boundary conditions (2.7.1) read

X ′(0) + α1X(0) = 0 and X ′(P ) + β1X(P ) = 0. (2.7.4)

(The equations (2.7.1) do not involve any derivatives of T , which is positive anyway by
(2.7.3), and so we can divide out by T to obtain (2.7.4).) We should approach this problem
with some trepidation. After all, we saw long ago in the very simple Example 1.2.6 that
BVPs need not have as consistent behavior as IVPs, and, more recently, Example 2.3.2
suggests that we may only be able to meet (2.7.4) for very particular values of λ.

In Sections 2.7.4 and 2.7.5 we will develop two different, but equivalent, methods for
solving the boundary value problem (BVP)

∂x[p(x)X ′] + q(x)X(x) = λr(x)X(x)

X ′(0) + α1X(0) = 0

X ′(P ) + β1X(P ) = 0

(2.7.5)

under certain conditions on λ. We will then return to the more general PDE problem
(2.7.2) with F 6= 0. Let us emphasize now that the chief challenge here is not solving the
ODE but rather finding the values of λ for which the ODE has a solution that meets the
boundary conditions.

2.7.2. Eigentheory of homogeneous Sturm-Liouville BVPs.

We presume knowledge of Appendix C.6 on eigenvalues and C.8 on self-adjoint operators.

2.7.1 Definition.
A homogeneous Sturm-Liouville boundary value problem is a BVP
of the form 

∂x[p(x)f ′] + q(x)f = λr(x)f, a ≤ x ≤ b

α0f(a) + α1f
′(a) = 0

β0f(b) + β1f
′(b) = 0.

(2.7.6)

Here p ∈ C1([a, b]) and q, r ∈ C([a, b]) with p and r positive, λ ∈ R, and q real-valued.
The constants α0 and α1 are not both zero, and the constants β0 and β1 are not both
zero37.

The form of the ODE in (2.7.6) may seem unusually restrictive. We discuss some of
its properties here and show in Section 2.7.3 how this is the natural form of an ODE to
study in the context of boundary conditions.

2.7.2 Remark.

(i) The ODE in (2.7.6) reads

p(x)f ′′ + p′(x)f ′ +
(
q(x)− λr(x)

)
f = 0. (2.7.7)

37Two more succinct ways of expressing this are α2
0 + α2

1 6= 0 and β2
0 + β2

1 6= 0, or (α0, α1) 6= (0, 0) and
(β0, β1) 6= (0, 0).
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Since p(x) > 0 for all x with p′, q, and r continuous, this rearranges to the ODE

f ′′ +
p′(x)

p(x)
+

(
q(x)− λr(x)

p(x)

)
f = 0.

This is a second-order linear homogeneous ODE with continuous coefficients, so we
know (Lemma 1.4.12) it has two linearly independent solutions. Whether or not these
solutions, or a linear combination of them, meet the boundary conditions in (2.7.6) is,
right now, anyone’s guess.

(ii) We will call an ODE of the form

∂x[ρ(x)f ] + θ(x)f = 0 (2.7.8)

a Sturm-Liouville ODE whenever ρ is positive and θ is real-valued.

(iii) The ODE in a Sturm-Liouville problem is sometimes written instead as

∂x[p(x)f ′] +
(
q(x) + λr(x)

)
f = 0. (2.7.9)

We will see in the exercises that if one can solve (2.7.7), then it is easy to solve (2.7.9).

The next example illustrates all of the abstract properties of Sturm-Liouville BVPs
that we will subsequently develop. It is essentially a rehashing of Example 2.3.2.

2.7.3 Example.

Find all real numbers λ and all nonzero functions f that satisfy{
f ′′ + f = λf, 0 ≤ x ≤ π

f(0) = f(π) = 0.

Solution. First, observe that the compactly written boundary conditions above really
are (

1 · f(0)
)

+
(
0 · f ′(0)

)
= 0 and

(
1 · f(π)

)
+ (0 · f ′(π)

)
= 0,

and these are of the appropriate form from Definition 2.7.1. Also, the ODE here is really

∂x[1 · f ′] + (1 · f) = λ(1 · f).

And so our problem is indeed a Sturm-Liouville BVP, with p = q = r = 1.
The ODE rearranges to the homogeneous problem

f ′′ + (1− λ)f = 0. (2.7.10)

We consider cases on λ.

(i) λ < 0. Write λ = −α2 for α > 0. Then the ODE is

f ′′ + (1 + α2)f = 0,

where 1 + α2 > 0. The general solution is

f(x) = c1 cos(
√

1 + α2x) + c2 sin(
√

1 + α2x).
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To meet the f(0) = 0 boundary condition, we need c1 = 0, and so f(x) = c2 sin(
√

1 + α2x).
To meet the f(π) = 0 boundary condition with c2 6= 0, we need sin(

√
1 + α2π) = 0, hence√

1 + α2π = kπ for some k ∈ Z. Since
√

1 + α2 > 0, this k must be a positive integer.
We solve

√
1 + α2 = k to find α2 = k2 − 1, thus λ = −α2 = 1− k2. This further requires

k ≥ 2, since λ < 0 (equivalently, α > 0).

(ii) λ = 0. Then the ODE is f ′′ + f = 0, which has the general solution

f(x) = c1 cos(x) + c2 sin(x).

To have f(0) = 0, we need c1 = 0, and so f(x) = c2 sin(x). Regardless of what c2 is, we
will then have f(π) = 0. So, the BVP at λ = 0 has the nontrivial solution f(x) = c sin(x)
where c ∈ R is arbitrary.

(iii) λ > 0. Write λ = α2 for α > 0, so the ODE is

f ′′ + (1− α2)f = 0.

We need to consider three further cases on α.

(i) 0 < α < 1. Then (2.7.10) has the general solution

f(x) = c1 cos(
√

1− α2x) + c2 sin(
√

1− α2x).

The condition f(0) = 0 forces c1 = 0, and so f(x) = c2 sin(
√

1− α2x). The condition
f(π) = 0 forces either c2 = 0 or sin(

√
1− α2π) = 0. The latter happens if and only if√

1− α2π = kπ for some integer k ∈ Z. Since 0 < α < 1, we have k =
√

1− α2. This
rearranges to 1 − k2 = α2. Since k is an integer, we have 1 − k2 ≤ 0, which contradicts
our assumption of 0 < α < 1, and so we can only meet both boundary conditions if
c1 = c2 = 0.

(ii) α = 1. Then (2.7.10) is just f ′′ = 0, from which f(x) = c1x + c2. It is then a quick
calculation that if f(0) = f(π) = 0, then c1 = c2 = 0.

(iii) α > 1. We rewrite (2.7.10) slightly as

f ′′ − (α2 − 1)f = 0,

where now α2 − 1 > 0. All solutions then have the form

f(x) = c1e
√
α2−1x + c2e

−
√
α2−1x.

We try to find c1 and c2 to meet the boundary conditions. First, we need

0 = f(0) = c1 + c2.

Next, we need
0 = f(π) = c1e

√
α2−1π + c2e

−
√
α2−1π.

We put these two equations together as a matrix-vector equation:[
1 1

e
√
α2−1π e−

√
α2−1π

](
c1

c2

)
=

(
0
0

)
. (2.7.11)

The determinant of this matrix is e−
√
α2−1π−e

√
α2−1π. Since α > 1, we have −

√
α2 − 1π 6=√

α2 − 1π, so the determinant is nonzero. Hence there is only the trivial solution c1 =
c2 = 0 to (2.7.11) and therefore to (2.7.10).
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In particular, there is only the trivial solution for λ > 0.

Putting all our work together, the BVP has nontrivial solutions if and only if λ =
λk := 1 − k2 for k ∈ N, and when λ = λk, all solutions to the BVP are scalar multiples
of φk(x) := sin(kx). Let us make some further observations on these solutions.

• The scalar parameters λk can be written in decreasing order: λ1 > λ2 > · · · > λk >
λk+1, and they satisfy limk→∞ λk = −∞.

• For different values of k, the solutions φk are orthogonal in the L2-inner product:

〈φk, φj〉L2 =

∫ π

0

φk(x)φj(x) dx =

∫ π

0

sin(kx) sin(jx) dx = 0 if k 6= j.

• From the exercises on Fourier sine series, we have the pointwise convergence

f(x+) + f(x−)

2
= FSS[f ](x), 0 < x < π,

for any f ∈ C1
pw([0, π]), where

FSS[f ](x) =
∞∑
k=1

2

π

(∫ π

0

f(ξ) sin(kξ) dξ

)
sin(kx).

Since
‖φk‖2

L2 =

∫ π

0

sin2(kx) dx =
π

2
, k ≥ 1,

we can rewrite this Fourier sine series as

FSS[f ](x) =
∞∑
k=1

〈f, φk〉L2

‖φk‖2
L2

φk(x).

That is, the “normalized” functions {φk/ ‖φk‖2
L2}∞k=1 form a “basis” for C1

pw([0, π]), from a
certain point of view. N

We will see that the observations above hold for all Sturm-Liouville BVPs. This is
the content of our ultimate Theorem 2.7.7.

2.7.4 Remark.
The peculiar form of the Sturm-Liouville ODE, to say nothing of the accompanying
boundary conditions in (2.7.6), may seem restrictive. Of course, this form is motivated
by the BVP that we derived for the generalized heat equation in (2.7.5). But, surely
there are other interesting boundary conditions to consider, and there are plenty of
reasonable second-order linear ODEs in which the coefficient of f ′′ has no relation to
that of f ′. And why should we restrict ourselves to real λ, anyway? We know how to
handle ODEs with complex-valued coefficients.

We discuss these issues in detail in Section 2.7.3. It turns out that (1) any second-
order ODE with reasonably well-behaved coefficients is equivalent to the special Sturm-
Liouville-type ODE in (2.7.12), and (2) the full Sturm-Liouville BVP (2.7.6) is effec-
tively the only BVP with sufficiently nice mathematical properties to make its solutions
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accessible to us in this course.

As we mentioned at the end of Section 2.7.1, the challenge of solving a BVP is less
solving the underlying ODE and more fitting solutions of the ODE to the boundary
conditions. An extra feature of the Sturm-Liouville BVP (2.7.6) is the parameter λ.
We will take an abstract view that will allow us to invoke techniques and results from
eigenvalue analysis (Appendix C.6).

First, since r(x) > 0 for all x, we may divide to see that the ODE part of (2.7.6) is
equivalent to

1

r(x)

(
∂x[p(x)f ] + q(x)f ]

)
= λf. (2.7.12)

If we put

Sf := ∂x[p(x)f ′] + q(x)f and Srf :=
1

r(x)
Sf, (2.7.13)

then (2.7.12) simply compresses to Srf = λf . This is clearly an eigenvalue-eigenvector
relationship for the operator Sr, viewed as an operator in C([a, b]) with domain C2([a, b]).
For this reason we say that a function f ∈ C2([a, b]) that solves (2.7.6) for a particular
λ ∈ R is an eigenfunction of the BVP and λ is an eigenvalue. We call the ordered
pair (λ, f) an eigenpair of the system (2.7.6).

If one wants to understand something about the eigenvalues of a linear operator —
in this case, Sr from (2.7.13) — it is often helpful to bring an inner product (Definition
C.4.1) into play. Perhaps the most natural inner product for interacting with a linear
operator consisting of derivatives is the L2-inner product, which is38

〈f, g〉L2 :=

∫ b

a

f(x)g(x) dx.

Then the fundamental interaction between the L2-inner product and derivatives arises
from integration by parts:

〈∂x[f ], g〉L2 = f(x)g(x)
∣∣x=b

x=a
− 〈f, ∂x[g]〉L2 , f, g ∈ C2([a, b]). (2.7.14)

If we could show that Sr is self-adjoint with respect to the L2-inner product (Appendix
C.8), then we would unlock significant information about its eigenvalues and eigenfunc-
tions: the eigenvalues are all real and eigenfunctions corresponding to distinct eigenvalues
are orthogonal (Proposition C.8.2). However, it will not quite be the case that Sr is self-
adjoint in this inner product — and the right domain for Sr will not quite be all of
C2([a, b]).

But we do not want to work on all of C2([a, b]) anyway; we want solutions to (2.7.6)
that meet the boundary conditions. So, let us encode the boundary data from (2.7.6): put

D(S) = D(Sr) :=
{
f ∈ C2([a, b])

∣∣ α0f(a) + α1f
′(a) = β0f(b) + β0f

′(b) = 0
}
. (2.7.15)

Then we have a self-adjointness result for the simpler operator S.

38Since we will only work on a closed, bounded interval [a, b] in this section, we write 〈·, ·〉L2 , not
〈·, ·〉L2([a,b]).
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2.7.5 Lemma.

If p ∈ C1([a, b]) and q ∈ C([a, b]) are real valued, and if

Sf := ∂x[p(x)f ′] + q(x)f,

as in (2.7.13), then S is self-adjoint as an operator in C2([a, b]) with domain D(S)
from (2.7.15) with respect to the L2-inner product. That is,

〈Sf, g〉L2 = 〈f,Sg〉L2 , f, g ∈ D(S).

Proof. We have

〈Sf, g〉L2 =

∫ b

a

(Sf)(x)g(x) dx =

∫ b

a

∂x[p(x)f ′(x)]g(x) dx︸ ︷︷ ︸
I1

+

∫ b

a

q(x)f(x)g(x) dx︸ ︷︷ ︸
I2

.

The term I2 is simpler, so we start with that:

I2 =

∫ b

a

f(x)q(x)g(x) dx,

since q is real-valued.
For I1, we integrate by parts with

u = g(x) dv = ∂x[p(x)f ′(x)] dx

du = g′(x) v = p(x)f ′(x).

Here we are using part (iii) of Example A.5.4 to interchange the derivative and the
complex conjugate. Then

I1 = p(x)f ′(x)g(x)
∣∣x=b

x=a︸ ︷︷ ︸
B1

−
∫ b

a

p(x)f ′(x)g′(x) dx︸ ︷︷ ︸
I3

.

We integrate by parts on I3 again with

u = p(x)g′(x) dv = f ′(x) dx

du = ∂x[p(x)g′(x)] v = f(x).

Then

I3 = p(x)g′(x)f(x)
∣∣x=b

x=a︸ ︷︷ ︸
B2

−
∫ b

a

f(x)∂x[p(x)g′(x)] dx︸ ︷︷ ︸
I4

.

We put this back together:

I1 = B1 − B2 + I4.

Since p is real-valued, we can once again interchange the derivative and the complex
conjugate to have

I4 =

∫ b

a

f(x)
(
∂x[p(x)g′(x)]

)
dx.
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Then

〈Sf, g〉L2 = I1+I2 = B1−B2+I2+I4 = B1−B2+

∫ b

a

f(x)
(
∂x[p(x)g′(x)] + q(x)g(x)

)
dx

= B1 − B2 + 〈f,Sg〉L2 .

So, all we need to do is verify that B1 − B2 = 0. We claim that this follows from the
boundary conditions in (2.7.12) which both f and g must satisfy, since f , g ∈ D(S); the
precise calculation is left as an exercise (one will need to consider cases based on which
of α0, α1 and β0, β1 are nonzero). �

Our interest, however, is not really the Sturm-Liouville operator S but rather the
scaled operator Sr from (2.7.13). Does Theorem 2.7.12 imply that Sr is also self-adjoint
in the L2-inner product? Let us check:

〈Srf, g〉L2 =

〈
1

r
Sf, g

〉
L2

=

∫ b

a

1

r(x)
(Sf)(x)g(x) dx =

∫ b

a

(Sf)(x)
g(x)

r(x)
dx =

〈
Sf, g

r

〉
L2

=
〈
f,S

(g
r

)〉
L2
. (2.7.16)

Since r is real-valued, we absorbed it into the complex conjugate on g. Now the question
is if

S
(g
r

)
=

1

r
Sg = Srg.

The first equality will not hold in general because of the product rule for derivatives. And
so Sr is not self-adjoint with respect to the L2-inner product.

But we are asking the wrong question. Instead of working with the plain L2-inner
product, let us use a weighted L2-inner product: put

〈f, g〉L2
r

:= 〈rf, g〉L2 =

∫ b

a

r(x)f(x)g(x) =
〈√

rf,
√
rg
〉
. (2.7.17)

One can check that since r is real, positive, and continuous on [a, b], the map 〈·, ·〉L2
r
also

satisfies the properties of an inner product (on any subspace of C([a, b])). Moreover, the
calculation (2.7.16) shows

〈Srf, g〉L2
r

= 〈rSrf, g〉L2 =

〈
r

(
1

r
Sf
)
, g

〉
L2

= 〈Sf, g〉L2 . (2.7.18)

Now, Theorem 2.7.12 tells us that S is self-adjoint with respect to the L2-inner product,
and so, using again that r is real and positive,

〈Sf, g〉L2 = 〈f,Sg〉L2 =

〈
f, r

(
1

r
Sg
)〉

L2

=

∫ b

a

f(x)

(
r(x)

(Sg)(x)

r(x)

)
dx

=

∫ b

a

f(x)r(x)(Srg)(x) dx =

∫ b

a

f(x)r(x)(Srg)(x) dx = 〈rf,Srg〉L2 = 〈f,Srg〉L2
r
.

(2.7.19)

Combining (2.7.18) and (2.7.19), we have the following lemma.
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2.7.6 Lemma.

The operator Sr is self-adjoint with respect to the L2
r-inner product when the domain

D(Sr) is a subspace of the form (2.7.15).

At last, we can invoke Proposition C.8.2 to conclude the following about eigenvalues
and eigenvectors for the operator Sr with domain D(Sr) from (2.7.34) — equivalently,
about eigenvalues and eigenfunctions for the Sturm-Liouville BVP (2.7.6). If we glance
back to Example 2.7.3, we will see that all the properties of this theorem were illustrated
there.

2.7.7 Theorem (Eigentheory for Sturm-Liouville BVPs).

Under the hypotheses of Definition 2.7.1, the Sturm-Liouville BVP (2.7.6) has the
following properties.

(i) The eigenvalues of the Sturm-Liouville problem (2.7.6) are all real. Moreover, they
form a countable set {λk}∞k=1, which we can index in strictly decreasing order39 so that
λk+1 < λk, and limk→∞ λk = −∞.

(ii) Each eigenvalue of (2.7.6) is geometrically simple: for each k, there exists φk ∈
D(Sr) such that (λk, φk) is an eigenpair for (2.7.6) and if (λk, f) is another eigenpair
for (2.7.6), then there exists α ∈ C such that f = αφk. Moreover, each φk is not
identically zero and can be chosen to be real-valued.

(iii) Eigenfunctions of (2.7.6) corresponding to distinct eigenvalues are orthogonal in
the L2

r-inner product: if (λk, φk) and (λj, φj) are eigenpairs of (2.7.6) with λk 6= λj,
then ∫ b

a

r(x)φk(x)φj(x) dx = 0.

In particular, the set {φk}∞k=1 is linearly independent.

(iv) The normalized eigenfunctions {φk/ ‖φk‖L2
r
}∞k=1 form an orthonormal basis for

C([a, b]) under the L2-inner product in the sense that if f ∈ C([a, b]), then

lim
n→∞

∥∥∥∥∥f −
n∑
k=1

〈f, φk〉L2

‖φk‖2
L2
r

φk

∥∥∥∥∥
L2
r

,

where ‖g‖L2
r

:=
√
〈g, g〉L2

r
from (2.7.17). Moreover, we have the pointwise convergence

f(x+) + f(x−)

2
=
∞∑
k=1

〈f, φk〉L2
r

‖φk‖2
L2
r

φk(x), a < x < b

whenever f ∈ C1
pw([a, b]). In particular,

f(x) =
∞∑
k=1

〈f, φk〉L2
r

‖φk‖2
L2
r

φk(x), a < x < b (2.7.20)

for all f ∈ D(Sr).
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2.7.3. Self-adjointness for more general differential operators.

We remarked several times that the form of the ODE in the Sturm-Liouville BVP (2.7.6)
is very particular. It reads

p(x)f ′′ + p′(x)f ′ + q(x)f︸ ︷︷ ︸
Sf

= λr(x)f. (2.7.21)

Here p ∈ C1([a, b]) with p(x) > 0 for all x, while q, r ∈ C([a, b]) with q(x) real for all
x and r(x) > 0 for all x. These are some very restrictive coefficients! We started in
Section 2.7.2 by showing that S was self-adjoint with respect to the L2-inner product,
from which we deduced that Sr := (1/r)S was self-adjoint with respect to the weighted
L2
r-inner product from (2.7.17).
Why did we not try to work with a more general differential operator in lieu of S?

What would happen if we tried to solve

Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f︸ ︷︷ ︸
Af

= λr(x)f (2.7.22)

instead? Here let us take Φ, Ψ, and Θ continuous with Φ positive (so this remains a
second-order ODE) but perhaps Ψ and Θ complex-valued.

First, we claim it is actually not at all restrictive to work with an ODE of the Sturm-
Liouville form (2.7.21) instead of (2.7.21).

2.7.8 Lemma.

Let Φ ∈ C1([a, b]) be positive-valued and Ψ, Θ, g ∈ C([a, b]). There exist functions
p ∈ C1([a, b]), q, µ ∈ C([a, b]) with µ positive such that a function f ∈ C2([a, b]) satisfies

Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f = g(x) (2.7.23)

if and only if f also solves

∂x[p(x)f ′] + q(x)f = µ(x)g(x). (2.7.24)

Proof. At first glance, it would suffice to construct the functions p, q to satisfy

p(x)f ′′ + p′(x)f + q(x)f = Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f.

But then we would need p = Φ and p′ = Ψ, thus Φ′ = Ψ. And that would require (2.7.23)
to be in Sturm-Liouville form already.

Instead, we take inspiration from the integrating factor method for first-order ODEs
(Section 1.2.2). If µ is a positive function on [a, b], then the ODEs (2.7.23) and

µ(x)Φ(x)f ′′ + µ(x)Ψ(x)f ′ + µ(x)Θ(x)f = µ(x)g(x) (2.7.25)

are equivalent; a function f solves (2.7.23) if and only if f solves (2.7.25). So, perhaps
we can choose µ so that

p = µΦ and p′ = µΨ.

39This is worth specifying: we can index the integers Z as Z = {µk}∞k=1, but it is not possible to find
µ1 ∈ Z such that µ1 < µ for all other µ ∈ Z. Similarly, we can index the rationals Q as Q = {νk}∞k=1,
but it is not possible to put the νk in strictly increasing order with νk < νk+1.
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For this to happen, we need
∂x[µΦ] = µΨ. (2.7.26)

If we rearrange (2.7.26), we see that it is a first-order linear ODE for µ:

µ′ +

(
Φ′(x)−Ψ(x)

Φ(x)

)
µ = 0. (2.7.27)

Here we used both the positivity and the differentiability of Φ.
A solution to the ODE (2.7.27) is, of course,

µ(x) := exp

(
−
∫ x

a

Φ′(ξ)−Ψ(ξ)

Φ(ξ)
dξ

)
.

And so if we put
p(x) := µ(x)Φ(x) and q(x) := µ(x)Θ(x),

then (2.7.23) and (2.7.24) are equivalent. �

So, if we start with a solution f to the “general” problem (2.7.22), then we could
use this lemma with g(x) = λr(x)f(x) to show that f solves the Sturm-Liouville ODE
(2.7.21) with the weight function r replaced by the (still positive!) weight r(x)µ(x).

But we can do more. We will demonstrate the surprising fact that, under a few more
reasonable hypotheses on its coefficients, the operator A from (2.7.22) is self-adjoint with
respect to the L2-inner product only if A is already in Sturm-Liouville form! To see if A
is self-adjoint with respect to 〈·, ·〉L2 , the natural thing to do is to start with the integral∫ b
a
(Af)(x)g(x) dx for arbitrary f and g and integrate by parts. Ideally, one will find∫ b

a

(Af)(x)g(x) dx =

∫ b

a

f(x)(Bg)(x) dx+ “boundary terms.”

Here B will likely be another differential operator, and the boundary terms will arise
from evaluating various functions at a and b and subtracting. The need to integrate by
parts — to “pop” derivatives from Af onto g — will require us to assume a little more
differentiability of the coefficients Φ and Ψ from (2.7.22).

We begin with Lagrange’s identity. The verification of the following lemma is just a
long calculation using integration by parts and part (iii) of Example A.5.4 to interchange
the derivative and the complex conjugate (i.e, f ′(x) = ∂x[f ](x)). The calculations closely
resemble those in the proof of Lemma 2.7.12.

2.7.9 Lemma (Lagrange’s identity).

Fix real numbers a < b and let Φ ∈ C2([a, b]), Ψ ∈ C1([a, b]), and Θ ∈ C([a, b]). Define40

Af := Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f, (2.7.28)

as in (2.7.22), and put

A†f := ∂2
x[Φ(x)f ]− ∂x[Ψ(x)f ] + Θ(x)f, (2.7.29)

and
NA[f, g] :=

(
Φ(x)W [f, g](x) + (Ψ(x)− Φ′(x))f(x)g(x)

)∣∣x=b

x=a
. (2.7.30)
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Here W is the Wronskian from (1.4.8). Then for any f , g ∈ C2([a, b]),

〈Af, g〉L2 =
〈
f,A†g

〉
L2 +NA[f, g]. (2.7.31)

Now let us ask two questions about the more general operator A, which we will
consider as an operator in C([a, b]) with domain D(A) ⊆ C2([a, b]) ⊆ C([a, b]) to be
determined.

1. Under what conditions on the coefficients Φ, Ψ, and Θ and the domain D(A) does
the operator A have an adjoint in C([a, b])?

2. If A has an adjoint, under what (further?) conditions is A self-adjoint?

A glance at Lagrange’s identity (2.7.31) shows that A† will be the adjoint of A if the
boundary terms NA[f, g] vanish for all f ∈ D(A) and g ∈ D(A†), once these domains
have been properly specified. One way to simplify the boundary terms is to require
Ψ = Φ′, in which case we just need

NA[f, g] = Φ(x)W [f, g(x)
∣∣x=b

x=a
= 0. (2.7.32)

Let us write this out explicitly using the definition of the Wronskian from (1.4.8): we
want

Φ(b)
(
f(b)g′(b)− f ′(b)g(b)

)
− Φ(a)

(
f(a)g′(a)− f ′(a)g(a)

)
= 0. (2.7.33)

This seems complicated. Suppose instead we just want to make each term vanish.
One way to do this is to assume Φ(a) = Φ(b) = 0, but this would impose an unnatural
restriction41 on Ψ. Instead, suppose that f and g satisfy the boundary conditions from
the prototypical Sturm-Liouville BVP (2.7.6). That is, we assume

α0f(a) + α1f
′(a) = β0f(b) + β1f

′(b) = 0

with at least one of α0, α1 and one of β0, β1 nonzero. We assume the same for g. We
leave it as an exercise to check that (2.7.33) then holds. Moreover, the set{

f ∈ C2([a, b])
∣∣ α0f(a) + α1f

′(a) = β0f(b) + β1f
′(b) = 0

}
(2.7.34)

is in fact a subspace of C2([a, b]).
Now we can answer Question 1.

2.7.10 Lemma (Answer to Question 1).

Assume the notation and hypotheses of Lemma 2.7.9. Suppose Ψ = Φ′. Then the
operator A† is the adjoint of A with respect to the L2-inner product on C([a, b]) when
both operators have domain given by (2.7.34).

40We use the notation A† in (2.7.29) because we have in mind that, under the right circumstances, A†
will be the adjoint of A. We eschew the perhaps more familiar notation A∗ for adjoints; the uniqueness
of adjoints is a delicate issue — see Footnote 79 and Example C.8.1.

41Specifically,
∫ b
a
Ψ(ξ) dξ = 0.
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Toward the second question, let us see what conditions we need on A and A† to have
A = A†. If we expand the derivatives in (2.7.29), we find

A†f = Φ(x)f ′′ +
(
2Φ′(x)−Ψ(x)

)
f ′ +

(
Φ′′(x)−Ψ′(x) + Θ(x)

)
f. (2.7.35)

(It will be enlightening not to use the condition Ψ = Φ′ just yet.) Now, two differential
operators are equal if and only if their coefficients are equal. Immediately, then, we see
that we need Φ = Φ, so Φ must be real. Next, we want

Ψ = 2Φ′ −Ψ and Θ = Φ′′ −Ψ′ + Θ. (2.7.36)

Rearranging (2.7.36), we obtain the following lemma, which answers Question 2.

2.7.11 Lemma (Answer to Question 2).

Assume the notation and hypotheses of Lemma 2.7.9. Suppose as well that

Φ′ = Re[Ψ] and Im[Θ] = −Im[Ψ]

2
.

Then Af = A†f for all f ∈ C2([a, b]).

In the special case that all our coefficients are real-valued, we see that Ψ = Φ′, and
then A is really a Sturm-Liouville operator.

2.7.12 Theorem.

Suppose Φ ∈ C2([a, b]), Ψ ∈ C1([a, b]), and Θ ∈ C([a, b]) are real-valued. Let A be
defined by (2.7.28) and have the domain (2.7.34). Then A is self-adjoint with respect
to the L2-inner product if and only if Φ′ = Ψ.

In other words, if a differential operator of the form (2.7.28) has real-valued, suffi-
ciently differentiable coefficients, then that operator is self-adjoint in L2 if and only if it
has Sturm-Liouville form. And so, if we want to ensure self-adjointness of our problem’s
differential operator, it makes sense only to work with Sturm-Liouville problems.

2.7.4. Eigenfunction expansions for nonhomogeneous BVPs.

The natural generalization of the homogeneous Sturm-Liouville BVP is, of course, the
nonhomogeneous problem.

2.7.13 Definition.
A nonhomogeneous Sturm-Liouville BVP is a boundary value problem of
the form42 

∂x[p(x)f ′] + q(x)f = λr(x)f + h(x), a ≤ x ≤ b

α0f(a) + α1f
′(a) = 0

β0f(b) + β1f
′(b) = 0.

(2.7.37)

Here p ∈ C1([a, b]) is positive and q, r, h ∈ C([a, b]) with r positive. We assume
α2

0 + α2
1 6= 0 and β2

0 + β2
1 6= 0. The goal is to find a function f ∈ C2([a, b]) and λ ∈ R

that satisfy (2.7.37).
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The ODE in (2.7.37) is equivalent to

(Sr − λ)f =
h

r
, (2.7.38)

where Sf = ∂x[p(x)f ′] + q(x)f and Sr = (1/r)S. The method of solution that we will
deploy here strongly resembles the solution of the matrix resolvent equation in Appendix
C.7; the reader is encouraged to view this matrix problem as a prototype for our Sturm-
Liouville BVP, although the presentation here is independent of that appendix. These
finite-dimensional methods of the matrix case essentially remain true for the infinite-
dimensional problems (2.7.38) and (2.7.37), although we will have to be more careful in
certain stages.

Let {(λk, φk)}∞k=1 be the complete set of eigenpairs of Sr from Theorem 2.7.7. In
particular, Srφk = λkφk. Assume further that h/r ∈ C1([a, b]); this is a bit more restrictive
than Definition 2.7.13 proposes. As in our many Fourier problems, we will work backward
and assume we have a solution f ∈ C2([a, b]) to the BVP (2.7.37), and we will look for a
“formula” for f .

Under these assumptions, both f and h/r have the eigenfunction expansions

f(x) =
∞∑
k=1

µkφk(x) and
h(x)

r(x)
=
∞∑
k=1

θkφk(x), (2.7.39)

except maybe at the endpoints a and b. To be clear, the series in (2.7.39) converge
pointwise to f and h/r at least on (a, b).

Since we do not know f , we will have to determine the sequence (µk), but we do know

θk =
〈h/r, φk〉L2

r

‖φk‖2
L2
r

=
〈h, φk〉L2

‖φk‖2
L2
r

Then (2.7.38) is equivalent to

(Sr − λ)
∞∑
k=1

µkφk =
∞∑
k=1

θkφk. (2.7.40)

Let us also suppose that we can interchange the series and Sr (this is a delicate analytic
problem that we will not pursue further):

Sr
∞∑
k=1

µkφk =
∞∑
k=1

Sr(µkφk).

Then since Srφk = λkφk, (2.7.40) becomes
∞∑
k=1

(
λkµkφk − λφk

)
=
∞∑
k=1

θkφk.

42It is also possible to encounter the ODE in the form

∂x[p(x)f ′] + q(x)f + λr(x)f = h(x),

see part (iii) of Remark 2.7.2. Incidentally, we are departing from our usual custom of writing the
homogeneity as g, since we will eventually discuss a concept known as a “Green’s function,” which
practically mandates us to use “g” in a different context.
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Collecting everything under one sum, we have

∞∑
k=1

(
µk(λk − λ)− θk

)
φk = 0. (2.7.41)

This is an infinite sum, and so we cannot use the linear independence of the set {φk}∞k=1

to conclude that each scalar factor on φk is zero. But we can use its orthogonality. Fix
an integer j and assume that we can interchange the series in (2.7.41) and the L2-inner
product (another delicate assumption). Then43

0 = 〈0, φj〉L2 =

〈
∞∑
k=1

(
µk(λk − λ)− θk

)
φk, φj

〉
L2

=
∞∑
k=1

(
µk(λk − λ)− θk

)
〈φk, φj〉L2

=
(
µj(λj − λ)− θj

)
. (2.7.42)

Now, if λ 6= λk for all k, then we can solve (2.7.42) for µk:

µk =
θk

λk − λ
.

Then

f =
∞∑
k=1

θk
λk − λ

φk. (2.7.43)

To be clear, we have worked backward, as is often our custom. We assumed that we had
a solution f to the BVP (2.7.37), and we found that the only reasonable candidate for f
is

f(x) :=
∞∑
k=1

θk
λk − λ

φk(x).

We have not proved that this formula is differentiable, nor even that it converges pointwise
(this is where we tended to stop in finding formal solutions to differential equations with
Fourier series, too). As with Fourier (and Taylor) series, a reasonable approximation of
the solution may be found by truncating this formal eigenseries to some finite sum.

If, however, λ = λj for some j, then (2.7.42) forces θj = 0. That is, we have the
solvability condition

〈h, φj〉L2 = 0. (2.7.44)

If h does not satisfy this extra condition, then we cannot solve the BVP (2.7.37). If h
does, however, then we have infinitely many solutions of the form

∞∑
k=1
k 6=j

θk
λk − λ

φk + cφj, (2.7.45)

where c ∈ C is arbitrary.
We summarize our findings.

43Another way to see this is to appeal to part (i) of Lemma C.5.6.
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2.7.14 Theorem.

The nonhomogeneous Sturm-Liouville BVP (2.7.37) has the unique (formal) solution
(2.7.43) if λ is not an eigenvalue of the BVP and the infinitely many (formal) solu-
tions (2.7.45) if λ is an eigenvalue and if the nonhomogeneity h satisfies the solvability
condition (2.7.44).

2.7.15 Example.

For each λ ∈ R, discuss the (formal) solutions to the BVP{
f ′′ + f = λf + cos(x), 0 ≤ x ≤ π

f(0) = f(π) = 0.

Solution. We solved the homogeneous version of this BVP in Example 2.7.3, where we
saw that the eigenvalues were λk = 1−k2, k ∈ N, and the (nonnormalized) eigenfunctions
were φk(x) = sin(kx), k ≥ 1. Any solution to this problem, then, will depend on whether
or not λ = λj for some j and also what the expansion of cos(·) on [0, π] relative to these
eigenfunctions is. Since cos(·) ∈ C1([0, π]), we know

cos(x) =
∞∑
k=1

βkφk(x), 0 < x < π,

where
βk =

〈cos(·), φk〉L2

‖φk‖2
L2

.

We compute

‖φk‖2
L2 =

∫ π

0

sin2(kx) dx =
cos(kx) sin(kx) + kx

2k

∣∣∣∣x=π

x=0

=
π

2
,

and so
βk =

2

π

∫ π

0

cos(x)φk(x) dx =
2

π

∫ π

0

cos(x) sin(kx) dx = Bk[cos(·)].

That is, the coefficients of cos(·) relative to this “eigenbasis” are precisely the coefficients
of its Fourier sine series on [0, π]. In an exercise, we calculate that these Fourier sine
coefficients are

βk = Bk[cos(·)] =


0, k ≥ 1 is odd

4k

π(k2 − 1)
, k ≥ 2 is even.

(2.7.46)

So, if λ 6= 1− k2 for any k ∈ N, then the unique solution to the BVP is

f(x) =
∞∑
k=1

βk
λk − λ

sin(kx) =
∞∑
k=1

β2k

λ2k − λ
sin(2kx)

=
∞∑
k=1

(
4(2k)

π((2k)2 − 1)

)(
1

(1− (2k)2)− λ

)
sin(2kx) =

8

π

∞∑
k=1

k

(4k2 − 1)(1− 4k2 − λ)
sin(2kx).



2. Partial Differential Equations and Fourier Analysis 141

Suppose next that λ = 1 − j2 for some j ∈ N. In order for the BVP to have a solution,
the solvability condition 〈cos(·), φj〉L2 = 0 must be satisfied. That is, we need

0 =

∫ π

0

cos(x) sin(jx) dx =


0, j = 1

j(cos(πj) + 1)

j2 − 1
, j ∈ Z \ {1}.

Consequently, the solvability condition is met44 if and only if j is odd. In this case, there
are infinitely many solutions of the form

f(x) =
∞∑
k=1
k 6=j

βk
λk − λ

sin(kx)+C sin(jx) =
8

π

∞∑
k=1
k 6=j

k

(4k2 − 1)(1− 4k2 − λ)
sin(2kx)+C sin(jx).

for C ∈ C. N

2.7.16 Method: solve a nonhomogeneous BVP with eigenfunction series

1. Determine the eigenvalues λk and the eigenfunctions φk of the homogeneous BVP.
Remember that brute-force calculations (as in Example 2.7.3) rarely produce normalized
eigenfunctions, so calculate ‖φk‖L2 , too.

2. Calculate the Fourier coefficients of the nonhomogeneity with respect to the normalized
eigenfunctions, i.e., if the nonhomogeneity is h, compute

θk :=
〈h, φk〉L2

‖φk‖2
L2
r

.

3. Decide whether or not the scalar λ in the BVP is an eigenvalue of the homogeneous
BVP.

4. If λ is not an eigenvalue, the unique solution is
∞∑
k=1

〈h, φk〉L2

(λk − λ) ‖φk‖2
L2
r

φk(x)

5. If λ is an eigenvalue, say, λ = λj, determine whether or not 〈h, φj〉L2 = 0.

6. If 〈h, φj〉L2 6= 0, there is no solution.

7. If 〈h, φj〉L2 = 0, there are infinitely many solutions of the form

∞∑
k=1
k 6=j

〈h, φk〉L2

(λk − λ) ‖φk‖2
L2
r

φk(x) + cφj(x).

for c ∈ C arbitrary.

44Another way to see this is to calculate

〈cos(·), φj〉L2 = 〈cos(·), sin(j·)〉L2 =
π

2
Bj [cos(·)]

and then use the identity (2.7.46).
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2.7.5. Green’s functions.

In Appendix C.7, we solved a matrix-vector equation like (A − λ1n)x = y for x ∈ Cn

given y ∈ Cn and A ∈ Cn×n and 1n equal to the n × n identity matrix, but we did not
calculate the matrix inverse (A−λ1n)−1. Instead, we used an “eigenvector expansion” and
some special properties of the λ-dependent matrix A − λ1n. However, if we were faced
with a more general matrix-vector problem, like the classical Ax = y, an eigenvector
expansion may not always be possible.

Similarly, in the previous section we solved a BVP with ODE part Srf − λf = h
using an eigenseries. This left unresolved the delicate question of the convergence of this
formal eigenseries — a question that haunted us in our use of Fourier series to solve
ODEs and PDEs. We might wonder if there is another way of solving such a BVP, more
akin to a direct “matrix inverse” than an “eigenvector (eigenseries) expansion.” In other
words, given λ ∈ R, does there exist a linear operator Tλ such that putting f = Tλh solves
(2.7.37)? That is, does the operator Sr from (2.7.13) have an inverse from (some subspace
of) C([a, b]) to the domain (2.7.34)? And can we write this inverse more transparently
than the eigenseries expansion (2.7.43)?

Happily, the answer is yes to both questions. In this section it will be advantageous
(or, at least, no more difficult), to study BVPs whose ODE component is not necessarily
in Sturm-Liouville form (2.7.12) but rather is a general second-order ODE like

Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f = h(x),

with Φ(x) 6= 0 at all x. We can recover results for a Sturm-Liouville BVP, of course, by
specializing to Ψ(x) = Φ′(x) and Θ(x) = q(x) − λr(x). We discuss some concerns with
this specialization further in Remark 2.7.20.

2.7.17 Example.

Solve the BVP {
f ′′ = h(x), 0 ≤ x ≤ 1

f(0) = f(1) = 0.

Solution. Integrating twice, we have

f(x) =

∫ x

0

H(s) ds+ c1x+ c2, H(s) :=

∫ s

0

h(ξ) dξ.

We try to find c1 and c2 to meet the boundary conditions: we want 0 = f(0) = c2, so
f(x) =

∫ x
0
H(s) ds+ c1x, and then we want

0 = f(1) =

∫ 1

0

H(s) ds+ c1,

so

c1 = −
∫ 1

0

∫ s

0

h(ξ) dξ ds.

Thus

f(x) =

∫ x

0

∫ s

0

h(ξ) dξ ds− x
∫ 1

0

∫ s

0

h(ξ) dξ ds.
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This is a perfectly valid formula for the solution f , but we can eliminate some of
the integrals by changing the order of integration. If we sketch the region 0 ≤ s ≤ x,
0 ≤ ξ ≤ s as below, we see that∫ x

0

∫ s

0

h(ξ) dξ ds =

∫ x

0

∫ x

ξ

h(ξ) ds dξ =

∫ x

0

h(ξ)

(∫ x

ξ

ds

)
dξ =

∫ x

0

(x− ξ)h(ξ) dξ.

ξ

s

ξ = s

x

x

s ≥ ξ

Taking x = 1, we likewise compute∫ 1

0

∫ s

0

h(ξ) dξ ds =

∫ 1

0

(1− ξ)h(ξ) dξ.

Thus

f(x) =

∫ x

0

(x− ξ)h(ξ) dξ − x
∫ 1

0

(1− ξ)h(ξ) dξ.

Let us rewrite this as four integrals:

f(x) = x

∫ x

0

ξh(ξ) dξ︸ ︷︷ ︸
I1(x)

−
∫ x

0

ξh(ξ) dξ︸ ︷︷ ︸
I2(x)

−x
∫ 1

0

h(ξ) dξ︸ ︷︷ ︸
I3(x)

+x

∫ 1

0

ξh(ξ) dξ︸ ︷︷ ︸
I4(x)

. (2.7.47)

Observe that

I1(x)− I3(x) = −x
∫ 1

x

h(ξ) dξ (2.7.48)

and

I4(x) = x

∫ x

0

ξh(ξ) dξ + x

∫ 1

x

ξh(ξ) dξ. (2.7.49)

Substituting (2.7.48) and (2.7.49) into (2.7.47), we find

f(x) = −x
∫ 1

x

h(ξ) dξ −
∫ x

0

ξh(ξ) dξ + x

∫ x

0

ξh(ξ) dξ + x

∫ 1

x

ξh(ξ) dξ

=

∫ x

0

ξ(x− 1)h(ξ) dξ +

∫ 1

x

x(ξ − 1)h(ξ) dξ. (2.7.50)

Now define

G(x, ξ) :=

{
ξ(x− 1), 0 ≤ ξ ≤ x ≤ 1

x(ξ − 1), 0 ≤ x ≤ ξ ≤ 1.
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Then (2.7.50) compresses to

f(x) =

∫ 1

0

G(x, ξ)h(ξ) dξ =: (T h)(x). (2.7.51)

Thus the solution to our BVP is given by the integral operator T , with kernel G,
acting on the function h. Here are some properties of this kernel G.

• G is continuous on [0, 1] × [0, 1]. This is (hopefully) obvious just from inspection for
x 6= ξ.

• G is symmetric in the sense that G(x, ξ) = G(ξ, x). This is perhaps best seen by
switching to different dummy variables for G and writing instead

G(u, v) =

{
v(u− 1), 0 ≤ v ≤ u ≤ 1

u(v − 1), 0 ≤ u ≤ v ≤ 1.

This will prevent x and ξ from working overtime. Then for given x, ξ ∈ [0, 1], if ξ ≤ x,
then putting u = x and v = ξ gives G(x, ξ) = ξ(x − 1), while putting u = ξ and
v = x gives G(ξ, x) = ξ(x − 1). Similarly, if x ≤ ξ, then take u = x and v = ξ to find
G(x, ξ) = x(ξ − 1), and, last, take u = ξ and v = x fo obtain G(ξ, x) = ξ(x− 1).

• The partial derivative ∂xG(x, ξ) exists except along the line x = ξ, where, for a fixed
ξ ∈ [0, 1], we have

lim
x→ξ−

∂xG(x, ξ) = ξ − 1 while lim
x→ξ+

∂xG(x, ξ) = ξ.

Thus the “jump” in ∂xG(·, ξ) at x = ξ is

lim
x→ξ+

∂xG(x, ξ)− lim
x→ξ−

∂xG(x, ξ) = 1.

• The partial derivative ∂2
xG(x, ξ) also exists except for x = ξ, in which case ∂2

xG(x, ξ) = 0.
That is, G(·, ξ) satisfies the homogeneous form f ′′ = 0 of our original (toy) ODE. N

The form of the inverse T in (2.7.51) is unsurprising: we are seeking to solve a
differential equation, and integrals tend to be inverse of derivatives. To prove more
generally the existence of such an inverse integral operator, first we need a technical
lemma. Roughly, this shows that, under certain conditions (which in the Sturm-Liouville
case correspond to not having 0 as an eigenvalue of the BVP), there exist solutions to
precisely “half” of the BVP with some additional nice properties.

2.7.18 Lemma.

Let Φ, Ψ, Θ ∈ C([a, b]) with Φ(x) 6= 0 for all x ∈ [a, b]. Let α0, α1, β0, β1 ∈ C with at
least one of α0, α1 and at least one of β0, β1 nonzero. Suppose that the only solution
to the BVP 

Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f = 0, a ≤ x ≤ b

α0f(a) + α1f
′(a) = 0

β0f(b) + β1f
′(b) = 0,

(2.7.52)
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is f = 0. Then there exist functions G1, G2 ∈ C
2([a, b]) that solve the “half ” BVPs

Φ(x)G
′′
1 + Ψ(x)G

′
1 + Θ(x)G1 = 0, a ≤ x ≤ b

α0G1(a) + α1G
′
1(a) = 0

β0G1(b) + β1G
′
1(b) 6= 0.

(2.7.53)

and 
Φ(x)G

′′
2 + Ψ(x)G

′
2 + Θ(x)G2 = 0, a ≤ x ≤ b

α0G2(a) + α1G
′
2(a) 6= 0

β0G2(b) + β1G
′
2(b) = 0.

(2.7.54)

Moreover, any pair of functions satisfying (2.7.53) and (2.7.54) are linearly indepen-
dent.

Proof. Let Af = Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f . Choose numbers µ0, µ1, γ0, and γ1 with
µ2

0 + µ2
1 6= 0 and γ2

0 + γ2
1 6= 0 and

α0µ0 + α1µ1 = β0γ0 + β1γ1 = 0. (2.7.55)

(One can construct these numbers explicitly depending on which of α0 and α1 is nonzero,
and the same for β0 and β1, or one could shoot for overkill and use the fact that C is a
one-dimensional vector space over C.)

Now let G1 and G2 satisfy the IVPs45
AG1 = 0, a ≤ x ≤ b

G1(a) = µ0

G
′
1(a) = µ1

and


AG2 = 0, a ≤ x ≤ b

G2(b) = γ0

G
′
2(b) = γ1.

This is possible since A has continuous coefficients on [a, b] and Φ(x) 6= 0 for all x. Since
µ0 and µ1 are not both zero, we remark that G1 is not identically zero, and likewise for
G2. Now we compute

α0G1(a) + α1G
′
1(a) = α0µ0 + α1µ1 = 0 and β0G2(b) + β1G

′
2(b) = β0γ0 + β1γ1 = 0.

If β0G1(b) + β1G
′
1(b) = 0, then G1 is a nontrivial solution to the homogeneous BVP

(2.7.52), a contradiction. Likewise, if α0G2(a) + α1G
′
2(a), then G2 is a nontrivial solution

to this BVP. Last, if G1 and G2 are linearly dependent, then there is a constant λ such
that either G1(x) = λG2(x) for all x in [a, b] or G2(x) = λG1(x) for all x. In the first case,

β0G1(b) + β1G
′
1(b) = λ

(
β0G2(b) + β1G

′
2(b)
)

= 0,

a contradiction to (2.7.53), and a contradiction likewise arises in the second. �

Since G1 solves the ODE part of the BVP and the boundary conditions at a, but not
at b, and since G2 also solves the ODE part and the boundary conditions at b, but not at
a, we think of G1 and G2 as solving exactly “half” the BVP each.

45Recall that it does not matter in an IVP whether the “initial value” point is the left or right endpoint
of the interval under consideration, or neither — what does matter is that the value of the solution
and its derivative are taken at the same point in the interval.
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2.7.19 Theorem.

Suppose Φ, Ψ,Θ ∈ C([a, b]) with Φ(x) 6= 0 for all x. Let α0, α1, β0, β1 ∈ C with
(α2

0 + α2
1)(β2

0 + β2
1) 6= 0. Suppose that the only solution to the BVP

Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f = 0, a ≤ x ≤ b

α0f(a) + α1f
′(a) = 0

β0f(b) + β1f
′(b) = 0.

is the trivial solution f = 0. Then for any h ∈ C([a, b]), the unique solution to the
nonhomogeneous BVP

Φ(x)f ′′ + Ψ(x)f ′ + Θ(x)f = h(x), a ≤ x ≤ b

α0f(a) + α1f
′(a) = 0

β0f(b) + β1f
′(b) = 0.

(2.7.56)

is

f(x) :=

∫ b

a

G(x, ξ)h(ξ) dξ, (2.7.57)

where

G(x, ξ) :=


G1(ξ)G2(x)

Φ(ξ)W [G1, G2](ξ)
, a ≤ ξ ≤ x ≤ b

G1(x)G2(ξ)

Φ(ξ)W [G1, G2](ξ)
, a ≤ x ≤ ξ ≤ b

(2.7.58)

and G1, G2 are the functions constructed in Lemma 2.7.18. The function G is the46

Green’s function for the BVP (2.7.56) and it satisfies the following additional
properties.

(i) G : [a, b]× [a, b]→ R is continuous.

(ii) ∂xG is continuous on [a, b]× [a, b] except on the line x = ξ, where

lim
x→ξ+

∂xG(x, ξ)− lim
x→ξ−

∂xG(x, ξ) =
1

p(ξ)
.

(iii) G(·, ξ) satisfies the homogeneous version of the ODE in (2.7.56) for x 6= ξ:

Φ(x)∂2
xG(x, ξ) + Ψ(x)∂xG(x, ξ) + Θ(x)G(x, ξ) = 0.

(iv) G is symmetric: G(x, ξ) = G(ξ, x) for all a ≤ x, ξ ≤ b.

46Typically in English one does not use the phrase “(in)definite article + possessive adjective + noun,”
but rather either “possessive adjective + noun” or “(in)definite article + noun.” For example, we say
“in complex analysis, Cauchy’s integral theorem [Theorem 3.6.13] is a powerful tool” or “in complex
analysis, the Cauchy integral theorem is a powerful tool” but not “in complex analysis, the Cauchy’s
integral theorem is a powerful tool” or “in complex analysis, Cauchy integral theorem is a powerful
tool.” (Virtually all countable singular nouns in English must be paired with an article.) Our term for
the function G here is something of an exception; [30] contains an amusing statistical analysis of usage
trends in publications and argues that keeping the article emphasizes how the function G varies from



2. Partial Differential Equations and Fourier Analysis 147

Proof. We defer the proofs of properties (i) through (iv) of G to the exercises. All of
these properties are generalizations of the concrete results of Example 2.7.17.

Here we provide a constructive proof that the solution to (2.7.56) is given by the
integral operator (2.7.57) with kernel (2.7.58).

Any solution f to the BVP necessarily solves the ODE

f ′′ +
Ψ(x)

Φ(x)
f ′ +

Θ(x)

Φ(x)
y =

h(x)

Φ(x)
, a < x < b,

and therefore has the form

f(x) = c1G1(x)+c2G2(x)+G2(x)

∫ x

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ−G1(x)

∫ x

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ,

(2.7.59)
where G1 and G2 are the linearly independent solutions of

f ′′ +
Ψ(x)

Φ(x)
f ′ +

Θ(x)

Φ(x)
f = 0.

from Lemma 2.7.18.
Now we want to choose c1 and c2 so that f satisfies the boundary conditions. We

compute

f(a) = c1G1(a) + c2G2(a)

f(b) = c1G1(b) + c2G2(b) + G2(b)

∫ b

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ − G1(b)

∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

f ′(x) = c1G
′
1(x) + c2G

′
2(x) + G

′
2(x)

∫ x

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ +

G2(x)G1(x)f(x)

Φ(x)W [G1, G2](x)

− G
′
1(x)

∫ x

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ − G1(x)G2(x)f(x)

Φ(x)W [G1, G2](x)

= c1G
′
1(x) + c2G

′
2(x) + G

′
2(x)

∫ x

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ − G

′
1(x)

∫ x

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

f ′(a) = c1G
′
1(a) + c2G

′
2(a)

f ′(b) = c1G
′
1(b) + c2G

′
2(b) + G

′
2(b)

∫ b

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ − G

′
1(b)

∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ.

So, we need

0 = α1f(a) + α2f
′(a)

problem to problem — unlike the more universal properties of the integral to which Cauchy’s name is
attached.
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= α1c1G1(a) + α1c2G2(a) + α2c1G
′
1(a) + α2c2G

′
2(a)

= c1(α1G1(a) + α2G
′
1(a)) + c2(α1G2(a) + α2G

′
2(a))

= c2(α1G2(a) + α2G
′
2(a))

and

0 = β1y(b) + β2f
′(b)

= β1c1G1(b) + β1c2G2(b) + β1G2(b)

∫ b

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ − β1G1(b)

∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

+ β2c1G
′
1(b) + β2c2G

′
2(b) + β2G

′
2(b)

∫ b

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ − β2G

′
1(b)

∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

= c1

(
β1G1(b) + β2G

′
1(b)
)

+ c2

(
β1G2(b) + β2G

′
2(b)
)

+
(
β1G2(b) + β2G

′
2(b)
) ∫ b

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

−
(
β1G1(b) + β2G

′
1(b)
) ∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

=
(
β1G1(b) + β2G

′
1(b)
)(

c1 −
∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

)
.

Lemma 2.7.18 ensures

α1G2(a) + α2G
′
2(a) 6= 0 and β1G1(b) + β2G

′
1(b) 6= 0,

so we should take

c1 =

∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ and c2 = 0.

Then the form of f from (2.7.59) implies

f(x) = G1(x)

∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ + G2(x)

∫ x

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

− G1(x)

∫ x

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

= G1(x)

(∫ b

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ −

∫ x

a

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

)
+ G2(x)

∫ x

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ



2. Partial Differential Equations and Fourier Analysis 149

= G1(x)

∫ b

x

G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ + G2(x)

∫ x

a

G1(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

=

∫ x

a

G1(ξ)G2(x)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ +

∫ b

x

G1(x)G2(ξ)h(ξ)

Φ(ξ)W [G1, G2](ξ)
dξ

=

∫ b

a

G(x, ξ)h(ξ) dξ,

where for the last line we are using the piecewise definition of G in (2.7.58). �

x

ξ x = ξ

ξ ≥ x

x ≥ ξ

a b

a

b

2.7.20 Remark.
Note carefully that a Green’s function depends on the coefficients of the ODE part of
the BVP. In particular, if one wishes to find a Green’s function for a Sturm-Liouville
BVP whose ODE part is given by

∂x[p(x)f ′] + q(x)f = λr(x)f + h(x), (2.7.60)

then that Green’s function will depend on λ. Moreover, the assumption in Lemma
2.7.18 and Theorem 2.7.19 that the homogeneous BVP have only the trivial solution
manifests itself here by demanding that λ not be an eigenvalue of the BVP with ODE
part (2.7.60).

2.7.21 Example.

Find the Green’s function for the BVP{
f ′′ + f = h(x), 0 ≤ x ≤ 1

f(0) = f(1) = 0.

Solution. First we check that the homogeneous BVP has no nontrivial solutions. If
f ′′+ f = 0, then f(x) = c1 cos(x) + c2 sin(x) for some c1, c2 ∈ C. The condition f(0) = 0
forces c1 = 0, and then f(x) = c2 sin(x). Then the condition f(1) = 0 forces c1 sin(1) = 0,
so c1 = 0.
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Next we construct the auxiliary functions G1 and G2 to satisfy the conditions of Lemma
2.7.18. We want to find G1 and G2 solving the “half” BVPs{

G
′′
1 + G1 = 0

G1(0) = 0, G1(1) 6= 0
and

{
G
′′
2 + G2 = 0

G2(0) 6= 0, G2(1) = 0.

For G1, we start with the general form G1(x) = c1 cos(x) + c2 sin(x) and need 0 =

G1(0) = c1. Thus G1(x) = c2 sin(x), and since sin(1) 6= 0, we take c2 = 1, so G1(x) =
sin(x).

For G2, we again start with G2(x) = c1 cos(x) + c2 sin(x), where

c1 cos(1) + c2 sin(1) = G2(1) = 0 and c1 = G2(0) 6= 0.

Since c2 is not as clearly specified, let us solve for that coefficient:

c2 = −c1 cos(1)

sin(1)
,

which we may do, since sin(1) 6= 0. Then we can take c1 to be any nonzero number, say,
c1 = − sin(1). This gives c2 = cos(1) and

G2(x) = − sin(1) cos(x) + cos(1) sin(x) = sin(x− 1),

after a trig addition formula.
Last, the Wronskian of G1 and G2 is

W [G1, G2](x) = sin(x) cos(x− 1)− cos(x) sin(x− 1) = sin(1)

after more trig addition. By (2.7.58), the Green’s function is

G(x, ξ) =


sin(ξ) sin(x− 1)

sin(1)
, 0 ≤ ξ ≤ x ≤ 1

sin(x) sin(ξ − 1)

sin(1)
, 0 ≤ x ≤ ξ ≤ 1.

N

2.7.22 Method: solve a nonhomogeneous BVP with Green’s functions

1. Write the BVP in the form 
Af = h(x), a ≤ x ≤ b

α0f(a) + α1f
′(a) = 0

β0f(b) + β1f
′(b) = 0.

0. Check that the homogeneous version of the BVP (h(x) = 0) has no nontrivial solutions;
otherwise, this method will not work.

1. Solve the “half” BVPs
AG1 = 0, a ≤ x ≤ b

α0G1(a) + α1G
′
1(a) = 0

β0G1(b) + β1G
′
1(b) 6= 0

and


AG2 = 0, a ≤ x ≤ b

α0G2(a) + α1G
′
2(a) 6= 0

β0G2(b) + β1G
′
2(b) = 0.
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It is always possible to solve these BVPs; one way to start is to find a fundamental solution
set for A and then select the coefficients to meet/not to meet the boundary conditions.

2. The Green’s function is

G(x, ξ) :=


G1(ξ)G2(x)

Φ(ξ)W [G1, G2](ξ)
, a ≤ ξ ≤ x ≤ b

G1(x)G2(ξ)

Φ(ξ)W [G1, G2](ξ)
, a ≤ x ≤ ξ ≤ b,

where W is, as usual, the Wronskian from (1.4.8). The solution to the BVP is

f(x) =

∫ b

a

G(x, ξ)h(ξ) dξ.
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3. Complex Analysis

We presume familiarity with the contents of Appendix A. Broadly, this treatment of
complex analysis follows [11, 12] with further references to [1, 2, 22]. Most omitted
proofs appear in [12].

3.1. Polar coordinates.

Continuing our identification of C with R2, we recall that we can write a point (x, y) ∈
R2 \ {(0, 0)} in polar coordinates as x = r cos(θ) and y = r sin(θ), where r =

√
x2 + y2,

and θ, informally, is the “angle that the line segment from (0, 0) to (x, y) makes with the
positive x-axis.” The 2π-periodicity of sin(·) and cos(·) means that θ is never unique.

R

iR

(x, y)↔ x+ iy

r

θ

iy

x

Given z ∈ C \ {0}, we find the polar coordinates of (Re(z), Im(z)) ∈ R2 \ {(0, 0)} as
Re(z) = r cos(θ) and Im(z) = r sin(θ), where

r =
√

Re(z)2 + Im(z)2 = |z|.

Then
z = |z| cos(θ) + i|z| sin(θ) = |z|(cos(θ) + i sin(θ)). (3.1.1)

3.1.1 Example.

Write z = 1 + i in polar coordinates.

Solution. We recognize 1 + i as (1, 1) in R2, so |1 + i| =
√

2 and trigonometry tells us
that the line segment from the origin to (1, 1) makes an angle of π/4 with the positive
real axis. Thus

1 + i =
√

2
[
cos
(π

4

)
+ i sin

(π
4

)]
.

Of course, we could easily check our work by evaluating the trig functions above at
θ = π/4. N

The angle θ from the polar form of a complex number is, as discussed above in the
context of R2, not unique.

3.1.2 Definition.

Given z ∈ C \ {0}, any number θ ∈ R such that

z = |z|(cos(θ) + i sin(θ))
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is an argument of z, and we write

arg(z) ={θ ∈ R | z = |z|(cos(θ) + i sin(θ))} .

It is common to abuse notation and not write arg(z) in set-builder notation but just
arg(z) = θ0 + 2πk, where θ0 is one fixed argument of z and k is understood to be an
arbitrary integer.

The symbol arg(z) is not a single real number but rather a set; the pairing z 7→ arg(z)
is sometimes called a “multi-valued function” because the output arg(z) contains infinitely
many numbers. In particular, if θ ∈ arg(z), then θ + 2πk ∈ arg(z) for any k ∈ Z. While
representing a complex number in its polar form will be very convenient, the ambiguity of
arg(z) requires a certain caution in using this representation. This tension between utility
and ambiguity will resurface whenever we use the argument to define some quantity. We
can make the argument unique by requiring it to lie in an interval of width 2π, which is
referred to as selecting a branch of the argument.

3.1.3 Definition.
The principal argument or principal branch of the argument of
z ∈ C \ {0} is the unique number Θ ∈ (−π, π] such that z = |z|(cos(Θ) + i sin(Θ)). We
write Θ = Arg(z). Note that some treatments require the principal argument to belong
to a different interval, such as [−π, π).

3.1.4 Example.

Calculate Arg(−1 + i) and arg(−1 + i).

Solution. We plot the point 1 + i↔ (−1, 1) in R2.

R

iR

(−1, 1)↔ −1 + i

θ

We see that Arg(−1 + i) = π/2 + π/4 = 3π/4, and so arg(−1 + i) = 3π/4 + 2πk. N

3.2. Functions of a complex variable.

Let D ⊆ C. A complex-valued function f on D is, of course, a pairing of any z ∈ D with
exactly one f(z) ∈ C. For example, the pairing z 7→ Arg(z) is a well-defined function on
C \ {0}, but, unless we choose a branch of the argument, the assignment z 7→ arg(z) is
not a function. By writing a function as the sum of its real and imaginary parts, we can
consider a function of a complex variable as the linear combination of two functions of
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real variables:
f(x+ iy) = Re[f(x+ iy)]︸ ︷︷ ︸

u(x, y)

+ i Im[f(x+ iy)]︸ ︷︷ ︸
iv(x, y)

. (3.2.1)

We are particularly interested in extending the definitions of familiar real transcen-
dental functions — the exponential, the logarithm, the trigonometric functions — to
complex inputs. Broadly, an extension of a function f : I ⊆ R → R is a function
f̃ : D ⊆ C → C for some domain D ⊆ C, with the property that f̃(x) = f(x) for all
x ∈ I ∩D. That is, an extension of f is just f when evaluated on the original domain of
f . Of course, there are countless useless ways extend a function — just put f̃(z) = 0 for
z ∈ C \ I, and that extends any function on I ⊆ R to all of C. Rather, we are interested
in natural extensions — ones that preserve fundamental mapping and calculus properties
of the original functions as much as possible.

3.2.1. Properties of the complex exponential.

We recall from Appendix A.3 the definition of the complex exponential as a power series:

ez :=
∞∑
k=0

zk

k!
(3.2.2)

and Euler’s formula:
eix = cos(x) + i sin(x), x ∈ R.

An important consequence of Euler’s formula is that for z = x+ iy ∈ C \ {0}, we have

z = |z|
(

cos(Arg(z)) + i sin(Arg(z))
)

= |z|eiArg(z). (3.2.3)

We will typically write the polar form of a complex number in this way from now on.
Before stating our next, large theorem on various properties of the complex exponen-

tial, we recall some facts about the natural logarithm from calculus.

3.2.1 Lemma (Existence of natural logarithm).

There exists a map ln : (0,∞)→ R such that

ln(ex) = x for all x ∈ R and eln(x) = x for all x > 0.

This map ln(·) is the natural logarithm. It has the following additional proper-
ties.

(i) ln(x1x2) = ln(x1) + ln(x2) for all x1, x2 > 0;

(ii) ln(ax) = x ln(a) for all a > 0 and x ∈ R;

(iii) ln(1) = 0 and ln(e) = 1;

(iv) ∂x[ln(·)](x) =
1

x
and ln(x) =

∫ x

1

dξ

ξ
for all x > 0.
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3.2.2 Theorem (Mapping properties of the complex exponential).

(i) ez+w = ezew for all z, w ∈ C.

(ii) Let z = x+ iy ∈ C. Then

ez = ex(cos(y) + i sin(y)), (3.2.4)

so that
|ez| = eRe(z) and arg(ez) = Im(z) + 2πk, k ∈ Z. (3.2.5)

(iii) ez = 1 if and only if z = 2πik for some k ∈ Z. In particular, the mapping z 7→ ez

is not one-to-one on C.

(iv) ez = ew if and only if z = w + 2πik for some k ∈ Z

(v) ez = ez+2πi for all z ∈ C. In particular, the complex exponential is not one-to-one
on C.

(vi) The complex exponential maps C onto C \ {0}. That is, for any w ∈ C \ {0},
there is z ∈ C such that ez = w. Specifically,

ez = w ⇐⇒ z = ln(|w|) + iArg(w) + 2πik for some k ∈ Z.

Moreover, ez 6= 0 for all z ∈ C.

(vii) The complex exponential maps strips of the form y0 < Im(z) ≤ y0 + 2π onto
C \ {0} in a one-to-one manner. That is, if we fix y0 ∈ R and assume z1, z2 ∈ C with
y0 < Im(zk) ≤ y0 +2π, k = 1, 2 and ez1 = ez2, then z1 = z2. Conversely, if w ∈ C\{0},
there is z ∈ C with ez = w and y0 < Im(z) ≤ y0 + 2π.

Proof. (i) One proof is to use the series definition (3.2.2) and the binomial theorem47

to expand the powers (z + w)k. After some deft rearrangements, the identity48 follows;
we omit the details, as they are not very enlightening for our course.

(ii) The first equality (3.2.4) follows from Euler’s formula and part (i). The second
equality (3.2.5) is just a restatement of (3.2.4).

(iii) If k ∈ Z, then 2πk ∈ R, and so Theorem A.3.1 gives

e2πik = cos(2πk) + i sin(2πk) = 1 + i · 0 = 1.

Conversely, suppose ez = 1 with z = x+ iy. Then 1 = |ez| = eRe(z) = ex. Hence x = 0
since the real exponential is one-to-one. So, z = iy, and therefore

1 = ez = eiy = cos(y) + i sin(y).

Taking the imaginary part of this equation, we have sin(y) = 0, so y = 2πk for some
k ∈ Z. That is, z = 2πik.

47(z + w)k =

k∑
`=0

(
k

`

)
z`wk−` =

k∑
`=0

k!

`!(k − `)!
z`wk−`.

48Involving the Cauchy product formula (1.6.4).
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(iv) We have ez = ew if and only if ez−w = 1. Then part (iii) applies.

(v) By part (i), we have ez+2πi = eze2πi, and by part (iii) we know e2πi = 1.

(vi) First, suppose ez = 0 for some z = x+ iy ∈ C. Then exeiy = 0. Taking the modulus
of both sides, we have

0 = |ez| = |exeiy| = ex,

a contradiction, since ex 6= 0 for all real x.
Now suppose ez = w for some z ∈ C and w ∈ C \ {0}. Then

ez = w =⇒ |ez| = |w| =⇒ eRe(z) = |w| =⇒ Re(z) = ln(|w|).

Next, suppose w = |w|eiφ, φ = Arg(w). Then

ez = w =⇒ eRe(z)ei Im(z) = |w|eiφ =⇒ ei Im(z) = eiφ.

Part (iv) then implies Im(z) = φ+ 2πk for some k ∈ Z. Thus

z = ln(|w|) + φ+ 2πk = ln(|w|) + i
(

Arg(w) + 2πk
)
, k ∈ Z.

Conversely, parts (i) and (iii) show

eln(|w|)+iArg(w)+2πik = eln(|w|)+iArg(w) = |w|eiArg(w) = w.

(vii) For k = 1, 2, write zk = xk + iyk where y0 < yk ≤ y0 +2π. The hypothesis ez1 = ez2

implies ez1−z2 = 1, and part (iii) then implies z1 − z2 = 2πik for some integer k. Taking
imaginary parts, we have

y1 − y2 = Im(z1 − z2) = Im(2πik) = 2πk. (3.2.6)

But the condition y0 < yk ≤ y0 + 2π forces |y1 − y2| < 2π, and (3.2.6) implies |y1 − y2| =
2π|k|. This can only be possible if k = 0, in which case y1 − y2 = 0, so y1 = y2.

That is, z1 = x1 + iy1 and z2 = x2 + iy2 = x2 + iy1. The hypothesis ez1 = ez2 implies

ex1eiy1 = ex2eiy1 .

Taking the modulus of both sides, we have |eiy1| = 1, and so

ex1 = |ex1eiy1| = |ex2eiy1| = ex2 .

Since the real exponential is one-to-one, we have x1 = x2. Thus

z1 = x1 + iy1 = x2 + iy2 = z2,

and so the complex exponential is one-to-one on the strip y0 < Im(z) ≤ y0 + 2π.
The proof that the exponential maps the strip y0 < Im(z) ≤ y0 + 2π onto C \ {0} is

left as an exercise. �

The complex exponential therefore differs in (at least) two major respects from the
real exponential: the complex exponential is not one-to-one, and the complex exponential
can take negative values.
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3.2.2. The complex logarithm.

A logarithm of a number w should be some number z such that ez = w. Real-variable
theory only permits us to define a logarithm when w is positive, and, in that case, the
logarithm is unique. However, part (vi) of Theorem 3.2.2 tells us that if w ∈ C \ {0},
then

ez = w ⇐⇒ z = ln(|w|) + iArg(w) + 2πik

for some k ∈ Z. Recall that arg(w) = {Arg(w) + 2πk | k ∈ Z}. This leads us to the
following definition.

3.2.3 Definition.

For w ∈ C \ {0}, the logarithm of w is the multi-valued “function”

log(w) := ln(|w|) + i arg(w). (3.2.7)

The principal branch of the logarithm is

Log(w) := ln(|w|) + iArg(w).

More generally, a function f defined on some set D ⊆ C \ {0} is a branch of the
logarithm on D if ef(z) = z for all z ∈ D. We can always define a branch of the
logarithm by specifying a branch of arg(·), i.e., by requiring the values of arg(·) to lie
in an interval of the form (y0, y0 + 2π].

3.2.4 Remark.

We will use the notation ln(·) to refer exclusively to the “real” natural logarithm. The
notation log(·) will only refer to the complex logarithm (3.2.7). We will not discuss real
logarithms to any base other than e.

3.2.5 Example.

Find all values of log(−i).

Solution. First, | − i| = 1 and Arg(−i) = −π/2. Then

log(−i) = ln(| − i|) + iArg(−i) + 2πik = ln(1)− iπ
2

+ 2πik = −iπ
2

+ 2πik. N

3.2.6 Example.

Show that elog(z) = z but log(ez) ={z + 2πik | k ∈ Z}.

Proof. Since we are not told to work with a particular branch of the logarithm, we really
have

elog(z) =
{
eln(|z|)+iArg(z)+2πik

∣∣ k ∈ Z
}
.

But for any k ∈ Z, we have

eln(|z|)+iArg(z)+2πik = eln(|z|)+iArg(z)e2πik = eln(|z|)+iArg(z) = eln(|z|)eiArg(z) = |z|eiArg(z) = z.
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By definition of the complex log, we have

log(ez) = ln(|ez|) + iArg(ez) + 2πik.

We know |ez| = eRe(z), and so ln(|ez|) = ln(eRe(z)) = Re(z). Then using set notation, we
really have

log(ez) ={Re(z) + iArg(ez) + 2πik | k ∈ Z} .

Now, recall from part (ii) of Theorem 3.2.2, that arg(ez) ={Im(z) + 2π` | ` ∈ Z}. Con-
sequently, there is some `z ∈ Z such that Arg(ez) = Im(z) + 2π`z. Thus

log(ez) ={Re(z) + i Im(z) + 2πi`z + 2πik | k ∈ Z} ={z + 2πi(`z + k) | k ∈ Z}

={z + 2πij | j ∈ Z} .

We get the last equality since {`z + k | k ∈ Z} = Z whenever `z ∈ Z. �

3.2.7 Example.

Given α ∈ C, determine all (if any) λ ∈ C for which there exists a nonzero solution to
the BVP {

f ′(x) = λf(x), 0 ≤ x ≤ 1

f(0) = αf(1).
(3.2.8)

Solution. Using Theorem 1.2.4, we have

f ′ = λf ⇐⇒ f ′ − λf = 0 ⇐⇒ f(x) = ceλx

for some c ∈ C. We will assume c 6= 0, since otherwise f = 0. To have f ∈ Dα(A), we
also need

f(0) = αf(1) ⇐⇒ c = cαeλ ⇐⇒ 1 = αeλ

since c 6= 0. If α = 0, then this last equality cannot hold, and there are no nonzero
solutions to the BVP. But when α = 0, the BVP is really the IVP{

f ′(x)− λf(x) = 0, 0 ≤ x ≤ 1

f(0) = 0,

and we know this IVP has the unique solution f(x) = 0.
Now, for α 6= 0, we may divide to find that f(x) = eλx satisfies both the ODE and

the boundary conditions if and only if

eλ =
1

α
⇐⇒ λ = log

(
1

α

)
⇐⇒ λ = ln

(
1

|α|

)
+ iArg

(
1

α

)
+ 2πik︸ ︷︷ ︸

λk(α)

, k ∈ Z. (3.2.9)

So, in the case α 6= 0, there exists a nonzero solution to the BVP if and only if λ = λk(α)
for some k ∈ Z. N
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3.2.8 Linear algebraic viewpoint: eigenvalues and domains

Let X = C([0, 1]) and define the operator A in X via Af = f ′ with domain

Dα(A) :=
{
f ∈ C1([0, 1])

∣∣ f(0) = αf(1)
}
.

Here α ∈ C is fixed and the set Dα(A) is indeed a subspace of C([0, 1]). A point λ ∈ C
is an eigenvalue of A as an operator in X with domain Dα(A) if and only if there exists a
nontrivial solution to the BVP. We see from Example 3.2.7 that if α = 0, then σpt(A) = ∅,
whereas if α 6= 0, then σpt(A) is the countable set {λk(α)}k∈Z, with λk(α) defined in
(3.2.9). Contrast this with the behavior of the same operator A given the larger domain
D(A) = C1([0, 1]) in Linear Algebra Viewpoint 1.2.8.

3.2.3. Complex powers.

Recall that if a > 0 and x ∈ R, then we define

ax := ex ln(a).

We can extend this definition for complex bases and exponents using the complex loga-
rithm, but we caution that the result is not, in general, single-valued.

3.2.9 Definition.

Let a ∈ C \ {0} and z ∈ C. We define the symbol az as the (possibly multi-valued)
expression

az := ez log(a) = ez(ln(|a|)+i arg(a)).

If a = e, however, we only use the symbol ez to mean exp(z) as defined in (3.2.2).

3.2.10 Example.

Find all values of (−1)i.

Solution. By definition,
(−1)i = ei log(−1),

and
log(−1) = ln(| − 1|) + i arg(−1) = ln(1) + i(π + 2πk) = (2k + 1)πi.

Thus
(−1)i = ei(2k+1)πi = e(2k+1)πi2 = e−(2k+1)π.

As usual, we interpret the variable k above to represent a set:

(−1)i =
{
e−(2k+1)π

∣∣ k ∈ Z
}
. N

The definition of az above can create some ambiguities when trying to apply familiar
rules of exponents from the real-variable theory. For example, if a, b, z ∈ C, and one
defines (ab)z using the principal branch of the logarithm, it is possible to have (ab)z 6= azbz,
even if az and bz are also defined via the principal branches.
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3.2.11 Example.

Let z, w ∈ C. Compare and contrast the (multi-valued?) expressions (ez)w and ezw.
Are they ever equal?

Solution. To be clear, as usual, we interpret ez and ezw via the power series definition
(3.2.2). In particular, ezw is a single-valued expression. We first use Definition 3.2.9 and
Example 3.2.6 to calculate

(ez)w = ew log(ez) =
{
ew(z+2πik)

∣∣ k ∈ Z
}

=
{
ewze2πikw

∣∣ k ∈ Z
}
.

Remember that we interpret each of the factors ewz and e2πikw as the single-valued power
series. If w ∈ Z, then e2πikw = 1, and this set reduces to the singleton

(ez)w = {ezw}. (3.2.10)

This is, of course, what we expect. Indeed, if z and w are both integers, we could use
Definition A.1.5 for integer powers of complex numbers to obtain (ez)w = ezw. (A precise
proof would require us to consider cases on the signs of z and w and induct.) And this is
what (3.2.10) says, if we eschew the set-valued semantics.

If, however, w is not integer-valued, then kw 6∈ Z for at least one k ∈ Z (otherwise,
if kw ∈ Z for all k ∈ Z, then w = 1 · w ∈ Z), and so for this k we have e2πikw 6= 1, and
so (ez)w is necessarily multi-valued. It is possible that (ez)w has finitely-many multiple
values; if w = 1/2, then e2πikw = eπik = (−1)k ∈ {−1, 1}, and thus (ez)1/2 = ±ez/2.
However, it is also possible that (ez)w has infinitely-many multiple values; if w = i, then
e2πikw = e2πi2k = e−2πk, and thus (ez)i = eiz−2πk, which has distinct values for all k ∈ Z.

This leads to such unpleasant, and possibly ridiculous, circumstances. In general,
context is key with complex powers. N

3.2.12 Example.

Simplify exp

[
iπ

(
1 + i√

2

)4
]
.

Solution. We recognize

1 + i√
2

= cos
(π

4

)
+ i sin

(π
4

)
= eiπ/4.

Then (
1 + i√

2

)
= (eiπ/4)4 = e(iπ/4)4 = eiπ = cos(π) + i sin(π) = −1.

Here we have used Example 3.2.11 with w = 4, an integer power, and z = iπ/4. Now

exp

[
iπ

(
1 + i√

2

)4
]

= e−iπ = cos(−π) + i sin(−π) = −1. N

3.2.13 Example.

Find all z ∈ C such that z1+i = e.
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Solution. First, we reinterpret the symbol z1+i as

z1+i = e(1+i) log(z).

Next, we recall from part (vi) of Theorem 3.2.2 that for s ∈ C and w ∈ C \ {0}, we have

es = w ⇐⇒ s = ln(|w|) + iArg(w) + 2πik, k ∈ Z.

Then

z1+i = e ⇐⇒ e(1+i) log(z) = e ⇐⇒ (1 + i) log(z) = ln(|e|) + iArg(e) + 2πik = 1 + 2πik

Hence
log(z) =

1 + 2πik

1 + i
.

Now we use Example 3.2.6 to solve for z:

z = elog(z) = exp

(
1 + 2πik

1 + i

)
.

To be clear, we have found a set of solutions to the equation z1+i = e:

z1+i = e ⇐⇒ z ∈
{

exp

(
1 + 2πik

1 + i

) ∣∣∣∣ k ∈ Z
}
. N

3.2.4. Integer roots of complex numbers.

Given w ∈ C \ {0} and a positive integer n ∈ N, we want to find all z ∈ C such that
zn = w. Write w = |w|eiφ, where φ = Arg(w). Suppose z = |z|eiθ. To be clear, we know
the (real) numbers |w| and φ, and we want to find the (real) numbers |z| and θ.

As usual, we work backward. We have zn = w if and only if(
|z|eiθ

)n
= |w|eiφ ⇐⇒ |z|n

(
eiθ
)n

= |w|eiφ ⇐⇒ |z|neinθ = |w|eiφ. (3.2.11)

Take the modulus of both sides of the last equality above. This gives

|z|n =
∣∣|z|neinθ∣∣ =

∣∣|w|eiφ∣∣ = |w|.

Now |z|, |z|n, and |w| are positive real numbers, so we may take the real positive nth
root and solve for |z|:

|z|n = |w| ⇐⇒ |z| = |w|1/n.
Substitute |z|n = |w| into the last equality in (3.2.11). This implies

einθ = eiφ.

Part (iv) of Theorem 3.2.2 implies that inθ = iφ+ 2πik for some k ∈ Z. We solve for θ:

θ =
φ+ 2πk

n
=: θk.

Thus any solution to zn = w has the form

z = |w|1/n exp

(
(φ+ 2πk)i

n

)
=: zk.

We leave it as an exercise to check that zk = zk+n for all k ∈ Z, and, conversely, that
zk 6= zj for 1 ≤ k < j ≤ n.
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3.2.14 Theorem.

Let w ∈ C \ {0} and n ∈ N. Suppose φ ∈ arg(w). For any k ∈ Z, the complex number

zk := |w|1/n exp

(
i(φ+ 2πk)

n

)
= |w|1/n

[
cos

(
φ+ 2πk

n

)
+ i sin

(
φ+ 2πk

n

)]
(3.2.12)

satisfies znk = w, and the numbers z1, . . . , zn are all distinct. These numbers are the
nth roots of w.

When w = 1, the solutions to zn = 1 have a special designation.

3.2.15 Definition.
Given n ∈ N, a number z ∈ C such that zn = 1 is an nth root of unity.

3.2.16 Example.

Find all solutions to z12 = 1.

Solution. We have Arg(1) = 0, so the formula (3.2.12) with φ = Arg(1) and w = 1 tells
us that the solutions are

zk = cos

(
2πk

12

)
+ i sin

(
2πk

12

)
, k = 1, . . . , 12. N

3.2.17 Example.

Find the general solution to the ODE f ′′′ − 8f = 0.

Solution. The characteristic equation is λ3 − 8 = 0, i.e., λ3 = 8, so we need to find the
third roots of 8. Obviously one of these will be 2, but there are two other distinct roots.
Since Arg(8) = 0, the roots are

λk := |8|1/3
[
cos

(
2πk

3

)
+ i sin

(
2πk

3

)]
, k = 1, 2, 3.

They simplify to

λ1 = −1 + i
√

3, λ2 = −1− i
√

3, and λ3 = 2.

So, the general solution is

f(x) = c1e
(−1+i

√
3)x + c2e

(−1−i
√

3)x + c3e
2x,

or, in terms of real-valued functions,

f(x) = d1e
−x cos(

√
3x) + d2e

−x sin(
√

3x) + d3e
2x. N

3.2.5. Complex trigonometric functions.

Inspired by the real power series for sine and cosine, we define

sin(z) :=
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
and cos(z) :=

∞∑
k=0

(−1)k
z2k

(2k)!
. (3.2.13)
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More useful formulas for the complex sine and cosine are

cos(z) =
eiz + e−iz

2
and sin(z) =

eiz − e−iz

2i
. (3.2.14)

One develops these formulas by splitting the series for e±iz into sums over even and
odd indices, rather like the proof of Euler’s formula; we omit the details. Conversely,
motivated by the real trig formulas in (A.3.4), one could adopt these formulas as the
definitions of cosine and sine for complex inputs and develop from there the power series
(3.2.13).

The next theorem tells us that extending the sine and cosine to complex inputs does
not introduce any new periods or roots.

3.2.18 Theorem.

(i) sin(z) = 0 if and only if z = πk for some k ∈ Z.

(ii) cos(z) = 0 if and only if z = (2k + 1)π/2 for some k ∈ Z.

(iii) If P ∈ C satisfies sin(z + P ) = sin(z) for all z ∈ C, then P = 2πk for some
k ∈ Z. The same is true if sin(·) is replaced by cos(·).

Proof. (i) If sin(z) = 0, then eiz − e−iz = 0, and, multiplying through by eiz, we find
e2iz = 1. Part (iii) of Theorem 3.2.2 implies that 2iz = 2πik for some k ∈ Z, and so
z = πk for k ∈ Z.

(ii) Exercise.

(iii) We give the proof for the complex sine. First, we calculate

sin(z + 2πk) =
ei(z+2πk) − e−i(z+2πk)

2i
=
eize2πik − e−ize−2πik

2i
=
eiz − e−iz

2i
= sin(z),

and so sin(·) is 2πk-periodic for all k ∈ Z.
Next, we need to show that the only possible period for the sine is an integer multiple

of 2π. Suppose P ∈ C is such that sin(z +P ) = sin(z) for all z ∈ C. Since z is arbitrary,
we are free to take z = 0 to find sin(P ) = sin(0 +P ) = sin(0) = 0. Consequently, P = πj
for some j ∈ Z.

We still need to show, however, that j must be even. Suppose instead that j is odd,
j = 2` + 1 for some ` ∈ Z, and so P = (2` + 1)π. Then since sin(z + P ) = sin(z) for all
z ∈ C, we have sin(z + 2`π + π) = sin(z) for all z ∈ C. That is, sin(z + π) = sin(z) for
all z ∈ C. Take, for instance, z = π/2. Then we obtain

−1 = sin

(
3π

2

)
= sin

(π
2

+ π
)

= sin
(π

2

)
= 1,

a contradiction. �

3.3. Limits and continuity.

We begin our study of the calculus of functions of a complex variable with some topology.
The following structures are the analogues of bounded intervals (open or closed) in R.
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3.3.1 Definition.
Let z0 ∈ C and r > 0.

(i) The open ball of radius r centered at z0 is B(z0; r) ={z ∈ C | |z − z0| < r}.

R

iR

r

z0

(ii) The closed ball of radius r centered at z0 is B(z0; r) ={z ∈ C | |z − z0| ≤ r}.

(iii) The (open) punctured ball of radius r centered at z0 is B∗(z0; r) =
B(z0; r) \ {z0} ={z ∈ C | 0 < |z − z0| < r}.

3.3.2 Remark.
We will not always use set-builder notation when referring to subsets of C and instead
just use formulas. For example, the circle of radius r centered at z0 is the set

{z ∈ C | |z − z0| = r} ,

but we will often say something like “Consider the circle |z − z0| = r.” Likewise, we
will use 0 < |z − z0| < r and B∗(z0; r) interchangeably.

3.3.3 Definition.

Suppose z0, L ∈ C, r > 0, and f is a function defined on B∗(z0; r). We say that
limz→z0 f(z) = L if the values f(z) can be made arbitrarily close to L by taking z
sufficiently close to z0. More precisely, limz→z0 f(z) = L if and only if for all ε > 0
there is δ > 0 such that if 0 < |z − z0| < δ, then |f(z)− L| < ε. That is,

z ∈ B∗(z0; δ) =⇒ f(z) ∈ B(z0; ε).

If f is defined on B(z0; r) and if limz→z0 f(z) = f(z0), then f is continuous at z0.

Most of the standard limit theorems from real-variable calculus continue to hold in
the complex case, e.g.,

lim
z→z0

(f(z) + g(z)) = lim
z→z0

f(z) + lim
z→z0

g(z)

if both limits on the right exist, and we omit any formal statements of these properties.
We do mention one important property that resembles the “componentwise” limits of a
function from R to R2 in multivariable calculus. Namely, recall that if f : R → R2 : t 7→
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(f1(t), f2(t)), then for L = (L1, L2), we have

lim
t→t0

f(t) = L ⇐⇒ lim
t→t0

f1(t) = L1 and lim
t→t0

f2(t) = L2.

Then we have the next, similar theorem.

3.3.4 Theorem.
Suppose z ∈ C and r > 0.

(i) If f is defined on B∗(z0; r), then

lim
z→z0

f(z) = L ⇐⇒ lim
z→z0

Re[f(z)] = Re(L) and lim
z→z0

Im[f(z)] = Im(L).

(ii) If f is defined on B(z0; r), then f is continuous at z = z0 if and only both Re(f)
and Im(f) are continuous at z = z0.

We must bear in mind that, in general, it is “harder” for a limit of a function of a
complex variable to exist than it is for a limit of a function of a real variable. This occurs
for the same reason as when taking limits in R2 from multivariable calculus: in C there
are many more ways to approach a point than in R, which only has “left/right” directions.

R

iR

As in multivariable calculus, we may show that a function is discontinuous at a certain
point by approaching it along two different paths and finding different limits along each
path. One can make a rather precise statement of this (which would involve the definition
of a “path,” something that we otherwise do not need for some time), but a simple,
fundamental example will illustrate the challenge just as well.

3.3.5 Example.

Show that Arg(·) is discontinuous on R− ={z ∈ R | z < 0}.

Solution. We approach the negative real axis along two semicircular paths, one going
counterclockwise and one going clockwise. Specifically, fix z0 = −x ∈ R− (with x > 0)
and let

γ1(t) = xeit, t ∈ R and γ2(t) = xe−it, t ∈ R.
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Then
lim
t→π

γ1(t) = xeiπ = −x = z0 and lim
t→π

γ2(t) = xe−iπ = −x = z0.

However, for −π < t ≤ π we have

Arg(γ1(t)) = t and Arg(γ2(t)) = −t

so
lim
t→π−

Arg(γ1(t)) = π but lim
t→π−

Arg(γ2(t)) = −π.

R

iR

−x

Arg(z)→ π along this path

Arg(z)→ −π along this path

Thus there are points arbitrarily close to z0 whose principal argument is close to π, but
there are also points arbitrarily close to z0 whose principal argument is −π. So, Arg(·)
must be discontinuous at z0.

It is possible to show that Arg(·) is continuous on C \ (R− ∪ {0}). However, this
involves a lengthy piecewise formula for Arg(·), largely involving the arctan(·) function,
that depends on what quadrant of C identified with R2 we work, and whether or not the
point is on the imaginary axis. N

We do not state this as a formal theorem, but all the “usual” algebraic rules for limits
and continuity still hold for functions of a complex variable, e.g.,

lim
z→z0

(
f(z) + g(z)

)
= lim

z→z0
f(z) + lim

z→z0
g(z)

if both of these limits are defined.

3.4. Differentiability.

3.4.1. The definition of the complex derivative.

We define the complex derivative in the same way as the real derivative.

3.4.1 Definition.

If f is a function on B(z0; r) for some z0 ∈ C and r > 0, then f is (complex)
differentiable at z0 if and only if the limit

lim
h→0

f(z0 + h)− f(z0)

h
(3.4.1)

exists, in which case this limit is the derivative of f at z = z0. We also say that
f is holomorphic at z0 if f is complex differentiable there. If f is holomorphic on
C, then f is entire.
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The limit (3.4.1) exists if and only if the limit

lim
z→z0

f(z)− f(z0)

z − z0

(3.4.2)

exists, in which case the two limits (3.4.1) and (3.4.2) are equal. The sum, product, and
quotient rules all hold verbatim from real-variable calculus.

3.4.2 Theorem.

Every polynomial p(z) =
∑n

k=0akz
k, ak ∈ C, is entire. Any rational function f(z) =

p(z)/q(z), where p and q are polynomials, is holomorphic on the set{z ∈ C | q(z) 6= 0}.

3.4.3 Example.

Show that f(z) = z is not differentiable at any z ∈ C.

Solution. For h 6= 0, we compute the difference quotient

f(z + h)− f(z)

h
=
z + h− z

h
=
z + h− z

h
=
h

h
.

So, it suffices to show that the limit

lim
h→0

h

h
(3.4.3)

does not exist. We do this by allowing h to approach 0 along two different paths: the
real axis and the imaginary axis. For the limit along the real axis, suppose k is real, so
k = k. Then (still understanding k to be real) we have

lim
k→0

k

k
= lim

k→0

k

k
= 1.

For the limit along the imaginary axis, if ` is real, then i` = −i`, so

lim
`→0

i`

`
= lim

`→0
−i`
`

= −i.

Since these two limits are different, the full limit (3.4.3) does not exist. N

3.4.2. The Cauchy-Riemann equations.

We have seen that C is topologically like R2 in the sense that the existence of a limit is
more difficult than in R: the limit has to hold along all possible “paths of approach.” But
C is algebraically somewhat unlike R2: it is possible to multiply49 and divide in C. In
particular, if f is differentiable at a point, one can let h approach 0 along different paths
in the limit definition (3.4.1) of the derivative and manipulate the algebraic structure of
the different quotient to obtain a powerful relationship between the real and imaginary
parts of a complex differentiable function.

49Of course, one can take the dot product in R2, which has many features in common with multiplication
of real (and complex) numbers — save that the dot product of two vectors in R2 is a real number, not
a vector in R2.
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3.4.4 Theorem (Cauchy-Riemann equations).

Suppose that f = u + iv is complex differentiable at the point z0 = x0 + iy0. Consider
u = u(x, y) and v = v(x, y) as functions of two real variables, as in (3.2.1). Then{

ux(x0, y0) = vy(x0, y0)

uy(x0, y0) = −vx(x0, y0).
(3.4.4)

Moreover,

f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0). (3.4.5)

Proof. Since f is complex differentiable at z0, we have

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
. (3.4.6)

It is important to remember that h is a complex number here. Consequently, this limit
(3.4.6) must hold along any path approaching the origin. In particular, it must hold if
we approach the origin along the real axis, or along the imaginary axis.

R

iR

h = i`→ 0

h = k → 0

That is, we have

f ′(z0) = lim
k→0

f(z0 + k)− f(z0)

k
. (3.4.7)

We rewrite

f(z0 + k) = f((x0 + k) + iy0) = u(x0 + k, y0) + iv(x0 + k, y0)

and
f(z0) = f(x0 + iy0) = u(x0, y0) + iv(x0, y0). (3.4.8)

Since k is real, we have

Re

[
f(z0 + k)− f(z0)

k

]
=
u(x0 + k, y0)− u(x0, y0)

k

and
Im

[
f(z0 + k)− f(z0)

k

]
=
v(x0 + k, y0)− v(x0, y0)

k
.

The existence of the limit (3.4.7) implies the existence of the real and imaginary parts
of that limit, namely,

Re[f ′(z0)] = lim
k→0

Re

[
f(z0 + k)− f(z0)

k

]
= lim

k→0

u(x0 + k, y0)− u(x0)

k
= ux(x0, y0)
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and

Im[f ′(z0)] = lim
k→0

Im

[
f(z0 + k)− f(z0)

k

]
= lim

k→0

v(x0 + k, y0)− v(x0, y0)

k
= vx(x0, y0).

Thus
f ′(z0) = ux(x0, y0) + ivx(x0, y0). (3.4.9)

Now consider the original limit (3.4.6) again, but approach the origin along the imag-
inary axis. That is,

f ′(z0) = lim
`→0

f(z0 + i`)− f(z0)

i`
, (3.4.10)

where ` ∈ R. We have

f(z0 + i`) = u(x0, y0 + `) + iv(x0, y0 + `),

and so, using (3.4.8),

f(x0 + i`)− f(z0)

i`
=
u(x0, y0 + `) + iv(x0, y0 + `)− u(x0, y0)− iv(x0, y0)

i`

=
1

i

(
u(x0, y0 + `)− u(x0, y0)

`

)
+
v(x0, y0 + `)− v(x0, y0)

`

= −i
(
u(x0, y0 + `)− u(x0, y0)

`

)
+
v(x0, y0 + `)− v(x0, y0)

`
.

Here we performed the key algebraic step of multiplying the u-term by i/i = 1 and then
simplified i2 = −1. So, for for ` ∈ R small,

Re

[
f(z0 + i`)− f(z0)

i`

]
=
v(x0, y0 + `)− v(x0, y0)

`

and
Im

[
f(z0 + i`)− f(z0)

i`

]
= −

(
u(x0, y0 + `)− u(x0, y0)

`

)
.

Taking the real and imaginary parts of (3.4.10), we find

Re[f ′(z0)] = lim
`→0

v(x0, y0 + `)− v(x0, y0)

`
= vy(x0, y0)

and
Im[f ′(z0)] = lim

`→0
−
(
u(x0, y0 + `)− u(x0, y0)

`

)
= −uy(x0, y0).

That is,
f ′(z0) = vy(x0, y0)− iuy(x0, y0). (3.4.11)

Equating (3.4.9) and (3.4.11), we find

ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0)

and thus {
ux(x0, y0) = vy(x0, y0)

vx(x0, y0) = −uy(x0, y0).
�
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3.4.5 Remark.

Recall that the Jacobian matrix of f : R2 → R2 : (x, y) 7→ (u(x, y), v(x, y)) is[
ux(x, y) uy(x, y)
vx(x, y) vy(x, y).

]
We can remember the Cauchy-Riemann equations as saying that the diagonal entries
of the Jacobian are equal and the off-diagonal entries are the negatives of each other.

The converse of Theorem 3.4.4 is that if the Cauchy-Riemann equations fail to hold
at a point, then the function under consideration is not differentiable at that point.

3.4.6 Example.

Use the Cauchy-Riemann equations to verify that f(z) = z is not complex differentiable
at any point in C.

Solution. For x, y ∈ R, we have

x+ iy = x− iy,

so we set u(x, y) = x and v(x, y) = −y to have

x+ iy = u(x, y) + iv(x, y).

Then

ux = 1 uy = 0

vx = 0 vy = −1,

so ux 6= vy. Thus the Cauchy-Riemann equations never hold, so the conjugate is not
complex differentiable. N

The proof of the Cauchy-Riemann equations suggested that if f is complex differ-
entiable at z0 = x0 + iy0, then the partial derivatives of Re(f) and Im(f), considered
as functions on R2, exist at (x0, y0). The mere existence, or even continuity, of these
partial derivatives is not sufficient to guarantee complex differentiability, as the function
f(z) = z indicates. Rather, we need both continuity of the partials and the Cauchy-
Riemann equations to ensure differentiability.

3.4.7 Theorem.

Suppose that f = u+ iv is defined on B(z0; r) and continuous at z0. If u and v satisfy
the Cauchy-Riemann equations (3.4.4) at z0, and if u and v and their partial derivatives
ux, uy, vx, vy all exist and are continuous on B(z0; r), then f is differentiable at z0,
and f ′(z0) is given by (3.4.5).

3.4.8 Example.

Show that the complex exponential is entire.
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Solution. Write

ex+iy = ex(cos(y) + i sin(y)) = ex cos(y) + iex sin(y),

so we set
u(x, y) = ex cos(y) and v(x, y) = ex sin(y).

We compute

ux(x, y) = ex cos(y) uy(x, y) = −ex sin(y)

vx(x, y) = ex sin(y) vy(x, y) = ex cos(y),

so
ux = vy and uy = −vx.

The Cauchy-Riemann equations hold; moreover, u, v, ux, uy, vx, and vy are continuous on
R2 because of a general theorem from multivariable calculus that says that if f and g are
continuous functions on R, then h(x, y) := f(x)g(y) is continuous on R2. So, Theorem
3.4.7 tells us that f is complex differentiable at each point in C, i.e., f is entire. N

3.4.9 Example.

Study the differentiability of Log(·).

Solution. Recall that Log(z) = ln(|z|)+iArg(z). A practice problem demonstrates that
Log(·) is not continuous on R− :={z ∈ C | z ∈ R, z < 0}, so we know that Log(·) cannot
be differentiable on this ray. To check differentiability elsewhere, we need a better formula
for Arg(·). Any such formula will be piecewise, depending on the location of (x, y) ∈ R2,
and so what ends up being simplest is just to show that Log(·) is differentiable on the
half-plane Re(z) > 0.

In that case,
Arg(x+ iy) = arctan

(y
x

)
, x > 0, y ∈ R.

So, we fix z = x+ iy with x = Re(z) > 0. Then

Log(z) = Log(x+ iy) = ln(|x+ iy|) + iArg(x+ iy) = ln(
√
x2 + y2) + i arctan

(y
x

)
.

Set
u(x, y) := ln(

√
x2 + y2) and v(x, y) := arctan

(y
x

)
,

so that Log(x+ iy) = u(x, y) + iv(x, y). After some elementary calculus, we find

ux(x, y) =
x

x2 + y2
uy(x, y) =

y

x2 + y2

vx(x, y) = − y

x2 + y2
vy(x, y) =

x

x2 + y2
.

We conclude that u and v satisfy the Cauchy-Riemann equations and that u, v, ux,
uy, vx, and vy are continuous for x > 0, y ∈ R, i.e., on (0,∞) × R. Thus Log(·) is
differentiable on Re(z) > 0. Moreover, we have
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d

dz
[Log(z)] =

d

dz
[Log(x+ iy)] = ux(x+ iy) + ivx(x, y) =

x

x2 + y2
− i y

x2 + y2
=

x− iy
x2 + y2

=
z

|z|2
=

z

zz
=

1

z
.

So, the derivative of Log(·) is what we expect from real-variable calculus. N

3.5. Line integrals.

The most natural and effective integral to define on C is the line integral (i.e., we do not
consider “double integrals” over two-dimensional regions of C). We will prove that, under
suitable hypotheses, a function f defined on a region D has a representation formula of
the form

f(z) =

∫
γ

K(z, ξ)f(ξ) dξ

for certain curves γ in D and a special kernel function K. Here
∫
γ
denotes a line integral

over γ, much like the line integral from vector calculus.

3.5.1. Curves.

Since line integrals are defined over curves in C, we need a very precise notion of what a
curve can be.

3.5.1 Definition.

A path, or curve, or contour in a set D ⊆ C, is a function γ ∈ C1
pw([a, b]) ∩

C([a, b]) such that γ(t) ∈ D for all a ≤ t ≤ b. The initial point of γ is γ(a)
and the terminal point of γ is γ(b). The image of the curve γ is the set
{γ(t) | a ≤ t ≤ b} ⊆ D. A curve γ is closed if γ(a) = γ(b).

If Γ ⊆ C is a set, and if there is a function γ : [a, b]→ C on some interval [a, b] ⊆ R
such that Γ = {γ(t) | a ≤ t ≤ b}, then the function γ is a parametrization of Γ.
We will sometimes abuse terminology and call a “one-dimensional” subset Γ of C a
curve even when a parametrization is not specified.

We require curves to be continuous to enforce our intuition that a curve should be
“unbroken” in two-dimensional space. However, we permit curves to fail to be differen-
tiable at some points (provided that the left and right limits of the derivatives exist and
are finite at those points), since this encompasses curves with “points” or “corners.”

R

iR

A C1 curve

R

iR

A C ∩ C1
pw curve that is not C1
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R

iR

A simple closed curve

R

iR

A closed curve that is not simple

One can think of curves in C as an analogue of parametric mappings in R2, which we
recall from calculus to be functions of the form [a, b] → R2 : t 7→ (x(t), y(t)) for maps x,
y : [a, b] → R. In particular, we will often draw curves in C = R2 that are not graphs of
functions on R; for example, the curves in the following example fail the vertical line test
almost everywhere.

3.5.2 Example.

Parametrize the circle |z − z0| = r, where z0 ∈ C and r > 0.

Solution. We need to find an interval [a, b] ⊆ R and a function γ : [a, b]→ C such that
|γ(t) − z0| = r for all a ≤ t ≤ b and, moreover, if z ∈ C such that |z − z0| = r, there
is t ∈ [a, b] such that γ(t) = z. So, suppose |z − z0| = r. Since r > 0, z − z0 6= 0, and
so we may set t = Arg(z − z0), so −π < t ≤ π. Then z − z0 = |z − z0|eit = reit, thus
z = z0 + reit.

That is, any point on the circle |z − z0| = r has the form z = z0 + reit for some
t ∈ (−π, π]. This suggests setting γ(t) = z0 + reit. We want a curve’s domain to be a
closed, bounded interval, and since z0 + rei(−π) = z0 + reiπ, there is no harm in taking the
domain of γ to be [−π, π]. Conversely, any such point γ(t) clearly satisfies |γ(t)−z0| = r.

Another common parametrization of the circle uses the domain [0, 2π], which corre-
sponds to how we usually draw the unit circle.

r

z0

γ(t) = z0 + reit, 0 ≤ t ≤ 2π

r

z0

γ(t) = z0 + re−it, 0 ≤ t ≤ 2π

Still another parametrization is φ(t) := z0 + re−it, 0 ≤ t ≤ 2π. The difference
between φ and γ lies in how the curves “trace out” the unit circle. The curve γ does
so “counterclockwise” (which is what precalculus tells us is the “natural” orientation for
circles) while φ does so “clockwise.” N

3.5.3 Definition.
Let z1, z2 ∈ C. The line segment from z1 to z2 is the curve

γ(t) := (1− t)z1 + tz2, 0 ≤ t ≤ 1.
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We will often refer to this curve as [z1, z2].

3.5.4 Remark.

We will abuse notation and also denote by [z1, z2] the image of the line segment from
z1 to z2, and say things like “Suppose D ⊆ C and z1, z2 ∈ D with [z1, z2] ⊆ D” to mean
that the set {(1− t)z1 + tz2 | 0 ≤ t ≤ 1} is a subset of D and and that we are thinking
of this set with the “orientation” indicated by Definition 3.5.3.

Note too that if a, b ∈ R, then we define, of course,

[a, b] :={x ∈ R | a ≤ x ≤ b} .

One can show that

{x ∈ R | a ≤ x ≤ b} ={(1− t)a+ tb | 0 ≤ t ≤ 1} ={sa+ (1− s)b | 0 ≤ s ≤ 1}

={τ1a+ τ2b | 0 ≤ τ1, τ2 ≤ 1, τ1 + τ2 = 1} . (3.5.1)

In fact, the second and third equalities are valid for a, b ∈ C, not just in R. Given a,
b ∈ R, context will make it clear whether we are referring to an ordered interval [a, b]
or to the directed line segment from a to b; we would only write something unusual like
[2, 1] to indicate the line segment “beginning” at 2 and “ending” at 1.

3.5.5 Example.

Let z1, z2 ∈ C be distinct points. What is the difference between the functions

γ1(t) := (1− t)z1 + tz2 and γ2(t) := (1− t)z2 + tz1

defined on [0, 1]?

Solution. One can check that γ1(t) = γ2(t) if and only if t = 1/2, so these functions
certainly are not equal. If we sketch the images of γ1 and γ2, we see that they produce
the same picture: they are line segments connecting the points z1 and z2. (One can, and
should, show rigorously that γ1 and γ2 have the same image.) However, γ1(0) = z1, but
γ2(0) = z2; likewise, γ1(1) = z2, but γ2(1) = z1. So, the initial point of γ1 is the terminal
point of γ2, and vice-versa. It appears, then, that γ1 and γ2 both “trace out” the same
image but in the “reverse direction.”

R

iR

z0

z1

R

iR
z1

z0
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In fact, a little algebra shows

γ1(t) = γ2(1− t), 0 ≤ t ≤ 1. (3.5.2)

Thus, although the image of γ1 and γ2 is the same set

{s1z1 + s2z2 | 0 ≤ s1, s2 ≤ 1, s1 + s2 = 1} , (3.5.3)

each curve has the reverse “orientation” of the other. N

We formally define this notion of “reverse.”

3.5.6 Definition.

Suppose that γ : [a, b]→ C is a curve. The reverse of γ is the curve

γ−(t) := γ(a+ b− t), a ≤ t ≤ b.

Some books denote this curve by −γ instead.

Note that γ−(a) = γ(a+ b−a) = γ(b) and γ−(b) = γ(a+ b− b) = γ(a), so the reverse
curve γ− does indeed reverse the initial and terminal points of γ. This definition shows
that the curves γ1 and γ2 from Example 3.5.5 are the reverse curves of each other.

3.5.7 Example.

Let
γ1(t) = eit, 0 ≤ t ≤ 2π and γ2(t) = e2it, 0 ≤ t ≤ π.

What are the images of γ1 and γ2?

Solution. Clearly |γ1(t)| = |γ2(t)| = 1, so the images are contained in the unit circle,
which is the set {z ∈ C | |z| = 1}. In fact, if |z| = 1, then z = eiθ for some θ ∈ R, and
by taking the appropriate branch of the argument we may assume 0 ≤ θ ≤ 2π. Thus
z = γ1(θ), and so the image of γ1 is the entire unit circle. Likewise, z = γ2(θ/2), so the
image of γ2 is also the entire unit circle. Thus γ1 and γ2 are both parametrizations of the
unit circle. Moreover, we can relate γ1 and γ2 by observing that

γ1(t) = eit = e2i(t/2) = γ2

(
t

2

)
, 0 ≤ t ≤ 2π.

This corresponds to our graphical notion that γ2 sketches the unit circle “twice as fast,”
or “in half the time,” as γ1. N

The situation in the preceding example has a precise definition.

3.5.8 Definition.

A curve φ : [c, d]→ C is a reparametrization of the curve γ : [a, b]→ C if there
is a C1-function ψ : [a, b]→ [c, d] such that ψ′(t) > 0 for a ≤ t ≤ b and γ(t) = φ(ψ(t)).
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R

R

a b

c d
ψ

R

iR

φ

γ

γ(a)

γ(b)

The condition that ψ′(t) > 0 in this definition ensures that ψ is strictly increasing on
[a, b]; it follows that ψ(a) = c and ψ(b) = d. In Example 3.5.7, we had γ1(t) = γ2(ψ(t)),
where ψ(t) = t/2 and ψ maps [0, 2π] onto [0, π] in a one-to-one manner.

If the terminal point of one curve is the initial point of another curve, then the two
curves “join together” in a very natural way.

3.5.9 Definition.

Suppose γ1 : [a, b]→ C and γ2 : [c, d]→ C are two curves with γ1(b) = γ2(c). Then the
composition of γ1 and γ2 is the curve

γ1 ⊕ γ2 : [a, b+ (d− c)]→ C : t 7→

{
γ1(t), a ≤ t ≤ b

γ2(t− b+ c), b ≤ t ≤ b+ d− c.

Sometimes this curve is denoted by γ1 + γ2 instead.

R

iR

γ1(a)

γ1(b)γ1(b) = γ2(c)

γ2(d)
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γ1

R

iR

R
a b

R

iR

γ1(a)

γ1(b) = γ2(c)

γ2

R

iR

R
c d

R

iR

γ1(b) = γ2(c)

γ2(d)

γ1 ⊕ γ2

R

iR

R
a b b+ (d− c)

R

iR

γ1(a)

γ2(d)

While we will often compose two or more curves, we will rarely need to know what the
domain of the resulting composition is; it usually suffices to keep track of the individual
domains of the components.

3.5.10 Example.

Find four curves γ1, γ2, γ3, γ4 such that the image of γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4 is the curve
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below 50.

R

iR

−R −ε ε R

iε

iR

Solution. The line segment from z = ε to z = R is parametrized by

γ1(t) := (1− t)ε+ tR = (R− ε)t+ ε, 0 ≤ t ≤ 1.

The upper half of the circle of radiusR with “counterclockwise” orientation is parametrized
by

γ2(t) := Reit, 0 ≤ t ≤ π.

The line segment from z = −R to z = −ε is parametrized by

γ3(t) := (1− t)(−R) + t(−ε) = (t− 1)R− εt = (R− ε)t−R, 0 ≤ t ≤ 1.

And the upper half of the circle of radius ε with “clockwise” orientation is parametrized
by

γ4(t) := −εei(π−t), 0 ≤ t ≤ π.

(The curve γ4 needs to be the reverse of the curve t 7→ εeit, 0 ≤ t ≤ π.) N

In the preceding example, we could write a piecewise formula for γ1⊕γ2⊕γ3⊕γ4 over
some domain [0, b] for some b > 0. However, we will actually never use such a formula
when we work with compositions of curves later, and such a formula would only obscure
the four individual domains above. Indeed, although a curve need not be continuously
differentiable, it can always be expressed as the composition of C1-curves.

3.5.11 Lemma.

Suppose that γ : [a, b]→ C is a curve. Then there exist a partition a = t0 < t1 < · · · <
tn = b of [a, b] and curves γk ∈ C1([tk−1, tk]) such that γ = γ1 ⊕ · · · ⊕ γn.

R

iR

γ1

γ2

γ3

γ1 ⊕ γ2 ⊕ γ3

A C ∩ C1
pw curve that is not C1

50If part of a curve lies along the real or imaginary axis, we draw that part more thickly and translucently,
so that the drawing does not blend into the axis.
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Proof. Let a = t0 < t1 < · · · < tn = b be a partition of [a, b] such that γ is continuous on
each closed subinterval [tk−1, tk] and continuously differentiable on each open subinterval
(tk−1, tk); see part (ii) of Remark A.6.2. For k = 1, . . . , n, let γk be the restriction of γ to
[tk−1, tk], i.e., we define the functions γk : [tk−1, tk]→ C by

γk(t) = γ(t), tk−1 ≤ k ≤ tk.

Since γ is continuous on [a, b], each γk is continuous on [tk−1, tk]. In fact, γk ∈ C1([tk, tk+1]),
since the limits

lim
t→t+k−1

γ′k(t) = lim
t→t+k−1

γ′(t) and lim
t→t−k

γ′k(t) = lim
t→t−k

γ′(t)

exist, per Definition A.6.1. Of course, we define γ′k(tk−1) and γ′k(tk) as one-sided deriva-
tives by these limits.

So, γk ∈ C1([tk−1, tk]), which means that γk is a curve according to Definition 3.5.1.
Moreover, for k = 1, . . . , n− 1, we have

γk(tk) = γ(tk) = γk+1(tk).

Hence γ = ⊕nk=1γk, where each γk is continuously differentiable on its domain. And so
we see that a curve, while not necessarily continuously differentiable on its domain, can
always be expressed as the composition of continuously differentiable curves. �

3.5.12 Remark.
The fundamental intuitive difference between a set Γ ⊆ C and a parametrization
γ : [a, b] → C of Γ is that Γ is just a set, whereas γ has a “direction” or “orientation.”
(Of course, γ is also a function!)

Some treatments of complex analysis stress orientation much more than we will.
The Jordan curve theorem asserts that if γ : [a, b] → C is a closed curve that
is also simple in the sense that γ is one-to-one or injective (i.e., γ(t1) 6= γ(t2) for
a ≤ t1 < t2 < b), and if the image of γ is Γ, then the complex plane can be partitioned
disjointly into three sets:

C = B ∪ Γ ∪ U .

The set B is bounded in the sense that B ⊆ B(0; r0) for some r > 0, while U is
unbounded in the sense that U 6⊆ B(0; r) for all r > 0. The set B is called the
interior of γ, and the set U is the exterior of γ. The proof of the Jordan curve
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theorem is notoriously difficult.

ΓB

U

Then one says that γ is positively oriented if the set B remains “on the left”
of γ(t) as t increases from a to b. There are several mathematical ways of making
the phrase “on the left” precise, but none are particularly intuitive. We will largely
avoid these ambiguities of interpretations in two ways: first, by working with very
straightforward curves (typically circles) as long as possible, and second, by introducing
the simplest notion of orientation (the winding number) only when we are a little more
mathematically seasoned in Section 3.10.2.

3.5.2. The line integral.

We presume familiarity with differentiation and integration of a complex-valued function
of a real variable, as outlined in Appendix A.5.

3.5.13 Definition.

Suppose that f is continuous on D ⊆ C and γ : [a, b] → C is a curve in D. If γ ∈
C1([a, b]), then the line integral of f over γ is∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

If γ ∈ C1
pw([a, b]) ∩ C([a, b]) restricts to be continuously differentiable on the intervals

[tk−1, tk] with a = t0 < t1 < · · · < tn = b, then we define∫
γ

f(z) dz :=
n∑
k=1

∫ tk

tk−1

f(γ(t))γ′(t) dt,

where, on a given interval [tk−1, tk], we interpret γ′ to be the restriction

γ′(t) =


lim

t→t+k−1

γ′(t), t = tk−1

γ′(t), tk−1 < t < tk

lim
t→t−k

γ′(t), t = tk.
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It is possible to define the line integral using Riemann sums for a broader class of
functions than just the continuous ones. Under that definition, if f is continuous, its line
integral is the same as the one defined above. The restriction to continuous functions in
Definition 3.5.13 is really no restriction at all; we will ultimately be most interested in
integrating holomorphic functions, which are certainly continuous.

3.5.14 Example.

Let γ be the portion of the circle of radius 2 centered at the origin that runs from z = 2
to z = 2i. Compute ∫

γ

(z2 + Im(z)) dz.

Solution. The portion of the circle under consideration is parametrized by γ(t) := 2eit,
0 ≤ t ≤ π/2, so γ′(t) = 2ieit.

R

iR

2

2i

Here
f(z) = z2 + Im(z) =⇒ f(γ(t)) = (2eit)2 + Im(2eit) = 4e2it + 2 sin(t).

Then∫
γ

(z2 +Im(z)) dz =

∫ π/2

0

(4e2it+2 sin(t))(2ieit) dt = 8i

∫ π/2

0

e3it dt︸ ︷︷ ︸
8iI1

+ 4i

∫ π/2

0

sin(t)eit dt︸ ︷︷ ︸
4iI2

.

The fundamental theorem of calculus for complex-valued functions of a real variable tells
us

I1 =

∫ π/2

0

e3it dt =
e3it

3i

∣∣∣∣t=π/2
t=0

=
−i− 1

3i
.

Next,

I2 =

∫ π/2

0

sin(t)eit dt =
1

2i

∫ π/2

0

(
eit−e−it

)
eit dt =

1

2i

∫ π/2

0

(
e2it−1

)
dt =

1

2i

(
e2it

2i
− t
) ∣∣∣∣t=π/2

t=0

=
1

2
+
iπ

4
.

We conclude∫
γ

(z2 + Im(z)) dz = 8iI1 + 4iI2 = 8i

(
−i− 1

3i

)
+ 4i

(
1

2
+
iπ

4

)
= −

(
8

3
+ π

)
− 2i

3
. N
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3.5.15 Remark.
In this course we will frequently evaluate line integrals over circles and line segments.
Recall that the circle of radius r > 0 and center z0 ∈ C is the set of points |z− z0| = r.
Unless otherwise specified, we will assume, when taking a line integral over a circle,
that the circle is “positively oriented” in the sense that it is parametrized by

γ(t) = z0 + reit, 0 ≤ t ≤ 2π.

That is, we define ∫
|z−z0|=r

f(z) dz := ir

∫ 2π

0

f(z0 + reit)eit dt.

Likewise, when we consider a line segment [z1, z2], we will always assume that the
parametrization is

γ(t) = (1− t)z1 + tz2, 0 ≤ t ≤ 1,

and so we define ∫
[z1,z2]

f(z) dz := (z2 − z1)

∫ 1

0

f((1− t)z1 + tz2) dt.

3.5.16 Example.

Let z0 ∈ C, r > 0, and n ∈ Z. Show that∫
|z−z0|=r

(z − z0)n dz =

{
2πi, n = −1

0, n 6= −1.
(3.5.4)

Solution. Per the convention from Remark 3.5.15, we have∫
|z−z0|=r

(z − z0)n dz = ir

∫ 2π

0

(
(z0 + reit)− z0

)n
eit dt = ir

∫ 2π

0

(reit)neit dt

= irn+1

∫ 2π

0

ei(n+1)t dt.

If n 6= −1, then∫ 2π

0

ei(n+1)t dt =
ei(n+1)t

i(n+ 1)

∣∣∣∣t=2π

t=0

=
ei(n+1)2π − 1

i(n+ 1)
=

1− 1

i(n+ 1)
= 0.

If n = −1, then ∫ 2π

0

ei(−1+1)t dt =

∫ 2π

0

dt = 2π.

In either case, we conclude the formula (3.5.4). N

Now we discuss a number of fundamental properties of the line integral. Before doing
so, we need to recall some concepts that we probably met in real-variable calculus.
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3.5.17 Definition.

Suppose that γ : [a, b] → C is piecewise-C1 over the partition a = t0 < t1 < · · · < tn.
The arc length of γ is

`(γ) :=
n∑
k=1

∫ tk

tk−1

|γ′(t)| dt.

Many of the properties of line integrals that we will shortly discuss are just the natural
analogues for line integrals of properties of the Riemann integral, which we summarize in
Definition A.5.3 and Theorem A.5.5.

Now we generalize these familiar properties to line integrals.

3.5.18 Theorem.
Suppose that all integrals below are defined over the given curves.

(i) If the terminal point of γ1 is the initial point of γ2, then∫
γ1⊕γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

(ii)
∫
γ−
f(z) dz = −

∫
γ

f(z) dz.

(iii) [Linearity]
∫
γ

(
αf(z) + βg(z)

)
dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz

(iv) Suppose that φ is a reparametrization of the curve γ. Then∫
γ

f(z) dz =

∫
φ

f(z) dz.

(v) [Fundamental theorem of calculus] Suppose that the initial point of γ is z1

and the terminal point is z2. If F is an antiderivative of f , i.e., if F ′(z) = f(z)
for all z in the domain of F and f , then∫

γ

f(z) dz = F (z2)− F (z1).

(vi) [“ML estimate” = “maximum × length”] Suppose that Γ is the image of the
curve γ. Then ∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ (max
z∈Γ

f(z)

)
`(γ).

Proof. (i) Exercise.

(ii) Exercise.

(iii) Exercise.

(iv) To be concrete, we need domains for the curves. Suppose γ : [a, b] → C and
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φ : [c, d] → C and, for simplicity, take both to be C1. Since φ is a reparametrization
of ψ, there is a function ψ : [a, b]→ [c, d] such that γ(t) = φ(ψ(t)) for all t. Then∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

f
(
φ(ψ(t))

)
φ′(ψ(t)) dt.

Substitute u = ψ to conclude∫ b

a

f
(
φ(ψ(t))

)
φ′(ψ(t)) dt =

∫ ψ(b)

ψ(a)

f(φ(u))φ′(u) du =

∫ d

c

f(φ(u))φ′(u) du =

∫
φ

f(z) dz.

(v) First suppose γ : [a, b]→ C is C1 on [a, b]. Then∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

F ′(γ(t))γ′(t) dt =

∫ b

a

∂t[F ◦ γ](t) dt

= F (γ(b))− F (γ(a)) = F (z2)− F (z1). (3.5.5)

If γ is piecewise-C1, we repeat the calculation above but over each subinterval on which
γ is C1. The sum and difference of F ◦ γ evaluated at consecutive endpoints cancel until
we are left with F (γ(b)) − F (γ(a)) = F (z2) − F (z1). More precisely, write γ = ⊕nk=1γk,
where γk is C1 on [tk−1, tk] and γk(tk) = γk+1(tk). Here a = t0 < t1 < · · · < tn = b is a
partition of [a, b]. Then the preceding work shows∫

γk

f(z) dz = F (γk(tk))− F (γk(tk−1)). (3.5.6)

Then∫
γ

f(z) dz =

∫
⊕n

k=1γk

f(z) dz =
n∑
k=1

∫
γk

f(z) dz =
n∑
k=1

F (γk(tk))− F (γk(tk−1)).

This second sum is telescoping (Lemma A.2.5):
n∑
k=1

F (γk(tk))− F (γk(tk−1)) = F (γn(tn))− F (γ1(t0)).

Recall that

γn(tn) = γ(tn) = γ(b) = z2 and γ1(t0) = γ(t0) = γ(a) = z1.

Hence
F (γn(tn))− F (γ1(t0)) = F (z2)− F (z1).

(vi) Suppose that γ is C1 on [a, b]; the piecewise case is similar. First estimate using the
definition of the line integral and the triangle inequality for integrals of a complex-valued
function of a real variable that∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣ ≤ ∫ b

a

|f(γ(t))||γ′(t)| dt.

For a ≤ t ≤ b, we have γ(t) ∈ γ, so
|f(γ(t))| ≤ max

z∈Γ
|f(z)| =: M.

Thus ∫ b

a

|f(γ(t))||γ′(t)| dt ≤M

∫ b

a

|γ′(t)| dt. �
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3.5.19 Example.

Let γ be any curve in C with initial point 0 and terminal point i. Evaluate∫
γ

zez
2

dz.

Solution. Our experience with real-variable calculus tells us that F (z) = ez
2

/2 is an
antiderivative for f(z) = zez

2

, so the fundamental theorem of calculus for line integrals
gives ∫

γ

zez
2

dz =
ez

2

2

∣∣∣∣z=i
z=0

=
ei

2 − e0

2
=
e−1 − 1

2
. N

3.5.20 Example.

Let γR be the arc of the circle |z| = R in Im(z) > 0 with initial point R and terminal
point −R. Show that

lim
R→∞

∫
γR

dz

z2 + 4
= 0.

Solution. To be clear, we graph the arc.

R

iR

R−R

We will use the ML-inequality and the squeeze theorem to establish this limit. Let

F (R) :=

∫
γR

dz

z2 + 4
.

Then we have
lim
R→∞

F (R) = 0 ⇐⇒ lim
R→∞

|F (R)| = 0.

On the other hand, if there is a function g : [0,∞) → R with 0 ≤ |F (R)| ≤ g(R), and if
limR→∞ g(R) = 0, then the squeeze theorem tells us limR→∞ |F (R)| = 0 as well, and we
will be done.

So, let us estimate |F (R)|. First, since γR is the upper half of the circle of radius R
centered at the origin, its length is

`(γR) =
2πR

2
= πR.

Next, let ΓR be the image of γR. We need to find a number M(R), which is allowed
to depend on R, such that

z ∈ ΓR =⇒
∣∣∣∣ 1

z2 + 4

∣∣∣∣ ≤M(R).
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Then we can estimate ∣∣∣∣∫
γR

dz

z2 + 4

∣∣∣∣ ≤M(R)πR.

To do this, note that∣∣∣∣ 1

z2 + 4

∣∣∣∣ ≤M(R) ⇐⇒ 1

M(R)
≤ |z2 + 4|,

so it suffices to find a lower bound for |z2 + 4| on ΓR. One way to do this is to use the
dreaded reverse triangle inequality from Theorem A.1.4. We find

|z2 + 4| = |z2 − (−4)| ≥
∣∣|z2| − | − 4|

∣∣ =
∣∣|z|2 − 4

∣∣ ≥ |z|2 − 4.

Now, observe that if z ∈ ΓR, we have |z| = R. Thus

z ∈ ΓR =⇒ R2 − 4 = |z|2 − 4 ≤ |z2 + 4| =⇒ 1

|z2 + 4|
≤ 1

R2 − 4
=: M(R).

We conclude ∣∣∣∣∫
γR

dz

z2 + 4

∣∣∣∣ ≤ πR

R2 − 4
,

where we know
lim
R→∞

πR

R2 − 4
= 0.

By the squeeze theorem and the comments above, we are done. N

3.5.21 Remark.

Parts (i) and (ii) of Theorem 3.5.18 allow us to avoid, in large part, worrying about
piecewise-C1 curves and finding common domains for the composition of curves. For
example, if γ : [0, 2] → C is piecewise-C1 and γ is C1 on [0, 1] and C1 on [1, 2], then
define two curves

γ1(t) := γ(t), 0 ≤ t ≤ 1 and γ2(t) := γ(t), 1 ≤ t ≤ 2

to find γ = γ1 ⊕ γ2, and thus∫
γ

f(z) dz =

∫
γ1⊕γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz. (3.5.7)

Likewise, if we are given some curves, say, γ1 and γ2, we could figure out a piecewise
formula for γ1⊕γ2 and then compute

∫
γ1⊕γ2f(z) dz, but it is often easier just to compute

(3.5.7) In general, we should use properties of line integrals as much as we can to “break
up” the line integral over convenient curves and not worry about parametrizing the curve
all over one interval.

3.5.3. Path independence.

Part (v) of Theorem 3.5.18 gives us an easy way of evaluating a line integral: if the
integrand has an antiderivative, the fundamental theorem of calculus carries over, except
we replace the “endpoints” from real-variable calculus with the initial and terminal points
of the curve over which we integrate. However, it is much more difficult for a function of
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a complex variable to have an antiderivative than it is for a function of a real variable.
Recall that if f : [a, b] → R is continuous, then F (x) :=

∫ x
a
f(t) dt for a ≤ x ≤ b is an

antiderivative for f , i.e., F ′(x) = f(x) for all x ∈ [a, b].
Suppose we attempt a similar construction of an antiderivative for a continuous func-

tion f of a complex variable defined on some subset D of C. The greater freedom afforded
by the two-dimensional geometry of C complicates this attempt. First, we have no nat-
ural analogue of the endpoint a of the real interval [a, b] from before. We could still fix
some z0 ∈ D and try to “base” our antiderivative there. We might then try to define an
antiderivative as

F (z) :=

∫
[z0,z]

f(ξ) dξ,

where [z0, z] is the line segment from z0 to z. After all, in R the line segment from a to
x for x ≥ a is just the interval [a, x]. However, depending on the geometry of D, we have
no guarantee that [z0, z] ⊆ D for all z ∈ D, and consequently f may not be defined on
all of [z0, z].

z0

z

The next option would be not to restrict ourselves to line segments. Suppose we take
an arbitrary curve γz in D whose initial point is z0 and whose terminal point is z. Then
we could define

F (z) :=

∫
γz

f(ξ) dξ, (3.5.8)

and perhaps that would be an antiderivative of f . There are, again, problems with this
approach. First, we have no guarantee that there is a point z0 ∈ D such that for any
z ∈ D, there is also a curve in D connecting z0 and z.

z0

z
???

Next, even if a set D does have this property, how do we know that the function F
in (3.5.8) is well-defined? That is, perhaps there are curves γz and φz in D whose initial
points are both z0 and whose terminal points are both z, but for which∫

γz

f(ξ) dξ 6=
∫
φz

f(ξ) dξ.

In that case, would the antiderivative depend on which curve we pick? How would we
know which one to choose?
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In this section we will build the machinery that determines when a continuous function
does have an antiderivative on a given region. This will be the key to evaluating simply
and succinctly many line integrals and eliciting deeper properties of functions through,
ultimately, rather simple means.

3.5.22 Definition.

(i) A set D ⊆ C is open if for any z ∈ D there is r > 0 such that B(z; r) ⊆ D.

(ii) A set D ⊆ C is path connected if for any z1, z2 ∈ D, there exists a path
γ : [a, b]→ D such that z1 is the initial path of γ and z2 is the terminal point of γ, i.e.,
γ(a) = z1, γ(b) = z2, and γ(t) ∈ D for all a < t < b.

z1
z2

(iii) A domain is a set that is both open and path connected. Of course, the word
“domain” is also used to refer to the set of acceptable inputs for a function.

3.5.23 Example.

The following sets are all domains; the proofs are left as an exercise and can effectively
be accomplished just by drawing a picture. Note that in parts (i) and (iii), the curve
connecting two points can be taken to be just the line segment between them. Is that
possible in parts (ii) and (iv)?

(i) The entire complex plane C is a domain.

(ii) The punctured complex plane C \ {0} is a domain.

(iii) The half-plane Re(z) > 0 is a domain.

(iv) The “dumbbell contour” sketched below is a domain.

R

iR
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3.5.24 Example.

The following sets are not domains.

(i) The set Re(z) ≥ 0 is not open; if z ∈ iR, i.e., if z = iy for some y ∈ R, then any
ball B(iy; r) contains points w with Re(w) < 0.

R

iR

?

(ii) The set B(−2; 1) ∪B(2; 1) is not path connected.

R

iR

?
?

−2 2

We will use the following “separation” lemma at various points in the future. Infor-
mally, it says that if a closed ball is contained in an open set, then a slightly larger closed
ball, centered at the same point, is still contained in that set.

3.5.25 Lemma (Separation).

Let D ⊆ C be open and z0 ∈ D. If r > 0 is small enough so that B(z0; r) ⊆ D, then
there is ε > 0 such that B(z0; r + ε) ⊆ D, too.

r

z0

r + ε

z0

The proof depends on some fundamental topological properties of complex numbers,
so we omit it. The next lemma is a technical result that we will use very frequently when
evaluating the definition of the derivative; its proof is a rare exercise in ε-δ analysis, so
we give it in full.



3. Complex Analysis 190

3.5.26 Lemma.

Suppose z0 ∈ C, r > 0, and f : B(z0; r) → C is continuous. If h ∈ C with |h| < r,
then [z0, z0 + h] ⊆ B(z0; r) and

lim
h→0

1

h

∫
[z0,z0+h]

f(z) dz = f(z0). (3.5.9)

Proof. That [z0, z0 + h] ⊆ B(z0; r) for |h| < r is left as an exercise. The statement
(3.5.9) is true if for all ε > 0 there exists δ > 0 such that

0 < |h| < δ =⇒
∣∣∣∣1h
∫

[z0+h,z0]

f(z) dz − f(z0)

∣∣∣∣ < ε. (3.5.10)

First we rewrite the integral. Parametrize the line segment [z0, z0 + h] as

γ(t) = t(z0 + h) + (1− t)z0 = tz0 + th+ z0 − tz0 = th+ z0, 0 ≤ t ≤ 1.

Then
1

h

∫
[z0,z0+h]

f(z) dz =
1

h

∫ 1

0

f(th+ z0)h dt =

∫ 1

0

f(th+ z0) dt.

Next, we write

f(z0) = f(z0)(1− 0) =

∫ 1

0

f(z0) dt,

so we have

1

h

∫
[z0,z0+h]

f(z) dz−f(z0) =

∫ 1

0

f(th+z0) dt−
∫ 1

0

f(z0) dt =

∫ 1

0

(
f(th+z0)−f(z0)

)
dt.

Then∣∣∣∣1h
∫

[z0,z0+h]

f(z) dz − f(z0)

∣∣∣∣ =

∣∣∣∣∫ 1

0

(
f(th+ z0)− f(z0)

)
dt

∣∣∣∣ ≤ (1−0) max
0≤t≤1

|f(th+z0)−f(z0)|.

(3.5.11)
Now we invoke the continuity of f . Given ε > 0, choose δ > 0 such that

|z − z0| < δ =⇒ |f(z)− f(z0)| < ε.

Take 0 < |h| < δ. Then
|(th+ z0)− z0| = |th| ≤ |h|

for 0 ≤ t ≤ 1. Thus{
0 ≤ t ≤ 1

0 < |h| < δ
=⇒ |f(th+ z0)− f(z0)| < ε =⇒ max

0≤t≤1
|f(th+ z0)− f(z0)| < ε.

We combine this with (3.5.11) to see that we have achieved our goal (3.5.10). �
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3.5.27 Theorem.
Let f be continuous on the domain D. The following are equivalent:

(i) The function f has an antiderivative on D, i.e., there is a holomorphic function F
defined on D with F ′(z) = f(z) for all z ∈ D.

(ii) If γ is a closed curve in D, then∫
γ

f(z) dz = 0.

(iii) [Path independence] Let z0, z1 ∈ D and let γ1 and γ2 be curves in D such that
z0 is the initial point of both γ1 and γ2, and z1 is the terminal point of both γ1 and γ2.
Then ∫

γ1

f(z) dz =

∫
γ2

f(z) dz.

Proof. (i) =⇒ (ii) Suppose F is holomorphic on D with F ′(z) = f(z) for all z ∈ D, and
let γ be a closed curve in D, i.e., the initial point and the terminal point of γ are the
same point z0. Then the fundamental theorem of calculus for line integrals implies∫

γ

f(z) dz =

∫
γ

F ′(z) dz = F (z0)− F (z0) = 0.

(ii) =⇒ (iii) Suppose that γ1 and γ2 are curves in D with the same initial point z0 and
the same terminal point z1, as in the sketch below.

z0

z1

γ1

γ2

z0

z1

γ1

γ−2

Then the curve γ1 ⊕ γ−2 is closed, so part (ii) implies

0 =

∫
γ1⊕γ−2

f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz =⇒
∫
γ1

f(z) dz =

∫
γ2

f(z) dz.

(iii) =⇒ (i) Motivated by the discussion at the start of this section and our recollection of
antiderivatives on real subintervals, we fix a point z? ∈ D and, for z ∈ D, let γz be a curve
in D with initial point z? and terminal point z. Since D is a domain, D is connected, and
so such a path γz exists, although γz need not be the line segment [z?, z]. Then since f
is path-independent, we obtain a well-defined function

F (z) :=

∫
γz

f(ξ) dξ.

That is, the value of F does not depend on which curve γz we select to connect z? and z.
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Now we need to show that F is differentiable and F ′ = f . We do this by fixing a
point51 z ∈ D and studying the difference quotient

F (z + h)− F (z)

h
.

We only need to do this for h small, so assume that h is so small that [z, z+h] ⊆ D. The
path γz ⊕ [z, z + h] has initial point z? and terminal point z + h, so by independence of
path

F (z + h) =

∫
γz

f(ξ) dξ +

∫
[z,z+h]

f(ξ) dξ = F (z) +

∫
[z,z+h]

f(ξ) dξ.

z?

z

γz

z + h

Thus
F (z + h)− F (z)

h
=

1

h

∫
[z,z+h]

f(ξ) dξ,

so Lemma 3.5.26 shows

lim
h→0

F (z + h)− F (z)

h
= lim

h→0

1

h

∫
[z,z+h]

f(ξ) dξ = f(z). �

3.5.28 Example.

Evaluate ∫
γ

1

z + 1
dz,

where γ is any curve in the domain Im(z) > 0 with initial point z = −1 + 2i and
terminal point z = 1 + 2i.

Solution. The chain rule and Example 3.4.9 tell us

d

dz
[Log(z + 1)] =

1

z + 1
, z ∈ C \ (−∞,−1].

The domain Im(z) > 0 is a subset of C\(−∞,−1], so this derivative is valid on Im(z) > 0.
Then Theorem 3.5.27 gives∫

γ

1

z + 1
dz = Log(1 + 2i+ 1)− Log(−1 + 2i+ 1) = Log(2 + 2i)− Log(2i)

51In what follows, we will use some evocative pictures that suggest z 6= z?. The actual calculations that
we perform, however, are entirely valid if z = z?.
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=
(

ln(
√

22 + 22) + i
π

4

)
−
(

ln(2) + i
π

2

)
= ln(

√
2)− iπ

4
. N

3.5.29 Example.

In the exercises we will construct two paths γ1 and γ2, each with initial point 0 and
terminal point i, such that

∫
γ1
z dz 6=

∫
γ2
z dz. What does this say about the complex

ODE
f ′(z) = z?

Solution. Simply: this seemingly banal ODE does not have a solution, at least in a
domain containing both 0 and i. This is wholly unlike our straightforward method of
direct integration for an ODE depending on a real variable in Section 1.2.1 and suggests
that, at a theoretical level, the existence of solutions to an ODE involving a function of
a complex variable will require more stringent hypotheses. N

3.6. Cauchy’s integral theorem and formula.

3.6.1. Motivation.

The independence of path theorem characterizes those functions of a complex variable
that have antiderivatives, and Example 3.5.29 indicates that continuity alone does not
guarantee the existence of an antiderivative. Neither does differentiability.

3.6.1 Example.

Show that the function f(z) = 1/z is holomorphic on the domain C\{0} (the “punctured
plane”), but f does not have an antiderivative on D.

Solution. The quotient rule proves that f is differentiable at all z 6= 0 with derivative
f ′(z) = −1/z2. The natural choice for an antiderivative of f is F (z) := Log(z), which
is defined on C \ {0}. However, we saw in Example 3.4.9 that F is not differentiable
on (−∞, 0) and proved that F is differentiable on Re(z) > 0, arguing that a more
complicated calculation would establish the differentiability of F on C \ (−∞, 0].

The failure of the principal logarithm to serve as an antiderivative of f on all of C\{0}
does not in and of itself rule out the possibility that f could have another antiderivative
on C \ {0}. However, independence of path again helps: let γ1 be the arc of the unit
circle from i to −1 that lies in Re(z) < 0 and γ2 the arc that lies in Re(z) > 0. We claim∫
γ1
f(z) dz 6=

∫
γ2
f(z) dz. N

The fault in Example 3.6.1 is with our choice of domain (= set of inputs) for f . The
set C \ {0} is a domain (= open and path connected), but the “puncture” at 0 weakens
it topologically. We will ultimately prove, in Theorem 3.7.14, that a function defined on
a more specialized (but still fairly ubiquitous) kind of domain D has an antiderivative if
and only if that function is holomorphic on D.

Let us pause our quest for antiderivatives momentarily and enjoy some formal con-
sequences of differentiability. Suppose f is holomorphic on D. For any point z0 ∈ D, if
z ≈ z0, then we expect

f(z) ≈ f ′(z0)(z − z0) + f(z0)
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since f is “locally linear.” Suppose that γ is a closed curve in D whose image is “close to”
z0; perhaps the image is contained in B(z0; r) for some small r. Then we also expect∫

γ

f(z) dz ≈
∫
γ

(
f ′(z0)(z − z0) + f(z0)

)
dz.

But ∫
γ

(
f ′(z0)(z − z0) + f(z0)

)
dz = 0,

since the mapping z 7→ f ′(z0)(z − z0) + f(z0) has the antiderivative

z 7→ f ′(z0)z2

2
− f ′(z0)z + f(z0)z,

and then Theorem 3.5.27 applies.
So, this crude reasoning suggests that “the line integral of a holomorphic function over

a closed curve is zero.” This is an incorrect conclusion, as it would then imply that every
holomorphic function has an antiderivative. As in Example 3.6.1, take f(z) = 1/z on
C \ {0}, so f is holomorphic on C \ {0}, and Example 3.5.16 gives∫

|z|=1

dz

z
= 2πi. (3.6.1)

Although f is holomorphic on the open set C \ {0} containing the circle |z| = 1, f is not
holomorphic at z = 0, and the point z = 0 is “inside” the curve |z| = 1. Somehow this
causes the integral

∫
|z|=1

f(z) dz to be nonzero.
Although it is not obvious, the equality (3.6.1) can be rewritten

1

2πi

∫
|z|=1

g(z)

z − 0
dz = g(0), where g(z) := 1.

The “representation” of the value g(0) by this integral is no accident! We hasten to
add that the calculation of this integral as 2πi hinged on our convention from Remark
3.5.15 of parametrizing the circle |z| = 1 via γ(t) = eit, 0 ≤ t ≤ 2π. Had we taken the
parametrization to be, say, µ(t) = e−it, 0 ≤ t ≤ 2π, the integral in (3.6.1) would be −2πi,
reflecting the fact that µ is really the reverse curve γ−.

This very informal discussion distills into the following crude versions of, arguably,
the principal results of complex analysis.

3.6.2 Theorem (Cauchy integral theorem — crude version).

Suppose f is holomorphic on a domain D and γ is a closed curve in D whose “inside”
or “interior” is contained in D. (In particular, f must be holomorphic on this inside
region.) Then ∫

γ

f(z) dz = 0.
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3.6.3 Theorem (Cauchy integral formula — crude version).

Suppose f is holomorphic on a domain D and γ is a closed curve in D whose “inside”
or “interior” is contained in D. Moreover, suppose γ is “positively oriented” in the
sense that the inside of γ “remains on the left” as γ is traversed. If z is a point in the
“inside” of γ, then

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ. (3.6.2)

For ξ fixed, the mapping z 7→ f(ξ)/(ξ − z) is differentiable. Assume that we can
differentiate under the integral in (3.6.2). It is possible to make this rigorous for functions
of a complex variable and line integrals, in the spirit of Theorem 2.4.35, but we will eschew
this. Formally, then,

f ′(z) = ∂z

[
1

2πi

∫
γ

f(ξ)

ξ − z
dξ

]
=

1

2πi

∫
γ

∂z

[
f(ξ)

ξ − z

]
dξ =

1

2πi

∫
γ

f(ξ)

(ξ − z)2
dξ.

Now, for ξ fixed again, the mapping z 7→ f(ξ)/(ξ − z)2 is differentiable. Differentiate
under the integral again:

∂z

[
1

2πi

∫
γ

f(ξ)

(ξ − z)2
dξ

]
=

1

2πi

∫
γ

∂z

[
f(ξ)

(ξ − z)2

]
dξ =

2

2πi

∫
γ

f(ξ)

(ξ − z)3
dξ.

This suggests that f is in fact twice-differentiable! If we continue to differentiate under
the integral an arbitrary k times, we (formally) obtain the following corollary.

3.6.4 Corollary (Generalized Cauchy integral formula — crude version).

Assume the hypotheses of Theorem 3.6.3. Then f is in fact infinitely differentiable at
all points on the “inside” of γ with

f (k)(z) =
k!

2πi

∫
γ

f(ξ)

(ξ − z)k+1
dξ.

We will first prove Cauchy’s integral theorem. By the independence of path theorem,
the existence of an antiderivative implies integrals over closed curves are zero, so we will
try to construct antiderivatives as much as possible. Then we will derive the integral
formula from the integral theorem.

3.6.2. Ancillary results for star-shaped regions involving triangles.

We begin by specifying a type of subset of C that will play a “starring” role in many of
our proofs.

3.6.5 Definition.

A set D ⊆ C is star-shaped if there is a point z? ∈ D such that [z?, z] ⊆ D for all
z ∈ D. The point z? is called a star-center for D. A star-shaped domain
or a star domain is a domain that is also star-shaped (recall that a domain is an
open, path-connected set).
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3.6.6 Example.

(i) The set below is (unsurprisingly!) star-shaped, and its star-center is indicated by
the symbol ?.

?

(ii) The annulus A :={z ∈ C | 1 ≤ |z| ≤ 2} is not star-shaped: if z ∈ A, then z ∈ A,
too, but [z, z] 6⊆ A. That is, no matter what point z? we try to pick for the star-center,
we cannot connect z? to z? by a line segment.

z?

z?

3.6.7 Example.

For any z0 ∈ C and r > 0, the open ball B(z0; r) is star-shaped, and any point in
B(z0; r) is a star-center.

Proof. Fix z ∈ B(z0; r). We need to show that for any w ∈ B(z0; r), we have [z, w] ⊆
B(z0; r).

z0

zw

That is, for any t ∈ [0, 1], we have (1 − t)z + tw ∈ B(z0; r). In turn, this amounts to
showing

|z − z0| < r, |w − z0| < r, 0 ≤ t ≤ 1 =⇒
∣∣z0 −

(
(1− t)z + tw

)∣∣ < r.



3. Complex Analysis 197

We rewrite z0 = z0 − tz0 + tz0 = (1− t)z0 + tz0. Then

z0−
(
(1− t)z+ tw

)
= (1− t)z0 + tz0−

(
(1− t)z+ tw

)
= (1− t)z0 + tz0− (1− t)z− tw

= (1− t)(z0 − z) + t(z0 − w).

The triangle inequality then implies∣∣z0 −
(
(1− t)z + tw

)∣∣ =
∣∣(1− t)(z0 − z) + t(z0 − w)

∣∣ ≤ |(1− t)(z0 − z)|+ |t(z0 − w)|

= (1− t)|z − z0|+ t|z0 − w| < (1− t)r + tr = r. �

Next, many steps in the construction of antiderivatives of holomorphic functions will
involve triangles.

3.6.8 Definition.
Let z1, z2, z3 ∈ C.

(i) The triangle spanned by z1, z2, and z3 is the set

∆(z1, z2, z3) :=
⋃

0≤s≤1

[z1, (1− s)z2 + sz3]. (3.6.3)

(ii) The triangular path spanned by z1, z2, and z3 is the closed curve

∂∆(z1, z2, z3) := [z1, z2]⊕ [z2, z3]⊕ [z3, z1]. (3.6.4)

3.6.9 Remark.

(i) Why is (3.6.3) the right definition of a triangle? If we draw a picture and assume
that the endpoints z1, z2, and z3 of the triangle are distinct and not collinear (i.e.,
they do not all belong to the same line segment), we can imagine that the “inside” of
this triangle consists of all line segments that have one endpoint at z1 and the other
endpoint at an arbitrary point on the line segment between z2 and z3.

z1 z2

z3

(ii) If these three points are not all distinct, or if they are collinear, then ∆(z1, z2, z3)
is just a line segment and ∆(z1, z2, z3) = ∂∆(z1, z2, z3), as defined in (3.6.4). Surely
this flies in the face of our geometric intuition, and in this case ∆(z1, z2, z3) is not a
“classical” triangle. Remarkably, this turns out not to affect any of our proofs!

The next lemma tells us that given a point in a star-shaped domain, the triangle
whose endpoints are the given point, the star-center, and a third point close to the given
point is contained in the domain.
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3.6.10 Lemma.

If D is a star-shaped domain with star-center z?, then for any z ∈ D, there is h0(z) > 0
such that if 0 ≤ |h| < h0(z), then ∆(z?, z, z + h) ⊆ D.

Proof. First, we remark that even if D is star-shaped with star-center z?, the triangle
∂∆(z?, z1, z2) need not be wholly contained in D for arbitrary points z1, z2 ∈ D, as the
picture below indicates.

?

Now fix z ∈ D. Since D is a domain, D is open, and so there is r > 0 such that
B(z; r) ⊆ D. By Lemma 3.5.26, if h ∈ C with 0 ≤ |h| < r, then [z, z + h] ⊆ B(z; r). So,
take h0(z) = r, and fix h ∈ C with |h| < r. To show ∆(z?, z, z+h) ⊆ D, it suffices to show
[z?, (1−s)z+s(z+h)] ⊆ D for 0 ≤ s ≤ 1. But observe that (1−s)z+s(z+h) ∈ [z, z+h],
and so (1 − s)z + s(z + h) ∈ D. Since D is star-shaped with star-center z?, we have
[z?, (1− s)z + s(z + h)] ⊆ D, as desired. �

3.6.11 Lemma.
Suppose that f is continuous on the star-shaped domain D and let z? be a star-center
for D. Suppose that for each z ∈ D, if h ∈ C is small enough that ∆(z?, z, z+ h) ⊆ D,
we have ∫

∂∆(z?,z,z+h)

f(ξ) dξ = 0.

?
z?

z + h

z

Then f has an antiderivative on D.

Proof. Our intuition, and the proof of part (iii) of Theorem 3.5.27, suggest that an
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antiderivative of f has the form

F (z) :=

∫
[z?,z]

f(ξ) dξ.

Note that now we have no qualms about the containment [z?, z] ⊆ D since D is a star-
domain. Also, we do not need to require the path independence of f , as in the proof of
part (iii) of Theorem 3.5.27, since we are not defining F as the integral over an arbitrary
curve connecting z? and z but rather the line segment [z?, z].

Fix z ∈ D. We show F ′(z) = f(z), i.e.,

lim
h→0

F (z + h)− F (z)

h
= f(z).

Take h so small that ∂∆(z?, z, z+h) ⊆ D; it is entirely possible, and entirely permissible,
that the size of h will depend on z. Then

0 =

∫
∂∆(z?,z,z+h)

f(ξ) dξ =

∫
[z?,z]

f(ξ) dξ︸ ︷︷ ︸
F (z)

+

∫
[z,z+h]

f(ξ) dξ +

∫
[z+h,z?]

f(ξ) dξ︸ ︷︷ ︸
−F (z + h)

.

This rearranges to

F (z + h)− F (z) =

∫
[z,z+h]

f(ξ) dξ.

Since this is true for all h small, we have

lim
h→0

F (z + h)− F (z)

h
= lim

h→0

1

h

∫
[z,z+h]

f(ξ) dξ = f(z)

by Lemma 3.5.26. That is, F ′(z) = f(z), as desired. �

So, when does f integrate to zero over triangles? Whenever f is holomorphic. The
proof of the following essential theorem can be found in many sources, including [1, 12].

3.6.12 Theorem (Cauchy-Goursat-Pringsheim).

Suppose that f is holomorphic on an open set D (which need not be star-shaped or even
a domain). Let z1, z2, z3 ∈ D such that ∆(z1, z2, z3) ⊆ D. Then∫

∂∆(z1,z2,z3)

f(z) dz = 0.

3.6.3. The Cauchy theorems.

3.6.13 Theorem (Cauchy integral theorem for star-shaped domains).

If f is holomorphic on a star-shaped domain D, then∫
γ

f(z) dz = 0

for any closed curve γ in D.
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Proof. By Theorem 3.5.27, it suffices to show that f has an antiderivative on D. By
Lemma 3.6.11, f will have an antiderivative on D if

∫
∂∆(z?,z,z+h)

f(ξ) dξ = 0 for all z ∈ D
and h ∈ C small. This is true by the Cauchy-Goursat-Pringsheim theorem. �

Why did we prove the Cauchy integral theorem by constructing an antiderivative
instead of calculating directly the integral

∫
γ
f(z) dz? Other than the fact that the proof

above is very short, thanks to our diligent preparation, this proof only requires us to do
one thing: construct a single antiderivative. A more “direct” proof would require us to
compute

∫
γ
f(z) dz for any possible closed curve γ in D, of which there are infinitely

many. So, constructing one antiderivative was more expeditious than evaluating infinitely
many integrals!

Also, the Cauchy integral theorem subsumes the Cauchy-Goursat-Pringsheim theo-
rem: any triangular path ∂∆(z1, z2, z3) is a closed curve. But to prove the Cauchy integral
theorem, we specifically needed f to integrate to zero around triangles.

3.6.14 Example.

Evaluate the line integral ∫
|z|=1

z

(z − 3)2
dz.

Solution. One could construct an antiderivative for f(z) = z/(z− 3)2 using the method
of partial fractions, but that is laborious, and extravagant. Instead, observe that f is
a rational functions, and rational functions are holomorphic at all points at which their
denominator is nonzero. Thus f is holomorphic on C \ {3}.

R

iR

1 2 3

Now, the closed curve |z| = 1 is contained in the star-domain B(0; 2), and f is holomor-
phic there. By Cauchy’s integral theorem, the integral evaluates to 0. N

Now we proceed to establish the Cauchy integral formula. We will actually only do
so when the curve under consideration is a circle. This will be enough for all of our
immediate needs, and later we will obtain the formula for more general curves by means
of the residue theorem.

First, we use the Cauchy integral theorem to relate certain line integrals over circles.
The proof involves a “deformation of contours” argument: we will show that a line integral
over a given circle φ1 is equal to a line integral over a different circle φ2. Very informally,
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we “deform” or “squeeze” φ1 into φ2 in a “continuous” manner, and the line integral is
robust enough that its value does not change during this deformation.

3.6.15 Lemma (Death Star).

Let D ⊆ C be open, a, z0 ∈ D, and f : D \ {a} → C be holomorphic. Suppose that r,
s > 0 with B(a; s) ⊆ B(z0; r) and B(z0; r) ⊆ D. Then∫

|z−z0|=r
f(z) dz =

∫
|z−a|=s

f(z) dz.

s

r

z0 a

Proof. We define a number of curves by the following sketch; we leave their precise
formulas for the exercises.

r

z0

s

a

γ1 γ2

µ1

µ2

ν1

ν2

Observe that∫
|z−z0|=r

f(z) dz =

∫
µ1⊕µ2

f(z) dz and
∫
|z−a|=s

f(z) dz =

∫
ν1⊕ν2

f(z) dz

So, our goal is to show
∫
µ1⊕µ2f(z) dz =

∫
ν1⊕ν2f(z) dz.

Consider the closed curves

Γ1 := γ1 ⊕ ν−1 ⊕ γ2 ⊕ µ1 and Γ2 := γ1 ⊕ ν−2 ⊕ γ2 ⊕ µ−2 .
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We claim that Γ1 is contained within a star domain D1 ⊆ D \ {a}. If this is true, then
since g is holomorphic on D \ {a}, the Cauchy integral theorem implies

∫
Γ1
g(z) dz = 0.

We construct this star domain in the following sketches. Since B(z0; r) ⊆ D and D is
open, the separation lemma (Lemma 3.5.25) provides ε > 0 such that B(z0; r + ε) ⊆ D,
too. Let ` be the line segment from a to the boundary of B(z0; r+ε) as sketched below; in
particular, a ∈ `. Let D1 be the “slitted” ball formed by deleting ` from B(z0; r+ ε); that
is, D1 := B(z0; r + ε) \ `. Then D1 is a star domain, where any point on the remaining
line segment ˜̀ is a star center. This, hopefully, is fairly obvious from our sketches but
rather technical to prove; recall the (perhaps nonintuitive) estimates of Example 3.6.7.
Indeed, since, by that example, any point in an open ball is a star center for the ball,
we would just have to show that the line segment from any point on ˜̀ to any point in
B(z0; r + ε) \ ` does not intersect `.

z0 a

r + ε `

˜̀
?

z0
a

Similar reasoning shows
∫

Γ2
f(z) dz = 0. Thus∫
Γ1

f(z) dz =

∫
Γ2

f(z) dz.

Upon splitting each of these integrals into a sum of four integrals, this reads∫
γ1

f(z) dz+

∫
ν−1

f(z) dz+

∫
γ2

f(z) dz+

∫
µ1

f(z) dz =

∫
γ1

f(z) dz+

∫
ν2

f(z) dz+

∫
γ2

f(z) dz

+

∫
µ−2

f(z) dz.

Canceling
∫
γ1

and
∫
γ2

from both sides, we have∫
ν−1

f(z) dz +

∫
µ1

f(z) dz =

∫
ν2

f(z) dz +

∫
µ−2

f(z) dz

=⇒
∫
µ1

f(z) dz −
∫
µ−2

f(z) dz = −
∫
ν−1

f(z) dz +

∫
ν2

f(z) dz

=⇒
∫
µ1

f(z) dz +

∫
µ2

f(z) dz =

∫
ν1

f(z) dz +

∫
ν2

f(z) dz
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=⇒
∫
µ1⊕µ2

f(z) dz =

∫
ν1⊕ν2

f(z) dz,

as desired.

We now use this technological terror to evaluate what appears to be (and what re-
ally is) an anodyne line integral that would be rather difficult to calculate directly by
definition.

3.6.16 Example.

Let z0 ∈ C, r > 0, and a ∈ B(z0; r). Then∫
|z−z0|=r

dz

z − a
= 2πi.

Proof. If we try to calculate this integral directly using the definition of the line integral,
we obtain ∫

|z−z0|=r

dz

z − a
= ir

∫ 2π

0

eit

z0 + reit − a
dt,

and this does not have an obvious antiderivative. Instead, put f(z) := 1/(z − a), so g is
holomorphic on C \ {a}. Example 3.5.16 told us∫

|z−a|=s
f(z) dz = 2πi

for any s > 0. In particular, since a ∈ B(z0; r), there is s > 0 such that B(a; s) ⊆
B(z0; r). We have now met all the hypotheses of Lemma 3.6.15, which implies∫

|z−a|=s
f(z) dz =

∫
|z−z0|=r

f(z) dz. �

The last lemma that we need before we can prove the Cauchy integral formula shows
that we can very slightly relax the requirement that f be holomorphic on all of a star-
shaped domain D in the hypotheses of the Cauchy integral theorem. The proof is some-
what technical and unenlightening, so we omit it (see, once again, [12]).

3.6.17 Lemma (“relaxed” Cauchy integral theorem).

Suppose D is a star-shaped domain with star center z?. Let f be holomorphic on D\{z?}
and continuous on D. Then ∫

γ

f(z) dz = 0

for any closed curve γ in D. That is, the Cauchy integral theorem is still valid for f ,
if f fails to be holomorphic only at the star-center.

3.6.18 Theorem (Cauchy integral formula).

Let f be holomorphic on D, where D is open (but not necessarily a domain or star-



3. Complex Analysis 204

shaped). Suppose z0 ∈ D and r > 0 with B(z0; r) ⊆ D. Then

f(z) =
1

2πi

∫
|ξ−z0|=r

f(ξ)

ξ − z
dξ, z ∈ B(z0; r). (3.6.5)

Proof. The separation lemma (Lemma 3.5.25) provides R > 0 such that B(z0; r) ⊆
B(z0;R) ⊆ D. Then |ξ − z0| = r is a curve in the star-domain B(z0;R), and so we are
on our way to invoking Cauchy’s integral theorem. Consider the function

g(ξ) :=


f(ξ)− f(z)

ξ − z
, ξ 6= z

f ′(z), ξ = z.

This function g is continuous on D by definition of the derivative and holomorphic on
D \ {z}. In particular, g is continuous on the star-domain B(z0;R) and holomorphic on
B(z0;R) \ {z}. Recall from Example 3.6.7 that any point in B(z0;R) is a star-center for
B(z0;R), so we can call upon Lemma 3.6.17 to conclude∫

|ξ−z0|=r
g(ξ) dξ = 0.

Since |z − z0| < r, we have

|ξ − z0| = r =⇒ g(ξ) =
f(ξ)− f(z)

ξ − z
.

Thus
0 =

∫
|ξ−z0|=r

f(ξ)− f(z)

ξ − z
dξ =

∫
|ξ−z0|=r

f(ξ)

ξ − z
dξ −

∫
|ξ−z0|=r

f(z)

ξ − z
dξ.

The second integral is∫
|ξ−z0|=r

f(z)

ξ − z
dξ = f(z)

∫
|ξ−z0|=r

dξ

ξ − z
= 2πif(z)

by Example 3.6.16. �

3.6.19 Remark.
The power of the Cauchy integral formula is that the behavior of f on the “boundary”
of B(z0; r) determines the behavior of f on the interior of B(z0; r), the latter being a
much “larger” set. Later we will see that the circle |ξ − z| = r can be replaced with a
much more general closed curve, but, for immediate applications, it suffices to have the
Cauchy integral formula with the integral taken only over circles.

3.6.20 Example.

Evaluate the line integral
∫
|z|=1

cos(z)

z
dz.
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Solution. With f(z) = cos(z), the integral is∫
|z|=1

f(z)

z − 0
dz.

Since f is entire, we can invoke the Cauchy integral formula to conclude∫
|z|=1

cos(z)

z
dz = 2πif(0) = 2πi. N

3.7. Analytic functions.

We will deploy the Cauchy integral formula to prove the surprising fact that any holo-
morphic function can be expressed as a power series and, consequently, is infinitely dif-
ferentiable. We will rely on the conventions and standard results on power series from
Appendix A.4.

3.7.1 Example.

The principal logarithm is defined on C \ {0} and differentiable on C \ R−. We know
that Log(·) is discontinuous on R− and hence not differentiable on R−. Therefore, if
we have a power series representation Log(z) =

∑∞
k=0ak(z− z0)k valid for z ∈ B(z0; r)

for some z0 ∈ C and r > 0, it must be the case that B(z0; r) ∩ R− = ∅. On the other
hand, if we consider instead the function f(z) = Log(1 + z), then it is reasonable that
f might have a power series expansion valid on B(0; 1). Find it.

R

iR

1
R−

Solution. We develop this power series in a rather roundabout way. The geometric
series tells us that if |z| < 1, we have

1

1 + z
=

1

1− (−z)
=
∞∑
k=0

(−z)k =
∞∑
k=0

(−1)kzk.

Now, since Log(ξ) is an antiderivative of 1/ξ on C \ R−, it follows that Log(1 + ξ) is an
antiderivative of 1/(1 + ξ) on C \ (−∞,−1], and so the independence of path theorem
implies ∫

[0,z]

dξ

1 + ξ
= Log(1 + z)− Log(1) = Log(1 + z).

That is,

Log(1+z) =

∫
[0,z]

∞∑
k=0

(−1)kξk dξ =
∞∑
k=0

∫
[0,z]

(−1)kξk dξ =
∞∑
k=0

(−1)kξk+1

k + 1

∣∣∣∣ξ=z
ξ=0

=
∞∑
k=0

(−1)k
zk+1

k + 1
.
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Here we have used the convergence of the geometric series on B(0; 1) and that [0, z] is a
curve in B(0; 1) to justify the interchange of sum and integral. N

3.7.1. Real analyticity.

Let I ⊆ R be an interval. A function f : I → C is real52 analytic if f can be written
“locally” as a power series on I. That is, for every x ∈ I, there is r > 0 and a sequence
(ak) in C such that

f(t) =
∞∑
k=0

ak(t− x)k, t ∈ (x− r, x+ r) ∩ I. (3.7.1)

The space of real analytic functions on I is sometimes denoted by Cω(I). From
Theorem A.4.5, if f ∈ Cω(I), then f ∈ C∞(I), and, given the power series representation
(3.7.1), we have

f (k)(x) = k!ak

Conversely, if f ∈ C∞(I), then for each x ∈ I the Taylor series of f centered at x is
the series

∞∑
k=0

f (k)(x)

k!
(t− x)k.

By the identity principle for power series (part (iv) of Theorem A.4.5, if f ∈ C∞(I) is real
analytic on I, then, for each x ∈ I, the Taylor series for f centered at x must converge
to f on a small interval centered at x.

This does not always happen. The classical counterexample is

f(x) =

{
e−1/x2 , x 6= 0

0, x = 0.
(3.7.2)

One can show (and this takes a bit of work due to the piecewise definition of f) that
f ∈ C∞(R) and f (k)(0) = 0 for all k. Thus the Taylor series of f centered at 0 converges to
the zero function, whereas f is nonzero for all x 6= 0. And so, in general, C∞(I) ( Cω(I).
We will see that the situation is completely different for functions of a complex variable.

3.7.2. Complex analyticity.

We make a definition analogous to the notion of real analyticity. As for a function
defined on a subset of R, we let C∞(D) denote the space of all functions f : D → C that
are infinitely differentiable.

3.7.2 Definition.

(i) Let D ⊆ C be open. A function f : D → C is (complex) analytic on D if for
all z ∈ D, there exists r > 0 such that f has a power series expansion on B(z; r) ∩D,
i.e, there are coefficients (ak) such that

f(ξ) =
∞∑
k=0

ak(ξ − z)k, ξ ∈ B(z; r) ∩ D. (3.7.3)

52The adjective “real” here refers to the assumption that f is a function of a real variable. This permits
f to take complex (nonreal) values. As we have seen throughout this course, the interesting changes
in calculus arise when both the input and the output are complex.
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(ii) For f ∈ C∞(D), the (complex) Taylor series of f centered at z is the power
series

∞∑
k=0

f (k)(z)

k!
(ξ − z)k.

Next, we state the complex analogue of Theorem A.4.5.

3.7.3 Theorem.
Let z0 ∈ C.

(i) [Term-by-term differentiation] Suppose that
∑∞

k=0ak(z− z0)k has the radius of
convergence ρ > 0 and set f(z) :=

∑∞
k=0ak(z − z0)k for z ∈ B(z0; ρ). Then f is a

well-defined function and f ∈ C∞(B(z0; ρ)). In particular, f is continuous and

f ′(z) =
∞∑
k=1

kak(z − z0)k−1.

More generally,

f (m)(z) =
∞∑
k=m

k(k − 1) · · · (k −m+ 1)ak(z − z0)k−m.

(ii) Suppose that f is a function defined on B(z0; r) that has the power series expansion
f(z) =

∑∞
k=0ak(z − z0)k, z ∈ B(z0; r). Then

am =
f (m)(z0)

m!
.

(iii) [Term-by-term integration] Suppose that
∑∞

k=0ak(z − z0)k has the radius of
convergence r > 0 and γ is a curve in B(z0; r). Then∫

γ

∞∑
k=0

ak(z − z0)k dz =
∞∑
k=0

ak

∫
γ

(z − z0)k dz.

(iv) [Identity principle for power series] Suppose that the power series
∑∞

k=0ak(z−
z0)k and

∑∞
k=0bk(z − z0)k converge on some ball B(z0; δ). If

∞∑
k=0

ak(z − z0)k =
∞∑
k=0

bk(z − z0)k

for all z ∈ B(z0; δ), then ak = bk for all k.

Proof. We prove only part (iv); the proofs of the other parts are identical to their real-
variable counterparts in Theorem A.4.5. Set ck = ak − bk; our goal is to show ck = 0
for all k. We have f(z) :=

∑∞
k=0ck(z − z0)k = 0 for all z ∈ B(z0; δ). By part (i), we

may differentiate to find f (k)(z) = 0 for all k ≥ 1 and z ∈ B(z0; δ). Then part (ii) gives
ck = f (k)(z0)/k! = 0. �
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The next theorem then follows at once from Theorem 3.7.3.

3.7.4 Theorem.

If f is complex analytic on D, then f ∈ C∞(D). Moreover, if for some ball B(z; r) ⊆ D,
the power series representation (3.7.3) of f holds for all ξ ∈ B(z; r), then

ak =
f (k)(z)

k!
.

That is, if f is complex analytic on D, then the complex Taylor series for f centered
at z converges to f(ξ) for all ξ ∈ D “close” to z.

Now we come to a striking consequence of the Cauchy integral formula. The next
theorem says that if f is merely holomorphic on D (i.e., f is complex differentiable on
D), then f is in fact analytic on D. Thus the existence of the first derivative f ′ on D
implies both that f is C∞ on D and that the Taylor series for f converges “locally” to f
on D.

Neither of these facts are true in the real case. The function

f(x) =

{
x2, x ≥ 0

−x2, x < 0

is differentiable but not twice differentiable on R, and the function in (3.7.2) is C∞ on R
but not real analytic.

3.7.5 Theorem (Generalized Cauchy integral formula).

If f is holomorphic on an open set D (which need not be a domain or a star-domain),
then f is also analytic (and thus C∞) on D. Specifically, if B(z0; r) ⊆ D, then for
|z − z0| < r we have

f(z) =
∞∑
k=0

ak(z − z0)k, ak :=
1

2πi

∫
|ξ−z0|=r

f(ξ)

(ξ − z0)k+1
dξ =

f (k)(z0)

k!
. (3.7.4)

Proof. The Cauchy integral formula tells us that if |z − z0| < r, then

f(z) =
1

2πi

∫
|ξ−z0|=r

f(ξ)

ξ − z
dξ.

The fundamental idea of the proof is to rewrite the fraction 1/(ξ − z) in a suitable way,
factor the result, and then use the geometric series (Example A.2.6) on one of the factors.
We start with

1

ξ − z
=

1

ξ − z0 + z0 − z
=

1

(ξ − z0)− (z − z0)
=

1

(ξ − z0)

(
1− z − z0

ξ − z0

) .
Here we are assuming |ξ − z0| = r and |z − z0| < r. Thus∣∣∣∣z − z0

ξ − z0

∣∣∣∣ =
|z − z0|

r
< 1.
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The geometric series tells us

1

1− z − z0

ξ − z0

=
∞∑
k=0

(
z − z0

ξ − z0

)k
.

Now we can rewrite the Cauchy integral formula for f(z) as

f(z) =
1

2πi

∫
|ξ−z0|=r

f(ξ)

ξ − z
dξ =

1

2πi

∫
|ξ−z0|=r

(
f(ξ)

ξ − z0

)
1

1− z − z0

ξ − z0

dξ

=
1

2πi

∫
|ξ−z0|=r

f(ξ)

ξ − z0

∞∑
k=0

(
z − z0

ξ − z0

)k
dξ. (3.7.5)

Suppose we can “interchange the sum and the integral.” That is, suppose∫
|ξ−z0|=r

f(ξ)

ξ − z0

∞∑
k=0

(
z − z0

ξ − z0

)k
dξ =

∞∑
k=0

∫
|ξ−z0|=r

f(ξ)

ξ − z0

(
z − z0

ξ − z0

)k
dξ. (3.7.6)

The validity of the interchange (3.7.6) of sum and integral is reminiscent of part (iii) of
Theorem 3.7.3, but it does not follow from that part, which deals with power series; in
(3.7.6), the powers of of (ξ−z0)k are in the denominator. The proof of this validity, while
not particularly difficult, is rather technical, so we omit it.

We can factor (z − z0)k out of the integral in (3.7.6) to find

∞∑
k=0

∫
|ξ−z0|=r

f(ξ)

ξ − z0

(
z − z0

ξ − z0

)k
dξ =

∞∑
k=0

(z − z0)k
∫
|z−z0|=r

f(ξ)

(ξ − z0)k+1
dξ. (3.7.7)

We put (3.7.5), (3.7.6), and (3.7.7) together to find

f(z) =
∞∑
k=0

(
1

2πi

∫
|z−z0|=r

f(ξ)

(ξ − z0)k+1
dξ

)
(z − z0)k.

That is, for z ∈ B(z0; r) we have expressed f(z) as a power series f(z) =
∑∞

k=0ak(z−z0)k

with
ak =

1

2πi

∫
|z−z0|=r

f(ξ)

(ξ − z0)k+1
dξ.

We conclude that f is analytic on D, and part (ii) of Theorem 3.7.3 gives the equality
ak = f (k)(z0)/k!. �

3.7.6 Corollary.

(i) Suppose that f is holomorphic on a set D containing the point z0. The radius of
convergence of the Taylor series of f centered at z0 is the largest r > 0 such that f is
differentiable on B(z0; r).
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(ii) If f is entire, then for any z0 ∈ C we have

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k

for all z ∈ C. That is, the Taylor series of f centered at any point z0 converges to f
for all z ∈ C.

3.7.7 Remark.

As much as possible, we should avoid using the cumbersome definition (3.7.4) for the
coefficients of the power series of the analytic function f centered at z0. Instead, if we
need to calculate a power series, we should try to relate it to one that we already know,
or, if we know how the derivatives of the function behave, we should try to calculate
derivatives at z0.

3.7.8 Remark.
From now on, we will use the words “holomorphic” and “analytic” interchangeably.
However, we will never talk about a function being analytic “at a point,” only on an
open set. The function f(z) = |z|2 is holomorphic only at z = 0 but not analytic on
any set containing 0 because f is not differentiable at a point other than 0.

3.7.9 Example.

Let f(z) = 1/(1 + z2), so f is defined and holomorphic on C \ {i,−i}. Find the power
series for f centered at 0 and the largest r > 0 for which the series converges on
B(0; r).

Solution. Observe that if |z| < 1, then |z|2 < 1, and so the geometric series gives

f(z) =
1

1 + z2
=

1

1− (−z2)
=
∞∑
k=0

(−z2)k =
∞∑
k=0

(−1)kz2k.

That is, the series converges on at least B(0; 1). If |z| ≥ 1, then the test for divergence
shows that this series diverges, so we know that the series converges at best on B(0; 1).

R

iR

i

−i

1−1

But we know this without the test for divergence: if the series converges on some B(0; r)
with r > 1, then ±i ∈ B(0; r), yet f is not differentiable, let alone defined, at ±i. N
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3.7.10 Example.

Recall that a polynomial is a function of the form

p(z) =
n∑
k=0

akz
k,

where ak ∈ C. If an 6= 0, then the degree of p is the nonnegative integer n. Show
that given z0 ∈ C, any polynomial p of degree n can be written in the form

p(z) =
n∑
k=0

bk(z − z0)k, bk =
p(k)(z0)

k!
.

Solution. It is obvious from the power rule for derivatives that p is entire. Then for
any z0 ∈ C, the function p is holomorphic on an open set containing B(z0; 1); take, for
example, the open set to be all of C. Then

p(z) =
∞∑
k=0

p(k)(z0)

k!
(z − z0)k, z ∈ B(z0; 1). (3.7.8)

Since p is a polynomial of degree n, we have p(k)(z) = 0 for k ≥ n + 1 and all z ∈ C,
hence

∞∑
k=0

p(k)(z0)

k!
(z − z0)k =

n∑
k=0

p(k)(z0)

k!
(z − z0)k, z ∈ B(z0; 1).

The restriction to the ball of radius 1 centered at z0 is highly artificial. Let r > 1,
so p is still holomorphic on the open set C containing the ball B(z0; r), and therefore
the power series representation (3.7.8) holds on B(z0; r). Since r is arbitrary, the power
series representation holds for all z ∈ C. N

3.7.11 Example.

Evaluate
∫
|z|=3

e−z

z3
dz.

Solution. Let f(z) = e−z, so that∫
|z|=3

e−z

z3
dz =

∫
|z−0|=3

f(z)

(z − 0)2+1
dz =: I.

We recognize this integral as a constant multiple of an integral from the Cauchy integral
formula. Specifically, since f is entire, we know

f ′′(0) =
2!

2πi

∫
|z−0|=3

f(z)

(z − 0)2+1
dz =

I
πi
.

Thus
I = πif ′′(0),

where f ′′(z) = e−z. Thus
I = πie0 = πi. N
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3.7.12 Example.

What can you say about solutions to the ODE

f ′′(z) + (1 + e−z
2

)f(z) = |z|2?

Solution. We claim there are no solutions. If a solution f exists on some open set D in C,
then f is twice-differentiable, and therefore holomorphic, and so f ′′ is holomorphic. The
product z 7→ (1+e−z

2

)f(z) is also holomorphic, and so the sum z 7→ f ′′(z)+(1+e−z
2

)f(z)
is holomorphic. Consequently, z 7→ |z|2 is holomorphic. But the forcing function z 7→ |z|2
is real-valued and nonconstant and therefore not holomorphic by the Cauchy-Riemann
equations. N

The integral coefficient in (3.7.4) requires the factor (ξ− z0)k+1 in the denominator of
the integrand to have the same constant z0 as the center of the circle |ξ− z0| = r around
which we integrate. Contrast this with the Cauchy integral formula (3.6.5), where the
denominator is ξ− z and the contour is |ξ− z0| = r. Our formula (3.7.4) turns out to be
unnecessarily restrictive, in that we ultimately do not need to use the same z0 twice.

3.7.13 Corollary (Generalized Cauchy integral formula, again).

Let f be holomorphic on the open set D and let z0 ∈ D, r > 0 with B(z0; r) ⊆ D. Then

f (k)(z) =
k!

2πi

∫
|ξ−z0|=r

f(ξ)

(ξ − z)k+1
dξ, |z − z0| < r.

Proof. Let s > 0 such that B(z; s) ⊆ B(z0; r). The generalized Cauchy integral formula
implies

f (k)(z) =
k!

2πi

∫
|ξ−z|=s

f(ξ)

(ξ − z)k+1
dξ.

Put g(ξ) := f(ξ)/(ξ − z)k+1. Then g is holomorphic on D \ {z}. Lemma 3.6.15 implies∫
|ξ−z|=s

g(ξ) dξ =

∫
|ξ−z0|=r

g(ξ) dξ,

and this gives the desired equality. �

We have previously remarked that differentiability is a more “stringent” property for
a function of a complex variable than for a function of a real variable: if f is complex
differentiable, then f is both infinitely differentiable and complex analytic. It is also
much harder for a function of a complex variable to have an antiderivative. Recall that
any continuous function g of a real variable has an antiderivative, even if g itself is not
differentiable. The same is not true for functions of a complex variable. We conclude our
quest for complex antiderivatives by (partially) characterizing their existence in terms of
complex differentiability, instead of independence of path.

3.7.14 Theorem.
Let D ⊆ C be open and let f be a function defined on D.

(i) If f has an antiderivative F on D, then f is holomorphic on D.
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(ii) If f is holomorphic on D, and if D is a star domain, then f has an antiderivative
on D.

Proof. (i) By definition, F is holomorphic on D, and so F is analytic on D. In partic-
ular, F ′′ exists. Since F ′ = f , the derivative f ′ must also exist (and equal F ′′). Hence f
is holomorphic, too.

(ii) This is the Cauchy integral theorem. �

We should be careful with the flow of logic in the hypotheses of part (ii) of Theorem
3.7.14. It says that if D is a star domain, then f has an antiderivative on D if and
only if f is holomorphic on D. However, it does not say what happens if D is not
a star domain: f could have an antiderivative (f(z) = z and D = C \ {0}) or not
(f(z) = 1/z, still on D \ {0}). If we return to independence of path, as long as D is a
domain and f is independent of path on D, equivalently, if f integrates to 0 over closed
curves in D, then f has an antiderivative on D. A domain D on which every holomorphic
function is independent of path is sometimes called an elementary domain or a
simply connected domain; roughly, such domains do not contain any “holes” — so
an annulus like C\{0} is not an elementary domain, but a “slitted” domain like C\(−∞, 0]
is elementary.

3.8. Further consequences of Cauchy’s formula.

3.8.1. Liouville’s theorem.

First, we have a highly useful estimate that controls the derivatives of a function at a
given point.

3.8.1 Lemma (Cauchy estimates).

Suppose that f is analytic on the domain D and z0 ∈ D with B(z0; r) ⊆ D. Then

|f (k)(z0)| ≤ k!

rk
max
|z−z0|=r

|f(z)|

for each k ∈ N.

3.8.2 Theorem (Liouville).

Every bounded entire function is constant. That is, if f is analytic on C and if there is
some M > 0 such that |f(z)| ≤M for all z ∈ C, then there is c ∈ C such that f(z) = c
for all z.

Proof. It suffices to show that f ′(z) = 0 for all z ∈ C, for then, since C is star-shaped
with star-center 0 (or any point in C that we like) we have

f(z)− f(0) =

∫
[0,z]

f ′(ξ) dξ = 0.

That is, f(z) = f(0) for all z, and so f is constant.
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So, assume |f(z)| ≤ M for all z ∈ C and fix z0 ∈ C. We will show f ′(z0) = 0. Let
r > 0 be arbitrary. Since f is entire, the Cauchy estimates show

|f ′(z0)| ≤ 1

r
max
|z−z0|=r

|f(z)| ≤ M

r
.

Since r was arbitrary, we have

0 ≤ |f ′(z0)| ≤ lim
r→∞

M

r
= 0,

and so the squeeze theorem implies |f ′(z0)| = 0, thus f ′(z0) = 0. �

Conversely, if f is entire and not constant, it is very much unbounded!

3.8.3 Theorem (Picard’s little theorem).

If f is entire and not constant, then f assumes all values in C with at most one
exception. That is, either

{f(z) | z ∈ C} = C

or there exists w ∈ C such that

{f(z) | z ∈ C} = C \ {w}.

3.8.2. The fundamental theorem of algebra.

The fundamental theorem of algebra has several different phrasings and many proofs.
Recall that a polynomial with coefficients in C is a function p of the form

p(z) =
n∑
k=0

akz
k, (3.8.1)

where ak ∈ C and an 6= 0. Also, recall that the degree of p is n. Here is one of those
phrasings.

3.8.4 Lemma (Fundamental theorem of algebra, preliminary version).

Every polynomial of degree at least 1 with coefficients in C has at least one root in C.
That is, if p is a function of the form (3.8.1), then there exists z0 ∈ C with p(z0) = 0.

Proof. Suppose to the contrary that p(z) 6= 0 for all z ∈ C and let q(z) = 1/p(z). Then
q is a rational function whose denominator is never zero, so the quotient rule implies that
q is entire. Suppose for the moment that q is bounded, i.e., there is M > 0 such that
|q(z)| ≤ M for all z ∈ C. Then q is both bounded and entire, so by Liouville’s theorem
q is constant. That, there exists c ∈ C such that q(z) = c for all z ∈ C. Rearranging,
we find p(z) = 1/c for all z ∈ C. But then p is not a polynomial of degree at least 1, a
contradiction.

So, it suffices to show that q is bounded. Our intuition from real-variable calculus
tells us this is true; if p has real coefficients, then taking x to be real, we recall

lim
x→±∞

1

p(x)
= 0.
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In particular, there is r0 > 0 such that if |x| ≥ r0, then 1/|p(x)| ≤ 1. On the other hand,
for |x| ≤ r0, there is some m > 0 such that |1/p(x)| ≤ m since 1/p is continuous on the
closed interval [−r0, r0]. Effectively the same argument53 translates over to the complex
case to show that q is bounded; we omit the formal details. �

3.8.5 Lemma.

Suppose that p is a polynomial of degree n ≥ 1 and p(z0) = 0. Then there is a
polynomial q of degree n− 1 such that p(z) = (z − z0)q(z).

Proof. Since p is a polynomial of degree n, we have p(z) =
∑n

k=0akz
k for some coefficients

ak ∈ C. However, it is more expeditious to expand p as a power series centered at z0:

p(z) =
n∑
k=0

bk(z − z0)k, bk =
p(k)(z0)

k!
.

Then
0 = p(z0) = b0,

so really

p(z) =
n∑
k=1

bk(z − z0)k = (z − z0)
n∑
k=1

bk(z − z0)k−1 = (z − z0)
n−1∑
k=0

bk+1(z − z0)k.

53Here is that argument. The reverse triangle inequality implies

|p(z)| =
∣∣∑n

k=0akz
k
∣∣ =

∣∣∣anzn − (∑n−1
k=0akz

k
)∣∣∣ ≥ ∣∣∣|anzn| − ∣∣∣∑n−1

k=0akz
k
∣∣∣∣∣∣ ≥ |an||zn| − ∣∣∣∑n−1

k=0akz
k
∣∣∣ .

Now, the (ordinary) triangle inequality implies∣∣∣∑n−1
k=0akz

k
∣∣∣ ≤∑n−1

k=0 |akzk| =
∑n−1
k=0 |ak||zk| =⇒ −

∑n−1
k=0 |ak||zk| ≤ −

∣∣∣∑n−1
k=0akz

k
∣∣∣ .

Thus
|p(z)| ≥ |an||zn| −

∣∣∣∑n−1
k=0akz

k
∣∣∣ ≥ |an||zn| −∑n−1

k=0 |ak||zk|. (3.8.2)

Observe next that, for r 6= 0,

|an|rn −
∑n−1
k=0 |ak|rk = rn

(
|an| −

∑n−1
k=0 |ak|rk−n

)
,

and, for r real,
lim
r→∞

∑n−1
k=0 |ak|rk−n = 0.

So, there exists r0 > 0 such that if r > r0, then

0 <
∑n−1
k=0 |ak|rk−n <

|an|
2 ,=⇒ |an|rn −

∑n−1
k=0 |ak|rk ≥

rn|an|
2 .

It follows from (3.8.2) that for |z| > r0,

|p(z)| ≥ |z|
n|an|
2

=⇒ 1

|p(z)|
≤ 2

|an||z|n
≤ 2

|an|rn0
.

It is also the case that there exists m > 0 with |1/p(z)| ≤ m for |z| ≤ r0. This is a consequence of
the extreme value theorem from real-variable calculus, now extended to continuous complex-valued
functions on “closed and bounded” subsets of C, of which the closed ball B(0; r0) is a prime example.
We did not discuss an extreme value theorem for functions on C, and we will not need one later in the
course.
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Setting q(z) =
∑n−1

k=0bk+1(z − z0)k, we are done. �

3.8.6 Theorem (Fundamental theorem of algebra).

Suppose that p(z) =
∑n

k=0akz
k is a polynomial of degree n ≥ 1 with coefficients ak ∈ C.

Then there exist z1, . . . , zn ∈ C such that p(z) = 0 if and only if z = zn. Moreover, if
an = 1, then

p(z) = (z − z1) · · · (z − zn). (3.8.3)

The numbers zk need not be distinct (i.e., it is possible zj = z` for j < `).

Proof. By Lemma 3.8.4 there is z1 ∈ C such that p(z1) = 0, and by Lemma 3.8.5 we
can write p(z) = (z − z1)q1(z) for some polynomial q1 of degree n − 1. If n = 1, then
we are done. Otherwise, q1 has a zero z2, which may or may not be equal to z1, and so
q1(z) = (z − z2)q2(z) for some polynomial of degree n − 2. If n = 2, then we are done;
otherwise, we continue this procedure until we have produced n (not necessarily distinct)
zeros and factored p in the form (3.8.3). �

3.8.3. The zeros of an analytic function: the order of a zero.

Analytic functions resemble polynomials in that analytic functions are power series, which
are “infinite” polynomials. The behavior of the zeros of an analytic function, unsurpris-
ingly then, rather resembles the behavior of zeros, or roots, of polynomials.

First, we just saw that a polynomial always has a finite number of zeros, and so these
zeros are all spaced a minimum distance apart. That is, they are “isolated” from each
other. While an analytic function can have infinitely many zeros (for example, sin(·)
certainly does), they too are always isolated — not necessarily in the sense that there
is a number δ > 0 such that the zeros are always at least a distance δ apart from each
other, but that we can draw a ball of a certain radius around a zero and have no other
zeros in that ball.

Next, if p(z) =
∑n

k=0akz
k is a polynomial of degree n, and p(z0) = 0, then we can

factor p(z) = (z− z0)qn−1(z), where qn−1 is a polynomial of degree n− 1. More precisely,
there is a positive integer m ≤ n, called the multiplicity of z0 as a root of p, such
that p(z) = (z− z0)mQm(z), where Qm is a polynomial of degree n−m and Qm(z0) 6= 0.
We will show that an analytic function f with f(z0) = 0 admits a similar factorization,
where Qm is replaced by an analytic function that does not vanish at z0. Of course, we
need to define what the “multiplicity of z0 as a zero of an analytic function” means.

3.8.7 Definition.
Suppose that f is a function defined on D ⊆ C. We say that f is identically zero
on D if f(z) = 0 for all z ∈ D.

3.8.8 Lemma.

Suppose that f is analytic on the domain D and there is z0 ∈ D such that f (k)(z0) = 0
for all k. Then f is identically zero on D.
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Proof. If r > 0 such that B(z0; r) ⊆ D, then, for z ∈ B(z0; r), we have

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k = 0.

Now we need to show that for z ∈ D with z not necessarily in B(z0; r), we still have
f(z) = 0. Fix z ∈ D. Since D is a domain, there is a curve γ : [0, 1] → D such that
γ(0) = z0 and γ(1) = z.

We will “cover” γ with a finite number of open balls whose centers lie on γ and whose
pairwise “overlap” behaves in a special way. We claim there is a number δ > 0 and a
partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1] with the following properties.

(1) B(γ(tj); δ) ⊆ D for j = 0, . . . , n.

(2) {γ(t) | tj−1 ≤ t ≤ tj} ⊆ B(γ(tj−1); δ) ∩B(γ(tj); δ) for j = 1, . . . , n.

In other words, the portion of γ parametrized over [tj−1, tj] lies in both B(γ(tj−1); δ)
andB(γ(tj); δ). A proof of this claim depends on some fundamental topological properties
of the real and complex numbers, so we must omit it. Hopefully, the pictures below
illustrate the situation.

γ
zk−1

zk

zk−1 = γ(tk−1)

zk = γ(tk)

Assuming this claim to be true, note that γ(t0) = γ(1) = z0, so f(z) = 0 for all
z ∈ B(γ(t0); δ). In particular, (2) implies that γ(t1) ∈ B(γ(t0); δ). By the identity
principle, f (k)(γ(t1)) = 0 for all k. By the generalized Cauchy integral formula, for any
z ∈ B(γ(t1); δ), we then have

f(z) =
∞∑
k=0

f (k)(γ(t1))

k!
(γ(t1)− z) = 0.

In particular, γ(t2) ∈ B(γ(t1); δ), and the same logic shows f (k)(γ(t2)) = 0 for all
k. Continuing in this manner, we obtain f (k)(γ(tj)) = 0 for j = 0, . . . , n and all k. In
particular, f(γ(tn)) = f(z) = 0. �

Now we are ready to extend the concept of multiplicity of a root to analytic functions.

3.8.9 Theorem.

Let f be analytic on the domain D with f(z0) = 0 for some z0 ∈ D. If f is not
identically zero on D, then there is an analytic function g defined on D and a positive
integer m such that f(z) = (z − z0)mg(z) for all z ∈ D. The integer m is the smallest
integer satisfying f (m)(z0) 6= 0. Moreover, g(z0) 6= 0. In this case, we say that f has a
zero of order m at z0.



3. Complex Analysis 218

Proof. Such a function g must satisfy

g(z) =
f(z)

(z − z0)m
, z ∈ D \ {z0}, (3.8.4)

and the quotient rule tells us that g as defined by (3.8.4) is analytic on D \ {z0}. Now
we need to (1) define g at z0 and (2) show that g is analytic at z0, too.

Since f is not identically zero on D, we cannot have f (k)(z0) = 0 for all k. Let m be
the smallest54 positive integer such that f (m)(z0) 6= 0. Since m is the smallest positive
integer with this property, we have f (k)(z0) = 0 for k = 1, . . . ,m − 1. Let r > 0 satisfy
B(z0; r) ⊆ D. Then, for z ∈ B(z0; r), we have

f(z) =
∞∑
k=m

ak(z − z0)k, ak :=
f (k)(z0)

k!
.

We factor

f(z) =
∞∑
k=m

ak(z − z0)k =
∞∑
k=0

ak+m(z − z0)k+m = (z − z0)m
∞∑
k=0

ak+m(z − z0)k. (3.8.5)

For z ∈ B∗(z0; r), we therefore have

g(z) =
f(z)

(z − z0)m
=
∞∑
k=0

ak+m(z − z0)k. (3.8.6)

That is, the series
∑∞

k=0ak+m(z − z0)k converges on B∗(z0; r) to f(z)/(z − z0)m. The
series of course converges at z = z0 to am = f (m)(z0)/m!. So, if we extend our definition
(3.8.4) of g to

g(z) :=


f(z)

(z − z0)m
, z ∈ D \ {z0}

am =
f (m)(z0)

m!
, z = z0,

then (3.8.6) tells us that g has a power series representation on B(z0; r) and therefore is
analytic at z0, too. �

A case worth highlighting for future theory and applications is the situation when a
zero has order 1.

3.8.10 Definition.
If z0 is a zero of order 1 for f , then z0 is a simple zero of f .

54If J ⊆ N, then the well-ordering property of N states that J has a smallest element, i.e., there
exists m ∈ J such that m ≤ k for all k ∈ J . Note that the well-ordering principle is not true if N is
replaced by Z or Q.
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3.8.11 Example.

Find the order of each of the zeros of the following functions.

(i) f(z) = z2

(ii) g(z) = sin(z)

(iii) h(z) = (ez − 1)2

Solution. (i) We know f(z) = 0 if and only if z = 0. We calculate f ′(z) = 2z, so
f ′(0) = 0. Next, f ′′(z) = 2, so f ′′(0) = 2 6= 0. Hence f has a zero of order 2 at 0.

(ii) Our work with trig functions told us that sin(z) = 0 if and only if z = kπ for some
integer k ∈ Z. We have g′(z) = cos(z), and we know cos(kπ) = (−1)k 6= 0. So, g has a
zero of order 1 at each point kπ.

(iii) We have h(z) = 0 if and only if ez − 1 = 0, so we need ez = 1. This happens for
z = 2πik =: zk, k ∈ Z. We calculate

h′(z) = 2(ez − 1)ez = 2e2z − 2ez,

so
h′(zk) = 2e2zk − 2ezk = 2e4πik − 2e2πik = 2− 2 = 0.

However,
h′′(z) = 4e2z − 2ez,

so
h′(zk) = 4e2zk − 2ezk = 4− 2 = 2 6= 0.

Hence each of these zeros has order 2. N
3.8.4. The zeros of an analytic function: isolated zeros.

3.8.12 Definition.

Suppose that f is a function defined on D ⊆ C and f(z0) = 0 for some z0 ∈ D.
The point z0 is an isolated zero of f if there is r > 0 such that f(z) 6= 0 for
z ∈ B∗(z0; r).

z0

No other zeros of f in here

?maybe a zero out here

3.8.13 Theorem.
Suppose that f is analytic on the domain D and not identically zero. Then every zero
of f in D is isolated in D.



3. Complex Analysis 220

Proof. Suppose that z0 is a zero of f that is not isolated. Then for every r > 0, there is
z ∈ B∗(z0; r) ∩ D such that f(z) = 0. In particular, we may take r = 1/n for n ∈ N and
find zn ∈ B∗(z0; 1/n) ∩ D such that f(zn) = 0. Observe that

0 < |z0 − zn| <
1

n
=⇒ lim

n→∞
zn = z0.

Let m be the order of z0 as a zero of f , and write f(z) = (z − z0)mg(z), where g is
analytic on D and g(z0) 6= 0. Since zn 6= z0 for all n, we have

g(zn) =
f(zn)

(zn − z0)m
= 0.

Then since zn → z0 and g is analytic, hence continuous, we have

g(z0) = lim
n→∞

g(zn) = 0,

a contradiction. �

3.8.14 Example.

Let f(z) = sin(π/z) for z ∈ D \ {0}. Then f(z) = 0 if and only if z = 1/n =: zn
for some n ∈ Z \ {0}. Observe that the the points {zn}n∈Z\{0} are isolated in D. For
example, if |n| ≥ 2, take

rn := min

{
1

2

(
1

n
− 1

n+ 1

)
,
1

2

(
1

n− 1
− 1

n

)}
to see that zk 6∈ B(zn; rn) for k 6= n.

R

iR

zn−1znzn+1

Note, though, that rn → 0 as |n| → ∞, so there is no “minimum distance” separating
the zeros of f .

The next corollary says that two analytic functions need only agree on a “small”
number of points in D to be equal everywhere in D.

3.8.15 Corollary.

Suppose that f and g are analytic on the domain D and there is a sequence of dis-
tinct55points (zn) in D such that f(zn) = g(zn) for all n that converges to some z0 ∈ D.
Then f(z) = g(z) for all z ∈ D.

Proof. Let h(z) = f(z)− g(z). We will show that h(z) = 0 for all z ∈ D. Since f and g
are analytic on D, they are continuous there, and so

f(z0) = lim
n→∞

f(zn) and g(z0) = lim
n→∞

g(zn),
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thus
h(z0) = lim

n→∞
h(zn) = 0.

Now, the convergence of (zn) to z0 ∈ D means that for all r > 0, there is N ∈ N such
that if n ≥ N , then zn ∈ B(z0; r). Since the points zn are all distinct, for n large we have
zn 6= z0, and so what we really see is that for all r > 0, there is zn ∈ B∗(z0; r), where
h(zn) = h(z0) = 0. So, the zero z0 of h is not isolated. By Theorem 3.8.13, it must be
the case that h(z) = 0 for all z ∈ D. �

3.8.16 Remark.
Why do we require the zn in Corollary 3.8.15 to be distinct? There are plenty of
functions f and g for which f(z1) = g(z1) for some z1 but no others, e.g., f(z) = z
and g(z) = 2z. Thus taking zn = z1 for all n could produce wrong results!

3.8.17 Example.

Let f(z) = sin(π/z), so f is analytic on the domain D := C \ {0}. Let zn = 1/n for
n ∈ N. Then zn → 0 6∈ D and f(zn) = 0. But f is not identically zero on D. So, in
Corollary 3.8.15, it is important that z0 ∈ D.

3.8.5. Analytic continuation.

We extended the definitions of the familiar transcendental functions (exponential, sine,
cosine) to C simply by using their real Taylor series. One might reasonably ask if there
is any other “natural” way to extend, say, the exponential to complex inputs that would
create a different function. That is, does there exist some analytic function f defined on
C such that f(x) = ex for x ∈ R but, for some z ∈ C, f(z) 6= ez? Fortunately, the answer
is no, as we now develop.

3.8.18 Definition.

Let D0 ⊆ D ⊆ C. A function f̃ defined on D is an analytic continuation of an
analytic function f on D0 if f̃ is analytic and if f(z) = f̃(z) for all z ∈ D0.

3.8.19 Theorem.
Suppose that D0 ⊆ D ⊆ C are both domains and the analytic function f : D0 → C
has the analytic continuation f̃ : D → C. Then f̃ is unique. That is, if g : D → C is
another analytic continuation of f , then g(z) = f̃(z) for all z ∈ D.

Proof. Since f̃ and g are both analytic continuations of f , we have f(z) = f̃(z) and
f(z) = g(z) for all z ∈ D. This shows f (k)(z0) = f̃ (k)(z0) = g(k)(z0) for all z ∈ D. Now
fix some z0 ∈ D. Then f̃ (k)(z0) − g(k)(z0) = 0 for all k. If we set h(z) := f̃(z) − g(z),
then h(k)(z0) = 0 for all k. Lemma 3.8.8 then implies that h(z) = 0 for all z ∈ D, and so
f̃(z) = g(z) for all z ∈ D. �

55That is, zn 6= zm for n 6= m.
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3.8.20 Corollary.

Suppose that f : I → R is real analytic on the interval I ⊆ R. Then there exists a
domain D ⊆ C to which f has an analytic continuation, and this analytic continuation
is unique.

Proof. We construct the analytic continuation in the natural way by defining it to be
the real-coefficient power series that represents f ; this is exactly what we did with the
exponential, sine, and cosine.

More precisely, since f is real analytic on I, for each x ∈ I there is εx > 0 such that

f(ξ) =
∞∑
k=0

f (k)(x)

k!
(ξ − x)k, ξ ∈ (x− εx, x+ εx) ∩ I. (3.8.7)

Moreover, by choosing εx sufficiently small, we can guarantee that the convergence above
is absolute. Set

D :=
⋃
x∈I

B(x; εx).

To be clear, D is a union of open balls in C all of which have centers on the real interval
I. One can show that since the series (3.8.7) converges for ξ ∈ I ⊆ R with |ξ − x| < εx,
it also converges for z ∈ C with |z − x| < εx. So, we want to define the extension of f to
be

f̃(z) :=
∞∑
k=0

f (k)(x)

k!
(z − x)k, z ∈ B(x; εx). (3.8.8)

However, it is entirely possible that z ∈ B(x1; εx1) ∩B(x2; εx2) for x1 6= x2. In this case,
for f̃ to be well-defined, we need to ensure

∞∑
k=0

f (k)(x1)

k!
(z − x1)k =

∞∑
k=0

f (k)(x2)

k!
(z − x2)k, z ∈ B(x1; εx1) ∩B(x2; εx2).

Set

φ1(z) =
∞∑
k=0

f (k)(x1)

k!
(z − x1)k and φ2(z) =

∞∑
k=0

f (k)(x2)

k!
(z − x2)k.

That is, according to (3.8.8), we have φ1(z) = f(z) on B(x1; εx1) and φ2(z) = f(z) on
B(x2; εx2).

Without loss of generality, assume x1 < x2. Then (x2 − εx2 , x1 + εx1) ⊆ B(x1; εx1) ∩
B(x2; εx2); we omit the formal proof of this containment and just look at the picture
below.

Rx1 x2

For x ∈ (x2 − εx2 , x1 + εx1), we have

φ1(x) = f(x) = φ2(x)
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since f is real analytic and φ1 and φ2 are just the Taylor series of f centered at x1 and
x2, respectively. If we fix some point x0 ∈ (x2 − εx2 , x1 + εx1), we can take a sequence of
distinct points (zn) in this interval (say, zn := x0 + 1/(M +n) where M is a large positive
integer) that converges to x0, and then we will have φ1(zn) = φ2(zn) for all n. Corollary
3.8.15 then shows that φ1(z) = φ2(z) for all z ∈ B(x1; εx1) ∩B(x2; εx2), which is exactly
what we wanted to show.

For the uniqueness of the analytic continuation, note that we only proved Theorem
3.8.19 for domains in C, and an interval I is not a domain. (That is, we cannot apply
this theorem by taking D0 = I.) Instead, if g is another analytic continuation of f on D,
then of course f̃(x) = f(x) = g(x) for all x ∈ I, and thus f̃ (k)(x) = g(k)(x) for all x ∈ I.
Then for x ∈ I fixed and any z ∈ B(x; εx), we have

f̃(z) =
∞∑
k=0

f̃ (k)(x)

k!
(z − x)k =

∞∑
k=0

g(k)(x)

k!
(z − x)k = g(z).

By definition of D, we conclude f̃(z) = g(z) for all z ∈ D. �

3.9. Isolated singularities.

We now have a rich knowledge of the theory of functions of a complex variable that are
analytic on some open set. Many “reasonable” functions, however, fail to be analytic
in “mild” ways and are otherwise well-behaved. For example, the function f(z) = 1/z
is analytic on C \ {0} but undefined (and unbounded) at z = 0. We now explore the
properties of functions of a complex variable that fail to be analytic at a single point in
an open set.

3.9.1 Definition.

Let z0 ∈ C and r > 0. A function f that is defined on B∗(z0; r) has an isolated
singularity at z0 if f is analytic on B∗(z0; r).

3.9.2 Remark.

A function that is defined on B(z0; r) is, of course, defined on B∗(z0; r), and so if f
is analytic on B(z0; r), then, trivially, f has an isolated singularity at z0. We will
typically be concerned with the case where f is not defined at z0, as this is much more
interesting.

3.9.3 Example.

The following functions are analytic on C\{0} and have isolated singularities at z = 0:

f(z) =
sin(z)

z
, g(z) =

1

z
, h(z) = e1/z.

However, their behavior at z = 0 is quite different. Study their limits as z → 0.
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Solution. (i) A famous limit56 from early calculus tells us that for x ∈ R,

lim
x→0

sin(x)

x
= 1.

We look to see if this carries over to the complex case. We know that sin(z) = 0, so
sin(z) = zq(z), where q is analytic and q(0) 6= 0. Thus

lim
z→0

sin(z)

z
= lim

z→0

zq(z)

z
= lim

z→0
q(z) = q(0).

This does not tell us what q(0) is, however, and we do not have a L’Hospital rule valid
for complex limits and derivatives. Instead, we go back to power series:

sin(z) =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
= z

∞∑
k=0

(−1)k
z2k

(2k + 1)!
= z

(
1 +

∞∑
k=1

(−1)k
z2k

(2k + 1)!

)
.

Hence

lim
z→0

sin(z)

z
= lim

z→0

(
1 +

∞∑
k=0

(−1)k
z2k

(2k + 1)!

)
= 1.

(ii) We want to say that

lim
z→0

1

z
=∞,

except we never really discussed what ∞ means in C. A good way to think about this
is that the modulus 1/|z| becomes arbitrarily large as z → 0. More precisely, if M > 0,
there is δ > 0 such if |z| < δ, then 1/|z| > M (just take δ = 1/M).

(iii) On R, we have

lim
x→0+

e1/x “=” e∞ =∞ but lim
x→0−

e1/x “=” e−∞ = 0.

Something similar happens in the complex case. If we approach 0 in one direction, the
limit blows up; in another, it vanishes. Specifically, let zn = 1/n. Then zn → 0 as n→∞
and

lim
n→∞

e1/zn = lim
n→∞

en =∞.

Next, if wn = −1/n, so wn → 0, too, we have

lim
n→∞

e1/wn = lim
n→∞

e−n = 0.

But we have more options in C. Let ξn = 1/2πin. Then ξn → 0 and

lim
n→∞

e1/ξn = lim
n→∞

e2πin = 1.

So, in one direction, the limit is ∞, in another it is zero, and in a third it is 1. In the
exercises we will see an even more erratic behavior: given w ∈ C\{0}, there is a sequence
(wn) in C such that e1/wn → w. N
56Depending on how one approaches early calculus, this limit is often used to prove that the derivative
of sin(·) is cos(·). Moreover, a geometric proof of this limit (which is often the only kind of proof that
we have at hand in early calculus) demands that we work in radians, hence our preference for radians
forever after to guarantee that this limit holds.
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We conclude that a function f can behave in one of three possible ways at an isolated
singularity z0.

(1) The limit limz→z0 f(z) exists in C.

(2) The limit limz→z0 f(z) does not exist in C but limz→z0 |f(z)| =∞.

(3) Neither (1) nor (2) holds.

3.9.1. Removable singularities.

In this section we study the case (1). First, we need a lemma, which serves as a kind
of converse to the Cauchy integral theorem. The proof of this lemma is deferred to the
exercises.

3.9.4 Lemma (Morera).

Suppose that f is continuous on the open set D (which need not be star-shaped or even
a domain) and that

∫
γ
f(z) dz = 0 for all closed curves γ in D. Then f is analytic on

D.

3.9.5 Theorem (Riemann removability theorem).

Suppose that f is analytic on B∗(z0; r) and L := limz→z0 f(z) exists. Then f has an
analytic continuation on B(z0; r). In this case we say that f has a removable
singularity at z0.

Proof. Any analytic continuation f̃ of f must be continuous at z0, so necessarily

f̃(z0) = lim
z→z0

f(z) = L.

This gives us a way to define f̃ : set

f̃(z) :=

{
f(z), z 6= z0

L, z = z0.

To see that f̃ is analytic on B(z0; r), recall the relaxed version of the Cauchy integral
theorem from Lemma 3.6.17. The set B(z0; r) is a star-domain with star-center z0, and
f̃ is continuous on B(z0; r) and analytic on B(z0; r) \ {z0} = B∗(z0; r). The lemma then
implies that

∫
γ
f̃(z) dz = 0 for any closed curve γ in B(z0; r), and so Morera’s lemma

implies that f̃ is analytic on B(z0; r). �

3.9.6 Example.

Show that
f(z) =

z2

sin(z)

has a removable singularity at 0. What value should the analytic continuation of f
have at 0?
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Solution. First we need to show that

lim
z→0

z2

sin(z)

exists. We know that sin(·) has a simple zero at 0, so

sin(z) = zq(z),

where q is analytic on some ball B(0; r) and q(0) 6= 0. By continuity, we may assume57

that r is so small that q(z) 6= 0 for z ∈ B(0; r).
Then

f(z) =
z2

zq(z)
=

z

q(z)
, z ∈ B∗(0; r),

and so
lim
z→0

f(z) = lim
z→0

z

q(z)
=

0

q(0)
= 0. N

3.9.2. Poles.

Now we study the case (2). Suppose that f has an isolated singularity at z0 and

lim
z→z0
|f(z)| =∞. (3.9.1)

By Footnote 57, there is s ∈ (0, r] such that f(z) 6= 0 for z ∈ B∗(z0; s). Next, we observe
that

lim
z→z0
|f(z)| =∞ =⇒ lim

z→z0

1

|f(z)|
= 0 =⇒ lim

z→z0

1

f(z)
= 0,

Since f is analytic and nonzero on B∗(z0; s), 1/f is also analytic on B∗(z0; s). The
Riemann removability theorem then allows us to extend 1/f to an analytic function g on
B(z0; s). That is,

1

f(z)
= g(z)

for z ∈ B∗(z0; s). Note that g(z) 6= 0 for all z ∈ B∗(z0; s).
Furthermore,

g(z0) = lim
z→z0

g(z) = lim
z→z0

1

f(z)
= 0.

Since g is not identically zero on B(z0; s), we take m ≥ 1 to be the order of z0 as a zero
of g, and we write

g(z) = (z − z0)mh(z), z ∈ B(z0; s),

for some analytic function h on B(z0; s) with h(z0) 6= 0. By continuity (see, once more,
Footnote 57), there is ρ ∈ (0, s] such that h(z) 6= 0 for all z ∈ B(z0; ρ). Then H := 1/h
is analytic on B(z0; ρ) with H(z0) = 1/h(z0) 6= 0, and we have

f(z) =
1

g(z)
=

1

(z − z0)m

(
1

h(z)

)
=

H(z)

(z − z0)m
, z ∈ B∗(z0; s).

We have proved the following theorem.

57Suppose q is continuous on B(0; r) with q(0) 6= 0, but, for all 0 < s < r there exists z ∈ B(0; s) such
that q(z) = 0. Taking s = 1/n, we find a sequence (zn) such that zn → 0 and q(zn) = 0 for all n. By
continuity, we then have q(0) = limn→∞ q(zn) = 0, a contradiction.
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3.9.7 Theorem.

Suppose that f is analytic on B∗(z0; r) and limz→z0 |f(z)| =∞. Then there exist s ∈
(0, r], an analytic function H on B(z0; s) with H(z0) 6= 0, and an integer m ≥ 1 such
that

f(z) =
H(z)

(z − z0)m
, z ∈ B∗(z0; s).

The integer m is the order of the zero of the function

g(z) :=


1

f(z)
, z ∈ B∗(z0; s)

0, z = z0.

In this case we say that f has a pole of order m at z0.

3.9.8 Example.

Show that
f(z) =

z2

sin(z)

has a pole at z = π and determine its order.

Solution. We calculate

lim
z→π
|f(z)| = lim

z→π

∣∣∣∣ z2

sin(z)

∣∣∣∣ =
π2

0
=∞,

so f has a pole at z = π. Now we need to find its order. The discussion that proved
Theorem 3.9.7 gave us the informal rule “order of pole of f at z0 = order of zero of 1/f
at z0” (where by 1/f we really mean its analytic continuation, since f is not defined at
z0). So, consider the function

g(z) =
sin(z)

z2
.

We know that sin(·) has a zero of order 1 at π, so we write sin(z) = (z − π)q(z), where q
is entire and q(π) 6= 0. Thus

g(z) = (z − π)

(
q(z)

z2

)
.

The function h(z) := q(z)/z2 is analytic on C \ {0} and h(π) = q(π)/π2 6= 0. Hence g
has a zero of order 1 at π, and so f has a pole of order 1 at π. In the style of Theorem
3.9.7, we write

f(z) =
1

z − π

(
z2

q(z)

)
,

where H(z) = z2/q(z) analytic on a ball centered at π and H(π) 6= 0. N

3.9.3. Essential singularities.

Our work on the function h(z) = e1/z in Example 3.9.3 suggests that if neither case (1)
nor (2) holds, then a function will have “erratic” or “nervous” behavior at its singularity.
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3.9.9 Definition.

Suppose that f has an isolated singularity at z0 and neither (1) nor (2) holds. Then f
has an essential singularity at z0.

3.9.10 Example.

Show that f(z) = z cos(1/z) has an essential singularity at z = 0.

Solution. First we show that f does not have a removable singularity at z = 0. That
is, we need to show that the limit limz→0 z cos(1/z) does not exist. Our intuition from
calculus suggests that we first approach 0 along the real axis. If z = x is real and nonzero,
then

0 ≤
∣∣∣∣x cos

(
1

x

)∣∣∣∣ ≤ |x|,
and so the squeeze theorem implies

0 ≤ lim
x→0

∣∣∣∣x cos

(
1

x

)∣∣∣∣ ≤ lim
x→0
|x| = 0.

Thus
lim
x→0

x cos

(
1

x

)
= 0.

This suggests that we next approach 0 along the imaginary axis. If y is real and
nonzero, then

cos

(
1

iy

)
=
ei(1/iy) − e−i(1/iy)

2
=
e1/y − e−1/y

2
,

hence

lim
y→0+

iy cos

(
1

iy

)
= lim

y→0+
iy

(
e1/y − e−1/y

2

)
=∞

and

lim
y→0−

iy cos

(
1

iy

)
= lim

y→0−
iy

(
e1/y − e−1/y

2

)
= −∞.

The validity of the limits

lim
y→0+

ye1/y =∞ and lim
y→0−

ye1/y = −∞

can be established using L’Hospital’s rule from real-variable calculus. We conclude that
limz→0 z cos(1/z) does not exist, and so f does not have a removable singularity at 0. (In
fact, we could have just done the limits along the positive and negative imaginary axes
and skipped the real limit entirely).

Next, we already know that f does not have a pole at 0. Otherwise, we would have
limz→0|f(z)| = ∞. But, at least along the real axis, this limit is 0. However, if we had
used other methods to show that f does not have a removable singularity at 0, then we
may have missed this limit. So, here is another way of proceeding: contradiction.

Suppose f does have a pole of order, say, m ≥ 1, at 0. Then for some r > 0, there is
an analytic function H on B(0; r) with H(0) 6= 0 and

z cos

(
1

z

)
=
H(z)

zm
, z ∈ B∗(0; r).
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Then
H(z) = zm+1 cos

(
1

z

)
, z ∈ B∗(0; r),

and so
H(0) = lim

z→0
H(z) = lim

z→0
zm+1 cos

(
1

z

)
.

Above we argued that when m = 0, this limit does not exist, and so a contradiction
should result. Here is another contradiction: recall that cos((2k+ 1)π) = 0 for all k ∈ Z.
Set zk = 1/(2k + 1)π for k ∈ N, so zk → 0 and cos(1/zk) = 0. Then

H(zk) = zm+1
k cos

(
1

zk

)
= 0 and H(0) = lim

k→∞
H(zk) = 0,

a contradiction. N

Now we state two theorems that describe the “erratic” behavior of a function near an
essential singularity. The proof of the first is outlined in the exercises.

3.9.11 Theorem (Casorati-Weierstrass).

Suppose that f has an essential singularity at z0. Then on any punctured ball centered
at z0, f becomes arbitrarily close to any point in C. That is, for any w ∈ C, there is
a sequence (zn) such that zn → z0 and f(zn)→ w.

3.9.12 Theorem (Picard’s big theorem).

Suppose that f has an essential singularity at z0 and is analytic on B∗(z0; r). Then in
any punctured ball centered at z0, f takes every complex value infinitely often, with at
most one exception. That is, for 0 < s < r, either

{f(z) | 0 < |z − z0| < s} = C

or there is w ∈ C such that

{f(z) | 0 < |z − z0| < s} = C \ {w}

for all 0 < s < r. Moreover, in either case, if z is in the range of f , then the set
{ξ ∈ C | f(ξ) = z} is infinite.

3.9.4. Laurent series.

We now understand the behavior of a function f that is analytic on a punctured ball
B∗(z0; r).

• If f has a removable singularity at z0, then we can write f as a genuine power series
at z0.

• If f has a pole at z0, we write f(z) = H(z)/(z − z0)m, z 6= z0, with H analytic, so
H(z) =

∑∞
k=0ak(z − z0)k. Then for z 6= z0,
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f(z) =
∞∑
k=0

ak(z− z0)k−m =
a0

(z − z0)m
+

a0

(z − z0)m−1
+ · · ·+ am−1

z − z0

+
∞∑
k=m

ak(z− z0)k−m

=
m−1∑
k=0

ak(z − z0)−(m−k) +
∞∑
k=0

ak+m(z − z0)k.

Thus f “almost” has a power series expansion around a pole z0, except the “power series”
has some negative powers of z − z0.

• We did not develop any firm theory for representing a function around an essential
singularity, but we do recall that the “canonical” example of e1/z at 0 has the expansion

e1/z =
∞∑
k=0

(
1

k!

)
1

zk
=
∞∑
k=0

(
1

k!

)
z−k,

and this expansion contains infinitely many terms with negative powers of z.

Here then is our idea: although we may not be able to represent a function with
a Taylor series centered at an isolated singularity z0, we may be able to represent the
function with a series in (z − z0)k where some (possibly many, or even all) of the k are
negative. The next example discusses the regions in C on which we might be able to
achieve such a representation.

3.9.13 Example.

Let f(z) = 1/(z − 1)(z − 2), so f is analytic on C \ {1, 2} with isolated singularities
at 1 and 2 (these are simple poles). We can of course represent f by a power series
centered at any z0 ∈ C \ {1, 2}, but these power series will, of course, only converge
on balls of finite radii. Specifically, if z0 6= 1, 2, then the radius of convergence of the
Taylor series for f centered at z0 is min{|z0 − 1|, |z0 − 2|}.

But f is not that “bad” a function; it fails to be analytic at only two points. Can
we not represent f in a “series” form in a more efficient way? In particular, f is
analytic on the annular regions |z| < 1, 1 < |z| < 2, and 2 < |z|, the last of which is
unbounded.

It turns out that we can find a useful series representation for f if we relax our
standards in two ways: if we allow the series to have negative powers of (z − z0)k, as
we observed above, and if we do not work on balls but on annuli.

3.9.14 Definition.
Let 0 ≤ r < R ≤ ∞ and z0 ∈ C. The annulus with center z0, inner radius r, and
outer radius R is the set

A(z0; r, R) :={z ∈ C | r < |z − z0| < R} .

Observe that if r = 0 and R = ∞, then A(z0; 0,∞) = C \ {z0} and if r = 0 and
R <∞, then A(z0; 0, R) = B∗(z0;R). Also, A(z0;R,∞) = C \B(z0;R).
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3.9.15 Lemma.

Suppose that f is analytic on the annulus A(z0; r, R) and r < ρ < P < R. Then∫
|z−z0|=ρ

f(z) dz =

∫
|z−z0|=P

f(z) dz.

Proof. We “partition” the annulus A(z0; ρ,P) into a family of “rectangles” γ0, . . . , γn as
in the sketch below.

More precisely, each “rectangle” is of the form

γk := [z0 + ρei(k−1)θn , z0 + Pei(k+1)θn ]⊕ λk ⊕ [z0 + Pei(k+1)θn , z0 + ρei(k+1)θn ]⊕ µ−k ,

where
θn =

2π

n
for some positive integer n,

λk(t) = z0 + Peit, θk ≤ t ≤ ϑk,

and
µk(t) = z0 + ρeit, θk ≤ t ≤ ϑk.

The integer n is chosen to be large enough that each “rectangle” γk is contained in the
ball B(zk; s), where

zk = z0 +

(
ρ+ P

2

)
eikθn and s :=

P− ρ
2

+ min

{
R− P

2
,
ρ− r

2

}
.

This choice of center and radius forB(zk; s) ensuresB(zk; s) ⊆ A(z0; r, R), so f is analytic
on B(zk; s). Since the ball B(zk; s) is a star-domain, the Cauchy integral theorem implies∫
γk
f(z) dz = 0 for all k.
We then have

0 =
n∑
k=1

∫
γk

f(z) dz =
n∑
k=1

∫
λk

f(z) dz −
n∑
k=1

∫
µk

f(z) dz

=

∫
|z−z0|=P

f(z) dz −
∫
|z−z0|=ρ

f(z) dz. �



3. Complex Analysis 232

3.9.16 Theorem (Laurent series).

Suppose that f is analytic on the annulus A(z0; r, R). Then there is a set of coefficients
{ak}k∈Z ⊆ C such that

f(z) =
∞∑

k=−∞

ak(z − z0)k, z ∈ A(z0; r, R), (3.9.2)

where the series converges in the sense of Definition A.2.9. This series for f is its
Laurent series centered at z0. It has the following properties.

(i) The coefficients ak are

ak =
1

2πi

∫
|z−z0|=s

f(z)

(z − z0)k+1
dz, (3.9.3)

where r < s < R; the value of this integral is independent of s.

(ii) [Term-by-term integration] If γ is a curve in A(z0; r, R), then∫
γ

f(z) dz =

∫
γ

∞∑
k=−∞

ak(z − z0)k dz =
∞∑

k=−∞

ak

∫
γ

(z − z0)k dz.

(iii) The Laurent series for f centered at z0 is unique in the sense that if f(z) =∑∞
k=−∞bk(z − z0)k for all z ∈ A(z0; r, R) and some family of coefficients {bk}∞k=−∞,

then ak = bk for all k.

(iv) Write

fR(z) :=
∞∑
k=0

ak(z − z0)k and fr(z) :=
∞∑
k=1

a−k(z − z0)−k.

Then fR is analytic on |z− z0| < R and fr is analytic on |z− z0| > r. In particular, if
r = 0 (i.e., if z0 is an isolated singularity of f), then fr is analytic on C \ {z0}. The
function fr is the principal part of the Laurent series of f with center z0.

Proof. We give the proof in a number of steps.

1. That the integrals in (3.9.3) are independent of s is an immediate consequence of
Lemma 3.9.15.

2. Suppose the result is true for z0 = 0 and let g(z) = f(z + z0) for z ∈ A(0; r, R). Then
g is analytic on this annulus, so we can write

g(z) =
∞∑

k=−∞

akz
k, z ∈ A(0; r, R).

Then if z ∈ A(z0; r, R), we have z − z0 ∈ A(0; r, R), and so

f(z) = f((z − z0) + z0) = g(z − z0) =
∞∑

k=−∞

ak(z − z0)k.
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We have
ak =

1

2πi

∫
|z|=s

g(z)

zk+1
dz =

1

2πi

∫
|z|=s

f(z + z0)

zk+1
dz,

and the definition of the line integral gives

∫
|z|=s

f(z + z0)

zk+1
dz =

∫ 2π

0

(
f(seit + z0)

(seit)k+1

)
(iseit) dt =

∫ 2π

0

(
f(seit + z0)(

(seit + z0)− z0

)k+1

)
(iseit) dt

=

∫
|z−z0|=z

f(z)

(z − z0)k+1
dz.

3. So, we just prove the result for z0 = 0; this makes much of the notation easier. Fix
z ∈ A(0; r, R) and, for ξ ∈ A(0; r, R), define

g(ξ) :=


f(ξ)− f(z)

ξ − z
, ξ 6= z

f ′(ξ), ξ = z.

Then g is continuous on A(0; r, R) and analytic on A(0; r, R) \ {z}, so the Riemann
removability theorem implies that g is analytic on A(0; r, R). Now take r < ρ < P < R
such that ρ < |z| < P.

z0

z

Lemma 3.9.15 implies that ∫
|ξ|=ρ

g(ξ) dξ =

∫
|ξ|=P

g(ξ) dξ.

For |ξ| = ρ, we have ξ 6= z, and likewise for |ξ| = P, so we can use the piecewise definition
of g to rewrite these integrals as∫

|ξ|=ρ

f(ξ)− f(z)

ξ − z
dξ =

∫
|ξ|=P

f(ξ)− f(z)

ξ − z
dξ,

and thus∫
|ξ|=ρ

f(ξ)

ξ − z
dξ︸ ︷︷ ︸

I1(z, ρ)

−f(z)

∫
|ξ|=ρ

dξ

ξ − z︸ ︷︷ ︸
I2(z, ρ)

=

∫
|ξ|=P

f(ξ)

ξ − z
dξ︸ ︷︷ ︸

I3(z,P)

−f(z)

∫
|ξ|=P

dξ

ξ − z︸ ︷︷ ︸
I4(z,P)

(3.9.4)
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Note that we have no qualms about the existence of any of these four individual integrals,
since each integrand is continuous on the given circle.

We evaluate I2(z, ρ) and I4(z,P) explicitly. Since ρ < |z| < P, the Cauchy integral
theorem implies

I2(z, ρ) = f(z)

∫
|ξ|=ρ

dξ

ξ − z
= 0,

while the Cauchy integral formula implies

I4(z,P) = f(z)

∫
|ξ|=P

dξ

ξ − z
= 2πif(z).

Then (3.9.4) reduces to

I1(z, ρ) = I3(z,P)− I4(z,P) = I3(z,P)− 2πif(z),

and therefore
f(z) =

1

2πi
I3(z,P)− 1

2πi
I1(z, ρ). (3.9.5)

We manipulate I3(z,P) as we did in the proof of the generalized Cauchy integral
formula. Since |ξ| = P and |z| < P, we have

ξ − z = ξ

(
1− z

ξ

)
,

∣∣∣∣zξ
∣∣∣∣ =
|z|
P
<

P

P
= 1.

Then the geometric series implies

1

ξ − z
=

1

ξ

 1(
1− z

ξ

)
 =

1

ξ

∞∑
k=0

(
z

ξ

)k
=
∞∑
k=0

zk

ξk+1
.

Assuming that we can interchange the sum and the integral, we have∫
|ξ|=P

f(ξ)

ξ − z
dξ =

∫
|ξ|=P

f(ξ)
∞∑
k=0

zk

ξk+1
dξ =

∞∑
k=0

(∫
|ξ|=P

f(ξ)

ξk+1
dξ

)
zk. (3.9.6)

We emphasize that this holds for any z ∈ B(0; P).
Now we manipulate I1(z, ρ) in a similar way. Here we have |ξ| = ρ and |z| > ρ, so

ξ − z = −z
(

1− ξ

z

)
,

∣∣∣∣ξz
∣∣∣∣ =

ρ

|z|
<
ρ

ρ
= 1.

The geometric series again tells us

1

ξ − z
= −1

z

 1

1− ξ

z

 = −1

z

∞∑
k=0

(
ξ

z

)k
= −

∞∑
k=0

ξk

zk+1
.

Assuming, once again, that we can interchange the sum and the integral, we have
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∫
|ξ|=ρ

f(ξ)

ξ − z
dξ = −

∫
|ξ|=ρ

f(ξ)
∞∑
k=0

ξk

zk+1
dξ = −

∞∑
k=0

(∫
|ξ|=ρ

f(ξ)ξk dξ

)
1

zk+1

= −
∞∑
k=1

(∫
|ξ|=ρ

f(ξ)ξk−1 dξ

)
1

zk
= −

∞∑
k=1

(∫
|ξ|=ρ

f(ξ)

ξ−k+1
dξ

)
z−k. (3.9.7)

We emphasize that this holds for any |z| > ρ.
Rewriting the expression for f in (3.9.5) using (3.9.6) and (3.9.7), we have

f(z) =
∞∑
k=0

(
1

2πi

∫
|ξ|=P

f(ξ)

ξk+1
dξ

)
zk +

∞∑
k=1

(
1

2πi

∫
|ξ|=ρ

f(ξ)

ξ−k+1
dξ

)
z−k. (3.9.8)

Set
ak =

1

2πi

∫
|ξ|=s

f(ξ)

ξk+1
dξ (3.9.9)

for any fixed s ∈ (r, R). Then (3.9.8) and Lemma 3.9.15 imply f(z) =
∑∞

k=−∞akz
k.

This concludes the proof of (3.9.2) and part (i). We will not prove the validity of the
interchange of sum and integral in part (ii), but it essentially holds if we accept that the
interchanges of sum and integral in (3.9.6) and (3.9.7) are valid.

4. We leave the proof of the uniqueness of the Laurent series in part (iii) as an exercise.

5. Last, we prove part (iv). Recall from (3.9.6) that the series
∞∑
k=0

(∫
|ξ|=P

f(ξ)

ξk+1
dξ

)
zk

converged for |z| < P. The coefficients in this series are independent of P by Lemma
3.9.15, and so

∞∑
k=0

(∫
|ξ|=P

f(ξ)

ξk+1
dξ

)
zk =

∞∑
k=0

akz
k,

where ak is from (3.9.9). That is, the series
∑∞

k=0akz
k converges for |z| < P. But

P ∈ (r, R) was arbitrary, so
∑∞

k=0akz
k in fact converges for any |z| < R. Hence fR(z) =∑∞

k=0akz
k is analytic on B(0;R).

Similarly, by (3.9.7) the series
∞∑
k=1

(∫
|ξ|=ρ

f(ξ)

ξ−k+1
dξ

)
z−k

converges for any |z| > ρ, and, appealing once more to Lemma 3.9.15, the coefficients in
this series are independent of ρ. So, we may write

∞∑
k=1

(∫
|ξ|=ρ

f(ξ)

ξ−k+1
dξ

)
z−k =

∞∑
k=1

a−kz
−k, |z| > ρ.

Now, if |w| < 1/ρ, then 1/|w| > ρ, and so the series
∞∑
k=1

a−kw
k =

∞∑
k=1

a−k

(
1

w

)−k
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converges. Since ρ ∈ (r, R) was arbitrary, we see that the series

gr(w) :=
∞∑
k=1

a−kw
k

converges for |w| < % for all % ∈ (0, 1/r). That is, gr is analytic on B(0; 1/r). Since the
mapping z 7→ 1/z is analytic on C \ {0}, we see that fr(z) := gr(1/z) is analytic on the
set r < |z|. �

3.9.17 Remark.

(i) As with the power series expansion from the generalized Cauchy integral formula,
we typically try to avoid using the definition (3.9.3) of the Laurent coefficients and
instead try to work with known power series.

(ii) Suppose that f has an isolated singularity at z0, so that f is analytic on the
punctured ball B∗(0;R) for some R > 0. Then the Laurent series of f converges on
the annulus A(z0; 0, R).

(iii) If f is analytic at z0, then the uniqueness of the Laurent series shows that the
Laurent series for f at z0 is just its power series centered at z0.

3.9.18 Example.

Find the Laurent series of each function below centered at the given point z0. Describe
the annulus on which it converges. What is the principal part?

(i) f(z) =
sin(z)

z3
, z0 = 0

(ii) g(z) = z cos

(
1

z

)
, z0 = 0

(iii) h(z) =
z3 + z2

(z − 1)2
, z0 = 1

Solution. (i) The power series for sin(·) is

sin(z) =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
,

so, for z 6= 0,
sin(z)

z3
=
∞∑
k=0

(−1)k
z2k+1

z3(2k + 1)!
=
∞∑
k=0

(−1)k
z2k−2

(2k + 1)!
.

This series converges on the annulus 0 < |z| < ∞. We write out the first few terms to
isolate the principal part:

∞∑
k=0

(−1)k
z2k−2

(2k + 1)!
= z−2 +

z

3!
+
∞∑
k=2

(−1)k
z2k−2

(2k + 1)!
.

So, the principal part is h(z) = z−2.
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(ii) The power series for cos(·) is

cos(z) =
∞∑
k=0

(−1)k
z2k

(2k)!
,

so, for z 6= 0,

z cos

(
1

z

)
= z

∞∑
k=0

(−1)k

(2k)!

(
1

z

)2k

=
∞∑
k=0

(−1)k

(2k)!

1

z2k−1
.

This series (again) converges on the annulus 0 < |z| < ∞. We write out the first few
terms to isolate the principal part:

∞∑
k=0

(−1)k

(2k)!

1

z2k−1
=

1

z−1
− 1

2z
+

1

4!z3
+
∞∑
k=3

(−1)k

(2k)!

1

z2k−1
.

The first term is 1/z−1 = z, so the principal part is

∞∑
k=1

(−1)k

(2k)!

1

z2k−1
.

Note that the principal part contains infinitely many terms; this is inherently connected
to the essential singularity of g at 0.

(iii) The Laurent series will have powers of z − 1, so a good idea is to expand the
polynomial p(z) := z3 + z2 in powers of z − 1. We calculate

p(1) = 2

p′(z) = 3z2 + 2z p′(1) = 5

p′′(z) = 6z + 2 p′′(1) = 8

p′′′(z) = 6 p′′′(1) = 6

p(k)(z) = 0, k ≥ 4 p(k)(1) = 0, k ≥ 4.

Hence

p(z) =
2

0!
+

5

1!
(z − 1) +

8

2!
(z − 1)2 +

6

3!
(z − 1)3 = 2 + 5(z − 1) + 4(z − 1)2 + (z − 1)3

and therefore, for z 6= 1,

z3 + z2

(z − 1)2
=

2

(z − 1)2
+

5

(z − 1)
+ 4 + (z − 1).

This series clearly converges for z ∈ C \ {1}, and so it converges on the annulus 0 <
|z − 1| <∞. The principal part is

h(z) =
2

(z − 1)2
+

5

(z − 1)
. N
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3.9.19 Example.

Let
f(z) =

1

z − 1
+

1

z − 2
.

Find the Laurent series for f centered at z0 = 0 that converges on each of the following
annuli.
(i) A(0; 0, 1)

(ii) A(0; 1, 2)

(iii) A(0; 2,∞)

Solution. Write
g(z) :=

1

z − 1
and h(z) :=

1

z − 2
.

If we find Laurent series for g and h separately, then we will be done. Throughout, we
use the geometric series carefully.

(i) When |z| < 1, the geometric series gives

g(z) = − 1

1− z
= −

∞∑
k=0

zk

and
h(z) = − 1

2− z
= − 1

2
(

1− z

2

) .
Since |z| < 1, we also have |z/2| < 1, and so

h(z) = −1

2

∞∑
k=0

(z
2

)k
. (3.9.10)

Then

f(z) = −
∞∑
k=0

zk − 1

2

∞∑
k=0

(z
2

)k
=
∞∑
k=0

(−1)

(
1 +

1

2k+1

)
zk, |z| < 1.

Note that at the end we were careful to simplify everything so that the series has the
correct form

∑∞
k=−∞akz

k.

(ii) As above, we still have (3.9.10) for 1 < |z| < 2 because this series in fact converges
for all |z| < 2. For g, however, we need to factor in a different way:

g(z) =
1

z − 1
=

1

z

(
1− 1

z

) =
1

z

∞∑
k=0

(
1

z

)k
=
∞∑
k=0

1

zk+1
. =

∞∑
k=1

1

zk
. (3.9.11)

Here we used the fact that |z| > 1 implies |1/z| < 1 to invoke the geometric series. Also,
note that we reindexed to keep our terms in powers of zk. Thus

f(z) =
∞∑
k=1

1

zk
−
∞∑
k=0

zk

2k+1
=

∞∑
k=−∞

akz
k, 1 < |z| < 2, ak :=


1, k ≤ −1

− 1

2k+1
, k ≥ 0
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(iii) If |z| > 2, then |z| > 1, and so we can still represent g by (3.9.11). Now we use a
similar strategy to represent h:

h(z) =
1

z − 2
=

1

z

(
1− 2

z

) =
1

z

∞∑
k=0

(
2

z

)k
=
∞∑
k=0

2k

zk+1
=
∞∑
k=1

2k−1

zk
.

Here we used the fact that |z| > 2 implies |2/z| < 1 to invoke the geometric series. Note
that we reindexed to keep our terms in powers of zk. Thus

f(z) =
∞∑
k=1

1

zk
+
∞∑
k=1

2k−1

zk
=
∞∑
k=1

1 + 2k−1

zk
, |z| > 2. N

3.9.20 Example (Generalized partial fractions decomposition).

Suppose that f is analytic on the domain D except at the isolated singularities z1, . . . , zn.
Suppose that at each singularity zk, f has a pole of order mk ≥ 1. Show that there are
polynomials p1, . . . , pn, where pk has degree mk and pk(0) = 0, and an analytic function
g on D, such that

f(z) =
n∑
k=1

pk

(
1

z − zk

)
+ g(z), z ∈ D \ {z1, . . . , zn}.

Solution. For simplicity, we prove this when n = 2. We expand f as a Laurent series
centered at z1 and use the assumption that z1 is a pole of order m1 to separate out its
principal part:

f(z) =
∞∑

k=−∞

ak(z − z1)k =

m1∑
k=1

a−k
(z − z1)k

+
∞∑
k=0

ak(z − z1)k.

Let

p1(z) =

m1∑
k=1

a−kz
k,

so p1(0) = 0, and set

h1(z) = f(z)− p1

(
1

z − z1

)
. (3.9.12)

The Laurent series for h1 centered at z0 is just
∑∞

k=0ak(z − z1)k, so h1 has a removable
singularity at z0. The function z 7→ p1(1/(z − z1)) is the principal part of the Laurent
series of f at z0, which is analytic on C \ {z1}. Since f is analytic on D \ {z1, z2}, we
then see that h1 is analytic on D \ {z1, z2}. But since h1 has a removable singularity at
z1, we can find an analytic continuation h̃1 for h1 on D \ {z2}.

Next, by (3.9.12), for z close to z2, we have

h̃1(z) = f(z)− p1

(
1

z − z1

)
.

Since z 7→ p1(1/(z − z1)) is analytic at z2 and f has a pole of order m2 at z2, it follows
that h̃1 also has a pole of order m2 at z2. Then we can write the Laurent series of h̃1 at
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z2 as

h̃1(z) =
∞∑

k=−∞

bk(z − z2)k =

m2∑
k=1

b−k
(z − z2)k

+
∞∑
k=0

bk(z − z0)k.

With

p2(z) =

m2∑
k=1

b−kz
k,

so p2(0) = 0, we set

h2(z) = h̃1(z)− p2

(
1

z − z2

)
.

Since h̃1 and z 7→ p2(1/(z− z2)) are analytic on D\{z2}, so is h2. As before, the Laurent
series for h2 at z2 is

∑∞
k=0bk(z− z2)k, so h2 has a removable singularity at z2 and thus an

analytic continuation h̃2 to all of D.
We conclude that, for z ∈ D \ {z1, z2}, we have

f(z) = p1

(
1

z − z1

)
+ h̃1(z) = p1

(
1

z − z1

)
+ p2

(
1

z − z2

)
+ h2(z)

= p1

(
1

z − z1

)
+ p2

(
1

z − z2

)
+ h̃2(z),

where g := h̃2 is analytic on D. N

3.10. Residue theory.

3.10.1. Residues.

A significant number of results about a function can be developed from the analysis of
one particular coefficient in its Laurent series centered at an isolated singularity.

3.10.1 Definition.

Suppose that f has an isolated singularity at z0 and the Laurent series expansion f(z) =∑∞
k=−∞ak(z − z0)k valid on some punctured ball B∗(z0;R). The residue of f at z0

is the coefficient a−1 from this Laurent series expansion, and we write

Res(f ; z0) := a−1.

One immediately has

Res(f ; z0) =
1

2πi

∫
|z−z0|=s

f(z) dz, 0 < s < R, (3.10.1)

from the definition (3.9.3), but evaluating this integral is rarely the most expedient way
of calculating the residue.
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3.10.2 Example.

Calculate Res

(
z3 + z2

(z − 1)2
; 1

)
.

Solution. We saw in part (iii) of Example 3.9.18 that the Laurent series for f was

f(z) =
2

(z − 1)2
+

5

(z − 1)
+ 4 + (z − 1), z 6= 1,

so Res(f ; 1) = 5. N

In the remainder of this section we develop some simple tools for calculating residues
that are sometimes faster than calculating the Laurent series (even when using previously
known power series); the applications will follow shortly.

First, the situation in Example 3.10.2 illustrates a general truth. WriteH(z) = z3+z2.
Then H(1) = 5 6= 0 and H is entire, hence f has a pole of order 2 at 1. Observe that
H ′(z) = 3z2 + 2z and H ′(1) = 5 = Res(f ; 1). Here is the abstraction of this calculation.

3.10.3 Lemma.

Suppose that f has a pole of order m at z0. Write f(z) = H(z)/(z − z0)m for z ∈
B∗(z0;R), where H is analytic on B(z0;R) and H(z0) 6= 0. Then

Res(f ; z0) =
H(m−1)(z0)

(m− 1)!

Proof. Since H is analytic on B(z0;R), we may write H(z) =
∑∞

k=0bk(z − z0)k for
z ∈ B(z0;R). Then

f(z) =
∞∑
k=0

bk(z − z0)k−m,

hence the coefficient of (z − z0)−1 in this expansion is bm−1 = H(m−1)(z0)/(m− 1)!. �

3.10.4 Example.

Calculate Res

(
cos(z)

sin2(z)
; z = 0

)
.

Solution. Since sin(·) has a simple zero at 0, we can write sin(z) = zq(z), where q is
analytic and q′(0) 6= 0. Then

f(z) :=
cos(z)

sin2(z)
=

cos(z)

z2q(z)2
,

so f has a pole of order 2 at 0. Write H(z) = cos(z)/q(z)2. Then

Res

(
cos(z)

sin2(z)
; z = 0

)
= H ′(0) =

−q(z)2 sin(z) + 2 cos(z)q(z)q′(z)

q(z)4

∣∣∣∣
z=0

=
2q′(0)

q(0)3
.

Since sin(z) = zq(z), we have, for z 6= 0, q(z) = sin(z)/z, so q(0) = 1. Next, we
differentiate the equation sin(z) = zq(z) to find

cos(z) = q(z) + zq′(z) and − sin(z) = q′(z) + q′(z) + zq′′(z),
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hence
2q′(0) = 0,

and so q′(0) = 0. We conclude

Res

(
cos(z)

sin2(z)
; z = 0

)
= 0. N

A special case of Lemma 3.10.3 worth singling out because of ease and frequency is
that of a simple pole.

3.10.5 Lemma.

Suppose that f and g are analytic on B(z0;R) with f(z0) 6= 0, g(z0) = 0, and g′(z0) 6= 0
(i.e., g has a simple zero at z0). Then

Res

(
f

g
; z0

)
=
f(z0)

g′(z0)
.

Proof. Write g(z) = (z− z0)q(z), where q is analytic on B(z0; r) and q(z0) = g′(z0) 6= 0.
(That q(z0) = g′(z0) follows from the product rule.) Set H(z) = f(z)/q(z), so H is
analytic on B(z0; r) and H(z0) 6= 0. Then

f(z)

g(z)
=

H(z)

z − z0

, z 6= z0,

so, by Lemma 3.10.3 with m = 1,

Res

(
f

g
; z0

)
= H(z0) =

f(z0)

q(z0)
=
f(z0)

g′(z0)
. �

3.10.6 Example.

Let f(z) = eiz/(z2 + 1). Calculate the residue of f at each of its isolated singularities.

Solution. The function f has simple poles at ±i and is analytic on C\{i,−i}. We have

ei(±i) = e±i
2

= e±(−1) = e∓1 and
d

dz
[z2 + 1]

∣∣∣∣
z=±i

= ±2i.

Hence
Res

(
eiz

z2 + 1
; z = ±i

)
= ±e

∓1

2i
= ∓ie

∓1

2
. N

3.10.7 Remark.
There are many other formulas and rules for calculating residues, assuming different
properties of the function under consideration. Some of these will be presented in the
exercises.

If you ever need to calculate a residue for which none of the (admittedly few) methods
here are appropriate, consult another book on complex analysis. Frequently there are
additional strategies and rules in the “residues” section of the text and the accompanying
exercises.
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3.10.2. The winding number.

Before we come to our major result on residues, we need a technical concept that allows
us to count how many times a closed curve “winds around” a given point.

3.10.8 Example.

Fix z0 ∈ C, r > 0, and k ∈ Z and let

γn(t) := z0 + reint, 0 ≤ t ≤ 2π.

Intuitively, if z ∈ B(z0; r), then γk “winds around” z exactly n times, where if n < 0
we interpret this to mean “|n| clockwise times.” And if z ∈ C\B(z0; r), then γn “winds
around” z zero times.

To make this precise, show that

1

2πi

∫
γn

dξ

ξ − z
=

{
n, |z − z0| < r

0, |z − z0| > r.
(3.10.2)

Solution. We do the calculation in a number of cases.

1. n = 0. Then γn is constant, and so any line integral over γn is 0 (because of the factor
of γ′n = 0 in the definition of the line integral). In this case, the right side of (3.10.2) is
0 in either case, as is the left.

2. |z − z0| > r, n ∈ Z \ {0}. Then f(ξ) := 1/(ξ − z) is analytic on a ball containing
B(z0; r), so the Cauchy integral formula implies∫

γn

dξ

ξ − z
= 0.

3. |z − z0| < r, n ≥ 1. Our instinct should be to use the Cauchy integral theorem.
However, the Cauchy integral theorem is only valid for an integral taken over a circle
that is traversed exactly once (per our custom in Remark 3.5.15). So, we write γn as the
direct sum of n curves, each of which parametrizes the circle |ξ − z0| = r exactly once.
Specifically, we set

µ(t) := z0 + reint, 0 ≤ t ≤ 2π

n
,

and then we have
γn = µ⊕ · · · ⊕ µ︸ ︷︷ ︸

n times

.

Hence ∫
γn

dξ

ξ − z
= n

∫
µ

dξ

ξ − z
= n

∫
|ξ−z0|=r

dξ

ξ − z
= 2πin

by the Cauchy integral formula.

4. |z − z0| < r, n ≤ −1. In this case

γn(t) = z0 + re−i|n|t = z0 + rei|n|(0+2π−t) = γ−|n|(t),

and so ∫
γn

dξ

ξ − z
=

∫
γ−|n|

dξ

ξ − z
= −

∫
γ|n|

dξ

ξ − z
= −2πi|n| = 2πin. N
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3.10.9 Definition.
Let γ be a closed curve in C and let z ∈ C be a point that is not in the image of γ.
The winding number or index of γ around z is

χ(γ; z) :=
1

2πi

∫
γ

dξ

ξ − z
. (3.10.3)

3.10.10 Example.

Fix R > 0. Let λR be the line segment [−R,R] and let µR(t) = Reit, 0 ≤ t ≤ π, be the
upper half of the circle of radius R centered at the origin. Set γR = λR⊕µR. Calculate
χ(γR; z) for z not in the image of γR.

Solution. Intuitively, the “inside” of γR is

UR ={z ∈ C | |z| < R, Im(z) > 0} ,

so we expect χ(γR; z) = 0 for z ∈ C \ (UR ∪ ΓR), where ΓR is the image of γR and
χ(γR; z) = 1 for z ∈ UR.

R

iR

R−R

iR

If z ∈ C \ (UR ∪ ΓR), then ξ 7→ 1/(ξ − z) is analytic on a star-domain containing γR; see
the sketch below for an example of one such star-domain.

z

Consequently, Cauchy’s integral theorem implies∫
γR

dξ

ξ − z
= 0. (3.10.4)

If z ∈ UR, then Lemma 3.6.15 (or the Cauchy integral formula) implies∫
µR⊕νR

dξ

ξ − z
= 2πi,
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where µR and νR are sketched below.

µR

νR

λR

On the other hand, ∫
λR⊕ν−R

dξ

ξ − z
= 0

by the Cauchy integral theorem, using the same reasoning that gave (3.10.4). We then
find (suppressing the integrand for simplicity)

2πi = 2πi+ 0 =

∫
µR⊕νR

+

∫
λR⊕ν−R

=

∫
µR

+

∫
νR

+

∫
λR

+

∫
ν−R

=

∫
µR

+

∫
νR

+

∫
λR

−
∫
νR

=

∫
µR

+

∫
λR

=

∫
µR⊕λR

=

∫
γR

.

Thus

χ(γR; z) =

{
1, z ∈ UR
0, z ∈ C \ (UR ∪ ΓR).

N

The situation in the preceding example indicates a general property of the winding
number, which we will not prove: it is always an integer. This, of course, is essential if
the winding number is going to “count” something.

3.10.11 Theorem.

Let γ be a closed curve and z ∈ C not be a point in the image of γ. Then χ(γ; z) is an
integer.

3.10.3. The residue theorem.

3.10.12 Theorem (Residue theorem).

Let D be a star domain and let f be analytic on D except for isolated singularities at
the points z1, . . . , zn ∈ D. Let γ be a closed curve in D whose image does not contain
any of the points z1, . . . , zn. Then∫

γ

f(z) dz = 2πi
n∑
k=1

Res(f ; zk)χ(γ; zk). (3.10.5)
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Proof. For j = 1, . . . , n, let

hj(z) :=
∞∑
k=1

a
(j)
−k(z − zj)

−k

be the principal part of the Laurent series of f centered at zj. In particular,

a
(j)
−1 = Res(f ; zj).

We know that hj is analytic on C \ {zj}, hence

g(z) := f(z)−
n∑
j=1

hj(z)

is analytic on D\{z1, . . . , zn}. Moreover, if we compute the Laurent series for g centered
at a zj, we see that it has no powers of (z − zj)

k with k < 0. So, g has removable
singularities at each zj and therefore extends to an analytic function g̃ on D.

D

γ

Since D is star-shaped and γ is closed, we have∫
γ

g(z) dz = 0 (3.10.6)

by Cauchy’s integral theorem. On the other hand, since none of the points zj are in the
image of γ, the functions f and hj are analytic on open sets containing the image of γ,
and so the integrals

∫
γ
f(z) dz and

∫
γ
hj(z) dz all exist. (Of course, these open sets need

not be star domains, so the integrals may not vanish.)
Then (3.10.6) translates to∫

γ

f(z) dz =
n∑
j=1

∫
γ

hj(z) dz. (3.10.7)

For a fixed j, interchanging the sum and the integral, we have∫
γ

hj(z) dz =

∫
γ

∞∑
k=1

a
(j)
−k(z − zk)

−k dz =
∞∑
k=1

a
(j)
−k

∫
γ

(z − zj)−k dz. (3.10.8)

If k ≥ 2, then (z−zj)−k has the antiderivative (z−zj)−k+1/(1−k), and so the independence
of path theorem tells us ∫

γ

(z − zj)−k dz = 0, k ≥ 2. (3.10.9)
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When k = 1, we have ∫
γ

(z − zj)−1 dz = 2πiχ(γ; zj). (3.10.10)

We combine (3.10.9) and (3.10.10) to show that (3.10.8) is∫
γ

hj(z) dz = 2πiχ(γ; zj)a
(j)
−1 = 2πiχ(γ; zj) Res(f ; zj),

and so (3.10.7) becomes the desired identity (3.10.5). �

3.10.13 Example.

Let µ(t) = 2eit, 0 ≤ t ≤ π. Calculate∫
[−2,2]⊕µ

dz

z4 + 1
.

Solution. The function f(z) = 1/(z4 + 1) has simple poles when z4 = −1, i.e., at the
fourth roots of unity. We recall from Theorem 3.2.14 that these are

zk = ei(π+2πk)/4, k = 0, 1, 2, 3.

R

iR

µ

2−2

2i

z0z1

z2 z3

Note that only z1 and z2 are “inside” γ := [−2, 2]⊕µ. More precisely, we can use Example
3.10.10 to calculate

χ(γ; z0) = χ(γ; z1) = 1 and χ(γ; z2) = χ(γ; z3) = 0.

So,∫
[−2,2]⊕µ

dz

z4 + 1
= 2πiRes

(
1

z4 + 1
; z = eiπ/4

)
+ 2πiRes

(
1

z4 + 1
; z = e3iπ/4

)
.

We can calculate these residues using Lemma 3.10.5. With g(z) = 1 and h(z) = z4 + 1,
we have h′(z) = 4z3, so certainly h′(zj) 6= 0, j = 0, 1. Then

Res
(g
h

; zj

)
=

g(zj)

h′(zj)
=

1

4z3
j

,

so

Res

(
1

z4 + 1
; z = eiπ/4

)
=

1

4e3iπ/4
=
e−3iπ/4

4
=

1

4

(
− 1√

2
− i√

2

)
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and

Res

(
1

z4 + 1
; z = e3iπ/4

)
=

1

4e9iπ/4
=

1

4eiπ/4
=
e−iπ/4

4
=

1

4

(
1√
2
− i√

2

)
.

Hence ∫
[−2,2]⊕µ

dz

z4 + 1
=

2πi

4

(
− 2i√

2

)
=

π√
2
. N

3.10.4. Definite integrals of rational trigonometric functions.

A rational function in two variables is a function R of the form R(z, w) =
p(z, w)/q(z, w), where p and q are polynomials in the two variables z and w. For example,

p(z, w) = z + w and q(z, w) = z2 + 2zw + w2

are polynomials in z and w.
We will study integrals of the form∫ 2π

0

R(sin(θ), cos(θ)) dθ,

where R is a rational function of two variables.
Our first example actually uses just the Cauchy integral formula, not the residue

theorem. But the exercises will show how one can deduce a more general version of the
Cauchy integral formula from the residue theorem.

3.10.14 Example.

Evaluate
∫ 2π

0

dθ

2 + sin(θ)
.

Solution. The key idea is to relate this integral to a line integral. The presence of
trigonometric functions in the integrand and the limits of integration 0 and 2π suggest
that we try to integrate over a circle. So, we make the formal substitution

z = eiθ, dz = ieiθ dθ = iz dθ

and (formally) find

dθ

2 + sin(θ)
=

dz/iz

2 +
eiθ − e−iθ

2i

=
dz

iz

(
2 +

z − z−1

2i

) =
dz

2iz +
z2

2
− 1

2

=
2

z2 + 4iz − 1
dz.

We therefore expect, and can indeed verify using the definition of the line integral, that∫ 2π

0

d

2 + sin(θ)
= 2

∫
|z|=1

dz

z2 + 4iz − 1
.

To examine the analyticity of the integrand, we use the quadratic formula to find the
zeros of the denominator:
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z2+4iz−1 = 0 ⇐⇒ z =
−4i±

√
(4i)2 − 4(1)(1)

2(1)
=
−4i±

√
−16 + 4

2
=
−4i± i

√
4
√

3

2

= −2i± i
√

3 =: z±.

The location of these zeros relative to the circle |z| = 1 will determine how we proceed.
Clearly | − 2i−

√
3| = 2 +

√
3 > 1, whereas

−1 = −2 + 1 = −2 +
√

1 < −2 +
√

3 < −2 +
√

4 = 0

So, we have z− 6∈ B(0; 1) and z+ ∈ B(0; 1). Now, we factor

1

z2 + 4iz − 1
=

1

(z − z−)(z − z+)

and set
g(z) :=

1

z − z−
.

Then the Cauchy integral formula implies∫
|z|=1

dz

z2 + 4iz − 1
=

∫
|z|=1

g(z)

z − z+

dz = 2πig(z+) =
2πi

z+ − z−

=
2πi

(−2i+ i
√

3)− (−2i− i
√

3)
=

π√
3
.

We conclude ∫ 2π

0

d

2 + sin(θ)
= 2

∫
|z|=1

dz

z2 + 4iz − 1
=

2π√
3
. N

When evaluating a real definite integral with complex methods, one should always
check that the answer is real. Our next example will not permit the simple Cauchy
integral formula, and so we will have to use the residue theorem.

3.10.15 Example.

Evaluate
∫ 2π

0

dθ

2 + cos2(θ)
.

Solution. Again we convert this integral to a line integral via the substitution

z = eiθ, dz = ieiθ dθ = iz dθ, cos(θ) =
eiθ + e−iθ

2
=
z + z−1

2
.

Then

cos2(θ) =

(
z + z−1

2

)2

=
z2 + 2 + z−2

4
,

and so
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dθ

2 + cos2(θ)
=

dz/iz

2 +
z2 + 2 + z−2

4

=
dz

iz

(
2 +

z2 + 2 + z−2

4

) =
dz

2iz +
iz3

4
+
iz

2
+

i

4z

=

(
4

i

)
z

z4 + 10z2 + 1
dz.

We expect, and can verify using the definition of the line integral, that∫ 2π

0

dθ

2 + cos2(θ)
=

4

i

∫
|z|=1

z

z4 + 10z2 + 1
dz.

Since the integrand is a rational function, we will know where it fails to be analytic if
we know the zeros of its denominator. Setting u = z2, we need to solve

u2 + 10u+ 1 = 0 ⇐⇒ u =
−10±

√
100− 4

2
= −5± 2

√
6.

Thus the integrand has poles at

z1 =

√
−5 + 2

√
6, z2 =

√
−5− 2

√
6 = i

√
5 + 2

√
6, z3 = −

√
−5 + 2

√
6,

and
z4 = −i

√
−5− 2

√
6 =

√
5 + 2

√
6.

It is clear that |z2| = |z4| > 1, so we only need to be concerned with the poles at z1 and
z3. Note that

−1 = −5 + 4 = −5 + 2
√

4 < −5 + 2
√

6 < −5 + 2
√

9 = −5 + 6 = 1,

thus58

|z1| = |
√
−5 + 2

√
6| < 1.

Likewise,
|z3| = |z1| < 1.

Thus z1, z3 ∈ B(0; 1) and z2, z4 6∈ B(0; 1), and so if γ is the unit circle, then

χ(γ; z1) = χ(γ; z3) = 1 and χ(γ; z2) = χ(γ; z4) = 0.

The residue theorem then implies∫
|z|=1

z

z4 + 10z2 + 1
dz = 2πi

[
Res

(
z

z4 + 10z2 + 1
; z = z1

)
+ Res

(
z

z4 + 10z2 + 1
; z = z3

)]
.

We will, once again, use Lemma 3.10.5 to evaluate these residues. Setting f(z) = z
and g(z) = z4 + 10z2 + 1, we have

g′(z) = 4z3 + 20z = 4z(z2 + 5),

58Recall that |zw| = |z||w| for any z, w ∈ C. Thus |
√
z|2 = |

√
z||
√
z| = |

√
z
√
z| = |z|, and so |

√
z| =

√
|z|.
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and so we see that

g′(z1) = 8
√

6z1 6= 0 and g′(z3) = 8
√

6z3 6= 0.

Thus
Res

(
f

g
; zj

)
=
f(zj)

g′(zj)
=

zj

8
√

6zj
=

1

8
√

6
, j = 1, 2,

and so ∫ 2π

0

dθ

2 + cos2(θ)
=

4

i

∫
|z|=1

z

z4 + 10z2 + 1
dz =

4

i
(2πi)

(
2

8
√

6

)
=

2π√
6
. N

3.10.16 Method: evaluate the integral
∫ 2π

0
R(cos(θ), sin(θ)) dθ, R rational

1. Make the changes of variables

z = eiθ, dz = iz dθ, cos(θ) =
z + z−1

2
, and sin(θ) =

z − z−1

2i

to convert the given integral into ∫
|z|=1

p(z)

q(z)
dz.

Here p and q are polynomials.

2. Find the zeros of q with modulus less than 1; these are the poles of f inside the circle
|z| = 1.

3. Use the residue theorem to evaluate∫
|z|=1

p(z)

q(z)
dz = 2πi

∑
q(w)=0
|w|<1

Res

(
p

q
;w

)
.

Check that your final answer is real, since the original integral is real-valued.

3.10.5. Fourier integrals.

From the definition of the Fourier transform in (2.5.2), we often need to evaluate, or at
least understand deeply, integrals of the form∫ ∞

−∞
f(x)eiKx dx

for K ∈ R.

3.10.17 Example.

Let f(x) = e−x
2

. In Example 2.5.13, we showed that

f̂(k) =
e−k

2/4

√
2
.
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Rederive this result by using the residue theorem to calculate the Fourier integral defin-
ing f̂ .

Solution. Since |x| ≤ x2 for |x| ≥ 1, we have e−x
2 ≤ e−|x| for |x| ≥ 1, and it follows

from the comparison test that f ∈ L1(R). We will use some complex analysis techniques
to evaluate the Fourier integral

f̂(k) =
1√
2π

∫ ∞
−∞

e−x
2

e−ikx dx =
1√
2π

∫ ∞
−∞

e−(x2+ikx) dx.

However, we previously learned how to find Fourier transforms of rational functions; e−x
2

is obviously not rational, so the techniques here will be a little different.
First, completing the square, we find

x2 + ikx = x2 + ikx− k2

4
+
k2

4
= x2 + ikx+

(
ik

2

)2

+
k2

4
=

(
x+

ik

2

)2

+
k2

4
.

Thus∫ ∞
−∞

e−(x2+ikx) dx =

∫ ∞
−∞

e−(x+ik/2)2−k2/4 dx = e−k
2/4

∫ ∞
−∞

e−(x+ik/2)2 dx =: e−k
2/4Ik.

Our goal is to calculate Ik. The improper integral Ik must converge, since it is just the
original Fourier integral multiplied by the constant ek

2/4. This implies

Ik = lim
R→∞

∫ R

−R
e−(x+ik/2)2 dx = lim

R→∞

∫
[−R+ik/2,R+ik/2]

e−z
2

dz.

We will relate this integral over a line segment to a line integral over a closed curve.
Instead of a semicircle, though, we integrate over

γRk := [−R,R]⊕ [R,R + ik/2]⊕ [R + ik/2,−R + ik/2]⊕ [−R + ik/2,−R].

R

iR

R−R

R + ik/2−R + ik/2

Since z 7→ e−z
2

is entire, Cauchy’s integral theorem implies∫
γRk

e−z
2

dz = 0.

Next, we estimate the integral over the vertical line segments. We parametrize [R,R +
ik/2] as

µRk,+(t) = (1− t)R +
ikt

2
.
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Then ∣∣∣e−µRk,+(t)2
∣∣∣ = exp

[
−Re

(
µRk,+(t)

)2
]
,

where (
µRk,+(t)

)2
= (1− t)2R2 + ikt(1− t)R− k2t2

4
.

That is,∣∣∣eµRk,+(t)2
∣∣∣ = exp

(
−(1− t)2R2 +

k2t2

4

)
= exp

(
−R2 + 2R− t2R2 +

k2t2

4

)
.

Since 0 ≤ t ≤ 1, we estimate ∣∣∣eµRk,+(t)2
∣∣∣ ≤ ek

2/4e2R−R2

,

and so ∣∣∣∣∣
∫
µRk,+

e−z
2

dz

∣∣∣∣∣ ≤ k

2
ek

2/4e2R−R2 → 0

as R → ∞ (recall that k ∈ R is fixed). And so the integral over the right vertical
segment vanishes; similar estimates show that the integral over the left vertical segment
also vanishes.

Last, we observe that the integral over [−R,R] converges as R→∞:

lim
R→∞

∫
[−R,R]

e−z
2

dz = lim
R→∞

∫ R

−R
e−x

2

dx =
√
π

by calculus.
We conclude

0 = lim
R→∞

∫
γRk

e−z
2

dz = lim
R→∞

(∫
[R+ik/2,−R+ik/2]

e−z
2

dz +

∫
[−R,R]

e−z
2

dz

)
= −Ik +

√
π.

Hence Ik =
√
π, and so

f̂(k) =
e−k

2/4Ik√
2π

=
e−k

2/4

√
2
. N

3.10.18 Example.

Evaluate
∫ ∞
−∞

cos(x)

x2 + 1
dx.

Solution. We evaluate the integral in the following steps.

1. The existence of this integral follows from estimating∣∣∣∣cos(x)

x2 + 1

∣∣∣∣ ≤ 1

x2 + 1

and the existence of the integral ∫ ∞
−∞

dx

1 + x2
,
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which can be proved by direct calculation (the antiderivative of 1/(1 + x2) is arctan(x)).
Thus we have ∫ ∞

−∞

cos(x)

x2 + 1
dx = lim

R→∞

∫ R

−R

cos(x)

x2 + 1
dx.

2. The classical, if not obvious, idea is to relate the integral over [−R,R] to a line integral
(of a different function) over a closed curve formed, in part, by [−R,R]. Observe that∫ R

−R

cos(x)

x2 + 1
dx = Re

[∫
[−R,R]

eiz

z2 + 1
dz

]
.

(One might think that we should write cos(z) instead of eiz here. The equality would still
be true, but some later steps would not work out; see the exercises for a more detailed
discussion of why cos(z) is a bad idea.) Now let µR(t) = Reit, 0 ≤ t ≤ π, and consider∫

[−R,R]⊕µR

eiz

z2 + 1
dz.

3. The denominator z2 + 1 has simple poles at ±i, and so, with γR = [−R,R]⊕ µR and
R > 1, the residue theorem implies∫

γR

eiz

z2 + 1
dz = 2πi

[
Res

(
eiz

z2 + 1
; z = i

)
χ(γR; i) + Res

(
eiz

z2 + 1
; z = −i

)
χ(γR;−i)

]

= 2πi

(
ei

2

2i

)
= πe−1.

4. Now we want to control
lim
R→∞

∫
µR

eiz

z2 + 1
dz.

The best possible circumstance would be for this limit to equal zero, and indeed we can
prove this using the ML inequality. We estimate∣∣∣∣∫

µR

eiz

z2 + 1
dz

∣∣∣∣ ≤ πRmax
z∈µR

∣∣∣∣ eiz

z2 + 1

∣∣∣∣ = πR max
|z|=R

Im(z)≥0

∣∣∣∣ eiz

z2 + 1

∣∣∣∣ .
If Im(z) ≥ 0, then

|eiz| = |eiRe(z)−Im(z)| = e− Im(z) ≤ 1.

Next, the reverse triangle inequality gives

|z2 + 1| = |z2 − (−1)| ≥
∣∣|z2| − | − 1|

∣∣ ≥ |z2| − | − 1| = |z|2 − 1,

and so, for |z| = R > 1,
1

|z2 + 1|
≤ 1

|z|2 − 1
=

1

R2 − 1
.

Thus ∣∣∣∣∫
µR

eiz

z2 + 1
dz

∣∣∣∣ ≤ πR

R2 − 1
→ 0 as R→∞.
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5. We conclude∫ ∞
−∞

cos(x)

x2 + 1
dx = Re

[
lim
R→∞

∫
[−R,R]

eiz

z2 + 1
dz

]

= Re

[
lim
R→∞

∫
[−R,R]

eiz

z2 + 1
dz + lim

R→∞

∫
µR

eiz

z2 + 1
dz

]

= Re

[
lim
R→∞

∫
[−R,R]⊕µR

eiz

z2 + 1
dz

]
= Re(πe−1) = πe−1. N

3.10.19 Remark.
We will often integrate over the upper half of a circle of radius R centered at the origin.
We parametrize this curve, of course, by µ(t) = Reit, 0 ≤ t ≤ π, and we write∫

|z|=R
Im(z)≥0

f(z) dz := iR

∫ π

0

f(Reit)eit dt.

The following lemma helps us control integrals over circular arcs. We omit its proof,
which fundamentally depends on some technical inequalities from real-variable calculus
(see [1]).

3.10.20 Lemma (Jordan).

(i) Let R > 0. Then ∫ π

0

e−R sin(t) dt ≤ π

R
.

(ii) Suppose that f is continuous on Im(z) ≥ 0 and

lim
R→∞

max
|z|=R

Im(z)≥0

|f(z)| = 0.

Then
lim
R→∞

∫
|z|=R

Im(z)≥0

eiαzf(z) dz = 0

for any α > 0. An analogous result holds for α < 0 if we replace Im(z) ≥ 0 by
Im(z) ≤ 0 throughout.

3.10.21 Example.

Evaluate
∫ ∞
−∞

x3 sin(x)

x4 + 16
dx.

Solution. 1. If we attempt to “dominate” the integrand by an improperly integrable
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function, we will not be successful; we have∣∣∣∣x3 sin(x)

x4 + 16

∣∣∣∣ ≤ |x|3

x4 + 16
,

but the function on the right is not improperly integrable on R, as the denominator’s
degree is only 1 more than the numerator’s. Instead, one can integrate by parts to find an
antiderivative, still involving another integral, of the original integrand; this new integral
turns out to be improperly integrable. We defer the calculation to the exercises and
proceed confident that ∫ ∞

−∞

x3 sin(x)

x4 + 16
dx = lim

R→∞

∫ R

−R

x3 sin(x)

x4 + 16
dx.

2. We have ∫ R

−R

x3 sin(x)

x4 + 16
dx = Im

[∫
[−R,R]

z3eiz

z4 + 16
dz

]
.

As before, let µR(t) = Reit, 0 ≤ t ≤ π, and consider∫
γR

z3eiz

z4 + 16
dz, γR = [−R,R]⊕ µR.

3. Observe that the integrand above has simple poles when z4 + 16 = 0, i.e., when
z4 = −16. This occurs for

z = zk := | − 16|1/4ei(Arg(−16)+2πk)/4 = 2ei(2k+1)π/4, k = 0, 1, 2, 3.

See the sketch in Example 3.10.13 (with 2 replaced by R throughout). We see that when
R > 2 we have

χ(γR; z0) = χ(γR; z1) = 1 and χ(γR; z2) = χ(γR; z3) = 0.

Hence ∫
γR

z3eiz

z4 + 16
dz = 2πi

[
Res

(
z3eiz

z4 + 16
; z = z0

)
+ Res

(
z3eiz

z4 + 16
; z = z1

)]
.

Since the poles zk are simple, we have

Res

(
z3eiz

z4 + 16
; z = zk

)
=
z3
ke
izk

4z3
k

=
eizk

4
,

and thus ∫
γR

z3eiz

z4 + 16
dz =

πi

2

(
eiz0 + eiz1

)
.

We calculate further

z0 = 2eiπ/4 = 2

(
1√
2

+
i√
2

)
=
√

2(1 + i)

and
z1 = 2e3πi/4 = 2

(
− 1√

2
+

i√
2

)
=
√

2(−1 + i),
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thus
eiz0 = ei

√
2−
√

2 and eiz1 = e−i
√

2−
√

2.

Hence
eiz0 + eiz1 = e−

√
2
(
ei
√

2 + e−i
√

2
)

= 2e−
√

2 cos(
√

2),

and so ∫
γR

z3eiz

z4 + 16
dz = 2πi

(
2e−

√
2 cos(

√
2)

4

)
= iπe−

√
2 cos(

√
2).

4. Now consider
lim
R→∞

∫
µR

z3eiz

z4 + 16
dz.

We will use Jordan’s lemma. Observe that

max
|z|=R

Im(z)≥0

∣∣∣∣ z3

z4 + 16

∣∣∣∣ ≤ R3

R4 − 16
→ 0 as R→∞,

using the triangle inequality to estimate the denominator via

|z4 + 16| = |z4 − (−16)| ≥
∣∣|z4| − | − 16|

∣∣ ≥ |z4| − 16 = |z|4 − 16 = R4 − 16.

Hence the limit is zero.

5. We conclude∫ ∞
−∞

x3 sin(x)

x4 + 16
dx = Im

[
lim
R→∞

∫
[−R,R]

z3eiz

z4 + 16
dz

]

= Im

[
lim
R→∞

∫
[−R,R]

z3eiz

z4 + 16
dz +

∫
µR

z3eiz

z4 + 16
dz

]
= Im

[
lim
R→∞

∫
[−R,R]⊕µR

z3eiz

z4 + 16
dz

]

= Im
[
iπe−

√
2 cos(

√
2)
]

= πe−
√

2 cos(
√

2). N

3.10.22 Method: evaluate
∫ ∞
−∞

R(x) trig(αx) dx, R rational

1. Suppose that p and q are polynomials with real coefficients such that q(x) 6= 0 for any
x ∈ R and that the improper integral∫ ∞

−∞

p(x)

q(x)
trig(αx) dx

exists, where trig(X) = sin(X) or trig(X) = cos(X). (Implicitly this will require deg(q) ≥
deg(p) + 1.) Assume α > 0. This implies∫ ∞

−∞

p(x)

q(x)
trig(αx) dx = lim

R→∞

∫ R

−R

p(x)

q(x)
trig(αx) dx.
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2. Let
f(z) =

p(z)

q(z)
eiαz.

Let U denote the set of isolated singularities of f in Im(z) ≥ 0; this set is necessarily finite,
since the only singularities of f are the zeros of q. Observe that for R sufficiently large,∫

[−R,R]⊕µR
f(z) dz = 2πi

∑
w∈U

Res(f ;w),

where µR(t) = Reit, 0 ≤ t ≤ π.

3. Use Jordan’s lemma to show

lim
R→∞

∫
µR

f(z) dz = 0.

(Implicitly this also requires deg(q) ≥ deg(p) + 1.)

4. Conclude that
lim
R→∞

∫
[−R,R]

f(z) dz = 2πi
∑
w∈U

Res(f ;w).

Take the real or imaginary part of this expression to calculate the original integral.

5. If α < 0, replace α with |α| and work instead with∫ ∞
−∞

p(x)

q(x)
trig(αx) dx = ±

∫ ∞
−∞

p(x)

q(x)
trig(|α|x) dx.

We hasten to add that there are many improper integrals of real-valued functions of
a real variable that do not fall into the rather specific method above. If faced with such
an integral in the wild, one should consult a standard undergraduate complex analysis
book for further techniques ([1] and [22] offer a particularly comprehensive overview of
such integrals, as well as the more advanced residue theory needed to evaluate them).
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A. Fundamentals of Complex Numbers

A.1. Basic definitions.

A complex number is an expression of the form x+iy where x, y ∈ R and the symbol
i satisfies i2 = −1. We denote the set of all complex numbers by C. We frequently identify
C with R2, and, in fact, any rigorous “construction” of C defines C to be R2, just with
a special multiplication structure. We will graph subsets of C as subsets of R2 with the
x-axis identified with R and the y-axis identified with iR ={iy | y ∈ R}.

y

x R

iR

(x, y)↔ x+ iy

A.1.1 Definition.
Let z = x+ iy ∈ C.

(i) The real part of z is Re(z) := x.

(ii) The imaginary part of z is Im(z) := y.

(iii) The modulus of z is |z| :=
√
x2 + y2. This corresponds to our notion of z as

a vector in R2; the length of (x, y) is, of course,
√
x2 + y2.

(iv) The complex conjugate of z is z := x− iy.

A.1.2 Definition.
Let z = x1 + iy1, w = x2 + iy2 ∈ C.

(i) We define z = w if and only if x1 = x2 and y1 = y2.

(ii) We define
z + w := (x1 + x2) + i(y1 + y2).

(iii) We define

zw = (x1 + iy1)(x2 + iy2) := (x1x2 − y1y2) + i(y1x2 + x1y2). (A.1.1)

In particular, if α ∈ R is real, then

αz = αx1 + iαy1.

(iv) The reciprocal59of z 6= 0 is

1

z
:= |z|−2z =

z

|z|2
. (A.1.2)
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A.1.3 Example.

Calculate the reciprocal of i using the definition in (A.1.2).

Solution. The definition gives

1

i
=

i

|i|2
=
−i
1

= −i.

Indeed, (−i)i = (−1)(i2) = (−1)(−1) = 1. N

The preceding definitions imply the following essential properties of complex numbers,
some of which are just repackaging of the notations above. The proofs are left as exercises.

A.1.4 Theorem.
Let z, w ∈ C.

(i) Re(z + w) = Re(z) + Re(w) and Im(z + w) = Im(z) + Im(w).

(ii) z + w = z + w and zw = zw.

(iii) |z|2 = zz.

(iv) [Triangle inequality] |z + w| ≤ |z|+ |w|.

(v) [Reverse triangle inequality]
∣∣|z| − |w|∣∣ ≤ |z − w|.

(vi) Re(z) ≤ |z|, Im(z) ≤ |z|, and |z| ≤ |Re(z)|+ | Im(z)|.

(vii) All the usual rules of arithmetic hold: complex addition and multiplication are
commutative and associative, and complex multiplication distributes over addition.
That is,

z + w = w + z, zw = wz, (z + w) + u = z + (w + u), (zw)u = z(wu),

and z(w + u) = zw + zu.

We will find some considerable ambiguities in attempting to pin meaning to the symbol
zw for z, w ∈ C. For now, we specify what zn means when n is an integer.
59How should we define division for complex numbers? There may not be an apparent numerical algo-
rithm, but we should remember that whatever the “reciprocal” of a number z 6= 0 is, it should satisfy
the multiplication property (

1

z

)
z = z

(
1

z

)
= 1.

Moreover, from our experience with real numbers, we expect(
1

z

)(a
b

)
=

a

zb
.

So, formally, we expect
1

z
=

(
1

z

)
· 1 =

(
1

z

)(
z

z

)
=

z

|z|2
.

What should this last symbol mean? Surely it is the same as |z|−2z. This is the product of the real
number |z|−2 and the complex number z as defined in part (iii) of Definition A.1.2. We can then check
from the product formula (A.1.1) that z(|z|−2z) = (|z|−2z)z = 1.
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A.1.5 Definition.
Let z ∈ C and n ∈ Z. Then

zn :=



1, n = 0

z, n = 1

zzn−1, n ≥ 2

1

z−n
, n ≤ −1 and z 6= 0.

Note that we do allow 00 = 1; this is chiefly for convenience in power series.

With this definition, we have the familiar relations

zm+n = zmzn and (zm)n = zmn

for m, n ∈ Z, with z 6= 0 if one if these integers is negative.

A.1.6 Example.

Compute Re

(
1 + i

1− i

)
.

Solution. We have

1 + i

2− i
=

(1 + i)(2 + i)

(2− i)(2 + i)
=

2 + i+ 2i+ i2

4 + 2i− 2i− i2
=

2 + 3i− 1

4− (−1)
=

1 + 3i

5
,

thus
Re

(
1 + i

1− i

)
=

1

5
. N

A.2. Series.

The basic definitions, properties, and tests for series convergence are the same whether
we work with real or complex numbers, so we assume that everything is complex here.

A.2.1. Series convergence.

We will mostly be interested in sequences formed by the partial sums of a series.

A.2.1 Definition.

Suppose that (ak) is a sequence of complex numbers. As we do in the real case, we
say that the series

∑∞
k=0ak converges to the sum S if the sequence (

∑n
k=0ak) of

partial sums converges to S, i.e., if

lim
n→∞

n∑
k=0

ak = S.
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In that case, we write S =
∑∞

k=0ak. Mathematical parlance uses the symbol
∑∞

k=0ak to
refer to both the sequence of partial sums (

∑n
k=0ak) and to the limit of that sequence,

if it exists.
The series

∑∞
k=0ak converges absolutely if the (real, nonnegative) series∑∞

k=0|ak| converges. If m ∈ N, we define the convergence of the series
∑∞

k=mak in the
same way by replacing k = 0 with k = m above.

Many of the convergence properties and tests that we learned for real series in calculus
apply verbatim to the complex case. We state some useful techniques without proof.

A.2.2 Theorem (Tests for series convergence).

Let (ak) be a sequence of complex numbers.

(i) [Test for divergence] If limk→∞ ak 6= 0, then the series
∑∞

k=0ak diverges. It is
possible to have limk→∞ ak = 0 and

∑∞
k=0ak still divergent.

(ii) [Ratio test] Suppose only finitely many of the terms ak are zero (equivalently,
there is N ∈ N such that ak 6= 0 for k ≥ N) and the limit

L := lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣
exists. Then

∑∞
k=0ak converges absolutely if 0 ≤ L < 1.

(iii) [Comparison test for series of nonnegative terms] If (bk) is another se-
quence in C, and 0 ≤ ak ≤ bk for all k, and if

∑∞
k=0bk converges, then

∑∞
k=0ak also

converges, and
∑∞

k=0ak ≤
∑∞

k=0bk.

(iv) [Absolute convergence implies “regular” convergence] If
∑∞

k=0|ak| con-
verges, then

∑∞
k=0ak converges.

There are many other tests for convergence, but, in practice, this course will only
require us to use the test for divergence, the ratio test, and the comparison test. Fre-
quently, the series that we study will be absolutely convergent, so it is often worthwhile
to check the stronger condition of absolute convergence first. Most often, the series that
interest us will be power series, which depend on a variable z.

A.2.3 Example.

Show that the series
∞∑
k=0

zk

k!

converges absolutely for all z ∈ C.

Solution. We use the ratio test and compute∣∣∣∣∣∣∣∣
zk+1

(k + 1)!

zk

k!

∣∣∣∣∣∣∣∣ =

∣∣∣∣ zk+1

(k + 1)!

(
k!

zk

)∣∣∣∣ =

∣∣∣∣ zkz

(k + 1)k!

(
k!

zk

)∣∣∣∣ =
|z|
k + 1

.
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Since
lim
k→∞

|z|
k + 1

= 0

for all z ∈ C, we have absolute convergence for any z. N

An important tool for manipulating series is reindexing.

A.2.4 Lemma (Reindexing).

Suppose that (ak) is a sequence of complex numbers and m ∈ N. Then
∑∞

k=mak
converges if and only if

∑∞
k=0ak+m converges, in which case the two series converge to

the same sum.

Proof. The series
∑∞

k=mak converges if and only if the sequence of partial sums (
∑n

k=mak)
converges. If n ≥ m, then

∑n
k=mak =

∑n−m
k=0 ak+m; a full proof of this identity uses

induction on n, which we omit, but one can think of it as analogous to a change of
variables in an integral.

Now, given m ∈ N, a sequence (bk) converges if and only if (bk−m) converges60 to the
same limit. Thus (

∑n
k=mak) if and only if

(∑n−m
k=0 ak+m

)
converges, in which case the two

sequences of partial sums have the same limit. Last, we have

lim
n→∞

n−m∑
k=0

ak+m = lim
n→∞

n∑
k=0

ak+m

if one of these limits exists, where, of course, limn→∞
∑n

k=0 ak+m =
∑∞

k=0ak+m. �

Another useful, often-overlooked, identity is telescoping.

A.2.5 Lemma.

(i) Let n ∈ N and a0, . . . , an+1 ∈ C. Then

n+1∑
k=0

(
ak+1 − ak

)
= an+1 − a0.

(ii) Let m ≤ n be (non) integers and let am, am+1, . . . , an, an+1 ∈ C. Then

n∑
k=m

(
ak+1 − ak

)
= an+1 − am.

Proof. Part (ii) follows from part (i) by setting Ak = ak+m for k = 0, . . . , n + 1 − m.
The validity of part (i) is intuitively clear in that successive pairs of terms cancel each
other:

n+1∑
k=0

(
ak+1−ak

)
=
(
a1−a0

)
+
(
a2−a1

)
+
(
a3−a2

)
+· · ·+

(
an−1−an−2

)
+
(
an−an−1

)
+
(
an+1−an

)
= an+1 − a0.

A rigorous proof, however, requires induction on n. �
60If we index (bk) over k ∈ N, then we index (bk−m) over {k ∈ N | k > m}, since bj is not defined for
j ≤ 0.
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A.2.6 Example.

Let z ∈ C. Show that the geometric series
∑∞

k=0z
k converges if and only if

|z| < 1, in which case
∞∑
k=0

zk =
1

1− z
.

Solution. Suppose |z| < 1 and fix n ∈ N. We develop a formula for the nth partial sum
of the geometric series. By telescoping, we have

n∑
k=0

(
zk − zk+1

)
= z0 − zn+1 = 1− zn+1. (A.2.1)

We factor
n∑
k=0

(
zk − zk+1

)
=

n∑
k=0

zk −
n∑
k=0

zk+1 =
n∑
k=0

zk − z
n∑
k=0

zk = (1− z)
n∑
k=0

zk. (A.2.2)

Equating (A.2.1) and (A.2.2) and dividing by 1 − z, which is permissible since |z| < 1,
we have

n∑
k=0

zk =
1− zn+1

1− z
.

Since |z| < 1, we have limn→∞ z
n+1 = 0, and so

∞∑
k=0

zk = lim
n→∞

n∑
k=0

zk = lim
n→∞

1− zn+1

1− z
=

1

1− z
.

Now suppose |z| ≥ 1. Then |zk| = |z|k ≥ 1, too, and so the limit limk→∞ z
k does not

exist; the test for divergence then applies. N

It is sometimes convenient to split a given series into two or more “subseries,” say, a
sum over all the even terms and a sum over all the odd terms. That is, given a sequence
(ak) in C with

∑∞
k=0ak convergent, we would like to have

∞∑
k=0

ak =
∞∑
k=0

a2k +
∞∑
k=0

a2k+1. (A.2.3)

This holds at least when the series converges absolutely.

A.2.7 Lemma.

Let (ak) be a sequence in C.

(i) The series
∑∞

k=0ak converges if and only if the series
∑∞

k=0

(
a2k+a2k+1

)
converges,

in which case the sums are the same.

(ii) Suppose the series
∑∞

k=0ak converges absolutely. Then the “even” and “odd” series∑∞
k=0a2k and

∑∞
k=0a2k+1 both converge absolutely, and (A.2.3) holds.

(iii) More generally, for each N ≥ 2, the series
∑∞

k=0ak converges if and only if the
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series ∑∞
j=0

(∑N−1
r=0 ajN+r

)
,

converges, in which case the two series have the same sum, and if the original series∑∞
k=0ak converges absolutely, then so do each of the subseries

∑∞
j=0ajN+r.

Proof. (i) Since the limit limn→∞
∑n

k=0ak exists if and only if the limit limn→∞
∑2n+1

k=0 ak
exists, and since

∑2n+1
k=0 ak =

∑n
k=0

(
a2k+a2k+1

)
, the existence of the two limits limn→∞

∑n
k=0ak

and limn→∞
∑n

k=0

(
a2k + a2k+1

)
is equivalent.

(ii) We prove only that the even-indexed series converges absolutely. First, we have

|a2k| ≤ |a2k|+ |a2k+1| =: bk. (A.2.4)

Next,
n∑
k=0

bk =
2n+1∑
k=0

|ak|.

Since

S :=
∞∑
k=0

|ak| lim
n→∞

2n+1∑
k=0

|ak|

converges, the limit limn→∞
∑n

k=0bk exists, too. Then (A.2.4) and the comparison test
implies the absolute convergence of

∑∞
k=0a2k. In particular, the limit limn→∞

∑n
k=0a2k

exists.
Assuming that the odd-indexed series converges (absolutely), we find

∞∑
k=0

ak = lim
n→∞

2n+1∑
k=0

ak = lim
n→∞

(
n∑
k=0

a2k +
n∑
k=0

a2k+1

)
= lim

n→∞

n∑
k=0

a2k + lim
n→∞

n∑
k=0

a2k+1

=
∞∑
k=0

a2k +
∞∑
k=0

a2k+1.

To obtain the penultimate equality, we needed to know the existence of the separate
limits limn→∞

∑n
k=0a2k and limn→∞

∑n
k=0a2k+1.

(iii) The proof is similar to the two parts above, so we omit it. �

A.2.8 Example.

Discuss the convergence of the even/odd-indexed “subseries” of

∞∑
k=2

ln

(
1 +

(−1)k

k

)
.

Solution. First, the original series does converge. Put ak = ln(1+(−1)k/k). Then, after
some algebraic simplification,

a2k+a2k+1 = ln

(
1 +

1

2k

)
+ln

(
1− 1

2k + 1

)
= ln

[(
1 +

1

2k

)(
1− 1

2k + 1

)]
= ln(1) = 0
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for all k. That is,
∑∞

k=0

(
a2k + a2k+1

)
converges to 0, and therefore, by part (i) of Lemma

A.2.7, so does
∑∞

k=0ak.
Next, we show that the even subseries

∑∞
k=0a2k diverges. Estimate

ln

(
1 +

1

2k

)
= ln

(
2k + 1

2k

)
= ln(2k+1)−ln(2k) =

∫ 2k+1

2k

dx

x
≥ (2k + 1)− (2k)

2k + 1
=

1

2k + 1
.

By comparison with the divergent harmonic series
∑∞

k=1k
−1, the series

∑∞
k=0 ln(1+1/2k)

then diverges. N

A.2.2. Doubly infinite series and synchronous convergence.

Suppose that (ak) is a doubly infinite sequence in C, i.e., (ak) is indexed by
integers k ∈ Z. How should we define the symbol

∞∑
k=−∞

ak?

If we think of series as “discrete” analogues of improper integrals over infinite intervals
(a notion crystallized by the integral test for series, which we do not use in this course),
then there are at least two natural definitions. One is to recall that the usual way to
define the improper integral

∫∞
−∞f(x) dx is to fix a “break” point x0 ∈ R and put∫ ∞

−∞
f(x) dx :=

∫ x0

−∞
f(x) dx+

∫ ∞
x0

f(x) dx, (A.2.5)

if each of these two improper integrals on the right converge. We review this in detail in
Appendix B, specifically Definition B.0.2 and Theorem B.0.3.

Here, then, is our first definition of convergence for a doubly infinite series.

A.2.9 Definition.

Let (ak) be a doubly infinite sequence in C. The series
∑∞

k=−∞ak converges to
S ∈ C if the series

∑∞
k=0ak converges to S1 ∈ C and if the series

∑∞
k=1a−k converges

to S2 ∈ C (both in the sense of Definition A.2.1) and if S = S1 + S2.

We use this notion of convergence chiefly for Laurent series in Theorem 3.9.16. All
the usual algebraic properties of series carry over to this definition, e.g., if both

∑∞
k=−∞ak

and
∑∞

k=−∞bk converge (in the sense of Definition A.2.9), then so does

∞∑
k=−∞

(
αak + βbk

)
for any α, β ∈ C. Also, as with improper integrals (see part (v) of Theorem B.0.3) the
election of k = 1 as the “break point” above is immaterial.

A.2.10 Lemma.

Let (ak) be a doubly infinite sequence and suppose the series
∑∞

k=−∞ak converges (in
the sense of Definition A.2.9) to S ∈ C. Then for any N ∈ Z, the series

∑∞
k=Nak and
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∑∞
k=1aN−k converge and

S =
∞∑
k=N

ak +
∞∑
k=1

aN−k.

A second definition of convergence for doubly infinite sequences is motivated by the
natural way in which complex Fourier series converge, as discussed in Section 2.4.2. This
definition resembles the “principal value” improper integral. The principal value of the
improper integral of f over (−∞,∞) is the limit

P.V.

∫ ∞
−∞

f(x) dx := lim
R→∞

∫ R

−R
f(x) dx

from Definition B.0.6. Taking f(x) = x is an obvious way to see that the principal value
improper integral may exist even if the “usual” improper integral does not.

A.2.11 Definition.

Let (ak) be a sequence in C indexed by Z and put Sn :=
∑n

k=−nak. If the limit
S := limn→∞ Sn exists in C and equals S ∈ C, we write

∑∞
k=−∞ak := S and say

that the series
∑∞

k=−∞ak converges (synchronously)61 to S. In other words,

∞∑
k=−∞

ak = lim
n→∞

n∑
k=−n

ak,

whenever this limit exists. As usual with series, we employ the symbol
∑∞

k=−∞ak to
denote both the sequence of partial sums (Sn) and the limit of this sequence, if it exists.

A.2.12 Theorem.

Let (ak) be a doubly infinite sequence in C.

(i) If
∑∞

k=−∞ak converges (in the sense of Definition A.2.9), then
∑∞

k=−∞ak converges
synchronously. The reverse is not true.

(ii) If (bk) is another doubly infinite sequence in C, and if α, β ∈ C, and if both∑∞
k=−∞ak and

∑∞
k=−∞bk both converge synchronously, then

∑∞
k=−∞(αak + βbk) con-

verges synchronously and

∞∑
k=−∞

(αak + βbk) = α
∞∑

k=−∞

ak + β
∞∑

k=−∞

bk.

Proof. We prove only part (i). Since
∑∞

k=−∞ak, the two series
∑∞

k=0ak and
∑∞

k=1a−k
converge to numbers S1 and S2, respectively. Then∣∣∣∣∣

n∑
k=−n

ak − (S1 + S2)

∣∣∣∣∣ =

∣∣∣∣∣
(

n∑
k=0

ak − S1

)
+

(
−1∑

k=−n

ak − S2

)∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
k=0

ak − S1

∣∣∣∣∣+
∣∣∣∣∣
−1∑

k=−n

ak − S2

∣∣∣∣∣→ 0

as n→∞. �
61We take this terminology from Definition 4.1.8 in [17].
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A.3. The complex exponential.

For any z ∈ C, we define the complex exponential of z to be

exp(z) :=
∞∑
k=0

zk

k!
. (A.3.1)

By Example A.2.3 we know this series converges on C. We regularly use the familiar
symbol ez for exp(z).

When z is purely imaginary, there is a special formula for the complex exponential.

A.3.1 Theorem (Euler’s formula).

If x ∈ R, then eix = cos(x) + i sin(x). Moreover, |eix| = 1.

Proof. From the definition of exp(·), we have

eix =
∞∑
k=0

(ix)k

k!
, (A.3.2)

where
i2k = (i2)k = (−1)k and i2k+1 = i2ki = (−1)ki.

Now, recall that the power series for sin(·) and cos(·) are

sin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
and cos(x) =

∞∑
k=0

(−1)k
x2k

(2k)!
.

We can rewrite62 the series in (A.3.2) into two series, one consisting of all terms with k
even and the other of all terms with k odd:

∞∑
k=0

(ix)k

k!
=
∞∑
k=0

(ix)2k

(2k)!
+
∞∑
k=0

(ix)2k+1

(2k + 1)!
. =

∞∑
k=0

(−1)k + i
∞∑
k=0

(−1)k = cos(x) + i sin(x).

(A.3.3)
The equality |eix| = 1 is a direct calculation using the Pythagorean trig identity:

|eix| = | cos(x) + i sin(x)| =
√

cos2(x) + i sin2(x) = 1. �

From Euler’s formula, we can solve for cos(x) and sin(x) in terms of complex expo-
nentials:

cos(x) =
eix + e−ix

2
and sin(x) =

eix − e−ix

2i
. (A.3.4)

We discuss extensively the properties of ez when z is complex, and not necessarily real,
in Section 3.2.1.
62Recall that writing

∑∞
k=0(ak + bk) =

∑∞
k=0ak +

∑∞
k=0bk presumes both series converge independently.

For example, if ak = −1 and bk = 1, then
∑∞
k=0(ak + bk) = 0 but

∑∞
k=0ak and

∑∞
k=0bk diverge.

In the case at hand, the ratio test shows that each series after the first equality in (A.3.3) converges
absolutely.
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A.4. Power series.

We review some fundamental notions and properties of power series. We will state some
definitions and results for series with arbitrary complex coefficients and “variable” and
other “calculus”-type results only for series of a real “variable.”

A.4.1 Definition.

Let (ak) be a sequence of complex numbers and z0 ∈ C. The (formal) power
series with coefficients (ak) and center z0 is the series

∞∑
k=0

ak(z − z0)k

The variable of this power series is the number z ∈ C.

A.4.2 Example.

Determine all points z ∈ C for which the geometric series

∞∑
k=0

zk

converges.

Solution. First suppose |z| > 1. Then limk→∞|z|k = ∞, and so limk→∞ z
k 6= 0. The

geometric series then diverges in this case by the test for divergence.
Next, if |z| = 1, then limk→∞ |z|k = 1 6= 0, and so, again, limk→∞ z

k 6= 0. The test for
divergence applies once more.

Last, suppose |z| < 1. Observe that limk→∞ |z|k = 0 and, consequently, limk→∞ z
k = 0

as well. This does not, of course, guarantee the convergence of the geometric series for
|z| < 1, but it is a useful starting point. We could use the ratio test to determine that
the series converges in this case:

lim
k→∞

∣∣∣∣zk+1

zk

∣∣∣∣ = lim
k→∞

∣∣∣∣zkzzk
∣∣∣∣ = lim

k→∞
|z| = |z| < 1,

but this does not tell us a formula for the sum.
Instead, we use telescoping63 to express the nth partial sum of the geometric series

as

1− zn+1 =
n∑
k=0

(zk − zk+1) =
n∑
k=0

zk −
n∑
k=0

zk+1 =
n∑
k=0

zk − z
n∑
k=0

zk = (1− z)
n∑
k=0

zk.

63Recall that if ak, m ≤ k ≤ n+ 1, are complex numbers, then∑n
k=m(ak − ak+1) = am − an+1.
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Since |z| < 1, we know 1− z 6= 0, and so
n∑
k=0

zk =
1− zn+1

1− z
.

Taking the limit as n→∞, we have

|z| < 1 =⇒
∞∑
k=0

zk =
1

1− z
.

We conclude that the geometric series converges precisely on B(0; 1). This is the same
conclusion that one reaches when considering the real geometric series; indeed, nothing
in this proof required z to be real (or complex). N

We summarize without proof the most important properties of power series. All are
analogous to familiar properties of power series from real-variable calculus.

A.4.3 Theorem.

Let
∑∞

k=0ak(z−z0)k be a power series. There exists a unique number ρ ∈ [0,∞], called
the radius of convergence, such that

∑∞
k=0ak(z − z0)k converges absolutely for

all z ∈ C such that |z − z0| < ρ. The series may or may not converge for |z − z0| = ρ.

A.4.4 Remark.
There are various formulas to determine the radius of convergence of the power series∑∞

k=0ak(z − z0)k, most involving the coefficients (ak). For example, if the limit L :=
limk→∞ |ak+1/ak| exists, then ρ = 1/L, with ρ =∞ if L = 0 and ρ = 0 if L =∞.

We review a number of results for power series with complex coefficients, real centers,
and real variables. We state the analogous results for power series whose coefficients,
centers, and variables are all complex in Theorem 3.7.3.

A.4.5 Theorem.

Let x0 ∈ R and let (ak) be a sequence in C.
(i) [Term-by-term differentiation] Suppose that

∑∞
k=0ak(z−x0)k has the radius of

convergence ρ > 0 and set f(x) :=
∑∞

k=0ak(x − x0)k for x ∈ (x0 − ρ, x0 + ρ). Then
f ∈ C∞

(
(x0 − ρ, x0 + ρ)

)
. In particular, f is continuous and

f ′(x) =
∞∑
k=1

kak(x− x0)k−1.

More generally,

f (m)(x) =
∞∑
k=m

k(k − 1) · · · (k −m+ 1)ak(x− x0)k−m.

(ii) Conversely, suppose that ρ > 0 and f : (x0 − ρ, x0 + ρ) → C is a function such
that f(x) =

∑∞
k=0ak(x− x0)k for all x ∈ (x0 − ρ, x0 + ρ). Then

am =
f (m)(x0)

m!
.
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(iii) [Term-by-term integration] Suppose that
∑∞

k=0ak(z − x0)k has the radius of
convergence ρ > 0. Then for any x0 − ρ < α < β < x0 + ρ,∫ β

α

∞∑
k=0

ak(x− x0)k dx =
∞∑
k=0

ak

∫ β

α

(x− x0)k dx.

(iv) [Identity principle for power series] Suppose that the power series
∑∞

k=0ak(x−
x0)k and

∑∞
k=0bk(x− x0)k converge on some interval (x0 − δ, x0 + δ). If

∞∑
k=0

ak(x− x0)k =
∞∑
k=0

bk(x− x0)k

for all x ∈ (x0 − δ, x0 + δ), then ak = bk for all k.

A.4.6 Example.

Show that ∂x[ex] = ex by differentiating the power series for the exponential.

Solution. We defined

ex =
∞∑
k=0

xk

k!
,

and we know this power series converges for all x ∈ C. We differentiate term-by-term to
find

∂x[e
x] =

d

dz

∞∑
k=0

xk

k!
=
∞∑
k=1

kxk−1

k!
=
∞∑
k=1

kxk−1

k(k − 1)!
=
∞∑
k=1

xk−1

(k − 1)!
=
∞∑
k=0

xk

k!
= ex.

To obtain the last inequality we reindexed (Lemma A.2.4). N

A.5. Elementary calculus for complex-valued functions of a real variable.

A.5.1 Definition.
Let I ⊆ R be an interval and x0 ∈ I. A function f : I → R is differentiable at
x0 if either

lim
h→0

f(x0 + h)− f(x0)

h
or

lim
x→x0

f(x)− f(x0)

x− x0

exists, in which case both limits exist and are equal and are denoted

f ′(x0) = ∂x[f ](x0).

We do not attempt to resurrect the definition of the Riemann integral
∫ b
a
f(x) dx of

f : [a, b]→ R but instead give some sufficient conditions for Riemann integrability.
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A.5.2 Lemma.

Let f : [a, b]→ R be a function.

(i) If f is continuous on [a, b], then f is integrable on [a, b].

(ii) If f is integrable on [a, b] and x0 ∈ [a, b] and y0 ∈ R, and if we put

g(x) :=

{
f(x), x ∈ [a, b] \ {x0}
y0, x = x0,

then g is also integrable on [a, b] and
∫ b
a
f(x) dx =

∫ b
a
g(x) dx.

(iii) [Lebesgue] If f is continuous at all but countably many points {xk}∞k=1 ⊆ [a, b]
and bounded on [a, b] in the sense that there exists M > 0 such that |f(x)| ≤M for all
x, then f is integrable on [a, b].

Recall from vector calculus that if f : [a, b] ⊆ R→ R2 : t 7→ (f1(x), f2(x)) is integrable,
then we define ∫ b

a

f(x) dx :=

(∫ b

a

f1(x) dx,

∫ b

a

f2(x) dx

)
.

We make a similar “componentwise” definition to extend many notions of real-valued
calculus to functions from [a, b] to C.

A.5.3 Definition.

(i) Let I ⊆ R be an interval and x0 ∈ I. Let y1, y2 ∈ R. For a function f : I → C, we
write

lim
x→x0

f(x) = y1 + iy2

if
lim
x→x0

Re[f(x)] = y1 and lim
x→x0

Im[f(x)] = y2.

(ii) A function f : I → C is continuous if Re(f) and Im(f) are continuous, and
differentiable if Re(f) and Im(f) are differentiable. If f(x) = u(x) + iv(x) with
u and v real-valued, then we set

f ′(x) := u′(x) + iv′(x). (A.5.1)

(iii) A function f : [a, b] → C is integrable if u = Re(f) and v = Im(f) are
(Riemann) integrable, and we set∫ b

a

f(x) dx :=

∫ b

a

u(x) dx+ i

∫ b

a

v(x) dx. (A.5.2)

We also define ∫ a

b

f(x) dx := −
∫ b

a

f(x) dx.

(iv) We denote the space of all Riemann-integrable functions from [a, b] to C byR([a, b]),
and, as in Definition 1.1.1, the space of all n-times differentiable functions on an in-
terval I ⊆ R, whose nth derivative is continuous, by Cn(I). We put C(I) := C0(I) as
the space of (merely) continuous functions on I.
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In particular, it is obvious that

Re

[∫ b

a

f(x) dx

]
=

∫ b

a

Re[f(x)] dx and Im

[∫ b

a

f(x) dx

]
=

∫ b

a

Im[f(x)] dx.

(A.5.3)

A.5.4 Example.

(i) Fix λ ∈ C. Calculate ∂x[eλx]. (Do not use Example A.4.6.)

(ii) Evaluate
∫ 2π

0

eit dx.

(iii) Show that if f ∈ C1([a, b]), then ∂x[f ] = ∂x[f ].

Solution. (i) Write λ = λ1 + iλ2, where λ1 and λ2 are real. Then

eλx = e(λ1+iλ2x) = eλ1x
(

cos(λ2x) + i sin(λ2x)
)

= eλ1x cos(λ2x) + ieλ1x sin(λ2x).

The product rule, Euler’s formula, and the definition (A.5.1) give

∂x[e
λx] = ∂x

[
eλ1x cos(λ2x)

]
+ i∂x

[
eλ1x sin(λ2x)

]
= λ1e

λ1x cos(λ2x)− λ2e
λ1x sin(λ2x) + iλ1e

λ1x sin(λ2x) + iλ2e
λ2x cos(λ2x)

= eλ1x
[
λ1 cos(λ2x) + iλ2 cos(λ2x) + iλ1 sin(λ2x) + i2λ2 sin(λ2x)

]
= eλ1x

[
(λ1 + iλ2) cos(λ2x) + i(λ1 + iλ2) sin(λ2x)

]
= eλ1x(λ1 + iλ2)

(
cos(λ2x) + i sin(λ2x)

)
= λe(λ1+iλ2)x.

(ii) Since eit = cos(x) + i sin(x), by the definition (A.5.2) we have∫ 2π

0

eit dx =

∫ 2π

0

cos(x) dx+ i

∫ 2π

0

sin(x) dx = sin(x)
∣∣x=2π

x=0
− i cos(x)

∣∣x=2π

x=0
= 0.

(iii) Write f(x) = f1(x) + if2(x) with f1 and f2 real-valued. We have f ′(x) = f ′1(x) +
if ′2(x), so f ′(x) = f ′1(x)− if ′2(x). On the other hand, f(x) = f1(x)− if2(x), so ∂x[f ](x) =
f ′1(x)− if ′2(x). N

We can import many useful properties of definite integrals of real-valued functions
with, in general, little effort.

A.5.5 Theorem.

(i) [Linearity] If f , g ∈ R([a, b]) and α, β ∈ C, then αf + βg ∈ R([a, b]) with∫ b

a

(
αf(x) + βg(x)

)
dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx.

(ii) [Fundamental theorem of calculus I] If f ∈ R([a, b]), then the function F :=∫ x
a
f(ξ) dξ is continuous on [a, b]. If f ∈ C([a, b]) ⊆ R([a, b]), then F ∈ C1([a, b]) with

F ′(x) = f(x).



A. Fundamentals of Complex Numbers 274

(iii) [Fundamental theorem of calculus II] If f ∈ R([a, b]) and F ∈ C1([a, b]) is
an antiderivative of f on [a, b], i.e., F ′(x) = f(x) for all a ≤ t ≤ b, then∫ b

a

f(x) dx = F (b)− F (a).

(iv) [Change of variables] If f ∈ C1([a, b]) is real-valued and strictly increasing on
[a, b], i.e., f(x1) < f(x2) for a ≤ x1 < x2 ≤ b, and if g ∈ R([f(a), f(b)]), then∫ b

a

g(f(x))f ′(x) dx =

∫ f(b)

f(a)

g(u) du.

(v) [Integration by parts] If f , g ∈ C1([a, b]), then∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x) dx.

(vi) [Composition] If f ∈ R([a, b]) with c ≤ f(x) ≤ d for all t ∈ [a, b], and if
g ∈ C([a, b]), then g ◦ f ∈ R([a, b]). Here g ◦ f is the composition x 7→ g(f(x)).

(vii) If f : [a, b] → C is a function such that |f | ∈ R([a, b]), then |f |r ∈ R([a, b]) for
any r ≥ 0.

(viii) [Triangle inequality] If f : [a, b]→ C is integrable, then∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

(ix) [Domain additivity] If f ∈ R([a, b]) and a < c < b, then f ∈ R([a, c]) and
f ∈ R([c, b]) with ∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt.

Proof. (i) Exercise: use the definition (A.5.2) of the integral of a complex-valued func-
tion and the linear properties of the Riemann integral of real-valued functions.

(ii) Exercise: use (A.5.2) again and also (A.5.1) to separate F ′(x) = f(x) into real and
imaginary parts. Then use the fundamental theorem of calculus for real-valued functions.

(iii) Exercise: prove in the same manner as part (ii).

(iv) Exercise: use (A.5.2) and u-substitution for integrals of real-valued functions.

(v) Exercise: write f = f1 + if2 and g = g1 + ig2, where f1 and g1 are the real parts and
f2 and g2 are the imaginary parts; multiply out (painfully) and use integration by parts
for real-valued functions.

(vi) This requires more advanced techniques from analysis, so we omit it.

(vii) Exercise: use part (vi).
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(viii) If f is real-valued, this estimate is known from real-variable theory. If
∫ b
a
f(x) dx =

0, then the estimate is trivial. So, suppose
∫ b
a
f(x) dx 6= 0 and write this integral in its

polar form: ∫ b

a

f(x) dx =

∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ eiθ, θ = Arg

(∫ b

a

f(x) dx

)
.

That is, ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ = e−iθ
∫ b

a

f(x) dx =

∫ b

a

e−iθf(x) dx

Since
∣∣∣∫ baf(x) dx

∣∣∣ ∈ R, we have∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ = Re

[∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣] = Re

[∫ b

a

e−iθf(x) dx

]
=

∫ b

a

Re[e−iθf(x)] dx

(A.5.4)
by (A.5.3).

For any a ≤ t ≤ b, since Re[e−iθf(x)] is (obviously!) real, we have

Re[e−iθf(x)] ≤ |Re[e−iθf(x)]| ≤ |e−iθf(x)| = |f(x)|. (A.5.5)

Since the real-valued Riemann integral is monotone64, we conclude from (A.5.4) and
(A.5.5) that ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ =

∫ b

a

Re[e−iθf(x)] dx ≤
∫ b

a

|f(x)| dx.

(ix) This requires some technical details from analysis, so we omit this proof. �

A.6. Piecewise continuity and differentiability.

We want a definition of piecewise continuity (and differentiability) broad enough to use
in both Fourier theory and complex variable theory. In complex analysis, we will consider
functions like the one graphed below, which are continuous on a real interval but whose
derivatives may fail to exist at certain points.

x

f1(x)

1 2 3

1

2

x

f ′1(x)

1 2 3
−1

1

2

(A.6.1)

64That is, if g and h are Riemann-integrable on [a, b] and g(x) ≤ h(x) for a ≤ t ≤ b, then
∫ b
a
g(x) dx ≤∫ b

a
h(x) dx.
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When we study Fourier series, however, we will allow functions that are discontinuous,
such as this graph.

x

f2(x)

−2

−2

−1
−1

1

1

2

2

x

f2(x)

−2 −1 1 2

1
(A.6.2)

Both of the functions above have relatively “tame” discontinuities. Namely, (i) there
are only finitely many discontinuities (in fact, f1 is continuous everywhere); (ii) at those
discontinuities, the functions have finite left and right limits; and (iii) the functions are
differentiable at all but finitely many points, the derivatives are continuous on intervals
where they exist, and the left and right limits of the derivatives exist and are finite. We
crystalize this notion in the next definition.

A.6.1 Definition.
A function f : I ⊆ R → C is piecewise-continuously differentiable or
piecewise-C1 on I if

(i) f is continuous and differentiable at all but finitely many points of any closed,
bounded subinterval [c, d] ⊆ I.

(ii) The limits
f(x±) := lim

t→x±
f(t)

exist for all x ∈ I. (If I contains one or both of its endpoints, we only demand that
the left or right limit above hold, as appropriate.)

(iii) If f is differentiable on (c, d) ⊆ I, and if we set

g(x) :=


f(c−), x = c

f(x), c < x < d

f(d+), x = d,

then g ∈ C1([c, d]). In particular, the left and right derivative limits of g, i.e., the limits

lim
h→0±

g(x+ h)− g(x)

h
, (A.6.3)

exist and are finite at all points x ∈ I. (If I contains one or both of its endpoints,
we only demand that the left or right limit above exist, as appropriate.) Moreover, the
limits (A.6.3) are equal for all but finitely many points in any closed, bounded interval
[c, d] ⊆ I.

We denote the vector space of piecewise-C1 functions on I by C1
pw(I).
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The function graphed in (A.6.1) is continuous and piecewise-C1, while the function
graphed in (A.6.2) is piecewise-C1 but not continuous. Neither function is continuously
differentiable in the sense of Definition 1.1.1.

We impose property (i) above because, when I is a closed, bounded interval, we will
often want to partition I into a finite family of subintervals on which f is continuously
differentiable (except, perhaps, at the endpoints of those subintervals). We do this,
for instance, in the proof of part (v) of Theorem 3.5.18. Part (ii) makes precise our
observations above that the discontinuities of f should be “tame.” And part (iii) simply
ensures the same for the derivative of f .

A.6.2 Remark.

(i) Occasionally we will have need to consider continuous functions in C1
pw(I) that are

not differentiable at all points in I. The function graphed in (A.6.1) is such a function.
In that case, such a function belongs to the space C1

pw(I) ∩ C(I); this notation, while
baroque, is not redundant.

(ii) Suppose that I = [a, b] is a closed, bounded interval in Definition A.6.1 and let
f ∈ C1

pw([a, b]). Then there are finitely many points x1, . . . , xn ∈ [a, b] such that f
is continuous and differentiable on J := [a, b] \ {x1, . . . , xn}. Moreover, the points
x1, . . . , xn can be chosen so that f ′ is defined and continuous on J . Suppose we have
ordered these points with a ≤ x1 < · · · < xn ≤ b. Then f is continuously differentiable
on each open subinterval (a, x1), (x1, x2), . . ., (xn−1, xn), (xn, b). Moreover, at each
left endpoint, f and f ′ have right limits, and at each right endpoint, f and f ′ have left
limits.
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B. Improper Integrals

We give a streamlined treatment of improper integrals, assuming many proofs from cal-
culus, with an eye toward the use of improper integrals in the Fourier transform. First,
we need an “intermediate” definition.

B.0.1 Definition.

Let I ⊆ R be an interval, which need not be closed and/or bounded. A function f : I →
C is locally integrable on I if f is integrable on every subinterval [a, b] ⊆ I
(i.e., per Definition A.5.3, if Re(f) and Im(f) are integrable on all [a, b] ⊆ I). We
denote by Rloc(I) the vector space of all functions f : I → C such that f is locally
integrable on I.

In particular, if I = [a, b] is closed and bounded, then the locally integrable functions
on I are exactly the Riemann integrable functions on I. That is, Rloc([a, b]) = R([a, b]).

Now we define the improper integral over infinite intervals.

B.0.2 Definition.

(i) Suppose f ∈ Rloc(R). We set

I+[f ;x0] := lim
b→∞

∫ b

x0

f(x) dx and I−[f ;x0] := lim
a→−∞

∫ x0

a

f(x) dx (B.0.1)

whenever one of these limits exists. If the first limit exists, we say that f is im-
properly integrable on [x0,∞), and likewise that f is improperly integrable on
(−∞, x0] if the second limit exists.

(ii) Suppose f ∈ Rloc(R). If f is improperly integrable over both (−∞, 0] and [0,∞),
then we say that f is improperly integrable on R or on (−∞,∞), and we
set ∫ ∞

−∞
f(x) dx := I−[f ; 0] + I+[f ; 0]. (B.0.2)

We will note shortly that choosing x0 = 0 here is ultimately unimportant.

(iii) For p > 0, we set

Lp(R) ={f ∈ Rloc(R) | |f |p is improperly integrable on R} .

We emphasize that if f ∈ Lp(R), then it is not the map x 7→ f(x)p that is improperly
integrable over R but the pth power of the modulus of f , i.e., x 7→ |f(x)|p. From calculus
we have a number of useful computational and “comparison” properties for improper
integrals.

B.0.3 Theorem.

(i) If f , g ∈ Rloc(R) are improperly integrable on R, then so is αf + βg for any α,
β ∈ C.
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(ii) Suppose that f is improperly integrable on R. Then∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx. (B.0.3)

(iii) The existence of the limit (B.0.3) does not imply that f is improperly integrable
on R (take f(x) = x). However, if f ∈ Rloc(R) and if f(x) ≥ 0 for all x, then the
existence of (B.0.3) does imply that f is improperly integrable.

(iv) [Comparison test] Suppose that f , g ∈ Rloc(R). If g is improperly integrable on
R with g(x) ≥ 0 and |f(x)| ≤ g(x) for all x, then f and |f | are improperly integrable
on R with ∣∣∣∣∫ ∞

−∞
f(x) dx

∣∣∣∣ ≤ ∫ ∞
−∞
|f(x)| dx ≤

∫ ∞
−∞

g(x)dx.

(v) Suppose that f ∈ Rloc(R). Then for any x1, x2 ∈ R, the limits

lim
a→−∞

∫ x1

a

f(x) dx and lim
b→∞

∫ b

x1

f(x) dx

exist if and only if the limits

lim
α→−∞

∫ x2

α

f(x) dx and lim
β→∞

∫ β

x2

f(x) dx

exist. Moreover, if f is improperly integrable on R, then, with the notation of (B.0.1),∫ ∞
−∞

f(x) dx = I+[f ;x0] + I−[f ;x0]

for any x0 ∈ R. That is, the splitting at the particular endpoint 0 in (B.0.2) is immate-
rial (but merely convenient) for the existence or nonexistence of the improper integral∫∞
−∞f(x) dx.

(vi) If p ≥ 1, then Lp(R) is a vector space and

‖f‖Lp(R) :=

(∫ ∞
−∞
|f(x)|p

)1/p

is a norm (Definition C.3.1) on Lp(R).

Proof. Most of these properties are proved in calculus, so we do not repeat their proofs
here. The proof of part (ii) is virtually identical to that of part (i) of Theorem A.2.12;
essentially, one replaces

∑
with

∫
. Part (vi) uses the comparison test for improper

integrals and the inequality

|f(x)+g(x)|p ≤
(
2 max{|f(x)|, |g(x)|}

)p
= 2p max{|f(x)|p, |g(x)|p} ≤ 2p

(
|f(x)|+|g(x)|p

)
.
�

Now we give several concrete examples illustrating these concepts and notation.
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B.0.4 Example.

Let
f(x) =

1

1 + x2
.

Show that f ∈ ∩∞p=1L
p(R).

Solution. Since f ∈ C(R), we know f is integrable on any subinterval [a, b] of R, thus
f ∈ Rloc(R). Next, the fundamental theorem of calculus tells us

lim
b→∞

∫ b

0

dx

1 + x2
= lim

b→∞

(
arctan(b)− arctan(0)

)
=
π

2

and

lim
a→−∞

∫ 0

a

dx

1 + x2
= lim

a→−∞

(
0− arctan(a)

)
=
π

2
,

so the integral over R exists with∫ ∞
−∞

dx

1 + x2
:= lim

a→−∞

∫ 0

a

dx

1 + x2
+ lim

b→∞

∫ b

0

dx

1 + x2
= π.

In particular, since |f(x)| = f(x) for all x, we have f ∈ L1(R).
Next, observe that 1 + x2 ≥ 1 for all x, so (1 + x2)p ≥ 1 + x2 = f(x) for all p ≥ 1.

Then
|f(x)|p =

1

(1 + x2)p
≤ 1

1 + x2
= |f(x)|.

Since |f | is absolutely integrable on R, so is |f |p. That is, f ∈ Lp(R) for any p ≥ 1. N

B.0.5 Example.

Show that the improper integral ∫ ∞
−∞

sin(x)

x
dx

exists, but the improper integral ∫ ∞
−∞

∣∣∣∣sin(x)

x

∣∣∣∣ dx
does not.

Solution. Note that the integrand is not defined at x = 0, so we really define

∫ ∞
−∞

sin(x)

x
dx :=

∫ ∞
−∞

f(x) dx, where f(x) :=


sin(x)

x
, x 6= 0

1, x = 0.

Since f is continuous on R, the integral
∫ 1

0
f(x) dx exists, so let us fix b ≥ 1 and show

that

lim
b→∞

∫ b

1

sin(x)

x
dx



B. Improper Integrals 281

exists. Integrating by parts with

u =
1

x
dv = sin(x) dx

du = − 1

x2
v = − cos(x),

we have ∫ b

1

sin(x)

x
dx =

cos(x)

x

∣∣∣∣x=b

x=1

−
∫ b

1

cos(x)

x2
dx.

Now,

lim
b→∞

cos(b)

b
= 0

by the squeeze theorem, and, for x ≥ 1,∣∣∣∣cos(x)

x2

∣∣∣∣ ≤ 1

x2
.

We recall that if q > 1, then the mapping x 7→ xq is improperly integrable over [1,∞),
and so it follows that

lim
b→∞

∫ b

1

cos(x)

x2
dx

exists. All together, we have shown that

lim
b→∞

∫ b

0

sin(x)

x
dx

exists. And since the integrand is odd, we have, for any a < 0,∫ 0

a

sin(x)

x
dx = −

∫ −a
0

sin(x)

x
dx,

thus

lim
a→−∞

∫ 0

a

sin(x)

x
dx = lim

a→−∞

∫ −a
0

sin(x)

x
dx = lim

b→∞

∫ b

0

sin(x)

x
dx,

where we know this third limit exists.
On the other hand, we claim that

lim
b→∞

∫ b

1

∣∣∣∣sin(x)

x

∣∣∣∣ dx =∞.

To do so, we cleverly fix an integer k ≥ 2 and estimate∫ kπ

(k−1)π

∣∣∣∣sin(x)

x

∣∣∣∣ dx ≥ 1

kπ

∫ kπ

(k−1)π

| sin(x)| dx,

since for π ≤ (k − 1)π ≤ x ≤ kπ, we have

1

kπ
≤ 1

x
≤ 1

(k − 1)π
.
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Next, calculus reminds us that sin(·) is strictly positive or strictly negative on any interval
of the form

(
(k − 1)π, kπ

)
, and so∫ kπ

(k−1)π

| sin(x)| dx = 2.

Thus ∫ kπ

(k−1)π

∣∣∣∣sin(x)

x

∣∣∣∣ dx ≥ 2

kπ
.

Consequently, for any n ≥ 1,∫ nπ

π

∣∣∣∣sin(x)

x

∣∣∣∣ dx =
n∑
k=1

∫ kπ

(k−1)π

∣∣∣∣sin(x)

x

∣∣∣∣ dx ≥ 2

π

n∑
k=1

1

k
. (B.0.4)

This sum is, of course, a nonzero multiple of the nth partial sum of the harmonic series∑n
k=1k

−1, which diverges. Now, if

lim
b→∞

∫ ∞
1

∣∣∣∣sin(x)

x

∣∣∣∣ dx
exists, then calculus tells us

lim
n→∞

∫ nπ

1

∣∣∣∣sin(x)

x

∣∣∣∣ dx
exists. But (B.0.4) implies

lim
n→∞

∫ nπ

1

∣∣∣∣sin(x)

x

∣∣∣∣ dx ≥ lim
n→∞

2

π

n∑
k=1

1

k
=∞.

Thus f is improperly integrable on R but |f | is not, so f 6∈ L1(R). N

When f is improperly integrable over R, it is often convenient to calculate the integral
via the symmetric limit

∫∞
−∞f(x) dx = limR→∞

∫ R
−Rf(x) dx. Of course, to use this limit

to calculate the integral, we have to know first that f is improperly integrable. Frequently,
rather than check that both limits (B.0.1) exist, we can first use the comparison test to
deduce the improper integrability of f over R and then use the symmetric limit.

There is a special situation in Fourier analysis in which an important integral quantity
is defined by the symmetric limit, yet for which the two limits (B.0.1) need not exist. We
name it here.

B.0.6 Definition.

Let f ∈ Rloc(R). The Cauchy principal value of the improper integral of f
over R is the limit

P.V.

∫ ∞
−∞

f(x) dx := lim
R→∞

∫ R

−R
f(x) dx,

if this limit exists.
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B.0.7 Example.

(i) If f ∈ L1(R), then ∫ ∞
−∞

f(x) dx = P.V.

∫ ∞
−∞

f(x) dx.

(ii) If f ∈ Rloc(R) is odd, then

P.V.

∫ ∞
−∞

f(x) dx = 0.

Proof. (i) This is part (ii) of Theorem B.0.3.

(ii) We have

P.V.

∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx.

Since f is odd,
∫ R
−Rf(x) dx = 0 for any R ∈ R. �
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C. Linear Algebra

This material can be found in many sources, including [13, 19, 25].

C.1. Vector spaces.

Let F denote either R or C.

C.1.1 Definition.

A vector space over F is a set X equipped with65 two operations, vector addition and
scalar multiplication, that satisfy the following conventions and relations.

(VS1) Vector addition is a map ⊕ : X ×X → X , and we write ⊕(f, g) = f+g. Scalar
multiplication is a map � : F × X → X , and we write ⊕(α, f) = αf . Formally, the
vector space is the 4-tuple (X ,F,⊕,�); this is what “over” and “equipped with” means.
Of course, this is baroque and pedantic, and in practice we never think of a vector space
as a 4-tuple!

(VS2) Vector addition is commutative and associative:

f + g = g + f and (f + g) + h = f + (g + h), f, g, h ∈ X .

(VS3) There exists an identity or zero vector for vector addition, which we
denote by 0 (i.e., the same symbol as the element 0 of F):

f + 0 = f, f ∈ X .

(VS4) There exists an inverse for vector addition: for all f ∈ X , there is a vector
f̃ ∈ X such that f + f̃ = 0. Of course, we write f̃ = −f , and in fact f̃ = (−1)f .

(VS5) Scalar multiplication distributes over scalar and vector addition:

(α + β)f = αf + βf and α(f + g) = αf + αg, α, β ∈ F, f, g ∈ X .

(VS6) Scalar multiplication is associative:

α(βf) = (αβ)f, α, β ∈ F, f ∈ X .

(VS7) 1f = f , f ∈ X .

C.1.2 Example.

(i) With F = R or F = C, Fn is a vector space over F with the usual componentwise
operations:

x + y := (x1 + y1, . . . , xn + yn) and αx := (αx1, . . . , αxn),

65By “equipped with,” we really mean that a vector space X over F with the operations � of scalar
multiplication and ⊕ of vector addition is the 4-tuple (X ,F,�,⊕). Of course, no one ever thinks
of vector spaces as 4-tuples whose entries consist of sets and functions, but, technically (and maybe
uselessly), this is really what a vector space is!
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with x = (x1, . . . , xn) and y = (y1, . . . , yn).

(ii) If I ⊆ R is an interval, let Cr(I) denote the set of all C-valued functions on I
whose rth derivative exists and is continuous on I. Then Cr(I) is a vector space under
the usual pointwise operations: for f , g ∈ Cr(I) and α ∈ C, define the vectors f + g
and αf by

(f + g)(x) := f(x) + g(x) and (αf)(x) := αf(x). (C.1.1)

That Cr(I) is a vector space is just a consequence of the linearity of limits and deriva-
tives.

(iii) If I ⊆ R is an interval, then the set of all Riemann-integrable functions on I
forms a vector space under, again, the pointwise operations (C.1.1).

(iv) Some of the most interesting vector spaces are spaces of functions, like the ones in
parts (ii) and (iii), as well as many more exotic flavors. The term function space
is often used to refer to a vector space of functions (especially L2(R)), but this term is
unfortunately ambiguous given the plethora of worthwhile vector spaces of functions.

C.1.3 Definition.
A set U ⊆ X is linearly independent if for any finite number of distinct vectors
f1, . . . , fn ∈ U , whenever

∑n
k=1αkfk = 0 for some α1, . . . , αn ∈ C, then α1 = · · · =

αn = 0. If U is not linearly independent, then it is linearly dependent.

C.1.4 Example.

(i) Let e1 := (1, 0) and e2 := (0, 1). Then {e1, e2} is linearly independent in C2.

(ii) For λ ∈ C, let fλ(x) := eλx. Then the set {fλ}λ∈C is linearly independent in Cr(I)
for any interval I ⊆ R and r ≥ 0.

C.2. Linear operators.

Let X and Y be vector spaces over F. A map T : X → Y is a linear operator
from X to Y if T (αf + βg) = αTf + βTg for all α, β ∈ F and f , g ∈ X . We will
denote the identity operator on a space X by 1X , i.e., 1Xf = f for all f ∈ X . A linear
functional on X is a linear operator from X to F.

C.2.1 Example.

(i) Let A ∈ Cm×n be an m × n matrix. Then we may define a linear operator
MA : Cn → Cm by MAx := Ax, where Ax is the usual matrix-vector product. Of
course, we identify MA with A, and usually refer to A as both a matrix and a linear
operator.

(ii) Let X = C1([0, 1]) and Y = C([0, 1]). Set (Tf)(x) := f ′(x). Then T : X → Y is
linear, by the linear properties of the derivative.
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(iii) Let X = C([a, b]) and set Tf :=
∫ b
a
f(x) dx. Then T is a linear functional on X .

The kernel of a linear operator T : X → Y is the subspace

ker(T ) :={f ∈ X | Tf = 0} . (C.2.1)

We will use special terminology for a linear operator that maps a subspace of a larger
space back into that space. Namely, given a vector space X and a subspace D ⊆ X , a
linear operator in X is a map T : D → X . Then, for example, we can think of
the linear operator f 7→ f ′ either as a linear operator from C1(I) to C(I), or as a linear
operator in C(I) with domain C1(I). This distinction, while seemingly academic here,
will be useful when we discuss eigenvalues; see Remark C.6.3.

C.3. Normed spaces.

C.3.1 Definition.

Let X be a vector space over F, with F = R or C. A function ‖·‖ : X → R is a norm
on X if

(i) [Positivity]66 ‖f‖ ≥ 0 for all f ∈ X

(ii) [Definiteness] ‖f‖ = 0 if and only if f = 0;

(iii) [Absolute homogeneity] ‖αf‖ = |α| ‖f‖ for all α ∈ F and f ∈ X;

(iv) [Triangle inequality] ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f , g ∈ X .

A normed space is a vector space X equipped with67 a norm. If it is possible
that ‖f‖ = 0 for some f 6= 0 but the other properties above hold, then we call ‖·‖ a
seminorm on X .

We give examples of norms and seminorms below. Unless otherwise stated, the veri-
fication of the defining properties of the norm are very easy to check.

C.3.2 Example.

(i) There are a plethora of “p”-norms on Cn: for x = (x1, . . . , xn) ∈ Cn and 1 ≤ p <
∞, set

‖x‖p :=

(
n∑
k=1

|xk|p
)1/p

(C.3.1)

and
‖x‖∞ := max

1≤k≤n
|xn|.

We exclude p < 1, as the triangle inequality fails in these cases. The proof of the
triangle inequality is nontrivial when p 6= 1.

67This looks like more of a “nonnegativity” condition, but the cultural custom, nonetheless, is to call it
positive.

67Recall Footnote 65 for a formal (baroque) definition of “equipped with.”
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(ii) Similarly, we can define integral p-norms on C([a, b]). For historical and cultural
reasons, we call these Lp-norms:

‖f‖Lp([a,b]) :=



(∫ b

a

|f(x)|p dx
)1/p

, 1 ≤ p <∞

max
a≤x≤b

|f(x)|, p =∞.

To see that ‖f‖Lp([a,b]) = 0 if and only if f(x) = 0 for all x, recall from calculus that if
g ∈ C([a, b]) is nonnegative, then∫ b

a

g(x) dx = 0 ⇐⇒ g(x) = 0 for all a ≤ x ≤ b.

(iii) Let R([a, b]) denote the set of Riemann-integrable functions on [a, b]. The integral
‖f‖Lp([a,b]) is defined for any f ∈ R([a, b]), but ‖·‖Lp([a,b]) is not a norm on R([a, b]) for
1 ≤ p <∞. Namely, it is only a seminorm.

To see this, consider the function

f0(x) :=

{
1, x = a

0, a < x ≤ b.

Clearly f0 6= 0. But |f0(x)|p = |f0(x)| = f0(x) for all x ∈ [a, b] and p ∈ [1,∞), and∫ b
a
f0(x) dx = 0. Hence ‖f0‖Lp([a,b]) = 0 for all p 6=∞.

C.3.3 Remark.

The uncomfortable reality about a seminorm ‖·‖ on a vector space X is that one can
have ‖f‖ = 0 but f 6= 0. Then it may be possible to find two elements f , g ∈ X with
‖f − g‖ = 0, but this does not guarantee f = g. Such a situation occurs frequently with
the Lp-norms on spaces of Riemann-integrable functions; see Example 2.4.17.

C.4. Inner product spaces.

C.4.1 Definition.

An inner product on the vector space X (over68 C) is a function 〈·, ·〉 : X×X → C
with the following properties.

(i) [Linearity in the first variable I] 〈f + g, h〉 = 〈f, h〉+〈g, h〉 for all f , g, h ∈ X ;

(ii) [Linearity in the first variable II] 〈αf, g〉 = α 〈f, g〉 for all α ∈ C, f , g ∈ X ;

(iii) [Hermitian property] 〈f, g〉 = 〈g, f〉 for all f , g ∈ X ;

(iv) [Positivity]69 〈f, f〉 ≥ 0.
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(v) [Definiteness/faithfulness] 〈f, f〉 = 0 if and only if70 f = 0.

If 〈·, ·〉 satisfies properties (i) through (iv) but not necessarily (v), we will take
the nonstandard route of calling 〈·, ·〉 a semi-definite inner product. An (semi-
definite) inner product space is a vector space X equipped with an (semi-
definite) inner product.

Easy algebraic consequences of the properties of an inner product include the sesquilin-
ear71 or conjugate-linear identities

〈f, g + h〉 = 〈f, g〉+ 〈f, h〉 and 〈f, αg〉 = α 〈f, g〉 .

C.4.2 Example.

(i) The dot product on Cn,

x · y :=
n∑
k=1

xkyk, x = (x1, . . . , xn), y = (y1, . . . , yn), (C.4.1)

is an inner product on Cn.

(ii) The mapping

〈f, g〉L2([a,b]) :=

∫ b

a

f(x)g(x) dx

is an inner product on C([a, b]). This inner product is, for historical and cultural
reasons, called the L2-inner product.

(iii) The mapping 〈·, ·〉L2([a,b]) is only semi-definite on the larger space of Riemann
integrable functions; see part (iii) of Example C.3.2.

(iv) In parts (ii) and (iii) above, we can replace [a, b] with any interval I ⊆ R if we
use the improper integral over I. The (semi-definite) inner product space L2(R) is
sometimes (erroneously!) called “Hilbert space.” This is a gross oversimplification, as
a Hilbert space is a special kind of inner product space, not necessarily one of square-
integrable functions.

C.4.3 Remark.

“Where the conjugate goes” is something of a cultural and discipline-specific72choice.
When defining the dot product and the L2-inner product, we always put the conjugate
on the second input. If we put it on the first, i.e., setting x · y :=

∑n
k=1xkyk, then

70We will only need to consider complex inner product spaces in this course.
70Since we do not require the inequality to be strict, a more natural name for this property might be
merely “nonnegativity.” However, when we also impose the subsequent property (v), we do get the
strict inequality in all but the case f = 0.

70The “only if” here is redundant thanks to property (ii).
71“Sesqui,” from the Latin for “one and a half.” The inner product is “one and a half” times linear since we
must conjugate the scalar on removing it from multiplication in the second slot. A genuine bilinear
form would be a map B : X × X → C such that B[f, ·] and B[·, g] are linear operators on X for each
fixed f , g ∈ X .
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we would have (αx · y) = α(x · y), which is not what property (ii) in Definition C.4.1
specifies. Of course, this is largely immaterial: pick a convention and stick with it.
And this is our choice.

C.4.4 Lemma.
Let X be an inner product space. The function

‖f‖ :=
√
〈f, f〉 (C.4.2)

is a norm on X , called the norm induced by the inner product. If 〈·, ·〉 is
semi-definite, then ‖·‖ is merely a seminorm.

Proof. We know 〈f, f〉 ≥ 0 for all f ∈ X , so
√
〈f, f〉 ≥ 0. And ‖f‖ = 0 if and only

if ‖f‖2 = 0, which happens if and only if 〈f, f〉 = 0, which in turn holds if and only if
f = 0.

Next, given α ∈ C, we calculate

‖αf‖2 = 〈αf, αf〉 = α 〈f, αf〉 = αα 〈f, f〉 = |α|2 ‖f‖2 ,

from which we have ‖αf‖ = |α| ‖f‖.
To prove the triangle inequality, we first expand

‖f + g‖2 = 〈f + g, f + g〉 = 〈f + g, f〉+ 〈f + g, g〉 = 〈f, f〉+ 〈g, f〉+ 〈f, g〉+ 〈g, g〉

= ‖f‖2 + ‖g‖2 + 〈f, g〉+ 〈f, g〉 = ‖f‖2 + ‖g‖2 + 2 Re[〈f, g〉]. (C.4.3)

Suppose for the moment that Re[〈f, g〉] ≤ ‖f‖ ‖g‖; we derive this below as a consequence
of the Cauchy-Schwarz inequality. Then (C.4.3) implies

‖f + g‖2 ≤ ‖f‖2 + 2 ‖f‖ ‖g‖+ ‖g‖2 = (‖f‖+ ‖g‖)2 ,

from which the triangle inequality follows. �

C.4.5 Example.

(i) The 2-norm on Cn is derived from the dot product and therefore, automatically, is
a norm:

‖x‖2 =

(
n∑
k=1

|xk|2
)1/2

=

(
n∑
k=1

xkxk

)1/2

=
√
x · x.

(ii) The L2-norm on C([a, b]) is derived from the L2-inner product and therefore, au-
tomatically, is a norm:

‖f‖L2([a,b]) =

(∫ b

a

|f(x)|2 dx
)1/2

=

(∫ b

a

f(x)f(x) dx

)1/2

=
√
〈f, f〉L2([a,b]).

72“A mathematical physicist is a mathematician believing that [an inner product] is conjugate-linear in
the first variable and linear in the second” [25, p. 80].
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C.4.6 Lemma (Cauchy-Schwarz inequality).

Let X be an (semi-definite) inner product space. Then

| 〈f, g〉 | ≤ ‖f‖ ‖g‖ .

Proof. There are many proofs of this inequality, and all seem to involve some very clever
trick. This is perhaps one of the more straightforward versions, and it appears in [29].

If either f = 0 or g = 0, then both sides are zero. So, we assume both f 6= 0 and
g 6= 0, in which case the desired inequality is equivalent to∣∣∣∣〈 f

‖f‖
,
g

‖g‖

〉∣∣∣∣ ≤ 1.

It therefore suffices to show that if u, v ∈ X with ‖u‖ ≤ 1 and ‖g‖ ≤ 1, then | 〈u, v〉 | ≤ 1.
One can do this by decomposing u as a sum of a vector “parallel” to v and “perpendicular”
to v: write

u = 〈u, v〉 v +
(
u− 〈u, v〉 v

)
.

For simplicity, set α = 〈u, v〉, so that our goal is to show |α| ≤ 1. By (C.4.3), we have

1 = ‖u‖2 =
∥∥αv +

(
u− αv

)∥∥2
= ‖αv‖2 + 2 Re[〈αv, u− αv〉] + ‖u− αv‖2 . (C.4.4)

We have
‖αv‖2 = |α|2 ‖v‖2 = |α|2, (C.4.5)

and we calculate

〈αv, u− αv〉 = 〈αv, u〉−〈αv, αv〉 = α 〈v, u〉−αα 〈v, v〉 = α〈u, v〉−αα ‖v‖2 = αα−αα = 0.
(C.4.6)

Replacing terms on the right side of (C.4.4) with (C.4.5) and (C.4.6), we find

1 = |α|2 + ‖u− αv‖2 ≥ |α|2,

and so |α| ≤ 1, as desired. �

C.5. Orthonormal bases and generalized Fourier series.

The material in this section draws heavily on [13, 18].

C.5.1. Finite-dimensional theory.

The standard basis for Cn is the set of vectors {e1, . . . , en}, where ek is 0 in all of its
entries except the kth, where it is 1. The standard basis has a special interaction with
the dot product from (C.4.1):

ek · ej =

{
1, k = j

0, k 6= j.
(C.5.1)

Consequently, with the 2-norm on Cn from (C.3.1), we have

‖ek‖2 =
√
ek · ek = 1.
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Any vector x ∈ C has the (necessarily unique) representation

x =
n∑
k=1

αkek (C.5.2)

for some αk ∈ C. More precisely,

x · ej =

(
n∑
k=1

αkek

)
· ej =

n∑
k=1

αk
(
ek · ej

)
= αj (C.5.3)

to show how the coefficients of x in the representation are determined by the vectors ek.
Also, if y = (y1, . . . , yn) ∈ Cn, then

x · y =

(
n∑
k=1

(x · ek)ek

)
·

(
n∑
j=1

(y · ej)ej

)
=

n∑
k=1

(x · ek)

(
ek ·

n∑
j=1

(y · ej)ej

)

=
n∑
k=1

(x · ek)
n∑
j=1

(y · ej)(ek · ej) =
n∑
k=1

(x · ek)(y · ek)

(
=

n∑
k=1

xkyk

)
. (C.5.4)

Taking x = y, we have

‖x‖2
2 = x · x =

n∑
k=1

(x · ek)(x · ek) =
n∑
k=1

|x · ek|2
(

=
n∑
k=1

|xk|2
)
. (C.5.5)

Of course, there is nothing particularly special about the identities (C.5.3), (C.5.4),
and (C.5.5). From the particular structure of ej, it is obvious that if x = (x1, . . . , xn),
then x · ej = xj, and so (C.5.4) and (C.5.5) also follow from the definition of the 2-norm
(C.3.1) and the dot product (C.4.1). What is special, however, is that we did not have
to use the componentwise expression x = (x1, . . . , xn) to obtain any of these identities;
we just used algebraic properties of the dot product and the special relation (C.5.1) on
the vectors ek.

If ẽ1, . . . , ẽn ∈ Cn with

ẽk · ẽj =

{
1, j = k

0, j 6= k,
(C.5.6)

then the three relations (C.5.3), (C.5.4), and (C.5.5) still hold, with each ek replaced by
ẽk. Thus the property (C.5.1), equivalently (C.5.6), is what really matters. With this
orthonormality property, many fundamental computations become far more transparent
in terms of the orthonormal vectors. We will see in the next section the power of an
orthonormal set in an abstract inner product space and derive analogues of the identities
(C.5.3), (C.5.4), and (C.5.5) outside Euclidean space.

C.5.2. Infinite-dimensional theory.

C.5.1 Definition.

Let X be a (semi-definite) inner product space.

(i) Two vectors f , g ∈ X are orthogonal if 〈f, g〉 = 0.
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(ii) A set U ⊆ X is orthonormal if the vectors in U are mutually orthogonal and
each vector has norm 1. That is, U is orthonormal if and only if

〈f, g〉 =

{
1, f = g

0, f 6= g

for all f , g ∈ U .

C.5.2 Lemma.
Any orthonormal set is linearly independent.

Proof. Suppose U ⊆ X is orthonormal and φ1, . . . , φn ∈ U and α1, . . . , αk ∈ C such that∑n
k=1αkφk = 0. Fix j ∈ {1, . . . , n} and calculate

0 =

〈
n∑
k=1

αkφk, φj

〉
=

n∑
k=1

αk 〈φk, φj〉 = αj.

Hence αj = 0 for all j. �

If X is a (semi-definite) inner product space, then X has a basis: there is a set B of
linearly independent vectors in X such that any f ∈ X can be written as a finite linear
combination of vectors in B, i.e., the span of B equals X . In symbols,

X = span(B) :=

{
n∑
k=0

αkfk

∣∣∣∣∣ n ∈ N, f1, . . . , fn ∈ B, α1, . . . , αn ∈ C

}
.

For clarity, we will call such a linearly independent spanning set a Hamel basis. There
is nothing special about the existence of a Hamel basis for an inner product space; every
vector space has one. But the vectors in B need not “interact well” with the inner product,
although sometimes they do, as we saw in Appendix C.5.1. Under certain technical
hypotheses on a general inner product, it is possible for an inner product space to have
an “orthonormal basis” that permits the (necessarily unique) representation of any vector
in the space as an infinite linear combination of vectors in this basis set. To make sense
of an infinite linear combination of vectors, we need to define what it means for a series
to converge in an inner product space, or, more generally, a (semi)normed space.

C.5.3 Definition.

Let X be a (semi)normed space If (fk) is a sequence in X and f ∈ X , then we write
f ∼=

∑∞
k=0fk if

lim
n→∞

∥∥∥∥∥f −
n∑
k=0

fk

∥∥∥∥∥ . (C.5.7)

If X is a normed space and (C.5.7) holds, then the vector f is necessarily unique73, in
which case we write f =

∑∞
k=0fk. As in Definition A.2.1, we use the symbol

∑∞
k=0fk

to denote both the sequence of partial sums
(∑n

k=0fk
)
and the limit(s) of this sequence,

if it (they) exist.
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From now on we will assume that our (semi-definite) inner product space X is infinite-
dimensional, i.e., it has a Hamel basis that is not finite. Otherwise, all the theory would
reduce to linear algebra on Cn.

C.5.4 Definition.

Let X be a (semi-definite) inner product space. An orthonormal set U ⊆ X is an
orthonormal basis for X if for any f ∈ X , there are sets {φk}∞k=0 ⊆ U and
{αk}∞k=0 ⊆ C such that

f ∼=
∞∑
k=0

αkφk, (C.5.8)

i.e., we have

lim
n→∞

∥∥∥∥∥f −
n∑
k=0

αkφk

∥∥∥∥∥ ,
where ‖·‖ is the (semi)norm (C.4.2) induced by the (semi-definite) inner product on X .
The representation of f ∈ X as the series (C.5.8) is its Fourier series with re-
spect to the orthonormal basis U , and the coefficients αk are the Fourier
coefficients of f with respect to U .

It is not necessarily the case that a given (semi-definite) inner product space has an
orthonormal basis; indeed, taking X = C([a, b]) with the L2-inner product is such a space.
We will not attempt to characterize those spaces that do have orthonormal bases (but
see [14, 25]). Instead, we will merely assume that a space does have an orthonormal basis
and then see what more we can learn.

Although an orthonormal basis involves an infinite sum, it shares some familiar prop-
erties with a Hamel basis, beyond the linear independence endowed by Lemma C.5.2.

• First, the Fourier coefficients of f ∈ X from the representation (C.5.8) are uniquely
determined by the simple relation αk = 〈f, φk〉.

• Second, the vectors φk that appear in (C.5.8) are unique, up to adding terms from
the orthonormal basis paired with coefficients equal to zero. In other words, we cannot
change the basis vectors that represent f , not counting the trivial case of adding zero.

• Third, the sum (C.5.8) converges regardless of the ordering of its terms, just like a
finite sum from a Hamel basis.

We state these properties formally below.

73If there is another such vector, say, g, with limn→∞ ‖g −
∑n
k=0 fk‖ = 0, then we have

‖f − g‖ =

∥∥∥∥∥
(
f −

n∑
k=0

fk

)
+

(
g −

n∑
k=0

fk

)∥∥∥∥∥ ≤
∥∥∥∥∥f −

n∑
k=0

fk

∥∥∥∥∥+

∥∥∥∥∥g −
n∑
k=0

fk

∥∥∥∥∥→ 0 + 0 as n→∞,

thus ‖f − g‖ = 0. Since ‖·‖ is a norm, not a seminorm, in this case, then f − g = 0, so f = g.
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C.5.5 Lemma.

Suppose that U is an orthonormal basis for the (semi-definite) inner product space X
and take f ∈ X .

(i) If f ∼=
∑∞

k=0αkφk for some {φk}∞k=0 ⊆ U and {αk}∞k=0 ⊆ C, then αk = 〈f, φk〉.

(ii) If f ∼=
∑∞

k=0βkψk for some other sets {ψk}∞k=0 ⊆ U and {βk}∞k=0 ⊆ C, then

{αk}∞k=0 \ {0} = {βk}∞k=0 \ {0} and {φk | αk 6= 0} ={ψk | βk 6= 0}

(iii) The series
∑∞

k=0 〈f, φk〉φk converges unconditionally to f in the sense that any
rearrangement of it also converges to f . That is, if σ : N→ N is one-to-one and onto,
then

f ∼=
∞∑
k=0

〈
f, φσ(k)

〉
φσ(k).

Proof. We prove only part (i), the others requiring more technical tools from analysis;
see [13, 18]. First, fix k and write, for n ≥ j,

〈f, φk〉 =

〈(
f −

n∑
j=1

αjφj

)
+

n∑
k=0

αjφj, φk

〉
=

〈
f −

n∑
j=1

αjφj, φk

〉
︸ ︷︷ ︸

In

+

〈
n∑
k=0

αjφj, φk

〉
︸ ︷︷ ︸

IIn

.

The Cauchy-Schwarz inequality implies

‖In‖ ≤

∥∥∥∥∥f −
n∑
j=1

αjφj

∥∥∥∥∥ ‖φk‖ → 0 as n→∞

since f ∼=
∑n

j=1αjφj. Next, since U is orthonormal and n ≥ j, we have

IIn =
n∑
k=0

αj 〈φj, φk〉 = αk.

Thus
〈f, φk〉 = In + αk,

where In → 0 as n→∞. Taking this limit, we conclude 〈f, φk〉 = αk. �

The careful reader will note that we did not mention in this lemma an analogue of the
familiar property that if two vectors have the same coefficients with respect to a Hamel
basis, then those two vectors are unique. This is, unfortunately, not necessarily true
if we work in a semi-definite inner product space. For example, if X is a semi-definite
inner product space, and f ∈ X with ‖f‖ = 0 and f 6= 0, then for any g ∈ X , the
Cauchy-Schwarz inequality gives

| 〈f, g〉 | ≤ ‖f‖ ‖g‖ = 0 · ‖g‖ = 0.

Hence 〈f, g〉 = 0. In particular, the coefficients of f with respect to any orthonormal
basis of X must all be 0, even though f is not the zero vector. We construct a concrete
example of this situation in Example 2.4.17.

If we strengthen our setting to a genuine inner product space, then, yes, a vector is
uniquely determined by its Fourier coefficients.
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C.5.6 Lemma.
Let X be an inner product space with orthonormal basis U . If for some g ∈ X we
have 〈f, φ〉 = 〈g, φ〉 for all φ ∈ U , then f = g. That is, the Fourier coefficients of f
determine f uniquely.

The orthonormal bases that typically arise in practice are “countable” in the sense
that we may “enumerate” U in the form U = {φk}∞k=0. Indeed, an orthonormal basis for
an infinite-dimensional space must be at least “countably infinite,” for if such a basis U
were finite, then all the Fourier series representations (C.5.8) would be finite sums, and
U would be a Hamel basis consisting of finitely many vectors. And then the vector space
would be finite-dimensional.

However, a Hamel basis B for an infinite-dimensional vector space may be “uncount-
able” in the sense that we cannot write it in the form B = {ψk}∞k=0. This is the case
for most “interesting” infinite-dimensional spaces. In particular, then, a countable or-
thonormal basis U = {φk}∞k=0 almost never forms a Hamel basis for an inner product
space.

Working with the infinite sum in (C.5.8) is a small price to pay for the other conve-
niences of an orthonormal basis. Namely, we can read off some important properties from
an orthonormal basis representation that a Hamel basis will not inherently provide. In
fact, these properties even hold if the definiteness property is eliminated from the inner
product.

C.5.7 Theorem.

Let X be a semi-definite inner product space. Suppose that {φk}∞k=0 is an orthonormal
basis for X and let f , g ∈ X .

(i) [Parseval’s identity] Suppose f , g ∈ X with f ∼=
∑∞

k=0αkφk and g ∼=
∑∞

k=0βkφk.
Then

〈f, g〉 =
∞∑
k=0

αkβk =
∞∑
k=0

〈f, φk〉 〈φk, g〉 .

(ii) [Plancherel’s74 identity] If f ∈ X with f ∼=
∑∞

k=0αkφk, then

‖f‖2 =
∞∑
k=0

|αk|2 =
∞∑
k=0

| 〈f, φk〉 |2.

Proof. Plancherel’s identity follows directly from Parseval’s by taking f = g, so we prove
only the former. One can calculate that, for any n ≥ 1, we have75

〈f, g〉 =

〈
f −

n∑
k=0

αkφk, g

〉
︸ ︷︷ ︸

In

+

〈
n∑
k=0

αkφk, g −
n∑
j=1

βjφj

〉
︸ ︷︷ ︸

IIn

+

〈
n∑
k=0

αkφk,
n∑
j=1

βjφj

〉
︸ ︷︷ ︸

IIIn

.

74The inequality
∑∞
k=0| 〈f, φk〉 |2 ≤ ‖f‖

2 is called Bessel’s inequality.
75When one is working with two different sums in an inner product, it is often beneficial to index them
with different letters.
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The Cauchy-Schwarz inequality and the definition of series convergence (C.5.7) imply

|In| ≤

∥∥∥∥∥f −
n∑
k=0

αkφk

∥∥∥∥∥ ‖g‖ → 0 as n→∞.

Take n so large that ‖f −
∑n

k=0αkφk‖ ≤ 1. Then the triangle inequality implies∥∥∥∥∥
n∑
k=0

αkφk

∥∥∥∥∥ ≤
∥∥∥∥∥f −

n∑
k=0

αkφk

∥∥∥∥∥+ ‖f‖ ≤ 1 + ‖f‖ ,

and so we have

|IIn| ≤

∥∥∥∥∥
n∑
k=0

αkφk

∥∥∥∥∥
∥∥∥∥∥g −

n∑
j=1

βj

∥∥∥∥∥ ≤ (1 + ‖f‖)

∥∥∥∥∥g −
n∑
j=1

βj

∥∥∥∥∥→ 0 as n→∞.

Last, since {φk}∞k=0 is orthonormal, the sesquilinearity of the inner product yields

IIIn =
n∑
k=0

n∑
j=1

αkβj 〈φk, φj〉 =
n∑
k=0

αkβk.

Thus ∣∣∣∣∣〈f, g〉 −
n∑
k=0

αkβk

∣∣∣∣∣ ≤ |In|+ |IIn| → 0 as n→∞. �

The Fourier coefficients 〈f, φk〉 of f with respect to a countable orthonormal basis
U = {φk}∞k=0 of the inner product space X not only give the unique “coordinates” of
f ∈ X with respect to U , they also are the “best” coefficients to use to represent f with
respect to a truncation of this basis. That is, given f ∈ X , it may not be computationally
expedient to consider the whole series

∑∞
k=0 〈f, φk〉φk. Perhaps we want to approximate

f ≈
∑n

k=0αkφk for some finite n ∈ N. Can we do better than taking αk = 〈f, φk〉 for
k = 0, . . . , n? No.

C.5.8 Theorem (Least-squares76 approximation).

Let {φk}∞k=0 be an orthonormal subset of the semi-definite inner product space X (not
necessarily an orthonormal basis). Then

min
α1,...,αn∈C

∥∥∥∥∥f −
n∑
k=0

αkφk

∥∥∥∥∥ =

∥∥∥∥∥f −
n∑
k=0

〈f, φk〉φk

∥∥∥∥∥ (C.5.9)

for any n ≥ 1.

Proof. We expand∥∥∥∥∥f −
n∑
k=0

αkφk

∥∥∥∥∥
2

=

〈
f −

n∑
k=0

αkφk, f −
n∑
j=1

αjφj

〉
= ‖f‖2+

n∑
k=0

(
|αk|2−αk 〈f, φk〉−αk〈f, φk〉

)
.

(C.5.10)
76So named because when we work with the 2-norm on Fn or the L2-norm on a space of square-integrable
functions, computing the minimum in (C.5.9) is equivalent to minimizing a sum of squares or an integral
of squares.
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Now we use the identity

|z|2 − zw − zw = |z − w|2 − |w|2,

valid for any z, w ∈ C, to convert (C.5.10) into∥∥∥∥∥f −
n∑
k=0

αkφk

∥∥∥∥∥
2

= ‖f‖2 +
n∑
k=0

(∣∣αk − 〈f, φk〉 ∣∣2 − ∣∣ 〈f, φk〉 ∣∣2) ≥ ‖f‖2 −
n∑
k=0

∣∣ 〈f, φk〉 ∣∣2.
Remarkably, we can compute

‖f‖2 −
n∑
k=0

∣∣ 〈f, φk〉 ∣∣2 =

∥∥∥∥∥f −
n∑
k=0

〈f, φk〉φk

∥∥∥∥∥
2

+

〈
n∑
k=0

〈f, φk〉φk, f −
n∑
j=1

〈f, φj〉φj

〉

and 〈
n∑
k=0

〈f, φk〉φk, f −
n∑
j=1

〈f, φj〉φj

〉
= 0.

Thus ∥∥∥∥∥f −
n∑
k=0

αkφk

∥∥∥∥∥
2

≥

∥∥∥∥∥f −
n∑
k=0

〈f, φk〉φk

∥∥∥∥∥
2

,

and this is the least-squares inequality. �

C.6. Eigenvalues.

Let T be a linear operator in the vector space X over C. Denote the domain of T by
D(T ) ⊆ X . A point λ ∈ C is an eigenvalue of T if there exists f ∈ D(T ) \ {0} such
that Tf = λf . The ordered pair (λ, f) ∈ C × X is an eigenpair of T . The set of all
eigenvalues of T is the point spectrum77 of T , and we denote it by σpt(T ).

C.6.1 Example.

The eigenvalues of the matrix operator A ∈ Cn×n are the roots of the nth degree char-
acteristic polynomial λ 7→ det(λ1n−A), where 1n is the n×n identity matrix.
Indeed, given λ ∈ C, there is a nonzero vector x ∈ Cn such that Ax = λx if and only
if the equation (λ1n − A)x = 0 has a nontrivial solution, which happens if and only if
det(λ1n −A) = 0. One can calculate that det(λ1n −A) is a polynomial of degree n in
λ.

C.6.2 Example.

Let X = C([0, 1]) and define the operator T with domain D(T ) = X by (Tf)(x) :=
xf(x). Show that T has no eigenvalues.

Solution. Suppose there does exist λ ∈ σpt(T ). Then there is a function f ∈ C([0, 1],C)
such that xf(x) = λf(x) for all x ∈ [0, 1] and, moreover, f(x) 6= 0 for at least one
77In more abstract operator theory, there are other notions of “spectral” values for an operator, and it is
important to distinguish eigenvalues from other “spectral” values with different behaviors.
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x ∈ [0, 1]. We find (x − λ)f(x) = 0 for all x ∈ [0, 1]. If λ 6∈ [0, 1], then x − λ 6= 0 for
all x ∈ [0, 1], and so we may divide to find f(x) = 0 for all x ∈ [0, 1], a contradiction. If
λ ∈ [0, 1], then x − λ 6= 0 for all x ∈ [0, 1] \ {λ}, and so again we may divide, this time
to find f(x) = 0 for all x ∈ [0, 1] \ {λ}. But f is continuous on [0, 1], so

f(λ) = lim
x→λ

f(x) = 0,

a contradiction once more. N

C.6.3 Remark.
Here is the value of defining an operator “in” a vector space, not just “on.” If T : X → Y
is a linear operator from the space X to the space Y, then for (λ, f) ∈ C×X to be an
eigenpair of T , we need Tf = λf ∈ X . Thus T must map at least some elements of X
back to X , and this would be difficult to guarantee unless Y ⊆ X . Hence our preference
for taking the domain of T to be a subspace of the “target” space X .

On the other hand, we need not have Tf ∈ D(T ) for all f ; consider Tf = f ′ with
D(T ) = C1([−1, 1]) and X = C([−1, 1]). If we put f(x) =

∫ x
0
|ξ| dξ, then Tf is not

differentiable at 0.

The eigenspace corresponding to λ ∈ σpt(T ) is the vector space

E(T, λ) :={f ∈ D(T ) | Tf = λf} .

The geometric multiplicity of λ is the dimension of E(T, λ). The eigenvalue λ is
simple if dim[E(T, λ)] = 1. (It is possible to define a notion of algebraic multiplicity)

Let T be a linear operator in X and λ ∈ σpt(T ). An m-tuple (f1, . . . , fm) ∈ D(T )m

is a Jordan chain of generalized eigenvectors for λ if Tfk+1 = fk for
k = 1, . . . ,m− 1 and Tf1 = λf1.

C.6.4 Example.

(i) Let

T :=

0 1 0
0 0 1
0 0 0


and e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). Clearly 0 is an eigenvalue of T
Then Te3 = e2, Te2 = e1, and Te1 = 0, so (e1, e2, e3) is a Jordan chain for 0.

(ii) Let Tf = f ′′ − 2f ′ + f with domain D(T ) = C2(R) in X = C(R). Set f0(x) = ex

and f1(x) = xex. Then Tf1 = f0 and Tf0 = 0, so 0 is an eigenvalue of T and (f0, f1)
forms a partial Jordan chain for 0. We say partial because variation of parameters
and/or undetermined coefficients always allows us to find a function fk+1 such that

Tfk+1 = fk.

C.7. Application: the matrix resolvent equation.

Fix A ∈ Cn×n and let 1n denote the n×n identity matrix. The resolvent equation
for A is the equation

(A− λ1n)x = y. (C.7.1)
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Here y ∈ Cn is given, and we want to know the scalars λ ∈ C for which we can solve this
equation (uniquely or not). Of course, the equation has a unique solution if and only if
det(A − λ1n) 6= 0, which is equivalent to λ 6∈ σpt(A). In this case, the unique solution
is x = (A − λ1n)−1y. If λ ∈ σpt(A), then a solution need not exist for all y, and if a
solution does exist, then it will not be unique.

There is a situation in which it is possible to construct the unique solution in a more
elegant and explicit manner than just using x = (A − λ1n)−1y. After all, computing a
matrix inverse can be difficult and expensive. Here is the situation: suppose that A has
n linearly independent eigenvectors, so that these eigenvectors span Cn. More precisely,
let {(λk,uk)}nk=1 be a set of eigenpairs of A, i.e., Auk = λkuk and furthermore assume78

that {uk}nk=1 is orthonormal, i.e., uk · uj = 0 if j 6= k and ‖uk‖2 = 1. (See part (i) of
Example C.3.2 for the definition of this hopefully familiar norm.) We do not assume that
the eigenvalues of A are distinct.

Now write y =
∑n

k=1θkuk, where θk = y · uk, and write x =
∑n

k=1µkuk, where the n
numbers µk are, for now, unknown. Then (C.7.1) becomes

(A− λ1n)
n∑
k=1

µkuk =
n∑
k=1

θkuk. (C.7.2)

On the left, we have

(A− λ1n)
n∑
k=1

µkuk =
n∑
k=1

µk(A− λ1n)uk =
n∑
k=1

µk(Auk − λuk) =
n∑
k=1

µk(λkuk − λuk)

=
n∑
k=1

µk(λk − λ)uk.

We substitute this calculation into (C.7.2) to find
n∑
k=1

µk(λk − λ)uk =
n∑
k=1

θkuk.

Subtracting and factoring, we have
n∑
k=1

(
µk(λk − λ)− θk

)
uk = 0. (C.7.3)

Since the set {uk}nk=1 is orthonormal, it is linearly independent, so the sum above forces

µk(λk − λ)− θk = 0 (C.7.4)

for each k. Another way to see this is to take the dot product of both sides of (C.7.3)
with uj for a fixed j:

n∑
k=1

(
µk(λk−λ)−θk

)
uk = 0 =⇒

(
n∑
k=1

(
µk(λk − λ)− θk

)
uk

)
·uj = uj·0 =⇒ µj(λj−λ)−θj = 0.

(C.7.5)
78Given a set V of n linearly independent vectors in an inner product space X , the Gram-Schmidt
orthonormalization procedure constructs a set U of n orthonormal vectors in X such that
span(V) = span(U). In particular, if V is a basis for X , then so is U .
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Either way, if (C.7.4) holds and if λ 6= λk for any k, then we can solve for µk:

µk =
θk

λk − λ
. (C.7.6)

And so

x =
n∑
k=1

(
θk

λk − λ

)
uk. (C.7.7)

This is a rather more explicit formula for x than just (A− λ1n)−1y.
Now suppose λ = λj for some j. To make our work easier, assume that the eigenvalues

are distinct, so λ 6= λk for k 6= j. Then (C.7.4) forces θj = 0. And so if we are to have
a solution to (C.7.1), the vector y must satisfy y · uj = 0. Thus we cannot solve (C.7.1)
for all y in the case that λ is an eigenvalue of A. But suppose also that y meets this
solvability condition y · uj = 0. What hope do we have of solving (C.7.1) then?

Since the eigenvalues of A are distinct, we have λ 6= λk for k 6= j, and so we can still
solve for the other coefficients µk of x as in (C.7.6). But (C.7.4) now tells us nothing
about µj, and so µj is a “free parameter” — we can take it to be any value that we want.
Specifically, a direct calculation shows that if we take c ∈ C and set

xc :=
n∑
k=1
k 6=j

(
θk

λk − λ

)
uk + cuj, (C.7.8)

then (A− λj1n)xc = y, assuming y · uj = 0. That is, our problem (C.7.2) has infinitely
many solutions. This is not surprising: the kernel of A − λj1n is spanned by uj, and
the expression in (C.7.8) has the form “particular solution + scalar multiple of kernel
element.”

We summarize our results.

C.7.1 Theorem.

Suppose that A ∈ Cn×n has the n linearly independent, orthonormal eigenvectors
u1, . . . ,un ∈ Cn. Write σpt(A) = {λk}nk=1, so that Auk = λkuk, and fix y ∈ Cn.

(i) If λ 6∈ σpt(A), then the unique vector x ∈ Cn such that λx− Ax = y is

x =
n∑
k=1

(
y · uk
λk − λ

)
uk.

(ii) Given λj ∈ σpt(A), there exists x ∈ Cn such that λjx − Ax = y if and only if
y · uj = 0. In this case, there exist infinitely many such x, all of which have the form

n∑
k=1
k 6=j

(
θk

λk − λ

)
uk + cuj

for some c ∈ C.
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C.8. Self-adjoint operators.

Let X be an inner product space. The operators T : D(T ) ⊆ X → X and S : D(S) ⊆
X → X are adjoint to each other79 if

〈Tf, g〉 = 〈f, Sg〉

for all f ∈ D(T ) and g ∈ D(S). The operator T is self-adjoint, symmetric, or
Hermitian if T is adjoint to itself, i.e., if

〈Tf, g〉 = 〈f, Tg〉

for all f , g ∈ D(T ).

C.8.1 Example.

Find an adjoint for each operator with respect to the given inner product. Is the operator
self-adjoint?

(i) Let A ∈ Cn×n and letMA : Cn → Cn be matrix-vector multiplication: MAx := Ax.

(ii) For a function f : R → C, let (Tf)(x) = ixf(x). Consider T as an operator in
L2(R), where

D(T ) =

{
f ∈ L2(R)

∣∣∣∣ ∫ ∞
−∞
|xf(x)|2 dx converges

}
.

(iii) Define T in C([0, 1]) by Tf = f ′ with domain

D(T ) =
{
f ∈ C1([0, 1])

∣∣ f(0) = f(1) = 0
}
.

Endow C([0, 1]) with the L2-inner product.

(iv) Define T as in part (iii), but now take its domain to be

D(T ) =
{
f ∈ C1([0, 1])

∣∣ f(0) = 0
}
.

(v) Define T in C([0, 1]) by Tf := f ′′ with domain

D(T ) =
{
f ∈ C2([0, 1])

∣∣ f(0) = f(1) = f ′(0) = f ′(1) = 0
}
.

Solution. (i) Let A∗ be the conjugate transpose of A. Then an adjoint toMA isMA∗ .
Indeed, we have

(MAx) · y = (Ax) · y = x · (A∗y) = x · (MA∗y).

The operatorMA is self-adjoint if and only if A = A∗, i.e., if and only if A is a Hermitian
matrix.
79We are tempted to write something like S = T ∗, as we do with matrices, see part (i) of Example C.8.1.
However, the uniqueness (let alone existence) of adjoints for operators defined in infinite-dimensional
spaces is a rather delicate issue, as parts (iii) and (iv) of Example C.8.1 will illustrate.
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(ii) We claim that an adjoint is (Sg)(x) = −ixg(x), where we put D(S) = D(T ). To see
this, we integrate

〈Tf, g〉L2 =

∫ ∞
−∞

(Tf)(x)g(x) dx =

∫ ∞
−∞

ixf(x)g(x) dx =

∫ ∞
−∞

f(x)(−ixg(x)) dx.

Clearly Tf 6= Sf , but, rather, Tf = −Sf for all f . So, T is not self-adjoint, but T is
skew-adjoint.

(iii) We start with an integration by parts:

〈Tf, g〉L2 =

∫ 1

0

(Tf)(x)g(x) dx =

∫ 1

0

f ′(x)g(x) dx = f(1)g(1)−f(0)g(0)−
∫ 1

0

f(x)g′(x) dx.

(C.8.1)
Since f(0) = f(1) = 0, this reduces to

〈Tf, g〉L2 =

∫ 1

0

f(x)(−g′(x)) dx,

so we take the adjoint of T to be (Sg)(x) = −g′(x). Note that we could take the domain
of S to be D(T ) or all of C1([0, 1]).

(iv) Integrating by parts as in (C.8.1), we use the condition f(0) = 0 to find

〈Tf, g〉L2 = f(1)g(1)−
∫ 1

0

f(x)g′(x) dx.

If we again set (Sg)(x) = −g′(x) and take the domain of S to be

D(S) =
{
g ∈ C1([0, 1])

∣∣ g(1) = 0
}
,

then S will be adjoint to T . Thus changing the domain of T can change the domain of the
adjoint — possibly endowing T and its adjoint with different domains. By the definition
of “adjoint” above, this is absolutely permissible.

(v) We integrate by parts twice:

〈Tf, g〉L2 =

∫ 1

0

f ′′(x)g(x) dx = f ′(x)g(x)
∣∣x=1

x=0
−
∫ 1

0

f ′(x)g′(x) dx = −
∫ 1

0

f ′(x)g′(x) dx

= −f(x)g′(x)
∣∣x=1

x=0
+

∫ 1

0

f(x)g′′(x) dx =

∫ 1

0

f(x)g′′(x) dx = 〈f, Tg〉L2 ,

and so T is self-adjoint. N

As we saw in Appendix C.6, the existence of eigenvalues for a linear operator can
be posed purely at the level of vector spaces. All that a point λ ∈ C has to do to
be an eigenvalue of the operator T : D(T ) ⊆ X → X is to satisfy Tf = λf for some
f ∈ D(T ) \ {0}. However, if we impose more structure on the vector space, it is possible
to learn more about the eigenvalues.
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C.8.2 Theorem.
Let X be an inner product space and T be a self-adjoint operator in X .

(i) Every eigenvalue80of T is real.

(ii) Eigenvectors of T corresponding to distinct eigenvalues are orthogonal, i.e., if λ,
µ ∈ σpt(T ) with λ 6= µ and Tf = λf , Tg = µg, then 〈f, g〉 = 0.

Proof. This is a rather classical proof; we include it for completeness.

(i) Let λ ∈ σpt(T ) with eigenvector f ∈ X \ {0}, i.e., Tf = λf . We will show λ = λ. To
relate λ to its conjugate, we use the linearity of the inner product:

〈Tf, f〉 = 〈λf, f〉 = λ 〈f, f〉 = λ ‖f‖2

and
〈Tf, f〉 = 〈f, Tf〉 = 〈f, λf〉 = 〈λf, f〉 = λ〈f, f〉 = λ ‖f‖2

Equating these two expressions and then dividing by ‖f‖2, which we may do, since f 6= 0,
we find λ = λ.

(ii) Since we want to show 〈f, g〉 = 0, and all that we know about f and g involves
multiplication by λ or µ, let us introduce the eigenvalues into this inner product. We
calculate

〈λf, g〉 = 〈Tf, g〉 = 〈f, Tg〉 = 〈f, µg〉 = µ 〈f, g〉 = µ 〈f, g〉 . (C.8.2)

For the last equality, we used the result from part (i) that µ is real (and so is λ). Since
〈λf, g〉 = λfg, we may subtract in (C.8.2) to find

(λ− µ) 〈f, g〉 = 0.

And since λ− µ 6= 0, we may divide to find 〈f, g〉 = 0. �

80We make no claims about whether or not T has any eigenvalues!
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D. Set-Theoretic Terminology

Let A and B be sets.

1. The expression x ∈ A means “x is an element of A.” For example, if A = {1, 2, 3},
then 1 ∈ A.

2. The expression A ⊆ B means “A is a subset of B,” which in turn means “every element
of A is an element of B.” In symbols, A ⊆ B if and only if given x ∈ A we have x ∈ B.
For example, if A = {1, 2} and B = {1, 2, 3}, then A ⊆ B.

3. If A consists of all elements x such that a property P is true for x, then we often write

A ={x | P is true for x} .

For example, if P is the property “is a positive real number,” then the interval (0,∞) is
the set

(0,∞) ={x | x is a positive real number} .

Usually we will consider x to be an element of a larger “universal” set, and we will indicate
that universal set in the notation:

(0,∞) ={x ∈ R | x > 0} .

4. The expression A∪B denotes the union of A and B. The set A∪B is the set of all
elements in either A or B. For example,

{1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}.

5. The expression A∩B denotes the intersection of A and B. The set A∩B is the
set of all elements in both A and B. For example,

{1, 2, 3, 4} ∩ {3, 4, 5, 6} = {3, 4}.

6. If Λ is a set of indices and, for each λ ∈ Λ, Aλ is a set, then we denote by⋃
λ∈Λ

Aλ

the set of all elements x such that x ∈ Aλ for at least one λ ∈ Λ. Likewise,⋂
λ∈Λ

Aλ

denotes the set of all elements x such that x ∈ Aλ for all λ ∈ Λ.

7. The expression A \ B denotes the set-theoretic difference of A from B.
The set A \ B consists of all elements of B that are not in A. In symbols, A \ B =
{x ∈ A | x 6∈ B}. For example,

{1, 2, 3, 4} \ {3, 4, 5, 6} = {1, 2}.

8. The symbol ∅ denotes the empty set, which has the property that x 6∈ ∅ for any
possible element x.
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9. The expression A×B denotes the Cartesian product of A and B. The set A×B
is the set of all ordered pairs whose first coordinate is an element of A and whose second
coordinate is an element of B. For example,

{1, 2} × {3, 4} =
{

(1, 3), (1, 4), (2, 3), (2, 4)
}
.

10. If A = B, we sometimes write A2 = A × A, A3 = (A × A) × A, and so on. For
example,

R2 = R× R ={(x, y) | x, y ∈ R}

and
C3 = C× C × C ={(z1, z2, z3) | z1, z2, z3 ∈ C} .
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List of Notation

∅ the empty set, p. 304
N natural numbers

= {1, 2, 3, . . .}
Z integers

= {0,±1,±2,±3, . . .}
Q rational numbers

=
{m
n

∣∣∣ m,n ∈ Z, n 6= 0
}

R real numbers
C complex numbers

=
{
x+ iy

∣∣ x, y ∈ R, i2 = −1
}

Cn×n n× n matrices with
entries in C

ak[f ], p. 65
Ak[f ], p. 81
arg(z), p. 153
Arg(z), p. 153
A(z0; r, R), p. 230
bk[f ], p. 65
Bk[f ], p. 81
B(z0; r), p. 164
B(z0; r), p. 164
B∗(z0; r), p. 164
C(I), p. 5, 272
Cn(I), p. 5, 272
C∞(I), p. 5
C∞(D), p. 206
Cper([−π, π]), p. 83
Cnper([−π, π]), p. 83
C1

pw(I), p. 276
C0(R), p. 95
Cω(I), p. 206
ck, p. 75
∂x[f ], p. 5
D(T ), p. 297
ek, p. 75
ek, p. 290

Ea, Ea, p. 92
f(a·), p. 93
f(·+ d), p. 93
f(x±), p. 276
fe, p. 79
fo, p. 80
f̂(k), p. 65, 91

f ∼=
∞∑
k=1

αkφk, p. 292

FS[f ], p. 66
FSC[f ], p. 66
FCS[f ], p. 81
FSS[f ], p. 81
F[f ], p. 91
F−1[f ], p. 96
f̂ , p. 96
f ∗ g, p. 102
Im(z), p. 259
ker(T ), p. 286
`(γ), p. 183
Lp(R), p. 278
log(z), p. 157
Log(z), p. 157
R([a, b]), p. 272
Rloc(I), p. 278
Re(z), p. 259
Res(f ; z0), p. 240
sk, p. 75
Sdf , p. 93
Sn[f ], p. 64
span(B), p. 292
W [f, g], p. 27
x · y, p. 288
|z|, p. 259
z, p. 259
|z − z0| = r, p. 164
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[z1, z2], p. 174
1(x), p. 93
χA, p. 21
χ(γ; z), p. 244
γ1 ⊕ γ2, p. 176
γ−, p. 175
∆(z1, z2, z3), p. 197
∂∆(z1, z2, z3), p. 197∫
γ

f(z) dz, p. 180∫
|z−z0|=f

f(z) dz, p. 182∫
[z0,z1]

f(z) dz, p. 182

∫ ∞
−∞

f(x) dx, p. 278

P.V.

∫ ∞
−∞

f(x) dx, p. 282

〈f, g〉, p. 287
〈f, g〉L2([a,b]), p. 288

〈f, g〉L2 , p. 75

‖f‖, p. 286, 289
‖x‖p, p. 286
‖f‖L2([a,b]), p. 287

‖f‖L2 , p. 75

‖f‖Lp(R), p. 279

σpt(T ), p. 297
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