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1. Introduction

[T]he world is changing: I feel it in the water,
I feel it in the earth, and I smell it in the air. —Treebeard, The Lord of the Rings

1.1. Main goals and key statements.

The goal of this course is to learn how to predict the future. Knowledge of the future is
equivalent to answering the key question

“What are things like at this moment in time?”, (KQ)

where “this moment in time” can be any moment in time. Throughout the course, whatever
we are doing, a good way to gain perspective is to ask ourselves (KQ) in the context of the
particular problem that we are solving.

One plausible answer to the vague question (KQ) is the following key statement:

“How things are depends on how things were and how things changed. (KS1)

Hopefully a moment’s thought and reflection on your own personal life experiences will
indicate the plausibility of (KS1).

This is a mathematics course, so let’s pose our key question (KQ) and (first) key statement
(KS1) in mathematical language and notation — specifically in the language and notation
of calculus. First, by “things” we will mean the values of a function — maybe the number
of rabbits in a certain geographic region, the percentage of a population that has a disease,
or the position of an object relative to some point of origin. Call this function x and let t
be its independent variable. Then “how things are” at time t is the value x(t).

Next, as soon as we hear the word “change” in a mathematical context, we probably
should think of the derivative. In this course we will typically denote the derivative with
“dot” notation: the derivative of the function x at time t is1

ẋ(t) := x′(t) =
dx

dt
= lim

h→0

x(t+ h)− x(t)

h
= lim

τ→t

x(t)− x(τ)

t− τ
.

By the way, the symbol τ is the Greek letter “tau,” and we will use it often when we want
to write something that looks almost like t.

Third, the key statement (KS1) makes reference to “how things were” — that is, to some
prior point in time. Suppose that we know “how things were” at some time t0 in the past,
and now we want to know “how things are” at time t, with t0 < t. That is, we know the
value x(t0), and we want to know the value x(t). We can figure this out if we know “how
things changed.” This will involve the derivative, but not just the derivative in isolation.

Namely, calculus tells us that the net change in “things” from time t0 to time t is the
integral ∫ t

t0

ẋ(τ) dτ.

1 I will frequently use the “:=” notation when defining a quantity for the first time. We should read the
sentence “ẋ(t) := x′(t)” as “ẋ(t) is defined to be equal to x′(t),” and of course x′(t) is the derivative of x at
t.
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And, in particular, the fundamental theorem of calculus tells us∫ t

t0

ẋ(τ) dτ = x(t)− x(t0).

Rearranging, we have

x(t) = x(t0) +

∫ t

t0

ẋ(τ) dτ. (FTC)

The statement (FTC) is the exact mathematical formulation of our first key statement (KS1).

x(t) = x(t0) +

∫ t

t0

ẋ(τ) dτhow things are

how things were

how things changed

And so it looks like our key question (KQ) is easy to resolve: figure out one value in the past
and the derivative, then integrate and add. All too easy!

How do we figure out that derivative? The derivative is “how things are changing” at a
moment in time, and some thought about “how things change” should suggest the plausibility
of a second key statement:

“How things change depends on when change happens and how things are then.” (KS2)

For example, consider the growth of a population of rabbits. (We will be doing this a
lot.) The growth rate probably depends on the amount of food available to the rabbits, and
that amount should vary over the course of the year. And if there are more rabbits, it is
likely that there are more mating pairs available, and thus even more rabbits to come. But if
there are too many rabbits, maybe they will eat all the food, and the population will decline.
So, the growth rate of the rabbit population should depend on both time and the number of
rabbits.

Thus we might recast our second key statement (KS2) by saying that the derivative
should depend on both time (which we know it already does) and the value of the original
function at that point in time. We write this symbolically as

ẋ(t) = f(t, x(t)). (ODE)

Here f is a function of the two variables t and x, and so we will often consider values of
the form f(t, x). Using x as both the dependent variable of a function that depends on t
and as the independent variable of a function that also depends on x can lead to no end of
confusion, but it’s something we’ll have to live with.

We have now met the principal object of study in this course: the ordinary differential
equation. An ordinary differential equation is just an equation of the form
(ODE), where the function f is given to us, and we want to find a function x that solves
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(ODE) for all times t at which x is defined. We will spend most of the course solving
equations like (ODE), as well as contemplating what “solving” actually means.

For now, here’s why we have a problem. The equation (FTC) expresses the values of x
in terms of one past value x(t0) and the derivative ẋ. But (ODE) says that ẋ depends on x!
If we combine (FTC) and (ODE), then we get

x(t) = x(t0) +

∫ t

t0

f(τ, x(τ)) dτ. (FP)

The equation (FP) is a “fixed point” equation for x: the function x equals some expression
depending on x (and so doing the right hand side to x doesn’t change, but rather “fixes,” x).

This seems to be useless. To know the value x(t), we have to be able to calculate that
integral over the interval [t0, t], and so we will need to know the value f(t, x(t)) — which
means we need to know x(t). But that is exactly what we are trying to find.

A course in ordinary differential equations resolves the tension among the statements
(FTC), (ODE), and (FP). Specifically, we will learn how to write a variety of worthwhile
problems in the form (ODE), or a form like that. (The thing that everyone learns in physics,
“force = mass × acceleration,” would involve a second derivative on x, not ẋ.) Then we will
learn techniques for solving (ODE), which will depend greatly on what f is.

Setting up a differential equation to model a particular phenomenon — figuring out f in
(ODE) — is itself a nontrivial task, and so most of our models and phenomena will be “trivial”
constructions; the goal here is to get to the differential equations, not model the whole world.
“Solving” an equation will involve three related approaches. In the analytic approach, we
find explicit formulas for solutions to problems; this is probably what we think “solving” an
equation means (and for good reason), but only very special equations have explicit solution
formulas. In the the qualitative approach, we use certain features of problems to guarantee
the existence of solutions and then predict their behavior; often knowing how a solution
behaves over long times is more useful than knowing its precise formula. In the numerical
approach, we convert our “continuous” problems to “discrete” ones that a computer can be
taught to solve with results that a human brain can be taught to interpret.

This is not to disparage “formulaic” or “symbolic” techniques, and indeed there are a
handful (at least four, but probably no more than seven) that you simply must know to
be successful in this course and whatever requires differential equations afterward. We will
certainly strive to develop a robust understanding of those analytic techniques. Let’s not kid
ourselves, though: a computer can do most of those techniques — but a computer probably
can’t interpret the results of those techniques, or even set up the problem for you in the first
place so that it’s amenable to those techniques.

Now, if you have to go to a computer for every little thing, like calculating

d

dt
[t2] = 2t or

∫
cos(3t) dt =

sin(3t)

3
+ C,

then something has gone very wrong with your education. (Harsh but true.) On the other
hand, if you don’t have a computer to help you with a problem that actually matters to your
life and the larger world, then you probably have much bigger problems!
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The following analyst’s creed summarizes our relationship with formulas in this course:

“Having a formula for something is not the same as understanding that thing.” (AC)

This is where we finished on Monday, August 15, 2022.

1.2. Three models of population growth.

The previous section was very, and intentionally, vague. What exactly are the “things” that
we might study? For a particular kind of “thing,” what function f should we use to govern
how that thing changes, as in (ODE)?

Here we will practice developing some simple models of “things” and how they change.
That is, we will construct some differential equations. The perennial challenge of any math-
ematical model is maintaining the balance between a physically realistic model that captures
“enough” of the “real world” and a mathematically tractable model that can be analyzed with
a reasonable amount of time and effort.

Once we have the models, we will try to learn what solutions to the underlying differential
equations do and interpret that behavior in light of the “real world.” In particular, we will
try to do this without having explicit formulas for solutions, because very often there aren’t
any! Rather, we will use our knowledge of calculus to divine the behavior of solutions.

Going forward, many of our models will arise because of proportional relationships be-
tween quantities. Intuitively, two quantities are proportional if one is always a multiple of
another; for example, the circumference of every circle is proportional to its radius (equiva-
lently, its diameter). Here is a formalization of this concept for future use.

1.2.1 Definition.
Two time-dependent quantities A and B are proportional if there exists a nonzero
real number r such that

A(t) = rB(t)

for all t at which A and B are defined.

We will study lots of population models because (1) they are fairly easy to construct, (2)
many important kinds of differential equations have incarnations as some kind of population
model, and (3) we have a good deal of intuition about how populations might grow, so we
can test the worth of our eventual solutions. A calculus caveat: tpically when we count
populations, we do so with integers. But calculus is inherently continuous, and taking the
derivative of an integer-valued function should make us uneasy. We’ll always assume that
either the population is so large, or our units of measurement are so skewed, that taking
noninteger, fractional counts of this population makes sense — like saying that 8.8 million
people live in New York City right now.

1.2.1. Exponential growth.

How fast a population is growing depends on many factors. As we noted earlier, a higher
population allows for more interactions among members and thus more mating opportunities



1. Introduction 8

and thus more offspring; a lower population does the opposite. One very simple model of
population growth, then, is to assume that a population’s rate of change is directly pro-
portional to the current population. (There are any number of things wrong about this
assumption; we’ll address those presently, so just suspend disbelief for now.)

Suppose that at time t there are x(t) members of this population, so the rate of change
of this population at time t is ẋ(t). Then we are assuming that x and ẋ are proportional, so
Definition 1.2.1 gives us a nonzero real number r such that

ẋ(t) = rx(t) (1.2.1)

for all times t.
The simple equation (1.2.1) will be a source of many ideas and techniques that we will

use repeatedly in this course. We will analyze it in the following steps.

1. Right now, the least important thing about (1.2.1) is its analytic solution, which is
x(t) = cert for any constant c. You probably remember that from calculus, and you can
check that this formula works out, but we’ll defer figuring out this formula from scratch for
some time.

2. Let’s check notation. With r 6= 0 fixed, define a function f of the two variables t and x
by

f(t, x) := rx.

Note that f is really independent of t. Then the equation (1.2.1) has the form

ẋ(t) = f(t, x(t)),

just as we saw in (ODE).

3. The number r is a parameter of the problem (1.2.1) — a number that is constant in
a given incarnation of the problem but whose value could change to allow the problem to
model different scenarios. Depending on the type of population that we are trying to model
with exponential growth, we will probably need different values of r.

4. For simplicity, we often suppress some of the t-dependence in our notation. For example,
we write

ẋ = rx

instead of (1.2.1), or
ẋ = f(t, x).

Context will often make clear whether we are referring to x as the independent variable of
f or the dependent variable of t.

5. Populations typically don’t arise ex nihilo. Say that we are tracking the growth of this
population from time t = 0. (There will be plenty of circumstances when we want to track
growth starting at time t0 6= 0, but we’ll do that later.) Assume that we know the initial
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population: x(0) = x0 for some number x0. Then we want to solve a more specific problem
than (1.2.1): the pair of equations {

ẋ(t) = rx(t)

x(0) = x0.
(1.2.2)

This pair of equations is not merely an ordinary differential equation but rather an initial
value problem (IVP), since it asks for the solution x of the ODE ẋ = rx with the
“initial value” x(0) = x0.

6. Again, a moment of calculus tells us that the solution is x(t) = x0e
rt. Say that we didn’t

know this. What can we learn about the IVP (1.2.2) without jumping to a formula for
the solution? There will be plenty of times to come when we simply can’t find an explicit
formula, but we can be assured that, nonetheless, a solution “exists.”

So, let’s work backward: assume that (1.2.2) has a solution. What do we know about it?
This is a safe situation, since we know what solutions to exponential growth really are, and
so we can always check our predictions against those sweet, sweet formulas.

7. The data in (1.2.2) are the parameter r and the initial value x0. We have to start
somewhere, so let’s assume r = 0. Then the differential equation ẋ = rx just becomes

ẋ(t) = 0

for all t at which x is defined. This means that x is not changing, and so x is constant:

x(t) = x(0) = x0

for all times t at which x is defined. And since constant functions are defined at all real
numbers, it looks like the solution is just x(t) = x0 for all t.

8. Now suppose r > 0. It’s reasonable to assume that for any “real” population, the initial
number of members is positive: x0 > 0. Then since r > 0 and x0 > 0, we have

ẋ(0) = rx(0) = rx0 > 0.

Thus x is increasing at time t = 0; equivalently, the slope of x at t = 0 is positive. So, if we
look at the graph of x “close” to t = 0, it looks like this.

t

x(t)

We know more: since x is increasing at time t = 0, for a time t1 “close to” but greater
than t = 0, we should have x(0) < x(t1). In particular, x(t1) > 0. Thus

ẋ(t1) = rx(t1) > 0,
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and so x is again increasing at time t = t1. Moreover, x is increasing faster at time t = t1
than at t = 0:

ẋ(t1) = rx(t1) > rx(0) = ẋ(0).

Then if we sketch the slopes of x at both times t = 0 and t = t1, we get a picture like this.

t

x(t)

t1

We can then iterate this analysis starting at time t = t1 to suggest that x is strictly
increasing on its domain. Moreover, we can study the concavity of x by calculating its
second derivative, which we denote by ẍ. We have

ẍ(t) =
d

dt
[ẋ(t)] =

d

dt
[rx(t)] = rẋ(t) = r(rx(t)) = r2x(t). (1.2.3)

Thus ẍ(t) > 0 whenever x(t) > 0. Since x(0) > 0 and x is strictly increasing, we expect
ẍ(t) > 0 for all times t at which x is defined. And so x is concave up. Here, then, is a
candidate for the graph of x.

t

x(t)

In particular, because x is increasing and always getting steeper, we expect the values of x
to blow up to ∞ over long times. That is, if x is defined for all times t, we expect

lim
t→∞

x(t) =∞.

There’s just one problem: we haven’t figured out precisely all those times at which x is
defined. Plenty of functions aren’t defined for all real numbers; maybe there is some “end”
time t = Tω at which x fails to be defined. Then the graph of x might have a vertical
asymptote at t = Tω like the picture below.

t

x(t)

Tω
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Again, because x is increasing and concave up, we expect that if Tω < ∞, then we still
have the same end behavior as before:

L := lim
t→T−

ω

x(t) =∞.

We can be reasonably sure that this limit isn’t finite, for if L <∞, then

lim
t→T−

ω

ẋ(t) = lim
t→T−

ω

rx(t) = rL.

Thus x would have finite slope at t = Tω, and so it looks like we could just continue drawing
the graph of x past t = Tω. But then x could be defined for values of t larger than Tω, which
goes against our assumption above.

t

x(t)

Tω
t

x(t)

Tω

9. Since we know that x(t) = x0e
rt solves (1.2.2), we could have figured all of this out from

the formula (and in particular deduced Tω =∞), but hopefully this discussion illustrates the
power of qualitative methods. Without a formula for (1.2.2), we got a pretty good idea of
the population’s behavior over long times (it explodes). Nonetheless, we did not (1) assure
ourselves of the existence of a solution to the problem, (2) figure out if the solution exists for
all time or not, and (3) suss out enough information about that solution to speak cogently of
its behavior at particular finite moments in time. Moreover, even though we can check that
the analytic formula x(t) = x0e

rt solves (1.2.2), we probably don’t have the tools at hand
to prove that this is the only solution. And that’s an important step — we don’t want two
competing formulas giving us two totally different predictions of the future.

10. We did all the analysis above assuming r ≥ 0 and x0 > 0. If x0 = 0, then

ẋ(0) = rx(0) = rx0 = 0,

and so the graph of x has a horizontal tangent at t = 0. This doesn’t tell us if x is increasing,
or decreasing, near t = 0.

However, if we stare at the differential equation ẋ = rx long enough (it’s always a good
idea to stare long and hard at differential equations), we might see that plugging in x = 0
on both sides makes for a true equality. That is, suppose x(t) = 0 for all t. Then

ẋ(t) =
d

dt
[0] = 0 and rx(t) = r · 0 = 0.

Thus taking x(t) = 0 for all t solves ẋ = rx, and consequently the initial value problem with
x0 = 0.
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In other words, a nonexistent population that grows exponentially. . .remains nonexistent.
In particular,

lim
t→∞

x(t) = 0,

a pretty sharp contrast to the case x0 > 0.

This is where we finished on Wednesday, August 17, 2022.

11. Suppose x0 < 0, but keep r > 0. From the modeling point of view, a negative population
is probably useless, but mathematically it’s worth checking out. Let’s do the prior analysis
more succinctly. We have

ẋ(0) = rx0 < 0,

so x is decreasing at time t = 0. Then for times t close but greater than 0, we have

x(t) < x(0) < 0,

so x is decreasing and becoming “more negative.” Also, by (1.2.3), we have

ẍ(t) = rx(t) < 0,

so x is concave down. Then the graph of x might be

t

x(t)

This suggests that, if x is defined for all time,

lim
t→∞

x(t) = −∞,

which is a remarkable change in the end behavior of x from the cases x0 > 0 and x0 = 0!

12. We can summarize all of the work above by graphing three putative solutions to ẋ = rx
with r > 0 and different signs on x(0) = x0. We see that as soon as the initial value x(0)
“passes through” the constant solution x = 0, the end behavior changes radically.

t

x(t)

x

f(x) = rx, r > 0
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To the right above we have graphed f(x) = rx with r > 0. (Note that in the left
graph, the independent variable is t and the dependent variable is x, while on the right x is
independent and f is dependent. Notation is a nightmare!) It is no accident that the graphs
of increasing solutions x have initial conditions x(0) = x0 where f(x0) > 0, while the graphs
of decreasing solutions have initial conditions x(0) = x0 with f(x0) < 0. Also, the constant
solution x = 0 arose by solving f(x) = 0. This suggests a strategy going forward: to gain
intuition about the behavior of solutions to a problem ẋ = f(x), study f .

1.2.2. Logistic growth.

Exponential growth models, as the name indicates, allow for only two kinds of end behavior
for a population: either the population explodes to possess infinitely many members (x(t)→
∞), or it dies off (x(t) → 0). This is wholly unrealistic for many populations, which often
exhibit neither kind of extreme behavior. But “real” populations do not just grow in a manner
dependent on the current population. Many other factors affect (negatively) the rate of a
population’s growth: internal conflict/interaction within the population or with another
population; limited food, space, or necessary resources; the spread of a disease through the
population; harvesting of the population by some outside source; birth control. Pretty much
all of these population constraints can be realized as a differential equation, and we’ll look
at many of them (and the rich underlying theory) throughout the course.

We’ll start here by modeling the negative contribution of interaction among members of
a population. In doing so, we need a paradigm that will reappear frequently. Suppose that
a certain quantity changes via both an “input” source and an “output” source. In terms of
population, “input” could be births and “output” could be deaths. Then the rate of change
of that quantity satisfies

Rate of change = Rate in− Rate out. (RI−RO)

To keep things simple, suppose that we have a population that increases via exponential
growth. Then the “rate in” is proportional to the existing population; say that the “rate in”
term is αx. We are writing α, not r, intentionally. Since we want growth, we take α > 0.

Now suppose that the population loses members due to interactions among that popula-
tion — competition for food, spreading disease, eating each other because they’re delicious,
any number of horrible things that we do to each other. If there are x members in the
population, then any one member of that population can interact with x−1 other members.
Then there are x(x− 1) possible interaction pairings in that population and thus x(x− 1)/2
distinct2 possible interaction pairings. If the attrition rate due to interaction is proportional
to the number of distinct interaction pairings, then the “rate out” term is βx(x − 1)/2 for
2 Broadly, this follows from the counting principle that if you choose one option from among m options, and
then choose another option from among n options, you can make mn choices. We choose one member
from among the x members in the population, and then we choose one member from the remaining x− 1
members who are not that first member. This gives us x(x − 1) choices. But because an interaction of
Member A with Member B is probably (though not necessarily) the same as an interaction of Member B
with Member A, we divide by 2 so we don’t overcount. Honestly, because of the constant of proportionality
β that we introduce below, the factor of 1/2 is not hugely important. If this confuses/excites you, go study
discrete math.
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some constant β > 0. Thus the population’s rate of change is

ẋ = αx− βx(x− 1)

2
. (1.2.4)

It will be convenient (trust me!) to factor this as

ẋ = rx
(

1− x

N

)
, r :=

2α + β

2
, N :=

2α + β

β
. (1.2.5)

Go ahead and do the algebra to check that (1.2.4) and (1.2.5) are the same. The differential
equation in (1.2.5) is the logistic equation; note that r > 0 and N > 0.

What do solutions to the logistic equation do? What we know from calculus probably
won’t give us a clue as to formulas for solutions, so let’s use some of the qualitative ideas
that we developed for exponential growth to get some ideas.

We first abbreviate
f(x) = rx

(
1− x

N

)
, (1.2.6)

so the logistic equation is just ẋ = f(x). Good luck solving this as easily as ẋ = rx!
But motivated by exponential growth, we might expect the end behavior of a solution

to ẋ = f(x) to relate to the sign of f at the initial condition. That is, is f(x0) positive,
negative, or zero? If we stare at the formula for f for a while (and maybe take some “easy”
values of the parameters r and N , like r = 1 and N = 1), eventually we see that the graph
of f always looks like the sketch below.

x

f(x)

N
N/2

rx

So, f is positive on the interval (0, N) and negative on (−∞, 0) and (N,∞). Moreover,
f(0) = f(N) = 0. This tells us the values of x (not t!) at which ẋ is positive and negative
and thus where x is increasing and decreasing.

With this in mind, we analyze the behavior of solutions depending on where their initial
condition x(0) = x0 falls.

Case 1: 0 < x0 < N . If 0 < x0 < N , then ẋ(0) > 0, and so x is increasing at time t = 0.
As usual, for t > 0 but close to 0, we have x(t) > x(0) = x0. As long as x(t) < N , we will
have f(x(t)) > 0, and so ẋ(t) > 0, and so x is increasing at time t.

Can x increase forever, like exponential growth, and explode to ∞? As the values of x
get closer to N , we see from the graph of f that the values of f(x) get closer to 0, and so ẋ



1. Introduction 15

gets closer to 0. That is, the graph of x gets flatter as it gets closer to N — maybe N is a
horizontal asymptote of x and

lim
t→∞

x(t) = N,

at least if x is defined for all times t. Consequently, it’s reasonable that the graph of x
with 0 < x(0) < N could look like one of the sketches below. (There is a subtle distinction
depending on whether 0 < x0 < N/2 or N/2 < x0 < N . Can you figure it out? It involves
concavity.)

t

x(t)

x0

N

N/2

t

x(t)

x0
N

N/2

We’d need to do a lot more work to figure out (1) the values of t for which a solution exists
and (2) if x could ever hit N or go beyond.

This is where we finished on Friday, August 19, 2022.

Case 2: x0 = N . Then ẋ(0) = f(x(0)) = f(N) = 0, so x is neither increasing or decreasing
at t = 0. However, we saw this before with exponential growth, and so we might expect that
the constant function x(t) = 0 solves the logistic equation for all times t.

ẋ(t) =
d

dt
[N ] = 0

for all t. On the other hand,
f(x(t)) = f(N) = 0

for all t. Indeed, ẋ(t) = f(x(t)) for all t.
Now, this doesn’t rule out the possibility that there is another solution — call it y — to

the logistic equation with y(0) = 0 and y(t) 6= 0 for some t 6= 0. We need deeper theory to
prove that. But at least we have a solution.

You can imagine that other cases include x0 > N and, less physically realistic (but still
mathematically interesting) x0 ≤ 0. Can you try to analyze those cases based on whether x
is increasing or decreasing at t = 0?
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The two cases above suggest that the parameter N is somehow special in this model. If
the initial population is positive but less than N , then the population seems to tend toward
N in the long run; if the population starts at N , the model allows (perhaps compels!) it to
stay at N forever. The value N is called the carrying capacity of the logistic model,
and it represents a sort of “ideal” population that is in balance with the existing competition
among members.

I hope the analysis so far makes sense (all those properties of increasing/decreasing
functions from calculus), but I hope you’re also starting to get annoyed. We are using weasel
words such as “seems like” or “should” or “can imagine,” but we haven’t done anything too
mathematically rigorous. In particular, for the logistic equation we have no firm evidence
that solutions even exist in the case of 0 < x(0) < N ! We will slowly and surely remedy
these annoyances. Before doing so, we consider one final population model.

1.2.3. A silly model of time-dependent population growth.

Our exponential and logistic growth models have been time-independent in the sense that
both (1.2.1) and (1.2.6) have the form

ẋ = f(x), (1.2.7)

where f does not depend on time t. (Of course, the solution x definitely depends on t.) The
rate of change of x depends only on the value of x, not at the moment in time at which we
are consider x. For example, if x satisfies (1.2.7) and x(50) = x(100), then ẋ(50) = ẋ(100).
The fact that we are considering the rate of change at times 50 and 100 is irrelevant.

However, there are plenty of reasons to consider population growth with time affecting
the rate of growth — fertility or mating cycles, weather, and outside harvesting patterns
(crop harvesting, hunting season) can all affect growth rate in different ways at different
times. One very simple way to incorporate time-dependence into the growth rate is to allow,
contrary to Definition 1.2.1, time-dependence in the constant of proportionality. Say that a
population’s growth rate satisfies

ẋ(t) = r(t)x(t),

where now the “constant” of proportionality r can vary as a function r(t) of time. This could
allow a faster growth rate at some times (those times t when r(t) is relatively large) and a
slower growth rate, or even a decline in growth, at other times (when r(t) is a small positive
number, or maybe a negative number).

Taking
f(t, x) := r(t)x,

we can write this growth rate as
ẋ = f(t, x),

as usual. However, unlike the exponential and logistic models, the function f here now
depends on time t, not just the “state” x.

We will not analyze this model in any detail right now; the point is just to convince you
that time-dependent differential equations are worth considering. And consider them we
shall — a lot.
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1.3. Fundamental terminology and guiding questions.

So far, we have seen three problems that reasonably could be called differential equations:

ẋ = rx, ẋ = rx
(

1− x

N

)
, and ẋ = r(t)x.

All of these problems are equations (there’s an =) involving derivatives (there’s a ·), and
more precisely they have the form of the equation (ODE). If we are going to talk sensibly
about differential equations, we should have a precise vocabulary to set expectations and
eliminate ambiguities.

1.3.1. The true definition of an ODE.

1.3.1 Definition.
An ordinary differential equation (ODE) is an equation of the form

ẋ = f(t, x), (1.3.1)

where f is a function defined for t in some interval (a, b) and x in some interval (c, d).
The values a = −∞, c = −∞, b =∞, and d =∞ are all allowed.

A solution to the equation (1.3.1) is a differentiable function x defined on an interval
I such that

ẋ(t) = f(t, x(t)) (1.3.2)

for all x in I and that ẋ is continuous on I. (For (1.3.2) to make sense, tacitly we require
I to be a subinterval of (a, b) and x(t) to belong to (c, d).)

Why this definition? Definitions are not handed down to us from on high, even though it
often looks like that; definitions exist because, over time and after thought, people come to
realize that those definitions are the best way to capture a concept. I hope we can all agree
that the “pointwise” condition (1.3.2) is essential.

Why does a solution have to be defined on an interval? Remember that we should be
thinking of t as time. If our model only predicts the future from, say, 9 am to 12:19 pm,
and then again from 1:11 pm to 5 pm, that would be a pretty strange model — it just stops
working for one hour during the day. Requiring the solution to an ODE to be defined on an
interval helps keep the flow of time unbroken. Do not neglect consideration of the domain of
a solution to an ODE; often our solutions will end up defined for all time in (−∞,∞), but
not always. Whenever you find a formula for a solution to a differential equation — pause
and think about the analyst’s creed (AC) — you must be able to state its domain.

Why should the derivative be continuous? Most of the time, things not only change con-
tinuously; their rate of change evolves continuously. (Not always: flip a switch.) Requiring
ẋ to be continuous affords our model extra control over reality.
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1.3.2 Example.

Which of the following is an ODE?

(i) 2tẋ+ t2x = sin(t)

(ii) (ẋ)2 = x

Solution. An equation involving a function and its derivative is an ODE only if we can
rewrite it in the form (1.3.1). Algebraically, we must be able to isolate3 ẋ.

(i) It is fairly easy to solve for ẋ, I think:

ẋ =
sin(t)− t2x

2t
=: f(t, x).

And so this equation is an ODE. Note that f is not defined at t = 0.

(ii) If we have (ẋ)2 = x, then we get either ẋ =
√
x or ẋ = −√x. We do not have a single

“formula” for ẋ, and so this is not an ODE. If we were given the problem ẋ =
√
x, then, yes,

that’s an ODE, but the ± ambiguity of (ẋ)2 = x ruins things. N

There is something very comforting about differential equations: we can pretty much
always check our work. In general, when someone asks you to “check” that a certain function
solves an ODE, you do not have to come up with the solution from scratch and get what
they got. Rather, plug and chug.

1.3.3 Example.

Check that the function x(t) = ecos(t) solves the ODE ẋ = − sin(t)x.

Solution. We differentiate

ẋ(t) =
d

dt
[ecos(t)] = ecos(t)

d

dt
[cos(t)] = ecos(t)[− sin(t)].

Then we rearrange:
ẋ(t) = [− sin(t)]ecos(t) = − sin(t)x(t).

And so x is a solution. N

As we saw in our population models, most of the time in a “physical” scenario we do not
meet just an ODE by itself, but rather one with an initial condition appended.

3 I don’t want to say “solve for ẋ,” because the goal will be to solve for x, really.
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1.3.4 Definition.
An initial value problem (IVP) is a pair of equations of the form{

ẋ = f(t, x)

x(t0) = x0,
(1.3.3)

where ẋ = f(t, x) is an ODE, and t0 and x0 are given real numbers with f defined at
t = t0. A solution to the IVP (1.3.3) is a function x that solves the ODE ẋ = f(t, x)
in the sense of Definition 1.3.1, that is defined at t = t0, and that satisfies x(t0) = x0.

1.3.2. Direct integration.

It turns out that you already know how to solve a huge class of ODE. Suppose that in the
equation ẋ = f(t, x) the function f is independent of x. By virtue of making it through
calculus, you are an expert in solving ẋ = f(t).

1.3.5 Example.

Find all functions x such that ẋ = t.

Solution. This is asking us to find all functions x that differentiate to t. In other words,
what are all the antiderivatives of t? They are∫

t dt =
t2

2
+ C,

where C is a constant independent of t. In other words, if ẋ = t, then there is a constant C
such that

x(t) =
t2

2
+ C

for all t. By the way, the domain of x is always (−∞,∞), no matter what C is. Since
changing the value of C changes the value of x, there are infinitely many solutions to this
ODE; specifically, changing C shifts the graph of the solution up or down the x-axis. N

I have a love/hate relationship with the indefinite integral, and by the end of the course,
I hope you do, too. Recall that the symbol∫

f(t) dt

denotes the set of all functions whose derivative is the function f , i.e., the set of antideriva-
tives of f . If F is one antiderivative of f , then calculus tells us that any other antiderivative
G has the form G(t) = F (t) + C for some constant C. Even though the symbol

∫
f(t) dt

denotes a set, we still say things like

x(t) =

∫
f(t) dt (1.3.4)
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and treat x as a single function. This leads to all sorts of notational unhappiness. For
example, we typically agree that changing the variable of integration in an indefinite integral
doesn’t matter: ∫

f(t) dt =

∫
f(u) du.

But then if we try to define a function x by (1.3.4), we get something like

x(t) =

∫
f(t) dt =

∫
f(u) du = x(u).

So x(t) = x(u)?!
We can avoid this sort of confusion via two strategies: (1) Don’t think too hard about it

and (2) Use a definite integral whenever possible. Definite integrals play the precise role of
antiderivatives thanks to the fundamental theorem of calculus (FTC).

1.3.6 Theorem (FTC).

Let f be continuous on the interval [a, b] and define, for t in [a, b],

F (t) :=

∫ t

a

f(τ) dτ.

Then F is differentiable on [a, b] and Ḟ (t) = f(t) for all t in [a, b].

We can use the FTC to solve, once and for all, every ODE of the form ẋ = f(t). More
exactly, we will do this for the related IVP.

1.3.7 Theorem (Direct integration).

Let f be continuous on the interval I, let t0 be a point in I, and let x0 be a real number.
Then the only solution to the IVP {

ẋ = f(t)

x(t0) = x0
(1.3.5)

is

x(t) = x0 +

∫ t

t0

f(τ) dτ.

Moreover, x is defined on all of I.

Proof. First let’s verify that x as defined is a solution. We use the FTC to calculate

ẋ(t) =
d

dt

[
x0 +

∫ t

t0

f(τ) dτ

]
= 0 +

d

dt

[∫ t

t0

f(τ) dτ

]
= f(t).

Then we use properties of integrals to calculate

x(t0) = x0 +

∫ t0

t0

f(τ) dτ = x0 + 0 = x0.



1. Introduction 21

Finally, suppose that y also solves the IVP (1.3.5). We need to show that y(t) = x(t) for
all t. Since ẏ = f(t), we can use the FTC to write

y(t)− y(t0) =

∫ t

t0

ẏ(τ) dτ =

∫ t

t0

f(τ) dτ,

and thus, since y(t0) = x0,

y(t) = y(t0) +

∫ t

t0

f(τ) dτ = x0 +

∫ t

t0

f(τ) dτ = x(t).

Theorem 1.3.7 is our first existence and uniqueness result, and one of roughly two that we
will be able to prove ourselves without breaking too much of a sweat. This theorem tells us
that an IVP has a solution (existence) and that there is only one possible solution (unique-
ness). Additionally, the theorem tells us explicitly the domain of the solution. Subsequent
existence and uniqueness theorems will assure us that solutions to more complicated ODE
exist and that if we incorporate an initial condition, then the associated IVP has only one
solution. However, we will often have to work harder to find domains.

1.3.8 Example.

Find all solutions to the IVP {
ẋ = et

2

x(0) = 0.

Solution. The direct integration method tells us that the only solution is

x(t) = 0 +

∫ t

0

eτ
2

dτ =

∫ t

0

eτ
2

dτ.

We cannot make further progress on simplifying that integral using “elementary” functions,
however. N

Direct integration is a “complete success” story: we have a formulaic method for solving
any direct integration problem, and we know exactly which functions are solutions. (Of
course, we may not be able to do the “symbolic” integration easily, or at all!) We will have
relatively few “complete successes” in this course, so we should cherish them when we find
them.

However, let us recite the analyst’s creed (AC) once again: just because we have an
integral formula for the solution to a direct integration problem doesn’t mean we’re done.
The integral can help tremendously, but important questions about predicting the future
remain.

This is where we finished on Monday, August 22, 2022.
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1.3.3. The guiding questions.

Motivated by some of our evocative, but ultimately imprecise, calculus-based analysis of
population models, and spurred by our success with direct integration, here are the funda-
mental questions of our course. They are all deeper, more nuanced versions of our original
key question (KQ), now couched in the framework of ODE.

1. Do solutions to an ODE (IVP) exist? If so, how do we know that they exist? Our
profession of the analyst’s creed (AC) notwithstanding, is there a procedure for finding
formulas for those solutions? Most broadly, does this ODE (IVP) model allow us to predict
the future?

2. Are solutions to an ODE (IVP) unique? (We have infinitely many solutions in Example
1.3.5 but only one solution in Theorem 1.3.7 — but the latter involved an IVP.) If we have
found a solution, is it the only one? Most broadly, does this ODE (IVP) model predict only
one4 future?

3. If solutions exist to an ODE (IVP), where are they defined? What is their domain? Are
they defined for all real numbers5 in (−∞,∞) or strictly for a subinterval? Most broadly,
for how long does this ODE (IVP) model allow us to predict the future?

4. What do solutions to an ODE (IVP) do at the limit of their existence? For example, if
a solution x is defined for all time t ≥ 0, does the limit limt→∞ x(t) exist as a finite real
number, or as an extended real number (±∞)? If the solution does not have a limit at∞, is
it asymptotic to some more familiar function x∞ in the sense that limt→∞[x(t)− x∞(t)] = 0?
If a numerical or asymptotic limit exists, can we quantify “how fast” x approaches that limit?
And if a solution is only defined up to some finite time Tω, what happens as t gets close
to Tω? Is there some “breakdown” of the model at Tω? Most broadly, what happens in the
future?!

4 Or will we commit crimes against the Sacred Timeline by getting multiple solutions and predicting multiple
futures?

5 For all time. Always.
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2. First-Order Equations

The ODE ẋ = f(t, x) presented in Definition 1.3.1 lacked one fundamental word that I
intentionally omitted at the time: it’s a first-order ODE, because there is only a first-
order derivative in the problem. We will spend a great deal of time in this course on
first-order problems and then mostly focus on second-order problems, which, as you can
imagine, involve two derivatives (ẍ). We have already seen that first-order equations serve
as reasonable population models, and most of the other first-order models that we’ll consider
will also be population-based. First-order equations have tremendous value as models and
are also rich in accessible theory; in particular, many of the results that we develop for
first-order equations will motivate and illuminate techniques for second-order problems and
beyond.

2.1. Separation of variables.

The three population models of Section 1.2 were

ẋ = rx, ẋ = rx
(

1− x

N

)
, and ẋ = r(t)x.

Each of these models can be written in the form

ẋ = g(t)h(x).

Note that for exponential and logistic growth we have h(x) = 1, while in the third model
h(x) = x. Such differential equations have a special name and a special analytic solution
technique associated with them.

2.1.1 Definition.

An ODE ẋ = f(t, x) is separable if f has the special form f(t, x) = g(t)h(x) for two
functions g and h. That is, a separable ODE is an equation of the form

ẋ = g(t)h(x).

Separable differential equations are “separable” because they “separate” the t- and x-
dependencies very precisely. Separable equations arise in many models, including but not
limited to the population ones above, and there is a reasonably successful technique for
solving them analytically (i.e., with formulas). It turns out that solving the population
models above will introduce some distracting technical challenges, so we’ll begin with a
tamer toy problem.

2.1.1. A “toy” separable problem.

Consider the ODE
ẋ =

et

x2
. (2.1.1)

We can rewrite the right side as the product

et

x2
= et

(
1

x2

)
,
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and so we see that (2.1.1) is separable with

g(t) = et and h(x) =
1

x2
.

A bad way of proceeding is to imitate our prior success with direct integration and just
integrate both sides:

ẋ =
et

x2
=⇒

∫
ẋ(t) dt =

∫
et

x(t)2
dt =⇒ x(t) =

∫
et

x(t)2
dt+ C.

Now x appears on both sides of the equation, but we have no way of evaluating that
integral. . .because we don’t know what x is! In particular, don’t try to factor x(t) out
of the integral; you can’t, because x(t) depends on t and isn’t constant.

A better way of proceeding is to try to turn the given problem into a direct integration
problem. The following steps may not feel obvious, but they’re the right ones. Observe that
(2.1.1) is the same as

x2ẋ = et, (2.1.2)

once we multiply both sides by x2. Now, stare at the left side for a while, and maybe replace
ẋ with the more familiar Leibniz notation:

x2ẋ = x2
dx

dt
.

When in our prior calculus lives did we see the derivative appear as a factor in a product?
I claim that this happens all the time when you do the chain rule. So, how can we make the
function

x2
dx

dt

look like a chain rule derivative of something? We know a lot about polynomials, and x2

shows up in the derivative of x3. Just be careful in that x depends on t:

d

dt
[x(t)3] = 3x(t)2

dx

dt
.

This is not quite what we have in our toy problem. But we can move that 3 around:

d

dt

[
x(t)3

3

]
= x(t)2

dx

dt
. (2.1.3)

This is a major breakthrough: our toy problem (2.1.1) is the same as

d

dt

[
x(t)3

3

]
= et.

And this equation is saying that the derivative of x3/3 is just et. So let’s pop an integral on
both sides: ∫ (

d

dt

[
x(t)3

3

])
dt =

∫
et dt.
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We can do the integral on the right immediately:∫
et dt = et + C1.

There are going to be a couple of constants of integration before this is all over, and for now
I want to distinguish them, thus C1, not C.

The integral on the left is also easy because we are integrating a derivative:∫ (
d

dt

[
x(t)3

3

])
dt =

x(t)3

3
+ C2.

And so we get
x(t)3

3
+ C2 = et + C1. (2.1.4)

Our first move will be to combine these two constants of integration into one: put K =
C1 − C2. Since C1 and C2 are arbitrary numbers, so is K. (You did this all the time in
calculus when combining a bunch of indefinite integrals, right?) Then

x(t)3

3
= et +K.

Now we will start to solve for x:
x(t)3 = 3et + 3K.

Again, since K is arbitrary, so is 3K: put C = 3K. Thus

x(t)3 = 3et + C.

Finally, we can solve for x by taking the cube root:

x(t) = [3et + C]1/3.

And the cube root is defined for any number (not like those nasty square roots).
So, it looks like we have solved for x. Of course, you can, and should, check by differen-

tiating x that we got the right answer. I’m not going to do it here, but please do as I say,
not as I do.

I think that all our success came from two ideas: “separating” variables to go from (2.1.1)
to (2.1.2), and then recognizing the chain rule correctly in (2.1.3). How could we see that
antiderivative if we didn’t know it was there in the first place? We know that the product
x2ẋ should be the derivative of something. . .so let’s just introduce that something via an
indefinite integral. Specifically, integrate both sides of (2.1.2) to get∫ (

x(t)2ẋ(t)
)
dt =

∫
et dt.

I claim that the integral on the left is just made for u-substitution: with u = x(t), we
get du = ẋ(t) dt, and so∫ (

x(t)2ẋ(t)
)
dt =

∫
u2 du =

u3

3
+ C =

x(t)3

3
+ C.

This gets us, effectively, to (2.1.4).
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2.1.2. The general method of separation of variables.

Here we distill the results from our toy problem into a more general method for solving
separable differential equations. The third column is a reference to the steps from this toy
problem.

1. Obtain a separable problem. ẋ = g(t)h(x) ẋ = et
(

1

x2

)

2. Separate variables.
1

h(x)
ẋ = g(t) x2ẋ = g(t)

3. Integrate with respect to t.
∫

1

h(x(t))
ẋ(t) dt =

∫
g(t) dt

∫
x(t)2ẋ(t) dt =

∫
et dt

4. Change variables in x.
∫

1

h(x(t))
ẋ(t) dt =

∫
dx

h(x)

∫
x(t)2ẋ(t) dt =

∫
x2 dx

5. Try to evaluate integrals.
∫

dx

h(x)
=?,

∫
g(t) =?

∫
x2 dx =

x3

3
+ C,∫

et dt = et + C

6. Try to solve for x. ???
x3

3
= et + C

=⇒ x(t) = [3et + C]1/3

2.1.2 Example.

Use separation of variables to produce solutions to

ẋ = etx2.

Solution. This problem is separable, with g(t) = et and h(x) = x2. We separate variables:

1

x2
ẋ = et.

We integrate with respect to t: ∫
1

x(t)2
ẋ(t) dt =

∫
et dt.

We change variables in the first integral:∫
1

x(t)2
ẋ(t) dt =

∫
dx

x2
.
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We evaluate the integrals∫
dx

x2
=

∫
x−2 dx = −x−1 + C and

∫
et dt = et + C.

We try to solve for x, starting from

−x−1 = et + C.

We find
x−1 = −et + C,

and thus
x(t) =

1

−et + C
.

Each value of C gives us a different solution to the ODE. N

2.1.3 Example.

Solve the IVP {
ẋ = etx2

x(0) = 1.

Solution. We already know that defining x by

x(t) =
1

−et + C

with C constant produces solutions to the ODE. We need to choose C to meet the initial
condition. We want

1 = x(0) =
1

−e0 + C
=

1

C − 1
,

and so C has to satisfy
C − 1 = 1.

Thus C = 2, and the solution is

x(t) =
1

−et + 2
. N

This is where we finished on Wednesday, August 24, 2022.

The analyst’s creed (AC) reminds us that we should never just accept a formula and
consider ourselves done. Let’s answer some of the guiding questions for the problem that we
just studied.
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2.1.4 Example.

(i) With x(t) = 1/(−et + C) as the solution that we obtained in Example 2.1.2, what is
the domain of x?

(ii) If x is defined on an interval of the form (t0,∞), what can you say about limt→∞ x(t)?

Solution. (i) This function x is defined at all t such that −et + C 6= 0. That is, we need
et 6= C. If C ≤ 0, then et 6= C for all t, in which case the domain of x can be (−∞,∞). If
C > 0, then x is undefined when et = C, which happens exactly when t = ln(C). (Note that
ln(C) is not defined for C ≤ 0.) Thus for C > 0, the domain of x can be any interval6 that
does not contain ln(C). The two “biggest” such intervals are (−∞, ln(C)) and (ln(C),∞).

(ii) The preceding work shows that x is defined on (−∞,∞) if C ≤ 0 and on (ln(C),∞)
if C > 0. In either case, then, it makes sense to ask about limt→∞ x(t). We think about
calculus and obtain

lim
t→∞

et =∞ =⇒ lim
t→∞
−et = −∞ =⇒ lim

t→∞
−et + C = −∞ =⇒ lim

t→∞

1

−et + C
= 0. N

2.1.3. Equilibrium solutions.

We are now going to “break” the good results from Example 2.1.2 in an illustrative way.

2.1.5 Example.

Can you use the solutions x(t) = 1/(−et +C) to ẋ = etx2 from Example 2.1.2 to solve the
IVP {

ẋ = etx2

x(0) = 0?

Solution. Let’s try. We want to find C such that

0 = x(0) =
1

−e0 + C
=

1

−1 + C
.

If we multiply both sides by −1 + C, we get 0 = 1, which is impossible. Thus there is no
way to choose C to meet the initial condition x(0) = 0.

However, we might recall what happened with our introductory population models, where
we saw that an initial population of 0 could remain 0 for all time and satisfy the model. If
we put x(t) = 0 for all t, then we have both

ẋ(t) =
d

dt
[0] = 0 and etx(t)2 = et · 02 = 0,

and so x(t) = 0 solves the ODE ẋ = etx2 with x(0) = 0. That is, x(t) = 0 solves the IVP.
N

6 Recall that we demand that the domain of a solution to a differential equation be an interval.
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How can we reconcile this “missing” solution x(t) = 0 with the ones that we found from
separation of variables? The answer lies in a division problem. To separate variables, we
assumed that x solved ẋ = etx2, and then we divided by x2 to find

1

x2
ẋ = et.

From there, we integrated. However, we have no right to divide if x2 = 0! So, when we did
divide by x2, tacitly we were assuming x2 6= 0 (and thus x 6= 0). This caused us to “miss”
the solution x(t) = 0.

The following is an abstraction of how we can avoid this problem in the future.

2.1.6 Theorem.

Let g and h be functions and suppose that x∗ is a number such that h(x∗) = 0. Then
the function x(t) := x∗ solves the separable problem ẋ = g(t)h(x). Such a solution is an
equilibrium solution.

Proof. We calculate

ẋ(t) =
d

dt
[x∗] = 0 and g(t)h(x(t)) = g(t)h(x∗) = g(t) · 0 = 0.

Thus ẋ(t) = g(t)h(x(t)) for all t. (Note that we did not need to know anything about g.)

Here is the new rule of law: from now on, when we separate variables, we must check for
equilibrium solutions.

2.1.7 Example.

Use separation of variables to find solutions to

ẋ = t cos2(x).

If a solution is defined on an interval of the form (t0,∞), what is its limit at ∞?

Solution. This equation is separable, since it has the form ẋ = g(t)h(x) with g(t) = t and
h(x) = cos2(x). We first check for equilibrium solutions: h(x) = 0 if and only if cos(x) = 0.
We recall (or look up) that the roots of the cosine are x = (2k+ 1)π/2 for any integer k (i.e.,
k = 0, ±1, ±2,. . .). Thus the equilibrium solutions are x = (2k + 1)π/2 for k an integer. Of
course, equilibrium solutions are constant for all time, so that is their behavior as t→∞.

Now we assume that cos2(x) 6= 0 and separate to find

1

cos2(x)
ẋ = t.

We integrate both sides with respect to t to get∫
1

cos2(x)
ẋ dt =

∫
t dt.
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The integral on the right is ∫
t dt =

t2

2
+ C.

We change variables in the integral on the left to find∫
1

cos2(x)
ẋ dt =

∫
dx

cos2(x)
=

∫
sec2(x) dx = tan(x) + C.

Thus
tan(x) =

t2

2
+ C,

and so
x = arctan

(
t2

2
+ C

)
.

Note that the arctangent is defined for all real numbers, and so the domain of x here is
(−∞,∞).

Last, since limX→∞ arctan(X) = π/2 and limt→∞ t
2 =∞, we have

lim
t→∞

x(t) = lim
t→∞

arctan

(
t2

2
+ C

)
=∞. N

This is where we finished on Friday, August 26, 2022.

2.1.4. Some unhappier examples.

Separation of variables does not always produce results as “clean” as the ones that we have
seen. There are two common difficulties: evaluating the integrals may be hard or impossible,
and solving for x may be hard or impossible.

2.1.8 Example.

Get as far as you can with applying separation of variables to

ẋ =
cos(t)

5x4 + 1
.

Solution. This problem is separable as it has the form ẋ = g(t)h(x), where g(t) = cos(t)
and h(x) = 1/(5x4 + 1). Note that h(x) 6= 0 for all x, so there are no equilibrium solutions.
We separate variables to find

(5x4 + 1)ẋ = cos(t) =⇒
∫

(5x4 + 1)ẋ dt =

∫
cos(t) dt =⇒

∫
(5x4 + 1) dx =

∫
cos(t) dt

=⇒ x5 + x = sin(t) + C.

However, we cannot solve for x as a function of t. (Seriously, try it.) Thus we are left with
our solution defined implicitly by the equation

x5 + x = sin(t) + C. N
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2.1.9 Example.

Get as far as you can with applying separation of variables to

ẋ =
et

2

x4
.

Solution. This problem is separable with g(t) = et
2

and h(x) = 1/x4 and has no equilibrium
solutions, since h(x) > 0 for all x. We separate variables to find

x4ẋ = et
2

=⇒
∫
x4ẋ dt =

∫
et

2

dt =⇒
∫
x4 dx =

∫
et

2

dt.

The power rule gives ∫
x4 dx =

x5

5
+ C.

However, we cannot evaluate
∫
et

2
dt “in terms of elementary functions.” This is one of

those things that you learn in calculus; there is no “familiar” function that is the antiderivative
of et

2

. And so we might rearrange
x5

5
+ C =

∫
et

2

dt

into

x =

(
5

∫
et

2

dt+ C

)1/5

.

Note that we have no problem taking fifth roots of any number.
If this feels weird (and defining functions by indefinite integrals always feels weird to

me — I mean, t is being overworked as both an independent variable and the variable of
integration), let’s think about what this is saying. The symbol

∫
et

2
dt here denotes any

antiderivative of et
2

. If you want to pick a particular antiderivative, we could fix limits of
integration: the function

F (t) :=

∫ t

t0

eτ
2

dτ

satisfies Ḟ (t) = et
2

for any real number t0. Then the function

x(t) :=

(
5

∫ t

t0

eτ
2

dτ + C

)1/5

solves ẋ = et
2

/x4 for any choice of the constant C. N

In addition to avoiding the inherent squick that comes with trying to decide if a variable
is really important or just a variable of integration, the definite integral also lends itself to
numerical analysis; on fixing t0, we could use any number of numerical integration schemes
to calculate

∫ t
t0
eτ

2
dτ for different upper limits t. Such numerical results might be more

useful than any of the formulas here. Here’s the point: if you can’t evaluate the integral, try
writing it as a definite integral with the problem’s independent variable as the upper limit of
integration.
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2.1.10 Example.

Solve the initial value problem ẋ =
et

2

x4

x(1) = 2.

Solution. We know that the function

x(t) :=

(
5

∫ t

t0

eτ
2

dτ + C

)1/5

solves the ODE for any choice of t0 and C. We are interested in the behavior of this solution
at t = 1, so let’s choose t0 = 1, as that will make the integral term utterly trivial when t = 1.
Then we want to pick C such that if

x(t) :=

(
5

∫ t

1

eτ
2

dτ + C

)1/5

,

then x(1) = 2.
This means that we need

2 =

(
5

∫ 1

1

eτ
2

dτ + C

)1/5

= C1/5,

and so C = 25 = 32. Here we used the wonderful fact that
∫ a
a
f(τ) dτ = 0 for any function

f : the area under a single point is zero. Thus the solution is

x(t) :=

(
5

∫ t

1

eτ
2

dτ + 32

)1/5

. N

2.1.5. Analytic solutions for exponential and logistic growth.

Now that we have a reasonable command of separation of variables, we will return to the
population models and solve them. For the exponential growth model

ẋ = rx,

we are already conditioned to think that solutions have the form x(t) = Cert for some
constant C. How can we see this using separation of variables?

First, we look for equilibrium solutions. This involves solving rx = 0, and thus x = 0.
This solution has the expected form x = Cert with C = 0.

For x 6= 0, we separate variables:

1

x
ẋ = r =⇒

∫
1

x
ẋ dt =

∫
r dt =⇒

∫
dx

x
=

∫
r dt =⇒ ln(|x|) = rt+K.

Here I am intentionally writing the constant of integration as K, not C. We exponentiate
both sides:

ln(|x|) = rt+K =⇒ eln(|x|) = ert+K =⇒ |x| = eKert.
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How do we get rid of absolute value? For that matter, what is absolute value? We define

|x| :=
{
x, x ≥ 0

−x, x < 0.

So we think that having |x(t)| = eKert means that, for a given time t, either x(t) = eKert or
x(t) = −eKert.

This is where we finished on Monday, August 29, 2022.

Can we ever have both? That is, could our solution x satisfy

x(t1) = eKert1 and x(t2) = −eKert2 (2.1.5)

for some t1 6= t2?
I say no. Here’s why: x is the solution to a differential equation, so x is differentiable

and therefore continuous. If (2.1.5) holds, then x(t1) > 0 and x(t2) < 0. But then the
intermediate value theorem tells us that there is t3 “between”7 t1 and t2 such that x(t3) = 0.
And so

0 = |x(t3)| = eKert3 .

How can the product eKert3 ever equal 0?!
So, either our solution satisfies x(t) = eKert for all t, or x(t) = −eKert for all t. Since eK

can be any positive real number, −eK can be any negative real number. In either case, x has
the form x(t) = Cert where C is some nonzero real number; previously, when considering
the equilibrium solutions, we saw that C could be 0. And so separation of variables tells us
that x(t) = Cert solves ẋ = rx for arbitrary C.

The following lemma generalizes the argument above.

2.1.11 Lemma (Absolute value).

Let A and B be continuous functions on some interval I. Suppose that B(t) > 0 for all t in
I and |A(t)| = B(t) for all t in I. Then either A(t) = B(t) for all t in I or A(t) = −B(t)
for all t in I.

A comparatively more complicated separation of variables argument will help us solve
the logistic equation. We will actually treat the associated IVP to help us see how initial
conditions affect the long-time behavior of the solution.

2.1.12 Example.

Use separation of variables and the absolute value arguments above to solve the logistic
IVP {

ẋ = x(1− x)

x(0) = x0.

7 By this I mean t1 < t3 < t2 if it’s the case that t1 < t2, and otherwise t2 < t3 < t1.
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Solution. Here we have taken r = N = 1 in (1.2.6) for simplicity. We first check for
equilibrium solutions and solve x(1− x) to find x = 0 and x = 1.

Next, we assume both x 6= 0 and x 6= 1 so that we can separate variables:

1

x(1− x)
ẋ = 1 =⇒

∫
1

x(1− x)
ẋ dt =

∫
1 dt =⇒

∫
dx

x(1− x)
= t+ C.

To evaluate the integral on the left, we need the partial fractions decomposition8

1

x(1− x)
=

1

x
+

1

1− x.

Then∫
dx

(1− x)
=

∫ (
1

x
+

1

1− x

)
dx =

∫
dx

x
+

∫
dx

1− x = ln(|x|)− ln(|1−x|) = ln

( |x|
|1− x|

)
.

Make sure that you understand the reasoning behind each = here.
We then have the implicit equation

ln

(∣∣∣∣ x

1− x

∣∣∣∣) = t+K

for the solution to the logistic equation. Once again, I’m using K for the constant of
integration. Exponentiate to get ∣∣∣∣ x

1− x

∣∣∣∣ = eKet.

Use the absolute value lemma with A = x/(1− x) and B = eKet to see that either

x(t)

1− x(t)
= eKet for all t or

x(t)

1− x(t)
= −eKet for all t.

We conclude that
x(t)

1− x(t)
= Cet (2.1.6)

for all t, where C is any nonzero number.
8 This is a very useful, but algebraically tedious, procedure. We want to write 1/x(1− x) as the sum

1

x(1− x) =
A

x
+

B

1− x

for some numbers A and B. This is equivalent to

1 = A(1− x) +Bx = (B −A)x+A.

This is an equality of polynomials, and it’s a fact that two polynomials are equal if and only if the coefficients
on their corresponding powers are equal. The coefficient on the power of x1 on the left is 0 and on the right
is B − A, and so we need B − A = 0 and thus B = A. The coefficient on the power of x0 on the left is 1
and on the right is A, and so we need A = 1. Thus B = 1, too.
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We can then solve the equation
x

1− x = Cet

for x. Multiply both sides by 1− x to find

x = Cet(1− x),

and rearrange to isolate x:

x = Cet(1−x) =⇒ x = Cet−Cetx =⇒ x+Cetx = Cet =⇒ x(1+Cet) = Cet =⇒ x =
Cet

1 + Cet
.

Now, note that if we allow C = 0, then we get x(t) = 0 for all t, and this was one of our
equilibrium solutions. So, separation of variables yields the solutions

x(t) =
Cet

1 + Cet
and x(t) = 1

to the logistic equation.
To incorporate the initial condition x(0) = x0, we first note that if x0 = 1, then the

constant solution x(t) = 1 works. Otherwise, for x0 6= 1, we could use (2.1.8) to figure out
C in terms of x0, but a more efficient way is to use (2.1.6) and compute

C = Ce0 =
x0

1− x0
.

Note that since x0 6= 1, there is no danger of division by 0 here. And so the solution to the
logistic equation in the case x0 6= 1 is

x(t) =

x0e
t

1− x0
1 +

x0e
t

1− x0

.

What a piece of junk! We have fractions within fractions here. I claim that you can
factor 1/(1− x0) out of the numerator and denominator to get

x0e
t

1− x0
1 +

x0e
t

1− x0

=
x0e

t

(1− x0) + x0et
. (2.1.7)

That’s cleaner. Also, note that this expression is defined for x0 = 1, and, in fact, it equals 1
for all t in that case. And so

x(t) =
x0e

t

(1− x0) + x0et
(2.1.8)

is the solution to the logistic IVP for any choice of x0. N

This is where we finished on Wednesday, August 31, 2022.
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2.1.13 Example.

What can you say about the domain of solutions to the logistic IVP and their long-time
behavior in terms of the initial condition x(0) = x0? Assume x0 > 0, which is the
physically meaningful case when the logistic IVP models population growth.

Solution. We use the solutions given in (2.1.8).
Our first task is to determine the domain. A solution is defined at time t unless the

denominator is zero, which means

(1− x0) + x0e
t = 0.

And this is the same as having
x0e

t = x0 − 1.

Since x0 > 0, we can divide to find

et =
x0 − 1

x0
= 1− 1

x0
.

This equality can only happen if 0 < 1− 1/x0. In turn, if x0 > 0, then 0 < 1− 1/x0 if and
only if 1 < x0. And so we have established the following: for x0 > 0, the solution is defined
for all t if 0 < x0 ≤ 1, while if x0 > 1, then the solution is undefined at t = ln(1 − 1/x0).
I claim that ln(1 − 1/x0) < 0, but I’ll leave that for you to check. Consequently, if x0 > 0,
then the solution is always defined on at least the interval [0,∞).

Now let’s see how the initial condition x(0) = x0 could influence the behavior of x as
t → ∞. If we try to calculate the limit as t → ∞ from the formula (2.1.8), we quickly run
into an ∞/∞ situation. We could use L’Hospital’s rule, but we could also factor:

x(t) =
x0e

t

(1− x0) + x0et
=

x0
(1− x0)e−t + x0

. (2.1.9)

Then since limt→∞ e
−t = 0, we find

lim
t→∞

x(t) = lim
t→∞

x0
(1− x0)e−t + x0

=
x0

(1− x0) · 0 + x0
=
x0
x0

= 1.

Using the terminology of Section 1.2.2, the value 1 is the carrying capacity of the pop-
ulation whose growth is governed by the logistic equation ẋ = x(1 − x). The limit above
analytically confirms our prediction that over long times, the population would tend to the
carrying capacity. N

For all of my blather about the analyst’s creed (AC), having a formula for something
can be really powerful if we know how to use it. It would be difficult for us to obtain such
precise and rigorous control over solutions to the logistic equation without either a formula
or some powerful, abstract theory on a scale heretofore undreamt of in our class.
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2.1.6. Outlook: life beyond separable problems.

The technique of separation of variables is powerful but not without limitations. We have
to evaluate two integrals, either of which could be challenging or impossible to express in
terms of “elementary” functions, and then we have to solve a typically nonlinear equation for
the function under consideration. Also, there are plenty of nonseparable ODE to which we
simply cannot apply the method; while ẋ = tx is separable, ẋ = t + x is not. And so there
we will have to do something different.

Going forward, we will step away from separable problems, and from analytic methods
entirely, for a while. Instead, we will explore some numerical, theoretical, and qualitative
techniques that apply to more general ODE ẋ = f(t, x), separable and nonseparable alike.

2.2. Slope fields.

What is the derivative? Analytically, it’s the limit of a difference quotient. Geometrically,
it’s the slope of a curve. Specifically, let x be a function. Then the slope of x at the point
(t, x(t)) in the tx-plane is ẋ(t). So if x solves an ODE ẋ = f(t, x), then the slope of x at
(t, x(t)) is just f(t, x(t)).

Here, then, is the key geometric insight: if we know that x solves the ODE ẋ = f(t, x),
and if we know that x passes through the point (t0, x0) in the tx-plane, then the slope of x
at that point is f(t0, x0). We can calculate the slopes of a solution to ẋ = f(t, x) without
having a formula for x! And if we know enough slopes, we might know how a solution is
“flowing” through the tx-plane.

We will make this systematic by constructing slope fields, also called direction
fields. Given an ODE ẋ = f(t, x), at the point (t, x) draw a small line segment with slope
f(t, x). If we draw enough of these segments and fill the tx-plane with a “field” of them,
we will start to see a “flow” of curves in the plane. Those curves are potential solutions to
ẋ = f(t, x). This is a task ideally left to the computer, but we’ll do one example “by hand.”

2.2.1 Example.

Draw a slope field for ẋ = t. (Yes, all solutions are x(t) = t2/2 + C. Do you see this in
the slope field?)

Solution. Starting from each point (t, x) with integer coordinates for −3 ≤ t ≤ 3 and
−3 ≤ x ≤ 3, I will draw a short line segment with slope t. To keep the tx-plane relatively
uncluttered, I won’t label points on the axes, and I won’t mark the starting endpoint of the
line segments.

t

x
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If you stare at these pictures for a little while, hopefully you start to see the parabolas
x = t2/2 + C emerging, however crudely and inchoately. N

We don’t need a slope field to understand the behavior of solutions to ẋ = t, since we
can easily find their formulas. But the process above both taught us how to draw slope
fields, and it reminded us of some things that we should know about the “direct integration”
problem ẋ = f(t). Namely, the following statements all mean the same thing.

• The function x solves the ODE ẋ = f(t).

• The slope of the curve at a point depends on the t-coordinate of that point but not the
x-coordinate.

• At two given points, the slopes are the same if the t-coordinates of both points are the
same.

• The slopes are the same along any vertical line.

t

x

• All solutions are just vertical translates of one fixed solution. (All solutions are x =∫
f(t) dt+ C.)

t

x
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Let’s consider next something of the opposite situation: ẋ = f(x).

2.2.2 Example.

What can you learn from a slope field for ẋ = (x/3)(1− x/10)?

Solution. To be clear, this is a logistic equation with r = 3 and N = 10. I chose those
values because I think they make for a more evocative plot than r = N = 1.

I’ll use the Geogebra slope field plotter by Dr. Adrian Jannetta, available at

https://www.geogebra.org/m/W7dAdgqc.

If you try this yourself, and I strongly suggest you do, play around with the density and
length parameters. I think that helps make the emergence of the curves more obvious. I had
to wiggle the parameters quite a bit to get the screenshot below.

Here’s what I see. The slopes are horizontal at x = 10 (and also at x = 0, but you
probably don’t see that, because of the overlap with the t-axis); if we put x(t) = 10 for all
t, then we get an equilibrium solution to the ODE, right? The slopes between x = 0 and
x = 10 are positive, but they get less steep as they get closer to x = 10. The slopes above
x = 10 are negative, and they get less steep as they get closer to x = 10. The slopes below
x = 0 are negative, and they get steeper as x becomes more negative.

I think I can see some of the logistic curves that we sketched back in Section 1.2.2. Let
me turn on the numerical solver feature of the Geogebra app and plot a few solutions. (We

https://www.geogebra.org/m/W7dAdgqc
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will discuss how a numerical solver works soon and very soon.)

I got Geogebra to plot three solutions along the slope field, and those three do pretty
much what I thought the slope field predicted. The “lowest” solution in the plot is strictly
decreasing, and seems to tend rapidly toward−∞. The “middle” solution strictly increases up
to x = 10 and seems to have a horizontal asymptote there. And the “highest” solution strictly
decreases down to x = 10 and, again, seems to have a horizontal asymptote there. We could
use separation of variables on ẋ = (x/3)(1 − x/10), and I claim that our analytic solutions
would demonstrate the same behavior depending on how we take the initial condition.

One other thing (and you should try this in Geogebra): I claim that if we “slide” any of
these solutions horizontally to the left or the right, the curve still stays on the slope field.
That is, horizontally translating a given solution produces another soluion. N

The preceding example might teach us that the following statements all mean the same
thing.

• The function x solves the ODE ẋ = f(x).

• The slope of the curve at a point depends on the x-coordinate of that point but not the
t-coordinate.

• At two given points, the slopes are the same if the x-coordinates of both points are the
same.

• The slopes are the same along any horizontal line.
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t

x

• If we translate the graph of one solution horizontally, then we get another solution.

The last insight here is something new, I think. Recall that if x is a function, then the
graph of y(t) := x(t + t∗) is just the graph of x shifted to the left (if t∗ > 0) or to the right
(if t∗ < 0). Let’s formalize that insight.

2.2.3 Theorem (Time-shifted solutions to autonomous ODE).

Suppose that x solves ẋ = f(x). Fix a number t∗ and define y(t) := x(t+ t∗). Then y also
solves ẏ = f(y).

Proof. We need to show that ẏ(t) = f(y(t)) for all t. First,

ẏ(t) =
d

dt
[x(t+ t∗)] = ẋ(t+ t∗)

d

dt
[t+ t∗] = ẋ(t+ t∗)

by the chain rule. Since ẋ(τ) = f(x(τ)) for all τ, we get

ẏ(t) = ẋ(t+ t∗) = f(x(t+ t∗)) = f(y(t)).

We have studied differential equations of the form ẋ = f(x) several times already; both
exponential and logistic growth have this form, and differential equations of this form are
separable. (Reread Definition 2.1.1 and take g(t) = 1 and h(x) = f(x).) Equations of the
form ẋ = f(x) are called autonomous because they depend only on the “state” x and not
time t. Now we know that if we have one solution to an autonomous problem, we get many
more just by shifting horizontally.

Here is an example of a nonautonomous problem that, I think, illustrates some of the
limitations of slope fields by themselves.
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2.2.4 Example.

What can you learn, or not learn, from a slope field for ẋ = cos(t)x?

Solution. We saw an ODE like this in Section 1.2.3.
There is a periodic function in the problem, so we might expect some periodicity in the

solution. In fact, the problem is separable, so we can try finding an analytic solution if we
want, but I don’t want to right now. Here is the slope field from Geogebra.

I definitely see a periodic pattern in the slopes, but, honestly, it’s tough for me to “con-
nect” them into any continuous curve. Around the horizontal axis, I see sort of a periodic
ripple, but as we go up the vertical axis, I worry that some of the slopes could be getting so
steep that they’re indicating vertical asymptotes. Let’s try Geogebra’s numerical solver.
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Now those steeper slopes make more sense. The solutions are pretty steep there, but not
steep enough to be a vertical asymptote. N

Drawing a slope field for ẋ = f(t, x) in principle requires no actual “math” on your part;
you go to a computer, plug in your formula f(t, x), and fool around until you think you see
a picture or a pattern. You do a little work, and you get a little insight. If you are studying
an ODE and have no other clue about what to do, get your hands on the slope field, and
maybe that will nudge you in a useful direction. And if you don’t see any patterns in the
slope field, don’t worry; sometimes you have to know what you’re looking for to see it. But
at least the slope field didn’t require you to do any calculus.

In practice, you will never work with a slope field in isolation; you will always combine it
with another tool — an analytic method to find formulas, a numerical method to discretize
the problem and approximate particular values of the solution. We’ll try the latter approach
next.

This is where “we” finished on Friday, September 2, 2022.

2.3. Euler’s method.

Slope fields help us make qualitative predictions about the behavior of solutions to ODE —
crude, tentative predictions, but predictions nonetheless, and predictions that do not require
us to do any calculus. However, slope fields do not tell us the exact values of solutions at
particular moments in time. Separation of variables can give us a formula from which we
could compute exact values, but we have seen that separation of variables doesn’t always
work — and not all problems need to have the special separable form, anyway.

We now need a third tool beyond the analytic and qualitative methods: the numeric.
There is a broad array of numerical methods that can approximate solutions to ODE; a
full study of these methods reveals (1) where they come from, (2) how they work, and (3)
how good they are — that is, what kind of errors might a numerical method unfortunately
introduce. We will study just one numerical method in this course, and we will really focus
on just the issues (1) and (2).

This method is called (as the title of this section foretells) Euler’s method. I’ve seen
two different derivations of the method, both of which are worth knowing, as they teach
us different things about ODE and calculus. We’ll derive the method and implement it in
pseudocode. Then we’ll go to a computer to do the arithmetic. You should be comfortable
explaining how the method arises and how to work it out, but I won’t ask you to do any
painful calculations by hand.

2.3.1. Origins of Euler’s method: the integral approach.

As usual, we start by working backward. Suppose that we have a solution to the ODE
ẋ = f(t, x). We are not assuming that this problem is separable. For definiteness, let’s add
an initial condition: x(t0) = x0. So, we are really going to solve the IVP{

ẋ = f(t, x)

x(t0) = x0.
(2.3.1)
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If we want to learn about x, and we know absolutely nothing specific about f , one good
way to make x appear is to integrate. The fundamental theorem of calculus gives, as always,

x(t)− x(t0) =

∫ t

t0

ẋ(τ) dτ =

∫ t

t0

f(τ, x(τ)) dτ,

and so

x(t) = x(t0) +

∫ t

t0

f(τ, x(τ)) dτ = x0 +

∫ t

t0

f(τ, x(τ)) dτ. (2.3.2)

This is exactly what we obtained in (FTC) at the start of the course, and we complained
then, because this equation defines x in terms of x, which is not very helpful.

However, we can turn this into a good approximation for the value x(t) by recalling the
“left-hand rule” for approximating integrals:∫ b

a

g(τ) dτ ≈ (b− a)g(a), (LHR)

at least if a and b are “close” (whatever that means). Thus∫ t

t0

f(τ, x(τ)) dτ ≈ (t− t0)f(t0, x(t0)) = (t− t0)f(t0, x0) (2.3.3)

when t is “close” to t0. The “=” on the right really is genuine; it’s the initial condition
x(t0) = x0. And so if we combine (2.3.2) and (2.3.3), we get

x(t) ≈ x0 + (t− t0)f(t0, x0) for t ≈ t0. (2.3.4)

Let’s make “close” a little more precise (but not a lot). Fix a small positive number h,
maybe with 0 < h < 1. Define t1 := t0 + h. Then (2.3.4) just says

x(t1) ≈ x0 + hf(t0, x0).

Let’s abbreviate
x1 := x0 + hf(t0, x0).

Then x(t1) ≈ x1. Note that we calculated x1 just using the given information of f and the
initial data t0 and x0. We did not do any calculus.

Now let’s jump a bit forward into the future. Put t2 := t1 + h = t0 + 2h, so t2 is not too
far away from t1. Then

x(t2) = x(t1) +

∫ t2

t1

ẋ(τ) dτ by the fundamental theorem of calculus

= x(t1) +

∫ t2

t1

f(τ, x(τ)) dτ since x solves ẋ = f(t, x)

≈ x1 +

∫ t2

t1

f(τ, x(τ)) dτ since x(t1) ≈ x1

≈ x1 + (t2 − t1)f(t1, x(t1)) by the left-hand approximation for integrals
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= x1 + hf(t1, x1) since t2 = t1 + h.

Let’s abbreviate
x2 := x1 + hf(t1, x1).

Then x(t2) ≈ x2, and we calculated x2 just by using the given information of f and the
previously calculated data t1 and x1. Again, we did not do any calculus. Note that there
were two uses of ≈ above: when we replaced x(t1) with x1 and when we approximated the
integral.

These two steps suggest a scheme for numerically approximating the solution to the IVP
(2.3.1). First, fix a small time step h > 0. For integers k ≥ 0, define

tk :=

{
t0, k = 0

tk−1 + h, k ≥ 1,

or, if you prefer,
tk := t0 + kh, k ≥ 0.

And define

xk :=

{
x0, k = 0

xk−1 + hf(tk−1, xk−1), k ≥ 1.

Then we expect that the true solution x to the IVP (2.3.1) enjoys the approximation

x(tk) ≈ xk.

If we run this iteration some n ≥ 1 times, then we generate n+ 1 approximations to the
value of x on the interval [t0, t0 + nh]. These are

x(t0) = x0, x(t1) ≈ x1, . . . , x(tn) ≈ xn.

This is where we finished on Wednesday, September 7, 2022.

2.3.2. Pseudocode and sample implementations.

Here is a summary of Euler’s method.

Define the function f.
Define the starting time t0.
Define the initial value x0.

Choose a time step h > 0.
Choose a number of iterations n ≥ 1.

For k = 1, . . . , n, iterate{
tk := t0 + kh

xk := xk−1 + hf(tk−1, xk−1).
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2.3.1 Example.

Use Euler’s method to approximate the solution to{
ẋ = t

x(0) = 0

with five and the time step h = 0.2.

Solution. You and I both know that the solution is x(t) = t2/2. I’m just doing this example
because I think it’s good for us to see the arithmetic of Euler’s method spelled out explicitly
once, and only once, before we start stuffing it into a computer. And, all things considered,
I think the arithmetic here is pretty easy. (But still feel free to go to a computer to do it.)

In the notation of our pseudocode above, we are taking f(t, x) = t, t0 = 0, and x0 = 1.
We fill in the following table.

k tk xk f(tk, xk) xk+1 = xk + hf(tk, xk) = xk + htk

0 0 0 0 0 + (0.2 · 0) = 0
1 0.2 0 0.2 0 + (0.2 · 0.2) = 0.04
2 0.4 0.04 0.4 0.04 + (0.2 · 0.4) = 0.12
3 0.6 0.12 0.6 0.12 + (0.2 · 0.6) = 0.24
4 0.8 0.24 0.8 0.24 + (0.2 · 0.8) = 0.4
5 1 0.4 1 0.4 + (0.2 · 1) = 0.6

Let’s compare the approximations to the exact value of the known solution x(t) = t2/2
at the values tk.

k tk xk x(tk) = t2k/2

0 0 0 0
1 0.2 0 0.02
2 0.4 0.04 0.08
3 0.6 0.12 0.18
4 0.8 0.24 0.32
5 1 0.4 0.5

It looks like our Euler’s method results consistently under-approximate the true solution,
but the values are definitely strictly increasing.

We can see this with plots. I’ll graph the true solution x(t) = t2/2 in solid black; I’ll plot
the points (tk, xk) and connect them by dotted lines, all in blue. Plots of your numerical
results can be very useful, and, like the numerical results themselves, they’re best produced
by a computer.

t

x

N
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2.3.2 Example.

Use as many tools as you can to study the solutions of

ẋ = (x+ 1)(x− 1)(x− 2).

Solution. This is a separable equation (take g(t) = 1 and h(x) = (x+ 1)(x− 1)(x− 2)) and
in fact autonomous. We set (x+ 1)(x− 1)(x− 2) = 0 to find the equilibrium solutions; they
are x = ±1, 2. We could try to separate variables, and initially we find∫

dx

(x+ 1)(x− 1)(x− 2)
= t+ C.

The integral on the left demands partial fractions; the denominator consists of a product of
distinct linear factors, which is probably the least painful form of partial fractions. Nonethe-
less, it’s partial fractions, and the algebra to solve for x at the end could be even more intense
than what we did with the logistic equation — or maybe impossible!

Drawing a slope field is a good idea.

t

x

Depending on the quality of our slope field (and our comfort with the computer program
that is generating it), hopefully we see the three equilibrium solutions at x = ±1, 2. These
correspond to the three (roughly) horizontal sets of slopes.

If we stare at the slope field for a while, we might observe four “bands” in the graph: the
region below x = −1, the region between x = −1 and x = 1, the region between x = 1 and
x = 2, and the region above x = 2. The flow of the slopes changes from region to region.
For example, slopes seem to be decreasing below x = −1 and increasing between x = −1
and x = 1. Thus we might suspect that a solution with x(0) < −1 will be decreasing and a
solution with −1 < x(0) < 1 will be increasing.

We can lend further credence to these suspicions by implementing Euler’s method with
the initial condition x0 taken at different points along the x-axis. Here are some of my
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results, superimposed in red over the slope field.

t

x

�1

1

2

I took the time step to be pretty small (h = 0.01). It looks to me like the equilibrium
solutions are closely related to the behavior as t → ∞ of some (though not all) of the
solutions. Also, we can see the time-shifted solutions promised by Theorem 2.2.3. N

In “real life,” you will never use any one of the tools from this class in isolation. If you
are studying a differential equation that really matters to you, you will (probably) have a
reference text on hand to look up analytic techniques (formulas); a computer algebra system
to do the dirty work of constructing those formulas or at least simplifying/checking your “by
hand” calculus and algebra; a graphing program to produce slope fields; and a programming
language in which to implement numerical methods. While it is important to be able to use
and appreciate each of these tools individually, never feel that you have to understand an
ODE completely just from one of them.

This is where we finished on Friday, September 9, 2022.

2.4. Existence and uniqueness theory.

We now have several powerful tools for studying differential equations. We have the analytic
method of separation of variables to find formulas for solutions to a broad (though not all-
encompassing) class of problems; the qualitative approach of slope fields, which suggests, with
minimal work, patterns of behavior of solutions; and Euler’s method, which can approximate
the value of a solution at a point (and give a better sense of a solution’s graph than a slope
field). The validity of these tools, however, is predicated on a somewhat hidden assumption:
when using these tools, we have always been assuming that a solution exists.

Think about separating variables for the problem ẋ = g(t)h(x). What happens? We
check for equilibrium solutions by solving h(x) = 0 and then, probably, dive right into
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separating variables to get
1

h(x)
ẋ = g(t), (2.4.1)

and then we integrate away. In doing so, we tacitly assumed that a solution9 x existed. If
there is a function x such that ẋ = g(t)h(x), and if h(x) 6= 0, then we must have (2.4.1), and
from there we can integrate to find a formula for x. But why are we allowed to assume that
a solution exists in the first place?

Now, working backward by assuming that a solution to our problem exists is nothing
new; you’ve done that every time you’ve solved for x since your first algebra class. However,
if we uncritically assume that solutions to our problems always exist, we could get into all
sorts of trouble. Perhaps the problem at hand doesn’t have a solution, and so we would be
wasting our time trying to find an analytic formula, or we would be deceiving ourselves by
staring at slope fields or trying to run Euler’s method.

If we are going to predict the future using differential equations, as we set out to do
at the start of the course, then we need to be sure that the problems that we’re studying
really do have solutions. Moreover, we want to be sure that we’re predicting only one future.
Our experience with calculus suggests that most differential equations will not have unique
solutions; even something as simple as the direct integration problem ẋ = t has infinitely
many solutions of the form

x(t) =
t2

2
+ C

for constants C. Consequently, we probably need to add more data to our problems to ensure
uniqueness of solutions.

We will use the following theorem without proof. It is a gentler version of the “standard”
existence and uniqueness results in most ODE classes, which require a passing familiarity
with multivariable calculus.

2.4.1 Theorem (Existence and uniqueness).

Suppose that g1, . . . , gn are continuous functions defined on the open interval I, and
h1, . . . , hn are differentiable functions defined on the open interval J . (The intervals I
and J may be bounded or unbounded.) Assume that h′k is continuous on J for each
k = 1, . . . , n. Define

f(t, x) :=
n∑
k=1

gk(t)hk(x). (2.4.2)

9 Now is a very good time to reread Definition 1.3.1.
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t

x

I

J (t0, x0)
domain of f

(i) [Existence] Let t0 be a point in I and x0 be a point in J . There exists ε > 0 and a
function x defined on (t0 − ε, t0 + ε) such that x solves the IVP{

ẋ = f(t, x)

x(t0) = x0.

(ii) [Uniqueness] Suppose that y is another function on (t0 − ε, t0 + ε) that solves the
IVP {

ẏ = f(t, y)

y(t0) = x0.

Then x(t) = y(t) for all t.

This a deep and technically worded result, so let’s run through some commentary.

2.4.2 Remark.

(i) The form of the function f in (2.4.2) is certainly strange. Nonetheless, all the “gov-
erning” functions f that we will encounter in this class will have this form. In particular,
taking n = 1 gives the separable problem ẋ = g1(t)h1(x). A more general f could be al-
lowed if we presumed knowledge of multivariable calculus and altered the hypotheses of the
theorem a bit.

(ii) The existence result is just that: existence. It does not give us a procedure for finding
the solution x, nor does it tell us anything about ε. It does not tell us anything about the
behavior of x. If we want to understand a specific problem better, we have lots more work
to do.

(iii) The uniqueness result should be comforting: not only can we predict the future, if we
impose initial data, then we can only predict one future. (All hail the Sacred Timeline!)
Note that in the IVP in part (ii), it is essential that the initial data be the same as in part
(i). In other words, uniqueness only holds for a given IVP.

We will work, as is our wont, a few toy problems here to show how one can use, or fail
to use, the existence and uniqueness theorem.
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2.4.3 Example.

Explain why the IVP ẋ =
et

2

5x4 + 1
x(0) = 0

has a unique solution.

Solution. Good luck solving this monster with separation of variables; you’ll fail to evaluate
the t-integral, and you won’t be able to solve for x. However, since this problem is separable,
we rewrite it as{

ẋ = g1(t)h1(x)

x(0) = 0,
where g1(t) = et

2

and h1(x) =
1

5x4 + 1
.

After staring at these functions for a moment10, we see that g1 is continuous on (−∞,∞), and
h1 is continuously differentiable on (−∞,∞). Thus the existence and uniqueness theorem
applies to produce a unique solution to the IVP. If we want to know more about this solution,
we would have to do more work — slope fields and numerics would be a good start. N

2.4.4 Example.

Let

g(t) :=

{
0, t < 0

1, t ≥ 0.

Can you apply the existence and uniqueness theorem to the IVP{
ẋ = g(t)

x(0) = 0?

What, if anything, can you say about solutions?

Solution. The ODE is in the form ẋ = g(t)h(x), where g is defined above and h(x) = 1.
However, g is definitely not continuous at t = 0, and so the existence and uniqueness theorem
simply doesn’t apply here.

Nonetheless, just because we can’t use the existence and uniqueness theorem doesn’t
mean we can conclude that there is, or isn’t, a solution. I’m going to bet that you haven’t
seen many differentiable functions with discontinuous derivatives. Let’s build on this gut
instinct and assume that there is a solution x and see if anything goes wrong.

Working backward, if ẋ = g(t) with x(0) = 0, then the fundamental theorem of calculus
tells us

x(t) = x(0) +

∫ t

0

ẋ(τ) dτ = 0 +

∫ t

0

g(τ) dτ =

∫ t

0

g(τ) dτ.

10 A legitimate mathematical technique called “proof by inspection.”
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For t > 0, we have

x(t) =

∫ t

0

1 dτ = t,

while for t < 0, we have

x(t) =

∫ t

0

0 dτ = 0.

Thus

x(t) =

{
0, t < 0

t, t ≥ 0.

I claim that this function is not differentiable at t = 0, something that a picture will suggest
to you immediately. I suggest you use the definition of the derivative to confirm this.

So what’s the problem? We assumed that the IVP had a solution and we found a very
explicit formula for it by direct integration. But this formula showed that the solution was
not differentiable at t = 0. Contrast this with Definitions 1.3.1 and 1.3.4 — a solution to an
IVP with the initial condition at time t = t0 better be differentiable at time t = t0! N

This is where we finished on Monday, September 12, 2022.

2.4.5 Example.

Does the IVP {
ẋ = |x|
x(0) = 0

have a solution? How does this fit with the existence and uniqueness theorem?

Solution. Sure it does: take x(t) = 0 for all t. The ODE here has the form ẋ = g1(t)h1(x),
where g1(t) = 1 and h1(x) = |x|. Then h1 is not continuously differentiable on any interval
containing the point x = 0, so the existence and uniqueness theorem doesn’t apply. But the
failure of the theorem to apply doesn’t preclude the (non)existence of a solution to the IVP;
it just means that we have to use a different tool (our brains). N

2.4.6 Example.

Let x0 be a real number. Previously, in Example 2.1.12, we saw from separation of variables
that a solution to the logistic IVP {

ẋ = x(1− x)

x(0) = x0

was
x(t) =

x0e
t

(1− x0) + x0et
.

Why is this the only solution?
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Solution. Put g(t) = 1 and h(x) = x(1 − x). Then g and h satisfy the hypotheses of the
existence and uniqueness theorem, so the logistic IVP has exactly one solution. And we can
check via calculus and algebra that the formula above already gives a solution. So, it is the
only solution. N

The preceding example should comfort the skeptical separator. Suppose that we use
separation of variables to eke out a formula for the solution to ẋ = g(t)h(x), where f(t, x) =
g(t)h(x) satisfies the conditions of the existence and uniqueness theorem. Once we check11

that the formula solves this separable problem, the existence and uniqueness theorem guar-
antees that it is the unique solution satisfying x(t0) = x0 for our favorite choice of t0 in the
domain and x0 in the range. And so maybe separation of variables isn’t as suspicious as I
always think it is.

2.4.7 Example.

In Example 2.3.2, both the slope field and the results from Euler’s method predicted that if
a solution x to

ẋ = (x+ 1)(x− 1)(x− 2)

satisfied x(0) > 2, then x(t) > 2 for all t in the domain of x. Use the existence and
uniqueness theorem to confirm this prediction.

Solution. What’s special about 2 here? The function y(t) = 2 is an equilibrium solution
to the ODE. Also, the existence and uniqueness theorem definitely applies to ODE/IVP of
the form ẋ = h(x), where h(x) = (x + 1)(x− 1)(x− 2). After all, h is a polynomial, which
is infinitely differentiable.

We want to show that if x solves ẋ = h(x) with x(0) > 2, then x(t) > 2 for all t in
the domain of x. Short of having a formula for x, which would involve an icky, and maybe
impenetrable, separation of variables argument, I don’t see a way of concluding this directly.
Instead, let’s ask what goes wrong if the inequality x(t) > 2 is not always true. What if
x(t0) ≤ 2 for some t0? Necessarily t0 6= 0 since x(0) > 2.

First, suppose x(t0) = 2. Then x solves the IVP{
ẋ = h(x)

x(t0) = 2.

But we already have a solution to this IVP: the equilibrium solution y(t) = 2. That is,{
ẏ = h(y)

y(t0) = 2,

too. In this case, the uniqueness result forces x(t) = y(t) for all t that belong to both the
domain of x and the domain of y. The domain of y is (−∞,∞), so then x(t) = 2 for all t in
the domain of x. In particular, x(0) = 12, which contradicts our assumption of x(0) > 2.
11 Recall from Example 1.3.3 the difference between checking that a given function solves a differential

equation and finding the solution to that differential equation.



2. First-Order Equations 54

Now suppose x(t0) < 2. Since x(0) > 2, the intermediate value theorem provides t2 such
that x(t1) = 2. But then we are back in the case above and get another contradiction. N

This is where we finished on Wednesday, September 14, 2022.

Going forward, we will use the existence and uniqueness theorem whenever we need it
to assure ourselves that our problems have unique solutions. However, we will continue to
develop new techniques so that we can describe properties of solutions to ODE and IVP in
much more detail. In particular, we will explore in detail the question of the domain of a
solution to an ODE/IVP: what can we say about that number ε in Theorem 2.4.1?

2.5. Autonomous equations and the phase line.

We will now take up the study of a special kind of ODE, one that does not depend on time
but only on the current “state” of the quantity under consideration. We have met these ODE
many times in the past, most recently in Theorem 2.2.3.

2.5.1 Definition.

An ODE of the form ẋ = f(x), where f is a function of the single real variable x, is called
autonomous.

Any autonomous ODE is separable, and so if we want a formula for the solution to
ẋ = f(x), we should first find the equilibrium solutions (if any exist) by solving f(x) = 0,
and then we separate variables and integrate to obtain∫

dx

f(x)
= t+ C.

After that, it’s anyone’s guess as to how to antidifferentiate and solve for x as a function of
t. This, as we know, could go very badly, and so now is a good time to recite the Analyst’s
Creed AC and think beyond formulas. It turns out that a combination of our recently
elucidated existence/uniqueness theory and familiar calculus techniques can tell us quite a
lot about the solutions to such equations. For motivation, and to consider why our prior
techniques need augmentation for this new project, we develop a new population model.

2.5.1. Motivation: the modified logistic equation.

. I claim that both exponential and logistic growth models are too optimistic. Recall that
the exponential growth model has the form

ẋ = rx,

and logistic growth is
ẋ = rx

(
1− x

N

)
, (2.5.1)

where in both cases we’ll take r > 0, and in the second N > 0. Our explicit solutions for
these two models, obtained via separation of variables, do not allow a population that is
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initially nonzero ever to become extinct. Specifically, in exponential growth, if x(0) > 0, we
have limt→∞ x(t) =∞, while in logistic growth we have limt→∞ x(t) = N . (We called N the
carrying capacity.) So, whether the population explodes or settles down, it never dies out.

This is not how life always goes, right? Any number of horrible things can happen
to a species — predators, hunters, asteroids. We will consider such deleterious “external”
influences later. Here we will add the realistic constraint that a population should decrease,
and maybe die off, if it has too few members. After all, if the population is too small, then
mating pairs might not find each other, or they might need to reject each other to maintain
genetic diversity.

Let’s state our qualitative features in plain English and then translate them to mathspeak.
Here’s what we want our model to reflect.

1. If the population is too large, it should decrease to a manageable level. (This is a good
feature of the original logistic model.)

2. If the population is too small, it should go extinct.

3. If the population is ever zero, then it stays zero forever. (There is no spontaneous gener-
ation.)

If we put the first two conditions together, then we arrive at a sort of “Goldilocks”
requirement: the population should only be increasing if it is not too small and not too
large.

Now for the math. As usual, x(t) will be the population count at time t. Here’s how the
three features above can be rewritten.

1. There is N > 0 such that if x(t) > N , then ẋ(t) < 0. The number N should be large
enough to capture our notion of “too large” for the given population.

2. There is M > 0 such that if x(t) < M , then ẋ(t) < 0. The number M should be small
enough to capture our notion of “too small” for the given population. Also, since we are
associating N and “large,” let’s assume M < N .

3. If x(t) = 0 for some time t, then ẋ(t) = 0 for all t.

The “Goldilocks” conclusion might be phrased as follows: ifM < x(t) < N , then ẋ(t) > 0.
Our prior experience with exponential and logistic growth suggests that we create a

function f so that the ODE ẋ = f(x) has the three features above. Recall that, as usual,
the letter x is playing a dual role: sometimes it’s the function x = x(t), and other times it’s
the independent variable of f . We can rewrite the three features above as conditions on f .

1. If x > N , then f(x) < 0.

2. If x < M , then f(x) < 0.

3. f(0) = 0.

And, once more, the Goldilocks condition could be f(x) > 0 for M < x < N .
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There are many, many functions f that could do what we want. One of the simplest is
a slight variation on the logistic function from (2.5.1):

f(x) = rx
(

1− x

N

)( x
M
− 1
)
. (2.5.2)

It’s a good exercise in inequalities to check that f does indeed satisfy the final set of three
conditions above. Less rigorously, we could graph f for different positive values of r, M , and
N . Here’s a graph for r = 2, M = 3, and N = 5.

x

f(x)

3 5

We call the ODE
ẋ = rx

(
1− x

N

)( x
M
− 1
)

(2.5.3)

the modified logistic equation. So, do solutions to this ODE do what they should
do? (The existence of solutions should be easy to deduce by now, right?) Namely, what is
limt→∞ x(t) for a solution x to this problem? Slope fields and Euler’s method give us lots of
detail at a “local” level, over finite time intervals, but we can’t take a slope field to ∞ nor
keep doing Euler’s method forever.

We certainly could try to separate variables. I claim that the equilibrium solutions are
x = 0, N , and M — do you see that? But for nonequilibrium solutions, we would need to
solve ∫

dx

rx
(

1− x

N

)( x
M
− 1
) dx =

∫
1 dt+ C.

We can all do the integral on the right, but how about the one on the left? That would
require even more partial fractions than we did with the logistic equation, and then there’s
the whole task of solving for x. And after that we would still have to calculate limt→∞ x(t),
if x is even defined for all time.

There is a much better way of proceeding. We will develop fairly simple techniques for
predicting the end behavior of solutions to autonomous ODE like (2.5.3) that do not rely on
formulas, or even a whole lot of calculus.

2.5.2. Maximal existence.

We can first assure ourselves that solutions to autonomous ODE exist. The following is a
direct consequence of Theorem 2.4.1.
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2.5.2 Theorem (Existence and uniqueness for autonomous ODE).

Let f be differentiable on the interval (a, b), and suppose that f ′ is continuous on (a, b).
(The values a = −∞ and/or b =∞ are allowed.) Let x0 be a point in (a, b). Then there
is ε > 0 such that the IVP {

ẋ = f(x)

x(0) = x0

has a unique solution x defined on (−ε, ε).

The only difference with the IVP here compared to those in Theorem 2.4.1 is that we
have taken t0 = 0, purely for convenience. That is, when studying autonomous ODE, we will
always place our initial time at t0 = 0. This really makes no difference other than simplifying
notation (and according with our gut instinct that time begins at 0). After all, the ODE
ẋ = f(x) is independent of time!

While this result is comforting, its use by itself is limited. The theorem tells us nothing
about the long-time properties of x, and nothing, in principle, about ε. For just how long in
time does x exist?

This is where we finished on Monday, September 19, 2022.

2.5.3 Example.

Here are five different autonomous (and hence separable) IVP. All have the form{
ẋ = f(x)

x(0) = 1,

and finding the formulas below is a good exercise for you. In each case, a domain (“Dom.”)
for the solution (“Soln.”) is given. This is not necessarily the largest interval on which the
solution is defined but rather the largest open interval on which the solution is defined and
on which it solves the IVP. (Of course, any domain to an IVP with the initial condition at
t = 0 must contain the point t = 0.) The limit (“Lim.”) as t approaches the right endpoint
of the domain from the left is given. What do you observe?
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(1) (2) (3) (4) (5)

ODE ẋ = x ẋ = x(1− x) ẋ = x2 ẋ = −1

x
ẋ =
√

5− x

IC x(0) = 1 x(0) = 1 x(0) = 1 x(0) = 1 x(0) = 1

Soln. x(t) = et x(t) = 1 x(t) =
1

1− t x(t) =
√

1− 2t x(t) = 5− (t− 4)2

4

Dom. (−∞,∞) (−∞,∞) (−∞, 1)

(
−∞, 1

2

)
(−∞, 4)

Lim. ∞ 1 ∞ 0 5

Solution. The first two IVP are not very exciting anymore; they are exponential and logistic
growth, and so we know their solutions are defined for all time. In particular, the solution
for logistic growth here is the equilibrium solution x(t) = 1.

The other three IVP are more interesting. Each has the form ẋ = f(x) for a relatively
“tame” function f — you probably wouldn’t have minded meeting any of these three f on
an exam in calculus. But the given domains all have a finite right endpoint.

In (3), we have the “catastrophic” situation

lim
t→1−

x(t) = lim
t→1−

1

1− t =∞

I hope it’s easy to see why we can’t push this solution past time t = 1: the solution blows
up to +∞! Where else can it go beyond t = 1 when it’s already at ∞?

In (4), however, the solution x(t) =
√

1− 2t is defined and continuous at time t = 1/2,
and yet we exclude t = 1/2 from the domain in (4). Why? Here we need to think carefully
about the square root: the square root is defined and continuous but not differentiable at
0. Indeed, if g(s) =

√
s, then g′(s) = −s−1/2, which is not defined at s = 0; graphically,

the slope of the square root becomes infinitely steep as s → 0+. (Go check it out in your
favorite graphing program and zoom way in.) Recall from Definitions 1.3.1 and 1.3.4 that a
solution to an ODE/IVP must not only be defined and continuous but also differentiable at
all points of its domain. Thus t = 1/2 cannot belong to the domain of x(t) =

√
1− 2t if we

are considering x not merely as a function but as a function that solves ẋ = −1/x.
It is also interesting to note in (4) that if we put f(x) = −1/x, then f is not defined at

x = 0. But the solution x(t) =
√

1− 2t tends to 0 as t approaches 1/2 from the left. Not
only is the solution not differentiable at t = 1/2, it approaches a value outside the domain
of f . How can we possibly plug this solution into ẋ = −1/x at time t = 1/2 and get a
numerical result that makes sense?

Finally, in (5), as a function of t, ignoring the ODE/IVP context, the function x(t) =
5 − (t − 4)2/4 is defined for all t. It’s just a quadratic polynomial, after all. However, you
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can check that defining x in this way gives

ẋ = 2− t

2
and

√
5− x =

∣∣∣∣2− t

2

∣∣∣∣ .
(Here we need the rule

√
A2 = |A| for any real number A.) And so to have ˙x(t) =

√
5− x(t),

we need
2− t

2
=

∣∣∣∣2− t

2

∣∣∣∣ ,
and thus 2 − t/2 ≥ 0, hence t ≤ 4. My choice of the strict inequality t < 4 is not one of
mathematical necessity here but to keep things in line with (3) and (4), where we were forced
to exclude the right endpoint. Last, taking f(x) =

√
5− x in (5), we note that f is defined

but not differentiable at x = 5, which is the limit of our solution as t approaches 4 from the
left (and, for that matter, from the right). N

Here is what I hope you are seeing: when a solution fails to be defined for the entire
interval [0,∞), something “interesting” happens at the finite time when the solution fails to
be defined. Either the solution explodes at the endpoint of its domain, or it behaves more
tamely, but in a “bad” way relative to the underlying ODE. The moral is that solutions to
ODE do not simply stop after a finite time or “vanish” into thin air at a particular moment
— something has to happen.

The following theorem is a precise statement of that moral. This statement is technical
and worth parsing slowly and carefully.

2.5.4 Theorem (Maximal existence).

Let f be continuously differentiable on the interval (a, b), and let x0 be a point in (a, b).
There exist numbers Tα and Tω, with Tα < 0 < Tω, and a unique solution x to the IVP{

ẋ = f(x)

x(0) = x0

such that x is defined on the interval (Tα, Tω) and (Tα, Tω) is “maximal” in the sense x
cannot be defined outside this interval and remain a solution to the IVP. More precisely,
one, and only one, of the following three alternatives holds for Tω.

(Ω1) Tω =∞.

(Ω2) Tω <∞ and either limt→T−
ω
x(t) =∞ or limt→T−

ω
x(t) = −∞.

(Ω3) Tω <∞ and either limt→T−
ω
x(t) = a or limt→T−

ω
x(t) = b.

Identical statements hold for Tα if we replace Tω =∞ with Tα = −∞ in part (Ω1) and
the left limit limt→T−

ω
with the right limit limt→T+

α
in parts (Ω2) and (Ω3).

This is a demanding theorem, so we’ll paraphrase its conclusions more informally.
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2.5.5 Remark.

(i) The possibility Tω = ∞ in part (Ω1) of Theorem 2.5.4 is a sort of “ideal” result. It
says that we can predict the future forever in our given model. However, it does not help
us predict the behavior of our solution at ∞; we have no statement about limt→∞ x(t) in
part (Ω1).

(ii) The possibilities limt→T−
ω
x(t) = ±∞ in part (Ω2) of Theorem 2.5.4 are a sort of

“catastrophic” result. Our solution simply explodes! People often call this phenomenon
blow-up in finite time. This might represent a natural and expected result — say,
the unbounded growth of a species given certain ideal environmental conditions — or maybe
a flaw in our model.

(iii) The possibilities limt→T−
ω
x(t) = a or limt→T−

ω
x(t) = b in part (Ω3) of Theorem 2.5.4

are, perhaps, the most subtle. Recall that the ODE under consideration is ẋ = f(x), and f
is guaranteed to be continuously differentiable only on the interval (a, b). Recall also that
such nice behavior of f is a hypothesis of the existence and uniqueness theorem (Theorem
2.5.2). Saying that x(t) tends to a or b as t approaches Tω from the left means that x(t)
is leaving the domain of f . The domain of f is the value of “states” for which the model
is valid. Once the solution leaves this realm of validity, we can no longer make predictions
about its behavior from our original model.

This is where we finished on Wednesday, September 21, 2022.

Theorem 2.5.4 is powerful, because it finally answers our question of “What happens
in the future?” However, it does not give a definite answer: there are three possibilities,
and there is no “test” presented to determine which one happens for a given IVP. It is
possible to present such tests in fairly refined and excruciating detail via some demanding
mathematical rigor; instead, we will develop a (somewhat less excruciating) tool (the phase
line) to determine maximal domains and end behavior (with somewhat less rigor).

2.5.3. A toy version of the modified logistic equation.

The modified logistic equation (2.5.3) has three parameters and fractions, so it’s complicated.
I claim that the ODE

ẋ = x(x− 1)(2− x)

has all the same technical features as (2.5.3) with much simpler arithmetic and algebra.
Indeed, if we put

f(x) := x(x− 1)(2− x), (2.5.4)
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we can see that the graph of f has the same general shape as the graph of the more compli-
cated function defined in (2.5.2).

x

f(x)

1 2

For the remainder of this section, we will define f via (2.5.4). Note that f is just a cubic
polynomial, so f is continuously differentiable on (−∞,∞). Also, f(x) = 0 if and only if
x = 0, x = 1, or x = 2. Hence the equilibrium solutions of ẋ = f(x) are x = 0, x = 1, and
x = 2.

Since f is continuously differentiable on (−∞,∞), the maximal existence theorem (The-
orem 2.5.4) tells us that the IVP {

ẋ = f(x)

x(0) = x0

has a unique solution x defined on a maximal interval (Tα, Tω) for any initial condition x0.
Here Tα < 0 < Tω. In the language of Theorem 2.5.4, we have a = −∞ and b = ∞ here,
and so alternatives (Ω2) and (Ω3) of that theorem are really the same. Thus if Tω < ∞,
then either limt→T−

ω
x(t) =∞ or limt→T+

ω
x(t) = −∞. That is, if the maximal endpoint Tω

is finite, we must have a blow-up in finite time.
We will study how the choice of x0 influences the end behavior of x. Since we are really

interested in population models, we will make the simplifying assumption x0 ≥ 0. Also, for
simplicity, we will only study Tω; that is, we will only predict behavior in the future, not in
the past.

We break our work into the following steps.

1. Suppose that x solves the IVP with 0 < x0 < 1. Recommended Problem #3 from Week
5 says that 0 < x(t) < 1 for all t in (Tα, Tω). In particular, x is bounded below (by 0).

2. We try to determine how x is behaving at time t = 0 by calculating

ẋ(0) = f(x(0)) = f(x0) < 0,

since 0 < x0 < 1. Thus x is decreasing at time t = 0.

3. I claim that x is always decreasing. Otherwise, at some time t1 > 0, x would be increasing.
Then ẋ(t1) > 0. But since ẋ is continuous12, and since ẋ(0) < 0 < ẋ(t1), the intermediate
12 This is why Definitions 1.3.1 and 1.3.4 are important.
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value theorem provides t2 in the interval (0, t1) such that ẋ(t2) = 0. Then

0 = ẋ(t2) = f(x(t2)).

The only zeros of f are 0, 1, and 2, so x(t2) must equal one of these three numbers. But we
know that 0 < x(t2) < 1, so x(t2) cannot equal any of the roots of f . Thus it is not possible
for x to be increasing, and so x must be decreasing.

4. The function x is therefore decreasing and bounded below on (0, Tω). A theorem from
calculus then asserts that the limit L := limt→T−

ω
x(t) exists. This is a pretty deep theorem,

but we can think about it graphically: the values of x(t) keep getting smaller as time goes
on. But they are always trapped below by 0. So what else can they do but “bunch up”
around some limit L?

5. The existence of L as a finite real number rules out alternatives (Ω2) and (Ω3) from
Theorem 2.5.4. In particular, Tω cannot be finite, and so Tω = ∞. We have thus ensured
that the solution continues for all time, and so we can predict the future forever!

6. We can say more about L than just existence. Since 0 < x(t) < 1, properties of limits
force 0 ≤ L ≤ 1. (Limits do not have to maintain strict inequalities.) But x is decreasing,
so more properties of limits imply L < x(0). In particular, 0 ≤ L < 1.

7. So now we know limt→∞ x(t) = L. That is, x has the horizontal asymptote L as t→∞.
Horizontal asymptotes should call to mind “flat” graphs, and we should expect that the slope
of x gets close to 0 as t→∞. In other words, we expect limt→∞ ẋ(t) = 0. Then we can use
the fact that x solves ẋ = f(x) to calculate

0 = lim
t→∞

ẋ(t) = lim
t→∞

f(x(t)) = f
(

lim
t→∞

x(t)
)

= f(L).

The third equality follows from the continuity of f . And so L is a root of f , which means L
is one of the three numbers 0, 1, or 2. But we also know 0 ≤ L < 1. The only possibility is
L = 0.

8. We conclude that if x solves the IVP with 0 < x(0) < 1, then x is defined for all time
in [0,∞), x is strictly decreasing, 0 < x(t) < 1 for all t, and limt→∞ x(t) = 0. This is a
staggering amount of information about x. (In particular, it’s effectively our wish list from
our very early explorations in Section 1.2.) We got all this information without needing any
formulas!

Let’s celebrate with a graph of x.

t

x(t)

x0

1
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9. Now let’s suppose that x solves the IVP with 1 < x(0) < 2. Exactly the same reasoning
as in Step 1 tells us that 1 < x(t) < 2 for all t; as in Steps 2 and 3 that x is increasing
(not decreasing) for all t in (0, Tω); as in Step 4 and 6 that L := limt→T−

ω
x(t) exists and

that 1 < L ≤ 2 (here we need the fact that if x is increasing and bounded above on (0, Tω),
then the limit L exists); as in Step 5 that Tω = ∞; and as in Step 7 that f(L) = 0. Since
1 < L ≤ 2, we obtain L = 2. And so x is defined and strictly increasing on (0,∞) with
1 < x(t) < 2 for all t and limt→∞ x(t) = 2.

Here’s a graph.

t

x(t)

x0

1

2

10. Finally, if x solves the IVP with 2 < x(0), I claim that all the work above can be adapted
again to show that 2 < x(t) for all t, Tω = ∞, and x is strictly decreasing on (0,∞) with
limt→∞ x(t) = 2.

Here’s a graph of all possible solutions to this problem (assuming x0 ≥ 0). The equi-
librium solutions are dotted and the nonequilibrium (one example per type of initial value)
solutions are solid.

t

x(t)

1

2

We can generalize the demanding ideas behind this analysis to some fairly simple “tests”
for the behavior of solutions to autonomous IVP depending on where the initial condition
falls relative to the equilibrium solutions. These tests will effectively allow us to predict the
future completely, at least if we are expecting the future to be governed by an autonomous
IVP. (Unfortunately, always in motion, the future is.)

This is where we finished on Friday, September 23, 2022.

2.5.4. Constructing and interpreting phase lines.

All of our work on the toy modified logistic problem ẋ = f(x), where f(x) = x(x−1)(2−x),
boils down to two pictures. On the left, we have the graph of f as a function of the “state”
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variable x. On the right, we have the graphs of different solutions x to ẋ = f(x) as functions
of time t. (This time I have also drawn a solution with x(0) < 0.)

x

f(x)

1 2

x

f(x)

1 2 t

x(t)

1

2

If all we care about is the end behavior of solutions to ẋ = f(x), then there is an easy
way to encode this information. Draw a vertical line and mark dots on it corresponding to
the equilibrium solutions x = 0, 1, 2. Between the dots, draw an upwards-pointing arrow if
a solution with initial value in that interval is increasing, and a downwards-pointing arrow
if a solution with initial value in that interval is decreasing.

0

1

2

The drawing above is called the phase line for the ODE ẋ = x(x − 1)(2 − x). It
tells us what the equilibrium solutions are and how solutions that start at nonequilibrium
values behave over long times — whether those solutions are increasing or decreasing and
what their long-time limits13 are. Here is how you draw a phase line in general for the ODE
ẋ = f(x).

1. Find the equilibrium solutions by solving f(x) = 0. Draw a vertical line and mark the
equilibrium on the line with dots; label them, too.

2. Consider a solution to ẋ = f(x). If f(x(0)) = 0, then x(0) is an equilibrium solution to
ẋ = f(x), and x(t) = x(0) for all t.

3. If f(x(0)) > 0, then x is strictly increasing on its domain. If there is an equilibrium
13 Here I am being cagey about the domain of the solution. By “long-time limits” I mean the limit as time

approaches the right endpoint of the maximal interval of existence from the left, i.e., limt→T−
ω
x(t). I am

not saying whether Tω =∞ or Tω <∞.
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solution greater than x(0), then the domain includes14 [0,∞) and limt→∞ x(t) equals the
smallest equilibrium solution greater than x(0). Otherwise, if there is no equilibrium solution
greater than x(0), then x(t)→∞ as t approaches the right endpoint of the domain of x.

4. If f(x(0)) < 0, then x is strictly decreasing on its domain. If there is an equilibrium
solution less than x(0), then the domain includes [0,∞), and limt→∞ x(t) equals the largest
equilibrium solution less than x(0). Otherwise, if there is no equilibrium solution less than
x(0), then x(t)→ −∞ as t approaches the right endpoint of the domain of x.

2.5.6 Example.

Draw the phase line for
ẋ = (x− 1)(x− 2)

and use the phase line to sketch all solutions to this ODE.

Solution. The equilibrium solutions are x = 1, 2. First we graph f(x) = (x − 1)(x − 2)
against x to help us see where f is positive and negative.

x

f(x)

1 2

Our graph reveals that if x < 1, then f(x) > 0, if 1 < x < 2, then f(x) < 0, and if x > 2,
then f(x) > 0. From this we draw the phase line.

1

2

So, solutions that start below 1 are increasing and tend to 1 over long times; solutions
that start between 1 and 2 are decreasing and (also) tend to 1 over long times; and solutions
14 This follows from the maximal existence theorem. We already know that x is increasing on its domain,

which is (Tα, Tω); if there is an equilibrium solution x∗ greater than x(0), then x(t) < x∗ for all t in [0, Tω).
Hence x is increasing and bounded above, so L := limt→T−

ω
x(t) exists as a finite real number, in particular

L ≤ x∗. The only way we can have Tω <∞ is to also have L = ±∞, and that doesn’t happen here.
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that start above 2 are increasing and tend to ∞ over long times. Here is a sketch of all the
solutions; we draw the equilibrium solutions as dotted black lines and (representatives of)
the nonequilibrium solutions as solid blue curves.
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2.5.7 Example.

Draw the phase line for
ẋ = (1− x)(x− 2)

and use the phase line to sketch all solutions for this ODE.

Solution. The equilibrium solutions are (again) x = 1, 2. Here is the graph of f(x) =
(1− x)(x− 2); note that (1− x)(x− 2) = −(x− 1)(x− 2) from Example 2.5.6.

x

f(x)

1 2

Our graph shows that if x < 1, then f(x) < 0; if 1 < x < 2, then f(x) > 0; and if x > 2,
then f(x) < 0. In other words, this is exactly the opposite of Example 2.5.6. From this we
draw the phase line.

1

2

Solutions that start below 1 are decreasing to −∞; solutions that start between 1 and 2
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are increasing to 2; and solutions that start above 2 are decreasing to 2.
t

x(t)
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2

3

t
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Again, this is the opposite of what happened in Example 2.5.6; flipping the sign of the
derivative changes a function from increasing to decreasing, or from decreasing to increasing.

N

To draw a phase line for ẋ = f(x), we don’t necessarily need (or want) a formula for f .
Rather, we need to know the roots (zeros) of f and f is positive or negative between those
roots; in fact, if we assume that f is continuous (as we almost always do), then calculus tells
us that the sign of f doesn’t change between those roots. (This is the intermediate value
theorem.) Given a good graph of f , we can get all of this information.

2.5.8 Example.

Use the graph of the function f drawn below to sketch the phase line for ẋ = f(x) and
then solutions for this ODE.

x

f(x)

1 2 3

Solution. Assuming that f maintains its apparent behavior outside the given snippet, the
only roots of f are x = 1, 2, 3, and so these are the equilibrium solutions. We see that if
x < 1, then f(x) > 0; if 1 < x < 2, then f(x) < 0; if 2 < x < 3, then f(x) > 0; and if x > 3,
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then f(x) > 0, still. Here is the resulting phase line.

1

2

3

Here is the resulting behavior of solutions. A solution that starts below 1 increases to 1; a
solution that starts between 1 and 2 decreases to 1; a solution that starts between 2 and 3
increases to 3; and a solution that starts above 3 increases to ∞.
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In the preceding examples of phase lines for the autonomous problem ẋ = f(x), the
function f was defined and continuously differentiable on (−∞,∞). If f fails to be defined
at some point, we cannot consider that point as an equilibrium solution to the ODE, but
that point is nonetheless likely to influence the long-time behavior of solutions. We will mark
points at which f fails to be defined by circles, not dots, on the phase line.

2.5.9 Example.

Draw the phase line for ẋ = −1/x. What does this tell you about solutions to the ODE?

Solution. Here is the graph of f(x) = −1/x.
This function is not defined at x = 0, so we will mark 0 with a circle, not a dot, on the

phase line. If x < 0, then f(x) > 0, while if x > 0, then f(x) < 0. So, we draw the phase
line as usual.

0

This tells us that solutions that start below 0 increase to 0, while solutions that start above
0 decrease to 0. Some care, however, is needed if we want to sketch the graphs of solutions.
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Recall from Example 2.5.3 that {
ẋ = −1/x

x(0) = 1.

has the analytic solution x(t) =
√

1− 2t on (−∞, 1/2). This solution is defined and contin-
uous, but not differentiable (and therefore not a solution), at t = 1/2. We have

lim
t→1/2−

√
1− 2t = 0,

and the ODE is not defined at x = 0. Specifically, the ODE is ẋ = f(x), where f(x) = −1/x.
As the solution approaches t = 1/2 from the left, the values of the solution leave the domain
of the ODE; we might say, euphemistically, that the values of the solution “fall into a hole.”

More generally, solutions to ẋ = −1/x will not be defined on the whole interval [0,∞),
and so they don’t have horizontal asymptotes at 0. Nonetheless, they still limit to 0 at the
right endpoint of their domain. N

This is where we finished on Monday, September 26, 2022.

2.5.10 Example.

Draw the phase line and sketch some solutions for ẋ = ln(x).

Solution. First, recall that f(x) := ln(x) is not defined when x ≤ 0. Otherwise, we have
ln(x) < 0 for 0 < x < 1, with a vertical asymptote at x = 0; ln(1) = 0, and so x = 1 is
an equilibrium solution; and ln(x) > 0 for x > 0 (with, by the way, limx→∞ ln(x) =∞ very
slowly). Here’s a graph.

x

f(x)

1

To draw the phase line, we need to exclude x < 0 from consideration, as the problem
ẋ = ln(x) does not have a solution if we demand x(0) ≤ 0. We do draw a circle, not a dot,
at x = 0, as this is the “first” point at which the natural log is not defined.

1

0
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Solutions cannot start at or below 0; solutions that start between 0 and 1 decrease to 0;
and solutions that start above 1 increase to ∞. Without further information, however, it is
difficult to attempt a sketch — we do not know the concavity of these solutions, and we also
don’t know if they are defined for all time. For example, could a solution starting between
0 and 1 reach 0 in finite time? Here is a slope field to help.

Math 2306 (Section 54, Fall 2022) Attendance Check for 9/7/22 1

Here is a slope field for the ODE

ẋ = (x + 1)(x � 1)(x � 2).

t

x

1

2

3

1 2 3 4 5 6 7 8 9 10

1. What are the equilibrium solutions of this ODE?

2. Equilibrium solutions are constant, so the slope of their graphs is always zero. On the
slope field above, trace the graphs of the equilibrium solutions. Label which graph is which.

3. Draw on the slope field a graph of one additional solution that is not an equilibrium
solution.

I think that solutions that start between 0 and 1 will, in fact, reach 0 in finite time (i.e., the
solutions x are defined on [0, Tω) with limt→T−

ω
x(t) = 0), and so here is a cautious sketch.

t

x(t)

1

N

Phase lines convey useful and concise information about predicting the future, chiefly the
range of solutions (are they bounded between equilibrium points or unbounded?) and their
long-time limits. However, phase lines by themselves also lack lots of information. Here are
some complaints.

1. The domain of a solution, in particular if a solution is defined on [0,∞), may not be
apparent from a phase line.

2. The concavity of a solution may not be apparent from a phase line.

3. If a solution converges to a finite limit over long time, the rate of convergence may not
be apparent from a phase line. For example,

lim
t→∞

1

t
= 0 and lim

t→∞
e−t = 0,

but the latter function converges much more quickly to 0 than the former — look at the
graphs to see which one “flattens out” first. A phase line can’t tell you that.
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4. The exact value of a solution at a particular moment in time is definitely not something
that a phase line can tell you, unless that solution is an equilibrium solution.

I don’t make these remarks to disparage phase lines. Rather, I want to remind you, again,
that no one ODE tool will tell you all that you want, or need, to know about a problem. If
your life depends on understanding the solutions to an ODE15, then you should use all the
tools available to you — formulas, slope fields, numerical methods, phase lines, and more.

2.6. Linear equations.

Two classes of first-order ODE (with some overlap between them) broadly appear in models
and theory. We have already met separable problems; now we will study a class called lin-
ear16 ODE. Our solutions to linear ODE will be among our greatest successes; in particular,
we will derive a relatively painless procedure for finding a formula for the solution any linear
ODE, and this process will be consistently more successful than separation of variables. To
motivate the value of linear equations, we study first a new population problem.

2.6.1. Harvesting.

Life was good for our population models in prior examples. With the exception of a certain
bad regime in the modified logistic equation, either our populations always exploded to ∞,
or they happily leveled out around a carrying capacity. Either way, they survived, and
probably prospered.

The good times are over! Famine, pestilence, and peril are on the horizon! Suppose that
we have a population that, in the absence of external malice, grows exponentially. With x(t)
as the population at time t, we expect ẋ = rx. Now, however, because this population is
useful and/or delicious, we decide to harvest (hunt, remove) some members of the population.

Say that at time t, we harvest H(t) units of the population per unit time. Since we are
removing members of the population and not adding them, we expect H(t) ≥ 0. Recalling
that the general rate of change of a quantity subject to both influx and removal is “Rate in
minus Rate out,” per (RI−RO), we have

ẋ = rx−H(t). (2.6.1)

If H is not constant, then this problem is not separable; in particular, it is not autonomous.
Of course, we could use slope fields and Euler’s method to analyze it, given a formula for H.

How might we choose H? There are lots of valid harvesting schemes, but the one I like
here is periodic harvesting. After all, this is probably how we harvest crops and hunt game
on a seasonal/annual basis. So, we want H to be a nonnegative periodic17 function.

There are many such functions, but maybe the most familiar nonconstant periodic func-
tion is the sine. However, −1 ≤ sin(t) ≤ 1, so let’s add 1 to get 0 ≤ 1 + sin(t) ≤ 2. If
we take H(t) = 1 + sin(t), then, yes, we get a nonconstant, nonnegative periodic function.
15 Note that I intentionally did not say “If your life depends on solving an ODE.”
16 In general in math, when you hear the word “linear,” you should expect that good things will happen when

you add things and/or multiply by constants. This will be apparent shortly.
17 A function H is periodic if there is a number P 6= 0 such that H(t+ P ) = H(t) for all t.
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But this would only allow us to harvest with a rate ranging between 0 and 2. If we mul-
tiply by a number h > 0, then taking H(t) = h(1 + sin(t)) allows us to remove anywhere
between 0 and 2h members of the population per unit time. Let me refine this further to
H(t) = h(1+sin(t))/2 so that we are harvesting between 0 and h members of the population
per unit time. Finally, the sine is 2π-periodic, and we probably don’t want to harvest with
2π-periodicity. To give us control over the frequency of harvesting, let me incorporate one
more parameter: put

H(t) =
h
(
1 + sin(ωt)

)
2

. (2.6.2)

Here’s a graph of H, which, by the way, is 2π/ω-periodic (why?).

t

H(t)

h

h/2

2π/ω

The ODE that governs our exponentially growing population subject to harvesting is
now

ẋ = rx− h
(
1 + sin(ωt)

)
2

. (2.6.3)

There are three parameters in this ODE: the positive numbers ω, h, and r. We might wonder
what effect tweaking the values of these three parameters has on the solutions. Of course,
we could go to slope fields and/or numerics and make observations. But suppose we wanted
to answer definitively the following question: are there values of the parameters ω, h, and
r that cause the population to go extinct? That is, can we harvest in such a way that we
kill off the population, and, if so, how “sensitive” is the population’s behavior to the values
of ω, h, and r? While we have long since accepted that having formulas is not the same
as understanding (inhale, recite (AC), exhale), but I think this situation is exactly why we
want precise formulas for the solution to (2.6.3). Qualitative and numerical methods alone
simply won’t cut it.

2.6.2. Definitions.

The harvesting ODE (2.6.3) has the following form.

2.6.1 Definition.

An ODE ẋ = f(t, x) is linear if f has the special form f(t, x) = a(t)x+b(t) for functions
a and b. That is, a linear ODE is an equation of the form

ẋ = a(t)x+ b(t). (2.6.4)

The function a is the coefficient and the function b is the forcing or driving
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term.

Specifically, in (2.6.3), we had a(t) = r and b(t) = −H(t), with H defined in (2.6.2). We
call a the coefficient because a multiplies x, and coefficients are supposed to multiply things;
calling b the forcing/driving term is a convention that stems from terminology for second-
order ODE, which naturally involve things being forced or driven by external18 influences.

Various special choices of a and b make a linear ODE fairly easy to solve. For example, if
a(t) = 0 for all t, then the ODE is just ẋ = b(t), which can be solved with direct integration.
Or, if the functions a and b are constant, then the ODE is ẋ = ax+ b, which is autonomous,
and which therefore can be solved with separation of variables. We will develop a general
method for solving linear ODE, and it will be illustrative to compare the results of that
method to the results of direct integration or separation of variables when one of those
techniques applies, too.

2.6.3. The structure of solutions to homogeneous linear ODE.

There is one special case of the linear ODE that is both very easy to solve with separation
of variables and very worth knowing for use in the near future.

2.6.2 Definition.

The linear ODE (2.6.4) is homogeneous if b(t) = 0 for all t. That is, a homogeneous
ODE is an equation of the form

ẋ = a(t)x. (2.6.5)

The ODE (2.6.4) is nonhomogeneous (sometimes inhomogeneous) if it is not
homogeneous, i.e., if b(t) 6= 0 for at least one t.

We can solve (2.6.5) via separation of variables. First, the only equilibrium solution is
x = 0. Assuming x 6= 0, divide and integrate to find∫

dx

x
=

∫
a(t) dt+ C. (2.6.6)

If we assume that a is continuous on some interval, then a always has an antiderivative on
that interval; call the antiderivative A. That is, Ȧ = a. Then we integrate on the left in
(2.6.6) to find

ln(|x|) = A(t) + C.

Exponentiating, we have
|x| = eCeA(t),

and so
x = ±eCeA(t),

which we collapse, as usual, into
x = CeA(t).

We summarize this result more formally.

18 See Footnote 28.
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2.6.3 Theorem (Linear structure I: homogeneous ODE).

Let a be continuous on the interval I. If x solves ẋ = a(t)x on I, then we can write x in
the form

x(t) = CeA(t),

where C is a constant and A is an antiderivative of a on I.

Proof. Separation of variables essentially gives us this result, but it is also a nice opportunity
to check our work using existence and uniqueness. First, fix some point t0 in I and let
x0 := x(t0). The fundamental theorem of calculus (Theorem 1.3.6) allows us to define an
antiderivative A of a on I by

A(t) :=

∫ t

t0

a(τ) dτ;

note that A(t0) = 0.
Now put

y(t) := x0e
A(t).

We calculate

y(t0) = x0e
A(t0) = x0e

0 = x0 · 1 = x0 and ẏ(t) = x0e
A(t)Ȧ(t) = x0e

A(t)a(t) = a(t)y(t),

and so y solves the IVP {
ẏ = a(t)y

y(t0) = x0.

But x clearly solves this IVP, too, since we are assuming that ẋ = a(t)x, and since we defined
x0 = x(t0).

Last, observe that f(t, x) := a(t)x satisfies the hypotheses of Theorem 2.4.1. Thus
x(t) = y(t) for all t, and so x(t) = x0e

A(t).

The proof above is, I think, a nice illustration of how we can always check our work in
ODE. No matter how dubious the calculations that wrest from the very clay of the earth a
formula for a putative solution to an ODE, we can always check that formula by plugging it
into our equation. And if we take our time, we can probably use the existence and uniqueness
theorem to explain why that formula is the only formula that works.

This is where we finished on Wednesday, September 28, 2022.

2.6.4 Remark.
Contrary to everything that we learned in calculus, we do not need to include a constant
of integration when calculating the antiderivative A in Theorem 2.6.3. Indeed, if we do
include a constant of integration, which we call K here, the solution x would have the form

x(t) = CeA(t)+K = (CeK)eA(t).

And so we could just lump the constant of integration in with the free constant C.
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2.6.5 Example.

Determine all solutions to ẋ = sin(t)x and, in particular, find the solution satisfying
x(0) = 5.

Solution. We could separate variables, but we could also use the abstract results above.
By Theorem 2.6.3, all solutions to ẋ = sin(t)x have the form

x = Ce
∫
sin(t) dt = Ce− cos(t).

To find x with x(0) = 5, we need 5 = Ce− cos(0) = Ce−1. We solve for C: C = 5(e−1)−1 = 5e.
Thus the solution with x(0) = 5 is x(t) = (5e)e− cos(t) = 5e1−cos(t). N

2.6.4. The structure of solutions to nonhomogeneous linear ODE.

We now have complete control over linear homogeneous ODE, so we turn to the nonhomo-
geneous case. What can we learn about the linear ODE ẋ = a(t)x + b(t) without actually
solving it? The right idea, which may not be the obvious idea, is to suppose that we have
two solutions x and y and study their difference. Specifically, suppose

ẋ = a(t)x+ b(t) and ẏ = a(t)y + b(t)

and set
z := x− y.

Then z measures how different x and y are.
You know what they say: “if it moves, differentiate it.” We calculate

ż =
d

dt
[x− y]

= ẋ− ẏ
=
(
a(t)x+ b(t)

)
−
(
a(t)y + b(t)

)
= a(t)x+ b(t)− a(t)y − b(t)
= a(t)x− a(t)y

= a(t)
(
x− y)

= a(t)z.

Thus z satisfies the linear homogeneous ODE

ż = a(t)z,

and so there is a constant C such that

z(t) = CeA(t),

where A is an antiderivative of a.
Thus

x− y = z = CeA(t),
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and so
x = y + CeA(t).

This cuts down our workload dramatically. It tells us that if we have found one solution y to
our linear ODE, then every other solution x has the form above; all we have to do is choose
the constant C correctly. Let’s state this formally and then informally.

2.6.6 Theorem (Linear structure II: nonhomogeneous ODE).

Let a be continuous on the interval I, let b be a function on I, and suppose that y solves

ẏ = a(t)y + b(t).

Let x be another solution to this ODE:

ẋ = a(t)x+ b(t).

Then there is a constant C such that

x(t) = y(t) + CeA(t) (2.6.7)

for all t, where A is an antiderivative of a.

We can paraphrase this theorem in what I hope is an evocative manner, but first we need
a definition.

2.6.7 Definition.

Let a and b be functions. The ODE ż = a(t)z is the associated homogeneous
ODE for the nonhomogeneous problem ẋ = a(t)x+ b(t).

Note that in (2.6.7), the function z(t) := eA(t) solves the associated homogeneous ODE
ż = a(t)z.

2.6.8 Remark.
Here is the paraphrase in words of the second structure theorem: every solution to a
nonhomogeneous ODE is the sum of a particular solution to the nonhomogeneous ODE
and a constant multiple of a solution to the associated homogeneous ODE. (The first
structure theorem, by the way, just says that every solution to a homogeneous ODE is a
constant multiple of one particular solution to that homogeneous ODE.)

Here is how we can use the second structure theorem.

2.6.9 Example.

One can (and you should) verify that the function y(t) := 3te−t
2

solves ẏ = −2ty + 3e−t
2

.
Use this fact to find all functions x that solve ẋ = −2tx+ 3e−t

2

.
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Solution. The associated homogeneous ODE is ż = −2tz, and all solutions to this ODE
have the form

z(t) = Ce
∫
−2t dt = Ce−t

2

.

The second structure theorem then guarantees that every solution x to ẋ = −2tx + 3e−t
2

has the form
x(t) = 3te−t

2

+ Ce−t
2

for some constant C. It will be worth noting for later use that both terms in this formula for
x, the particular solution y(t) = 3te−t

2

and the homogeneous solution z(t) = Ce−t
2

, contain
the factor e−t

2

, and zh(t) := e−t
2

solves the homogeneous problem żh = −2tzh. N

2.6.5. The product rule and an illustrative toy problem.

The second structure theorem tells us that to find all solutions to a linear nonhomogeneous
problem, all we have to do is get our hands on one solution to the problem. Everything else
is antidifferentiating and adding! So how do we find one such solution? We will develop a
remarkable procedure that always works. It hinges on seeing the product rule in surprising
places, so we’ll do an example of that. Recall that if x and v are functions, then

d

dt
[xv] = ẋv + xv̇. (2.6.8)

2.6.10 Example.

(i) Use the product rule to calculate

d

dt
[t sin(t2)].

(ii) Can you recognize the expression

2e2t cos(3t)− 3te2t sin(3t)

as the product rule-style derivative of a function?

Solution. (i) The product rule says

d

dt
[t sin(t2)] =

d

dt
[t] sin(t2) + t

d

dt
[sin(t2)] = 1 · sin(t2) + t cos(t2)(2t) = sin(t2) + 2t2 cos(t2).

(ii) No fair just integrating this expression. (Do you really want to? You’d have to integrate
by parts on things like

∫
e2t cos(3t) dt, and that’s a chore.)

Here is what I see: we have two terms, each with a factor of e2t, and each with a cosine
or sine evaluated at 3t. We know that cosine and sine are related by differentiation, and we
expect a 2 to pop out of differentiating e2t and a 3 to pop out of differentiating a composition
with 3t. So, after some fumbling, I say

2e2t cos(3t)− 3te2t sin(3t) =
[
2e2t

]
cos(3t) + e2t

[
− 3 sin(3t)

]
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=
d

dt
[e2t] cos(3t) + e2t

d

dt
[cos(3t)]

=
d

dt
[e2t cos(3t)]. N

This is where we finished on Friday, September 30, 2022.

We will now, at last, develop a general method for solving linear ODE. We’ll extract the
general details from the specific toy problem of

ẋ = −2tx+ 3e−t
2

, (2.6.9)

which we previously studied in Example 2.6.9. Some of the following steps may not seem
obvious — hopefully they feel logically correct, but the motivation or insight behind them
may be obscure. Don’t worry; these ideas have unfolded over centuries of study, and we only
have a semester together.

The first thing to do is to rewrite (2.6.9) as

ẋ+ x(2t) = 3e−t
2

. (2.6.10)

The left side looks very vaguely like the product rule as we wrote it in (2.6.8): it’s a sum of
two terms, one term has a factor of ẋ, and the other term has a factor of x. If the left side
were a genuine product rule-style derivative, then we would have

ẋ+ 2tx = ẋv + xv̇ =
d

dt
[xv]

for some function v. That would certainly simplify things.
What’s wrong? The left side of (2.6.10) doesn’t have any t-dependent factor on ẋ. (Okay,

ẋ = ẋ · 1, but that’s not helpful.) How do we introduce a missing factor in a math problem?
Go forth and multiply!

Specifically, let us enter the land of wishful thinking: suppose that µ is a function19, and
multiply both sides of (2.6.9) by µ(t) to find that x must solve

ẋ(t)µ(t) + x(t)[2tµ(t)] = 3e−t
2

µ(t). (2.6.11)

I am now writing the dependence of x and ẋ on t explicitly. So, if x solves our original
problem (2.6.9), then x also solves (2.6.11). Conversely, if we can divide out µ(t) from both
sides of (2.6.11), then we get back (2.6.9). So, let us impose our first wish:

µ(t) 6= 0 for all t. (µ1)

If this wish is met, then we know that any function x that solves (2.6.11) will solve
(2.6.9), and so we can just focus on (2.6.11). Now, (2.6.11) looks a lot more like a product
rule, since each term contains two factors, one involving x, the other not. We really want

ẋ(t)µ(t) + x(t)[2tµ(t)] = ẋ(t)v(t) + x(t)v̇(t)

19 The symbol µ is the Greek letter “mu,” and it is traditional to use µ here because we are multiplying, or,
should I say, µltiplying.
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for some function v, and we can achieve this by putting v = µ. But then we need a second
wish:

µ̇(t) = 2tµ(t) (µ2)

for all t.
Suppose that our wishes have been granted. Then (2.6.11) becomes

ẋ(t)µ(t) + x(t)µ̇(t) = 3e−t
2

µ(t). (2.6.12)

We recognize the left side as the product rule:

ẋ(t)µ(t) + x(t)µ̇(t) =
d

dt
[xµ].

Thus (2.6.12) is the same as
d

dt
[xµ] = 3e−t

2

µ(t). (2.6.13)

In fact, if µ satisfies our wishes (µ1) and (µ2), then (2.6.9), (2.6.10), (2.6.11), (2.6.12), and
(2.6.13) are all the same equation, just dressed up differently.

The goal of life is always to solve for x; in (2.6.13), x is stuck inside a derivative. We
remove derivatives by integrating. That is, if we have (2.6.13), then we must have∫

d

dt
[xµ] dt =

∫
3e−t

2

µ(t) dt. (2.6.14)

Since ∫
d

dt
[xµ] dt = xµ+ C,

where C is a constant of integration, (2.6.14) becomes

x(t)µ(t) = 3

∫
e−t

2

µ(t) dt+ C. (2.6.15)

Here we are performing the usual calculus sleight-of-hand of putting the constant of integra-
tion on the right and still calling it C. Last, since µ(t) 6= 0 by our wish (µ1), we may divide
both sides of (2.6.15) by µ(t) and thereby solve for x:

x(t) =
3

µ(t)

∫
e−t

2

µ(t) dt+
C

µ(t)
. (2.6.16)

Up to determining what µ is, we have solved for x; unlike separation of variables, there
was no question of solving an “implicit” equation for x — we just got x explicitly! By the
way, in (2.6.16), we are committing the notational awkwardness of letting the independent
variable be t and also letting the variable of integration be t. The point is that

∫
e−t

2
µ(t) dt

represents an antiderivative of the function q(t) := e−t
2

µ(t).
Now, how can we make our wishes (µ1) and (µ2) come true? The key is (µ2): this is a

homogeneous ODE for µ. Indeed, we know how to solve

µ̇ = 2tµ (2.6.17)
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by now: all solutions, by Theorem 2.6.3 have the form

µ(t) = Ke
∫
2t dt = Ket

2

for some constant K. To guarantee our wish (µ1), we want to avoid K = 0. Moreover, the
wish (µ2) doesn’t call for any specific solution to the ODE (2.6.17), so let’s keep life simple
and take K = 1. That is, we define

µ(t) := et
2

.

We will call µ the integrating factor for our ODE (2.6.9), because multiplying both
sides of (2.6.9) effectively reduces solving the ODE to performing a direct integration.

Plugging this formula for µ into (2.6.16) gives

x(t) =
3

et2

∫
e−t

2

et
2

dt+
C

et2
= 3e−t

2

∫
dt+ Ce−t

2

= 3te−t
2

+ Ce−t
2

.

And this, you might recall, is exactly what we got in Example 2.6.9.

2.6.6. Integrating factors.

Here we distill the results from the preceding toy problem into a more general method for
solving linear ODE.

1. Obtain a linear ODE. ẋ = −2tx+ 3e−t
2

ẋ = a(t)x+ b(t)

2. Subtract the x-term ẋ+ 2tx = 3e−t
2

ẋ− a(t)x = b(t)
from both sides. g(t) := −a(t)

ẋ(t) + x(t)[2t] = 3e−t
2

ẋ(t) + x(t)g(t) = b(t)

3. Obtain the integrating Solve µ̇ = 2tµ. Solve µ̇ = g(t)µ.
factor. Obtain µ(t) = e

∫
2t = et

2

. Obtain µ(t) = e
∫
g(t) = eG(t).

4. Multiply through by ẋ(t)et
2

+ x(t)[2tet
2

] ẋ(t)eG(t) + x(t)[g(t)eG(t)].
the integrating factor. = 3e−t

2

et
2

= b(t)eG(t)

5. Find the product rule. ẋ(t)et
2

+ x(t)[2tet
2

] ẋ(t)eG(t) + x(t)[g(t)eG(t)]

= ẋ(t)et
2

+ x(t)
d

dt
[et

2

] = ẋ(t)eG(t) + x(t)
d

dt
[eG(t)]

=
d

dt
[x(t)et

2

] =
d

dt
[x(t)eG(t)]

6. Rewrite and simplify.
d

dt
[x(t)et

2

] = 3
d

dt
[x(t)eG(t)] = b(t)eG(t)

7. Integrate.
∫

d

dt
[x(t)et

2

] dt =

∫
3 dt

∫
d

dt
[x(t)eG(t)] dt =

∫
b(t)eG(t) dt

x(t)et
2

= 3t+ C x(t)eG(t) =

∫
b(t)eG(t) dt+ C

8. Solve for x. x(t) = 3te−t
2

+ Ce−t
2

x(t) = e−G(t)

∫
b(t)eG(t) dt+ Ce−G(t)
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This is where we finished on Monday, October 3, 2022.

The function µ that we used several times above has a special name.

2.6.11 Definition.

An integrating factor for the ODE ẋ = a(t)x + b(t) is a function µ of the form
µ(t) = e−A(t), where A is any antiderivative of a.

The “integrating factor method” outlined in the table above can be summarized as subtract
the homogeneous term a(t)x from both sides of the equation, multiply both sides of the result
by the integrating factor, look out for the product rule, and hope for the best.

2.6.12 Example.

Find all solutions to
ẋ = cos(t)x+ cos(t).

Solution. This is a linear nonhomogeneous ODE with a(t) = b(t) = cos(t). We rearrange
the ODE as

ẋ− cos(t)x = cos(t).

To reflect further the anticipated structure of the product rule, we regroup the terms on the
left:

ẋ+ x[− cos(t)] = cos(t).

The integrating factor is

µ(t) = e
∫
− cos(t) dt = e−

∫
cos(t) dt = e− sin(t).

We only need one antiderivative of a in the integrating factor, so we do not include a constant
of integration.

Now we multiply both sides of our rearranged ODE by the integrating factor:

ẋ(t)e− sin(t) + x(t)[− cos(t)]e− sin(t) = cos(t)e− sin(t).

We check our work by looking for the product rule structure on the left. We have

d

dt
[e− sin(t)] = e− sin(t) d

dt
[− sin(t)] = e− sin(t)[− cos(t)],

and so

ẋ(t)e− sin(t) + x(t)[− cos(t)]e− sin(t) = ẋ(t)e− sin(t) + x(t)
d

dt
[e− sin(t)] =

d

dt
[x(t)e− sin(t)]

by the product rule.
Thus our solution x must satisfy

d

dt
[x(t)e− sin(t)] = cos(t)e− sin(t).
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We integrate both sides to find∫
d

dt
[x(t)e− sin(t)] dt =

∫
cos(t)e− sin(t) dt. (2.6.18)

The integral on the left is ∫
d

dt
[x(t)e− sin(t)] dt = x(t)e− sin(t) + C

for some constant C.
For the integral on the right, we substitute u = − sin(t) to find du = − cos(t) dt and

cos(t) dt = −du, and so∫
cos(t)e− sin(t) dt =

∫
−eu du = −eu +K = −e− sin(t) +K,

where K is (also) a constant of integration. We conclude

x(t)e− sin(t) + C = −e− sin(t) +K.

We perform the usual (and suspicious) algebra of combining both constants of integration
into one constant, which we naturally call C. Thus

x(t)e− sin(t) = −e− sin(t) + C,

and so we solve for x as

x(t) = esin(t)[−e− sin(t) + C] = −esin(t)−sin(t) + Ce− sin(t) = −1 + Ce− sin(t). N

2.6.13 Example.

Find all solutions to, again,
ẋ = cos(t)x+ cos(t)

by interpreting the equation as a separable problem, finding an equilibrium solution, and
then using one of the structure theorems.

Solution. We factor
cos(t)x+ cos(t) = cos(t)(x+ 1)

to see that the ODE has the separable form

ẋ = cos(t)(x+ 1).

We could therefore find all solutions, presumably, by separating variables; we won’t go that
far, but we do note that solving x+1 = 0 for x = −1 will give an equilibrium solution. That
is, the constant function x(t) = −1 solves the ODE; this is easy to check, since ẋ(t) = 0
when x is constant, and

cos(t)x(t) + cos(t) = cos(t)(−1) + cos(t) = 0
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for all t, as well.
So, we have found one particular solution to the nonhomogeneous problem. And all solu-

tions to the associated homogeneous problem ż = cos(t)z have the form z(t) = Ce
∫
cos(t) dt =

Cesin(t) for some constant C. (Here we are, as usual, interpreting the indefinite integral in the
exponent as one particular antiderivative of a(t) = cos(t).) The second structure theorem
then tells us that all solutions to the nonhomogeneous problem ẋ = cos(t)x+ cos(t) have the
form

x(t) = −1 + Cesin(t)

for some constant C, exactly as we found in the previous example. N

2.6.14 Remark.
It is natural to find the competing constants of integration C and K in Example 2.6.12
confusing. Rewrite (2.6.18) as∫

d

dt
[x(t)e− sin(t)] dt−

∫
cos(t)e− sin(t) dt = 0. (2.6.19)

You have evaluated the sum of indefinite integrals in calculus plenty of times; for example,∫
t2 dt+

∫
et dt =

t3

3
+ et + C.

We usually do not hesitate to write only one constant of integration when dealing with the
sum of two or more indefinite integrals. In a similar way, we could evaluate (relying on
the work in Example 2.6.12)∫

d

dt
[x(t)e− sin(t)] dt−

∫
cos(t)e− sin(t) dt = x(t)e− sin(t) − [−e− sin(t)] + C

= x(t)e− sin(t) + e− sin(t) + C.

Then (2.6.19) reads
x(t)e− sin(t) + e− sin(t) + C = 0.

Divide through by e− sin(t) to get

x(t) + 1 + Cesin(t) = 0

and solve for x:
x(t) = −1− Cesin(t). (2.6.20)

Since C, as a constant of integration, is allowed to be any real number, −C can also be
any real number. We follow the usual conventions from calculus and just write

x(t) = −1 + Cesin(t)

in (2.6.20) instead.
Many of the ambiguities that constants of integration introduce could be eliminated if

we worked with definite integrals instead. Weasel words like the sentence “Since C, as a
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constant of integration, is allowed to be any real number, −C can also be any real number”
are designed to handle the fact that an indefinite integral represents a set of functions (the
set of all antiderivatives of a given function), and so doing “algebra” with this set can be
slippery. The definite integral is just that: definite. The challenge of the definite integral,
which practice makes easier, is choosing the right limits of integration.

This is where we finished on Wednesday, October 5, 2022.

The solution to the following IVP illustrates how using a definite integral can cut down
on some work and ambiguities related to the constant of integration.

2.6.15 Example.

Solve the IVP {
ẋ =

x

t
+ t

x(1) = 2.

Solution. This ODE has the linear structure ẋ = a(t)x+ b(t) with a(t) = 1/t and b(t) = t.
First we rewrite the ODE as

ẋ− x

t
= t,

and then we rewrite that as
ẋ(t) + x(t)

(
−1

t

)
= t,

in an effort to make things look as much like the product rule as possible.
We introduce the integrating factor

µ(t) = e
∫
(−1/t) dt = e− ln(|t|) = eln(|t|

−1) = |t|−1.

Here we have used some properties of the natural logarithm. Now, both the coefficient a and
the integrating factor µ are undefined at t = 0. However, the initial value calls for x(1) = 1,
and so we will just solve this ODE for t > 0; that will certainly include t = 1. Thus we can
simplify

µ(t) = |t|−1 = t−1 =
1

t

for t > 0.
We multiply both sides of our rearranged ODE by µ to find

ẋ(t)

(
1

t

)
+ x(t)

(
−1

t

)(
1

t

)
= t

(
1

t

)
,

and thus
ẋ(t)

(
1

t

)
+ x(t)

(
− 1

t2

)
= 1.
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We check that we have a product rule-style structure on the left:

d

dt

[
1

t

]
=

d

dt
[t−1] = −t−2 = − 1

t2
,

and so
ẋ(t)

(
1

t

)
+ x(t)

(
− 1

t2

)
=

d

dt

[
x(t)

(
1

t

)]
.

Thus x solves
d

dt

[
x(t)

(
1

t

)]
= 1.

Naturally, we want to integrate both sides to solve for x. However, since we are dealing with
an IVP here, let’s integrate with a definite integral:∫ t

1

d

dτ

[
x(τ)

(
1

τ

)]
dτ =

∫ t

1

1 dτ. (2.6.21)

We always want x to be a function of t, so I am using τ as the variable of integration and t
as the upper limit of integration. The lower limit of integration is 1 because that is the time
at which the initial value is taken.

We find
x(t)

(
1

t

)
− x(1)

(
1

1

)
= t− 1.

This simplifies slightly to
x(t)

t
− x(1) = t− 1,

and we want x(1) = 2. Thus
x(t)

t
− 2 = t− 1,

and so we solve for x:
x(t) = t(t+ 1). N

2.7. Three more perspectives on linear ODE.

The integrating factor method is possibly our one complete success in this course. While it
is not short, we can always solve for x. We didn’t have this guarantee of explicit success
with separation of variables. Although every linear problem can be solved with integrating
factors, there are several additional perspectives on linear ODE that can enrich and embiggen
our lives.

2.7.1. Duhamel’s formula.

The integrating factor method gives us a much better result than a well-intentioned (but
naive) application of the existence and uniqueness theorem will; solutions to a linear ODE
are defined at least as long as the coefficient a and the driving term b are both continuous.
Here is a precise statement of that result.
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2.7.1 Theorem.
Let a and b be continuous on the interval I, let t0 be a point in I, and let x0 be a real
number. Put A(t) :=

∫ t
t0
a(τ) dτ. Then the unique solution to the IVP{

ẋ = a(t)x+ b(t)

x(t0) = x0

is

x(t) = x0e
A(t) + eA(t)

∫ t

t0

e−A(τ)b(τ) dτ. (2.7.1)

This solution x is defined on the entire interval I. The formula (2.7.1) is sometimes called
Duhamel’s formula.

Proof. First, observe that A is defined for all t in I since a is continuous on I. The
fundamental theorem of calculus then says that A is differentiable Ȧ(t) = a(t) for all t in
I. Likewise, the integral

∫ t
t0
e−A(τ)b(τ) dτ is defined for all t in I since the integrand is

continuous on I. (The forcing term b does not have to be differentiable on I.) We can then
check directly using the product rule and the fundamental theorem of calculus that x as
defined in (2.7.1) solves the IVP. The existence and uniqueness theorem applies (why does
it apply to this IVP?) to show that x as defined here is the only solution.

Here is another, more constructive, proof of existence. Suppose that x solves this IVP:
we have ẋ(t) = a(t)x(t)+b(t) for all t in I and x(t0) = x0. Use the integrating factor method
as outlined at the start of this section to produce the formula (2.7.1). Take

µ(t) = e
−
∫ t
t0
a(τ) dτ

as the integrating factor, i.e., G(t) = −
∫ t
t0
a(τ) dτ; when integrating in Step 7, use a definite

integral and integrate from t0 to t. (Call the variable of integration τ, not t, as we did in
(2.6.21) for clarity.) Don’t succumb to the temptation to multiply eA(t) and e−A(τ) together
and get 1; one factor has t, the other τ.

There is just one downside to the integrating factor method: we have to evaluate two
integrals, one to construct the integrating factor, and one to antidifferentiate the product
of the integrating factor and the forcing function. In Theorem 2.7.1, these are the integrals
A(t) =

∫ t
t0
a(τ) dτ and

∫ t
t0
e−A(τ)b(τ) dτ. It may not be possible to evaluate these integrals

explicitly. (Okay, two downsides.) Very much the same happened in separation of variables,
although here we can always solve for x. By the way, you could try to memorize (2.7.1), but
it’s detailed and quite easy to get wrong. Best to be comfortable with the integrating factor
method and above all with the role of the product rule.

2.7.2 Example.

Find all solutions to
ẋ+ 3t2x = et

2−t3 .
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Solution. Our equation is already in the form ẋ + g(t)x = b(t) — this is sometimes called
standard form, by the way — and so we can get the integrating factor as

µ(t) = e
∫
3t2 dt = et

3

.

Multiplying both sides of the ODE by µ, we find

ẋ(t)et
3

+ x(t)[3t2et
3

] = et
2

.

We recognize the left as the product rule

d

dt
[x(t)et

3

],

and we recognize the right as something that’s hard (impossible) to antidifferentiate in terms
of “elementary” functions.

This is a good time to introduce a definite integral. Both the coefficient on x and the
forcing function in this ODE are defined at all real numbers, so let’s integrate both sides of

d

dt
[x(t)et

3

] = et
2

from 0 to t; here the lower limit of 0 is just convenient. We find∫ t

0

d

dτ
[x(τ)eτ

3

] dτ =

∫ t

0

eτ
2

dτ.

We can’t get any further on the right, but on the left we can use the fundamental theorem
of calculus: ∫ t

0

d

dτ
[x(τ)eτ

3

] dτ = x(t)et
3 − x(0).

Thus

x(t)et
3 − x(0) =

∫ t

0

eτ
2

dτ,

and so we solve for x as

x(t) = x(0)e−t
3

+ e−t
3

∫ t

0

eτ
2

dτ.

We can view the unknown value x(0) as the “free parameter” in this solution, which we would
ordinarily write as C. N

We will now explore two alternatives to the integrating factor method that, at least
partially, avoid some of the integrals.
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2.7.2. Variation of parameters.

Look back at Duhamel’s formula in (2.7.1). It says that the solution x to ẋ = a(t)x + b(t)
has the form

x(t) =

(
x(t0) +

∫ t

t0

e−A(τ)b(τ) dτ

)
eA(t),

where A is an antiderivative of a. Here we are assuming that a and b are continuous on the
interval I and t0 is a point in I. Call the big factor in parentheses u:

u(t) = x(t0) +

∫ t

t0

e−A(τ)b(τ) dτ. (2.7.2)

Then we can paraphrase Duhamel’s formula as follows: every solution x to ẋ = a(t)x+ b(t)
has the form x(t) = u(t)eA(t), where A is an antiderivative of a. (Note that the factor eA(t)

is not the integrating factor, which is µ(t) = e−A(t). Thus Duhamel’s formula really says
that every solution is the product of the reciprocal of the integrating factor and some other
function.)

This motivates an alternative approach to the integrating factor method: guess that the
solution x to ẋ = a(t)x+ b(t) has the form x(t) = u(t)eA(t) for some uknown function u, with
A an antiderivative of a. Plug this guess into the ODE and solve for u. We guess all the
time in math, but that doesn’t mean we have to feel good about it. Maybe a fancy German
word will help. Making an “educated guess” that a solution to an ODE has a particular form
is called making an ansatz for that ODE; here the ansatz is

x(t) = u(t)eA(t), (2.7.3)

and our job is to figure out what u is. Of course, we’ll end up with something like (2.7.2),
but maybe the guess will be faster.

This is where we finished on Friday, October 7, 2022.

This method of guessing x(t) = u(t)eA(t) and solving for u is sometimes called “variation
of parameters,” and also “variation of constants.” (Caution: some people also call Duhamel’s
formula the “variation of parameters” formula.) I think this is because the solution to the
homogeneous problem ẏ = a(t)y is y(t) = CeA(t) for a constant C, but now we are solving
the nonhomogeneous problem ẋ = a(t)x + b(t) with x(t) = u(t)eA(t): we have “varied” the
parameter/constant C into the function u(t).

2.7.3 Example.

Every solution x to
ẋ = cos(t)x+ 4 sin(t)e1+sin(t)

has the form x(t) = u(t)eA(t), where A is an antiderivative of a(t) = cos(t). Guess that x
has such a form. What ODE must u solve? What is u?
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Solution. We guess that x(t) = u(t)esin(t) solves ẋ = cos(t)x + 4 sin(t)e1+sin(t). With this
guess, we have

ẋ(t) =
d

dt
[u(t)esin(t)] = u̇(t)esin(t) + u(t)esin(t) cos(t),

and also
cos(t)x+ 4 sin(t)e1−sin(t) = cos(t)[u(t)esin(t)] + 4 sin(t)e1+sin(t).

So, we need u to solve

u̇(t)esin(t) + u(t)esin(t) cos(t) = cos(t)[u(t)esin(t)] + 4 sin(t)e1+sin(t).

We can subtract the common term u(t)esin(t) cos(t) from both sides to find

u̇(t)esin(t) = 4 sin(t)e1+sin(t).

Since e1+sin(t) = esin(t)e, we can divide both sides by the common factor esin(t) to see that u
solves

u̇ = 4e sin(t).

This is a direct integration problem for u, and so

u =

∫
4e sin(t) dt = −4e cos(t) + C

for some constant C. Thus every solution x to ẋ = cos(t)x+ 4 sin(t)e1−sin(t) has the form

x(t) =
(
− 4e cos(t) + C

)
esin(t). N

We didn’t really get around having to evaluate two integrals in the work above, but if we
were absolutely stuck and couldn’t remember the integrating factor method, or the nitty-
gritty details of Duhamel’s formula, we might still have hope of remembering the ansatz
x(t) = u(t)eA(t) and try solving for u. I claim that every integrating factor problem can be
done with the variation of parameters ansatz (2.7.3). However, we wouldn’t have arrived at
this ansatz if we hadn’t done the integrating factor method to get Duhamel’s formula.

2.7.3. Constant-coefficient problems.

We started this whole project of linear ODE to handle the harvesting problem (2.6.3). Let
me remind you what that problem said:ẋ = rx− h

(
1 + sin(ωt)

)
2

x(0) = x0.
(2.7.4)

Here x is, of course, the harvested population; r > 0 is the growth rate of that population;
and h and ω are positive numbers, with h controlling the maximum rate of harvesting and
ω the frequency of harvesting. Finally, I have specified that the initial population (at time
t = 0, when we first start harvesting) is x0.
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The integrating factor for this problem is easy to calculate; it’s µ(t) = e−rt. However,
if we were to work through the integrating factor method, or go to Duhamel’s formula, we
would have to compute the integral∫ t

0

e−rτ

(
h
(
1 + sin(ωτ)

)
2

)
dτ =

h

2

∫ t

0

e−rτ dτ +
h

2

∫ t

0

e−rτ sin(ωτ) dτ.

The first integral on the right is easy, but the second requires some clever integration by parts.
(We’ve been clever in this course so far, but we haven’t been clever enough to integrate by
parts.)

The result is so messy that I’m not even going to tell it to you here20. Instead, this sort
of problem begs the question Do we really have to integrate? The answer, happily, is no, at
least for some special problems that arise with reasonable frequency. These special problems
have a name.

2.7.4 Definition.

A linear ODE ẋ = a(t)x+b(t) is constant-coefficient if the coefficient a is constant.
That is, a constant-coefficient linear ODE has the form

ẋ = ax+ b(t),

where a is a real number and b is a function (which does not have to be constant).

Note that (2.7.4) is constant-coefficient, since here a(t) = r, and r is a fixed real number.
In (2.7.4) we have b(t) = −h(1 + sin(ωt))/2, and this b is definitely not constant.

It turns out that a clever observation, and an optimistic guess, convert the problem
ẋ = ax + b(t) into a question of algebra, not calculus, when b has some fairly special (but
also, in applications, reasonably common) forms.

2.7.5 Example.

What sort of function x can solve

ẋ = −3x+ 2e4t?

Guess that x has this form, and see what happens.

Solution. This ODE says that the derivative of x is a multiple of itself and an exponential.
What sort of functions have exponentials in their derivatives? Experience, I hope, says func-
20 Maple tells me

x(t) =

(
2r3x0 − hr2 + (2ω2x0 − hω)r − hω2

)
ert + h

(
sin(ωt)r2 + cos(ωt)ωr + r2 + ω2)

)
r(ω2 + r2)

,

which is ghastly. Question for you: what does x do over very long time? It all depends on whether
2r3x0 − hr2 + (2ω2x0 − hω)r − hω2 is positive, negative, or zero. You’ll have the pleasure of answering
this question later, when we’ll fix r = ω = 1 for simplicity.
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tions that involve exponentials. And functions that involve things other than exponentials,
like sines, cosines, or logarithms, typically don’t pop out exponentials in their derivatives.

Since the problem has the term 2e4t, it’s reasonable to guess that the solution will involve
an e4t somewhere. The simplest nontrivial function of this form is x(t) = αe4t, where α is a
number that we’ll determine. Let’s guess (make the ansatz) that x has this form.

We evaluate each side of the ODE at the ansatz x(t) = αe4t to find

ẋ(t) = 4αe4t (2.7.5)

and
− 3x(t) + 2e4t = −3αe4t + 2e4t = (2− 3α)e4t. (2.7.6)

We equate (2.7.5) and (2.7.6) to find that we need

4αe4t = (2− 3α)e4t. (2.7.7)

We can cancel the common factor of e4t, since it is always positive, to find

4α = 2− 3α. (2.7.8)

This turns a calculus problem into algebra: solve for α. And we do so to find α = 2/7.
It is then fairly easy to check that

x(t) =
2

7
e4t

solves the ODE ẋ = −3x + 2e4t. We then add a constant multiple of the solution to the
homogeneous problem ż = −3z, which is z(t) = Ce−3t. Thus all solutions to ẋ = −3x+ 2e4t

have the form
x(t) =

2e4t

7
+ Ce−3t.

By the way, we could also view the passage from (2.7.7) to (2.7.8) as follows. We want
(2.7.7) to hold for all t. So, let’s choose t so that (2.7.7) becomes very simple. One way to
do that is to pick t = 0. This yields (2.7.8).

This is where we finished on Monday, October 10, 2022.

Now, what happens? We haven’t asked about long-time behavior of solutions recently,
in part because Duhamel’s formula is so involved that we need pretty specialized knowledge
of the “data” of our ODE (the coefficient a and the forcing function b) to make sense of
the limit as t → ∞. Here, however, the formula for x is very transparent. The first term
explodes as t → ∞ because of the factor of e4t, while the second term vanishes, because of
the factor of e−3t. In particular, C has no effect on the long-time behavior of the solution:
it is always the case that

lim
t→∞

x(t) =
2

7
lim
t→∞

e4t + C lim
t→∞

e−3t =∞. N
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The preceding example gave us a constant-coefficient problem of the form

ẋ = ax+ bert,

with a, b, and r constant, and we guessed

x(t) = αert

with α as our “undetermined coefficient.” In other words, an exponential forcing function
manifested itself in the solution as. . .an exponential!

2.7.6 Example.

What sort of function can solve ẋ = −x + cos(2t)? Guess that x has this form, and see
what happens.

Solution. The derivative of x has to involve a cosine, so it’s a good bet that x does, too. We
might guess x(t) = α cos(2t), but that just differentiates into a sine, and sine doesn’t appear
anywhere in x or in the term cos(4t). Instead, we use undetermined coefficients: guess

x(t) = α cos(2t) + β sin(2t)

for some to-be-determined numbers α and β.
We plug this guess into our ODE. First, we have

ẋ(t) = −2α sin(2t) + 2β cos(2t). (2.7.9)

Next, the right side is

− x(t) + cos(2t) = −α cos(2t)− β sin(2t) + cos(2t) (2.7.10)

We equate (2.7.9) and (2.7.10) to find that we need

− 2α sin(2t) + 2β cos(2t) = −α cos(2t)− β sin(2t) + cos(2t). (2.7.11)

There are no common factors here that we can divide out. Instead, it might pay off
to combine “like terms,” and so we collect everything in (2.7.11) together on one side and
simplify to get

(−2α + β) sin(2t) + (2β + α− 1) cos(2t) = 0. (2.7.12)

This equality has to be true for every value of t. Let’s pick some friendly values. If we take
t = 0, we can remove the sine term (since sin(0) = 0 but cos(0) = 1) and find that we need

2β + α− 1 = 0. (2.7.13)

To remove the cosine term, we should take t such that cos(2t) = 0 but sin(2t) 6= 0; one way
to do this is t = π/4, since cos(π/2) = 0 but sin(π/2) = 1. Then we find

−2α + β = 0,
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This means β = 2α, so we substitute that in (2.7.14) to find 5α− 1 = 0. Thus α = 1/5 and
so β = 2/5.

We conclude that a particular solution to ẋ = −x+ cos(2t) is

x(t) =
cos(2t)

5
− 2 sin(2t)

5
.

The associated homogeneous ODE is ż = −z, and all solutions to this ODE are z(t) = Ce−t.
Then all solutions to ẋ = −x+ cos(2t) have the form

x(t) = Ce−t +
cos(2t)

5
− 2 sin(2t)

5
. (2.7.14)

So what happens? The exponential term Ce−t dies out for any C as time goes on, but the
sine and the cosine terms keep oscillating. The solution x does not have a limit as t → ∞.
However, the solution x exhibits asymptotically sinusoidal behavior over long times.

This is best shown in pictures. Here’s a slope field with Euler’s method superimposed on
top.

1

t

x(t)

�1

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We can phrase this analytically, too: (2.7.14) says that any solution x satisfies

x(t)−
[

cos(2t)

5
− 2 sin(2t)

5

]
= Ce−t,

so when t is large, Ce−t is small, and therefore x(t) is close to cos(2t)/5− 2 sin(2t)/5.
Of course, we could have solved this whole problem with the integrating factor method,

but I claim that would require us to evaluate
∫
et cos(2t) dt along the way. We’re probably

happier not doing that. N

The preceding example gave us a constant-coefficient problem of the form

ẋ = ax+ b1 cos(ωt) + b2 sin(ωt)

with a, b1, b2, and ω constant, and we guessed

x(t) = α cos(ωt) + β sin(ωt)
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with α and β as our “undetermined coefficients.” In other words, a sinusoidal forcing function
manifested itself in the solution as. . .a sinusoidal term.

A first guess is not always the best guess. If we altered Example 2.7.5 to ẋ = −3x+2e−3t

and guessed x(t) = αe−3t, we would need α to satisfy

−3αe−3t = −3αe−3t + 2e−3t,

which gives the incorrect identity e−3t = 0 for all t. What went wrong? Our guess solved
the associated homogeneous problem ẏ = −3y.

This is far from the end of the world, since we know how to solve ẋ = −3x+ 2e−3t with
the integrating factor method, or Duhamel’s formula, or variation of parameters. Any of
those methods (try them) will give us a solution in the form x(t) = 2te−3t. This is almost
our guess, except for the factor of t. And so here is a good idea for the future: if the first
guess fails, whatever that guess was, multiply it by t. More precisely, when faced with a
constant-coefficient problem of the form

ẋ = ax+ beat,

where a and b are real numbers, guess

x(t) = αteat.

2.8. Laplace transform methods for first-order linear ODE.

Different problems in ODE (and beyond) call for different tools. We have learned many
such tools: qualitative methods, like the phase line and slope fields, which also straddle
the domain of numerical methods, like Euler’s method, and analytic methods for finding
formulas. Our two primary analytic methods of separation of variables and the integrating
factor method are closely linked to fundamental techniques of calculus: the chain and product
rules, respectively.

We will now explore a very different technique for solving constant-coefficient linear ODE:
the method of Laplace transforms. We will present this method for first-order problems, but
(unlike separation of variables and integrating factors) it generalizes easily to ODE with
more derivatives. We don’t really need yet another method for constant-coefficient problems
on top of integrating factors and undetermined coefficients; rather, the true value of the
Laplace transform is how it handles forcing terms with discontinuities.

The following semi-apocryphal historical account will motivate studying ODE with dis-
continuous forcing terms and suggest that our present methods, while adequate, are far from
adroit at approaching such problems.

2.8.1. Harvesting with discontinuous rates.

Consider the following historical situation (adapted from pp. 56–57 of Unintended Conse-
quences of Human Actions by Elena Ermolaeva and Jessica Ross). In 1859, a Thomas Austin
released 24 rabbits near his home in Australia; previously rabbits had never grown to any
sizable number on the continent. By 1881, farmers had started to abandon their farms due
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to the rabbits’ extreme consumption of vegetation. By 1926, there were over ten billion
rabbits in Australia.

Here is my question for us. What if Australia had engaged in a comprehensive rabbit har-
vesting (hunting) program at some point between 1859 and 1926? Could the overpopulation
of rabbits have been curbed?

We will phrase and solve this question using ODE. Let x(t) be the population of rabbits
at time t, with t measured in years and t = 0 corresponding to the year 1859. So, x(0) = 24.
The population in 1926 is then x(67) = 1010. Let’s assume that, in the absence of predators,
the rabbit population grows exponentially, so x(t) = 24ert for some constant r. In order
that 1010 = x(67) = 24e67r, it suffices to take21 r ≈ 1/4. So, we will assume that the rabbit
population satisfies x(t) = 24et/4.

It is actually more convenient to view the population not as a formula but as the solution
to the IVP {

ẋ = x/4

x(0) = 24.
(2.8.1)

Then if we harvest (hunt) h(t) rabbits per year, our work in Section 2.6.1 tells us that the
rabbit population will satisfy {

ẋ = x/4− h(t)

x(0) = 24.
(2.8.2)

If h is continuous, we can solve this problem with the integrating factor method.
What if, however, h is not continuous? Suppose that the Australian farmers noticed that

rabbits were becoming a problem in 1871, i.e., at time t = 12, about ten years before farms
were abandoned in the “real” history. Then, in this imaginary history, the farmers decided
to hunt a constant d > 0 rabbits per year (d is for “dead”). The harvesting function h would
then be piecewise-continuous and have the form

h(t) =

{
0, t < 12

d, 12 ≤ t.
(2.8.3)

Is there a way to choose d (i.e., a national yearly quota of dead bunnies) to make the rabbit
population go extinct? That is, with h defined in (2.8.3), will the solution x to (2.8.2) ever
be 0?

We use this definition of h to see that for times 0 ≤ t < 12, the IVP (2.8.2) is just (2.8.1),
and the solution to that is just x(t) = 24et/4. Note that x(12) = 24e3. Then the IVP for
21 Here is how we get this value. We want 1010 = 24e67r, so e67r = 1010/24. Take the natural log of both

sides:

67r = ln

(
1010

24

)
= ln(1010)− ln(24) = 10 ln(10)− ln(24).

Thus
r =

10 ln(10)− ln(24)

67
≈ 1

4
.

By using log properties, we can avoid trying to compute ln(1010); since 1010 is so large, this might introduce
numerical errors.
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times t ≥ 12 is {
ẋ = x/4− d
x(12) = 24e3.

We can also solve this with an integrating factor (or even undetermined coefficients, since
the forcing term is the constant exponential −d = −de0·t) to find

x(t) = (24− 4de−3)et/4 + 4d, t ≥ 12.

We put all this together to conclude

x(t) =

{
24et/4, 0 ≤ t < 12

(24− 4de−3)et/4 + 4d, t ≥ 12.
(2.8.4)

This is where we finished on Wednesday, October 12, 2022.

The goal is now to choose d so that x(t) = 0 for some t. I hope it is obvious that if
24 − 4de−3 > 0, then x(t) > 0 for all t. So, we (or, more precisely, the Australians of yore)
should choose d to satisfy 24 − 4de−3 ≤ 0. Note that if we choose 24 − 4de−3 = 0, then
x(t) = 4d for t ≥ 12, and the rabbit population is just constant, but nonzero. So, we want
24 − 4de−3 < 0, and that can be arranged by taking d > 121. (Why? Look at a graph of
y(d) := 24− 4de−3.) In other words, if, starting in the year 1871, the Australians harvested
just 121 rabbits per year, the explosion in rabbit population never would have occurred!

We were able to use the integrating factor method to solve this problem. Suppose now
that the farmers wanted to change the rabbit harvesting rate after a year or so, maybe to
take more, maybe less. Then the harvesting function might have the form

h(t) =


0, t < 12

d1, 12 ≤ t < 13

d2, 13 ≤ t.

Then we would have to consider three IVP: one for 0 ≤ t < 12, which gives us the initial
condition for x(12), then a second IVP for 12 ≤ t < 13, which gives us the initial condition
for x(13), and last the IVP for t ≥ 13. This could get out of hand pretty quickly and
motivates the following question. Is there a better way to solve constant-coefficient linear
ODE when the forcing function is piecewise-continuous?

The answer is yes (although “better,” perhaps, is subjective), and it requires the develop-
ment of a technique unlike anything that we’ve seen before. One other thing: look closely at
the function x defined in (2.8.4). I claim that x is continuous on (−∞,∞) and differentiable
on (−∞, 12) and (12,∞) but not differentiable at t = 12, unless d = 0. Can you figure out
why? This should not be too surprising or disappointing; we forced the ODE ẋ = x/4−h(t)
by a discontinuous function h. Duhamel’s formula requires the forcing term to be continuous.
This will be a pattern in our solutions to come: solutions are usually not differentiable at
points where the forcing function is discontinuous. We might have to relax our heretofore
rigid adherence to Definitions 1.3.1 and 1.3.4!
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2.8.2. Definition and elementary properties of the Laplace transform.

The tool that will allow us to crack linear constant-coefficient ODE with discontinuous
forcing terms is an improper integral. Suppose that x is a locally integrable function
on [0,∞): for each R > 0, the function x is integrable on [0, R]. Then we define the
improper integral of x on [0,∞) as∫ ∞

0

x(t) dt := lim
R→∞

∫ R

0

x(t) dt

if this limit exists. If the limit above exists, we say that
∫∞

0
x(t) dt converges; otherwise,∫∞

0
x(t) dt diverges.
The Laplace transform22 of a locally integrable function x on [0,∞) is defined by taking

an improper integral involving x.

2.8.1 Definition.

Let x be locally integrable on [0,∞) and let s be a real number. The Laplace trans-
form of x at s is the number

L [x](s) :=

∫ ∞
0

x(t)e−st dt (2.8.5)

if this improper integral converges. If the integral (2.8.5) diverges, then we say that the
Laplace transform at s diverges as well. We may also write L [x](s) = x̃(s).

The independent variable of our function x above is t, as always, for time, but the variable
of the Laplace transform is s. Some books denote the Laplace transform of x at s by the
uppercaseX(s), but this veers too close to the usual uppercase notation for the antiderivative
of x for my comfort.

The Laplace transform is, at first glance, a very strange beast. What possible relevance
could it have to ODE? Trust me for now that the Laplace transform is the right “lens”
through which to view certain ODE.

It will probably help (or, at least, not hurt) to do a computational example.

22 Here is some cultural background that you may freely skip. In general, transform is mathematical
parlance for an operation that turns one function into another by means of an integral. An “integral
transform” of a function x = x(t) is a new function that I’ll denote by I[x] — my idea is that the brackets
around x emphasize that this new function I[x] inherently depends on the function x. Since I[x] itself is
going to be a function, let’s refer to its independent variable as s and write I[x](s) to denote the evaluation
of the function I[x] at the point s. The general formula for I[x](s) will look like

I[x](s) =
∫ b

a

K(s, t)x(t) dt.

Here K is a function of the two variables s and t, called the kernel of the transform, and the limits
of integration may be finite or infinite. There are a lot of choices here, and so there are lots of integral
transforms. You’ll see later with the Laplace transform that a = 0, b = ∞, and K(s, t) = e−st. A close
cousin of the Laplace transform is the Fourier transform, which takes a = −∞, b =∞, and K(s, t) = e−ist,
where i2 = −1. (We will define exponentials with factors of i at a later time.)
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2.8.2 Example.

Let x(t) = e3t. Determine all values of s for which the Laplace transform L [x](s) is
defined and calculate a formula for L [x](s) at those values of s.

Solution. By definition,

L [x](s) =

∫ ∞
0

e3te−st dt = lim
R→∞

∫ R

0

e(3−s)t dt.

First we evaluate the definite integral for R fixed:∫ R

0

e(3−s)t dt =
e(3−s)t

3− s

∣∣∣∣t=R
t=0

=
e(3−s)R

3− s −
1

3− s.

This, by the way, is only valid for 3 − s 6= 0; we will handle 3 − s = 0 momentarily. Hence
(if 3− s 6= 0) we have

L [x](s) = lim
R→∞

(
e(3−s)R

3− s −
1

3− s

)
.

Recall that for a given real number q 6= 0, we have

lim
τ→∞

eqτ =

{
0, q < 0

∞, q > 0.

Thus if 3− s < 0, we have

L [x](s) = lim
R→∞

(
e(3−s)R

3− s −
1

3− s

)
= − 1

3− s =
1

s− 3
.

But if 3− s > 0, the limit does not exist; the improper integral does not converge; and the
Laplace transform is undefined. That is,

L [x](s) =


1

s− 3
, s > 3

undefined, s < 3.

Finally, to handle the case s− 3 = 0, or s = 3, we appeal to the definition once again:

L [x](3) =

∫ ∞
0

e3te−3t dt =

∫ ∞
0

1 dt = lim
R→∞

∫ R

0

1 dt = lim
R→∞

R =∞.

Thus L [x](3) is undefined, and we conclude

L [x](s) =


1

s− 3
, s > 3

undefined, s ≤ 3.

N
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It is a bit sloppy, but very evocative, to replace x in L [x](s) with the formula for x as a
function of t; thus we would say

L [e3t](s) =
1

s− 3
, s > 3.

More generally, by replacing every instance of 3 in Example 2.8.2 with a fixed number r, we
have the following result.

2.8.3 Lemma.
Let a be a real number. Then

L [eat](s) =


1

s− a, s > a

undefined, s ≤ a.

Taking a = 0, we have

L [1](s) =


1

s
, s > 0

undefined, s ≤ 0.

At the best of times, the Laplace transform of a function really is another function,
possibly on a different domain. As we just saw above, while x(t) := eat is defined for all
real numbers t, its Laplace transform is only defined on the interval (a,∞). The Laplace
transform L is a map or operator on a set of functions: it turns a function x defined on
[0,∞) into a function L [x] defined. . .somewhere.

The Laplace transform interacts nicely with addition and multiplication by a constant.
For this reason, it will interact very nicely with constant-coefficient linear ODE). Here is a
theorem that I encourage you to prove using the linearity of the integral.

2.8.4 Theorem (Linearity of the Laplace transform).

Suppose that x and y are locally integrable functions defined on [0,∞) and that the Laplace
transforms L [x](s) and L [y](s) exist for some number s. Then for any constants α and
β, the Laplace transform L [αx+ βy](s) exists and satisfies

L [αx+ βy](s) = αL [x](s) + βL [y](s).

This is where we finished on Friday, October 14, 2022.

This is a course on differential equations, so we probably should ask how the Laplace
transform interacts with the derivative. Suppose that x is locally integrable and differentiable
on [0,∞). What, if anything, can we say about L [ẋ](s) at a given number s?
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The Laplace transform L [ẋ](s) exists if and only if the limit

lim
R→∞

∫ R

0

ẋ(t)e−st dt

exists. At the very least, then, ẋ should be integrable on [0, R] for any R > 0.
Let’s examine this integral carefully. We have the product of the derivative ẋ and a

pretty tame exponential; this is exactly why we have integration by parts. Put

u = e−st dv = ẋ(t) dt

du = −se−st dt v = x(t)

to find∫ R

0

ẋ(t)e−st dt = e−stx(t)
∣∣t=R
t=0
−
∫ R

0

x(t)[−se−st] dt = e−sRx(R)− x(0) + s

∫ R

0

x(t)e−st dt.

Now we want to take the limit as R→∞. We know that the integral term on the right
will just turn into the Laplace transform of x: limR→∞

∫ R
0
e−stx(t) dt = L [x](s). If we also

know
lim
R→∞

e−sRx(R) = 0, (2.8.6)

then we will have∫ R

0

ẋ(t)e−st dt = lim
R→∞

(
e−sRx(R)− x(0) + s

∫ R

0

x(t)e−st dt

)
= −x(0) + s

∫ ∞
0

x(t)e−st dt

= sL [x](s)− x(0).

That is,
lim
R→∞

e−sRx(R) = 0 =⇒ L [ẋ](s) = sL [x](s)− x(0). (2.8.7)

This seems like a pretty nice relationship between the Laplace transform of x and the Laplace
transform of its derivative! So, how do we guarantee that a limit like (2.8.6) holds for a
function x and a given number s? Actually, it would be nice to have a condition on x that
guarantees (2.8.6) for a whole range of s, not just a single s.

One way to guess at that condition is to think about what the limit (2.8.6) means: when
R is large, e−sRx(R) is small. In particular, there is R0 > 0 such that if R > R0, then
e−sRx(R) ≤ 1. That is, for R > R0, we have x(R) ≤ esR. And so x can be no bigger than an
exponential that grows with rate s. Unfortunately, if x is exactly that exponential, then we
can have problems; specifically, if x(t) = est, then (2.8.6) doesn’t hold. However, if x grows
exponentially at a rate slightly smaller than s, then we can still get (2.8.6). Let’s quantify
this.

2.8.5 Definition.

Let q be a real number. A function x on [0,∞) has exponential order q if there is
a time M > 0 and a constant C such that |x(t)| ≤ Ceqt for all t ≥M .

Here is the utility of this condition: it implies (2.8.6) and, as an added benefit, it also
implies the convergence of the original Laplace transform of x!
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2.8.6 Theorem.

Suppose that x is locally integrable on [0,∞) and has exponential order q.

(i) L [x](s) converges for all s > q. That is, L [x] is defined on (q,∞).

(ii) If x is also differentiable on [0,∞), and if ẋ is locally integrable, then L [ẋ](s) con-
verges for all s > q. In particular,

L [ẋ](s) = sL [x](s)− x(0). (2.8.8)

I am going to guide you through the proof of this theorem as an exercise later on. For
now, let’s apply it.

2.8.7 Example.

Let x(t) = t.

(i) Find a real number q such that x has exponential order q.

(ii) Use (2.8.8) to compute L [x](s) without evaluating any integrals. Check from the
formula that you find for L [x](s) that the domain of L [x] is what Theorem 2.8.6 predicts.

Solution. (i) First, if t ≥ 0, then |x(t)| = |t| = t. So, we can drop the absolute values here.
We need to find real numbers q for which there are constants C > 0 and M > 0 such

that |t| ≤ Ceqt for all t ≥ M . (This is a long sentence. Reread and parse it slowly as many
times as you need until it feels comfortable.)

If we have no other ideas, one good step is to start graphing. I’ll graph x(t) = t in blue
and some exponentials in red. What do you observe?

I say that when q > 0, eventually |t| < eqt for t large enough. This is the inequality that
we want with C = 1. When q ≤ 0, however, we have eqt < t for t large. This should be
absolutely unsurprising: exponentials either explode or vanish depending on the sign of the
exponent. Specifically,

lim
t→∞

eqt =


∞, q > 0

1, q = 0

0, q < 0.

I claim that for any q > 0, there is a number Mq > 0 such that if t ≥ Mq, then t ≤ eqt.
Thus x will have exponential order q for any positive q (and so exponential order is not
unique). We have t ≤ eqt if and only if te−qt ≤ 1. I claim that since q > 0, we have

lim
t→∞

te−qt = 0, (2.8.9)

and so, by definition of that limit, there is Mq > 0 such that if t ≥Mq, then te−qt ≤ 1. That
is what we want. How can you justify my claim in (2.8.9)? Use L’Hospital’s rule.

(ii) We now know that x(t) = t has exponential order q for any q > 0. I claim this means
that L [x](s) = L [t](s) is defined for any s > 0. Here’s why. Fix your favorite s > 0 and
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take q = s/2. Then (1) q > 0, (2) x has exponential order q, and (3) s > q, so we know that
the Laplace transform L [x](s) is defined.

To compute L [t](s) from the definition, we would need to evaluate
∫∞

0
te−st dt for s > 0.

This requires integration by parts and then a limit to handle the improper integral. Instead,
here is a great trick. The identity (2.8.8) relates L [x](s) and L [ẋ](s). Here ẋ(t) = 1 and
x(0) = 0, so (2.8.8) reads

sL [t](s) = sL [x](s) = sL [x](s)− x(0) = L [ẋ](s) = L [1](s).

Since s > 0, we can solve for L [t](s) as

L [t](s) =
L [1](s)

s
.

Now, none of this is worth doing if L [1] isn’t easy to compute. But 1 = e0·t, so Lemma
2.8.3 with a = 0 tells us

L [1](s) = L [e0·t](s) =
1

s− 0
=

1

s
.

Thus
L [t](s) =

1/s

s
=

1

s2
. N

This is where we finished on Monday, October 17, 2022.

2.8.3. The Laplace transform and linear constant-coefficient ODE.

The last thing we may want right now is yet another method for solving constant-coefficient
linear ODE, i.e., problems of the form ẋ = ax + b(t), where a is a real number and b is a
function. But, it’s what we need, because it will teach us how to solve harder problems.

2.8.8 Example.

Pretend that we do not know how to solve the IVP{
ẋ = −x+ et

x(0) = 0.

Instead, make the two large assumptions that (1) this problem does have a solution x and
(2) x is of some exponential order, so that x and ẋ have Laplace transforms for s large
enough. What can we learn about the Laplace transform of x, and what does this teach us
about x itself?

Solution. We work backward and assume (1) and (2): there is a solution x to the IVP
defined on [0,∞) and x has exponential order, so that x and ẋ have Laplace transforms
defined on some interval (q,∞). Hereafter, let’s assume s > q. Since ẋ(t) = −x(t) + et for
all t, we must have

L [ẋ(t)](s) = L [−x(t) + et](s). (2.8.10)
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Here I am following the somewhat awkward custom of putting the t-dependence inside the
square brackets of L .

On the left in (2.8.11) we have

L [ẋ(t)](s) = sx̃(s)− x(0) = sx̃(s). (2.8.11)

Here the initial condition x(0) = 0 helps, and I am now writing x̃(s) instead of L [x](s) or
L [x(t)](s).

On the right in (2.8.11), we first get

L [−x(t) + et](s) = L [−x(t)](s) + L [et](s) = −L [x(t)](s) + L [et](s) (2.8.12)

by linearity. Lemma 2.8.3 with a = 1 tells us

L [et](s) =
1

s− 1
,

at least if we assume s > 1, which we will do from now on. Thus (2.8.12) reads

L [−x(t) + et](s) = −x̃(s) +
1

s− 1
. (2.8.13)

Let’s put it all back together: combine (2.8.11) and (2.8.13) to get

sx̃(s) = −x̃(s) +
1

s− 1
. (2.8.14)

This is, of course,

sx̃(s) + x̃(s) =
1

s− 1
, (2.8.15)

and so we factor
sx̃(s) + x̃(s) = (s+ 1)x̃(s)

to solve (2.8.15) for x̃:

x̃(s) =
1

(s+ 1)(s− 1)
(2.8.16)

Here is a tremendously important observation: viewing the IVP through the lens of the
Laplace transform turned the IVP into an algebraic equation for the Laplace transform x̃.
And now we have solved that algebraic equation as (2.8.16). So, whatever x is, we know what
its Laplace transform is. Now, we only know two transforms so far, L [ert](s) and L [t](s),
and the right side 1/(s− 1)(s+ 1) above does not look like either of those transforms. The
correct, although perhaps not obvious, idea is to appeal to the dreaded method of partial
fractions and rewrite

1

(s− 1)(s+ 1)
=

1

2(s− 1)
− 1

2(s+ 1)
. (2.8.17)

We recognize that

1

2(s− 1)
=

1

2
L [et](s) and

1

2(s+ 1)
=

1

2(s− (−1))
= L [e−t](s).
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Thus x satisfies

L [x](s) =
L [et](s)

2
− L [e−t](s)

2
= L

[
et − e−t

2

]
(s),

where the second equality uses, once again, the linearity of the Laplace transform.
This gives us the strong suspicion that the solution to our problem is

x(t) =
et − e−t

2
,

and a moment of calculus and algebra shows that this is indeed the case. You can (and
should) check that this solution has exponential order 1, as well. Of course, we could have
found this with the integrating factor method or undetermined coefficients. N

This is not an exciting result. Of the many things our world needs right now, a new
method for solving constant-coefficient linear first-order equations (not even variable-coefficient
equations!) probably isn’t one of them. But it does give us a good idea: if we have no clue
about how to solve a differential equation, take the Laplace transform of everything and see
what we can learn about the Laplace transform of the solution. Of course, if we want to
use Laplace transforms to solve ODE with forcing terms other than exponentials, we will
have to learn how to compute more Laplace transforms. It turns out that many commonly
occurring functions, such as polynomials and trig functions, have straightforward Laplace
transforms; however, repeating the work of Example 2.8.8 with such forcing functions may
lead to more uncomfortable partial fractions manipulations than those in (2.8.17). We will
not cover such problems but instead do something slightly more exciting.

2.8.4. Inverse Laplace transforms.

In Example 2.8.8, we assumed that a solution x to ẋ = −x+ et with x(0) = 0 existed (not a
big assumption, because we know how to solve linear ODE now) and that x had a Laplace
transform (a slightly bigger assumption). We then found that the transform of x should
satisfy

L [x](s) = L

[
et − e−t

2

]
(s), (2.8.18)

which suggested to us that

x(t) =
et − e−t

2
.

Given this formula for x, it is only a matter of calculus and algebra to show that x does
solve the IVP.

This example suggests that the following more general scenario could occur. Suppose
that we use the Laplace transform to show that a putative solution x to an IVP satisfies

L [x](s) = L [y](s) (2.8.19)

for some known function y. Should we automatically conclude x = y?
Maybe. First, we have to restrain ourselves and realize that we are working backward.

We took an IVP, assumed that it had a solution x amenable to the Laplace transform, and
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we found a formula for L [x] as (2.8.19). This by no means ensures that y solves the IVP;
we’d need to plug y in and check. Fortunately, this is pretty easy, since we (more or less)
know how to do calculus and algebra.

However, we are accustomed to thinking that IVP have unique solutions. Could this
Laplace transform method miss a solution? We think that the only solution is y, but is there
another? The following theorem says no.

2.8.9 Theorem.

Suppose that x and y are continuous functions on [0,∞) and there is a real number q such
that L [x](s) = L [y](s) for all s > q. Then x(t) = y(t) for all t ≥ 0.

Look back at (2.8.18). This equation says that if x solves the IVP, then L [x](s) =
L [y](s), where y(t) = (et − e−t)/2. Clearly y is continuous. Since we are assuming that x
solves an IVP, x must be continuous. Theorem 2.8.9 then applies to let us conclude x = y.
So, if there exists a solution x to the IVP (small if) and if x has a Laplace transform (big
if), then x must equal y.

Embiggened with this uniqueness result, we make a formal definition.

2.8.10 Definition.

Let z be a function defined on an interval (q,∞) and suppose there is a continuous function
x defined on [0,∞) such that L [x](s) = z(s) for all s > q. (There is at most one such
function x by Theorem 2.8.9.) Then we call x the inverse Laplace transform of
z and we write

x(t) = L −1[z](t) = L −1[z(s)](t).

We can therefore amend our strategy for solving IVP with the Laplace transform to read:
Assume there is a solution x and find a formula for its Laplace transform as L [x](s) = z(s)
for some function z. Then a solution candidate is x(t) = L −1[z(s)](t).

2.8.11 Example.

What is
L −1

[
2

s+ 5

]
(t)?

Solution. We recognize from Lemma 2.8.3 that

1

s+ 5
=

1

s− (−5)
= L [e−5t](s),

and so
5

s− 2
= 5L [e2t](s) = L [5e2t](s).

Moreover, x(t) = 5e2t is continuous. Thus

L −1
[

1

s− 2

]
(t) = e2t. N
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Unfortunately, given a function z, there is no “easy” or “transparent” formula for its inverse
Laplace transform, if the inverse transform exist. A semester or so of complex analysis will
produce a nice theoretical result, but for us it has little computational relevance. Instead,
we often calculate inverse Laplace transforms using the same catch-as-catch-can strategy
that we do antiderivatives: rewrite the function so that more elementary inverse transforms
appear and hope for the best. Often this rewriting involves a number of partial fractions
decompositions, and while it is worthwhile to know “conceptually” how to perform such
decompositions, any intense calculations are better left for a computer.

2.8.12 Example.

Suppose that x and y are locally integrable functions on [0,∞) whose Laplace transforms
are defined on (q,∞) for some q > 0. If L [x](s) = L [y](s) for all s > q, must we have
x(t) = y(t) for all t ≥ 0?

Solution. Alas, no. Consider the following situation. Take

x(t) = 0 and y(t) =

{
1, x = 0

0, x > 0.

Clearly x(0) 6= y(0), so x and y are not the same function. However, for any R > 0 and any
real number s, it is the case that∫ R

0

x(t)e−st dt =

∫ R

0

y(t)e−st dt = 0.

Thus L [x](s) = L [y](s) = 0 for all s. N

The previous example exploited the following property of integrals: changing the value
of the integrand at one point does not change the value of the integral, or more geometrically,
the area under a point is zero. In the following pictures, two functions x and y are graphed;
they agree except at t = 0. Thus the area under x and y from 0 to any b > 0 is the same.

b

A

t

x(t)

bb

t

y(t)

This is where we finished on Monday, October 24, 2022.
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2.8.5. ODE with discontinuous forcing terms.

We used the Laplace transform to solve a constant-coefficient linear IVP in Example 2.8.8.
This example was a paradigm of how we could use the Laplace transform to solve any
constant-coefficient problem. Here’s the breakdown, which we will use over and over.

1. Start with a constant-coefficient linear IVP.{
ẋ = ax+ b(t)

x(0) = x0

{
ẋ = −x+ et

x(0) = 0

2. Take the Laplace transform of both sides of the ODE.
L [ẋ](s) = L [ax+ b(t)](s) L [ẋ](s) = L [−x+ et](s)
3. Simplify using properties of the Laplace transform (L =˜).
sx̃(s)− x(0) = ax̃(s) + b̃(s) sx̃(s)− x(0) = −x̃(s) + L [et](s)

sx̃(s)− x0 = ax̃(s) + b̃(s) sx̃(s) = −x̃(s) +
1

s− 1
4. Solve (algebraically) for the Laplace transform.

sx̃(s)− ax̃(s) = x0 + b̃(s) sx̃(s) + x̃(s) =
1

s− 1

(s− a)x̃(s) = x0 + b̃(s) (s+ 1)x̃(s) =
1

s− 1

x̃(s) =
x0
s− a +

b̃(s)

s− a x̃(s) =
1

(s+ 1)(s− 1)
5. Invert the Laplace transform.

x(t) = L −1

[
x0
s− a +

b̃(s)

s− a

]
(t) x(t) = L −1

[
1

(s+ 1)(s− 1)

]
(t)

= x0L
−1
[

1

s− a

]
(t) + L −1

[
b̃(s)

s− a

]
(t) = L −1

[
1

2(s− 1)
− 1

2(s+ 1)

]
(t)

= x0e
at + L −1

[
b̃(s)

s− a

]
(t) =

et

2
− e−t

2

The real utility of the Laplace transform for us will be its interaction with discontinuous
functions, like the harvesting term that appeared in our Australian rabbit IVP. Specifically,
we wanted to solve an ODE like

ẋ =
x

4
− h(t), h(t) =

{
0, t < 12

d, t ≥ 12,

where d was a fixed number. While we could solve this brute-force23 with integrating factors,
the Laplace transform will offer an efficient alternative, especially if we replace h with a
piecewise function that has more pieces. The following tool will be central to our forthcoming
work.

23 And brute force is often the best force.
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2.8.13 Definition.
A step function or Heaviside function is a function of the form

ua(t) :=

{
0, t < a

1, t ≥ a
(2.8.20)

for a given real number a.

t

ua(t)

1

a

I should make a few remarks before we return to Laplace transforms and differential
equations. Sometimes the function

u0(t) =

{
0, t < 0

1, t ≥ 0
(2.8.21)

is called the Heaviside function (not “a Heaviside function”) or the unit step function.
You should use the formulas (2.8.20) and (2.8.21) to check that

ua(t) = u0(t− a)

for all t and a. By the way, there is nothing really special about having the Heaviside
function be 0 for t strictly less than a; we could swap < and ≥ in (2.8.20) and not suffer at
all. Last, I hope you see that the original discontinuous harvesting function (2.8.3) for the
rabbit problem has the form

h(t) =

{
0, t < 12

d, t ≥ 12
= du12(t),

and so the rabbit IVP is really {
ẋ =

x

4
+ du12(t)

x(0) = 24.
(2.8.22)

Naturally, we want to know how the Laplace transform acts on Heaviside functions. The
following is more or less a direct calculation from the definition of a Heaviside function and
the definition of the Laplace transform — so direct, in fact, that I’ll let you do it.
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2.8.14 Lemma.
Let a be a real number. Then

L [ua](s) =


e−sa

s
, s > 0

undefined, s ≤ 0.

This is an interesting result. The Heaviside function ua is defined on (−∞,∞) but
discontinuous at t = 0. The Laplace transform L [ua] is defined only on (0,∞), but it is
continuous (in fact, infinitely differentiable) on (0,∞). Thus the function ua has a larger
domain than L [ua], but L [ua] is more nicely behaved on its (smaller) domain!

The following example studies an IVP whose forcing term is a Heaviside function, much
like the rabbit IVP (2.8.22), just with slightly easier (maybe?) numbers.

2.8.15 Example.

Suppose that x solves the IVP {
ẋ = x+ u3(t)

x(0) = 1.

Determine a formula for L [x](s).

Solution. Taking the Laplace transform of both sides gives

L [ẋ](s) = L [x+ 2u3(t)](s). (2.8.23)

On the left we have
L [ẋ](s) = sL [x](s)− x(0) = sx̃(s)− 1. (2.8.24)

For slightly greater notational simplicity, I am once again writing x̃(s) = L [x](s). On the
right we have

L [x+ 2u3(t)](s) = L [x](s) + 2L [u3](s) = x̃(s) +
2e−3s

s
. (2.8.25)

Now we rewrite (2.8.23) using (2.8.24) and (2.8.25). We find

sx̃(s)− 1 = x̃(s) +
2e−3s

s
. (2.8.26)

We want to solve for x̃(s), so we rearrange (2.8.26) into

sx̃(s)− x̃(s) = 1 +
2e−3s

s
, (2.8.27)

and thus
x̃(s) = L [x](s) =

1

s− 1
+

2e−3s

s(s− 1)
. (2.8.28)

N
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The previous example leads us to the following ruminations. We have a formula (2.8.28)
for the Laplace transform L [x] of the solution x to an IVP. We want to say that the solution
is

x(t) = L −1
[

1

s− 1
+

2e−3s

s(s− 1)

]
(t).

How do we calculate this inverse Laplace transform? We should expect

L −1
[

1

s− 1
+

2e−3s

s(s− 1)

]
(t) = L −1

[
1

s− 1

]
(t)+2L −1

[
e−3s

s(s− 1)

]
(t) = et+2L −1

[
e−3s

s(s− 1)

]
(t).

How do we handle the remaining inverse transform?
One idea that has worked before is partial fractions. We can rewrite

1

s(s− 1)
=

1

s− 1
− 1

s
,

and so

L −1
[

e−3s

s(s− 1)

]
(t) = L −1

[
e−3s

s− 1
− e−3s

s

]
(t) = L −1

[
e−3s

s− 1

]
(t)−L −1

[
e−3s

s

]
(t).

Look at the first term on the right. We want to calculate

L −1
[(

1

s− 1

)
e−3s

]
(t). (2.8.29)

We know that
L −1

[
1

s− 1

]
(t) = et.

Can we relate that to the current situation of multiplying by e−3s in (2.8.29)?
More generally, the situation above begs the following question. Suppose that x is a

function whose Laplace transform is defined at the number s, and let a also be a real
number. Is there a function y such that

e−asL [x](s) = L [y](s)?

In other words, what is
L −1[e−asL [x](s)

]
(t)?

This is where we finished on Wednesday, October 26, 2022.

Remember that we do not really have an explicit formula for L −1 the way we do for
L ; the sentence y(t) = L −1[z](t) for two functions y and z just means L [y](s) = z(s). So,
we may as well try to manipulate the expression e−asL [x](s) and see if anything pops out.
Since x has a Laplace transform at s, the improper integral below is defined:

e−asL [x](s) = e−as
∫ ∞
0

x(t)e−st dt =

∫ ∞
0

x(t)e−(a+t)s dt. (2.8.30)
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The integral on the right looks vaguely like a Laplace transform, but the exponent is too
busy. Let’s substitute24 τ = a+ t to find dτ = dt and t = τ− a, and thus∫ ∞

0

x(t)e−(a+t)s dt =

∫ ∞
a

x(τ− a)e−τs dτ. (2.8.31)

This sort of substitution in improper integrals can be justified by using the limit definition
of the improper integral. I’ll leave this as an exercise for you to cheerfully ignore.

The integral on the right almost looks like a Laplace transform for the “shifted” function
τ 7→ x(τ− a). The problem is that the integral on the right is “only” over [a,∞), not [0,∞).
However, we should have Heaviside functions on our mind, so perhaps it’s not a stretch to
see that∫ ∞

a

x(τ− a)e−τs dτ =

∫ ∞
a

1 · x(τ− a)e−τs dτ =

∫ ∞
a

ua(τ)x(τ− a)e−τs dτ, (2.8.32)

since ua(τ) = 1 for τ ≥ a. And since ua(τ) = 0 for τ < a, we have∫ ∞
a

ua(τ)x(τ− a)e−τs dτ = 0 +

∫ ∞
a

ua(τ)x(τ− a)e−τs dτ

=

∫ a

0

ua(τ)x(τ− a)e−τs dτ +

∫ ∞
a

ua(τ)x(τ− a)e−τs dτ

=

∫ ∞
0

ua(τ)x(τ− a)e−τs dτ

= L [ua(τ)x(τ− a)](s).

(2.8.33)

It has taken some work, but we can chase the equalities from (2.8.30) to (2.8.31) to
(2.8.32) to (2.8.33) to conclude

e−asL [x(t)](s) = L [ua(t)x(t− a)](s).

Here, then, is the answer to our question.

2.8.16 Lemma.

Suppose that x is a locally integrable function on [0,∞) and that there is a real number q
such that the Laplace transform L [x](s) is defined for s > q. Then

L −1[e−asL [x](s)
]
(t) = ua(t)x(t− a). (2.8.34)

Equivalently,
L [ua(t)x(t− a)](s) = e−asL [x](s).

There is one ticklish point in the formula (2.8.34). Maybe a > 0, in which case t− a < 0
for 0 ≤ t < a. But if we only assume that x is defined on [0,∞), then x is not defined at
these negative t− a. However, the factor ua(t) is 0 for t < a, i.e., when t− a < 0, and so we
just interpret ua(t)x(t− a) as 0 even if x(t− a) isn’t defined.
24 We are using τ in this substitution, not u, since u is playing a role above with ua.
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The graphical interpretation of the function t 7→ ua(t)x(t − a) may not be immediately
obvious from the formula, so it is worth pausing for a moment to draw. For simplicity, take
a > 0. Then the graph of t 7→ x(t− a) is the graph of x shifted a units to the right25 on the
t-axis.

t

x(t)

a
t

x(t− a)

a

Since

ua(t)x(t− a) =

{
0, t < a

x(t− a), t ≥ a,

the graph of t 7→ ua(t)x(t− a) is just 0 for t < a and then, starting at t = a, the graph of x
shifted to the right by t units.

t

ua(t)x(t− a)

a

2.8.17 Example.

In Example 2.8.15, we saw that a solution x to{
ẋ = x+ 2u3(t)

x(0) = 1

should satisfy

x(t) = et + L −1
[
e−3s

s− 1

]
(t)−L −1

[
e−3s

s

]
(t).

Compute these inverse Laplace transforms. What do you learn about x?

25 Note that if a < 0, then we are considering t 7→ x(t+ a), and this is a shift left. Shifting to the right by a
negative number means shifting to the left.
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Solution. We use the formula L −1[e−asL [y](s)
]
(t) = ua(t)y(t− a) from (2.8.34) to write

L −1
[
e−3s

s− 1

]
(t) = L −1[e−3sL [et](s)

]
(t) = u3(t)e

t−3

and
L −1

[
e−3s

s

]
(t) = L −1[e−3sL [e0·t](s)

]
(t) = u3(t)e

0·(t−3) = u3(t).

Thus the solution to the IVP is

x(t) = et + u3(t)e
t−3 − u3(t) = et + u3(t)

(
et−3 − 1

)
.

This is a nice formula. Now is a good time to recite the Analyst’s Creed (AC) and ask
what this formula is doing? We know that u3(t) = 0 for t < 3, and so before time t = 3,
the solution is just x(t) = et. At time t = 3, the other term in the solution “turns on,” and
thereafter x(t) = et + et−3 − 1. That is,

x(t) =

{
et, t < 3

et + et−3 − 1, t ≥ 3.

As we expect (since x solves an IVP), x is continuous everywhere; at t = 3 we have

lim
t→3−

x(t) = lim
t→3−

et = e3 and lim
t→3+

x(t) = lim
t→3+

(
et + et−3 − 1

)
= e3 + e3−3 − 1 = e3.

However, long experience with piecewise functions might make us suspicious about the dif-
ferentiability of x at t = 3. If we go to a graph and zoom very carefully, we might see a
corner at t = 3. (Or not, the graph is going to be pretty steep there.) More precisely, we
could use the definition of the derivative at t = 3, and I will suggest that you do this as an
exercise, to show that x is not differentiable at t = 3.

This should be surprising. We have long prided ourselves in this course on the fact that
a solution to a differential equation should be differentiable! Here is the situation: you can
only give as good as you get. We have solved (“solved,” I say, somewhat skeptically now)
an IVP whose forcing term was discontinuous at t = 3; this discontinuity manifested itself
in the solution (“solution”) as a corner at t = 3. While the solution is continuous at t = 3,
it is not differentiable there. We simply have to live with this result; we can check that x is
differentiable at every t 6= 3, and if t 6= 3, then, indeed ẋ(t) = x(t)+2u3(t), and so x satisfies
the ODE except at t = 3. N

What if the forcing function has more than two pieces? How might we solve

{
ẋ = x+ h(t)

x(0) = 1
with h(t) :=


1, 0 ≤ t < 10

2, 10 ≤ t < 20

3, 30 ≤ t

(2.8.35)

without resorting to three invocations of integrating factors? Such a forcing function could
arise in the rabbit problem if we changed our harvesting pattern every few years.
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To study this problem, we need just one more tool, which will show up if I tell you a
good idea. If you stare at h for a while, I think you’ll agree with the following calculations:

h(t) =


1, 0 ≤ t < 10

2, 10 ≤ t < 20

3, 20 ≤ t

=


0, t < 0

1, 0 ≤ t < 10

0, 10 ≤ t

+


0, t < 10

2, 10 ≤ t < 20

0, 20 ≤ t

+

{
0, t < 20

3, 20 ≤ t.

(2.8.36)
The second equality breaks h up as a sum of piecewise functions that are “mostly 0,” except
on a bounded interval; this h has three “pieces,” and so there are three terms in this sum.
The third term is {

0, t < 20

3, 20 ≤ t
= 3u20(t),

but what about the first two?

This is where we finished on Friday, October 28, 2022.

Both the first and the second terms in (2.8.36) are multiples of a function of the form

w(t) :=


0, t < a

1, a ≤ t < b

0, b ≤ t.

Let’s graph w. I went ahead and calculated values of the Heaviside functions ua and ub on
some intervals here.

t

w(t)

a b

1

w(t) = 0

ua(t) = 0

ub(t) = 0

w(t) = 1

ua(t) = 1

ub(t) = 0

w(t) = 0

ua(t) = 1

ub(t) = 1

The picture therefore tells us that

w(t) = ua(t)− ub(t)

for all t. That is,

ua(t)− ub(t) =


0, t < a

1, a ≤ t < b

0, b ≤ t.
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We can now rewrite (2.8.36) as

h(t) =
(
u0(t)− u10(t)

)
+ 2
(
u10(t)− u20(t)

)
+ 3u20(t), (2.8.37)

and this simplifies to
h(t) = u0(t) + u10(t) + u20(t). (2.8.38)

Here are pictures of how, for example, the second term in (2.8.37) arises.

t

u20(t)− u10(t)

1

2

3

10 20

t

h(t)

1

2

3

10 20

t

h(t)
(
u20(t)− u10(t)

)

1

2

3

10 20

If we want to solve (2.8.35), which was forced by h, via Laplace transforms, it is now
very easy to calculate L [h] thanks to the new formula for h in (2.8.38). We have

L [h](s) = L [u0+u10+u20](s) = L [u0](s)+L [u10](s)+L [u20](s) =
e−0·s

s
+
e−10s

s
+
e−20s

s

=
1

s
+
e−10s

s
+
e−20s

s
.

More generally, we can rewrite any piecewise function as a sum of multiples of differences
of Heaviside functions. That is what (2.8.37) says, as well as its simpler form (2.8.38).
Lemma 2.8.16 then tells us how to compute the Laplace transforms of the terms of this sum.
So, if we have an ODE forced by some discontinuous function, we can, after a lot of work,
arrive at a formula for the transform of the solution and then maybe hope to invert that
transform. It will be epic, and awful, but with time and patience it can be done. Let us
speak no more of these things.
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3. Second-Order Linear Equations

We have spent considerable (you might say, “excessive”) time studying first-order ODE. This
is in part due to my proclivities (you might say, “iniquities”) as a mathematician, but in
larger part for the following reasons.

1. First-order ODE model many interesting and important natural phenomena.

2. The analytic, qualitative, and numerical techniques used to study first-order ODE teach
us many useful things about studying higher-order ODE, i.e., ODE with more than one
derivative in play. Not all of these techniques generalize exactly, or easily, to higher-order
problems, but it is my firm belief that good ideas about higher-order ODE are often most
transparently incarnated for first-order problems.

3. Higher-order problems are, on the whole, more difficult than first-order problems, and,
overall, there is less that we can say in sweeping generality about higher-order ODE as
compared to first-order ODE. For example, we have a very exact method for finding formulas
for solutions to

ẋ = a(t)x+ b(t)

for more or less arbitrary continuous functions a and b. Now denote the second derivative of
x by ẍ. There is no one all-encompassing method for finding formulas for solutions to

ẍ = p(t)ẋ+ q(t)x+ g(t)

for arbitrary functions p, q, and g; even dealing with p and q constant and g = 0 is a lot of
work.

We will therefore focus on one very particular kind of second-order ODE, which arises
naturally from the model that we now discuss.

3.1. The harmonic oscillator.

Our models in this course so far have been almost, if not entirely, all population models.
Population models naturally hinge on the first derivative: the rate of change (ẋ) of a pop-
ulation (x) is determined by some function of time and current population (ẋ = f(t, x)).
Models involving second derivatives often come instead from Newton’s law: force = mass ×
acceleration. After all,

acceleration =
d2

dt2
[position].

Consider the following physical situation. Place an object of uniform mass m > 0 along
a horizontal surface. Connect the object to a wall on the left by a spring. At rest the object
is ` units from the wall. This is a harmonic oscillator.
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m

surface

wall rest

`

Pull the oscillator some x0 units to the right (or push to the left; we will interpret “right”
as x0 > 0 and “left” as x0 < 0) and let it go, maybe with a little extra oomph, maybe not.
What happens? How does the oscillator move?

m

x0

t = 0

`

We’ll make the fundamental assumption that the oscillator can only move to the left or
the right along the surface, i.e., its motion is effectively one-dimensional. This allows us
to introduce a coordinate system: denote the oscillator’s displacement from its equilibrium
position at time t by x(t).

m

x(t)

t > 0

For example, since at the very start we pulled the oscillator a distance x0 from equilibrium,
we have x(0) = x0. Assume that the displacement is positive if the oscillator is to the right
of its equilibrium position and negative if the oscillator is to the left of equilibrium. (This is
unlike our population models: now x(t) < 0 makes physical sense.)

m

x(t) > 0

m

x(t) < 0
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Newton’s law will give us an ODE governing the behavior of the oscillator. Here mass is
m and acceleration at time t is ẍ(t). Suppose that we can measure all the forces acting on
the oscillator at time t by F(t), where F is some function. Then

mẍ(t) = F(t).

The precise choice of F will determine the precise ODE governing the oscillator (and also
our course of study for the foreseeable future). One force that will always be present arises
from the spring. Experience26 teaches that the further you pull a spring, the more force
you have to exert. If you stretch a spring a distance x, the spring pulls back with the force
Fspr(x). Experience probably also teaches us that we want Fspr(x) to (1) be proportional to
x and (2) act in the opposite direction to x. So, let’s define

Fspr(x) := −κx (3.1.1)

for some κ > 0. The definition (3.1.1) is Hooke’s law.

3.1.1. The undamped harmonic oscillator.

Assume, for the moment, and wholly unrealistically, that the only force experienced by the
oscillator is the spring force — no friction against the surface, no air resistance, no cats
coming by to play. Such an oscillator is called undamped. Then F = Fspr, and so Newton’s
law says

mẍ(t) = Fspr(x(t)) = −κx(t),

which we more typically write27 as

mẍ+ κx = 0. (3.1.2)

This is, of course, a second-order ODE, as ẍ appears in the equation, but no higher
derivatives of x are there.

So, what happens? Since there is no friction, we might expect the oscillator, once put in
motion, to move forever. Nothing is there to slow it down, or speed it up. In particular, it
definitely should not settle down to stay motionless at some fixed distance from equilibrium,
and so we expect that limt→∞ x(t) does not exist; this presumes that (3.1.2) even has a
solution x (of course it does), but we’ll come to that presently.

We might make a more precise conjecture in one particular physical situation. Suppose
that we do not move the oscillator at all from equilibrium: x(0) = x0 = 0. Suppose that we
don’t even touch the oscillator; at time t = 0, it is motionless: ẋ(0) = 0. Then the oscillator
should never move and thus stay at equilibrium for all time, i.e., we expect x(t) = 0 for all
t. More formally, we expect that

mẍ+ κx = 0

x(0) = 0

ẋ(0) = 0

=⇒ x = 0.

26 In the lab, with Slinkies. . .
27 While we usually wrote first-order problems in the form ẋ = f(t, x), we usually do not isolate the highest

derivative in second-order problems or beyond.



3. Second-Order Linear Equations 119

This is where we finished on Monday, October 31, 2022.

3.1.2. The damped harmonic oscillator.

Suppose now that the oscillator experiences friction or air resistance in addition to the spring
force — but otherwise there are no other forces (no cats coming by to play, not yet. . .). We
now say that the oscillator is damped.

Experience suggests that friction is proportional to velocity; let’s say that if the oscillator
is moving with velocity ẋ, then the frictional force that it experiences at time t is Ffr(t) =
−bẋ(t) for some b > 0. Then the total force that the oscillator experiences is the sum of the
spring force and the friction force: F = Fspr + Ffr, and so Newton’s law now reads

mẍ = −κx− bẋ,

or, as we will more often write it,

mẍ+ bẋ+ κx = 0. (3.1.3)

In the absence of other forces, then, we expect that friction will slow down the oscillator
over long times and cause it to return to its rest position. Thus we expect the long time
behavior

mẍ+ bẋ+ κx with b > 0 =⇒ lim
t→∞

x(t) = 0.

3.1.3. The driven harmonic oscillator.

The oscillators considered so far, whether undamped or damped, have experience no “exter-
nal” forces. That is, to set up the oscillator, there is always a spring connecting the oscillator
to a wall and a surface over which the oscillator moves. The spring always contributes a
spring force (what else would we call it?), and the surface sometimes contributes a damping
force (and sometimes the surface is magical and doesn’t). These two kinds of forces are “in-
ternal” to the oscillator. But maybe a force “external” to the oscillator influences its motion
— an earthquake, shaking the wall to which the oscillator is attached; a microlocalized black
hole pulling the oscillator in one direction; a cat walking by and whacking the oscillator with
her beefy paw.

If there is an external force, then the total force experienced by the oscillator at time t
has the form F(t) = Fspr(t) + Ffr(t) + f(t), where Fspr is the spring force, Ffr is the friction
force (we now allow Ffr = 0, so b = 0, to incorporate the undamped oscillator), and f is a
catch-all term for “all the other forces.” The displacement of the oscillator then is

mẍ+ bẍ+ κx = f(t).

An oscillator experiencing an external force is called driven28 or (unsurprisingly) forced;
an oscillator without an external force is free.
28 Look back at Definition 2.6.1 right now. This is why we used the terms “forcing” and “driving” in that

definition.
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3.1.4. Guiding questions.

Here is a summary of our work on the ODE governing the displacement of a harmonic
oscillator and its attendant terminology.

mẍ+ bẋ+ κx = f(t)
Damped: b > 0 Undamped: b = 0
Free: f(t) = 0 Driven: f(t) 6= 0

Here are some questions that will guide our work. The first two are reiterations of ones
that we previously asked.

1. If friction is present and b > 0, do we have limt→∞ x(t) = 0?

2. If friction is not present and b = 0, how can we quantify the idea that “the oscillator
keeps moving forever and doesn’t slow down”?

Here are some new questions, now that we can put all aspects of the oscillator together
into the one ODE above.

3. How might changing the parameters m, b, and κ affect the solution? We might expect
that a “heavier” mass moves “more slowly” than a “lighter” one. We might expect that if we
“turn up” the friction, the oscillator returns to equilibrium “more quickly.” We might expect
that a “stiffer” spring pulls back “more quickly” than a “looser” spring. Overall, how can we
quantify these questions in terms of the parameters m, b, and κ, and how can we see their
effects in the solution?

4. How might a particular driving term f (say, a regular, periodic whacking of the oscilla-
tor by our jerk of a cat) manifest itself in the solution x? How can we see explicitly the
dependence of a solution on f?

5. What role (if any) do the initial displacement x(0) and velocity ẋ(0) of the oscillator play
in its future motion and behavior? These are two aspects of its motion that we can quite
reasonably control at the very start.

Finally, here are some harder questions, which we will not pursue in this course, but
which can nonetheless be addressed with enough work.

6. What if the oscillator and its environment “change” over time? Maybe the mass leaks,
the surface (over which the oscillator moves) gets rougher, or the spring stiffens. In these
cases, we would want the “material” data m, b, and κ to depend on time, and so we would
need to solve problems of the form

m(t)ẍ+ b(t)ẋ+ κ(t)x = f(t).

This turns out to be quite hard!

7. What if the spring is stretched over “long” distances? Hooke’s law (3.1.1) is really only
valid when the spring is stretched a “short” length from equilibrium. Otherwise, we might
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need to incorporate a nonlinear term; instead of saying that the force exerted by stretching
the spring a length x is the linear function Fspr(x) = −κx, we might now use a nonlinear
force Fspr(x) = −κx−βx2. Here the spring force has a quadratic term; it could be even more
complicated. Then the equation of motion for the oscillator is

mẍ+ bẋ+ κx+ βx2 = f(t).

This too is quite hard!

While we know by now that there is more to life than formulas — here’s your daily
reminder to pause and recite the Analyst’s Creed (AC) — a good initial attempt at answering
these questions might be finding some formulas and playing with them. Specifically, we want
to solve the IVP29 

mẍ+ bẋ+ κx = f(t)

x(0) = x0

ẋ(0) = y0

(3.1.4)

for given numbers m, b, κ, x0, and y0 and a given function f .
We now proceed to do just that.

3.2. The homogeneous problem.

The governing equation for a harmonic oscillator is

mẍ+ bẋ+ κx = f(t).

Sincem > 0, we may divide both sides bym and put p := b/m, q := κ/m, and g(t) := f(t)/m
to find that x must satisfy

ẍ+ pẋ+ qx = g(t). (3.2.1)
This is slightly simpler than our original problem and follows our long convention with
first-order ODE that the highest derivative (previously ẋ, now ẍ) has only a coefficient of 1.

More generally, we could consider the problem

aẍ+ bẋ+ cx = f(t), (3.2.2)

where a, b, and c are real numbers and f is a function. This is a constant-coefficient
linear second-order ODE, which is a lot of adjectives. This ODE is homogeneous
if f(t) = 0 for all t and nonhomogeneous if f(t) 6= 0 for at least one t. We require
a 6= 0, as otherwise the problem reduces to a first-order equation. However, the following
mathematical analysis will work for a, b, and c negative, which we did not allow in the
harmonic oscillator’s equation.

Nonetheless, for notational simplicity, we will stick with (3.2.1), and, if you really have
to, you can always convert (3.2.2) into (3.2.1) by dividing by a. We will start with the
homogeneous case of (3.2.1), i.e., g(t) = 0. That is slightly simpler; moreover, the first-order
homogeneous linear problem turned out to be critical to solving the first-order nonhomoge-
neous problem, and we might expect the same here.

So, what do we do?
29 We could pose this IVP at the initial time t = t0 for t0 arbitrary, but we won’t; life will be hard, and

interesting, enough just starting from time t = 0.
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3.2.1. An inspired exponential ansatz.

Our immediate goal is to solve (and understand) the homogeneous problem

ẍ+ pẋ+ qx = 0. (3.2.3)

Having no better ideas, and nothing better to do, our thinking might follow one of two
tracks.

First, we could delete the ẍ term and think about what happens to the ODE pẋ+qx = 0.
Maybe that will help? Assuming p 6= 0, we get

ẋ = −q
p
x.

This is a homogeneous linear first-order ODE, and so its solution is

x(t) = Ce−(q/p)t

for any constant C. Here is what we learn: maybe the second-order problem (3.2.3) has a
solution that involves an exponential?

Second, we could think about what is happening in (3.2.3) arithmetically. We take two
derivatives of x and add multiples of x, ẋ, and ẍ together, and we get 0. The three functions
x, ẋ, and ẍ have to “talk” together in a sufficiently nice way so that the combination ẍ+pẋ+qx
is always 0. What kind of function talks to its derivatives in a particularly transparent way?
One good answer is the exponential.

Here is the right idea, and despite the efforts of the previous two paragraphs, you may
not be convinced that it’s the right idea until you see that it works. (I’m still not entirely
convinced myself.) Let’s guess that a solution x to (3.2.3) has the form

x(t) = eλt

for some real number λ. We calculate

ẋ(t) = λeλt and ẍ(t) = λ2eλt,

and so we have

ẍ(t) + pẋ(t) + qx(t) = λ2eλt + pλeλt + qeλt = (λ2 + pλ+ q)eλt.

Then, since eλt > 0 for all real λ and t, we have

ẍ(t) + pẋ(t) + qx(t) = 0 ⇐⇒ (λ2 + pλ+ q)eλt ⇐⇒ λ2 + pλ+ q = 0.

Thus, to get a solution x to ẍ + pẋ + qx = 0 of the form x(t) = eλt, we just need λ to
solve the quadratic equation

λ2 + pλ+ q = 0. (3.2.4)

We call (3.2.4) the characteristic equation (sometimes, the auxiliary equation)
of the ODE ẍ+ pẋ+ qx = 0. This is great news! We spent a lot of time in high school, and
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afterward, thinking about quadratic equations, and we know how to solve them in a flash.
The quadratic formula for solutions λ to (3.2.4) reads

λ =
−p±

√
p2 − 4q

2
.

You might remember that the quantity p2 − 4q is called the discriminant of the
quadratic equation (3.2.4). The discriminant is a real number, so there are three possibilities:

p2 − 4q > 0, p2 − 4q = 0, or p2 − 4q < 0.

When the discriminant is positive, the quadratic equation has two distinct (i.e., unequal)
real roots; when the discriminant is 0, the quadratic equation has only one (real) root; and
when the discriminant is negative, the quadratic equation has two complex, nonreal roots
that appear as complex conjugate pairs. Our first task is to interpret what these three root
behaviors tell us about solutions to the ODE ẍ+ pẋ+ qx = 0. Then we will interpret what
these behaviors say about the harmonic oscillator.

3.2.2. Distinct real roots.

Suppose that p2 − 4q > 0, so the quadratic equation λ2 + pλ+ q = 0 has the two roots

λ1 := −p
2
−
√
p2 − 4q

2
and λ2 := −p

q
+

√
p2 − 4q

2
.

Note that λ1 < λ2, so λ1 6= λ2; these roots are “distinct.” Then the functions

x1(t) := eλ1t and x2(t) := eλ2t

both solve the ODE ẍ+ pẋ+ qx = 0.
Let’s do an example.

3.2.1 Example.

Find solutions to ẍ− x = 0.

Solution. Here p = 0 and q = −1, so the characteristic equation is λ2 − 1 = 0. This is a
difference of perfect squares, which we factor instantly as (λ+ 1)(λ−1) = 0, and so its roots
are λ = 1 and λ = −1. Solutions to the ODE are therefore x1(t) := et and x2(t) := e−t. N

Let’s not be content with our success. How might we solve an IVP like
ẍ+ pẋ+ qx = 0

x(0) = x0

ẋ(0) = y0?

In the past, our success with first-order ODE came from having a “free constant” in the
solution (however we found it); we were able to use algebra to choose the constant correctly
to meet the initial condition.
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However, in our exponential solutions, there are no (apparent) free constants! Moreover,
we are going to have two initial conditions (to encode initial displacement and initial velocity
in the harmonic oscillator model), and so we actually we need two free constants. How do
we get them? The right idea is to introduce something artificial (but also natural).

Think about the first-order linear homogeneous ODE ẋ = ax. Any constant multiple of
a solution is a solution, and sums of solutions are solutions, too. This is linearity, and it also
holds for the second-order linear homogeneous problem (otherwise we wouldn’t call it linear).
More precisely, we have the following theorem, which you can, and should, prove on your
own; note that its statement does not assume that the corresponding characteristic equation
has distinct real roots, so it is valid for all second-order linear homogeneous problems.

3.2.2 Theorem (Linearity).

Suppose that x1 and x2 solve the ODE ẍ + pẋ + qx = 0. Let c1 and c2 be real numbers.
Then c1x1 + c2x2 also solves ẍ+ pẋ+ qx = 0.

Let’s put this theorem into action.

3.2.3 Example.

We know from Example 3.2.1 that x1(t) = et and x2(t) = e−t both solve ẍ−x = 0. Choose
constants c1 and c2 so that c1x1 + c2x2 solves the IVP

ẍ− x = 0

x(0) = 1

ẋ(0) = 2.

Solution. Let x(t) = c1e
t + c2e

−t. We first need

1 = x(0) = c1e
0 + c2e

−0 = c1 + c2.

Next, we calculate
ẋ(t) = c1e

t − c2e−t,
and so we need

2 = ẋ(0) = c1e
0 − c2e−0 = c1 − c2.

So, c1 and c2 must solve the linear system{
c1 + c2 = 1

c1 − c2 = 2.
(3.2.5)

We have turned a calculus problem into an algebra problem! There are many, many ways
of solving a system like (3.2.5). Here is just one of them. Rewrite the second equation as
c2 = c1 − 2, and plug that into the first equation to get

1 = c1 + c2 = c1 + (c1 − 2) = 2c1 − 2.
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Add 2 to both sides to get 2c1 = 3, and divide by 2 to get c1 = 3/2. Then, from before,

c2 = c1 − 2 =
3

2
− 2 =

1

2
.

Thus a solution to the IVP is
x(t) =

3et

2
+
e−t

2
. N

This is where we finished on Friday, November 4, 2022.

Note that we said “a” solution, not “the” solution. The work in Example 3.2.3 shows that
the only solution to the IVP under consideration of the form x(t) = c1e

t+ c2e
−t occurs when

c1 = 3/2 and c2 = 1/2; in other words, there is only one way to choose the constants c1 and
c2. But could there be another solution that is not a linear combination of the exponentials
x1(t) = et and x2(t) = e−t?

Happily, the answer is no. Our experience with first-order problems should make us think
that second-order IVP also have unique solutions. We were able to prove this from scratch
with the integrating factor method for the first-order linear IVP, but a rigorous treatment
of the second-order linear IVP is rather more challenging. We will just state the result here.

3.2.4 Theorem (Existence and uniqueness).

Let g be a continuous function on (−∞,∞). Then the IVP
ẍ+ pẋ+ qx = g(t)

x(0) = x0

ẋ(0) = y0

has a unique solution.

Again, this theorem is valid for all second-order linear problems, not just ones whose
characteristic equations have distinct real roots, and also not just homogeneous ones. The
utility of this theorem will be that if we have found one solution to a second-order IVP, then
we will have found all of them.

3.2.5 Example.

Solve the IVP 
ẍ− 3ẋ+ 2x = 0

x(0) = −1

ẋ(0) = 1.

Solution. The characteristic equation is λ2 − 3λ + 2 = 0. Either by factoring (if we see a
factorization quickly) or the quadratic formula (if we don’t), we find that the roots are λ = 1
and λ = 2. We will look for a solution to the IVP of the form x(t) = c1e

t + c2e
2t. We need

−1 = x(0) = c1 + c2,
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and, since
ẋ(t) = c1e

t + 2c2e
2t,

we need
1 = ẋ(0) = c1 + 2c2.

So, we must solve the system {
c1 + c2 = −1

c1 + 2c2 = 1.

The first equation gives c1 = −1− c2, so the second equation becomes

1 = c1 + 2c2 = (−1− c2) + 2c2 = −1 + c2,

thus c2 = 2, and so c1 = −1− 2 = −3. The solution to the IVP therefore is

x(t) = −3et + 2e2t. N

3.2.3. Repeated real roots.

Suppose now that the characteristic equation λ2 + pλ+ q = 0 for the ODE ẍ+ pẋ+ qx = 0
has just one repeated real root. That is, the discriminant satisfies p2 − 4q = 0, and so, from
the quadratic formula the only root is λ = −p/2. Then, certainly, the function

x1(t) := e−(p/2)t

will solve the ODE, and so will any constant multiple of x1. But we expect to need two
solutions, and two free constants, to solve IVP.

The workaround is quite simple, and my favorite second-order problem will illustrate it.
Consider the ODE

ẍ = 0,

so p = q = 0. Its characteristic equation is λ2 = 0, and certainly the only root here is λ = 0.
Thus a solution is

x1(t) = eλt = e0·t = 1.

But we certainly don’t need any high-powered ODE ideas to solve ẍ = 0; just antidifferentiate
twice to get

x(t) = c1t+ c2

for some constants c1 and c2. Now here’s the clever observation that joins this solution with
the repeated root λ = 0 of the characteristic equation:

x(t) = c1t+ c2 = c1te
0·t + c2e

0·t = c1te
λt + c2e

λt, λ = 0.

So, here is the lesson of this very simple ODE. If λ = −p/2 is the repeated real root of
the characteristic equation λ2 + pλ + q = 0 for the ODE ẍ + pẋ + qx = 0, then maybe the
function

x2(t) := teλt = te−(p/2)t

also solves ẍ+ pẋ+ qx = 0. And indeed it does; I will leave that for you to check. (The key
idea is that a repeated real root only happens when p2 − 4q = 0, so we have the additional
relation q = p2/4 in play.)
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3.2.6 Example.

Solve the IVP 
ẍ− 2ẋ+ x = 0

x(0) = 1

ẋ(0) = 5.

Solution. The characteristic equation is λ2 − 2λ + 1 = 0, which factors into (λ − 1)2 = 0.
The only root is therefore the repeated root λ = 1. Following the arguments above, we look
for a solution to the IVP of the form

x(t) = c1e
t + c2te

t.

This is where we finished on Monday, November 7, 2022.

We need
1 = x(0) = c1e

0 + c2 · 0 · e0 = c1,

so we figured out c1 pretty fast. We need to do a bit more work than before to calculate ẋ,
which is

ẋ(t) = c1e
t + (c2e

t + c2te
t) = et + c2e

t + 2tet.

Here we had to use the product rule, but we could also use c1 = 1 from before. So, we want

5 = ẋ(0) = e0 + c2e
0 + 2 · 0 · e0 = 1 + c2,

and so c2 = 4. Thus
x(t) = et + 4tet. N

3.2.4. Complex conjugate roots.

Suppose now that the characteristic equation λ2 + pλ+ q = 0 for the ODE ẍ+ pẋ+ qx = 0
has a pair of complex conjugate roots. That is, the discriminant satisfies p2 − 4q < 0. We
then want to say that the solutions to the characteristic equation are

λ1 = −p
2
− i
(√

4q − p2
2

)
and λ2 = −p

2
+ i

(√
4q − p2

2

)
.

Since p2 − 4q < 0, we have 4q − p2 = −(p2 − 4q) > 0, and so there is no problem taking the
square root

√
4q − p2.

The pesky thing is the factor i, which we interpret as satisfying i2 = −1. We want to say
that the functions x1(t) = eλ1t and x2(t) = eλ2t solve the ODE ẍ+ pẋ+ qx = 0, but what do
these exponentials mean?

Let’s take a moment to pull back and think about complex numbers. A complex
number is an expression of the form α+ iβ, or sometimes α+ βi, where α and β are real
numbers and i satisfies i2 = −1; we add and multiply complex numbers just as we do real
numbers, and we make absolutely no attempt here to give a rigorous interpretation of the
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symbolic juxtaposition iβ. (What in the world does “multiplying” a real number β with the
symbol i satisfying i2 = 1 mean? Take a course in complex analysis.) Every real number α,
by the way, is a complex number; write α = α + (i · 0).

Here is a problem for which complex roots arise in practice:

ẍ− 2ẋ+ 5 = 0.

The characteristic equation is
λ2 − 2λ+ 5 = 0.

If after about ten seconds of thought, you don’t see a quick and easy factorization, go to the
quadratic formula:

λ =
−(−2)±

√
(−2)2 − 4(1)(5)

2
=

2±
√

4− 20

2
=

2±
√
−16

2
=

2± 4i

2
= 1± 2i.

We want to say that solutions are

x1(t) = e(1+2i)t and x2(t) = e(1−2i)t. (3.2.6)

What on earth does this mean?
At the very least, we expect

x1(t) = et+2it = ete2it and x2(t) = et−2it = ete−2it. (3.2.7)

So, a better question is how to define eiβ when β is a real number. This begs the question
of what eα is when α is a real number; my favorite answer is power series:

eα =
∞∑
k=0

αk

k!
.

So, a good definition for the complex exponential eiβ is

eiβ :=
∞∑
k=0

(iβ)k

k!
. (3.2.8)

For example, the numerator of the k = 3 term in this series is

(iy)3 = i3y3 = i2iy3 = −iy3.

Now what? What does the series (3.2.8) do? If you work at it a bit, and use the fact
that i2 = −1, i3 = −i, i4 = 1, and so on, repeating ever thereafter, and if you remember the
Taylor series for the sine and cosine, you can arrive at the following identity:

eiβ = cos(β) + i sin(β). (3.2.9)

This is called Euler’s formula for the complex exponential.
We therefore combine the expected arithmetic of (3.2.7) with Euler’s formula (3.2.9) to

make the following definition.
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3.2.7 Definition.

Let α and β be real numbers. The symbol eα+iβ means

eα+iβ := eα
[

cos(β) + i sin(β)
]
.

Note that since α and β are real numbers, the quantities eα, cos(β), and sin(β) are all
defined as usual (say, by their Taylor series). Back to the ODE ẍ − 2ẋ + 5 = 0 and its
putative solutions x1 and x2 defined in (3.2.6). We therefore expect these solutions to be

x1(t) = e(1+2i)t = et+i(2t) = et
[

cos(2t) + i sin(2t)
]

= et cos(2t) + iet sin(2t)

and

x2(t) = e(1−2i)t = et+i(−2t) = et
[

cos(−2t)+i sin(−2t)
]

= et
[

cos(2t)−i sin(2t)
]

= et cos(2t)−iet sin(2t).

As always, what does this mean? We’ve (presumably) never done calculus for functions
defined at real numbers t but whose outputs are complex (and not real) numbers. Moreover,
our original problem ẍ − 2ẋ + 5 = 0 was stated only with real numbers (and the physical
description of the harmonic oscillator model definitely involved only real numbers), and it’s
at best rude to hand someone a complex-valued answer to a real-coefficient problem.

What are we to do? We could build up the theory of the calculus of complex-valued
functions of real variables from scratch (spoiler alert: nothing changes from the calculus
that you already know), but a faster way is to hope that since x1 and x2 have the forms
u ± iv, where u(t) = et cos(2t) and v(t) = et sin(2t), maybe u and v have some healthy
relation to the original ODE. And they do: you can check that

ü− 2u̇+ 5u = v̈ − 2v̇ + 5v = 0.

The following is more generally true, and, as usual, I invite you to check it.

3.2.8 Lemma.

Suppose that p and q are real numbers with p2 − 4q < 0. Let

α := −p
2

and β :=

√
4q − p2

2
,

so that the roots of the quadratic equation λ2 + pλ+ q = 0 are

λ = α + iβ and λ = α− iβ.

Then the functions

x1(t) = eαt cos(βt) and x2(t) = eαt sin(βt)

both solve the ODE ẍ+ pẋ+ qx = 0.
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This is where we finished on Wednesday, November 9, 2022.

3.2.9 Example.

Use all of the preceding work to solve the IVP
ẍ− 2ẋ+ 5x = 0

x(0) = −1

ẋ(0) = 1.

Solution. The characteristic equation is λ2 − 2λ+ 5 = 0, and we know that it has the pair
of complex conjugate roots λ = 1± 2i. Let’s write α = 1 and β = 2 here; if you want to use
β = −2, that will still work, but writing −2 takes longer than writing 2. We want to look
for a solution to the IVP of the form

x(t) = c1e
αt cos(βt) + c2e

αt sin(βt) = c1e
t cos(2t) + c2e

t sin(2t).

This means we need

−1 = x(0) = c1e
0 cos(0) + c2e

0 sin(0) = c1.

Next, we differentiate x very carefully to find

ẋ(t) = c1
[
et cos(2t)− 2et sin(2t)

]
+ c2

[
et sin(2t) + 2et cos(2t)

]
,

and so we need

1 = ẋ(0) = c1[e
0 cos(0)− 2e0 sin(0)] + c2[e

0 sin(0) + 2e0 cos(0)] = c1 + 2c2.

But we already know c1 = −1, so c2 must satisfy

1 = −1 + 2c2,

thus 2c2 = 2, and so c2 = 1. Hence the solution is

x(t) = −et cos(2t) + et sin(2t). N

3.3. The free harmonic oscillator.

We now know how to solve ODE of the special form

ẍ+ pẋ+ x = 0. (3.3.1)

Just look at the characteristic equation λ2+pλ+q = 0 and interpret its roots. More precisely,
we have the following three cases.

1. Two distinct real roots λ1 and λ2 (p2 − 4q > 0): all solutions to (3.3.1) have the form

x(t) = c1e
λ1t + c2e

λ2t.
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2. One repeated real root λ (p2 − 4q = 0): all solutions to (3.3.1) have the form

x(t) = c1e
λt + c2te

λt.

3. Two distinct complex conjugate roots α ± iβ, with β 6= 0 (p2 − 4q < 0): all solutions to
(3.3.1) have the form

x(t) = c1e
αt cos(βt) + c2e

αt sin(βt).

To be fair, we never actually proved this, but you can (and should). Rather, we worked
through a number of IVP and always found solutions of the forms above; the existence and
uniqueness theorem then guaranteed that those were the only solutions. Here’s how you do
this in general. Start with an arbitrary solution to (3.3.1). Then introduce “artificial” initial
data by declaring x0 := x(0) and y0 := ẏ(0). Then solve the IVP

ẍ+ pẋ+ qx = 0

x(0) = x0

ẋ(0) = y0

by considering the three cases above on the discriminant. Show that you can always solve
for the coefficients c1 and c2 in terms of x0 and y0 (and p and q). Sound reasonable?

I won’t do this explicitly, because I want to stop talking about formulas and start living
out the Analyst’s Creed (AC). Specifically, we took the harmonic oscillator as our canonical
model for second-order linear ODE. Recall that in the absence of external forces, an oscillator
of mass m > 0, spring constant κ > 0, and damping coefficient b ≥ 0 satisfies

mẍ+ bẋ+ κx = 0.

Dividing through by m and relabeling p := b/m and q := κ/m, we get (3.3.1). We believe
that when p = 0, the oscillator should keep moving forever in some obvious fashion, since
friction is then absent. But when p > 0, we expect limt→∞ x(t) = 0, because the oscillator
should slow down and return to its equilibrium position.

We will show that the mathematics bears out these physical expectations in the special
case q = 1, so we’ll study

ẍ+ pẋ+ x = 0. (3.3.2)

I am setting q = 1 purely for simplicity; you can think of it as the special case when the mass
m and the spring constant κ are identical. (Yes, I know that masses and spring constants
should have different units, but I just can’t bring myself to care.) We will focus on the role
of p, the damping coefficient. There are really four cases to consider.

1. p = 0. Then (3.3.2) is just ẍ + x = 0. The characteristic equation here is λ2 + 1 = 0,
and we see that its roots are ±i. That is, α = 0 and β = 1, so all solutions are x(t) =
c1 cos(t) + c2 sin(t). These solutions clearly oscillate forever and do not tend to a limit as
t→∞ unless c1 = c2 = 0 (in which case the oscillator isn’t moving at all).

2. p > 0 and p2 − 4 > 0 (thus p > 2 since p > 0). Since p > 0, damping is “turned on,” and
so the characteristic equation is now

λ2 + pλ+ 1 = 0. (3.3.3)
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Its roots are

λ1 := −p
2
−
√
p2 − 4

2
and λ2 := −p

2
+

√
p2 − 4

2
,

and all solutions are x(t) = c1e
λ1t + c2e

λ2t. Since p > 0 and
√
p2 − 4 > 0, I hope it’s clear

that λ1 < 0, and therefore limt→∞ c1e
λ1t = 0. To control the other term in x, we want to be

sure that λ2 < 0. This needs just a little more work: since 0 < p2 − 4 < p2, we have√
p2 − 4 <

√
p2 = |p| = p.

Here we used the fact that the square root is increasing and |p| = p since p > 0. Then

−p < −
√
p2 − 4,

and so
−p+

√
p2 − 4 < 0.

Multiplying through by 1/2 shows λ2 < 0, and so limt→∞ c2e
λ2t = 0. Thus we get limt→∞ x(t) = 0,

which is what we wanted.

3. p > 0 and p2 − 4 = 0 (also known as p = 2). Here the characteristic equation (3.3.3)
has the repeated real root −p/2(= −1), so all solutions are x(t) = c1e

−(p/2)t + c2te
−(p/2)t.

The first term vanishes at infinity by properties of exponentials: limt→∞ c2e
−(p/2)t = 0 since

−p/2 < 0. So does the second term, but we need to do some more work to prevent it from
becoming an ∞ · 0 indeterminate form. Use L’Hospital’s rule:

lim
t→∞

c2te
−(p/2)t = lim

t→∞

c2t

e(p/2)t
= lim

t→∞

d

dt
[c2t]

d

dt
[e(p/2)t]

= lim
t→∞

c2
pe(p/2)t/2

= 0.

It is interesting (relatively speaking) to play a bit with the parameter p and look at some
potential solution graphs when p = 2 and p > 2. Depending on the choices of c1 and c2, which
arise from the initial conditions, a variety of graphs can appear. Some are monotonically
decreasing, while others might have a little local extremum near time t = 0. Here are some
graphs that illustrate different possibilities.

t

e−t

t

3te−t

t

e−t + 3te−t

You can (and should) ask endless sorts of questions about how the choice of p and the initial
data precisely affect the graph, and what that means about the behavior of the oscillator.

This is where we finished on Friday, November 11, 2022.
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4. p > 0 and p2 − 4 < 0 (thus 0 < p < 2). Here the characteristic equation (3.3.3) has the
complex conjugate pair of roots α ± iβ, where α = −p/2 and β =

√
4− p2/2. It is very

important that α < 0. Then all solutions are, as usual, x(t) = c1e
αt cos(βt) + c2e

αt sin(βt).
We can show that these solutions vanish at infinity via the squeeze theorem: for simplicity,
say c2 = 0, and estimate

0 ≤ |c1eαt cos(βt)| = |c1|eαt| cos(βt)| ≤ |c1|eαt. (3.3.4)

Here we used the bound | cos(τ)| ≤ 1, valid for all numbers τ. Since α < 0, we have
limt→∞ e

αt = 0, and so the estimate (3.3.4) implies limt→∞ c1e
αt cos(βt) = 0.

However, the oscillator here is not “just” slowing down and returning to its rest position.
This may not be obvious from the formulas, but if we graph a solution of the form x(t) =
eαt sin(βt), setting c1 = 0 and c2 = 1 for convenience, we’ll see some behaviors that weren’t
present before.

Here’s what I see: the graph of x crosses the t-axis infinitely many times. That means
x has infinitely many roots, or zeros. If x(t) = 0, then the oscillator is at its equilibrium
position at time t. So, in this case, the oscillator passes through its equilibrium point
infinitely many times. It’s not too hard to show when that happens:

eαt sin(βt) = 0 ⇐⇒ sin(βt) = 0 ⇐⇒ βt = nπ, n an integer ⇐⇒ t =
nπ

β
.

Here we used the facts that eαt > 0 and that β > 0 to facilitate division, and we used the
root structure of the sine: sin(τ) = 0 precisely when τ is an integer multiple of π, i.e., τ = nπ
for some integer n. The numbers nπ/β are the times at which the oscillator passes through
equilibrium. I think it’s interesting that these times are evenly spaced apart; each root of
x(t) = eαt sin(βt) is separated by a distance of π/β from the next root. This suggests a
surprising uniformity in the behavior of the oscillator; even though it is moving over smaller
distances as time goes on and getting closer to equilibrium (this is what limt→∞ x(t) = 0
means), it continues moving to the left and right of equilibrium over exactly the same time
intervals forever.

Math is weird.

As with all of our models, the value of this harmonic oscillator analysis is less (for me)
that we have achieved control over some profound physical system that’s going to help us
rule the world; rather, we’ve seen how to distill some physical assumptions into mathspeak,
analyze the math (using tools as diverse as inequality manipulation, L’Hospital’s rule, and
the squeeze theorem), and interpret the results physically.

3.4. Nonhomogeneous problems.

We cooked up the ODE
mẍ+ bẋ+ κx = f(t)

to govern the displacement of a harmonic oscillator of mass m > 0 and spring constant
κ > 0 with damping constant b ≥ 0. Here f incorporates any external force influencing the
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oscillator. Since m > 0 and writing three letters is more work than writing two, we divide
by m and study instead

ẍ+ pẋ+ qx = g(t), (3.4.1)

with p = b/m, q = κ/m, and g(t) = f(t)/m. The ODE (3.4.1) is nonhomogeneous
when g(t) 6= 0 for at least one t.

Now that we have mastered the homogeneous problem, we will turn on g and study
the nonhomogeneous problem. While it is possible to develop a solution method for (3.4.1)
that handles all continuous g, the actual calculations quickly devolve into endless integration
exercises, and we will not consider them here. (It is worth knowing where to look them up
in a textbook or on the internet if you ever do need them.) Rather, we will first look at
some general properties of (3.4.1), valid for any g, and then develop solution techniques, and
qualitative interpretations, for special, and commonly occurring, choices of g.

3.4.1. Consequences of linearity.

To learn about solutions to the nonhomogeneous problem (3.4.1), one natural thing to do
is to compare two of them. Say that x1 and x2 both solve (3.4.1). How different are they?
One way to measure their difference is to subtract. So, what does x1 − x2 do? You know
what they say: if it moves, differentiate it.

I claim that because x1 and x2 both solve (3.4.1), and because derivatives interact well
(linearly) with constant multiples and addition, x1 − x2 solves the homogeneous problem

ẍ+ pẋ+ qx = 0. (3.4.2)

We just find the roots of the characteristic equation λ2 + pλ + q = 0 and interpret them.
Let’s abbreviate, then, xh := x1 − x2; the h is for, of course, homogeneous. Then we get

x1 = x2 + xh.

Huh? The functions x1 and x2 both solve the nonhomogeneous problem (3.4.1), but this
equality says that x1 and x2 are essentially the same, up to adding a solution xh of the
homogeneous problem. We saw this before with the first-order linear equation, right?

Here’s the formal statement of this result.

3.4.1 Theorem (Linearity).

Suppose that xp solves
ẍ+ pẋ+ qx = g(t)

and let x be any other solution of this ODE. Then there is a solution xh of the homogeneous
problem

ẍ+ pẋ+ qx = 0

such that
x = xh + xp.

In other words, if we know one “particular” solution30 xp to ẍ + pẋ + qx = g(t), then
30 I hope it’s okay that I’m using the subscript p for the particular solution and also the parameter p in the

ODE. p 6= p.
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we can find all other solutions to this ODE, since we know how to solve the homogeneous
problem ẍ+ pẋ+ qx = 0. So, we will concentrate on finding one particular solution xp and
then combining it with homogeneous solutions to get full control over the nonhomogeneous
ODE.

This structural result has profound consequences for the harmonic oscillator; recall that
if p ≥ 0 and q > 0, then any solution xh to the homogeneous problem ẍ+pẋ+qx = 0 satisfies
limt→∞ xh(t) = 0. Now suppose that we have one particular solution xp to the nonhomoge-
neous problem ẍ + pẋ + qx = g(t) and write any other solution x to this nonhomogeneous
problem as x = xh + xp for some homogeneous solution xh. Subtract to get x − xp = xh.
Then

lim
t→∞

(
x(t)− xp(t)

)
= lim

t→∞
xh(t) = 0.

That is, over very long times, x and xp are essentially the same function; the end behavior of
x is always the same as the end behavior of xp. In particular, initial conditions don’t matter!
No matter how the oscillator starts moving, its long-time behavior will always be governed
by the same particular solution xp. Of course, though, this is only guaranteed for p ≥ 0 and
q > 0.

This is where we finished on Monday, November 14, 2022.

Now, how do we find those particular solutions xp to the nonhomogeneous problem
ẍ + pẋ + qx = g(t)? Good news: there is a procedure (commonly called variation of
parameters, very much like our work in Section 2.7.2) that always works for any contin-
uous g. Bad news: it requires a lot of antidifferentiation and a ton of ancillary calculations,
and the actual formula for xp is quite bulky and delicate. If your life depends on it, you can
always look it up and grind it out.

A better use of our time, I think, is to study two types of forcing terms g that are
common in applications and physically relevant. Our strategy will be the educated guessing
(or ansatz-making) of the method of “undetermined coefficients,” much as we did in Section
2.7.3.

3.4.2. Exponential forcing.

Let p, q, A, and r be numbers. We will study here the problem

ẍ+ pẋ+ qx = Aert. (3.4.3)

We can think of the forcing term g(t) = Aert as a force that either increases dramatically
over time (the case r > 0) or that weakens substantially over time (r < 0). I like to think of
black holes sucking a harmonic oscillator into oblivion (but maybe I’ve watched too much
Star Trek).

For a problem like (3.4.3), a good idea is to guess that x is an exponential of the same
“form” as the forcing function:

x(t) = αert (3.4.4)

for some to-be-determined constant α. This is a good idea for two reasons. First, we might
ask ourselves what kind of function x should we have so that ẍ + pẋ + qx adds up to an
exponential. Probably an exponential! I mean, if x has sines or logs in it, that won’t turn
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ẍ + pẋ + qx into an exponential. Second, we might ask ourselves how the forcing function
manifests itself in the solution. Since ert appears in the forcing function, we might expect
that ert appears in the solution, and arguably the simplest way for that to happen is if the
solution has the form (3.4.4).

Working with arbitrary p, q, A, and r could get confusing, so let’s do a concrete example.

3.4.2 Example.

Guess that a function of the form x(t) = αe2t solves

ẍ− x = e2t.

Find the right value of α for this to work, and then find all other solutions to this nonho-
mogeneous ODE. And for good measure, solve the IVP

ẍ− x = e2t

x(0) = 0

ẋ(0) = 1.

Solution. With x(t) = αe2t, we have ẋ(t) = 2αe2t and ẍ(t) = 4αe2t, and so we want

e2t = ẍ(t)− x(t) = 4αe2t − αe2t = 3αe2t.

Dividing both sides of 3αe2t = e2t by e2t, we find that α must satisfy 3α = 1, so α = 1/3.
You can (and should) then check that

xp(t) :=
e2t

3

solves ẍ− x = e2t.
To find all other solutions, we just have to add on an arbitrary homogeneous solution

xh. The homogeneous problem is ẍ − x = 0; its characteristic equation is λ2 − 1 = 0; the
roots of the characteristic equation are λ = ±1; and so any homogeneous solution has the
form xh(t) = c1e

t + c2e
−t for some constants c1 and c2. (Say that five times fast.) Thus all

solutions to ẍ− x = e2t are

x(t) = c1e
t + c2e

−t +
e2t

3
.

Finally, to solve the IVP, we just need to choose c1 and c2 above to meet the initial
conditions. We want

0 = x(0) = c1 + c2 +
1

3
,

and, since

ẋ(t) = c1e
t − c2e−t +

2e2t

3
,

we also want
1 = ẋ(0) = c1 − c2 +

2

3
.
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This gives a linear system of equations for c1 and c2:{
c1 + c2 = −1/3

c1 − c2 = −2/3.

There are many, many ways to solve this system; one way is to get c1 = c2 − 2/3 from the
second equation and plug that into the first equation to find

c2 −
2

3
+ c2 = −1

3
,

which turns into
2c2 =

1

3
,

or c2 = 1/6, and thus

c1 =
1

6
− 2

3
= −1

2
.

(Ugh, fractions.) We conclude

x(t) = −e
t

2
+
e−t

6
+
e2t

3
. N

Say that we change the situation above ever so slightly to

ẍ− ẋ = et. (3.4.5)

If you guess x(t) = αet and plug that in, I claim that the absurd situation

et = 0

will result. Go ahead and try it. Here’s the problem: the function x(t) = et solves ẍ− ẋ = 0.
However, I claim two nice things. First, we don’t need new methods to solve ẍ− ẋ = et.

It’s really a first-order problem in disguise. Second, working through this problem will teach
us something valuable.

Let’s shed the disguise. The ODE under consideration involves a “perfect derivative”:

et = ẍ− ẋ =
d

dt
[ẋ− x].

Antidifferentiate both sides to get

ẋ− x = et + k,

which is a first-order linear problem forced by b(t) = et + k. Here k is an arbitrary constant
of integration. We have a number of methods for solving such a problem. However you do
it (and you should do it, please and thank you), the result is

x(t) = tet + c1 + c2e
t, (3.4.6)
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where c1 and c2 are arbitrary constants. To be clear, we have shown that every solution to
(3.4.5) has the form (3.4.6).

The structure of (3.4.6) should not be surprising. Look at the homogeneous version of
(3.4.5), which is ẍ−ẋ = 0. The characteristic equation is λ2−λ = 0, so its roots are λ = 0, 1,
and therefore every homogeneous solution has the form xh(t) = c1 + c2e

t for some constants
c1 and c2. Now look at (3.4.6). If we take c1 = c2 = 0, we see that a particular solution to
the nonhomogeneous problem ẍ − ẋ = et is xp(t) = tet. This is almost our original guess
x(t) = αet, except now there is an extra factor of t.

Here is the lesson.

“If your first guess fails, multiply by t and try again.” (t)

This is where we finished on Wednesday, November 15, 2022.

3.4.3 Example.

Without doing any calculations, what do you expect will happen to solutions of

ẍ+ 4ẋ+ 3x = 12e−3t

over long times? Do some calculations and confirm your expectations.

Solution. The coefficient on ẋ is nonnegative and the coefficient on x is positive, so this
ODE could model the displacement of a harmonic oscillator. In particular, the coefficient
on ẋ is positive, so this oscillator is experiencing friction. We therefore expect that if we
can find one particular solution xp to this ODE, every other solution x will behave like xp
as t → ∞. And since the oscillator is forced by g(t) = 12e−3t, we expect that xp will look
like g. Since limt→∞ 12e−3t = 0, it’s a good guess that we will have limt→∞ xp(t) = 0, too.

Let’s get an analytic solution. We might want to guess x(t) = αe−3t, but our experience
above should make us cautious. Could g(t) = 12e−3t solve the homogeneous problem ẍ +
4ẋ + 3x = 0? Let’s check. The characteristic equation is λ2 + 4λ + 3 = 0, and this
factors into (λ + 1)(λ + 3) = 0. Its roots, therefore, are λ = −1 and λ = −3, and so all
homogeneous solutions are xh(t) = c1e

−t+ c2e
−3t. In particular, yes, g(t) = 12e−3t does solve

the homogeneous problem, and so guessing x(t) = αe−3t won’t work.
Instead, we guess x(t) = αte−3t and compute

ẋ(t) = αe−3t − 3αte−3t

and
ẍ(t) = −3αe−3t − 3αe−3t + 9αte−3t = −6αe−3t + 9αte−3t.

Then we want α to satisfy

12e−3t =
(
− 6αe−3t + 9αte−3t

)
+ 4
(
αe−3t − 3αte−3t

)
+ 3αte−3t = −2αe−3t.

Divide through by e−3t to get
12 = −2α,
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and thus α = −6.
Every solution, therefore, has the form

x(t) = c1e
−t + c2e

−3t − 6te−3t,

and so, certainly, every solution satisfies limt→∞ x(t) = 0. N

3.4.3. Sinusoidal forcing.

Let’s consider now ODE of the form

ẍ+ pẋ+ qx = A cos(ωt) or ẍ+ pẋ+ qx = A sin(ωt),

where p, q, A, and ω are all numbers. Such sinusoidal forcing functions could represent
periodic forces regularly applied to the oscillator; the parameter A controls the amplitudes,
or extreme values, of the forces, and ω controls their frequencies. Inspired by the dual
questions of (1) How does the forcing function show up in the solution? and (2) What kinds
of functions x can have derivatives that add up to sines or cosines?, a natural guess might
be x(t) = α cos(ωt) or x(t) = α sin(ωt). However, this could lead to “balancing” problems
with the first derivative term; if we are trying to solve ẍ+ pẋ+ qx = A cos(ωt) by guessing
x(t) = α cos(ωt), then ẋ will kick in a sin(ωt) term, but ẍ won’t counterbalance that, and so
we’ll have a lonely sine in the algebra.

Instead, the better guess is

x(t) = α cos(ωt) + β sin(ωt).

3.4.4 Example.

Find all solutions to ẍ+ 2ẋ+ 10x = 4 cos(2t).

Solution. We know that all solutions to the nonhomogeneous problem ẍ + 2ẋ + 10x =
4 cos(2t) have the form x(t) = xh(t) + xp(t), where xh solves the homogeneous problem
ẍh +2ẋh +10xh = 0 and xp is one particular solution to the nonhomogeneous problem. Since
the homogeneous problem represents an undriven, damped oscillator (since the coefficients
on ẋ and x are both positive), we expect that its solutions xh vanish as t→∞. Then, over
long times, the end behavior of a solution x to the nonhomogeneous problem will closely
resemble that of the particular solution xp.

We can confirm this by solving the characteristic equation λ2 + 2λ+ 10 = 0 for

λ =
−2±

√
22 − 4(1)(10)

2(1)
= −1± 3i.

All solutions to the homogeneous problem are therefore xh(t) = c1e
−t cos(3t) + c2e

−t sin(3t),
and certainly these satisfy limt→∞ xh(t) = 0. Then every solution to the nonhomogeneous
problem has the form

x(t) = c1e
−t cos(3t) + c2e

−t sin(3t) + xp(t)

for one particular solution xp(t), and so limt→∞ x(t)− xp(t) = 0.
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This is where we finished on Monday, November 28, 2022.

We now find this particular solution by guessing that

x(t) = α cos(2t) + β sin(2t)

solves ẍ+ 2ẋ+ 10x = 4 cos(2t) for some α and β. We will figure out these two undetermined
coefficients. First, we compute

ẋ(t) = −2α sin(2t) + 2β cos(2t) and ẍ(t) = −4α cos(2t)− 4β sin(2t).

Then we need

4 cos(2t) = ẍ(t) + 2ẋ(t) + 10x(t)

= −4α cos(2t)− 4β sin(2t)

+ 2
[
− 2α sin(2t) + 2β cos(2t)

]
+ 10

[
α cos(2t) + β sin(2t)

]
=
[
− 4α + 4β + 10α

]
cos(2t) +

[
− 4β − 4α + 10β

]
sin(2t).

If we subtract 4 cos(2t) from both sides and simplify, we find that we need[
6α + 4β − 4

]
cos(2t) +

[
6β − 4α

]
sin(2t) = 0.

This has to be true for all t.
Here is a wonderful auxiliary fact, which I invite you to prove: if A, B, and ω are such

that
A cos(ωt) +B sin(ωt) = 0

for all t, then A = 0 and B = 0. Taking this fact for granted, it must then be the case that
α and β satisfy the system {

6α + 4β − 4 = 0

6β − 4α = 0.

There are, as always, lots of ways to do this. One approach is to find α = 6β/4 = 3β/2 from
the second equation and plug that into the first to get

6

(
3β

2

)
+ 4β − 4 = 0,

which is the same as
13β = 4,

or β = 4/13. Then α = 6/13, and so a particular solution to the nonhomogeneous problem
is

xp(t) =
6 cos(2t)

13
+

4 sin(2t)

13
.
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Thus all solutions to the nonhomogeneous problem are

x(t) = c1e
−t cos(3t) + c2e

−t sin(3t) +
6 cos(2t)

13
+

4 sin(2t)

13
.

We see analytically that

lim
t→∞

x(t)−
(

6 cos(2t)

13
+

4 sin(2t)

13

)
= lim

t→∞
c1e
−t cos(3t) + c2e

−t sin(3t) = 0,

so, indeed, over long times any solution x to the nonhomogeneous problem behaves like the
particular solution xp. It is instructive to consult several plots for particular choices of c1
and c2 (which determine the initial conditions).

t

2 4 6 8 10 12

1

−1

c1 = −1, c2 = 2

t
1

−1

3

−3

5

−5

2 4 6 8 10 12

c1 = 5, c2 = −10

These plots indicate that, indeed, the general solution always “settles down” into the
particular solution. However, the “settling down” appears to happen more quickly in the first
plot than in the second, which suggests that choosing the initial conditions (i.e., choosing
c1 and c2) has an effect on the “intermediate” dynamics of the solution (and the “initial”
dynamics, too!). N

3.4.4. Resonance in the undamped oscillator.

Nothing too exciting can happen in a damped harmonic oscillator. If p > 0 and q > 0, then
if we know one solution xp to

ẍ+ pẋ+ qx = g(t),
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we know the long-time dynamics of all solutions to this ODE: any solution x ultimately
behaves like xp. Initial conditions are irrelevant!

The undamped oscillator has more exciting possibilities. Consider the following IVP:
ẍ+ x = A cos(ωt)

x(0) = 0

ẋ(0) = 0.

Let’s describe what this problem means physically. The mass and the spring constant of the
oscillator have the same numerical value (m = κ); the oscillator is forced by g(t) = A cos(ωt),
where the parameter A controls the “amplitude” or maximum value of this force and the
parameter ω allows us to control the frequency of this force (since the cosine is even, we may
as well take ω > 0); and the oscillator starts moving from its rest position with no initial
velocity.

Let’s find an analytic solution. The homogeneous problem is ẍ+x = 0, so its characteristic
equation is λ2 + 1 = 0. I really hope that by now we see immediately λ = ±i, and so the
homogeneous solutions are

xh(t) = c1 cos(t) + c2 sin(t).

Then all solutions to the nonhomogeneous problem have the form

x(t) = c1 cos(t) + c2 sin(t) + xp(t)

for some particular solution xp.
The method of undetermined coefficients then suggests that we guess

x(t) = α cos(ωt) + β sin(ωt),

compute

ẋ(t) = −αω sin(ωt) + βω cos(ωt) and ẍ(t) = −αω2 cos(ωt)− βω2 sin(ωt),

and stuff everything into the ODE to find that α and β must satisfy

A cos(ωt) = −αω2 cos(ωt)−βω2 sin(ωt)+α cos(ωt)+β sin(ωt) = α(1−ω2) cos(ωt)+β(1−ω2) sin(ωt).

Rearranged, this reads[
α(1− ω2)− A

]
cos(ωt) + β(1− ω2) sin(ωt) = 0. (3.4.7)

Since this has to be true for all t, we need

α(1− ω2)− A = 0 and β(1− ω2) = 0.

If ω 6= ±1 (and really this means ω 6= 1, since above we parenthetically agreed ω > 0), then
the second equation yields β = 0 and the first equation allows us to solve for α as

α =
A

1− ω2
.
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Then the particular solution is

xp(t) =
A cos(ωt)

1− ω2
.

Nothing too exotic, right?

This is where we finished on Wednesday, November 30, 2022.

Since we excluded ω = ±1, let’s think about what happens (1) when ω is close to ±1 and
(2) when ω = ±1. Taking ω close to ±1 should make us think of limω→±1. What happens
to, say,

lim
ω→1

A cos(ωt)

1− ω2
?

The numerator is tame: limω→1A cos(ωt) = A cos(t). But the denominator explodes:

lim
ω→1−

1

1− ω2
=∞ and lim

ω→1+

1

1− ω2
= −∞.

This suggests that something very strange will happen if we allow ω = 1.
Indeed, if we try to solve ẍ+x = cos(t) by guessing x(t) = α cos(t)+β sin(t), then (3.4.7)

with ω = 1 implies
−A cos(t) = 0

for all t. But then A = 0, and so our ODE reduces to ẍ+ x = 0, which no longer represents
a driven oscillator. And so we learn nothing about ẍ+ x = cos(t) with this guess for x.

However, our myriad prior failures and the subsequent lesson (t) point to a way out:
guess x(t) = αt cos(t) + βt sin(t) instead. If we do so, we can calculate (after a moderate
amount of work, which I am going to suppress)

ẍ(t) + x(t) = 2β cos(t)− 2α sin(t)

Since we want ẍ+ x = A cos(t), we need

2β cos(t)− 2α sin(t) = A cos(t),

and this means
(2β − A) cos(t)− 2α sin(t) = 0,

and so we want
2β − A = 0 and 2α = 0.

Thus α = 0 and β = A/2, so a particular solution to ẍ+ x = cos(t) is

xp(t) =
At cos(t)

2
.

All solutions to ẍ+ x = cos(t), then, are

x(t) = c1 cos(t) + c2 sin(t) +
At cos(t)

2
.
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Here is the fascinating thing about xp: it is unbounded, but limt→∞ xp(t) does not exist.
As time progresses, the oscillations of this oscillator become wilder (even though the oscil-
lator returns to its equilibrium position infinitely many times). This is the phenomenon of
resonance.

This is where we finished on Friday, December 2, 2022.

3.4.5. Even worse forcing.

The analytic methods above can be generalized significantly (and horribly). Essentially, we
can solve any ODE of the form

ẍ+ pẋ+ qx = φ(t)ertψ(ωt),

where φ(t) = ant
n+· · ·+a1t+a0 is a polynomial, α and ω are real numbers, and ψ(τ) = cos(τ)

or ψ(τ) = sin(τ) by guessing a solution that “looks like”[
polynomial× ert ×

(
cos(ωt)

]
+
[
another polynomial× ert × sin(ωt)

]
.

The “undetermined coefficients” in this guess are the coefficients of the two polynomials. The
rational behind such a guess is that a forcing function of the form

polynomial× exponential× sinusoid

should manifest itself in a solution of the same form.
In my opinion, spending too much time on ODE like these is exactly what gives the

subject a bad name and a reputation as a “cookbook” class. If your life depends on solving
an ODE forced by a product of a polynomial, an exponential, and a sinusoid, you can go to
a book or the internet and look up the details and then go to a computer algebra system to
carry out all the derivative calculations and algebra simplifications. At that rate, though,
you might as well go to a computer algebra system to find the solution in the first place.

Deep breath, inhale, exhale, calm down, recite the Analyst’s Creed (AC).
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