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1. First-Order Equations

1.1. A model for traffic flow.

We will begin our course by deriving and analyzing a model for traffic flow on an idealized
road. This is a worthwhile object of study for at least three reasons.

1. We are, for better or for worse, all familiar with car traffic!

2. This model, in its broadest form, will lead to several fundamental PDE, which we will
solve in fairly general contexts, and whose solutions we can then sensibly interpret in the
context of our lived experience with traffic.

3. The derivation and solution of these PDE will involve a number of auxiliary techniques
and ideas, some of which will provide a good review of prior calculus, and others that are
probably new, and quite worth learning.

From our points of view as individual drivers, traffic is fundamentally a “discrete” phe-
nomenon — my car, your car, the cars immediately in front of, behind, and to the left and
right of us. Zooming out, traffic can appear more like a fluid — imagine the flow of traffic
along a busy road that you see when descending in an airplane. While the discrete viewpoint,
which we discuss briefly, is quite worthwhile for separate study, we will ultimately be less
concerned with the behavior of individual cars and more with the “flow” of traffic in general.
For example, if you’re thinking about the traffic on your drive home, is it more useful to
know where every single car is, or to have a less precise, but more transparent, notion of the
“density” of traffic, so that you know when to expect “heavy” traffic or “light”? I vote for the
latter.

We will make a number of simplifying assumptions so that we can work in a “continuous”
setting (and thereby derive PDE) and so that our models are tractable. This is a classical
dilemma of applied mathematics, and one that you probably met when studying ODE: our
models should be complicated enough to capture real-world phenomena, but simple enough
so that we can solve them in a reasonable amount of time.

Here is our first simplifying assumption: we will study a single-lane road on which all
traffic travels in the same direction, to the right. In particular, cars cannot pass each other,
and cars do not enter or exit the road at any finite point; there are no intersections and
no on-/off-ramps. We will denote position along the road relative to some fixed point of
reference by x. (If we need units for x, we’ll use miles.) Here is a sketch of this road with
some (rectangular) cars along it.

x

As we said, we will not track the behavior of individual cars, in part because this infor-
mation is not as useful as what we will track, and in part because individual measurements
will not give us the PDE that we want.
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The starring quantity in our analysis will be density, which should measure, roughly,
“how many cars are on the road at a particular point in time and near a particular location
on the road per unit length.” This is a lot of data. Let’s introduce some notation to keep
track of everything. People usually employ ρ for density, and so we’ll say that a function ρ
of the variables x and t measures the density of traffic at the point x along the road and the
time t for a suitable spatial length h > 0 if

the number of cars on the road between points x− h and x+ h at time t
2h

≈ ρ(x, t).

x
x+ hx− h

2 cars here

Maybe the key word here is “suitable”: what makes for a “suitable” length h? The number
h should not be too small, like 1 foot, or else we won’t be able to fit even one car between
x − h and x + h. But h should not be too large, like (perhaps) 1 mile, or else we won’t be
tracking the number of cars reasonably close to position x. Qualitatively, we expect that if
ρ(x, t) is “large,” then there are “many” cars around point x at time t, and the opposite if
ρ(x, t) is “small.”

1.1.1 Example.

Suppose every car on the road is ` miles long and d miles apart from its nearest neighbor
ahead and behind. (Using miles to measure these lengths probably feels weird, but we’re
using miles already to track position along the road, so let’s be consistent.) Then it is
reasonable to say that there is 1 car per ` + d miles along the road, and so the traffic
density should be

ρ(x, t) =
1

`+ d
.

x

`+ d

1 car

`+ d

1 car

`+ d

1 car

`+ d

1 car

This is where we finished on Monday, August 15, 2022.

Density alone does not tell us everything about traffic; we are also probably concerned
with how quickly traffic flows. After all, heavy traffic can move quickly, and light traffic can
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move slowly (say, in bad weather). One way to capture traffic speed (other than sampling
the velocities of individual cars) is to count how many cars pass a given point along the road
over an interval of time; this quantity is the flux of traffic. We say that a function q of the
variables x and t measures the flux of traffic at the point x along the road and the time t
for a suitable time length k > 0 if

the number of cars that pass through point x between times t− k and t+ k

2k
≈ q(x, t).

As before, what counts as a “suitable” time length k can be neither too large nor too small
— too small, and no cars can get by; too large, and we might incorporate too many different
traffic patterns (early morning traffic, mid-morning doldrums) into our model simultaneously.

1.1.2 Example.

Say that all cars along the road move at the constant speed of v0 > 0 miles per hour and
that the traffic density is ρ0 > 0 cars per mile. Fix a position x along the road, a time t,
and a “suitable” time length k > 0. Then between times t− k and t+ k, all cars will travel

v0 miles
hour

× (t+ k)− (t− k) hours = 2kv0 miles.

In particular, any car within 2kv0 miles to the left of position x will pass through position
x between times t− k and t+ k. (Remember that all cars are traveling to the right.) And
there are

2kv0 miles× ρ0 cars
mile

= 2kv0ρ0

cars over this stretch of 2kv0 miles to the left of position x. Thus the flux should be

2kv0ρ0 cars
2k hours

=
v0ρ0 cars
hour

.

The preceding calculation suggests that if we have a way of defining1 “average velocity”
v(x, t) of the cars at position x along the road and time t, then density, flux, and velocity
might be related by

q(x, t) = v(x, t)ρ(x, t).

You should take a moment to check that all the units make sense in the equality above. This
relationship is not really something that we can prove — I mean, how can we really “prove”
any of these claims about traffic? — but rather it is an identity that we will assume. We
will see that this assumption leads to good results!
1 One way to do this is to fix a position x along the road and a time t and a “suitable” (that word again)
spatial length h, count the number of cars between points x − h and x + h along the road, and take the
average of the velocities of those cars:

v(x, t) ≈ 1

the number of cars between points x− h and x+ h
× the sum of the velocities of these cars.
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So, now we have three quantities that tell us meaningful stuff about traffic. We have yet
to see any PDE, though. We need one more quantity first. Fix positions a and b along the
road with a < b. We claim that ∫ b

a

ρ(x, t) dx

tells us how many cars, on average, are between points a and b. This is something we might
have learned in calculus2, but let’s briefly review why.

Divide the interval [a, b] into n small subintervals of the form [xk, xk+1] for k = 0, . . . , n−1,
where

xk = a+

(
b− a
n

)
k.

You just know an integral is going to pop out of this, right? Then n is large, [xk, xk+1] is a
small interval, and so we expect

ρ(x, t) ≈ ρ(xk, t)

for xk ≤ x ≤ xk+1. Then there are roughly ρ(xk, t) cars/mile between points xk and xk+1 on
the road at time t, and so there are

ρ(xk, t) cars
mile

× (xk+1 − xk) miles = ρ(xk, t)(xk+1 − xk) cars

on the road between points xk and xk+1 at time t. Hence there are roughly

n−1∑
k=0

ρ(xk, t)(xk+1 − xk)

cars on the road between points a and b at time t, and this sum is a left-endpoint approxi-
mation to the Riemann integral

∫ b
a
ρ(x, t) dx.

Just to be clear, note that x is the “dummy” variable of integration, and we really have
a mapping

t 7→
∫ b

a

ρ(x, t) dx

of time t into the number of cars between points a and b at time t. You know what they
say: if it moves, differentiate it. Thus the rate of change of the number of cars on the road
between points a and b is

d

dt

∫ b

a

ρ(x, t) dx.

We are now going to do something that is wholly unjustified but mathematically very
useful; we will discuss when this is the right thing to do later, in great (and painful) detail.
The Riemann integral is basically a sum:∫ b

a

ρ(x, t) dx =
n−1∑
k=0

ρ(xk, t)(xk+1 − xk).

2 The amount of stuff in a region =
∫

that region
density of stuff dspace.
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And derivatives pass through sums:

d

dt

n−1∑
k=0

ρ(xk, t)(xk+1 − xk) =
n−1∑
k=0

d

dt
[ρ(xk, t)(xk+1 − xk)] =

n−1∑
k=0

ρt(xk, t)(xk+1 − xk).

Thus we might expect that

d

dt

∫ b

a

ρ(x, t) dx =

∫ b

a

ρt(x, t) dx.

This is called differentiating under the integral, and it is a Really Big Deal.
(This is also one of those new calculus concepts that I said we’d learn.) For now, trust me
that it’s the right thing to do, because we’re going to switch focus for a moment.

When you’re trying to learn something about a certain quantity, it’s sometimes worth-
while to try to compute it in two very different ways and then equate the two results. We
are trying to figure out the rate of change of the number of cars between points a and b on
the road. Remember our (over)simplifying assumptions: cars move to the right on the road,
they never leave the road, and they never enter the road. So, the only way that the number
of cars between points a and b can change is when cars enter the interval [a, b] at point a and
leave the interval at point b. This is what flux tells us: there are q(a, t) cars passing point a
per hour at time t, and there are q(b, t) cars passing point b per hour at time t. Employing
the general formula

Rate of change of a quantity = Rate in− Rate out,

we find that the rate of change of the number of cars between points a and b at time t is

q(a, t)− q(b, t)

cars per hour. Thus ∫ b

a

ρt(x, t) dx = q(a, t)− q(b, t).

Next we will employ a little trick called the fundamental theorem of calculus (FTC):

q(a, t)− q(b, t) =

∫ a

b

qx(x, t) dx = −
∫ b

a

qx(x, t) dx.

We conclude ∫ b

a

ρt(x, t) dx = −
∫ b

a

qx(x, t) dx,

and this rearranges to ∫ b

a

[
ρt(x, t) + qx(x, t)

]
dx = 0.

Now we’re getting somewhere: we have an equation and some partial derivatives. But
there is an integral in that equation. Note, however, that we said nothing about what a and
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b were; we just took them to be arbitrary positions along the road. So, let’s fix a = 0 and
let b be arbitrary. Then the function

F (b) :=

∫ b

0

[
ρt(x, t) + qx(x, t)

]
dx

is constant, with F (b) = 0 for all b. Hence

F ′(b) = 0

for all b. But the other part of the FTC says

F ′(b) =
d

db

∫ b

0

[
ρt(x, t) + qx(x, t)

]
dx = ρt(b, t) + qx(b, t).

Thus
ρt(b, t) + qx(b, t) = 0

for all b. If we write x instead of b, then we get an honest-to-goodness PDE:

ρt(x, t) + qx(x, t) = 0,

or, more succinctly,
ρt + qx = 0.

There is just one problem: this is one equation featuring two unknowns, ρ and q, and
as such this equation is overdetermined. But remember we intuited the relationship q = vρ
among flux, velocity, and ρ. Substituting this in, we find

ρt + (vρ)x = 0.

Now, there is still the matter of the function v. We will not consider velocity v as an unknown
but instead as a coefficient. In other words, if we prescribe a velocity function for the road,
can we figure out traffic density? This seems like a reasonable question to ask.

In the following we will study a variety of conditions on v that lead to different PDE; we
will solve them and interpret their solutions in the context of traffic density.

1.2. Some notation and terminology.

1.2.1. Notation.

It will be convenient to agree upon certain notation, abbreviations, and turns of phrase now
and forever.

• We will say something like “Let u = u(x, t)” to indicate that we are studying a function u
of the two variables x and t.

• If A and B are sets, then we will abbreviate the sentence “f is a function from A to B”
by the symbol f : A → B. Most of the time, our functions will go from (a subset of) R2 to
R, or from R to C, where C is the set of all complex numbers. Thus the symbol u : R2 → R
means that u is a function from R2 to R, while f : [−π, π] → C means that f is a function
from the interval [−π, π] to C.
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• I will try to rig things so that u is the unknown function for which we are solving. (The
introduction with traffic density and ρ was an exception.) The letters f and g will typically
denote given functions in a problem.

• The independent variables will most often be x and t. You should try to see a connection
between the behavior of x and “space” and the behavior of t and “time” in the physical
context of a given problem.

• I will usually write partial derivatives with a subscript, so if u = u(x, t), then ux is the
partial derivative with respect to x. For example, if u(x, t) = x2 + 2 sin(xt), then

ut = 2x cos(xt).

We will also use the “∂” notation to indicate the action of taking a partial derivative, e.g.,

∂

∂x
[x2 + 2 sin(xt)] = 2x+ 2t cos(xt).

• If A is a set and x is an element of A, then we write x ∈ A. For example, with R as the
set of all real numbers, 1 is a real number, and so 1 ∈ R.

• If A is a set, and every element of A is also an element of a set B, then we write A ⊆ B.
For example, every element of the interval [0, 1] is a real number, so [0, 1] ⊆ R.

• We denote d-dimensional space by Rd = {(x1, . . . , xd) | xk ∈ R}. We will denote vectors
in typed text by bold letters, but I will underline handwritten vectors. So, in the notes I
will write something like x = (1, 0), but on the board or on paper I’d say x = (1, 0). You
are welcome to use “arrows” for your vectors, e.g., −→x , but I encourage you to reserve “hat”
notation like x̂ for an extremely important concept yet to come. We will not make a big deal
of distinguishing row vectors from column vectors.

• A function is r-times continuously differentiable if all of its (mixed) partial
derivatives exist up to and including order r. We will denote the set of all r-times continu-
ously differentiable functions defined on a set U ⊆ Rd by Cr(Rd). For example, if u ∈ C2(R2),
then all of the following functions would have to be defined and continuous on R2:

u, ux, ut, uxx, uxt, utt, and utx.

We will introduce other symbols and notational language as we need them. While they
can be strange at first, and sometimes very idiosyncratic to this class, the goal is always to
reduce confusion and promote a common vocabulary for easier communication.

This is where we finished on Wednesday, August 17, 2022.

1.2.2. Terminology.

The traffic density equation
ρt + (vρ)x = 0
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is one example of a partial differential equation (PDE): it’s an equation involving
a function of at least two variables and (some of) its partial derivatives. This is not really a
“definition” of a PDE, maybe more of an “undefinition” — that word “involving” is awfully
vague. We won’t attempt to define a PDE in general, but do pay attention to patterns in
the structures of the PDE that we do study.

Here is one important structural property of a PDE. The order of a PDE is the order of
the highest derivative that appears in that PDE. For example, the traffic density problem is
first-order because only first-order partial derivatives appear in it. We will make somewhat
less of a fuss about order in PDE than you probably saw in ODE; in particular, we will meet
three second-order PDE that have dramatically different behaviors.

Here’s another structural property that will resemble something we learned quite a bit
about in ODE. Let’s expand the traffic density equation a bit. The product rule says3

(vρ)x = vxρ+ vρx,

and so the traffic equation is
ρt + vxρ+ vρx = 0.

Remember that we are assuming that v is given to us.
Now we define an operator F by

F [ρ](x, t) := ρt(x, t) + vx(x, t)ρ(x, t) + v(x, t)ρx(x, t).

That is, F acts on a (sufficiently differentiable function) ρ of the two variables x and t to
produce a new function F [ρ] of the two variables x and t. We can condense the traffic
equation as

F [ρ] = 0.

Indeed, most equations in life boil down to an abstract structure like the one above, if we
define F , ρ, and 0 correctly.

The operator F has a very nice property: it is linear in ρ. You can, and should, check
that if c1 and c2 are real numbers and ρ1 and ρ2 are sufficiently differentiable functions of
two variables, then

F [c1ρ1 + c2ρ2] = c1F [ρ1] + c2F [ρ2].

The equality above is an equality of functions, which means that it has to hold when all the
functions are evaluated at the same point (x, t), for all points (x, t). Most, though not all,
of the equations that we will study in this course will be linear.

1.3. Some PDE philosophy.

In studying ordinary differential equations (ODE), you probably spent a great deal of time
with certain broad classes of ODE, both because they are important for modeling and theory
3 Here we are assuming that velocity v is a function of time and space that is independent of density ρ.
Later it will be quite worthwhile and instructive to consider the realistic case when velocity does depend
on density: v(x, t) = V(ρ(x, t)) for some function V ∈ C1(R). This will lead to a nonlinear problem.
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and because they have accessible solution techniques. For example, if a and b are continuous
functions on the interval I, the linear first-order equation

a(x)y′(x) + b(x)y(x) = f(x), (1.3.1)

which is a nice abstraction of physical phenomena like population growth and temperature
flow, can be solved explicitly (up to evaluating some antiderivatives) via the integrating
factor method. We’ll review that presently. However, solving the analogue of this equation
in the world of PDE, even for functions of just two variables, is nontrivial, and sometimes
impossible to do explicitly.

Lawrence C. Evans, in his magisterial graduate-level text Partial Differential Equations,
captures the challenge and the orientation of PDE study quite evocatively:

“There is no general theory concerning the solvability of all partial differ-
ential equations. Such a theory is extremely unlikely to exist, given the
rich variety of physical, geometric, and probabilistic phenomena which can
be modeled by PDE. Instead, research focuses on various particular partial
differential equations that are important for applications within and outside
of mathematics, with the hope that insight from the origins of these PDE
can give clues as to their solutions.”

Geometry, in particular, is a challenge. In ODE, the natural domain of a solution is a
subinterval of the real line R; there just aren’t really any other “interesting” kinds of domains.
In PDE, where our unknown functions depend on at least two variables, we have the much
broader two-dimensional structure of R2, whose more exotic subsets can include rectangles
(roughly the analogue of a one-dimensional interval) but also circles, annuli, and infinite
strips.

Initial (and boundary) conditions also change in the PDE regime. Whereas in ODE we
studied initial value problems (IVP) with data taken at a single initial point, e.g.{

y′(x) + a(x)y(x) = f(x)

y(x0) = y0,

in PDE we could impose initial conditions along a whole one-dimensional object. For exam-
ple, we will soon learn how to solve the “constant” velocity traffic problem{

ρt + v0ρx = 0

ρ(x, 0) = g(x),

where we have specified the velocity v(x, t) = v0 to be constant and prescribed the “initial”
traffic density ρ(x, 0) = g(x) at time t = 0. In other words, we do not have an initial
condition as a single “point” value but rather a whole function’s value!

Algebraically, even stating problems is also a challenge. More variables mean more prob-
lems! For example, the analogue of the first-order linear ODE (1.3.1) in just two variables
is

a(x, t)ux(x, t) + b(x, t)ut(x, t) + c(x, t)u(x, t) = f(x, t). (1.3.2)
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And this is just two variables!
For these reasons, we will narrow our focus in this course to very particular PDE that,

over time, have evolved as canonical models for certain physical phenomena and canonical ex-
amples of certain solution techniques and theories. In other words, we will follow the mission
statement of Peter J. Olver in his modern Introduction to Partial Differential Equations:

“[T]he primary purpose of a course in partial differential equations is to
learn the principal solution techniques and to understand the underlying
mathematical analysis.”

Whenever possible, we will interpret our solutions in some physical context to see how they
do, or do not, reflect “real-world” behavior. We will highlight the theoretical differences in
how we must handle different equations, and we will see what techniques their solutions
might have in common.

1.4. Some PDE that are really ODE.

Some meaningful PDE turn out to contain derivatives with respect to only one variable,
in which case they are really ODE with respect to that variable. We’ll start with a traffic
example and then do some more abstract problems.

1.4.1. Traffic with zero velocity.

Consider the traffic density equation

ρt + (vρ)x = 0 (1.4.1)

in the case of zero velocity: v = 0. Then (1.4.1) becomes

ρt = 0. (1.4.2)

This equation has only one derivative in it, the t-derivative, and so it’s really an ODE.
To see and exploit this, fix x to be any number, and let

w(t) := ρ(x, t). (1.4.3)

Then
w′(t) = ρt(x, t) = 0,

where w′ is the derivative of w with respect to its only independent variable, t. Since
w′(t) = 0, we know that w must be constant: there is a number c such that w(t) = c for all
t. (We didn’t specify for which t the function w should be defined, but we may as well take
the domain of w to be all real numbers.)

Consequently, the function ρ(x, t) = w(t) = c solves (1.4.2). Indeed,

ρt(x, t) =
∂

∂t
[c] = 0.

We can do better. Observe that when we defined w in (1.4.3), we froze x. This suggests
that we could let c depend on x instead of being constant. Indeed, if ρ(x, t) = c(x), where c
is any function of x, we have

ρt(x, t) =
∂

∂t
[c(x)] = 0.
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This calculation works if c is not differentiable with respect to x, or even discontinuous
with respect to x. However, it is “good manners” to require that a solution to a differential
equation (ordinary or partial) have as many continuous derivatives as there are derivatives
in the problem. The original traffic equation (1.4.1) has first derivatives with respect to x and
t. If we demand that c be a continuously differentiable function, then putting ρ(x, t) = c(x)
gives a function whose first derivatives with respect to both x and t are continuous.

Let’s see how our work holds up physically. If the velocity of the traffic is v(x, t) = 0,
then the traffic isn’t moving at all, and so the traffic density should not change as time goes
on. That is, the traffic density should be a function just of position along the road, not time:
ρ(x, t) = c(x) for some function c.

Finally, just for the sake of practicing notation and vocabulary, let’s convince ourselves
that all solutions to ρt = 0 are continuously differentiable functions of x alone.

1.4.1 Theorem.

Suppose that ρ ∈ C1(R2) solves ρt(x, t) = 0 for all (x, t) ∈ R2. Then there is a function
c ∈ C1(R) such that ρ(x, t) = c(x) for all x.

Proof. For each fixed x ∈ R, the fundamental theorem of calculus (FTC) tells us

ρ(x, t) = ρ(x, 0) +

∫ t

0

ρt(x, τ)dτ = ρ(x, 0).

The second equality holds because ρt = 0; the first equality holds by using the FTC on the
interval [0, t]. Put c(x) = ρ(x, 0); since ρ ∈ C1(R2), we have c ∈ C1(R).

By the way, if we have a function ρ = ρ(x, t), and if we fix t ∈ R, then we will sometimes
abbreviate the mapping x 7→ ρ(x, t) by ρ(·, t). You should be comfortable with what the
following statement says:

ρ ∈ C1(R2) =⇒ ρ(·, t) ∈ C1(R) for all t ∈ R.

You can imagine, I trust, what ρ(x, ·) means.

1.4.2. PDE with mostly missing derivatives.

To review some essential ODE techniques, we will do a few contrived examples.

1.4.2 Example (A separable problem).

Find all functions u = u(x, t) such that

ux = −2xtu2.

Solution. This problem only involves a derivative with respect to x. We consider t as fixed
and put w(x) = u(x, t) to see that w must solve

w′ = −2xtw2.
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We might rewrite this ODE as
dw

dx
= (−2tx)w2,

and we see that the right side factors as a function of x (with t as a constant) and a function
of w. More precisely, put a(x) = −2tx and b(w) = w2 to see that our ODE is

dw

dx
= a(x)b(w).

This is a separable problem, and so we separate variables: for w 6= 0, we must have

1

w2

dw

dx
= −2tx.

Then we integrate both sides with respect to x:∫ (
1

w2

dw

dx

)
dx =

∫
(−2t)x dx.

The integral on the right is∫
(−2t)x dx = −2t

∫
x dx = −tx2 + c(t).

Here we have added the constant of integration as a function c of t. The integral on the left
is ∫ (

1

w2

dw

dx

)
dx =

∫
dw

w2
= −w−1.

We have not bothered to add a t-dependent constant of integration here.
Thus w satisfies

−w−1 = −tx2 + c(t),

which is the same as
w =

1

tx2 + c(t)
.

Note that since c is arbitrary, we did not write a minus sign on it. And so separation of
variables tells us that the solutions are

u(x, t) =
1

tx2 + c(t)
,

with c ∈ C1(R) arbitrary.
However, we are not quite done. In separating variables, we assumed w 6= 0. If w = 0,

that means u = 0. But u = 0 is also a solution (check it). No choice of c ∈ C1(R) will turn
u(x, t) = 1/(tx2 + c(t)) into a function that is identically zero. And so we should be sure to
report u = 0 as another solution, for completeness. N

This is where we finished on Friday, August 19, 2022.
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1.4.3 Example (A first-order linear problem).

(i) Find all functions u = u(x, t) such that

ut + 2tu = xe−t
2

.

(ii) Solve {
ut + 2u = xe−t

2

u(x, x) = sin(x).

Solution. (i) If it helps, abbreviate w(t) = u(x, t) with x fixed, so

w′ + 2tw = xe−t
2

.

This is a first-order linear equation in w. We solve this by multiplying both sides by an
integrating factor to turn the left side into a “perfect” product-rule-style derivative. Namely,
take

µ(t) = e
∫
2t dt = et

2

and then multiply both sides by µ to find

w′(t)et
2

+ 2tet
2

w(t) = x.

The left side really is

w′(t)et
2

+ 2tet
2

w(t) =
d

dt
[w(t)et

2

],

and so the equation for w is the same as

d

dt
[w(t)et

2

] = x.

Integrate both sides with respect to t and add an x-dependent “constant” of integration:

w(t)et
2

= xt+ c(x).

Conclude
u(x, t) = xte−t

2

+ c(x)e−t
2

. (1.4.4)

(ii) The “side” condition here means that if we restrict u to the “diagonal” line t = x, then
we get back sin(x). We know that all solutions to this problem have the form of (1.4.4). So,
we need the map c to satisfy

sin(x) = u(x, x) = x2e−x
2

+ c(x)e−x
2

.

We solve for c:
c(x) = ex

2

sin(x)− x2.
Thus

u(x, t) = xte−t
2

+ [ex
2

sin(x)− x2]e−t2 . N
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1.4.4 Example (A second-order linear problem).

Find all functions u = u(x, t) such that

uxx − 2ux + 5u = 0.

Solution. With t fixed and w(x) = u(x, t), we see that w solves the second-order constant-
coefficient linear homogeneous problem:

w′′ − 2w′ + 5w = 0. (1.4.5)

We solve this by considering the scalar solutions to the characteristic equation

λ2 − 2λ+ 5 = 0.

The quadratic formula and some arithmetic tell us that λ = 1 ± 2i. This is a complex
conjugate pair, and so all solutions to (1.4.5) have the form

w(x) = c1e
x cos(2x) + c2e

x sin(2x).

As usual, when we pass back to the solution u = u(x, t) of the PDE, we make the constants
depend on the missing variable:

u(x, t) = c1(t)e
x cos(2x) + c2(t)e

x sin(2x). N

1.5. The transport equation (and related ideas).

As we mentioned in (1.3.2) of Section 1.3, the PDE analogue of the celebrated first-order
linear ODE

a(x)y′(x) + b(x)y(x) = f(x)

is
a(x, t)ux(x, t) + b(x, t)ut(x, t) + c(x, t)u(x, t) = f(x, t).

In the special case that a and b are constant and c and f are identically zero, this reduces to

aux + but = 0. (1.5.1)

This is the transport equation, and we will find much value in it both as a physical
model and a pedagogical source.

The transport equation arises from the traffic density equation ρt + (vρ)x = 0 by taking
the velocity v to be constant: v(x, t) = v0 for all x, t ∈ R and some v0 ∈ R. (Previously
we treated the case v0 = 0. Also, since we originally assumed that traffic travels only to the
right, we probably should take v0 > 0 to be precise.) Then

(vρ)x = (v0ρ)x = ∂x[v0]ρ+ v0ρx = v0ρx,

and so the traffic equation is
ρt + v0ρx = 0.

This is a special case of (1.5.1).
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1.5.1. Solving the transport equation.

We first assume that a 6= 0 and b 6= 0. Otherwise, if a = 0, then the transport equation
reduces to but = 0, and this is really an ODE. Likewise, the transport equation is also an
ODE if b = 0.

Here is the key insight:

aux + but = (a, b) · (ux, ut) = (a, b) · ∇u.

Let’s parse this calculation carefully. Recalling our (flexible) convention for vectors, by (a, b)
here we mean the vector in R2 whose first component is a and whose second is b. By · we
mean the dot product: if (x1, y1), (x2, y2) ∈ R2, then

(x1, y1) · (x2, y2) = x1x2 + y1y2.

And by ∇u we mean the gradient vector of u:

∇u(x, t) :=
(
ux(x, t), ut(x, t)

)
.

So, the transport equation is equivalent to a statement about the dot product of (a, b)
with ∇u:

aux + but = 0 ⇐⇒ (a, b) · ∇u = 0.

With this definition of the dot product, we could write this as

∇u · (a, b) = 0.

Now, hopefully this looks familiar from multivariable calculus: it says that the directional
derivative4 of u at any point (x, t) in the direction of the vector (a, b) is zero, and consequently
u is constant along lines parallel to the vector (a, b).

Let’s build this up from scratch. Fix (x, t) ∈ R2; we won’t change this point from now
on. The line in R2 parallel to the vector (a, b) that passes through the point (x, t) is the set

{(x+ ah, t+ bh) | h ∈ R} . (1.5.2)

And so if we abbreviate
w(h) := u(x+ ah, t+ bh),

then w is just the restriction of u to this line.

x

t

a

b
(x, t)

(x+ ah, t+ bh)

4 Usually multivariable calculus makes a big deal of the vector’s being a unit vector. We will not make a big
deal about that here.
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We calculate

w′(h) = aux(x+ ah, t+ bh) + but(x+ ah, t+ bh) = 0. (1.5.3)

The first equality is the multivariable chain rule. The second equality is the transport
equation, which u satisfies. And so the function w is constant.

This is where we finished on Monday, August 22, 2022.

Incidentally,

w′(0) = lim
h→0

w(h)− w(0)

h
= lim

h→0

u(x+ ah, t+ bh)− u(x, t)

h
,

and this limit is the way that we usually define the directional derivative of u at the point
(x, t) in the direction (a, b). Using the first equality in (1.5.3), we get

w′(0) = ∇u(x, t) · (a, b),

which is the usual computational shortcut for the directional derivative.
Anyway, we won’t need the directional derivative any further here; what matters is that

w is constant. Thus, given (x, t) ∈ R2, we have

u(x+ ah1, t+ bh1) = w(h1) = w(h2) = u(x+ ah2, t+ bh2) (1.5.4)

for any choice of h1 and h2.
We want to figure out what the values u(x, t) should be. We can make u(x, t) appear in

the equality (1.5.4) by taking, say, h1 = 0, and then we just drop the subscript on h2. Thus
if u solves the transport equation, then the following identity holds for all x, t, and h:

u(x, t) = u(x+ ah, t+ bh). (1.5.5)

Now, can we choose h in some clever way to help us out? One approach, which may not
be obvious5, is to think about what are the “simplest” points (x + ah, t + bh) that fall on
this special line. Maybe some of the least complicated are those with at least one coordinate
equal to 0. Note that t+ bh = 0 if and only if h = −t/b.

x

t

a

b
(x, t)

(x+ ah, t+ bh)

(x+ a(−t/b), 0)

5 Here is another approach, which involves assuming some extra “data” in our problem. Many problems
impose an initial condition of the form u(x, 0) = g(x). Here we want to know the value of u(x, t) for a given
pair (x, t), and we know the two identities u(x, t) = u(x + ah, t + bh) for all h ∈ R and u(X, 0) = g(X)
for all X ∈ R. Note that I have suddenly written X, not x, because we are thinking that x is fixed, along
with t. If h satisfies t+ bh = 0, then u(x, t) = u(x+ ah, 0) = g(x+ ah). So we take h = −t/b, and we find
u(x, t) = g(x− at/b) = g((bx− at)/b).
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Then with this choice of h, we have

u(x, t) = u

(
x+ a

(
− t
b

)
, t+ b

(
− t
b

))
= u

(
x− at

b
, 0

)
.

It will make some notation nicer if we get a common denominator here:

u(x, t) = u

(
bx− at

b
, 0

)
.

This means that u depends on what happens in its x-coordinate alone! Specifically, set

p(ξ) := u(ξ/b, 0).

Then we have shown that if u solves the transport equation, then

u(x, t) = p(bx− at).

Furthermore, p is continuously differentiable on R, since we are (tacitly) assuming that u is
continuously differentiable on R2.

Since we worked backward, we should check our work: let p be a differentiable function
and define u(x, t) := p(bx− at). Then u should solve the transport equation aux + but = 0.
I’ll let you work through that.

1.5.1 Theorem (Transport equation).

Let a, b ∈ R. A function u ∈ C1(R2) solves the transport equation aux + but = 0 if and
only if there exists a function p ∈ C1(R) such that

u(x, t) = p(bx− at). (1.5.6)

1.5.2 Example.

Find all functions u = u(x, t) that satisfy ux − 3ut = 0.

Solution. This is a transport equation with a = 1 and b = −3, so all solutions have the
form

u(x, t) = p(−3x+ 1(t)) = p(−3x+ t)

for some p ∈ C1(R). N

1.5.3 Example.

Find all solutions to the initial value problem{
−2ux + 5ut = 0

u(x, 0) = e−x.
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Solution. Any solution to the transport equation −2ux + 5ut = 0 must have the form
u(x, t) = p(5x− (−2)t) = p(5x+ 2t) for some p ∈ C1(R). We also want u(x, 0) = e−x, so we
need p to satisfy

e−x = u(x, 0) = p(5x+ 2(0)) = p(5x).

That is, p solves
p(5x) = e−x.

So what is p?
One way to find a formula for p as a function of the independent variable ξ ∈ R alone,

not as a function of 5x, is to substitute. Put ξ = 5x, so x = ξ/5. Then

p(ξ) = p(5x) = e−x = e−ξ/5.

Thus
u(x, t) = p(5x− 2t) = e−(5x+2t)/5. N

Algebraically and analytically, what just happened? We found that the function p needed
to solve an equation of the form

p(h(x)) = g(x)

for given functions h and g. (Specifically, h(x) = 5x and g(x) = e−x.) Fortunately, h turned
out to be invertible from R to R. We put ξ = h(x) and were able to solve for x as x = h−1(ξ).
Then we could define p as

p(ξ) = p(h(h−1(ξ)) = g(h−1(ξ)).

Things aren’t always so nice.

1.5.4 Example.

What can you say about solutions to the problem{
−2ux + 5ut = 0

u(x, sin(x)) = e−x?

Solution. This (contrived) problem is an example of the deeper geometric questions that
we can ask in PDE, as compared to ODE. Here we are not given an “initial” condition
at time t = 0. Rather, we have specified the behavior of u along the “parametric” curve
{(x, sin(x)) | x ∈ R} in R2.

As before, we know that the solution has to have the form u(x, t) = p(5x+ 2t) for some
continuously differentiable function p. Taking t = sin(x), we need p to satisfy

e−x = u(x, sin(x)) = p(5x+ 2 sin(x)).

Trying to substitute ξ = 5x + 2 sin(x) and then solve for x as a function of ξ will not yield
any good formulas.
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However, perhaps inspired by a graph of h(x) := 5x + 2 sin(x), we might note that
this map is strictly increasing on R and therefore has an inverse. (Specifically, check that
h′(x) > 0 for all x.) Then the commentary above suggests that

p(ξ) = e−h
−1(ξ).

To check that our solution u(x, t) = e−h
−1(5x+2t) actually works, we would need part of

the inverse function theorem, which states that if h is differentiable and strictly
increasing, then its inverse h−1 is also differentiable with (h−1)′(ξ) = 1/h(ξ). N

This is where we finished on Wednesday, August 24, 2022.

A transport equation is very easy to solve, thanks to the formula (1.5.6), which is one
of those formulas that’s well worth memorizing. Because of this solution formula, and the
facile algebraic and differential structure of the transport equation, we will frequently return
to the transport equation to illustrate new concepts.

1.5.2. Traveling waves.

Previously we saw that taking traffic velocity to be constant in the traffic density problem
ρt + (vρ)x = 0, i.e., taking v(x, t) = v0 ∈ R, led to the transport equation ρt + v0ρx = 0.
Now we know that all solutions to this transport equation have the form

ρ(x, t) = p(x− v0t), (1.5.7)

where p ∈ C1(R).
What could this mean physically in the context of traffic along our idealized road? Sup-

pose that we know the initial traffic density:

ρ(x, 0) = g(x) (1.5.8)

for some function g ∈ C1(R); maybe we got an aerial view of the road at the start of the
morning commute. Then (1.5.7) and (1.5.8) together tell us

g(x) = ρ(x, 0) = p(x− v0(0)) = p(x). (1.5.9)

Thus for any time t in the future, the density is

ρ(x, t) = p(x− v0t) = g(x− v0t). (1.5.10)

Imagine that we continue to view the whole road at successive moments in time. What
does this formula for ρ say about the pattern in which traffic evolves? Say that g = u(·, 0)
has the graph below.

x

g(x) = ρ(x, 0)
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If we assume that v0 > 0 (recall that v0 is the velocity of traffic, and traffic on this road
always moves to the right) and that t > 0 (time marches on), then the traffic density at time
t is u(·, t), and, since ρ(x, t) = g(x− v0t), the graph of ρ(·, t) is the graph of g shifted to the
right along the x-axis by v0t units.

x

g(x− v0t1) = ρ(x, t1)

v0t1

x

g(x− v0t2) = ρ(x, t2)

v0t2

In other words, if traffic moves to the right at a constant positive velocity, then the
initial density just gets carried forward at at that velocity. We call a solution of the form
ρ(x, t) = g(x − v0t) a traveling wave. In the immortal words of G. B. Whitham from
his staggering Linear and Nonlinear Waves,

“[A] wave is any recognizable signal that is transferred from one part of [a]
medium, to another with a recognizable velocity of propagation. The signal
may be any feature of the disturbance, such as a maximum or an abrupt
change in some quantity, provided that it can be clearly recognized and its
location at any time can be determined. The signal may distort, change
its magnitude, and change its velocity provided it is still recognizable.”

And a traveling wave is a wave that propagates with a constant “speed” and whose “profile”
maintains the same shape during this propagation.

We can capture traveling wave behavior for a PDE in the unknown u = u(x, t) by making
the traveling wave ansatz

u(x, t) = p(x− ct).

Here p is a function of a single real variable6 and c is a real number; we call p the wave
profile and c the wave speed. Making such an ansatz7 often reduces a PDE in u to
an ODE in p with c as a parameter. We may or may not be able to solve that ODE for
all values of c. Also, traveling wave behavior is often only one of many kinds of solution
behavior that a PDE can enjoy. We will often look for traveling wave solutions to the
subsequent equations that we study and interpret their behavior physically, and, whenever
possible, we will contrast those traveling waves with other types of solutions.
6 Often it is helpful to denote that variable by a different letter, like X or ξ; if you read (1.5.9) and (1.5.10)
carefully, you’ll see that we were using x as the independent variable of p, g, and u!

7 Remember that “ansatz” is a fancy word for “guess.”
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Here is a “transport equation with a nonlinear term” for which we will find traveling
waves.

1.5.5 Example.

How would you find all traveling wave solutions to

ux + ut + u2 = 0?

Solution. We make the traveling wave ansatz u(x, t) = p(x − ct) for a profile function
p = p(X) and a wave speed c ∈ R. The multivariable chain rule tells us that

ux(x, t) = p′(x− ct) and ut(x, t) = −cp′(x− ct).

Thus p and c must satisfy

p′(x− ct)− cp′(x− ct) + [p(x− ct)]2 = 0

for all x, t ∈ R. If we take x = X and t = 0, which we are free to do, we see that p must
satisfy

(1− c)p′(X) + [p(X)]2 = 0,

or, more succinctly,
(1− c)p′ + p2 = 0.

This is actually a separable ODE, and we can rewrite it as

(1− c) dp
dX

= −p2.

This is where we finished on Friday, August 26, 2022.

We see that p = 0 is a solution (and, in fact, if c = 1, then p = 0 is the only solution, as
then p2 = 0 and thus p = 0), and otherwise we separate variables and integrate:

(1− c) dp
dX

= −p2 =⇒ 1

p2
dp

dX
= c− 1 =⇒

∫
p−2 dp =

∫
(c− 1) dX =⇒ p−1 = (c− 1)X +K.

Here we are using K, not c, for the constant of integration. Thus if 1− c 6= 0, then

p(X) =
1

(c− 1)X +K
.

We conclude that if c 6= 1, then all traveling waves are

u(x, t) =
1

(c− 1)(x− ct) +K
and u = 0, (1.5.11)

while the only traveling wave with speed c = 1 is the zero wave u = 0. Note that in (1.5.11),
the function on the left is still defined when c = 1, but then it is constant and nonzero —
and nonzero constants do not solve ux+ut+u

2 = 0. Thus there really is a difference between
the c = 1 and c 6= 1 wave speeds. N
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1.5.3. Rescaling variables.

The constant-velocity traffic density problem is ρx+v0ρt = 0. This has only one non-unitary
coefficient, v0, unlike the more general transport equation aux + but = 0. As it turns out,
both equations are equivalent to a simpler problem. (For the sake of your education, pretend
for now that you don’t know how to solve the transport equation as quickly and painlessly
as you already do.)

Experience with calculus suggests that a term of the form aux could result from taking
an x-derivative of a function whose x-coordinate is scaled by a. And the same for the term
but.

Motivated by this, we assume that u solves aux + but = 0 and rewrite

u(x, t) = U(αx, βt)

for some function U = U(ξ, τ) and some coefficients α, β ∈ R. We are intentionally calling
the variables of U something other than x and t. We will find a PDE that U solves, and
then we will choose α and β to have particular values so that this PDE is very simple.

The multivariable chain rule gives

ux(x, t) = αUξ(αx, βt) and ut(x, t) = βUτ(αx, βt).

Then u solves aux(x, t) + but(x, t) = 0 for all (x, t) ∈ R2 if and only if U solves

αaUξ(αx, βt) + βbUτ(αx, βt) = 0

for all (x, t) ∈ R2. Since a 6= 0 and b 6= 0, we can now choose

α :=
1

a
and β :=

1

b

to see that U solves
Uξ(αx, βt) + Uτ(αx, βt) = 0

for all (x, t) ∈ R2.
Finally, given (ξ, τ) ∈ R2, we can take

x :=
ξ

α
and t :=

τ

β

to see that U really solves
Uξ(ξ, τ) + Uτ(ξ, τ) = 0

for all (ξ, τ) ∈ R2. In other words, if we can solve

Uξ + Uτ = 0,

and if we define u by
u(x, t) := U(a−1x, b−1t),

then u solves aux + but = 0.
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Now, this probably feels very silly, because we know that all solutions to Uξ + Uτ = 0
have the form U(ξ, τ) = P (ξ − τ) for some P ∈ C1(R). And, rescaling, this gives

u(x, t) = P (a−1x− b−1t) = P

(
x

a
− t

b

)
= P

(
bx− at
ab

)
.

Since P ∈ C1(R) was arbitrary, so is P (·/ab), and so we recover Theorem 1.5.1.
But pretend that we had no clue as to where to start solving aux + but = 0. Surely

working with fewer arbitrary coefficients in the problem Uξ + Uτ = 0 couldn’t hurt — and
might even help! In the future, I may present a complicated problem to us and then work
on a simplified version and leave you to chase through the algebra of rescaling that connects
the two.

1.5.6 Example.

The Korteweg–de Vries (KdV) equation arises in the study of water waves. (Hope-
fully we will see it arise later in the term.) It reads

aut + buxxx + cuux = 0.

You can think of u(x, t) as being the height of a wave at position x along a one-dimensional
channel and time t. Here a, b, and c are all nonzero. How can we change variables to an
equivalent problem in which all the coefficients are 1?

Solution. There are three coefficients in the problem. (Since they are all nonzero, really
there are two: divide everything by a, so that, keeping the same labels, you get ut + buxxx +
cuux = 0.) This suggests that we nondimensionalize with the change of variables

u(x, t) = αU(βx, γt), U = U(ξ, τ).

We are scaling not just the variables of U but also its output here. We calculate

ut = αγUτ, ux = αβUξ, and uxxx = αβ3Uξξξ.

Thus u solves the given KdV equation if and only if U solves

aαγUτ + bαβ3Uξξξ + cα2βUξ = 0.

Equivalently,
aγUτ + bβ3Uξξξ + cαβUξ = 0.

We want
aγ = bβ3 = cαβ = 1.

So, we take γ = 1/a and β = 1/b1/3. Then α needs to satisfy cα/b1/3 = 1, and so α = b1/3c.
It is not too much harder to show how to convert this KdV equation into one with nonunital
coefficients, i.e., AUτ + BUξξξ + CUUξ = 0 for A, B, C nonzero, but I’ll let you do that as
an exercise. N

This is where we finished on Monday, August 29, 2022.
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1.5.4. The nonhomogeneous transport equation.

Our work with the transport equation has so far hinged on taking the right side to be
identically zero. However, it will not be too much more work to construct solutions to the
nonhomogeneous transport equation

aux + but = f(x, t). (1.5.12)

Here a and b are nonzero and f is an arbitrary continuous function on R2. We will see how
an equation of this form arises in the context of traffic density, but let’s defer the application
for a bit to Section 1.5.5.

For now, fix (x, t) ∈ R2. Motivated by our successful analysis of the (homogeneous)
transport equation, let’s ask what problem the function

w(h) := u(x+ ah, t+ bh)

solves. The nonhomogeneous transport equation (1.5.12) says

aux(ξ, τ) + but(ξ, τ) = f(ξ, τ)

for all (ξ, τ) ∈ R2, so if we take ξ = x+ ah and τ = t+ bh, then we get

w′(h) = aux(x+ ah, t+ bh) + but(x+ ah, t+ bh) = f(x+ ah, t+ bh). (1.5.13)

That is, w must be an antiderivative of the map h 7→ f(x+ah, t+bh). (Previously, in the
“homogeneous” transport equation, w was an antiderivative of 0.) I think this is a situation
that calls for a definite integral. Specifically, we want to make the value w(0) = u(x, t)
appear somewhere in our work, so let’s integrate from 0 to h:

w(h)− w(0) =

∫ h

0

w′(s) ds =

∫ h

0

f(x+ as, t+ bs) ds. (1.5.14)

We are running a bit low on letters, so I am using s for the variable of integration.
By the way, we effectively obtained (1.5.14) when we did the homogeneous transport

equation. There, f = 0, and so (1.5.14) just says w(h) = w(0) for all h. I claim that the
equality w(h) = w(0) is exactly (1.5.5). Do you agree?

Motivated once more by our prior success, let’s take h = −t/b in (1.5.14). We rearrange
and get

u(x, t) = w(0) = w(h)−
∫ h

0

f(x+as, t+bs) ds = u

(
bx− at

b
, 0

)
−
∫ −t/b
0

f(x+as, t+bs) ds.

(1.5.15)
We are pretty much done, but I claim it will pay off to clean up the integral.

There are a lot of ways to change variables in the integral, but the best way for our
purposes turns out to be substituting8

σ = t+ bs.

8 An unfortunate consequence of using u as the unknown in a PDE is that it’s difficult to u-sub anymore. I
will try to use σ when substituting here, since σ sounds like s, only fancier.
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I admit that there’s no clear motivation for this choice, but maybe one reason is that we
like the second coordinate of our functions to be “simple”; setting h = −t/b gives us a 0 in
the second slot of u, and setting σ = t + bs makes the second coordinate in the integrand
simpler.

Here’s what this does:

dσ = b ds, σ(0) = t, σ(−t/b) = 0, and s = (σ − t)/b.

Thus

−
∫ −t/b
0

f(x+ as, t+ bs) ds = −1

b

∫ 0

t

f

(
x+ a

(
σ − t
b

)
, σ

)
dσ

=
1

b

∫ t

0

f

([
bx− at

b

]
+
aσ

b
, σ

)
dσ. (1.5.16)

I like isolating the (bx−at)/b term in the first coordinate of f to make things look more like
the u((bx− at)/b, 0) term.

As with the homogeneous transport equation, we put p(X) = u(X/b, 0) to conclude the
following.

1.5.7 Theorem (Nonhomogeneous transport equation).

Let a, b ∈ R with b 6= 0 and let f ∈ C(R2). If a function u ∈ C1(R2) solves the nonho-
mogeneous transport equation aux + but = f(x, t), then there is a function p ∈ C1(R) such
that

u(x, t) = p(bx− at) +
1

b

∫ t

0

f

([
bx− at

b

]
+
as

b
, s

)
ds. (1.5.17)

This is probably not a formula worth memorizing, but rather one whose location is worth
knowing so that we can look it up in the future. Note our phrasing of this theorem compared
to the result for the homogeneous transport equation (Theorem 1.5.1): it is not an “if and
only if” result. Specifically, how do we know that a function of the form (1.5.17) actually
solves the nonhomogeneous transport equation? We’d have to differentiate that function.
But how do we differentiate the integral term? We address this in Appendix A.

This is where we finished on Wednesday, August 31, 2022.

1.5.5. Traffic with generation/dissipation.

The homogeneous and nonhomogeneous transport equations are special cases of the following
PDE:

aux + but + c(x, t)u = f(x, t). (1.5.18)
The homogeneous equation corresponds to c = f = 0, while the nonhomogeneous equation
has just c = 0. You can solve (1.5.18) by following our now tried (tired?) and true method
of putting w(h) = u(x + ah, t + bh) and finding an ODE for w. You’ll get the first-order
problem

w′(h) + p(h)w(h) = q(h), p(h) := c(x+ ah, t+ bh), q(h) := f(x+ ah, t+ bh).
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You can solve this with an integrating factor and then back out u(x, t) by putting h = −t/b.
I don’t think there’s much to be learned by working through the details of this in class.

Instead, let’s see how (1.5.18) arises in the context of traffic, and how we might expect its
solutions to behave without going right to a formula.

Suppose that traffic continues to move in one direction along a one-lane road, but now
let’s allow traffic both to enter and leave the road. It’s been a while, so let’s review our
notation and ideas from Section 1.1. The traffic density is ρ, so ρ(x, t) tells us how many
cars per mile there are at point x along the road and time t. The traffic flux is q, so q(x, t)
tells us how many cars per hour are passing point x at time t. And the rate of change
of the number of cars between points a and b on the road at time t is (because we know
what happens when we integrate density with respect to space, and because we know how
to differentiate under the integral)

∫ b
a
ρt(x, t) dx.

Previously, traffic could only change within the spatial interval [a, b] on the road by
entering from the left at a rate of q(a, t) cars per hour and leaving from the right at a rate
of q(b, t) cars per hour. Now traffic can enter or leave the road at any point x and any
time t. One useful way to quantify this is to fix a point x and time t and two numbers
h, k > 0. Then we measure how many cars enter/exit the road between points x − h and
x + h from time t − h to time t + h. Let’s say that a function r = r(x, t) measures the
“generation/dissipation” of traffic at point x and time t if

r(x, t) ≈ change in number of cars between points x− h and x+ h over times t− h to t+ h

(2h)(2k)
.

Thus the units of r(x, t) are cars per mile per hour.
I claim then that the rate of change of the number of cars on the road between points a

and b is

q(a, t)− q(b, t) +

∫ b

a

r(x, t) dx =

∫ b

a

[r(x, t)− qx(x, t)] dx. (1.5.19)

This follows from our belief that

Rate of change of a quantity = Rate in− Rate out.

Specifically, q(a, t) is the rate of cars entering the interval [a, b] at point a and q(b, t) is the
rate of traffic leaving the interval [a, b] at point b. But now we must also account for the cars
that are entering or exiting the road any point x in [a, b], and this gives rise to the integral
on the left of (1.5.19).

To see how the integral enters the story, divide [a, b] into n small subintervals [xk, xk+1].
We expect that r(x, t) ≈ r(xk, t) for xk ≤ x ≤ xk+1, and so roughly, over the interval
[xk, xk+1] on the road, there are r(xk, t) cars per hour per mile entering or exiting the road.
Thus, over the stretch [xk, xk+1], the rate of change of the number of cars on the road due
to cars entering or exiting the road is

r(xk, t) cars
mile× hour

× (xk+1 − xk) miles =
r(xk, t)(xk+1 − xk) cars

hour
And so the rate of change of the number of cars in the interval [a, b] due to cars entering or
exiting the road is

n∑
k=1

r(xk, t)(xk+1 − xk) ≈
∫ b

a

r(x, t) dx.



1. First-Order Equations 30

I’ve italicized the phrase due to cars entering or exiting the road because the number of cars
within [a, b] also changes when cars pass point a or b but still stay on the road; these latter
changes introduce the q(a, t)− q(b, t) terms in (1.5.19).

Anyway, if you believe (1.5.19), we get∫ b

a

[ρt(x, t) + qx(x, t)− r(x, t)] dx = 0,

and since [a, b] was an arbitrary interval, it follows as in Section 1.1 that

ρt + qx − r = 0. (1.5.20)

Previously we said q = vρ, where v(x, t) is the velocity of traffic at point x and time t. We
can be more precise about r if we assume that cars enter/exit along the road depending on
the structure of the road (the presence of on/off-ramps and/or intersections) and exit if the
density is too high. So, I would like to say

r(x, t) = f(x, t)− c(x, t)ρ(x, t). (1.5.21)

The term f is an overall “generation/dissipation” term that captures how many cars per mile
per hour enter/exit due to the road’s “structure,” while the term cρ is proportional to the
current density. (So f should have units cars per mile per hour, while c should have units
in 1/hour, right?) We might expect that as density gets higher, more cars will want to leave
the road; to ensure this, we should assume c(x, t) > 0 for all x and t.

All together, we can rearrange (1.5.20) and (1.5.21) into

ρt + (vρ)x + c(x, t)ρ = f(x, t). (1.5.22)

If we take velocity to be constant, then we get (1.5.18).

1.6. Variable-coefficient problems.

Let’s return, once again, to the traffic density problem

ρt + (vρ)x = 0.

Here we are back to our original model, in which cars cannot enter or exit the road (unlike
the model in Section 1.5.5. Recall that ρ(x, t) is the number of cars per mile on the road
around point x and time t, while v(x, t) is the velocity of the cars at point x and time t.
Previously, we got results when v was constant; this caused the initial traffic density to be
somehow propagated along the road with “speed” v.

What if, however, v is not constant? Then the traffic problem becomes

ρt + vx(x, t)ρ+ v(x, t)ρx = 0.

I suggested to you at the start of Section 1.5.5 how to handle the case where v is constant
and vx is not constant; here, however, that is trivial, as if v is constant, then vx = 0. If v is
not constant, then we need to do something new.
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We will study the general variable-coefficient first-order linear PDE9

a(x, t)ux + b(x, t)ut + c(x, t)u = f(x, t),

which I previously mentioned in (1.3.2) to illustrate how quickly the number of terms in
PDE can grow when we allow more variables than in ODE. These methods will not always
be successful in that the coefficients a and b will need to be pretty “nice” in order for us to
get explicit formulas for solutions.

This is where we finished on Friday, September 9, 2022.

It will be worthwhile to revisit, briefly, the transport equation.

1.6.1. The transport equation revisited, now with more geometry.

Previously, we rewrote the constant-coefficient homogeneous transport equation

aux + but = 0

as the gradient equation
∇u · (a, b) = 0,

which told us that u should be constant on lines parallel to the vector (a, b). More analyt-
ically, we fixed a pair10 (x0, t0) ∈ R2, introduced the function w(h) := u(x0 + ah, t0 + bh),
and saw that w had to be constant. In other words, w′ = 0. More geometrically, then, on
any line parallel to the vector (a, b), the PDE aux + but = 0 reduced to an ODE.

Let’s combine analysis (formulas) and geometry (graphs). If, for given x0 and t0, we put

X(h) := x0 + ah and T (h) := t0 + bh, (1.6.1)

then (X,T ) is really a parametric mapping of R into R2, and the composition w(h) =
u(X(h), T (h)) is constant. (Note that the maps X and T are functions of h, but they do
also depend on x0 and t0; we are not indicating this latter dependence.) What’s also nice is
that given an arbitrary pair (x0, t0) ∈ R2, we were able to construct the maps (X,T ) so that
we had X(0) = x0 and T (0) = t0. This allowed us to equate

u(x0, t0) = u(X(0), T (0)) = w(0) = w(h) = u(X(h), T (h))

for all h, and then we could choose h to be something “useful” (h = −t0/b) so that we could
learn more about u(x0, t0).

t

x

(X(h), T (h))

(x0, t0) = (X(0), T (0))

(X(−t0/b), 0)

9 I am following the usual convention in ODE and PDE of writing the given coefficients and nonhomogeneities
in the equation with their dependence on (x, t) explicit, whereas I suppress that dependence in the unknown
u and its derivatives.

10 I will want to refer to the x-axis from time to time here, so I don’t want to call my fixed coordinates x
and t anymore.
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This reasoning extended without too much conceptual trouble to the problem

aux + but + c(x, t)u = f(x, t),

where a and b were still constant, which I gave to you as a practice problem. By restricting
u to the curves (X,T ), the idea was to reduce the PDE above to a first-order linear ODE —
a slightly more complicated first-order linear problem than w′ = 0, but nonetheless one that
could be solved by an integrating factor.

1.6.2. Characteristics.

How could we do this more generally for a variable-coefficient problem

a(x, t)ux + b(x, t)ut + c(x, t)u = f(x, t)? (1.6.2)

As usual, we will assume, at the very least, that a, b, c, f ∈ C(R2). Based on our success
with the transport equation, it would be great if we could find a family of parametric curves
(X,T ) such that

(C1) For a given point (x, t) ∈ R2 there is a member of the family that passes through
(x, t);

(C2) When restricted to the image11 of any (X,T ) in the family, the solution u to (1.6.2)
satisfies an ODE;

(C3) Each curve (X,T ) in the family intersects a “useful” (like the x-axis, but not necessarily
the x-axis) curve exactly once, so that we could somehow learn more about u, perhaps in
the context of a specific initial and/or side condition.

x

t

Above is a cartoon of a family of curves that seems to do all of the above if, in (C3), we
want the family to intersect the x-axis only once. Fix your favorite blue dot in R2, and it
11 The image of the map (X,T ) is the set of points {(X(h), T (h)) | h ∈ I}, where (X,T ) is defined on the

set I.
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looks like there is exactly one member of the family that passes through it. Then you can
trace that curve back to a unique intersection with the x-axis.

Here is how we could achieve (C1), (C2), and (C3) for the problem (1.6.2). The condition
(C1) is pretty easy: we just want

X(0) = x and T (0) = t.

The precise value of the parametric variable at which (X,T ) intersects (x, t) really doesn’t
matter, but I think it’s nice to visualize the image of (X,T ) as starting at (x, t) and then
meandering throughout the plane.

To see how we might achieve (C2), first note that the restriction of u to the image of
(X,T ) is the function

w(h) := u(X(h), T (h)).

The multivariable chain rule tells us that, if X and T are differentiable,

w′(h) = ux(X(h), T (h))X ′(h) + ut(X(h), T (h))T ′(h).

This looks almost like the first two terms in (1.6.2) and will look exactly like them if X and
T satisfy

X ′(h) = a(X(h), T (h)) and T ′(h) = b(X(h), T (h)). (1.6.3)

Indeed, if u solves (1.6.2) and the pair (X,T ) solves (1.6.3), then

w′(h) = ux(X(h), T (h))a(X(h), T (h)) + ut(X(h), T (h))b(X(t), T (h))

= f(X(h), T (h))− c(X(h), T (h))u(X(h), T (h))

= f(X(h), T (h))− c(X(h), T (h))w(h).

If we put
α(h) := c(X(h), T (h)) and β(h) := f(X(h), T (h)),

then w solves the ODE
w′ + α(h)w = β(h), (1.6.4)

which we can treat with an integrating factor. In principle, then, we could learn more about
w and exploit the identity u(x, t) = w(0) to learn more about u.

And so to achieve (C1) and (C2), we really want X and T to solve the system of IVP{
X ′ = a(X,T )

T ′ = b(X, t)
with

{
X(0) = x

T (0) = t.
(1.6.5)

By the way, this is exactly what worked with the constant-coefficient transport problem.
Take a look at (X,T ) defined via (1.6.1) and convince yourself that{

X ′ = a

T ′ = b,
with

{
X(0) = x0

T (0) = t0.

Solving a system of IVP like (1.6.5) is both facile and tough. On one hand, if a and b
are continuously differentiable on R2 (which asks a little more than our initial hypothesis
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of continuity), then ODE theory assures us that a unique solution always exists. On the
other, even for very banal choices of a and b, it may be impossible to construct formulas for
the solutions. Thus in our examples and exercises, we will limit ourselves to very carefully
chosen toy problems.

Last, we have not said anything about (C3). This depends greatly on the problem at
hand, and we may sometimes fail here. However, our failures will always be enlightening,
once we get over them.

Before proceeding, we name this family of curves associated with the problem (1.6.2).

1.6.1 Definition.

A family of curves (X,T ) is a characteristic system for the PDE (1.6.2) if, for
each (x, t) ∈ R2, there is a pair (X,T ) in the family such that{

X ′(h) = a(X(h), T (h))

T ′(h) = b(X(h), T (h))
with

{
X(0) = x

T (0) = t.

So here is what we will do to solve (1.6.2). We will first construct the characteristic
system (X,T ). In practice, this will require a and b to be fairly special functions. Then we
will restrict the solution u to the image of a curve (X,T ) in this system by putting

w(h) = u(X(h), T (h)),

so that w will satisfy the ODE (1.6.4). We can solve this ODE to learn more about w. For
any point (x, t) ∈ R2, we can then choose the characteristic curve (X,T ) with X(0) = x and
T (0) = t to see that

u(x, t) = u(X(h), T (h)) = w(h)

for all h. Hopefully, then, the precise form of w (obtained, in principle, via integrating
factors), will suggest a nice value of h for us to choose. Alternatively, or additionally, the
underlying geometric of the characteristic curves (which is something that we could learn by
plotting them) may suggest additional properties of the solution u.

1.6.3. Examples (of varying difficulty and with varying success).

1.6.2 Example.

What can you say about the structure of solutions u = u(x, t) to

xux + ut = 0?

Solution. Here a(x, t) = x and b(x, t) = 1. We expect that any solution u will be constant
on the image of a parametric curve (X,T ) satisfying{

X ′ = X

T ′ = 1
with

{
X(0) = x

T (0) = t
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for (x, t) ∈ R2 arbitrary. The general solution to the system of ODE is

X(h) = c1e
h and T (h) = h+ c2

for arbitrary constants c1 and c2. Incorporating the initial conditions, we need x = X(0) = c1
and t = c2. Thus the characteristics are

X(h) = xeh and T (h) = h+ t.

This is where we finished on Monday, September 12, 2022.

Here are some plots of these characteristics.

x

t

Put w(h) = u(X(h), T (h)) to see that w′ = 0 (I’ll let you check that). And so

u(x, t) = u(X(0), T (0)) = w(0) = w(h) = u(xeh, h+ t)

for any (x, t) ∈ R2 and h ∈ R. Motivated by our prior success with the transport equation and
friends, we might choose h = −t to eliminate the dependence of u on its second coordinate.
We find that

u(x, t) = u(xe−t, 0)

for any pair (x, t) ∈ R2.
Remember that, as usual, we are working backward. We assumed that we had a solution

u = u(x, t) to xux + ut = 0, and we concluded that such a solution must satisfy u(x, t) =
u(xe−t, 0). If we put p(ξ) := u(ξ, 0), then p ∈ C1(R) and u satisfies u(x, t) = p(xe−t)
for all (x, t). Conversely, it is easy to check that if p ∈ C1(R) is arbitrary, then defining
u(x, t) := p(xe−t) gives a solution to xux + ut = 0. And so all solutions to xux + ut = 0 have
the form u(x, t) = p(xe−t) for some p ∈ C1(R). N

This is where we finished on Wednesday, September 14, 2022.

Here is an example where the characteristic equations are more complicated. The overall
behavior of the solution is also more subtle and requires some non-obvious geometric insight.
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1.6.3 Example.

What can you say about solutions u = u(x, t) to

tux − xut = 0?

Assume x > 0.

Solution. Here a(x, t) = t and b(x, t) = −x. I’m going to enumerate the different steps of
this solution, so you know it’s going to be a chore.

1. Fix a point (x, t) ∈ R2. The characteristics of this PDE are the solutions of the IVP{
X ′ = T

T ′ = −X
with

{
X(0) = x

T (0) = t.

If you haven’t done much with systems of ODE/IVP, then I admit that this can look
intimidating; the system in Example 1.6.2 was decoupled, and the X-equation did not involve
T , nor did the T -equation involve X. Here is the quick and dirty way12 to solve a problem
of this special form.

As usual, we work backward: if we have solutions (X,T ) such that X ′ = T and T ′ = −X,
then T is differentiable, and so X ′ is differentiable. We calculate

X ′′ = (X ′)′ = T ′ = X,

and so X ′′ +X = 0. Thus
X(h) = c1 cos(h) + c2 sin(h)

for some constants c1 and c2. Then

T (h) = X ′((h) = −c1 sin(h) + c2 cos(h).

Now we impose the initial conditions:

x = X(0) = c1 and t = T (0) = c2.

Thus the characteristics are

X(h) = x cos(h) + t sin(h) and T (h) = −x sin(h) + t cos(h). (1.6.6)
12 Here is a slightly more general, and maybe less quick, approach. The ODE problem here is an example of

the more general linear system {
y′1 = a11y1 + a12y2

y′2 = a21y1 + a22y2.

If you didn’t see this in an ODE class (possibly because you took my ODE class and I didn’t teach it
to you!), trust me that problems like this are quite worth studying. If a12 = 0, use direct integration
to solve for y1. Then substitute y1 into the second equation, and use an integrating factor. If a12 6= 0,
differentiate both sides of the first equation to get y′′1 = a11y

′
1 + a12y

′
2. Substitute y′2 = a21y1 + a22y2 =

a21y1 + a22(y
′
1 − a11y1) to get a second-order linear equation for y1 alone. Solve that, and then use

y2 = (y′1 − a11y1)/a12.
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2. By design, u is constant on the image of (X,T ), and so

u(x, t) = u(x cos(h) + t sin(h),−x sin(h) + t cos(h))

for any choice of the numbers x, t, and h. Big deal. What does this mean? What does this
tell us about u?

Previously, in Example 1.6.2 and in the long haul with the transport equation, we got
very lucky: there was an obvious choice for h that simplified the expression for u. I don’t
see any such obvious choice here. Maybe we could try to pick h such that

−x sin(h) + t cos(h) = 0,

which is the same as saying
tan(h) =

x

t
,

but that becomes problematic quickly when we try to think about the inverse tangent (and
maybe dividing by t = 0), right?

3. We can learn more if we think geometrically, not algebraically. If we are so lucky as to find
explicit formulas for the characteristic curves, it’s worthwhile figuring out what parametric
curve the characteristics actually trace out. I say we pick some values for x and t and stuff
(1.6.6) into our favorite graphing utility. We only need to run the parameter h in an interval
of length 2π, since X and T are both 2π-periodic. In the pictures below, the blue dot is the
“initial” point (X(0), T (0)) for each choice of (X,T ).

x

t

The pictures tell us that the set of all points{(X(h), T (h)) | h ∈ R} is just the circle of radius
x2 + t2 centered at the origin. You can prove this more precisely from the formulas for X
and T .

And so u is constant on any circle centered at the origin. What does this tell us? A
circle centered at the origin is just the set of all points that are the same distance from (0, 0).
The distance between the points (0, 0) and (x, t) is

√
x2 + t2. And so we might think that

u(x, t) depends only on
√
x2 + t2, not on the particular coordinates x and t. Then perhaps

we could write
u(x, t) = p(

√
x2 + t2)

for some nice function p.
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4. Let’s do all this more precisely without any of the intuitive digressions above. Suppose
that u solves tux − xut = 0. Then

u(x, t) = u(x cos(h) + t sin(h),−x sin(h) + t cos(h))

for all (x, t) ∈ R2 and h ∈ R. Write the point (x cos(h) + t sin(h),−x sin(h) + t cos(h)) in
polar coordinates13: there is Θ(h) ∈ R such that

x cos(h) + t sin(h) =
√
x2 + t2 cos(Θ(h)) and −x sin(h) + t cos(h) =

√
x2 + t2 sin(Θ(h)).

Then
u(x, t) = u(

√
x2 + t2 cos(Θ(h)),

√
x2 + t2 sin(Θ(h)))

for all (x, t) ∈ R2 and h ∈ R. Define

p(ξ) := u(ξ cos(Θ(0)), ξ sin(Θ(0))),

so p ∈ C1(R). We have taken h = 0 purely for notational convenience. We conclude that

u(x, t) = u(
√
x2 + t2 cos(Θ(0)),

√
x2 + t2 sin(Θ(0))) = p(

√
x2 + t2).

We can clean this up slightly to eliminate the square root by setting q(ξ) := p(
√
ξ), so

u(x, t) = q(x2 + t2). However, we no longer have q ∈ C1(R) but instead q ∈ C1((0,∞)).
Because we are working with x > 0, we don’t have to worry about differentiability at the
origin. (This is messy, technical, and interesting.) N

1.6.4 Example.

Can you solve {
tux − xut = 0, x > 0

u(t2, t) = t?

Interpret your answer in terms of characteristics.

Solution. We know that all solutions have the form u(x, t) = p(
√
x2 + t2) for some p ∈

C1(R). To meet the side condition, we want

t = u(t2, t) = p(
√

(t2)2 + t2) = p(
√
t4 + t2).

Does this help us find a formula for p? We might try to put ξ =
√
t4 + t2 and then solve

for t in terms of ξ; we did something like this back in Example 1.5.3. I claim that we will
fail, at least if we want to keep working with all t; in particular, the evenness of the map
t 7→
√
t4 + t2 should suggest a lack of one-to-oneness here.

13 Here’s why I thought of polar coordinates. I wanted to relate
√
x2 + t2 to the formula for u. I knew that√

x2 + t2 was the length of the line segment from (0, 0) to (x cos(h) + t sin(h),−x sin(h) + t cos(h)) for
any h. And I knew that I was working with circles. Then I sat with these things for about half an hour
and read the textbook, and suddenly polar coordinates popped into my head. I wish I could be more
systematic about how I got the idea — maybe read the textbook?
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More precisely, if we are able to solve this problem, then p must satisfy

1 = p(
√

14 + 12) = p(
√

2) and − 1 = p(
√

(−1)4 + (−1)2) = p(
√

2),

which is impossible. And so, no, we can’t solve this problem.
Here is the snarl in terms of characteristics. The characteristics are the circles x2+t2 = r2,

where r > 0. The solution u must be constant on these circles. But we are also requiring
that the value of u at a point (x, t) on the curve

{
(t2, t)

∣∣ t ∈ R
}
be the second coordinate

of that point.

x

t

x2 + t2 = r2

x = t2

xr

tr

−tr

This curve intersects every characteristic x2 + t2 = r2 at two distinct points (xr, t
+
r ) and

(xr, t
−
r ), where t+r 6= t−r . So u must take two different values on the same characteristic. N

This is where we finished on Monday, September 19, 2022.

1.6.5 Example.

Consider an infinitely long one-lane road that starts at an initial point x = 0 and continues
forever to right. Suppose that at point x ≥ 0 along the road and time t = 0, the traffic
density is g(x). There is M > 0 such that 0 ≤ g(x) ≤ M for all x. At any point
x ≥ 0 along the road and time t ≥ 0, traffic moves to the right with a constant velocity of
v(x, t) = x miles per hour. Finally, at any point x ≥ 0 along the road and time t ≥ 0, one
car per mile per hour enters the road, and no cars exit the road. What happens over long
times to the traffic density at any point x ≥ 0?

Solution. We should try to translate all of this (very contrived) data into the model equation
(1.5.22), which says that if (1) traffic moves with velocity v, (2) there is no decrease in traffic
density that is directly proportional to current density, and (3) a net f(x, t) cars per mile
per hour enter/exit the road, then density satisfies

ρt + (vρ)x = f(x, t).
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The velocity is v(x, t) = x, while the generation/dissipation term is f(x, t) = 1. Thus density
satisfies

ρt + (xρ)x = 1,

which is to say,
xρx + ρt + ρ = 1. (1.6.7)

We already found the characteristics for this problem in Example 1.6.2; they are

X(h) = xeh and T (h) = h+ t.

We now consider the ODE that a solution ρ must satisfy when restricted to the image of
(X,T ). Put w(h) = ρ(xeh, h+ t) to find that14

1 = (xeh)ρx(xe
h, h+t)+ρt(xe

h, h+t)+ρ(xeh, h+t) =
d

dh
[ρ(xeh, h+t)]+ρ(xeh, h+t) = w′(h)+w(h).

Multiply the ODE
w′ + w = 1

by the integrating factor µ(h) = eh to find

d

dh
[ehw(h)] = eh,

and integrate15 from 0 to h to obtain

ehw(h)− w(0) = eh − 1.

We solve for w(0) = ρ(x, t):

ρ(x, t) = w(0) = ehw(h)− eh + 1 = ehρ(xeh, h+ t)− eh + 1.

Vast prior experience suggests taking h = −t, and that is particularly useful here, since
it will allow us to use the initial condition:

ρ(x, t) = e−tρ(xe−t, 0)− e−t + 1 = e−tg(xe−t)− e−t + 1.

To determine the long-time behavior of the density, we want to calculate limt→∞ ρ(x, t) for
x fixed. Since g is bounded with 0 ≤ g(x) ≤M for all x, we have

0 ≤ lim
t→∞

e−tg(xe−t) ≤M lim
t→∞

e−t = 0,

14 If the variable-chasing in the first equality is giving you grief, observe that our original problem (1.6.7) is
the same as

ξρx(ξ, τ) + ρt(ξ, τ) + ρ(ξ, τ) = 1

for all ξ and τ. The first equality below then follows by taking ξ = xeh and τ = h+ t. The subscripts of
x and t on the partial derivatives ρx and ρt are purely symbolic.

15 I am writing this in words rather than symbols. If I were doing it in symbols, to avoid overworking h, I
might say

d

dη
[eηw(η)] = eη =⇒

∫ h

0

d

dη
[eηw(η)] dη =

∫ h

0

eη dη =⇒ ehw(h)− w(0) = eh − 1.
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and so
lim
t→∞

e−tg(xe−t) = 0.

Thus
lim
t→∞

ρ(x, t) = lim
t→∞

[e−tg(xe−t)− e−t + 1] = 0− 0 + 1 = 1.

And so, over very long times, the density boils down to one lonely car per mile. The
“dispersion” of density due to increased velocity as position along the road increases (if Car
1 is behind Car 2, then both Car 1 and Car 2 are speeding up, but Car 2 is speeding up
faster) balances perfectly with the influx of cars. N



2. The Heat Equation 42

2. The Heat Equation

2.1. Physical perspectives.

The heat equation will be our first second-order PDE that is not really an ODE in disguise.
Our techniques for analyzing the heat equation will be considerably different from those
that we used for the transport equation and its ilk. They will lead to many of the important
questions that have driven modern real and complex analysis. We’ll find lots of formulas
for solutions, but we’ll also pose and answer those important questions (although we won’t
exactly solve all of them).

Many of these important questions arise from some fairly simple physical sources. Con-
sider a rod that is L units long and placed along a horizontal axis like the following sketch.
The rod is sufficiently uniform that all vertical cross-sections have the same temperature.
That is, at a given point x with 0 ≤ x ≤ L and time t, the temperature anywhere in the rod
along the vertical cross-section at x is the same value, which we call u(x, t).

0 Lx

temperature here is u(x, t)

It can be shown (and our textbook does a very good job of this) that if the sides of the
rod (except possibly the sides at x = 0 and x = L) are insulated, so no heat energy passes
through those sides, then the rod’s temperature obeys the heat equation

ut = uxx.

The book allows for a more general heat equation of the form

ut = kuxx.

I claim that you can, and should, rescale this latter heat equation into the first version. For
simplicity, we will work mostly with k = 1.

We will obtain our first solutions to the heat equation via a new technique that reduces
the problem to, big surprise, an issue of ODE. Before that, however, we will look at some
important auxiliary data that naturally accompanies the heat equation.

This is where we finished on Wednesday, September 21, 2022.

One piece of data, which I will mention only briefly now, is the initial temperature
distribution. Assume that we know the temperature of the whole rod at the start: when
t = 0, we have

u(x, 0) = f(x), 0 ≤ x ≤ L,
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for some function f defined on [0, L]. The precise form of f will motivate much of our later
analysis.

More varied are the possible boundary conditions for the ends of the rod at x = 0
and x = L. Remember that the surface of the rod is insulated except possibly at the ends,
so no heat energy enters or exits the rod except possibly at the ends. Here are three non-
exhaustive possibilities.

1. The ends are maintained at some (possible time-dependent) temperatures. There are
functions a and b defined on [0,∞) such that

u(0, t) = a(t), t ≥ 0, and u(L, t) = b(t), t ≥ 0.

For example, on the left end you could be holding a candle against the rod, and on the right
I’m holding a baby dragon. We will particularly work with the case of constant, identical
temperatures: a(t) = b(t) = b(0) for all t. In that case, we might as well declare the constant
temperature at the ends to be the zero temperature (i.e., whatever zero degrees are in our
units of temperature, zero is b(0)) and assume

u(0, t) = u(L, t) = 0, t ≥ 0.

2. The ends are also insulated. Insulation means that heat energy cannot transfer through
the ends. Without a transfer of heat energy, the temperature cannot change. As soon as
you hear the words “cannot” and “change” in the same sentence, you should think of a zero
derivative. For insulated ends, then, we put16

ux(0, t) = ux(L, t) = 0.

3. The rod is really a flexible wire, and we bend it into a circle. If we bend just right, then
the parts of the wire that were formerly at x = 0 and x = L are now touching.

In my drawing above, the vertical blue line in the concentric circles indicates where the x = 0
and x = L endpoints are now touching. We can still identify points around this bent wire
with their counterparts in the interval [0, L] for the unbent wire, and so the heat equation
still governs the wire’s temperature. However, because the physical behavior of the wire at
the “touching” point should be the same whether you approach that point from the left or
the right, we impose the periodic boundary conditions

u(0, t) = u(L, t), t ≥ 0, and ux(0, t) = ux(L, t), t ≥ 0. (2.1.1)
16 See p. 157 in the book for a better physical motivation of this choice than I’m giving here.
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When we impose both initial and boundary conditions, we get an initial value problem-
boundary value problem, which I will abbreviate as an IVP-BVP. For example, the problem

ut = uxx, 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x)

u(0, t) = u(L, t) = 0

describes the behavior of the temperature of a rod whose initial temperature distribution is f
and whose ends are maintained at the constant temperature 0. There are lots of ways to mix
and match the boundary conditions — say, insulate the left end but maintain the right end
at a constant temperature — and our goal will be less to understand all of them and more
to see how a select few choices of boundary conditions lead to interesting mathematics.

2.2. Separation of variables.

You are familiar with the notion of making an ansatz for a differential equation: a (more
or less) educated guess about the solution’s form. When we learned ODE, we made the
“exponential” ansatz y(x) = erx for the constant-coefficient second-order linear homogeneous
problem ay′′+ by′+ cy = 0. There r was a fixed real number, and we substituted this ansatz
into the ODE and tried to learn more about r; we found that r had to satisfy the quadratic
equation ar2 + br + c = 0. In PDE (in no small part due to my own interests), we’ve made
the traveling wave ansatz u(x, t) = p(x− ct) on a PDE for u = u(x, t), and this results in an
ODE that p satisfies with c as a parameter.

Here we will make a different kind of ansatz for the heat equation; this ansatz will work
for many other PDE, and we’ll return to it often. Suppose that a solution u = u(x, t) to
ut = uxx has the form

u(x, t) = X(x)T (t) (2.2.1)

for some functions X = X(x) and T = T (t). Since we have posed the heat equation for a
rod, we are assuming 0 ≤ x ≤ L and t ≥ 0. What can we learn about X and T?

The ansatz (2.2.1) is called a product ansatz for u. The rationale behind this ansatz
(which goes back centuries, by the way) is that (2.2.1) is a transparent way of “sorting out”
the dependence of u on both of its variables. With experience, the convenience of associating
the function X with the independent variable x tends to outweigh the annoyance of writing
both lowercase x and uppercase X in the same problem. After some work with our heat
equation in one spatial dimension, we’ll see how to adapt product ansatzes to PDE with
more variables. The process of solving a PDE via a product ansatz is sometimes called
separation of variables, not to be confused with the ODE technique.

2.2.1. The product ansatz for the heat equation.

Again, we assume that the solution u = u(x, t) to ut = uxx has the form u(x, t) = X(x)T (t).
Then

ut(x, t) = X(x)T ′(t), ux(x, t) = X ′(x)T (t), and uxx(x, t) = X ′′(x)T (t).

Hence X and T must satisfy
X(x)T ′(t) = X ′′(x)T (t).
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Here is a key, and maybe not obvious, idea. For any pair (x, t) at which X(x)T (t) 6= 0,
let’s divide to find

X(x)T ′(t)

X(x)T (t)
=
X ′′(x)T (t)

X(x)T (t)
,

and thus
T ′(t)

T (t)
=
X ′′(x)

X(x)
. (2.2.2)

We have now “separated” the variables from each other onto either side of the equals sign.
What gives us the right to assume X(x)T (t) 6= 0? Nothing, at first, but when one makes

an ansatz one enters the land of wishful thinking — we can assume any restrictions we want
on the components of the ansatz (e.g., in a traveling wave ansatz, we might want to assume
u(x, t) = p(x − ct) with c > 1 and p an even function). That doesn’t guarantee that the
ansatz will be successful, or useful, but it does limit the scope of our subsequent search.

Here is the second key idea. The equality (2.2.2) has to hold for all x and t (specifically,
all 0 ≤ x ≤ L and all t ≥ 0). Let’s freeze x = 0 and let t ≥ 0 be arbitrary. Then

T ′(t)

T (t)
=
X ′′(0)

X(0)
.

Abbreviate
c :=

X ′′(0)

X(0)
.

Then T satisfies
T ′(t)

T (t)
= c

for all t, and so T really solves the familiar ODE

T ′ = cT.

Thus there is a constant a such that

T (t) = aect

for all t.
Returning to (2.2.2), we now freeze t = 0 to find

X ′′(x)

X(x)
=
T ′(0)

T (0)
= c

for all x. Then X must solve
X ′′ = cX,

which we usually package as
X ′′ − cX = 0.

Before proceeding, we note that the parameter c in the ODE for X is the same as the
parameter c in the ODE for T ; the two ODE are not wholly independent of each other.

Experience suggests that the sign of c determines the form of solutions to X ′′ − cX = 0.
Here are the three key cases.
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1. c > 0. Then X really solves X ′′ − (
√
c)2X = 0, and the solutions to this ODE all have

the form
X(x) = b1e

√
cx + b2e

−
√
cx

for some constants b1 and b2.

2. c = 0. Then we have the direct integration problem X ′′ = 0, and the solutions are

X(x) = b1x+ b2.

3. c < 0. Then −c = |c|, and so X solves X ′′ + |c|X = 0, i.e., X ′′ + (
√
|c|)2X = 0. The

solutions are
X(x) = b1 cos(

√
|c|x) + b2 sin(

√
|c|x).

We put everything together to find three families of product solutions:

u(x, t) = X(x)T (t) =


aect
[
b1e
√
cx + b2e

−
√
cx
]
, c > 0

b1x+ b2

ae−ct
[
b1 cos(

√
|c|x) + b2 sin(

√
|c|x)

]
, c < 0.

This is correct, but it could be a lot better. In particular, it looks like there are up to four
free constants in the formula for u: a, b1, b2, and c. This is not exactly true.

First, keeping track of
√
c and

√
|c| is annoying. A better idea, which has evolved over

the centuries along with the general notion of separation of variables in PDE, is to rewrite c
in the following forms. Any real number c > 0 can be written as c = λ2, where λ > 0, while
any real number c < 0 can be written as c = −λ2, where for convenience we demand λ > 0.
This eliminates the square roots and absolute values and gets us

u(x, t) =


aeλ

2t
[
b1e

λx + b2e
−λx], λ > 0

b1x+ b2

ae−λ
2t
[
b1 cos(λx) + b2 sin(λx)

]
, λ > 0.

This is cleaner, but it can still be better. One thing for the future — we will assume without
making a big fuss about it that, if necessary, arbitrary real constants c can be expressed in
the form c = λ2, c = 0, and c = −λ2 to cover all possibilities.

Here is how we can make things even better. Look at the case λ > 0 and distribute a:

aeλ
2t
[
b1e

λx + b2e
−λx] = eλ

2t[ab1e
λx + ab2e

−λx].
Since a, b1, and b2 can be arbitrary, the products ab1 and ab2 can also be arbitrary. (Just like
when you combine constants of integration when you’re collecting/adding antiderivatives.)
We’ll just write c1 = ab1 and c2 = ab2. (I hope it’s okay to reintroduce the letter c here.)

Thus the cleanest way to write the product solutions are as follows.
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2.2.1 Theorem (Product solutions for the heat equation).

For given real numbers λ > 0 and arbitrary c1, c2, defining u = u(x, t) in the following
ways yields a solution to the heat equation ut = uxx:

u(x, t) =


eλ

2t
[
c1e

λx + c2e
−λx], λ > 0

c1x+ c2,

e−λ
2t
[
c1 cos(λx) + c2 sin(λx)

]
, λ > 0.

This is where we finished on Friday, September 23, 2022.

2.2.2. The general method of separation of variables.

If you want to find product solutions to a PDE involving a function of n independent vari-
ables, express the solution as a product of n functions, where each function is a function
of exactly one of those independent variables. Substitute this ansatz into the PDE, divide
through by the original product, and obtain a family of ODE that the various factor functions
solve. This is best illustrated with a PDE that depends on more than two variables.

2.2.2 Example.

The two-dimensional heat equation reads

ut = uxx + uyy,

where u = u(x, y, t). Make a product ansatz

u(x, y, t) = X(x)Y (t)T (t).

What ODE do X, Y , and T solve?

Solution. With u(x, y, t) = X(x)Y (y)T (t), we calculate

ut(x, y, t) = X(x)Y (y)T ′(t), uxx(x, y, t) = X ′′(x)Y (y)T (t),

and uyy(x, y, t) = X(x)Y ′′(y)T (t).

So, we need
XY T ′ = X ′′Y T +XY ′′T.

We divide both sides by the original product XY T to find

XY T ′

XY T
=
X ′′Y T

XY T
+
XY ′′T

XY T
,

and thus
T ′(t)

T (t)
=
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
.
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This equality has to hold for all x, y, and t in the respective domains of X, Y , and T . Let’s
fix two of the three variables at a time.

First, fix x0 and y0 and let t be arbitrary. Then

T ′(t)

T (t)
=
X ′′(x0)

X(x0)
+
Y ′′(y0)

Y (y0)
=: c. (2.2.3)

So, T must satisfy
T ′ = cT.

Next, fix t0 and y0 and let x be arbitrary. Then

X ′′(x)

X(x)
=
T ′(t0)

T (t0)
− Y ′′(y0)

Y (y0)
=: d. (2.2.4)

Then X must satisfy
X ′′ = dX.

Finally, fix t0 and x0 and let y be arbitrary. Then

T ′(t0)

T (t0)
=
X ′′(x0)

X(x0)
+
Y ′′(y)

Y (y)
,

and so Y satisfies
Y ′′(y)

Y (y)
=
T ′(t0)

T (t0)
− X ′′(x0)

X(x0)
.

We should try to relate the fixed quantity on the right to c and d. By (2.2.3), we have

T ′(t0)

T (t0)
= c,

and by (2.2.4), we have
X ′′(x0)

X(x0)
= d.

Thus Y must satisfy
Y ′′(y)

Y (y)
= c− d.

All together, X, Y , and T must solve
X ′′ − dX = 0

Y ′′ − (c− d)Y = 0

T ′ = cT.

(2.2.5)

This is a linear system of decoupled ODE, but the equations are coupled, in a certain sense,
via the parameters c and d.
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The solutions to (2.2.5) will depend on the signs of d and c + d. Let’s consider just one
case: d > 0 and c− d > 0. Write d = λ2 with λ > 0 and c− d = µ2, with µ > 0. Note that,
then, c = µ2 + d = µ2 + λ2. Then (2.2.5) reads

X ′′ − λ2X = 0

Y ′′ − µ2Y = 0

T ′ = (µ2 + λ2)T,

and so solutions are

X(x) = a1e
λx + a2e

−λx, Y (y) = a3e
µy + a4e

−µy, and T (t) = a5e
(µ2+λ2)t.

Thus one kind of product solution to the 2D heat equation is

u(x, y, t) = X(x)Y (y)T (t) =
[
a1e

λx + a2e
−λx][a3eµy + a4e

−µy]a5e(µ2+λ2)t.
Here a1, . . . , a5 are arbitrary; as before, we could multiply through by a5 to reduce down to
four arbitrary constants (along with µ and λ). Then the product solution has the slightly
simpler form

u(x, y, t) =
[
b1e

λx + b2e
−λx]

[
b3e

µy + b4e
−µy]e(µ2+λ2)t. N

2.2.3. The heat equation with constant end-temperature.

The IVP-BVP 
ut = uxx, 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x)

u(0, t) = u(L, t) = 0

(2.2.6)

models the temperature of a rod of length L > 0 with initial temperature distribution f and
boundaries maintained at the constant zero temperature. What product solutions can this
problem have?

Theorem 2.2.1 gives all possible product solutions to the heat equation. For convenience,
I’ll repeat them here:

u(x, t) =


eλ

2t
[
c1e

λx + c2e
−λx], λ > 0

c1x+ c2,

e−λ
2t
[
c1 cos(λx) + c2 sin(λx)

]
, λ > 0.

(2.2.7)

One way of proceeding is to see what the initial temperature distribution demands. This is
actually pretty restrictive. For example, if (2.2.6) has a product solution of the first form,
where λ > 0, then we must have

f(x) = c1e
λx + c2e

−λx.

In the other two cases, a similar restriction on f results. So, one thing that we learn at once
is that product solutions only work for very specific initial temperature distributions.

What effect do the boundary conditions u(0, t) = u(L, t) = 0 have? Can the free constants
c1 and c2 be chosen to help us meet them? Let’s check.
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1. u(x, t) = eλ
2t
[
c1e

λx + c2e
−λx]. Then we need

0 = u(0, t) = eλ
2t(c1 + c2) and 0 = u(L, t) = eλ

2t
[
c1e

λL + c2e
−λL]

for all t ≥ 0. Dividing through by eλt, this gives a linear system of equations for c1 and c2:{
c1 + c2 = 0

c1e
λL + c2e

−λL = 0.

There are a lot of ways to solve this kind of problem, or to prove that no solution exists. (I
like looking at matrix determinants if you know linear algebra.)

Here’s one such way. The first equation forces c1 = −c2, and so the second equation
becomes

c2
[
e−λL − eλL

]
= 0.

If c2 = 0, then c1 = 0, and so u = 0. This is the trivial solution to the IVP-BVP, and
it only works if f = 0.

If c2 6= 0, then we need
e−λL − eλL = 0.

There are lots of ways to proceed here, too, but my favorite is to turn this into requiring

eλL = e−λL.

The exponential is strictly increasing, and therefore one-to-one, so λL = −λL. Since λ 6= 0,
we have L = −L, and so 2L = 0. But then L = 0. This is forbidden.

We conclude that the only possibility is to have c1 = c2 = 0 and u = 0. Thus only the
trivial product solution works, and that only in the case f = 0.

This is where we finished on Monday, September 26, 2022.

2. u(x, t) = c1x+ c2. We need

0 = u(0, t) = c2 and 0 = u(L, t) = c1L+ c2 = c1L.

Since L 6= 0, we must have c1 = 0, and so, again, only the trivial product solution works.

3. u(x, t) = e−λ
2t
[
c1 cos(λx) + c2 sin(λx)

]
. We need

0 = u(0, t) = e−λ
2tc1 and 0 = u(L, t) = e−λ

2t
[
c1 cos(λL) + c2 sin(λL)

]
.

The boundary condition at x = 0 forces c1 = 0, and then the condition at x = L requires

c2 sin(λL) = 0.

If we take c2 = 0, then, yet again, we arrive at the trivial solution. However, we could also
require λ to satisfy

sin(λL) = 0.
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Recall that the zeros of the sine are the integer17 multiples of π:

sin(X) = 0 ⇐⇒ X = kπ, for an integer k.

Thus if λL = kπ for some integer k, then we can meet the boundary conditions without
resorting to the trivial solution. That is, we take

λ =
kπ

L
,

and so the product solution has the form

u(x, t) = ce−(kπ/L)
2t sin

(
kπx

L

)
.

Here c can be any real number. Note that if we take c = 0, then we recover the trivial
solution.

We can summarize the work above as follows.

2.2.3 Lemma.

Suppose that u = u(x, t) solves the heat equation ut = uxx for 0 ≤ x ≤ L and t ≥ 0 and
meets the boundary conditions

u(0, t) = u(L, t) = 0, t ≥ 0.

Suppose also that u has the product structure u(x, t) = X(x)T (t) for some functions X
and T . Then there is a constant c and an integer k such that

u(x, t) = ce−(kπ/L)
2t sin

(
kπx

L

)
. (2.2.8)

This result should feel underwhelming. The only product solutions to the heat equation
that meet the boundary conditions u(0, t) = u(L, t) = 0 for all t have a very restrictive form.
In particular, such solutions only work with very special initial temperature distributions.
Indeed, if u has the form (2.2.8) and u(x, 0) = f(x) for some function f , then f is just

f(x) = c sin

(
kπx

L

)
.

We can improve on this result slightly if we note that the heat equation is linear. That
is, if u1 and u2 both solve the heat equation18 for 0 ≤ x ≤ L and t ≥ 0, and if a1 and a2 are
real numbers, then the linear combination a1u1 + a2u2 also solves the heat equation. Here is
what we obtain (more precisely, what you obtain — I’ll leave you to prove this).

17 Recall that the integers are the numbers k of the form k = 0, ±1, ±2, . . ., and we denote the set of all
integers b y Z.

18 When you check this, as you will no doubt diligently do on your own, I suggest that you write their partial
derivatives either as (u1)t or ∂t[u1] to avoid overworking the subscripts.
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2.2.4 Theorem.
Fix L > 0 and let n ≥ 1 be an integer. Let a0, . . . , an be real numbers and define

f(x) :=
n∑
k=1

ak sin

(
kπx

L

)
. (2.2.9)

Then the function

u(x, t) :=
n∑
k=1

ake
−(kπ/L)2t sin

(
kπx

L

)
solves the IVP-BVP (2.2.6).

Just to make sure we’re reading this result correctly, let’s do a quick little problem.

2.2.5 Example.

Find a solution to the IVP-BVP
ut = uxx, 0 ≤ x ≤ 1, t ≥ 0

u(0, t) = u(1, t) = 0,

u(x, 0) = f(x), 0 ≤ x ≤ 1,

where
f(x) = sin(πx)− 3 sin(6πx) + 9 sin(12πx).

Solution. Here we are working with a rod of length L = 1. To use Theorem 2.2.4, we need
to put the initial temperature distribution into the form (2.2.14). We can do this by “adding
zero” in a number of places. Put a1 = 1, a6 = −3, a12 = 9, and ak = 0 for k 6= 1, 6, 12.
Then

f(x) =
12∑
k=1

ak sin(kπx),

and so the solution u to the IVP-BVP has the form

u(x, t) =
12∑
k=1

ake
−(kπ)2t sin(nπx) = e−π

2t sin(πx)−3e−(6π)
2t sin(6πx)+9e−(12π)

2t sin(12πx). N

Theorem 2.2.4 is still a very limited result. We can only solve the heat IVP-BVP (for rods
with ends at the same constant temperature) if the initial temperature distribution has a very
special form. In particular, note that f as defined by (2.2.14) is odd, infinitely differentiable,
bounded, and periodic, and f also satisfies f(0) = f(L) = 0. Certainly there should be
many reasonable initial temperature distributions that are not so nice! (For contrast, when
we solved the nonhomogeneous transport equation aux + but = f(x, t), to invoke Leibniz’s
rule it is more than sufficient for that f to be just continuously differentiable. So, our limited
prior experience with PDE should suggest that we should be able to work with much more
general initial temperature distributions.)
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There is one condition on f above that is really necessary. Namely, if u solves (2.2.6),
then

f(0) = u(0, 0) = 0 and f(L) = u(L, 0) = 0.

The first equality in each pair above is the initial condition, and the second is a boundary
condition. Thus if the problem (2.2.6) can have a solution, at the very least we need f(0) =
f(L) = 0. But do we really need f to be odd, infinitely differentiable, bounded, and periodic?
Probably not.

2.2.4. Toward the idea of Fourier series.

Here is how we are going to get around our heretofore severe limitations on the initial
temperature distribution f . We are successful if we assume that f has the form

f(x) =
n∑
k=1

ak sin

(
kπx

L

)
.

Such a function is called a trigonometric polynomial, and it looks something like a
(classical) polynomial, which we usually write as

g(x) =
n∑
k=0

akx
k.

Classical polynomials are ideal for calculus manipulations; you can integrate and differentiate
them with ease, and computing their values is just a matter of multiplying and adding. Of
course, not all functions are polynomials, but some of the nicest functions have Taylor
expansions; we can sometimes write a function g as

g(x) =
∞∑
k=0

akx
k.

Then g is still easy to manipulate from the point of view of calculus, and all of the “data”
of g is effectively encoded in the sequence of coefficients (ak). If you don’t remember all the
theory of infinite series, we’ll review the essential highlights shortly.

Now, here’s the idea. What if, given an initial temperature distribution f , we could write

f(x) =
∞∑
k=1

ak sin

(
kπx

L

)
(2.2.10)

for some sequence of coefficients (ak)? Then, by analogy with Theorem 2.2.4, we might
expect the solution of the IVP-BVP (2.2.6) to be

u(x, t) =
∞∑
k=1

ake
−(kπ/L)2t sin

(
kπx

L

)
.

There are any number of problems and challenges with this idea. How can we find such ak
in the expansion of f? What does “=” mean in both series? Should u defined in this way be
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differentiable? We will discuss at length some of these questions and some of their answers,
although we will not rigorously prove all of our results. Indeed, asking and answering the
right questions about these trigonometric series — these Fourier series — has spurred the
development of much of modern analysis.

This is where we finished on Wednesday, September 28, 2022.

2.2.5. The heat equation on a circular wire.

We discussed the case of a thin rod or wire bent into a circle in Case 3 of Section 2.1. It
turns out to be convenient (trust me) to assume that the unbent wire now has length 2L
with its ends placed at x = −L and x = L, not x = 0 and x = L as before. Bend the wire
into a circle and join the ends at x = ±L. Then the boundary conditions (2.1.1) are

u(−L, t) = u(L, t) and ux(−L, t) = ux(L, t). (2.2.11)

That is, we now want to solve the IVP-BVP
ut = uxx, −L ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x), −L ≤ x ≤ L

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t).

(2.2.12)

Before we attempt to find any solutions, our experience suggests that we should study
the initial temperature distribution f further. Can we solve this IVP-BVP for any f? I say
no: if u is a solution, then the initial condition forces f(L) = u(L, 0), and the boundary
condition forces u(L, 0) = u(−L, 0), and the initial condition again forces u(−L, 0) = f(−L).
Thus we need f to satisfy f(−L) = f(L), and a similar argument, using f ′(x) = ux(x, 0),
shows the necessity of f ′(−L) = f(L).

Now we build on our prior experience in a different way: we again attempt to find
solutions that are product solutions. The three kinds of product solutions for ut = uxx are
listed in (2.2.7). I claim that the first two kinds will either give only the trivial solution
u = 0 if we fit them to the boundary conditions (2.2.11), or they will only give special cases
of what we could figure out using the third kind. (I’ll leave you to make sense of that.)

So, we will only discuss together product solutions of the third kind:

u(x, t) = e−λ
2t
[
c1 cos(λx) + c2 sin(λx)

]
.

We want to learn as much as we can about λ, c1, and c2, and we start by seeing what the
boundary conditions demand.

First, u(−L, t) = u(L, t) says

e−λ
2t
[
c1 cos(−λL) + c2 sin(−λL)

]
= e−λ

2t
[
c1 cos(λL) + c2 sin(λL)

]
.

We can cancel the factor of e−λ
2t from both sides; the precise value of t plays no role here.

Then we use the evenness of the cosine and the oddness of the sine to find

c1 cos(λL)− c2 sin(λL) = c1 cos(λL) + c2 sin(λL).
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This rearranges to
2c2 sin(λL) = 0.

Of course, we could take c2 = 0, but our experience suggests that this would put us perilously
close to a trivial solution; if we want sin(λL) = 0, we need λL = kπ for an integer k. In
other words, we can meet the first boundary condition by taking

λ =
kπ

L

for an integer k. Note that since sin(0) = 0, taking k = 0 gives the same effect as taking
c2 = 0.

To address the other boundary condition, we first calculate

ux(x, t) = e−λ
2t
[
− c1λ sin(λx) + c2λ cos(λx)

]
.

Then the condition ux(−L, t) = ux(L, t) forces

e−λ
2t
[
− c1λ sin(−λL) + c2λ cos(−λL)

]
= e−λ

2t
[
− c1λ sin(λL) + c2λ cos(λL)

]
.

Canceling the e−λ
2t factors and using the parity of sine and cosine, we arrive at

c1λ sin(λL) + c2λ cos(λL) = −c1λ sin(λL) + c2λ cos(λL),

and thus
2c1λ sin(λL) = 0,

which looks almost like what we had with the first boundary condition. Taking c1 = 0
certainly works, but we can also take λ = 0 or sin(λL) = 0. Note that we can take λ = 0 by
assuming λ = kπ/L with k = 0. And so we haven’t really learned anything new from this
boundary condition.

Assuming that what I said about the other two kinds of product solutions is true, our
work on the third kind produces the following “structural” result, very much like Lemma
2.2.3.

2.2.6 Lemma.

Suppose that u = u(x, t) solves the heat equation ut = uxx for 0 ≤ x ≤ L and t ≥ 0 and
meets the boundary conditions

u(−L, t) = u(L, t), t ≥ 0 and ux(−L, t) = ux(L, t), t ≥ 0.

Suppose also that u has the product structure u(x, t) = X(x)T (t) for some functions X
and T . Then there are constants a and b and an integer k such that

u(x, t) = e−(kπ/L)
2t

[
a cos

(
kπx

L

)
+ b sin

(
kπx

L

)]
. (2.2.13)

Just to be clear, if we don’t want to have λ = kπ/L for some integer k, then the work
above requires a = b = 0 in (2.2.13), in which case u = 0. And, once again, linearity allows
us to extend this result to slightly more complicated initial temperature distributions.
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2.2.7 Theorem.
Fix L > 0 and let n ≥ 1 be an integer. Let a0, . . . , an and b0, . . . , bn be real numbers and
define

f(x) :=
n∑
k=0

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
. (2.2.14)

Then the function

u(x, t) :=
n∑
k=0

e−(kπ/L)
2t

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
solves the IVP-BVP (2.2.12).

This (loosely) motivates us to seek a different expansion of a more complicated initial
temperature distribution f as a series of the form

f(x) =
∞∑
k=0

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
, (2.2.15)

so that we could, perhaps, solve the associated IVP-BVP (2.2.12) via

u(x, t) =
∞∑
k=0

e−(kπ/L)
2t

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
.

It turns out that learning how to write functions in this more complicated form (2.2.15) will
actually help us write them as well as sums of just sines, like (2.2.10), or even just cosines,
and to that lengthy endeavor we will now turn.
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3. Fourier Series

3.1. Some (very) finite-dimensional linear algebra.

Our brief experience with the heat equation has induced us to study how we might write a
function f defined on [−L,L] in the form

f(x) =
∞∑
k=0

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
.

How can we possibly define the “data” ak and bk so that such an equality has a chance
of working (regardless of what exactly the convergence of this series means)? One way to
motivate what could otherwise be some arbitrary definitions and conventions to come is
to take a brief excursion into finite-dimensional linear algebra. Essentially everything that
follows could be covered in a multivariable calculus class (and probably was, in some way,
for you).

We denote by C the set of all complex numbers; informally19, this is the set

C :={x+ iy | x, y ∈ R} , i2 = −1.

For z = x+ iy ∈ C, we define its complex conjugate as

z := x− iy

and its modulus as
|z| :=

√
x2 + y2 = zz,

the second equality being something that you should check.
We denote by Cn all n-tuples of complex numbers:

Cn ={(z1, . . . , zn) | zk ∈ C, k = 1, . . . , n} .

On Cn, we define the dot product: for x = (x1, . . . , xn) ∈ Cn and y = (y1, . . . , yn) ∈ Cn,
we put

x · y :=
n∑
k=1

xkyk.

And we have the norm

‖x‖ :=

(
n∑
k=1

|xk|2
)1/2

=
√
x · x,

again, the second equality being something that you should check.
19 A good part of a rigorous complex analysis course is making sense of what the juxtaposition iy really

means.
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The dot product is a great tool for extracting the “data” of a vector. Assuming that
vector addition and scalar multiplication proceed componentwise20 and writing, for ease of
reading, the vectors below as column vectors, here is a nice little calculation:

x :=


1
9
7
7

 =


1
0
0
0

+ 9


0
1
0
0

+ 7


0
0
1
0

+ 7


0
0
0
1

 .

Put

e1 :=


1
0
0
0

 , e2 :=


0
1
0
0

 e3 :=


0
0
0
1

 and e4 :=


0
0
0
1


and note that

ej · e` =

{
1, j = `

0, j 6= `.

Assuming that the dot product obeys the expected rules

x · (y + z) = (x · y) + (x · z) and (αx) · y = α(x · y),

we can calculate
x · e2 =

(
e1 + 9e2 + 7e3 + 7e4) · e2 = 9,

and more generally obtain

x =
4∑
j=1

(x · ej)ej.

All the essential “data” of x = (1, 9, 7, 7) are its four entries. The dot product extracts
that data and allows us to write x in the transparent form above. As we look toward
expressing functions as (infinite) sums of sines and cosines, we should seek a tool that will
allow us to extract the coefficients on those sines and cosines easily from those functions.

This is where we finished on Friday, September 30, 2022.

3.2. Some (very brief) remarks about series.

Let L > 0. We are thinking that if

f(x) :=
∞∑
k=0

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
, (3.2.1)

20 If x = (x1, . . . , xn) and y = (y1, . . . , yn) and α ∈ C, then x + y = (x1 + y1, . . . , xn + yn) and αx =
(αx1, . . . , αxn)
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then we can get a solution u to the IVP-BVP
ut = uxx, −L ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x)

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t), t ≥ 0

(3.2.2)

by defining

u(x, t) =
∞∑
k=0

e−(kπ/L)
2t

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
. (3.2.3)

We have already agreed that learning how to represent a given initial temperature distribu-
tion f in the form (3.2.1) is key. After that, the formula above for u is. . .just that, a formula.
But what exactly do these series mean? In particular, will defining u as such a series yield
a function that is sufficiently differentiable?

We will therefore take a moment to review some essential properties of series. Let (zk)
be a sequence in C starting from k = 0. That is, for each integer k ≥ 0, we have chosen a
complex number zk. The symbol

∞∑
k=0

zk

has (at least) two meanings.

1. For an integer n ≥ 0, put

Sn :=
n∑
k=0

zk.

Then the symbol
∑∞

k=0zk is just another name for the sequence of partial sums (Sn). In
symbols,

∞∑
k=0

zk =

(
n∑
k=0

zk

)
.

Since each partial sum only involves adding finitely many numbers together, each term Sn
of this sequence is always defined.

2. Suppose there is a complex number L such that the limit limn→∞ Sn exists and equals L.
Then we write

∑∞
k=0zk = L and call L the sum of the series. In symbols,

∞∑
k=0

zk = lim
n→∞

n∑
k=0

zk.

3.2.1 Example.

What does the symbol
∞∑
k=0

(
1

2

)k
mean?
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Solution. The symbol
∞∑
k=0

(
1

2

)k
denotes both the sequence (

n∑
k=0

1

2k

)
and its limit as n → ∞, if this limit exists. The formula for the nth partial sum of the
geometric series21 gives

n∑
k=0

1

2k
=

1− (1/2)n+1

1− 1/2
= 2

(
1− 1

2n+1

)
=

2n+2 − 1

2n+1
,

and so
∞∑
k=0

(
1

2

)k
=

(
n∑
k=0

1

2k

)
=

(
2n+2 − 1

2n+1

)
.

Moreover, since the limit

lim
n→∞

n∑
k=0

1

2k
= lim

n→∞
2

(
1− 1

2n+1

)
= 2

exists, the symbol
∑∞

k=0(1/2)k also means

∞∑
k=0

(
1

2

)k
= 2. N

Thus, given any pair of sequences (ak) and (bk), a real number L > 0, and an arbitrary
real number x, it always makes sense to speak of the sequence of partial sums(

n∑
k=0

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)])
.

The convergence of this sequence, i.e., the existence of the limit

lim
n→∞

n∑
k=0

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
,

is more ticklish.
21 Let r ∈ C with |r| < 1. Then

n∑
k=0

rk =
1− rn+1

1− r

for any integer n ≥ 0, and so

lim
n→∞

n∑
k=0

rk =
1

1− r
.
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3.3. Trigonometric polynomials.

Since our first goal is to express a given function f in the form

f(x) =
∞∑
k=0

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
,= lim

n→∞

n∑
k=0

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
,

(3.3.1)
If we are going to write f in the form (3.3.1), we need to know how to construct the
appropriate sequences (ak) and (bk) of coefficients. One way to learn this is to consider
when f is not merely a limit of such sums but when f is genuinely such a finite sum of sines
and cosines. Such functions have a special name.

3.3.1 Definition.
Fix L > 0 and let n ≥ 0 be an integer. Let a0, a1, . . . , an, b1, . . . , bn ∈ C. A trigono-
metric polynomial is a function of the form

f(x) =
a0
2

+
n∑
k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
.

We have split the “k = 0” term out as a0/2 for reasons of convenience that will not be
easy to describe right now. Our experience with “classical” polynomials, i.e., functions of the
form

p(z) =
n∑
k=0

αkz
k, (3.3.2)

for α0, . . . , αn, z ∈ C and n ≥ 0 an integer suggests that the coefficients of a polynomial are
uniquely determined. Indeed, for p above we have

αk =
p(k)(0)

k!
. (3.3.3)

Say that we are given a function f and know that it is a trigonometric polynomial,
but we don’t know the value of its coefficients. Can we reconstruct those coefficients just
from more general knowledge about f? This is similar to saying that we are given a vector
x = (x1, . . . , xn) ∈ Cn, and we want to determine the entries xk. We saw earlier that the dot
product lets us do that:

x =
n∑
k=1

(x · ek)ek,

where ek is the kth standard basis vector, i.e., the jth entry of ek is 0 if j 6= k and 1 if j = k.
In other words, xk = x · ek.

The right, but maybe not at all obvious, tool to extract the coefficients of a trigonometric
polynomial is something very similar to the dot product.
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3.3.2 Definition.

Let L > 0 and let f and g be integrable functions from [−L,L] to C. (Hereafter, the
expression f : [−L,L]→ C means that f is a function from [−L,L] to C, and likewise for
g.) Define

〈f, g〉 :=

∫ L

−L
f(x)g(x) dx.

The complex number 〈f, g〉 is the (L2)-inner product of f and g.

This tool deserves a bit of discussion before we use it.

3.3.3 Remark.

(i) We are, unfortunately, overworking L here: the symbol L appears both in the interval
[−L,L] and in the name of the inner product. As part of the interval, L calls to mind the
“length” of the rod whose heat distribution we are studying. As part of the inner product’s
name, L refers to the mathematician Henri Lebesgue.

(ii) The word “integrable” is one of the most mysterious in undergraduate mathematics,
and now here we are talking about integrable functions that can be complex-valued. Since
any complex number z can be written uniquely in the form z = u+ iv, where u and v are
real, any function f on [−L,L] that takes values in C can be written uniquely in the form
f(x) = u(x)+ iv(x), where u and v are real-valued functions on [−L,L]. We then say that
f is integrable on [−L,L] if both u and v are integrable on [−L,L] in the usual sense of
“integrable” from real-valued calculus. Whatever that means. We define

f = u+ iv =⇒
∫ L

−L
f(x) dx :=

∫ L

−L
u(x) dx+ i

∫ L

−L
v(x) dx.

Essentially every important property of real-valued integrals (linearity, substitution, inte-
gration by parts) holds for complex-valued integrals.

(iii) The notation 〈f, g〉 for an inner product is not absolutely universal. Be aware of
context and notational conventions when consulting other sources.

The inner product inherits a number of useful algebraic properties from the complex
conjugate and the familiar definite integral. Proving these properties is a good exercise in
definitions, which you should undertake on your own.

3.3.4 Theorem.
Assume that all functions f , f1, f2, g, g1, and g2 below are integrable on the same interval
[−L,L].

(i) 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉.

(ii) 〈f, g1 + g2〉 = 〈f, g1〉+ 〈f, g2〉.
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(iii) 〈αf, g〉 = α 〈f, g〉 for any α ∈ C.

(iv) 〈f, βg〉 = β 〈f, g〉 for any β ∈ C.

(v) 〈f, g〉 = 〈g, f〉.

This is where we finished on Monday, October 3, 2022.

Now that we possess the L2-inner product, we can determine, once and for all, the
coefficients of a trigonometric polynomial. In the following, the number L > 0 will be fixed,
and we will not keep track of it in our notation. For integers k, put

ck(x) := cos

(
kπx

L

)
and sk(x) := sin

(
kπx

L

)
. (3.3.4)

We will only work with k ≥ 0, but these functions are certainly defined at all (real) k. Then

a0
2

+
n∑
k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
=
a0
2
c0(x) +

n∑
k=1

[
akck(x) + bksk(x)

]
.

Note that c0(x) = 1 for all x.
We have the following “orthogonality” relations.

3.3.5 Theorem.
The following identities hold:

〈ck, c`〉 =


2L, k = ` = 0

L, k = ` ≥ 1

0, k 6= `,

〈sk, s`〉 =

{
L, k = ` ≥ 1

0, k 6= `,
and 〈ck, s`〉 = 0.

Proof. This is a long exercise in trig identities and trig integrals. We do just two easy cases.
First, suppose k ≥ 1. Then

〈ck, c0〉 =

∫ L

−L
ck(x)c0(x) dx =

∫ L

−L
cos

(
kπx

L

)
dx =

∫ (kπ(L))/L

(kπ(−L))/L

L

kπ
cos(u) du

=
L

kπ

∫ kπ

−kπ
cos(u) du =

L

kπ
sin(u)

∣∣∣∣kπ
u=−kπ

=
L

kπ

[
sin(kπ)− sin(−kπ)

]
= 0.

Here we substituted u = kπx/L and used the identity sin(jπ) = 0, valid for any integer j.
Next, take k = 0. Then

〈c0, c0〉 =

∫ L

−L
c0(x)c0(x) dx =

∫ L

−L
dx = 2L.
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Put

f(x) :=
a0
2

+
n∑
k=1

[
akck(x) + bksk(x)

]
.

Motivated by the expansion x =
∑n

k=1(x·ek)ek of a vector x ∈ Cn, for which the dot product
is a key tool and for which the identity ek ·e` = 0 for k 6= ` is so crucial, we start calculating:

〈f, c0〉 =

〈
a0
2
c0 +

n∑
k=1

[
akck + bksk

]
, c0

〉

=
〈a0

2
c0, c0

〉
+

〈
n∑
k=1

[
akck + bksk

]
, c0

〉
by part (i) of Theorem 3.3.4

=
〈a0

2
c0, c0

〉
+

n∑
k=1

〈akck + bksk, c0〉 again by part (i) of Theorem 3.3.4

=
〈a0

2
c0, c0

〉
+

n∑
k=1

[
〈akck, c0〉+ 〈bksk, c0〉

]
by part (i) of Theorem 3.3.4, now used n times

=
a0
2
〈c0, c0〉+

n∑
k=1

[
ak 〈ck, c0〉+ bk 〈sk, c0〉

]
by part (iii) of Theorem 3.3.4

=
(a0

2

)
2L since 〈c0, c0〉 = 2L and 〈ck, c0〉 = 〈sk, c0〉 = 0 for k ≥ 1 by Theorem 3.3.5

= a0L.

Thus we can solve for a0 in terms of f and an inner product:

a0 =
1

L
〈f, c0〉 .

More generally, we can express all the coefficients of a trigonometric polynomial using the
L2-inner product and a calculation exactly like the preceding one.

3.3.6 Theorem.
Let

f(x) :=
a0
2

+
n∑
k=1

[
akck(x) + bksk(x)

]
. (3.3.5)

Then
ak =

1

L
〈f, ck〉 and bk =

1

L
〈f, sk〉 .

The result above says that the coefficients of a trigonometric polynomial are uniquely
determined: if we know the polynomial, then we have only one choice for the coefficients.
This is exactly like a classical polynomial’s coefficients in (3.3.2) and (3.3.3). Another way
to paraphrase this result is that if

a0
2

+
n∑
k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
=
ã0
2

+
n∑
k=1

[
ãk cos

(
kπx

L

)
+ b̃k sin

(
kπx

L

)]
(3.3.6)
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for all x, then ak = ãk and bk = b̃k.

3.4. Real Fourier series.

Our goal is to express a function f defined on [−L,L] in the form

f(x) =
a0
2

+
∞∑
k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
. (3.4.1)

We need to determine the coefficients ak and bk.
Theorem 3.3.6 tells us how to do this in the special case that f is a trigonometric poly-

nomial: put

ak =
1

L

∫ L

−L
f(x) cos

(
kπx

L

)
dx and bk =

1

L

∫ L

−L
f(x) sin

(
kπx

L

)
dx.

When k is sufficiently large, eventually ak and bk will always be 0. Specifically, if f has the
form (3.3.5) for some finite n, then the integrals above are 0 for k > n.

When f is not a trigonometric polynomial, the work above gives us an idea of how to
define ak and bk: integrate f against appropriately scaled sines or cosines. For such integrals
to exist, we need f to be integrable on [−L,L], which we will assume from now on.

3.4.1 Definition.

Let f : [−L,L]→ C be integrable. The real Fourier coefficients of f on [−L,L]
are

ak[f ] :=
1

L

∫ L

−L
f(x) cos

(
kπx

L

)
dx and bk[f ] :=

1

L

∫ L

−L
f(x) sin

(
kπx

L

)
dx. (3.4.2)

The notation above for the real Fourier coefficients is idiosyncratic and possibly unique
to our book and/or this course. I like the square brackets because they indicate that a
function’s Fourier coefficients depend on that function! Note that, as with ck and sk in
(3.3.4), we are not indicating the dependence on L. Nonetheless, the interval [−L,L] is
critical to the definition, and the same function may have different Fourier coefficients on
different intervals. It is wholly possible to define Fourier coefficients on a “half” interval like
[0, L] or even on a general interval [a, b]; we will not really need such tools, though. Finally,
the “real” coefficients may be “complex” valued if f takes nonreal values; the point is that
in (3.4.2), we are integrating against the real-valued cosine and sine. Later we will consider
“complex” coefficients that arise from integrating against a complex exponential.

Now our question is if, given an integrable function f : [−L,L]→ C, the series

a0[f ]

2
+
∞∑
k=1

[
ak[f ] cos

(
kπx

L

)
+ bk[f ] sin

(
kπx

L

)]
converges for a given x, and, in particular, if it converges to f(x).
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This is where we finished on Wednesday, October 5, 2022.

We name this series.

3.4.2 Definition.

Let f : [−L,L] → C be integrable. The formal real Fourier series of f on
[−L,L] is the series

FS[f ](x) :=
a0[f ]

2
+
∞∑
k=1

[
ak[f ] cos

(
kπx

L

)
+ bk[f ] sin

(
kπx

L

)]
,

where ak[f ] and bk[f ] are defined in (3.4.2).

This is a “real” Fourier series because we are using the “real” coefficients ak[f ] and bk[f ].
Presently we will meet a “complex” Fourier series with coefficients defined differently.

This is a “formal” Fourier series because we are not saying anything about convergence
right now. Per Section 3.2, you should think of the symbol FS[f ](x) as denoting a sequence
of partial sums:

FS[f ](x) =

(
a0[f ]

2
+

n∑
k=1

[
ak[f ] cos

(
kπx

L

)
+ bk[f ] sin

(
kπx

L

)])
.

Certainly the terms of this sequence are always defined for any x in [−L,L] and any integer
n ≥ 1.

The notation FS[f ](x) is once again idiosyncratic and specialized to, more or less, our
book. I like it because it indicates a double dependency: the Fourier series depends on both
the function f and the value x at which we are evaluating it.

The calculation of a formal Fourier series is essentially an exercise in calculus: do some
integrals and slap them together into a series. In this course we will worry very much about
properties of Fourier series and not stress too much over the integration techniques that yield
their formulas.

3.4.3 Example.

Let f(x) = x. Find the real Fourier series for f on [−L,L].

Solution. We need to evaluate the integrals

ak[f ] =
1

L

∫ L

−L
x cos

(
kπx

L

)
dx and bk[f ] =

1

L

∫ L

−L
x sin

(
kπx

L

)
dx.

We need to compute ak[f ] for k ≥ 0 and bk[f ] for k ≥ 1. When k = 0, things are simpler, so
we first compute

a0[f ] =
1

L

∫ L

−L
x dx = 0.

A recurring theme in Fourier series calculation is do the k = 0 work separately from k 6= 0.
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Integrating by parts for k 6= 0, we have the antiderivatives∫ L

−L
x cos

(
kπx

L

)
dx =

L2

k2π2

[
cos

(
kπx

L

)
+
kπx

L
sin

(
kπx

L

)] ∣∣∣∣L
x=−L

and ∫ L

−L
x sin

(
kπx

L

)
dx =

L2

k2π2

[
sin

(
kπx

L

)
− kπx

L
cos

(
kπx

L

)] ∣∣∣∣L
x=−L

.

Note that these antiderivatives are only valid for k 6= 0.
Using the facts that

sin(±kπ) = 0 and cos(±kπ) = cos(kπ) = (−1)k,

we have

ak[f ] =
1

L

∫ L

−L
x cos

(
kπx

L

)
dx

=
1

L

(
L2

k2π2

)
[cos(kπ) + kπ sin(kπ)− cos(−kπ)− kπ(−1) sin(−kπ)]

=
L

k2π2
[(−1)k + kπ · 0− (−1)k + kπ · 0]

= 0

and

bk[f ] =
1

L

∫ L

−L
x sin

(
kπx

L

)
dx

=
1

L

(
L2

k2π2

)
[sin(kπ)− kπ cos(kπ)− sin(−kπ) + kπ(−1) cos(−kπ)]

=
L

k2π2
[0− kπ(−1)k − 0 + kπ(−1)(−1)k]

=
L

k2π2
[(−1)k+1kπ + kπ(−1)k+1]

= (−1)k+12L

kπ
.

By the way, we could have computed ak[f ] more quickly by noting that we were integrating
an odd function over the symmetric interval [−L,L], and such an integral is always 0.
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We conclude

FS[f ](x) =
2L

π

∞∑
k=1

(−1)k+1

k
sin

(
kπx

L

)
.

We are saying nothing right now about the convergence of this series. Indeed, none of the
familiar convergence tests from calculus look immediately applicable; the factor (−1)k+1

might make us think that this is an alternating series, but we still have to contend with the
factor sin(kπx/L). N

3.4.4 Example.

Let f(x) = |x|. What is FS[f ](x) on [−π, π]?

Solution. We need to compute

ak[f ] =
1

π

∫ π

−π
|x| cos(kx) dx and bk[f ] =

1

π

∫ π

−π
|x| sin(kx) dx.

This time we will use a little less brute force calculus and a little more cleverness.
Observe that gk(x) := |x| cos(kx) is even and hk(x) := |x| sin(kx) is odd:

gk(−x) = | − x| cos(−kx) = |x| cos(kx) = gk(x)

and
hk(−x) = | − x| sin(−kx) = −|x| sin(kx) = −hk(x).

Properties of integrals of even and odd functions over symmetric intervals then give∫ π

−π
|x| cos(kx) dx = 2

∫ π

0

|x| cos(kx) dx = 2

∫ π

0

x cos(kx) dx

and ∫ π

−π
|x| sin(kx) dx = 0.

Thus
bk[f ] = 0

and, for k 6= 0,

ak[f ] =
2

π

∫ π

0

x cos(kx) dx

=
2πk sin(πk) + 2 cos(πk)− 2

πk2

=
2(−1)k − 2

πk2
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=


0, k is even

− 4

πk2
, k is odd.

Last, for k = 0, we have

a0[f ] =
2

π

∫ π

0

x dx = π.

Thus on [−π, π], the Fourier series of f(x) = |x| is

FS[f ](x) =
a0[f ]

2
+
∞∑
k=1

ak[f ] cos(kx) + bk[f ] sin(kx) =
π

2
+
∞∑
k=1

ak[f ] cos(kx).

It is wholly reasonable to rewrite this series as

FS[f ](x) =
π

2
− 4

π

∞∑
j=0

1

(2j + 1)2
cos((2j + 1)x),

where we are now summing over only the odd integers. However, this representation may
be less transparent if we are trying to solve the heat equation with initial temperature
distribution f(x) = |x|; recall that to solve the IVP-BVP (3.2.2) with the initial temperature
in the form (3.2.1), we want to use the formal solution (3.2.3). It may be harder to read off
this formal solution from FS[f ] in the second form above, where we are only summing over
the odd integers. N

This is where we finished on Friday, October 7, 2022.

3.5. Complex Fourier series.

There is another way of writing Fourier series that often provides a cleaner and more compact
expression. Before delving into the issue of Fourier series convergence, it is worth exploring
this additional means of expression. This approach hinges on the notion of the complex
exponential.

3.5.1. The complex exponential.

3.5.1 Definition.
Let y be a real number. The complex exponential of y is

eiy := cos(y) + i sin(y).

The motivation for this definition comes from the power series definition of the exponen-
tial, which reads

ex =
∞∑
k=0

xk

k!
.
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Using the identity i2 = −1 and the Taylor series for sine and cosine, one can rearrange the
power series

∞∑
k=0

(iy)k

k!

into the sum cos(y) + i sin(y). The following are essential properties of the complex expo-
nential; proving them will be good practice for you.

3.5.2 Lemma.

(i) einπ = (−1)n for all integers n.

(ii) The function g(y) := eiαy is differentiable for all real α and g′(y) = iαeα(y). That is,

d

dy
[eiαy] = iαeiαy.

(iii) cos(y) =
eiy + e−iy

2

(iv) sin(y) =
eiy − e−iy

2i

(v) eiy = e−iy

3.5.2. Complex trigonometric polynomials.

With these essential facts about the complex exponential in hand, we will rewrite a trigono-
metric polynomial

f(x) :=
a0
2

+
n∑
k=1

[
akck(x) + bksk(x)

]
, ck(x) = cos

(
kπx

L

)
, sk(x) = sin

(
kπx

L

)
,

(3.5.1)
as a sum of complex exponentials. Put

ek(x) := eikπx/L,

so that
ck(x) =

ek(x) + e−k(x)

2
and sk(x) =

ek(x)− e−k(x)

2i
.

Then
n∑
k=1

[
akck + bksk

]
=

n∑
k=1

[
ak

(
ek + e−k

2

)
+ bk

(
ek − e−k

2i

)]
=

n∑
k=1

[(
ak
2

+
bk
2i

)
ek +

(
ak
2
− bk

2i

)
e−k

]
=

n∑
k=1

(
ak
2

+
bk
2i

)
ek +

n∑
k=1

(
ak
2
− bk

2i

)
e−k.

(3.5.2)

We will rewrite the second sum using the following “change of variables.”



3. Fourier Series 71

3.5.3 Lemma.
Let n ≥ 0 be an integer and let zk ∈ C for each integer k satisfying −n ≤ k ≤ −1. Then

−1∑
j=−n

zj =
n∑
k=1

z−k.

Proof. A rigorous proof uses induction on n, which we will not pursue. Instead, consider
the following formal proof:

−1∑
j=−n

zj = z−n + z−n+1 + · · ·+ z−2 + z−1 = z−1 + z−2 + · · ·+ z−(n−1) + z−n =
n∑
k=1

z−k.

The purpose of induction is to make the expression + · · ·+ above precise.
Last, consider the following “moral” proof. If f : [a, b] → C is integrable, then we can

substitute u = −x to calculate∫ b

a

f(x) dx = −
∫ −b
−a

f(−u) du =

∫ −a
−b

f(−u) du.

The sum identity of this lemma is just a “discrete” version of this “continuous” change of
variables.

To use this lemma on the sum
n∑
k=1

(
ak
2
− bk

2i

)
e−k,

we want to have
zk =

(
ak
2
− bk

2i

)
e−k,

so
zj =

(
a−j
2
− b−j

2i

)
ej.

Thus
−1∑

j=−n

(
a−j
2
− b−j

2i

)
ej =

−1∑
j=−n

zj =
n∑
k=1

zk =

(
ak
2
− bk

2i

)
e−k, (3.5.3)

which was our original sum.
Put (3.5.1), (3.5.2), and (3.5.3) together to conclude

f(x) =
a0
2

+
n∑
k=1

(
ak
2

+
bk
2i

)
ek +

−1∑
k=−n

(
ak
2
− bk

2i

)
e−k.
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We can compress this into one sum by introducing new coefficients. Put

γk :=



ak
2

+
bk
2i
, 1 ≤ k ≤ n

a0
2
, k = 0

ak
2
− bk

2i
, −n ≤ k ≤ −1.

We conclude

f(x) =
n∑

k=−n

γkek(x).

Here is a summary of our work.

3.5.4 Definition.
Let L > 0 and let n ≥ 0 be an integer. A function of the form

f(x) =
n∑

k=−n

γke
ikπx/L (3.5.4)

for γk ∈ C is a complex trigonometric polynomial.

Along the lines of what we remarked about “real” Fourier coefficients, what is “complex”
about this complex trigonometric polynomial is not that the coefficients γk can be complex
numbers, but that we are expanding the sum in (3.5.4) as a product of those coefficients
against the complex exponential.

3.5.5 Lemma.
Let n ≥ 0 be an integer and let a0, . . . , an, b1, . . . , bn, γ−n, . . . , γn ∈ C. Suppose that

a0
2

+
n∑
k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
=

n∑
k=−n

γke
ikπx/L

for −L ≤ x ≤ L. Then

γk =


(ak − ibk)/2, 1 ≤ k ≤ n

a0/2, k = 0

(ak + ibk)/2, −n ≤ k ≤ −1

and

ak =

{
2γ0, k = 0

γk + γ−k, 1 ≤ k ≤ n
and bk = i(γk − γ−k).
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Given a complex trigonometric polynomial, we can use the L2-inner product to extract
its coefficients. We will need the following orthogonality relations.

3.5.6 Theorem.
Let j and k be integers. Then

〈ej, ek〉 =

{
2L, j = k

0, j 6= k.

Proof. We compute

〈ej, ek〉 =

∫ L

−L
ej(x)ek(x) dx =

∫ L

−L
eijπx/Le−ikπx/L dx =

∫ L

−L
ei(j−k)πx/L dx.

If j = k, then this reduces to

〈ej, ek〉 =

∫ L

−L
1 dx = 2L.

For j 6= k, we antidifferentiate the complex exponential:

〈ej, ek〉 =

∫ L

−L
ei(j−k)πx/L dx =

ei(j−k)πx/L

i(j − k)π/L

∣∣∣∣x=L
x=−L

= 0.

I will leave the last calculation of that difference as an exercise for you.

Note how much easier this proof was than that of Theorem 3.3.5 (which, to be fair, we
didn’t really do). This is the power of the complex exponential: many calculations are much
more transparent than with sines and cosines!

Now suppose that f =
∑n

k=−nγkek is a complex trigonometric polynomial. Fix an integer
j satisfying −n ≤ j ≤ n. We calculate

〈f, ej〉 =

〈
n∑

k=−n

γkek, ej

〉
=

n∑
k=−n

〈γkek, ej〉 =
n∑

k=−n

γk 〈ek, ej〉 = γj(2L).

Thus we have uniquely determined the coefficients of f as

γj =
1

2L
〈f, ej〉 ,

which we package as the following result.

3.5.7 Theorem.
Let

f(x) =
n∑

k=−n

γkek(x).
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Then
γk =

1

2L
〈f, ek〉 .

3.5.3. Complex Fourier series.

The equivalence of real and complex trigonometric polynomials in Lemma 3.5.5 and the ex-
pression for the coefficients of a complex trigonometric polynomial in Theorem 3.5.7 motivate
the following definition for more general functions.

3.5.8 Definition.

Let f : [−L,L] → C be integrable. The complex Fourier coefficients of f on
[−L,L] are

f̂(k) :=
1

2L

∫ L

−L
f(x)e−ikπx/L dx. (3.5.5)

Just to be sure, the “complex” part of these coefficients is that they arise by integrating
against the complex exponential. Also, be careful in that (1) we have 2L, not L, in the
denominator, unlike with the real Fourier coefficients and (2) there is a negative sign in the
exponential. Don’t forget either of those parts of the formula!

This is where we finished on Monday, October 10, 2022.

The symmetric nature of a complex trigonometric polynomial might encourage us to
consider the series

∞∑
k=−∞

f̂(k)eikπx/L (3.5.6)

as the analogue of a Fourier series but with complex Fourier coefficients. This is exactly
the right idea, but we should explore some properties of this series. . .starting with what it
means.

Recall the real Fourier series FS[f ](x) of an integrable f : [−L,L] → C means at least
one, possibly two, things: the sequence of partial sums of this series and the limit of that
sequence, if the limit exists. For an integer n ≥ 1, we denote the nth partial sum of the real
Fourier series by

Sn[f ](x) :=
a0[f ]

2
+

n∑
k=1

[
ak[x]ck(x) + bk(x)sk(x)

]
.

The functions ck and sk were defined in (3.3.4). So, the symbol FS[f ](x) always means the
sequence

FS[f ](x) =
(
Sn[f ](x)

)
and maybe, if things go right, the limit

FS[f ](x) = lim
n→∞

Sn[f ](x).
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The whole point of Lemma 3.5.5 is that

Sn[f ](x) =
n∑

k=−n

f̂(k)eikπx/L. (3.5.7)

So, limn→∞ Sn[f ](x) exists if and only if

lim
n→∞

n∑
k=−n

f̂(k)eikπx/L

exists, in which case the two limits are the same. This suggests a definition for the series in
(3.5.6). Naturally, we’ll give it in a more abstract context first.

3.5.9 Definition.
For each integer k = 0,±1,±2, . . ., let zk ∈ C. The symbol

∞∑
k=−∞

zk

has the following dual meanings.

(i) The symbol
∑∞

k=−∞zk always denotes the sequence of “symmetric” partial sums
∑n

k=−nzk
for integers n ≥ 1, i.e.,

∞∑
k=−∞

zk =

(
n∑

k=−n

zk

)
.

(ii) The symbol
∑∞

k=−∞zk also denotes the limit of this sequence of “symmetric” partial
sums, if this limit exists. That is,

∞∑
k=−∞

zk = lim
n→∞

n∑
k=−n

zk, (3.5.8)

if the limit on the right exists; if the limit exists, we call its value the sum of the series.

The “symmetry” in the limit (3.5.8) can lead to some weird results of “doubly infinite”
series converging when we might expect them to diverge based on our calculus knowledge of
series. This limit should also remind you of one way of thinking about the improper integral
of a function f on (−∞,∞): sometimes it is the case that∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R
f(x) dx,

and sometimes not. You will have the pleasure of exploring some of these technical details
in forthcoming exercises.

Now we can return our attention to Fourier series.
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3.5.10 Definition.

Let f : [−L,L]→ C be integrable. The formal complex Fourier series of f on
[−L,L] is the series

∞∑
k=−∞

f̂(k)eikπx/L,

where f̂(k) is defined in (3.5.5). We interpret this series according to the meanings in
Definition 3.5.9.

There is no need to introduce new notation for the complex Fourier series. By (3.5.7),
the “symmetric” partial sums of the complex Fourier series are exactly the partial sums of
the real Fourier series. Thus, as sequences, the two kinds of series agree, and the discussion
preceding Definition 3.5.9 explains why one series converges if and only if the other does, in
which case both series converge to the same sum.

Incidentally, note the mismatch of sign in the complex exponential between the complex
Fourier coefficient and the complex Fourier series. The complex Fourier coefficient requires
us to integrate against e−ikπx/L; this is an artifact of the complex conjugation in the L2-
inner product. The complex Fourier series requires us to multiply against eikπx/L; this is a
consequence of the conversion from a real to a complex trigonometric polynomial in Lemma
3.5.5.

3.5.11 Example.

Find the complex Fourier series of f(x) = ex on [−π, π].

Solution. Of course, we could find the real Fourier series first, but let’s work just with
the complex Fourier coefficients as a learning exercise. For the complex series, we need to
evaluate

f̂(k) =
1

2π

∫ π

−π
f(x)e−ikπx/π dx =

1

2π

∫ π

−π
exe−ikx dx =

1

2π

∫ π

−π
e(1−ik)x dx.

We may antidifferentiate with the complex exponential just as we do with the real one to
find ∫ π

−π
e(1−ik)x dx =

e(1−ik)x

1− ik

∣∣∣∣π
x=−π

=
e(1−ik)π − e(1−ik)(−π)

1− ik
.

Here it is important that 1− ik 6= 0 for any integer k. This is in fact true for any real number
k, for if 1− ik = 0, then we can solve for k = 1/i = −i, which is definitely not real. In fact,
note that we calculated f̂(k) without singling out the case k = 0, as was necessary for the
real series examples.

We simplify
e(1−ik)π = eπe−ikπ = eπ(−1)k

and likewise e(1−ik)(−π) = e−π(−1)k. Thus

f̂(k) =
(−1)k[eπ − e−π]

2π(1− ik)
,
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and so the complex Fourier series of f on [−π, π] is
∞∑

k=−∞

(−1)k[eπ − e−π]

2π(1− ik)
eikx. N

3.6. Convergence of Fourier series.

We now have two expressions for the Fourier series of an integrable function f : [−L,L]→ C
on the interval [−L,L], the real series and the complex series. At a given x ∈ [−L,L], one
of these series converges if and only if the other does, in which case both series converge to
the same number. There’s no hard and fast rule for when you should use one of these series
instead of the other. The real series probably gives a more transparent (candidate for a)
solution to the heat equation IVP-BVP (3.2.2), but the complex series only requires us to
calculate one integral and to keep track of one kind of coefficient, not two.

Now that we know how to calculate Fourier series, we will ask questions about their
convergence. For a given function f , we want to determine two things in particular. Does
FS[f ](x) converge as a series for a given x? If so, does FS[f ](x) converge to f(x)? If we are
going to extract the solution to an IVP-BVP from the Fourier series for the initial temper-
ature distribution, we want to be sure that this Fourier series is a legitimate representation
for that distribution!

Here is one necessary condition to have FS[f ](x) = f(x) on all of [−L,L]. I claim that

FS[f ](−L) =
a0[f ]

2
+
∞∑
k=1

(−1)kak[f ] = FS[f ](L).

By “=” here I mean equality as a sequence of partial sums and not necessarily anything
about convergence. So, if FS[f ](x) does converge and equal f(x) for any x ∈ [−L,L], then
we must have

f(−L) = FS[f ](−L) = FS[f ](L) = f(L).

The restriction f(−L) = f(L) means that there are many functions with nicely defined
Fourier coefficients that cannot always be equal to their Fourier series.

On the other hand, this restriction is less burdensome than it might appear. In fact, we
argued right after (2.2.12) that if we can solve the IVP-BVP (3.2.2) with initial temperature
distribution f , then f is differentiable with

f(L) = f(−L) and f ′(L) = f ′(−L). (3.6.1)

So, we will first restrict our discussion of Fourier series convergence to functions satisfying
the “periodic” conditions above.

3.6.1. Riemann–Lebesgue lemmas.

You can (and will) show that the following is true. If f : [−L,L]→ C is integrable and if its
real Fourier coefficients ak[f ] and bk[f ] are nice enough that the series

∞∑
k=1

|ak[f ]| and
∞∑
k=1

|bk[f ]| (3.6.2)
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converge, then FS[f ](x) converges for each x ∈ [−L,L]. This will not tell us what the sum
of FS[f ](x) is, in particular whether or not it’s f(x), but it’s a start.

The next natural question is how we might guarantee the convergence of the series (3.6.2).
We learned many tests for series convergence in calculus; I claim that most (though not all)
of the time we really use one test above all others. Here it is; it works just as well for complex
numbers as it does real ones.

3.6.1 Theorem (Comparison test).

For each integer k ≥ 1, let zk ∈ C and let wk ≥ 0 such that |zk| ≤ wk and
∑∞

k=1wk
converges. Then

∑∞
k=1zk also converges.

To what shall we compare the Fourier coefficients ak[f ] and bk[f ]? Hopefully some num-
bers that add up to a convergent series! Working with both real coefficients ak[f ] and bk[f ]

will be tiresome, so let’s instead try to estimate the complex coefficients f̂(k). Whatever
we learn about f̂(k) could be translated to results on ak[f ] and bk[f ] using the formulas in
Lemma 3.5.5. Moreover, for simplicity, I will assume L = π in the following.

We have
2πf̂(k) =

∫ π

−π
f(x)e−ikx dx.

I put the factor of 2π on the left just to keep it off the integral. Let’s assume that f is
differentiable and satisfies the “periodic” conditions (3.6.1). To study the integral above, a
good idea is to integrate by parts; after all, we know about f ′ (but not the antiderivative of
f), and the exponential is easy to integrate (or differentiate). So, assume k 6= 0 for now and
take

u = f(x) dv = e−ikx dx

du = f ′(x) dx v =
e−ikx

−ik
.

Then we have ∫ π

−π
f(x)e−ikx dx =

f(x)e−ikx

−ik

∣∣∣∣x=π
x=−π

−
∫ π

−π
f ′(x)

e−ikx

−ik
dx.

This is where we finished on Wednesday, October 12, 2022.

We first use the identities

f(−π) = f(π) and e−ikπ = eikπ = (−1)k

to simplify

f(x)e−ikx

−ik

∣∣∣∣x=π
x=−π

=

(
− 1

ik

)[
f(π)e−ikπ− f(−π)eikπ

]
=

(
− 1

ik

)[
f(π)(−1)k− f(π)(−1)k

]
= 0.
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Thus
2πf̂(k) =

1

ik

∫ π

−π
f ′(x)e−ikx dx.

Suppose we add the assumption (meh, why not?) that f is twice-continuously differen-
tiable, i.e., f ′′ exists and is continuous. We haven’t talked about it, but if the heat IVP-BVP
(3.2.2) has a solution, then the initial temperature distribution actually has to be twice-
continuously differentiable. Exactly the same integration by parts argument as above, just
using f ′ and not f now, yields

2πf̂(k) =
1

(ik)2

∫ π

−π
f ′′(x)e−ikx dx. (3.6.3)

Now let us estimate. The triangle inequality for integrals gives∣∣2πf̂(k)
∣∣ =

∣∣∣∣ 1

(ik)2

∫ π

−π
f ′′(x)e−ikx dx

∣∣∣∣ ≤ 1

|ik|2

∫ π

−π
|f ′′(x)e−ikx| dx =

1

k2

∫ π

−π
|f ′′(x)| dx.

Since f ′′ is continuous, the integral
∫ π
−π|f

′′(x)| dx exists. Also, we have used the identities

|ik|2 = |i|2|k|2 = k2 and |eikx| = 1,

valid for all real numbers x and k.
We have proved an important result for L = π; I will state this for L > 0 in general and

encourage you to make the (mostly algebraic) changes in the arguments above to get the
following.

3.6.2 Lemma.

Let f ∈ C2([−L,L]) with f(−L) = f(L) and f ′(−L) = f ′(L). Then for all integers k 6= 0,
the complex Fourier coefficient f̂(k) satisfies

∣∣f̂(k)
∣∣ ≤ ( L

2π

∫ π

−π
|f ′′(x)| dx

)
1

k2
. (3.6.4)

This result is an example of a variety of estimates that are all called the Riemann–
Lebesgue lemma. Broadly, people use this terminology to refer to a result that implies
the vanishing of the Fourier coefficients. The estimate (3.6.4) implies

lim
k→∞

f̂(k) = lim
k→∞

f̂(−k) = 0

and, moreover (and more importantly), gives a sense of the “rate” of that decay: the Fourier
coefficients go to 0 like k−2 as k → ±∞.

We can use the estimate (3.6.4) and the formulas in Lemma 3.5.5 to show a similar
estimate for the real coefficients. Namely, if f ∈ C2([−L,L]) with f(−L) = f(L) and
f ′(−L) = f ′(L), then there is C > 0 such that

|ak[f ]| ≤ C

k2
and |bk[f ]| ≤ C

k2
(3.6.5)
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for k ≥ 1. This is exactly the sort of estimate that we want to use in conjunction with the
comparison test; recall that the “p-series”

∞∑
k=1

1

kp

converges if and only if p > 1. By (3.6.5), we can take p = 2 to see that the series
∑∞

k=1|ak[f ]|
and

∑∞
k=1|bk[f ]| converge.

All our work “sums up” to the following result.

3.6.3 Theorem.

Let f ∈ C2([−L,L]) with f(−L) = f(L) and f ′(−L) = f ′(L). Then FS[f ](x) converges
for all real numbers x.

3.6.2. Pointwise convergence.

The Riemann–Lebesgue lemma gives us very helpful conditions on a function f that yield
the convergence of its Fourier series FS[f ](x). However, knowing that a series converges is not
the same as knowing what a series converges to; indeed, most of the calculus tests that imply
convergence do not give formulas for the sum of the series. It turns out that the Fourier
series of much more general functions than those in Theorem 3.6.3 do converge for all x, and
they converge to “something” that closely resembles the original function. We will state this
result very carefully but not prove it; my opinion is that the proof (while not difficult) does
not teach us many new things about Fourier series.

The following picture describes the class of functions whose Fourier series always converge.

x

f(x)

1 2 3 4

1

2

3

Our experience in calculus teaches us that we should call the function f drawn above
“piecewise continuous.” Let’s tease out some nice properties of f .

1. f is defined on the entire interval [0, 4].

2. f is continuous at all points in [0, 4] except 2, 3, and 4.

3. f is differentiable at all points in [0, 4] except 1, 2, 3, and 4.

4. f is “well-behaved” at its jump discontinuities. The left and right limits

lim
ξ→x−

f(ξ) and lim
ξ→x+

f(ξ)
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exist at all points x in (0, 4). Of course, they are not equal at the points of discontinuity.
The limits at the endpoints,

lim
ξ→0+

f(ξ) and lim
ξ→4−

f(ξ),

also exist.

5. The derivative f ′ is defined at all points in [0, 4] except 1, 2, 3, and 4. Here’s its graph.

x

f(x)

1 2 3 4

1

2

3

6. The derivative is “mostly” continuous and has good left and right limits everywhere. That
is, f ′ is continuous on all of its domain except at finitely many points, and at all points x in
its domain, the limits

lim
ξ→x−

f ′(ξ) and lim
ξ→x+

f(ξ)

exist.

We can distill these specific properties of f into a general definition. First, it will be nice
to have notation for left and right limits:

f(x±) := lim
ξ→x±

f(ξ).

For example, with f graphed above, we have

f(1+) = f(1−) = 1, f(2−) = 2, and f(2+) = 3.

3.6.4 Definition.

A function f : [a, b]→ C is piecewise continuously differentiable on [a, b] if
the following hold.

(i) f is continuous and differentiable at all but finitely many points of its domain.

(ii) The limits f(x±) exist for all x in (a, b).

(iii) The limits f(a+) and f(b−) exist.
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(iv) The derivative f ′ is continuous at all but finitely many points of its domain (the
domain of f ′ need not be all of [a, b]). Since f is differentiable at all but finitely many
points of [a, b], this means that f ′ is defined and continuous at all but finitely many points
of [a, b].

(v) The limits f ′(x±) exist for all x in (a, b).

(vi) The limits f ′(a+) and f ′(b−) exist.

We can state a very precise result on the convergence of the Fourier series of a piecewise
differentiable function.

This is where we finished on Friday, October 14, 2022.

3.6.5 Theorem.

Suppose that f : [−L,L] → C is piecewise continuously differentiable. Then FS[f ](x)
converges for all x ∈ [L,L] with

FS[f ](x) =


f(x+) + f(x−)

2
, −L < x < L

f(−L+) + f(L−)

2
, x = ±L.

(3.6.6)

In other words, if f is piecewise continuously differentiable on [−L,L], then FS[f ](x)
converges to the average of the left and right limits of f at x for x in the open interval
(−L,L). At the endpoints, FS[f ](±L) converges to the average of the limit of f from the
right as x → −L and the limit of f from the left as x → L. (Incidentally, a piecewise
continuously differentiable function is integrable, so it makes sense to talk about its Fourier
coefficients and Fourier series.) We will not prove this theorem; its proof is neither terribly
difficult nor very quick (otherwise, we would prove it).

The first consequence of this theorem is that we can both relax the hypotheses of Theorem
3.6.3 and improve its result. I will let you prove this sometime soon.

3.6.6 Corollary.

Let f be continuous and piecewise continuously differentiable on [−L,L] and suppose that
f(−L) = f(L). Then FS[f ](x) = f(x) for all x ∈ [−L,L].

This corollary is a relaxation of Theorem 3.6.3 because we no longer need f to be twice-
continuously differentiable; we are not even assuming that f is differentiable on all of [−L,L].
It also strengthens Theorem 3.6.3 because we get more than just convergence: we get a
formula for the sum of the Fourier series. (And that is something that most of our calculus
convergence tests never provide.) Finally, note that the phrase “continuous and piecewise
continuously differentiable” is not redundant — take f(x) = |x| to see that f is continuous
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everywhere but only piecewise continuously differentiable due to the corner at x = 0.

3.6.7 Example.

Let

f(x) =

{
0, x < 0

1, x ≥ 0.

What is FS[f ](x) on [−1, 1]? Graph FS[f ].

Solution. We see “by inspection” that f is piecewise continuously differentiable on [−1, 1].
Specifically, f is continuous on [−1, 0) and (0, 1] with

f(0−) = lim
x→0−

f(x) = 0 and f(0+) lim
x→0+

f(x) = 1.

Hence
FS[f ](0) =

f(0+) + f(0−)

2
=

1 + 0

2
=

1

2
.

For −1 < x < 0 and 0 < x < 1, continuity gives f(x+) = f(x−) = f(x), thus

FS[f ](x) =
f(x+) + f(x−)

2
=

2f(x)

2
= f(x) =

{
0, −1 < x < 0

1, 0 < x < 1.

Last, for the endpoints, we have

f(−1+) = lim
x→−1+

f(x) = 0 and f(−1−) = lim
x→−1−

f(x) = 1,

thus
FS[f ](±1) =

f(−1+) + f(1−)

2
=

0 + 1

2
=

1

2
.

All together,

FS[f ](x) =



1/2, x = −1

0, −1 < x < 0

1/2, x = 0

1, 0 < x < 1

1/2, x = 1.

Here are graphs of f and FS[f ].

x

f(x)

x

f(x)

1/2

N
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If the Fourier series for f converges on [−L,L], then the series necessarily converges on
R, since the series is 2L-periodic. Thus we sometimes speak of FS[f ] as a function on R even
though f is only defined on [−L,L].

The pointwise convergence of Fourier series can turn out quite badly if we relax the
“differentiable” part of the “piecewise continuously differentiable” requirement of Theorem
3.6.5. Deep results of twentieth-century Fourier analysis (I emphasize the century because
Fourier series have been around a lot longer than that, so it took a long time to figure this
out) show the following.

Bad Thing 1. A function can be integrable on [−L,L] and yet its Fourier series diverges22

at all x in [−L,L]. Obviously, such a function cannot be piecewise continuously differentiable.

Bad Thing 2. Given any sequence of points (xk) in [−L,L], it is possible to find a contin-
uous function whose Fourier series diverges at each xk.

Thus the (piecewise continuous) differentiability condition really is essential to maintain
control over pointwise convergence.

This is where we finished on Monday, October 17, 2022.

3.6.3. Convergence in the mean.

In the following, suppose that f : [−L,L] → C is integrable. As before, we denote the nth
partial sum of the Fourier series FS[f ](x) for f on [−L,L] by Sn[f ](x). This means three
things.

1. FS[f ](x) always means the sequence
(
Sn[f ](x)

)
of partial sums.

2. FS[f ](x) converges as a series if and only if the limit limn→∞ Sn[f ](x) exists, in which
case FS[f ](x) also denotes the (complex) number limn→∞ Sn[f ](x).

3. FS[f ](x) = f(x) if and only if limn→∞ Sn[f ](x) = f(x).

We know that it is easier for limn→∞ Sn[f ](x) to exist than for limn→∞ Sn[f ](x) to exist
and equal f(x). For the existence, we just need f to be piecewise continuously differentiable
on [−L,L]; for existence and equality, we need f to be piecewise continuously differentiable
on [−L,L] and continuous on (−L,L) with f(−L) = f(L). Perhaps, though, we should not
be too attached to “pointwise” convergence. If we are thinking about the heat equation on
a rod or circular wire, does it really matter if we are “off” in our temperature predictions for
one or two (or finitely many) points on the object, so long as “in general” or “on average”
our predictions are correct? Here we will relax our standards and our definition of = to see
some other ways of comparing a Fourier series to the underlying function.

Instead of (or in addition to) working pointwise, x by x, a good question to ask is whether
the entire function Sn[f ] is, “on average,” a good approximation to the entire function f .
22 That is, FS[f ](x) fails to converge as a series.
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Recall from calculus that the average value of an integrable function g : [a, b]→ C is

1

b− a

∫ b

a

g(x) dx. (3.6.7)

I say that Sn[f ] is, on average, a good approximation to f if, on average, |Sn[f ]− f | is close
to 0. And so Sn[f ] approximates, on average, f well on [−L,L] if

1

2L

∫ L

−L
|f(x)− Sn[f ](x)| dx (3.6.8)

is close to 0. Since we will always work on the same interval [−L,L], and since 1/2L is a
constant factor, the integral above in (3.6.8) will be small if and only if the quantity∫ L

−L
|f(x)− Sn[f ](x)| dx

is small.
We surely cannot expect this integral to be zero even for large n, and so we will have

to accept some errors. Hopefully it is reasonable that we can allow ourselves to be less
concerned with small errors and more concerned with large errors. Note that if z ∈ C with
|z| < 1, then |z|r < |z| < 1 for any r > 1. That is, if |z| is “small,” then |z|r will be “smaller”
for r > 1. Perhaps the simplest r > 1 for the purposes of multiplication is the integer r = 2.
(I mean, would you rather calculate |z|1.5 or |z|2?)

So, one way to measure how well Sn[f ] approximates, on average, f over [−L,L] and give
more “weight” to large errors and less to small errors is to measure the difference Sn[f ]− f
by the quantity ∫ L

−L
|Sn[f ](x)− f(x))|2 dx.

We will actually make one change to this quantity. Scaling (multiplying) f be a constant α
just scales the Fourier coefficients of f by α and likewise the Fourier series. But∫ L

−L
|Sn[αf ](x)− αf(x))|2 dx = α2

∫ L

−L
|Sn[f ](x)− f(x))|2 dx.

For this reason, we introduce a square root.

3.6.8 Definition.

Let g : [−L,L]→ C be integrable. The L2-norm of g on [−L,L] is

‖g‖ :=

(∫ L

−L
|g(x)|2 dx

)1/2

. (3.6.9)

Incidentally, it is a property of the Riemann integral, which we take for granted here,
that if g : [−L,L] → C is integrable, then so is |g|r for any r > 0, so the integral in (3.6.9)
is always defined. As with the L2-inner product, the L2 in the name of the norm is not
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connected to the L in the interval [−L,L]. The L2-inner product and norm are, however,
intimately related:

‖f‖ =
√
〈f, f〉.

This relation is a key step in establishing the following two facts, which we will not prove
here. The first says that measured in the L2-norm, the Fourier series for f is an excellent
approximation “on average” to f .

3.6.9 Theorem.

Let f : [−P, P ]→ C be integrable. Then

lim
n→∞

‖f − Sn[f ]‖ = 0. (3.6.10)

The chief advantage of Theorem 3.6.9 over our prior pointwise results is that it requires
only integrability, no continuity, differentiability, or periodicity. After all, Fourier coefficients
are defined for any integrable function f , so it should be satisfying that we can somehow
measure Fourier convergence with only integrability as a hypothesis.

The convergence in the limit (3.6.10) often goes by a special name.

3.6.10 Definition.

If (fk) is a sequence of integrable functions on [−L,L] and f : [−L,L] → C is also inte-
grable with

lim
k→∞
‖f − fk‖ = 0,

then we say that (fk) converges to f in the mean.

So, per Theorem 3.6.9, the partial sums of the (real or complex) Fourier series of an
integrable function f always converge to f in the mean. Nonetheless, convergence in the
mean of a Fourier series to its does not imply pointwise convergence. First, it may be the
case that the series FS[f ](x) diverges for some x. Second, it may be the case that the series
FS[f ](x) converges but not to f(x); this certainly happens at x = ±L whenever FS[f ](±L)
converge and f is not 2L-periodic. A third nasty situation is that there exist integrable
functions f and g on [−L,L] such that f̂(k) = ĝ(k) for all k, FS[f ](x) converges for all x to
f(x), but f(x) 6= g(x) for some x. Thus the Fourier series representation of a function will
not uniquely determine that function! I’ll ask you to suss this out as an exercise. So, not
only can we lose all control over the behavior of a Fourier series without the assumption of
piecewise continuity and differentiability (and even then the Fourier series may not converge
pointwise back to the original function at all points), we do not even have a one-to-one and
onto pairing of functions and Fourier coefficients.

We conclude on a more optimistic note. Theorem 3.6.9 tells us that, “on average” and
“penalizing large errors more than small ones,” the nth partial sums of the Fourier series of
f are very good approximations to f when n is large. In fact, they are the best possible
approximations of f by trigonometric polynomials, at least if “best” is measured by “how
small the difference is with respect to the L2-norm.”
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3.6.11 Theorem.

Let f : [−L,L]→ C be integrable. The nth partial sum Sn[f ] of the Fourier series for f is
the best approximation to f by an nth degree trigonometric polynomial in the L2-norm on
[−L,L]. That is, if γ0, γ±1, . . . , γ±n ∈ C and g(x) :=

∑n
k=−nγke

ikπx/L, then

‖f − Sn[f ]‖ ≤ ‖f − g‖ .

This is where we finished on Wednesday, October 19, 2022.

3.6.4. Summing up.

So what? Given all the ways that Fourier series can converge, or fail to converge, or only
sort-of converge, what should we do? It depends. My personal opinion is that you should
use the type of convergence that (1) solves your problem and (2) gives you the answer that
you want while working (3) in the most convenient way possible. Sometimes you will only
get (1) and not (2), or (2) and not (1). Competence with (3) comes with experience.

3.7. Solving differential equations with Fourier series.

3.7.1. The heat equation on the circular wire.

We return to the heat equation on a circular wire:
ut = uxx, −L ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x), −L ≤ x ≤ L

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t), t ≥ 0.

(3.7.1)

If f is integrable, we know how to compute its formal Fourier series:

FS[f ](x) =
a0[f ]

2
+
∞∑
k=1

[
ak[f ] cos

(
kπx

L

)
+ bk[f ] sin

(
kπx

L

)]
,

where, as always,

ak[f ] =
1

L

∫ L

−L
f(x) cos

(
kπx

L

)
dx and bk[f ] =

1

L

∫ L

−L
f(x) sin

(
kπx

L

)
dx.

Since f is only integrable right now, we can’t say anything about the convergence of FS[f ](x),
and so we think of it just as a sequence of partial sums.

Our experience when f was a trigonometric polynomial (in which case FS[f ](x) = f(x)
for all x) suggests that we try to construct a solution to (3.7.1) as

u(x, t) =
a0[f ]

2
+
∞∑
k=1

e−(kπ/L)
2t

[
ak[f ] cos

(
kπx

L

)
+ bk[f ] sin

(
kπx

L

)]
. (3.7.2)
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Right now, the expression above is just a formal series, i.e., a sequence of partial sums. We
need to figure out if this sequence converges for a given pair (x, t). Then, if u(x, t) is defined,
is u sufficiently differentiable, and does u actually solve (3.7.1)?

For the remainder of this discussion, we are going to make several big assumptions that
will cut down on the amount that we need to write but that won’t actually affect any of the
deeper math. Assume that L = π and f is odd. Then ak[f ] = 0 for all k. Also, write bk
instead of bk[f ]. Then

FS[f ](x) =
∞∑
k=1

bk sin(kx) and u(x, t) =
∞∑
k=1

bke
−k2t sin(kx).

Let’s talk about the convergence of the formal series u(x, t). At t = 0 we have

u(x, 0) =
∞∑
k=1

bk sin(kx) = FS[f ](x).

So, convergence of the series u(x, 0) is the same as convergence of the series FS[f ](x). The-
orem 3.6.5 gives us sufficient conditions for FS[f ](x) to converge: we want f to be piecewise
continuously differentiable on [−π, π]. But we also want u to meet the boundary condition
u(x, 0) = f(x) for −π ≤ x ≤ π. Thus we really want f(x) = FS[f ](x) for all x ∈ [−π, π]. To
get this equality for x ∈ (−π, π), Theorem 3.6.5 tells us that f should be continuous as well
as piecewise continuously differentiable23 on [−π, π]. Since FS[f ](−π) = FS[f ](π), we also
want f(−π) = f(π). So, we add that condition to our wish list.

To summarize, u is defined at (x, 0) and satisfies u(x, 0) = f(x) if f is continuous and
piecewise continuously differentiable on [−π, π] with f(π) = f(−π). This is a lot more than
what we started out assuming, which was that f was just integrable. Here’s the life lesson:
it’s a lot easier to write down a formal solution to (3.7.1) than it is to check that it converges!

What happens for t > 0? Here the factor of e−k
2t comes into play. To check that the

series
∑∞

k=1bke
−k2t sin(kx) converges, we’ll start with the comparison test. We estimate

|bke−k
2t sin(kx)| ≤ Ce−k

2t, C :=
1

π

∫ π

−π
|f(x)| dx.

Here we used | sin(kx)| ≤ 1 and the triangle inequality for integrals:

|bk| =
∣∣∣∣ 1π
∫ π

−π
f(x) sin(kx) dx

∣∣∣∣ ≤ 1

π

∫ π

−π
|f(x) sin(kx)| dx ≤ 1

π

∫ π

−π
|f(x)| dx. (3.7.3)

The first inequality above is the triangle inequality, and it is valid, by the way, when f is just
integrable; we don’t need continuity or piecewise continuous differentiability to get (3.7.3).

So, it suffices to show that the series
∑∞

k=1e
−k2t converges. I claim that it does, as long

as t > 0. You can check that with the ratio test or maybe the comparison test combined
with a geometric series. This is due to the fact that e−k

2t gets really small as k →∞.
23 This is not redundant! Think about f(x) = |x|, which is continuous and piecewise continuously differen-

tiable. However, this f is not continuously differentiable.
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We conclude that u(x, t) is defined for all x ∈ [−π, π] and t > 0, and we only needed f
to be integrable for this to work out. The t = 0 case is harder, and demands more of f ,
because we don’t have that really small factor of e−k

2t to help.
Now that u(x, t) is always defined, is it differentiable, and, in particular, does it satisfy

the heat equation? Here is what we probably want to say:

ut(x, t) =
∂

∂t

∞∑
k=1

bke
−k2t sin(kx) =

∞∑
k=1

∂

∂t

[
bke
−k2t sin(kx)

]
=
∞∑
k=1

−k2bke−k
2t sin(kx)

and

uxx(x, t) =
∂2

∂x2

∞∑
k=1

bke
−k2t sin(kx) =

∞∑
k=1

∂2

∂x2
[
bke
−k2t sin(kx)

]
=
∞∑
k=1

−k2bke−k
2t sin(kx).

The last equalities in each chain above were easy to compute since the terms of the sum,
bke
−k2t sin(kx), are artifacts of the original separation of variables approach from long ago,

and so their x- and t-derivatives should be straightforward. The sticky point is the inter-
change of derivative and sum. Why are

∂

∂t

∞∑
k=1

=
∞∑
k=1

∂

∂t
and

∂2

∂x2

∞∑
k=1

=
∞∑
k=1

∂2

∂x2

valid? If this is permissible, then we do have ut = uxx, as desired.
This should remind you of differentiating under the integral, which took some work but

more or less ended nicely for all involved. The integral is, from a certain point of view, an
infinite sum, and if the integrand is nice enough, we can pass a derivative through the integral.
The same is true for series, and it’s a tool called the WeierstrassM -test. Unfortunately, that
tool is a bit more technical than Leibniz’s rule (at least, I think so), and I don’t think any
deep discussion of it here will convince you that interchanging sum and derivative is valid
unless you were already convinced. I’ll do it in an appendix, though.

So, let me just tell you the good news: u as defined above is sufficiently differentiable for
all x ∈ [−π, π] and all t > 0, and so u solves the heat equation on the region

D :=
{

(x, t) ∈ R2
∣∣ −π ≤ x ≤ π, t > 0

}
.

That is, interchanging sum and derivative is valid at all (x, t) ∈ D. Everything hinges on
that incredibly small factor e−k

2t, which facilitates the invocation of the Weierstrass M -test,
from which so many good things flow. This is a remarkable “smoothing” property of the
series defining u at t > 0; even though the initial data may not be differentiable anywhere
(integrable 6=⇒ differentiable), nonetheless as soon as time jumps beyond t = 0, the series u
converges and is differentiable!

This is where we finished on Monday, October 24, 2022.

What happens at t = 0? This is a bit worse. The problem is that the factor of e−k
2t is

no longer present to make things really small. There are two ways of proceeding here.
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The first option is overkill. If we take the initial data f to be exceptionally nice, then we
can ensure that u is differentiable on the larger region

D0 :=
{

(x, t) ∈ R2
∣∣ −π ≤ x ≤ π, t ≥ 0

}
,

which is to say, that interchanging sum and derivative is valid for all (x, t) ∈ D0. Here is
what “exceptionally nice” means: f should be four times continuously differentiable, i.e.,
f ∈ C4([−π, π]), and satisfy the “periodic” conditions f (s)(−π) = f (s)(π) for s = 0, 1, 2,
3. If f has these properties, then the same integration by parts argument that gave the
Riemann–Lebesgue estimate in Lemma 3.6.2, now repeated more times, will show

|f̂(k)| ≤ C

k4
, k 6= 0.

This leads to an estimate of the form |bk| ≤ C/k4, and so the terms in the series u(x, t) =∑∞
k=1bke

−k2t sin(kx) all satisfy

|bke−k
2t sin(kx)| ≤ C

k4

for all (x, t) ∈ D0. The point is that now we have better control at time t = 0, not just t > 0.
For subtle reasons, the factor of k−4 is really important; k−3 just won’t cut it.

However, these requirements on f are excessive. If you believe my nebulous references
to the Weierstrass M -test, we could get convergence and differentiability of u on D just by
having f continuous and piecewise continuously differentiable with f(−π) = f(π). Should we
really require so much more of f and rule out initial temperature distributions that worked
before just to control time t = 0? Maybe not.

Here is the second option: give up and ask a different question. Instead of demanding
that u solve the IVP-BVP on all of D0, we will just ask that u solve it on D but that an
extra “continuity condition” of the form

lim
(ξ,t)→(x,0)

u(ξ, t) = u(x, 0)

hold. This limit says that u evolves from its initial state u(x, 0) = f(x) in a continuous
manner in space and time, but maybe not in a differentiable manner when we pass from
time t = 0 to time t > 0. To get this limit, remarkably, all we need is that f be piecewise
continuously differentiable, which is what we were assuming before. This sort of thing
happens a lot in math: we want to solve a problem in a very specific way, we discover that
we can get part of the solution easily and the rest with more difficult, and so we change our
goals and compromise.

The following theorem is a summary of all our hard work on the heat equation.

3.7.1 Theorem.

Let f : [−L,L] → C be integrable and let ak[f ] and bk[f ] be its real Fourier coefficients.
For −L ≤ x ≤ L and t ≥ 0, define the formal series u(x, t) by

u(x, t) :=
a0[f ]

2
+
∞∑
k=1

e−(kπ/L)
2t

[
ak[f ] cos

(
kπx

L

)
+ bk[f ] sin

(
kπx

L

)]
. (3.7.4)
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Then the following hold.

(i) The series (3.7.4) converges to an infinitely differentiable function u on the region
D =

{
(x, t) ∈ R2

∣∣ −L ≤ x ≤ L, t > 0
}
and satisfies{

ut = uxx, −L ≤ x ≤ L, t > 0

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t), t > 0.
(3.7.5)

(ii) If f is continuous and piecewise continuously differentiable on [−L,L] with f(−L) =
f(L), then the series (3.7.4) converges to a continuous function on the larger region D0 ={

(x, t) ∈ R2
∣∣ −L ≤ x ≤ L, t ≥ 0

}
and satisfies

u(−L, 0) = u(L, 0), u(x, 0) = f(x), −L ≤ x ≤ L,

and
lim

(ξ,t)→(x,0)
u(ξ, t) = u(x, 0), −L ≤ x ≤ L.

This function u is still infinitely differentiable on D and satisfies (3.7.5). However, u may
not be differentiable on D0.

3.7.2. The complex Fourier series for the circular heat equation.

We tended to work with real Fourier series when solving the heat equation’s IVP-BVP,
as those real series lend themselves naturally to “series solutions” for u. We could have
worked just as well with complex Fourier series, except the series solution for u would involve
summing from−∞ to∞, and summing from 1 to∞ is bad enough. Nonetheless, the complex
series is, as we’ve noticed, sometimes more useful (and sometimes less) than the real series,
so let’s revisit the formal solution to the heat equation as a complex series. Take L = π for
simplicity. Then a reasonable candidate for the solution to

ut = uxx, −π ≤ x ≤ π, t ≥ 0

u(x, 0) = f(x), −π ≤ x ≤ π

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ≥ 0

(3.7.6)

is

u(x, t) =
∞∑

k=−∞

f̂(k)e−k
2teikx. (3.7.7)

If you think carefully about this series just as a formal series (= sequence of partial sums),
you should see that it’s the same as the “real” series (3.7.2). And as with that real series,
the convergence and differentiability of (3.7.7) is fraught with peril.

Let’s not think about convergence anymore. One advantage of (3.7.7), I think, is that it
looks a lot like a Fourier series. Say we freeze time t and put

v(x) := u(x, t).
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We can think of t as a parameter in v. Then (3.7.7) says that

v(x) =
∞∑

k=−∞

f̂(k)e−k
2teikx. (3.7.8)

If the formal series above actually converges, then v is a function and (3.7.8) is its Fourier
series expansion, and in particular

v̂(k) = f̂(k)e−k
2t.

I think we can see this from (3.7.7). If t is fixed, then the Fourier coefficients of u(·, t)
should be f̂(k)e−k

2t. Let’s make this precise.

3.7.2 Definition.
Let I ⊆ R be an interval. Suppose that u is a function defined on the region{

(x, t) ∈ R2
∣∣ x ∈ [−L,L], t ∈ I

}
.

Suppose that for some t ∈ I, the map x 7→ u(x, t) is integrable on [−L,L]; call this map
u(·, t). Then the kth spatial Fourier coefficient of u(·, t) is

û(k, t) :=
1

2L

∫ L

−L
u(x, t)e−ikπx/L dx.

We say “spatial” because we are integrating in the spatial variable x, not the temporal
variable t.

Then our work above says the following. If u solves the IVP-BVP (3.7.6), then

û(k, t) = f̂(k)e−k
2t. (3.7.9)

Here it should be understood that L = π. It took us a lot of work to reach this point. Could
we have gotten there faster? I say yes, if we ask the right question: what can we learn about
the Fourier coefficients û(k, t) of a solution u to (3.7.6)?

The first thing to note is that if ut = uxx, then we can take Fourier coefficients of ut and
uxx according to Definition 3.7.2. We get

ût(k, t) =
1

2π

∫ π

−π
ut(x, t)e

−ikx dx and ûxx(k, t) =
1

2π

∫ π

−π
uxx(x, t)e

−ikx dx, (3.7.10)

and since ut = uxx, we have
ût(k, t) = ûxx(k, t). (3.7.11)

We want to use this equality learn about û(k, t).
Look at the structure of the integrals in (3.7.10). The variable of integration is always

x, but we are taking different kinds of derivatives. In the integral for ût, it’s, of course, a



3. Fourier Series 93

t-derivative. This should call to mind Leibniz’s rule. Let’s assume24 that the solution u to
(3.7.6) is nice enough that we can interchange integral and derivative to get∫ π

−π
ut(x, t)e

−ikx dx =
∂

∂t

[∫ π

−π
u(x, t)e−ikx dx

]
and thus

ût(k, t) =
∂

∂t

[
1

2π

∫ π

−π
u(x, t)e−ikx dx

]
=

∂

∂t
[û(k, t)]. (3.7.12)

We have made û(k, t) appear!
Now look at the other integral:

∫ π
−πuxx(x, t)e

−ikx dx. We are differentiating and integrat-
ing with respect to the same variable, x. We have done this before, specifically in obtaining
Lemma 3.6.2. If we put, again, v(x) = u(x, t) for time t fixed, then

ûxx(x, t) =
1

2π

∫ π

−π
v′′(x)e−ikx dx,

and if we play our cards right, we can integrate by parts here.
Specifically, we need the following result, which is really just a generalization of the work

preceding Lemma 3.6.2.

3.7.3 Lemma.

Let g : [−π, π]→ C be r-times continuously differentiable and suppose that

g(s)(−π) = g(s)(π) for s = 0, . . . , r − 1.

Then
ĝ(s)(k) = (ik)sĝ(k) for each s = 0, . . . , r.

This lemma can be generalized to functions on [−L,L], but then a factor of L would
appear in the expression for ĝ(s).

We are assuming that u solves (3.7.6). The boundary conditions allow us to apply this
lemma with r = 2 (and t fixed) to get

ûxx(k, t) = (ik)2û(k, t) = −k2û(k, t). (3.7.13)

Again, û(k, t) appears!

This is where we finished on Wednesday, October 26, 2022.

Now, (3.7.11) says that we can equate (3.7.12) and (3.7.13). We get

∂

∂t
[û(k, t)] = −k2û(k, t).

24 We are working backwards, as one often does in solving equations. We have assumed that u solves (3.7.6)
and we want to learn about its Fourier series. We may as well assume anything else that helps; what’s the
worst that’s going to happen?
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Believe it or not, this is an ODE for û(k, t) in the independent variable t with k as a param-
eter. To see this more clearly, put w(t) := û(k, t). Then we have

w′(t) = −k2w(t).

This is an exponential growth (or decay) kind of equation, and so its solution is

w(t) = w(0)e−k
2t.

I have intentionally put w(0) as a factor above, not an arbitrary constant C. And so

û(k, t) = w(t) = w(0)e−k
2t = û(k, 0)e−k

2t.

To calculate û(k, 0), we use the initial condition u(x, 0) = f(x) from the IVP-BVP (3.7.6)
to get û(k, 0) = f̂(k). And so

û(k, t) = f̂(k)e−k
2t,

exactly as we predicted in (3.7.9).
Here is why this is so important. Before, we took an incredibly long time to come up

with the formal solution (3.7.7). Now, by using Definition 3.7.2, Lemma 3.7.3, and a little
algebra and ODE, we got the Fourier coefficients of u very quickly. Let’s strip away all the
narration above and symbol-push just to see how it all came together:

ut = uxx =⇒ ût(k, t) = ûxx(k, t)

=⇒ ∂t[û](k, t) = (ik)2û(k, t)

=⇒ ∂t[û](k, t) = −k2û(k, t)

=⇒ û(k, t) = û(k, 0)e−k
2t

=⇒ û(k, t) = f̂(k)e−k
2t if u(x, 0) = f(x).

Here I hope it’s okay that I’m writing

∂t =
∂

∂t
.

3.7.3. Formal Fourier series solutions to PDE and ODE.

If all we care about is getting a formula for the Fourier coefficients of a solution to a differential
equation, we can do that pretty quickly now.

3.7.4 Example.

Suppose that u = u(x, t) solves
ut = uxx − u, −π ≤ x ≤ π, t ≥ 0

u(x, 0) = f(x), −π ≤ x ≤ π

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ≥ 0.

Find the Fourier coefficients of u and write u as a formal Fourier series
∑∞

k=−∞û(k, t)eikx.
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Solution. Grind. It. Out.

ut = uxx − u =⇒ ût(k, t) = ûxx − u(k, t)

=⇒ ∂t[û](k, t) = ûxx(k, t)− û(k, t)

=⇒ ∂t[û](k, t) = (ik)2û(k, t)− û(k, t)

=⇒ ∂t[û](k, t) = −k2û(k, t)− û(k, t)

=⇒ ∂t[û](k, t) = −(k2 + 1)û(k, t)

=⇒ û(k, t) = û(k, 0)e−(k
2+1)t

=⇒ û(k, t) = f̂(k)e−(k
2+1)t.

The formal Fourier series for u is therefore
∞∑

k=−∞

û(k, t)eikx =
∞∑

k=−∞

f̂(k)e−(k
2+1)teikx.

For t > 0, we probably expect this sum to converge due to the nice and small factor of
e−(k

2+1)t. At t = 0, matters become more delicate and we would need further knowledge of
f (which here, I guess, we are presuming is integrable, but maybe not much more). N

The work above is formal, which in mathematics means “doing manipulations that look
right but may be unjustified.” Formal analysis is highly useful; it shows you what your
solution probably looks like, if a solution exists. However, we worked backwards above: we
assumed the problem had a solution, and we found its Fourier series. We would have to do
more work to explain why this Fourier series converges.

While we have many methods available to solve ODE (and definitely do not need Fourier
series to do so), we can deploy the formal techniques above on problems involving functions
of only one variable.

3.7.5 Example.

Use Fourier series to find all (formal) solutions to the ODE

y′′ + y = g(x).

What do you learn about g along the way?

Solution. We take the Fourier coefficients of both sides and see what happens:

y′′ + y = g(x) =⇒ ŷ′′ + y(k) = ĝ(k)

=⇒ ŷ′′(k) + ŷ(k) = ĝ(k)

=⇒ (ik)2ŷ(k) + ŷ(k) = ĝ(k)

=⇒ −k2ŷ(k) + ŷ(k) = ĝ(k)

=⇒ (1− k2)ŷ(k) = ĝ(k).

Of course, now we want to divide by 1 − k2 and solve for ŷ(k) in terms of ĝ(k). However,
something new enters the problem: 1− k2 = 0 if k = ±1.



3. Fourier Series 96

This leads to a requirement on g, or a “solvability condition” for the ODE: we need

ĝ(±1) = (1− (±1)2)ŷ(±1) = 0.

This should feel weird, possibly unfair. In ODE, we learned that we could solve y′′ + y =
g(x) for many g, possibly using undetermined coefficients or annihilators if g had a special
form, and otherwise throwing ourselves on the mercy of the dreaded method of variation of
parameters. We surely did not talk about Fourier coefficients and the need for ĝ(±1) = 0.
So why is this restriction showing up here? Recall Lemma 3.7.3: to have ŷ′′(k) = (ik)2, we
need

y(−π) = y(π) and y′(−π) = y′(π). (3.7.14)

That is, if we want our solution y to be nice enough for these Fourier manipulations to be
valid, y needs to satisfy the boundary conditions (3.7.14). This is assuming rather more on
y than just that y solves an ODE; in fact, an ODE with boundary conditions is “harder” to
solve than an ODE with initial conditions!

In any case, for y 6= ±1, we have

ŷ(k) =
ĝ(k)

1− k2
,

while for k = ±1, we have no information about ŷ(±1). The formal Fourier series for y is
then

∞∑
k=−∞

ŷ(k)eikx =
∞∑

k=−∞

ĝ(k)

1− k2
eikx + ŷ(−1)e−ix + ŷ(1)eix.

Here I am assuming ĝ(±1) = 0 and taking the controversial position that 0/0 = 0 so that

ĝ(±1)

1− (±1)2
=

0

0
= 0,

purely for notational convenience.
With this in mind, put

y0(x) :=
∞∑

k=−∞

ĝ(k)

1− k2
eikx,

and let me reiterate that this is a formal sum that may or may not converge. Then we expect
that the solution y is

y(x) = y0(x) + ŷ(−1)e−ix + ŷ(1)eix.

This should look very familiar. We know that taking e±ix solve the homogeneous problem
y′′ + y = 0, and that all solutions to y′′ + y = g(x) are the sum of a particular solution
to the nonhomogeneous problem and a linear combination of solutions to the homogeneous
problem. Here ŷ(−1)e−ix + ŷ(1)eix is a linear combination of homogeneous solutions, with
ŷ(±1) as arbitrary coefficients. N

This is where we finished on Friday, October 28, 2022.
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4. The Wave Equation

The wave equation for a function u = u(x, t) reads

utt = c2uxx.

This equation models, among other things, the displacement of a plucked one-dimensional
string from equilibrium. Imagine that the string is L units long and at rest is stretched
horizontally as in the picture below.

x

L

rest

For 0 ≤ x ≤ L, the value u(x, t) will be the vertical displacement at time t of the point
on the string that was originally at position x on the horizontal axis. Here I have drawn the
plucked string at some time t > 0; I’ve imagined that the left and right ends (x = 0 and
x = L) have remained fixed on the horizontal axis, as often happens when you’re plucking
strings.

x

u(x, t)

L

t > 0

I am also imagining that the string moves only vertically, i.e., its motion is constrained to
a two-dimensional plane that passes through the horizontal axis. The string can move “up
and down” but not “in and out” or “left and right.”

The parameter c > 0 that appears in the wave equation is the result of a rescaling and
nondimensionalization of the “real” problem that the displacement of the string solves, per
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Newton’s law. We could further rescale the problem so that we just study utt = uxx, much
like we did with the heat equation (which often reads ut = κuxx, not ut = uxx). However,
I think it will be more evocative later for us to keep c in play and see how it appears in
solutions.

4.1. Formal solutions to the wave equation via Fourier series.

A reasonable boundary value problem for the wave equation reads{
utt = c2uxx, 0 ≤ x ≤ L, t ≥ 0

u(0, t) = u(L, t) = 0.

Here the plucked string has length L > 0, and its ends at x = 0 and x = L are fixed
throughout its motion. We could solve this problem with separation of variables and get
product solutions, and then the linearity of the PDE and the boundary conditions would
allow us to add finite linear combinations of those product solutions and get new solutions.
I won’t do this, but you should; it’s good practice with separation of variables.

Instead, let’s use all of our hard work on Fourier series to find a formal solution to the
somewhat different problem{

utt = c2uxx, −π ≤ x ≤ π, t ≥ 0

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t).

Also, we added boundary conditions on ux. I am less concerned right now with getting all
solutions to the wave equation as I am with getting some and with practicing Fourier series.

So here we go:

utt = c2uxx =⇒ ûtt(k, t) = c2ûxx(k, t)

=⇒ ∂2t [û](k, t) = c2(ik)2û(k, t)

=⇒ ∂2t [û](k, t) + c2k2û(k, t) = 0.

If it helps, put w(t) = û(k, t) to see that w solves w′′ + c2k2w = 0. When k 6= 0, of course
we should think w(t) = α cos(ckt) + β sin(ckt), and when k = 0, we want25 w(t) = βt + α.
We should not neglect the role of the parameter k but rather allow α and β to depend on k.
So, we conclude

û(k, t) =

{
α(k) cos(ckt) + β(k) sin(ckt), k 6= 0

β(0)t+ α(0), k = 0
(4.1.1)

for some functions α and β defined on all the integers. (It is likely that α and β will also
depend on c, but I just don’t feel like writing αc(k) and βc(k). You don’t either, I bet.)
25 I peeked ahead and saw that it is better to write βt+ α than αt+ β. We are going to want a “continuity

in k” property here — yes, I know k is an integer, not any real number, but bear with me — and so as
k → 0 we expect w(t)→ α. Thus for k = 0 we want βt+α, so we can evaluate β · 0+α = α. Make sense?
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Experience with second-order linear ODE tells us that we need two initial conditions to
solve for α and β. That is, we really want to be working with a problem of the form

w′′ + c2k2w = 0

w(0) = ?

w′(0) = ??.

But w(t) = û(k, t) and w′(t) = ∂t[û](k, t), so w(0) = û(k, 0) and w′(0) = ∂t[û](k, 0). If we
think about it, this means we want two initial conditions on u, and these are conditions on
u(·, 0) and ut(·, 0). Let’s amend our original problem to

utt = c2uxx, −π ≤ x ≤ π, t ≥ 0

u(x, 0) = f(x), −π ≤ x ≤ π

ut(x, 0) = g(x), −π ≤ x ≤ π

u(−π, t) = u(π, t) = 0, ux(−π, t) = ux(π, t) = 0.

Then we want û to satisfy (4.1.1) along with

û(k, 0) = f̂(k) and ∂t[û](k, 0) = ĝ(k).

In terms of (4.1.1), this means that for k 6= 0,

f̂(k) = û(k, 0) =
[
α(k) cos(ckt) + β(k) sin(ckt)

]∣∣
t=0

= α(k)

and
ĝ(k) = ∂t[û](k, 0) =

∂

∂t

[
α(k) cos(ckt) + β(k) sin(ckt)

]∣∣∣∣
t=0

= β(k)ck,

and so
β(k) =

ĝ(k)

ck
, k 6= 0.

At k = 0, (4.1.1) says that we need

f̂(0) = û(0, 0) =
[
β(0)t+ α(0)

]∣∣
t=0

= α(0)

and
ĝ(0) = ∂t[û](0, 0) =

∂

∂t

[
β(0)t+ α(0)

]∣∣∣∣
t=0

= β(0).

Thus

û(k, t) =


f̂(k) cos(ckt) +

ĝ(k)

ck
sin(ckt), k 6= 0

f̂(0) + ĝ(0)t, k = 0.

We can compress this further and make both pieces look more alike if we rewrite

sin(ckt)

ck
=

(
sin(ckt)

ckt

)
t,



4. The Wave Equation 100

which is valid for k 6= 0 and t 6= 0. (We’ve had c 6= 0 all along.) Now, the factor in
parentheses is something you know from calculus already. Put

sinc(ξ) :=


sin(ξ)

ξ
, ξ 6= 0

1, ξ = 0.

L’Hospital’s rule, or Taylor series, or whatever will tell you that sinc(·) is infinitely differen-
tiable. Thus for k 6= 0 and t 6= 0, we have

û(k, t) = f̂(k) cos(ckt) +
ĝ(k)

ck
sin(ckt) = f̂(k) cos(ckt) + ĝ(k)

(
sin(ckt)

ckt

)
t

= f̂(k) cos(ckt) + ĝ(k) sinc(ckt)t. (4.1.2)

It turns out that for k = 0 or t = 0, the equality above is still true. I will let you check
that. We can therefore conclude

û(k, t) = f̂(k) cos(ckt) + ĝ(k) sinc(ckt)t,

and so we have proved our first result about the wave equation.

4.1.1 Theorem.

Let f and g be integrable on [−π, π] and let c > 0. The formal solution to the wave
IVP-BVP 

utt = c2uxx, −π ≤ x ≤ π, t ≥ 0

u(x, 0) = f(x), −π ≤ x ≤ π

ut(x, 0) = g(x), −π ≤ x ≤ π

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t)

is

u(x, t) =
∞∑

k=−∞

[
f̂(k) cos(ckt) + ĝ(k) sinc(ckt)t

]
eikx. (4.1.3)

We should interpret this sum as a formal series, i.e., a sequence of partial sums, unless
we have more information about f and g.

Convergence of (4.1.3) will depend greatly on properties of f and g; in particular, there
is no factor in (4.1.3) that is nicely small in k for all t > 0, unlike our friend e−k

2t in the heat
equation.

This is where we finished on Monday, October 31, 2022.
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4.2. D’Alembert’s formula.

It is probably difficult to visualize from the formal Fourier series solution (4.1.3) for the
wave equation what that solution is doing. Shouldn’t it have some, well, wave-like behavior?
A different approach is to abandon Fourier series and boundary conditions and just think
about the pure wave equation utt = c2uxx. We will assume now that both x and t can be
any real number; after all, if we can solve the problem on R2, then surely we can solve it for
x ∈ [0, L] or any bounded interval.

4.2.1. Formulaic derivations.

The right idea is to factor. The wave equation utt = c2uxx also reads

0 = utt − c2uxx = ∂2t [u]− c2∂2x[u] = (∂2t − c2∂2x)[u] = (∂t − c∂x)(∂t + c∂x)[u].

Huh? That is a nice bit of symbol-pushing, based on our long experience factoring
differences of squares, but what does it mean? First, I am abbreviating

∂t =
∂

∂t
and ∂x =

∂

∂x
.

Next,
(∂t + c∂x)[u] = ut + cux,

and if v := (∂t + c∂x)[u], then

(∂t − c∂x)(∂t + c∂x)[u] = (∂t − c∂x)[v] = vt − cvx.

So, if u solves the wave equation utt = c2uxx, then v as defined above solves the transport
equation

vt − cvx = 0,

which we might write in the more familiar form

−cvx + vt = 0.

Of course, this has the solution

v(x, t) = p(x− (−c)t) = p(x+ ct)

for some arbitrary function p ∈ C1(R). This is Theorem 1.5.1.
This means that the actual solution u to the wave equation has to satisfy

(∂t + c∂x)[u] = v,

which is to say
cux + ut = p(x+ ct).

This is a nonhomogeneous transport equation, which we solved in Theorem 1.5.7. That
theorem says that the general solution to

awx + bwt = f(x, t)
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has the form

w(x, t) = q(bx− at) +
1

b

∫ t

0

f

([
bx− at

b

]
+
as

b
, s

)
ds,

where q ∈ C1(R) is arbitrary.
Here a = c, b = 1, and f(x, t) = p(x+ ct). Thus the solution u to the wave equation has

the form

u(x, t) = q(x− ct) +

∫ t

0

p
(
(x− ct) + cs+ cs

)
ds = q(x− ct) +

∫ t

0

p(x− ct+ 2cs) ds. (4.2.1)

It will be worthwhile to clean up the integral a bit. Substitute ξ = x−ct+2cs, so dξ = 2c ds,
and ∫ t

0

p(x− ct+ 2cs) ds =

∫ x−ct+2ct

x−ct
p(ξ) dξ =

∫ x+ct

x−ct
p(ξ) dξ.

Then the solution u to the wave equation is26

u(x, t) = q(x− ct) +
1

2c

∫ x+ct

x−ct
p(s) ds. (4.2.2)

This is a pretty clean formula for the solution, much better than our stab at Fourier series
in Theorem 4.1.1. Also, note that because the independent variables x and t only appear in
the limits of integration of the integral in (4.2.2), as opposed to within the integrand of the
integral in (4.2.1), we can differentiate (4.2.2) without Leibniz’s rule.

If we stare at (4.2.2) and second-guess ourselves in the right way, we’ll notice that we
only took q to be continuously differentiable, yet two derivatives of u with respect to x and
t need to exist. So, we want to be sure that we can differentiate q twice. Is this allowed?
Yes: remember that we are working backward. We started out assuming that u solved the
wave equation utt = c2uxx; per our conventions, this means that u ∈ C2(R2). Now, notice
that we can get q to show up in (4.2.2) by itself if we take t = 0:

u(x, 0) = q(x) +
1

2c

∫ x

x

p(s) ds = q(x), (4.2.3)

since
∫ x
x
p(s) ds = 0 for all x. Thus since u ∈ C2(R2), we have u(·, 0) ∈ C2(R), and so

q ∈ C2(R). (Note that we cannot say more about p than p ∈ C1(R), since the integral on p
“consumes” the first derivatives in x and t.)

Here is what we have shown.

4.2.1 Lemma.

Let c > 0 and suppose that u ∈ C2(R2) solves the wave equation utt = c2uxx on R2. Then
there exist p ∈ C1(R) and q ∈ C2(R) such that

u(x, t) = q(x− ct) +
1

2c

∫ x+ct

x−ct
p(s) ds. (4.2.4)

26 I am going back to s as the variable of integration here.
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We just saw that the initial values u(x, 0) completely determine the choice of q in this
formula for u. We might expect that a choice of values for ut(x, 0) will help determine p,
and indeed it does. Specifically, we will solve the IVP

utt = c2uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞.

Assuming that u has the form (4.2.4), the calculation in (4.2.3) shows q = f , and so

u(x, t) = f(x− ct) +
1

2c

∫ x+ct

x−ct
p(s) ds.

We can then calculate ut:

ut(x, t) = f ′(x− ct)(−c) +
1

2c

∂

∂t

[∫ x+ct

x−ct
p(s) ds

]
= −cf ′(x− ct) +

p(x+ ct) + p(x− ct)
2

.

(4.2.5)
More precisely, to differentiate the integral, we rewrote∫ x+ct

x−ct
p(s) ds =

∫ 0

x−ct
p(s) ds+

∫ x+ct

0

p(s) ds = −
∫ x−ct

0

p(s) ds+

∫ x+ct

0

p(s) ds

and used the fundamental theorem of calculus27 to find

∂

∂t

[∫ x+ct

x−ct
p(s) ds

]
= − ∂

∂t

[∫ x−ct

0

p(s) ds

]
+
∂

∂t

[∫ x+ct

0

p(s) ds

]
= −p(x−ct)(−c)+p(x+ct)(c)

= p(x+ ct)c+ p(x− ct)c.

Then (4.2.5) gives

g(x) = ut(x, 0) = −cf ′(x) +
p(x) + p(x)

2
= −cf ′(x) + p(x),

and so
p(x) = g(x) + cf ′(x).

Thus

u(x, t) = f(x− ct) +
1

2c

∫ x+ct

x−ct

[
cf ′(s) + g(s)

]
ds,

and we can integrate f ′ to conclude

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g(s) ds.

We have now proved the following result.

27 ∂

∂t

[∫ t

0

v(s) ds

]
= v(t) and

∂

∂t

[∫ w(t)

0

v(s) ds

]
= v(w(t))w′(t).
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4.2.2 Lemma.

Let c > 0 and take f ∈ C2(R) and g ∈ C1(R). Then the function

u(x, t) :=
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g(s) ds (4.2.6)

is the unique solution to the wave equation IVP
utt = c2uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞.

(4.2.7)

This is vastly more explicit and general than anything we’ve said yet about the heat
equation. Our success here arises from the extra t-derivative in the wave equation and the
near-miracle of how factoring the difference of squares transcends arithmetic to the level of
differential operators.

This is where we finished on Friday, November 4, 2022.

Let’s do a couple of explicit IVP.

4.2.3 Example.

Let c = 1. Solve the IVP (4.2.7) for the following initial data. Graph the solutions as
functions u(·, t) of x with time t fixed at various points. What do you observe?

(i) f(x) = 2e−x
2

, g(x) = 0

(ii) f(x) = 10e−x
2

, g(x) = cos(x)

Solution. (i) The formula (4.2.6) tells us that the solution is

u(x, t) =
2e−(x+t)

2 − 2e−(x−t)
2

2
+

1

2

∫ x+ct

x−ct
0 ds = e−(x+t)

2

+ e−(x−t)
2

.

Here are some plots.

x

u(x, t) t = 0

x

u(x, t) t = 1

x

u(x, t) t = 2

x

u(x, t) t = 4
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It looks like the initial condition u(x, 0) = 2e−x
2

has split into two smaller “pulses,” one
moving to the right and the other to the left. This is exactly what the formula u(x, t) =

e−(x+t)
2 − e−(x−t)

2

says: as t increases, the graph of x 7→ e−(x+t)
2

moves to the left, while
x 7→ e−(x−t)

2

moves to the right. However, the graph of u(·, t) is not really just the graph
of x 7→ e−(x+t)

2

superimposed on the graph of x 7→ e−(x−t)
2

; there is an interaction between
the two graphs due to the sum in the definition of u. Nonetheless, this interaction is very
“weak” for x or t large because e−ξ

2

is very small when ξ is very large.

(ii) The formula (4.2.6) tells us that the solution is

u(x, t) =
5e−(x+t)

2
+ 5e−(x−t)

2

2
+

1

2

∫ x+ct

x−ct
cos(s) ds = 5

[
e−(x+t)

2

+e−(x−t)
2]

+

[
sin(x+ ct)− sin(x− ct)

]
2

.

Here are some graphs.

x

u(x, t) t = 0

x

u(x, t) t = 1

x

u(x, t) t = 3

x

u(x, t) t = 9

Again, it looks like the initial condition “splits” into two “smaller” pulses that travel to the
right and left; now there is more “noise” between them due to the nonzero initial condition
on ut. In particular, the pulses are not nearly as “identical” as they were for the previous
initial data; contrast times 1, 3, and 9 with the previous pulses for times 1, 2, and 4. N

4.2.2. Traveling wave interpretations.

Between the analytic results above and the numerically produced graphs, I think we have
more than enough information to answer the question Where is the wave behavior in the
wave equation? First, we know the very tractable formulas (4.2.4) for the general solution
to the wave equation on R2 and (4.2.6) for the wave IVP. Both formulas look alike in that
they depend on the expressions x± ct, and the only real difference is that (4.2.6) explicitly
incorporates the initial data for u(·, 0) and ut(·, 0). We know from our nontrivial experience
with traveling waves so far that if p = p(ξ) is a function of a single variable, then the functions
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(x, t) 7→ p(x ± ct) represent traveling waves. We saw “sort of” traveling wave behavior in
Example 4.2.3, except the graphs weren’t exactly the horizontal translates of a particular
profile.

Here is how we can make analytic sense of this behavior. Go back to (4.2.6), which tells
us that if utt = c2uxx with u(x, 0) = f(x) and ut(x, 0) = g(x), then

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g(s) ds.

Rewrite this as

u(x, t) =
1

2

(
f(x+ ct) +

1

c

∫ x+ct

0

g(s) ds

)
+

1

2

(
f(x− ct)

2
− 1

c

∫ x−ct

0

g(s) ds

)
.

Put

φ(ξ) :=
1

2

(
f(ξ) +

1

c

∫ ξ

0

g(s) ds

)
and ψ(ξ) :=

1

2

(
f(ξ)− 1

c

∫ ξ

0

g(s) ds

)
.

Then
u(x, t) = φ(x+ ct) + ψ(x− ct). (4.2.8)

This is our traveling wave behavior: the solution u to the wave equation is the superposition
of a left-moving traveling wave (x, t) 7→ φ(x+ ct) and a right-moving traveling wave (x, t) 7→
ψ(x − ct). (Here “left” and “right” assume t > 0; otherwise, the propagation directions
are reversed.) Since the graphs of φ and ψ move in opposite directions, we might call the
structure of (4.2.8) a “counterpropagating” traveling wave.

We conclude the following general formula for the solution to the wave equation.

4.2.4 Theorem (D’Alembert’s formula).

A function u ∈ C2(R2) solves the wave equation utt = c2uxx on R2 if and only if there are
functions φ, ψ ∈ C2(R) such that

u(x, t) = φ(x− ct) + ψ(x+ ct).

Our arguments above proved D’Alembert’s formula using results about the initial value
problem, but we don’t need initial data to get it. Indeed, D’Alembert’s formula pops out of
Lemma 4.2.1, too; you should check that.

4.3. The method of images.

We have discussed two problems for the wave equation: an IVP-BVP posed on the spatial
interval [−π, π], which we solved (opaquely) with Fourier series, and an IVP posed for x ∈ R,
which we solved quite transparently with, among other things, D’Alembert’s formula. A
bounded spatial domain probably makes more physical sense, if the wave equation is supposed
to model the displacement of a string (strings usually have finite length, right?), but the
infinite spatial domain made a lot of the analysis nicer — we didn’t have to worry about
boundary conditions.
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Now we do. Here is a reasonable IVP-BVP for a string of length L > 0 when its left and
right ends are fixed (i.e., they don’t move, so their displacement is always 0):

utt = c2uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x ≤ L

ut(x, 0) = g(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, −∞ < t <∞.

(4.3.1)

We will solve this through the classical mathematical method of “faking it.” The problem
is that our initial data f and g are only defined on [0, L]. Suppose that we knew their values
on all of R. Then we could use any of the results of the previous section to find a formula
for u, which we would then test against the boundary conditions.

This raises the mathematical question of extending a function. For our purposes here,
an extension of a function h : [0, L] → R is a function h̃ : R → R such that h̃(x) = h(x)
for all x ∈ [0, L]. However, there are infinitely many ways to extend a function; just take
your favorite real number c and put h̃(x) = c for x < 0 and x > L. We want to find the
right extensions of our initial data. The questions that we raise along the way will be no less
valuable than the actual solution that we find to our IVP-BVP (4.3.1).

Let’s say that we have extended f and g to all of R as f̃ and g̃, respectively. Just to be
clear, this means that

f̃(x) = f(x) and g̃(x) = g(x) for 0 ≤ x ≤ L.

If f̃ ∈ C2(R) and g̃ ∈ C1(R), then we can use Lemma 4.2.2 to write the solution to
utt = c2uxx, −∞ < x, t <∞
u(x, 0) = f̃(x), −∞ < x <∞
ut(x, 0) = g̃(x), −∞ < x <∞

as

u(x, t) =
f̃(x+ ct) + f̃(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g̃(s) ds. (4.3.2)

So, however we extend f and g, we need the extensions to be sufficiently differentiable so that
we can invoke Lemma 4.2.2. At the very least we will need f ∈ C2([0, L]) and g ∈ C1([0, L])
if their extensions to R are to be sufficiently differentiable.

Let’s proceed on faith and hope with the assumption that we have found suitable exten-
sions f̃ and g̃. Then we know that u given by the formula (4.3.2) solves utt = c2uxx on R2

and meets the initial conditions on R so in particular u solves the wave equation for x ∈ [0, L]
and meets the initial conditions on [0, L]. More precisely, for 0 ≤ x ≤ L,

u(x, 0) = f̃(x) = f(x) and ut(x, 0) = g̃(x) = g(x).

This does not teach us anything useful about what f̃ and g̃ should be. What do the
boundary conditions have to say? Let’s check. We need

0 = u(x, t) =
f̃(ct) + f̃(−ct)

2
+

1

2c

∫ ct

−ct
g̃(s) ds (4.3.3)
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and

0 = u(L, t) =
f̃(L+ ct) + f̃(L− ct)

2
+

1

2c

∫ L+ct

L−ct
g̃(s) ds. (4.3.4)

If we stare at (4.3.3) for a while, we might see that we can achieve it if the separate equalities

f̃(ct) + f̃(−ct) = 0 and
∫ ct

−ct
g̃(s) ds = 0

hold for all t. And staring at these equalities for some further time might suggest that we
can achieve them by taking f̃ and g̃ to be odd. That gives

f̃(x) = −f̃(−x) and
∫ x

−x
g̃(s) ds = 0

for all x ∈ R.
Now, we only know what f and g are on [0, L]. So, the best we can do so far is to say

f̃(x) =

{
f(x), 0 ≤ x ≤ L

−f(−x), −L ≤ x < 0
and g̃(x) =

{
g(x), 0 ≤ x ≤ L

−g(−x), −L ≤ x < 0.
(4.3.5)

Below I’ll draw one possible graph for f on [0, L] and then the odd extension (you might
say, “reflection”) f̃ on [−L,L]. We’ll use these graphs later, too.

x

f(x)

L

x

f̃(x)

L−L

This is where we finished on Monday, November 7, 2022.
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Watch out! We need to check the continuity and differentiability of f̃ and g̃. Since f
and g are sufficiently differentiable on [0, L], I hope it is clear that f̃ and g̃ are sufficiently
differentiable on [−L, 0) and (0, L], and so we only need to worry about x = 0. Odd functions
must be 0 at 0, so we need f̃(0) = 0 and g̃(0) = 0. Also, we want f̃ and g̃ to be continuous
at x = 0, and so we need

lim
x→0

f̃(x) = 0 and lim
x→0

g̃(x) = 0. (4.3.6)

You can use the definitions of f̃ and g̃ in (4.3.5) and the continuity of f and g on [0, L] to
conclude that the limits (4.3.6) force

f(0) = 0 and g(0) = 0.

This is actually a completely reasonable condition on the initial data f and g for the
IVP-BVP (4.3.1). You should show that if there is a solution u to this problem, then the
following must be true:

f(0) = f ′′(0) = f(L) = f ′′(L) = 0 and g(0) = g(L). (4.3.7)

Thus if we assume (4.3.7), then f̃ and g̃ defined by (4.3.5) are continuous.
To check the requisite differentiability of f̃ and g̃ at x = 0, we would need to do some

annoying (but worthwhile) work with left and right limits of difference quotients using the
piecewise formulas in (4.3.5). I don’t think anyone wants to see that right now, but it’s a
good exercise, and its success hinges on the assumptions (4.3.7).

All of this work has followed from the boundary condition (4.3.3). We still need to meet
the other condition, (4.3.4). That will follow if

f̃(L+ ct) + f̃(L− ct) = 0 and
∫ L+ct

L−ct
g̃(s) ds = 0

for all t. Equivalently, we need

f̃(L+ x) = −f̃(L− x) and
∫ L+x

L−x
g̃(s) ds = 0

for all x ∈ R. This is, euphemistically, an “oddness about L” condition; if L were 0 (which
it isn’t), then the condition f̃(0 + x) = −f̃(0 − x) just says that f̃ is odd. In the case at
hand, with L > 0, here is what the condition f̃(L+ x) = −f̃(L− x) suggests for the graph
of f̃ beyond the interval [−L,L].
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x

f̃(x)

L 2LL− ξ L+ ξ

I think it looks like we should just copy and paste the graph of f̃ from [−L,L] to the
whole real line in a 2L-periodic fashion. Indeed, I challenge you to show (this is not a hard
challenge) that if f̃ is odd with f̃(L+ x) = −f̃(L− x) for all x, then f̃ must be 2L-periodic.
Conversely, if we start with the odd function f̃ defined on [−L,L] by (4.3.5) and extend f̃
to all of R in a 2L-periodic manner, then you can show that f̃(L + x) = −f̃(L− x) always
holds. We will need to worry about continuity and differentiability at integer multiples of L;
this is where the conditions f(L) = f ′′(L) = 0 come into play.

Checking all of these details is good math and essential practice for you, but it’s best done
at your own pace, not in a mind-numbing presentation in class. I’ll give you some particular
guidance on this in forthcoming practice. Let’s wrap up with a theorem summarizing all of
our work.

4.3.1 Theorem.

Let c, L > 0. Let f ∈ C2([0, L]) and g ∈ C1([0, L]) satisfy

f(0) = f ′′(0) = f(L) = f ′′(L) = g(0) = g(L).

Define f̃ and g̃ on [−L,L] by

f̃(x) =

{
f(x), 0 ≤ x ≤ L

−f(−x), −L ≤ x < 0
and g̃(x) =

{
g(x), 0 ≤ x ≤ L

−g(−x), −L ≤ x < 0,

and otherwise extend f̃ and g̃ to all of R by defining f̃(x+2L) = f̃(x) and g̃(x+2L) = g̃(x).
Then f̃ ∈ C2(R), g̃ ∈ C1(R), and the function

u(x, t) =
f̃(x+ ct) + f̃(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g̃(s) ds

solves the IVP-BVP 
utt = c2uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x ≤ L

ut(x, 0) = g(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, −∞ < t <∞.
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I think the journey to the theorem, with the many questions that we asked and answered
about extending f and g, is much more valuable than the actual result. By the way, this
result is sometimes called the method of images: we took the “images” (graphs) of the
initial data on [0, L] and extended/reflected those images to define functions on all of R.
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5. The Fourier Transform

We have really only studied three PDE in this course: the transport equation, the heat equa-
tion, and the wave equation. We had complete success with the first and the third; success
with the transport equation hinged on its special structure as a “gradient” relationship, and
success with the wave equation hinged on factoring it as a “product” of transport equations.
Our success with the heat equation was much more limited, outside of very special initial
data.

What else can we do? If we meet a problem posed on a finite spatial domain (i.e.,
the x coordinate is constrained to an interval of the form [a, b]), and if we have reasonable
boundary conditions, then we could possibly use Fourier series. Unfortunately, that raises
a number of convergence questions, and the resulting formulas aren’t all that transparent.
However, our recent work with the wave equation suggests that we might be able to use
results for a problem posed on an infinite spatial domain to solve a problem posed on a
finite spatial interval. Moreover, we might just start with an infinite spatial domain —
mathematically, why not? Physically, an infinite spatial domain just means that the object
under consideration is “really long.”

One of the best tools for handling problems posed on an infinite spatial domain is the
Fourier transform. To understand it, we first need to talk briefly about certain kinds of
improper integrals.

5.1. Improper integrals.

Denote by L1
loc the set of all functions f : R → C such that f is integrable on any closed,

bounded interval [a, b] ⊆ R. In other words, for all real numbers a and b, the integral∫ b
a
f(x) dx always exists. Every constant function, for example, is locally integrable. More

generally, since a continuous function is always integrable, we have C(R) ⊆ L1
loc; even more

generally, if f is piecewise continuous on R, then f ∈ L1
loc.

Let f ∈ L1
loc and suppose that the limits

lim
R→∞

∫ R

0

f(x) dx and lim
R→∞

∫ 0

−R
f(x) dx (5.1.1)

exist. (The assumption f ∈ L1
loc guarantees that the integral

∫ R
0
f(x) dx exists for all R > 0

and likewise that
∫ 0

R
f(x) dx exists for all R < 0.) Then we define the improper integral

of f over (−∞,∞) as∫ ∞
−∞

f(x) dx := lim
R→∞

∫ R

0

f(x) dx+ lim
R→∞

∫ 0

−R
f(x) dx. (5.1.2)

We also say that
∫∞
−∞f(x) dx converges if the two limits (5.1.1) exist. Of course, the

two limits in (5.1.1) are the improper integrals
∫∞

0
f(x) dx and

∫ 0

−∞f(x) dx, but we will not
work all that much with these “one-sided” improper integrals.

Now denote by L1 the set of all functions f ∈ L1
loc such that

∫∞
−∞|f(x)| dx converges. To

be clear, f ∈ L1 if and only if |f | is improperly integrable on (−∞,∞). For f ∈ L1, we will
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write
‖f‖L1 :=

∫ ∞
−∞
|f(x)| dx,

and we call the value ‖f‖L1 the L1-norm of f .
To determine if a given function f ∈ L1

loc is also in L1, we can always try to compute
the improper integral of |f | over (−∞,∞). Often, however, it is more convenient to use the
comparison test for improper integrals; in our language, this test reads as follows.

5.1.1 Theorem (Comparison test for improper integrals).

Let f ∈ L1
loc and g ∈ L1 with |f(x)| ≤ |g(x)| for all x. Then f ∈ L1 and ‖f‖L1 ≤ ‖g‖L1.

If f ∈ L1, then we can simplify the computation of
∫∞
−∞f(x) dx as follows:∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R
f(x) dx.

That is, if we know that
∫∞
−∞f(x) dx converges, then we can compute it via the “symmetric”

limit above, instead of as the sum (5.1.2).

5.2. Definition of the Fourier transform.

We will not give any attempt at motivating the definition of the Fourier transform. Our
textbook provides both a comprehensive and accessible overview of integral transforms (pp.
415–418) and a nice connection of the Fourier transform to complex Fourier series (pp. 448–
449). We will view the Fourier transform as a powerful instrument for analyzing both ODE
and PDE.

Suppose that f ∈ L1 and let k ∈ R. Since the function ek(x) := eikx is continuous on R,
properties of integrals tell us that fek ∈ L1

loc. Moreover, we can estimate |f(x)ek(x)| = |f(x)|,
so since f ∈ L1, the comparison test tells us fek ∈ L1 as well. Thus the following (incredibly
important) integral is defined.

5.2.1 Definition.

Let f ∈ L1 and k ∈ R. The Fourier transform of f at k is

F[f ](k) = f̂(k) :=
1√
2π

∫ ∞
−∞

f(x)e−ikx dx.

The notation f̂(k) of course resembles the notation for the complex Fourier coefficient.
The factor of 1/

√
2π is present for reasons of convenience (and confusion) that will be

apparent later; it is also present for the sake of controversy, as there are multiple natural
ways that a factor of 2π, or something like it, can appear in the Fourier transform.

This is where we finished on Wednesday, November 9, 2022.
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The Fourier transform of a function in L1 is itself a function. What kind of function the
Fourier transform is depends greatly on the function being transformed.

5.2.2 Example.

Let

f(x) :=

{
0, x < 0

e−x, x ≥ 0.

Check that f ∈ L1 and calculate ‖f‖L1 and f̂ .

Solution. By inspection, f is piecewise continuous on (−∞,∞), and so f ∈ L1
loc. For

R < 0, we have
∫ 0

R
f(x) dx = 0, and so limR→∞

∫ 0

R
|f(x)| dx = 0, while for R > 0, we have∫ R

0

|f(x)| dx =

∫ R

0

e−x dx = −(e−R − 1) = 1− e−R.

Then

lim
R→∞

∫ R

0

|f(x)| dx = lim
R→∞

(1− e−R) = 1,

and so

‖f‖L1 =

∫ ∞
−∞
|f(x)| dx = lim

R→−∞

∫ 0

−R
|f(x)| dx+ lim

R→∞

∫ R

0

|f(x)| dx = 1.

Thus f ∈ L1.
Now we calculate the Fourier transform. We have

F[f ](k) = f̂(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikx dx =
1√
2π

lim
R→∞

∫ R

0

e−xe−ikx dx =
1√
2π

lim
R→∞

∫ R

0

e−(1+ik)x dx.

Since 1 + ik 6= 0 for all real k, we can integrate∫ R

0

e−(1+ik)x dx = −e
−(1+ik)x

1 + ik

∣∣∣∣x=R
x=0

=
1

1 + ik
− e−(1+ik)R

1 + ik
.

To calculate the limit as R→∞, we use the squeeze theorem:

0 ≤
∣∣∣∣e−(1+ik)R1 + ik

∣∣∣∣ =
|e−Re−ikR|
|1 + ik|

=
e−R√
1 + k2

.

Since

lim
R→∞

e−R√
1 + k2

= 0,

we have

lim
R→∞

∫ R

0

e−(1+ik)x dx =
1

1 + ik
,
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and thus
f̂(k) =

1√
2π(1 + ik)

.

It may (or may not) be interesting a few properties of this transform. First, although
f ∈ L1, f̂ 6∈ L1; you can, and should, show that∫ ∞

−∞
|f̂(k)| dk =

1√
2π

∫ ∞
−∞

dk√
1 + k2

diverges. However, f̂ is smoother than f in the sense that f has a jump discontinuity at
x = 0, but f̂ is infinitely differentiable on R; effectively, f̂ is a rational function whose
denominator is never 0 on R. We will explore this later in a more general context via
Leibniz’s rule; for now, imagine differentiating the integral defining f̂ with respect to k. N

The Fourier transform has many properties that we will explore in due course. Let’s start
with one of its most exciting features: what it does to derivatives.

5.2.3 Theorem (Fourier transform of derivative).

Let f ∈ L1 be differentiable and suppose f ′ ∈ L1 as well. Then

f̂ ′(k) = (ik)f̂(k).

Proof. With ek(x) = e−ikx, the comparison test gives f ′ek ∈ L1, since f ′ ∈ L1. Thus

f̂ ′(k) =
1√
2π

∫ ∞
−∞

f ′(x)e−ikx dx =
1√
2π

lim
R→∞

∫ R

−R
f ′(x)e−ikx dx.

We are using the “symmetric” limit here since f ′ek ∈ L1. For R > 0 fixed, we can compute
the integral with integration by parts. Take

u = e−ikx dv = f ′(x) dx

du = −ike−ikx dx v = f(x).

Then∫ R

−R
f ′(x)e−ikx dx = e−ikxf(x)

∣∣x=R
x=−R −

∫ R

−R
f(x)(−ik)e−ikx dx

= e−ikRf(R)− eikRf(−R) + ik

∫ R

−R
f(x)e−ikx dx.

It is here that we need a nice auxiliary result, whose proof I will guide you through as an
exercise later: if f ∈ L1 is differentiable with f ′ ∈ L1, then limx→±∞ f(x) = 0. Since

0 ≤
∣∣e−ikRf(R)− eikRf(−R)

∣∣ ≤ |f(R)|+ |f(−R)|,

the squeeze theorem gives

lim
R→∞

[
e−ikRf(R)− eikRf(−R)

]
= 0,
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and therefore

lim
R→∞

∫ R

−R
f ′(x)e−ikx dx = lim

R→∞
ik

∫ R

−R
f(x)e−ikx dx = ik

∫ ∞
−∞

f(x)e−ikx dx =
√

2πikf̂(k).

This is where we finished on Friday, November 11, 2022.

The transparent interaction of the Fourier transform with derivatives is one of the trans-
form’s most valuable properties. Another is its linearity, which I invite you to prove using
familiar properties of integrals.

5.2.4 Theorem (Linearity of the Fourier transform).

Let f , g ∈ L1 and α, β ∈ C. Then F[αf + βg] = αF[f ] + βF[g].

This allows us to consider F as a linear operator whose domain is the vector space L1.
(That L1 is a vector space follows from the triangle inequality for integrals. Do you see
why?) The range of F is. . .complicated. The function f from Example ?? satisfies f ∈ L1

but F[f ] 6∈ L1.

5.3. Solving a toy ODE with the Fourier transform.

We can solve the ODE
f ′ + 2f = g

using various methods from our background in ODE, including integrating factors and vari-
ation of parameters (guess f(x) = q(x)e−2x) and, if g is one of certain special functions,
undetermined coefficients. We definitely don’t need new techniques to solve this problem.
Nevertheless, we will solve it using the Fourier transform to demonstrate how to use the
transform to solve differential equations and to motivate various additional properties of the
transform that are worth knowing. (The alternative is that I simply give you an endless list
of transform properties without any context of why they’re important or how we might use
them to solve differential equations.)

5.3.1. Applying the Fourier transform.

Let’s start by taking the Fourier transform of both sides:

F[f ′ + 2f ](k) = ĝ(k).

What are we assuming here? First, that a solution f exists. Second, that f ′+2f has a Fourier
transform. Third, that g has a Fourier transform. Thus we probably want f ′ + 2f ∈ L1 and
g ∈ L1.

Let’s work on the left side. Linearity tells us that

F[f ′ + 2f ](k) = f̂ ′(k) + 2f̂(k),



5. The Fourier Transform 117

and then the derivative property of transforms says

f̂ ′(k) = ikf̂(k).

Now we need f ′ ∈ L1.
Here is what we have shown. If there exists a function f ∈ L1 such that f solves

f ′ + 2f = g with f ′ ∈ L1 and g ∈ L1, then

(ik + 2)f̂(k) = ĝ(k).

Since k ∈ R, we have ik + 2 6= 0, and so we may solve for f̂ :

f̂(k) =
ĝ(k)

ik + 2
.

5.3.2. Inverting the Fourier transform.

We have thus completely determined f̂ . Can we reconstruct f from f̂? Remarkably, and
reassuringly, the answer is yes, and it is not too painful to state (although proving it is
another matter).

5.3.1 Theorem (Fourier inversion).

Let f ∈ L1 be continuous with f̂ ∈ L1. Then

f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eikx dk.

The integral in the Fourier inversion theorem is effectively a Fourier transform itself, and
it appears often enough that it has its own name and notation.

5.3.2 Definition.

Let f ∈ L1. The inverse Fourier transform of f is

f̂(x) = F−1[f ](x) =
1√
2π

∫ ∞
−∞

f(k)eikx dk.

I hope it is apparent from the definition that for f ∈ L1 we have f̂(k) = f̂(−k). Equiv-
alently, f̂(x) = f̂(−x). And, if f ∈ L1 with f̂ ∈ L1, then the Fourier inversion theorem
reads

f =

̂̂
f.

This justifies the use of the notation F−1, which is meant to signify the inverse of F (in the
sense that the inverse of f(x) = 2x+ 1 is f−1(y) = (y − 1)/2).

We can now interpret our work with the toy ODE as follows. If we have a solution f to
f ′ + 2f = g with f ∈ L1 and g ∈ L1, then f̂ must satisfy

f̂(k) =
ĝ(k)

ik + 2
.
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If we also assume28 that f̂ ∈ L1, then since f solves an ODE, f is continuous, and so the

Fourier inversion theorem tells us f =

̂̂
f . That is,

f(x) =
1√
2π

∫ ∞
−∞

ĝ(k)eikx

ik + 2
dk.

While true, this is not as helpful as we’d like. Can we find a more transparent formula for
f?

5.3.3. Rescaling the Fourier transform.

It would be nice if we could express f̂ as a “pure” Fourier transform, i.e., as the Fourier
transform of some “known” function (probably involving g, but since g is given in the state-
ment of the ODE, g is “known”). The way out is to pay attention to the structure of f̂(k):
it is the product of ĝ(k) and 1/(ik + 2). How can we recognize this product as a “pure” or
“known” transform?

The second factor might make us recall Example 5.2.2. That example told us that if

E(k) :=

{
0, x < 0

e−x, x ≥ 0,

then
Ê(k) =

1√
2π(ik + 1)

.

We can rewrite this expression using the classical technique of multiplying and dividing by
the same number:

1

ik + 2
=

1

2

[
i

(
k

2

)
+ 1

] =
1

2

 1

i

(
k

2

)
+ 1

 =
√

2π

1

2

( 1√
2π

) 1

i

(
k

2

)
+ 1





=
√

2π

(
1

2
Ê

(
k

2

))
.

In other words, up to some constant factors, 1/(ik + 2) is essentially the Fourier transform
of Ê evaluated at k/2.

It turns out that there is a straightforward connection between “rescaling” a function and
Fourier transforms. You can obtain the following result from the definition of the Fourier
transform and changing variables in definite integrals.

28 We do not have to assume this. If instead we assume ĝ ∈ L1, then put h(k) := ĝ(k)/(ik + 2) and use the
comparison test to show that h ∈ L1. Then f̂ ∈ L1, too.
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5.3.3 Theorem (Rescaling the Fourier transform).

Let h ∈ L1 and let a ∈ R with a 6= 0. Denote by h(a·) the map x 7→ h(ax). Then
h(a·) ∈ L1 and

ĥ(a·)(k) =
1

|a|
ĥ

(
k

a

)
.

The rescaling theorem tells us

1

2
Ê

(
k

2

)
= Ê(2·)(k),

and so
1

ik + 2
=
√

2πÊ(2·)(k).

We have now shown that if f ∈ L1 satisfies f ′ + 2f = g with f ′ ∈ L1 and g ∈ L1, then

f̂(k) =
√

2πĝ(k)Ê(2·)(k).

We now have more control over the structure of f̂ : it is (a constant multiple of) the product
of two “known” Fourier transforms.

5.3.4. Multiplication of Fourier transforms and convolution.

And so we should ask ourselves how to express a product like φ̂(k)ψ̂(k) for φ, ψ ∈ L1 as the
Fourier transform of a single function. This is one of those times where we simply must go
back to the definition. Write

φ̂(k)ψ̂(k) =

(
1√
2π

∫ ∞
−∞

φ(x)e−ikx dx

)(
1√
2π

∫ ∞
−∞

ψ(y)e−iky dy

)
.

Whenever you have to work with the product of two integrals, it’s a good idea to use different
letters for the variables of integration, thus x and y here. Since

∫∞
−∞ψ(y)e−iky dy is just a

number, we can multiply it inside the x-integral:

φ̂(k)ψ̂(k) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

ψ(y)e−iky dy

)
φ(x)e−ikx dx.

Next, for x fixed, φ(x)e−ikx is also just a number, so we can multiply it inside the y-integral
this time:

φ̂(k)ψ̂(k) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

ψ(y)e−ikyφ(x)e−ikx dy

)
dx.

Let’s combine the exponentials and write this as an iterated integral (albeit one with infinite
limits of integration everywhere):

φ̂(k)ψ̂(k) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

φ(x)ψ(y)e−ik(x+y) dy dx.
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Substitution works just as well for improper integrals as it does for definite integrals. Fix
x and substitute u = x+ y, y = u− x in the inner integral:∫ ∞

−∞
φ(x)ψ(y)e−ik(x+y) dy =

∫ ∞+x

−∞+x

φ(x)ψ(u− x)e−iku du =

∫ ∞
−∞

φ(x)ψ(u− x)e−iku du.

Then
φ̂(k)ψ̂(k) =

1

2π

∫ ∞
−∞

∫ ∞
−∞

φ(x)ψ(u− x)e−iku du dx.

Now suppose that we can change the order of integration via Fubini’s theorem29 so that

φ̂(k)ψ̂(k) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

φ(x)ψ(u− x)e−iku dx du.

This is actually rather delicate and requires some careful thought when improper integrals
are involved. If it works, we might observe that the inner x-integral has the factor e−iku,
which is independent of x. Then

φ̂(k)ψ̂(k) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

φ(x)ψ(u− x) dx

)
e−iku du.

The inner integral is now a function of u, and the outer integral contains the factor e−iku.
This might remind us of a Fourier transform. If we put

ω(u) :=

∫ ∞
−∞

φ(x)ψ(u− x) dx,

then we have shown
φ̂(k)ψ̂(k) =

1

2π

∫ ∞
−∞

ω(u)e−iku du,

and the integral on the right should look very much like a Fourier transform indeed.

This is where we finished on Monday, November 14, 2022.

The change of variables v = u− x should allow us to write

ω(u) =

∫ ∞
−∞

φ(u− v)ψ(v) dv

as well. Let’s give ω its more formal name.

5.3.4 Definition.

The convolution of φ, ψ ∈ L1 is the function

(φ ∗ ψ)(x) :=

∫ ∞
−∞

φ(x− s)ψ(s) ds.

29 The technical term for this sort of procedure is Fubination. Just kidding.
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We repackage all of our prior work as

φ̂(k)ψ̂(k) =
1√
2π

∫ ∞
−∞

(φ ∗ ψ)(x)e−ikx dx =
φ̂ ∗ ψ(k)√

2π
.

This meets our goal of expressing the product φ̂ψ̂ as a “pure” Fourier transform of a single
function. That “single function” here is the convolution φ ∗ ψ.

However, the Fubination above is a bit ticklish, and merely having φ, ψ ∈ L1 is not
enough to guarantee its validity. We need to assume a bit more, but we get a bit more in
return.

5.3.5 Theorem.

Suppose that φ, ψ ∈ L1 are bounded: there isM > 0 such that |φ(x)| ≤M and |ψ(x)| ≤M
for all x. Then the convolution (φ ∗ ψ)(x) is defined for all x, and the following hold.

(i) φ ∗ ψ ∈ L1.

(ii) φ ∗ ψ ∈ C(R).

(iii) φ̂ ∗ ψ(k) =
√

2πφ̂(k)ψ̂(k).

5.3.5. Solving the toy problem.

It has been some time, but we have shown the following. If f , g ∈ L1 with f differentiable,
f ′ ∈ L1, and ĝ ∈ L1, and if f ′ + 2f = g, then f̂ satisfies

f̂(k) =
√

2πÊ(2·)(k)ĝ(k).

Here E(x) = 0 for x < 0 and E(x) = e−x for x ≥ 0, and E(2·) means the function x 7→ E(2x).
I hope it is clear that E is bounded, indeed |E(x)| ≤ 1 for all x. If we also assume that g is
bounded, then the convolution theorem allows us to write

√
2πÊ(2·)(k)ĝ(k) = ̂E(2·) ∗ g(k).

We are approaching the limits of how wide a “hat” can be in typesetting, so maybe it’s better
to write

̂E(2·) ∗ g(k) = F[E(2·) ∗ g](k).

Then
f̂(k) = F[E(2·) ∗ g](k).

Since f ∈ L1 with f̂ ∈ L1, and since f solves an ODE and therefore is continuous, we
have

f =

̂̂
f = F−1

[
F[E(2·) ∗ g]

]
.

We want to use the inversion theorem to say, of course,

F−1
[
F[E(2·) ∗ g]

]
= E(2·) ∗ g.



5. The Fourier Transform 122

To do this, we need to know (1) E(2·) ∗ g ∈ L1, (2) F[E(2·) ∗ g] ∈ L1, and (3) E(2·) ∗ g is
continuous. We get (1) and (3) directly from the convolution theorem. For (2), we have
shown that f̂ = F[E(2·) ∗ g], and we were assuming30 f̂ ∈ L1 so that we could apply the
inversion theorem. Thus (2) holds.

We conclude
f = E(2·) ∗ g.

This is where we finished on Wednesday, November 16, 2022.

More precisely, here are all of our necessary hypotheses and conclusion in one nice pack-
age.

5.3.6 Theorem.
Suppose that f , g : R→ C are functions with the following properties.

(i) f , g ∈ L1 with either f̂ ∈ L1 or ĝ ∈ L1.

(ii) g is bounded: there is M > 0 such that |g(x)| ≤M for all x.

(iii) f is differentiable on R with f̂ ∈ L1 and f ′ + 2f = g.

Then f = E(2·) ∗ g.

A good exercise for you is to prove this theorem. We did all of the heavy lifting above,
but there was a lot of interstitial commentary. You should think about how to cut out all
the digressions and just cite the inversion theorem, the scaling theorem, and the convolution
theorem as necessary. Footnotes 28 and 30 will help if you want to use the condition ĝ ∈ L1

instead of f̂ ∈ L1.
This is a uniqueness theorem. It says that if a solution f to f ′+ 2f = g exists under the

hypotheses (i), (ii), and (iii), then that solution f must be E(2·) ∗ g. This is not an existence
theorem. It does not say that E(2·) ∗ g actually solves the ODE! We would have to check
that with direct calculations (and note that we have not yet talked about differentiating a
convolution). And these are pretty restrictive hypotheses. We certainly never met them in
our first ODE course (I think/hope). Let’s unpack this a bit more.

5.3.6. Interpreting the results.

Let’s be clear: we did not need the Fourier transform to solve f ′ + 2f = g. That’s why
we took an ODE class before this one. Rather, this toy problem brought up the need for
30 Recall Footnote 28, in which we showed that we could assume ĝ ∈ L1 and deduce f̂ ∈ L1 from that. The

same applies here. Do not assume f̂ ∈ L1 but instead require ĝ ∈ L1. Example 5.2.2 tells us that Ê is
bounded, with |Ê(k)| = 1/

√
1 + k2 ≤ 1. Then scaling tells us |Ê(2·)(k)| = |Ê(k/2)|/2 ≤ 1/2. Then the

convolution theorem tells us

|F[E(2·) ∗ g](k)| = |Ê(2·)(k)ĝ(k)| ≤ |ĝ(k)|
2

.

Since ĝ ∈ L1, the comparison test says E(2·) ∗ g ∈ L1 as well, and this is (2).



5. The Fourier Transform 123

a number of useful properties of the transform in what I hope was a safe, friendly setting.
We know what the answer to f ′ + 2f = g should be, and so we can compare our solution
f = E(2·) ∗ g to it. Actually, you’ll do that, too.

Instead, let’s explore the formula f = E(2·) ∗ g. By definition of the convolution,

(
E(2·) ∗ g

)
(x) =

∫ ∞
−∞

E(2(x− s))g(s) ds. (5.3.1)

Recall that

E(ξ) =

{
0, ξ < 0

e−ξ, ξ ≥ 0.

Thus

E(2(x− s)) =

{
0, 2(x− s) < 0

e−2(x−s), 2(x− s) ≥ 0
=

{
0, x < s

e−2x+2s, x ≥ s.

So, in the integral (5.3.1), we only have to integrate over (−∞, x). This gives

f(x) =

∫ x

−∞
e−2x+2sg(s) ds = e−2x

∫ x

−∞
e2sg(s) ds. (5.3.2)

Here is the amazing thing. We do not need all those stringent hypotheses on g for the
integral

G(x) :=

∫ x

−∞
e2sg(s) ds

to be defined. Indeed, since we can write∫ x

−∞
e2sg(s) ds =

∫ 0

−∞
e2sg(s) ds+

∫ x

0

e2sg(s) ds,

we just need one improper integral to exist and then the tamer definite integral to exist.
I claim that the comparison test ensures the existence of

∫ 0

−∞e
2sg(s) ds if g ∈ L1

loc and
if g is bounded; the local integrability of g then guarantees the existence of the definite
integral

∫ x
0
e2sg(s) ds for all x. If we require instead that g be bounded and continuous (and

continuity thus ensures g ∈ L1
loc), then we can differentiate G:

G′(x) =
d

dx

[∫ 0

−∞
e2sg(s) ds+

∫ x

0

e2sg(s) ds

]
= 0 +

d

dx

[∫ x

0

e2sg(s) ds

]
= e2xg(x).

From there we could show that f(x) = e2xG(x) does indeed solve f ′ + 2f = g.
So, what was the point of all our work? We didn’t need the Fourier transform to solve the

toy problem, and our solution turned out to be valid under much more general hypotheses
than those that permit the Fourier transform analysis. Imagine, though, that we didn’t
know how to solve the toy problem but we knew everything about the Fourier transform.
We could have assumed that the problem had a solution f such that the Fourier transforms
of f and its derivatives were defined, applied the transform to the problem, solved for f̂ ,
and then inverted to see what the solution f should be. We could then have checked directly
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(i.e., using calculus) that f as given by this inverse transform was indeed a solution. In
the process, we would have shown a certain uniqueness result: if a solution exists and is
sufficiently nice to have a transform, then the only such solution is the one that we just
found.

The true value of the Fourier transform in solving differential equations is that it gives a
formal candidate for the solution. We can always check a solution candidate using calculus.
For me, the value of this particular toy problem is that it demonstrates the majority of the
techniques that we typically use in conjunction with the Fourier transform in a “friendly”
setting; we knew what to expect, so we could focus on technique. Now we’ll see how to use
the transform on more complicated PDE, for whose solutions we probably don’t have much
intuition.

5.4. Solving PDE with the Fourier transform.

We will use the Fourier transform and its myriad properties to obtain “formal” solutions
to PDE posed spatially on (−∞,∞). That is, our PDE will involve the unknown function
u = u(x, t), where −∞ < x <∞. We will take the Fourier transform “in x” as follows.

5.4.1 Definition.

Suppose that u : D → C is a function defined on a region D ⊆ R2 of the form

D ={(x, t) | x ∈ R, t ∈ I}

for some interval I ⊆ R. For t ∈ I, denote by u(·, t) the map x 7→ u(x, t). Then the
spatial Fourier transform of u on D is

û(k, t) = F[u(·, t)](k) :=
1√
2π

∫ ∞
−∞

u(x, t)e−ikx dx.

The most important properties (arguably) of the spatial Fourier transform are its different
interactions with respect to x- and t-derivatives. First, we can generalize Theorem 5.2.3 as
follows.

5.4.2 Corollary.

Let f ∈ L1 be r-times continuously differentiable, with f ′, . . . , f (r) ∈ L1. Then f̂ (r)(k) =

(ik)rf̂(k).

Thus if u : D → C is sufficiently differentiable and if ∂sx[u](·, t) ∈ L1 for s = 0, . . . , r, its
spatial Fourier transform satisfies

∂̂rx[u](k, t) = (ik)rû(k, t). (5.4.1)

Next, if u is continuously differentiable and u(·, t) ∈ L1 for all t, then a version of Leibniz’s
rule for differentiating under the integral for improper integrals gives
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ût(k, t) = F[ut(·, t)](k) =
1√
2π

∫ ∞
−∞

ut(x, t)e
−ikx dx =

1√
2π

∫ ∞
−∞

∂

∂t

[
u(x, t)e−ikx

]
dx

=
∂

∂t

[
1√
2π

∫ ∞
−∞

u(x, t)e−ikx dx

]
= ∂t[û](k, t). (5.4.2)

5.4.1. The heat equation.

We will solve the heat IVP {
ut = uxx, −∞ < x <∞, t ≥ 0

u(x, 0) = f(x)
(5.4.3)

with the Fourier transform. Our work will be formal in the sense that we will assume that
a solution to this IVP exists and that u is sufficiently “nice” so that any and all Fourier
transforms exist. At the end, we will obtain an explicit formula for u, involving the initial
data f , and then we will examine this formula carefully to see where exactly it is defined
and differentiable.

We start by taking the Fourier transform of the PDE ut = uxx, so

ût(k, t) = ûxx(k, t).

On the left, we use Leibniz’s rule (5.4.2) and on the right we use (5.4.1), so

∂t[û](k, t) = (ik)2û(k, t).

Then û(k, ·) satisfies the IVP {
∂t[û](k, t) = −k2û(k, t)

û(k, 0) = f̂(k).

This is really an ODE for the function t 7→ û(k, t) of the single real variable t; now k ∈ R
is a parameter. More precisely, it is an exponential growth (or decay) problem, so its solution
is

û(k, t) = f̂(k)e−k
2t.

We could then hope that the Fourier inversion theorem gives a formula for u:

u(x, t) =
1√
2π

∫ ∞
−∞

û(k, t)eikx dk =
1√
2π

∫ ∞
−∞

f̂(k)e−k
2teikx dk.

We can probably get convergence of this integral for t > 0 using the comparison test, thanks
to the all-absorbing, rapidly decaying factor of e−k

2t. Then we would have to think about
differentiating under the integral with Leibniz’s rule. This, morally, resembles how we studied
the convergence and differentiability of Fourier series for the heat IVP-BVP.

However, this approach will not yield the most general (and generous) result. It requires
f ∈ L1 so that f̂ is defined and bounded. Instead, a better approach turns out to be rewriting
the formula for û as a convolution. Specifically, if we can write e−k

2t as the Fourier transform
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of some function, then û(k, t) will be the product of two Fourier transforms, and so we might
write that as the transform of a convolution. Let’s pursue this further.

We want to find g ∈ L1 such that ĝ(k) = e−k
2t. Naturally, g will somehow depend on t,

too; now t is a parameter, and all the Fourier “action” is happening in k. (This is typical of
what happens when we apply the Fourier transform to PDE: sometimes t is the independent
variable, sometimes a parameter, and the same for x and k.) If g is a function such that
ĝ(k) = e−k

2t, then we expect g =

̂̂
g, and so we should consider the inverse transform integral

1√
2π

∫ ∞
−∞

e−k
2teikx dk.

This integral only converges for t > 0, so we will assume t > 0 from now on. After all, we
know what the solution u is doing at t = 0: u(x, 0) = f(x).

Let’s abbreviate
I(x, t) :=

∫ ∞
−∞

e−k
2teikx dk.

If you don’t know what else to do when considering an integral of a product, try integrating
by parts. Let me use uppercase letters here so as not to overwork u; I think the only natural
choices for U and dV are

U = e−k
2t dV = eikx dk

dU = −2kte−k
2t dk V = eikx/ix.

Of course, this is only valid for x 6= 0. So, we obtain

I(x, t) =
e−k

2teikx

ix

∣∣∣∣x=∞
x=−∞

−
∫ ∞
−∞

eikx

ix
(−2kte−k

2t) dk =
2t

ix

∫ ∞
−∞

ke−k
2teikx dk.

This may not look any more useful, but let me rewrite it a little:

I(x, t) =
2t

i2x

∫ ∞
−∞

e−k
2t(ikeikx) dk = −2t

x

∫ ∞
−∞

∂

∂x

[
e−k

2teikx
]
dk = −2t

x

∂

∂x

[∫ ∞
−∞

e−k
2teikx dk

]
= −2t

x
Ix(x, t).

Here I used Leibniz’s rule for differentiating under an (improper) integral.

This is where we finished on Monday, November 28, 2022.

We may rewrite this as an(other) exponential growth/decay problem:

Ix(x, t) = − x
2t
I(x, t).

I think it’s unlikely that we would have stumbled on this PDE-that’s-really-an-ODE from
the start, but fooling around with integration by parts helped. In fact, this PDE for I is
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valid even at x = 0, as a direct calculation of Ix(0, t) via Leibniz’s rule will show. (You
should do that.) So, we have

I(x, t) = I(0, t)e−x
2/4t.

I claim that we already know the value I(0, t). Indeed,

I(0, t) =

∫ ∞
−∞

e−k
2t dk =

∫ ∞
−∞

e−(
√
tk)2 dk =

1√
t

∫ ∞
−∞

e−`
2

d`,

and calculus tells us ∫ ∞
−∞

e−`
2

d` =
√
π.

Thus
I(x, t) =

√
π√
t
e−x

2/4t,

and so
1√
2π

∫ ∞
−∞

e−k
2teikx dk =

I(x, t)√
2π

=
e−x

2/4t

√
2t

=: H̃(x, t). (5.4.4)

The relevance of the strange notation H̃ will be apparent soon. The function31 H̃(·, t) is
infinitely differentiable on R and H̃(·, t) ∈ L1. If we put φ(k, t) := e−k

2t, then (5.4.4) says

φ̂(x, t) = F−1[φ(·, t)](x) = H̃(x, t).

Since φ(·, t) ∈ L1 and φ(·, t) is continuous (in fact, φ is continuous on R2), the Fourier
inversion theorem gives

̂̃H(k, t) = F[H̃(·, t)](k) =
̂̂
φ(x, t) = φ(x, t) = e−k

2t.

We worked really hard at this, so let’s reward ourselves with a formal little lemma.

5.4.3 Lemma.

Let φ(x, t) := e−x
2t. Then, for t > 0,

φ̂(k, t) =
e−k

2/4t

√
2t

and φ̂(x, t) =
e−x

2/4t

√
2t

.

Thus the solution u to the long-ago heat IVP (5.4.3) must satisfy

û(k, t) = e−k
2tf̂(k) = F[H̃(·, t)](k)f̂(k) =

F[H̃(·, t) ∗ f ](k)√
2π

.

Here H̃(·, t) ∗ f is the “spatial” convolution of H̃ and f , i.e.,

(H̃(·, t) ∗ f)(x) =

∫ ∞
−∞
H(x− s)f(s) ds =

1√
2t

∫ ∞
−∞

e−(x−s)
2/4tf(s) ds.

31 As always, H̃(·, t) means the map x 7→ H̃(x, t).



5. The Fourier Transform 128

Now let’s combine some factors and drop the tilde and say

H(x, t) :=
H̃(x, t)√

2π
=
e−x

2/4t

√
4πt

.

We call this function H the heat kernel; in general, a kernel32 is “the thing you convolve
with.”

All the analysis above has led to the following idea: the formal solution to the heat IVP
is, for t > 0,

u(x, t) = (H(·, t) ∗ f)(x) =

∫ ∞
−∞

e−(x−s)
2/4tf(s)√
4πt

ds. (5.4.5)

That is, for t > 0, the formal solution to the heat IVP is the spatial convolution of the heat
kernel with the initial temperature distribution.

Let me be disappointingly clear: we have not verified that defining u via (5.4.5) actually
solves the heat IVP! Let’s think about how that would proceed. First, we need to be sure
that the integral in (5.4.5) converges for all x ∈ R and all t > 0; the integral is definitely not
defined at t = 0, but we might be able to analyze it in the limit as t→ 0 anyway.

Look closely at this integral. The variable of integration is s, and so, from the point of
view of the integral, x and t are fixed parameters. The question is really if the integral∫ ∞

−∞
e−(x−s)

2/4tf(s) ds

converges, since the denominator
√

4πt is constant with respect to s. Here is the great news:
the exponential decays really fast.

Say that either f ∈ L1 or f ∈ L1
loc and f is bounded, i.e., there is M > 0 such that

|f(s)| ≤ M for all s. Then, for x and t fixed, the map s 7→ e−(x−s)
2/4tf(s) is locally

integrable (with respect to s), since the exponential is continuous in s. Moreover, if f ∈ L1,
we have

|e−(x−s)2/4tf(s)| ≤ |f(s)|,

in which case the comparison test says that the integral
∫∞
−∞e

−(x−s)2/4tf(s) ds converges. If
f ∈ L1

loc is bounded, then
|e−(x−s)2/4tf(s)| ≤Me−(x−s)

2/4t,

and since the integral
∫∞
−∞e

−(x−s)2/4t ds converges for all x ∈ R and all t > 0 (being just a
rescaled version of our old friend

∫∞
−∞e

−x2 dx), the comparison test again applies to establish
the convergence of

∫∞
−∞e

−(x−s)2/4tf(s) ds.
Thus u(x, t) = (H(·, t) ∗ f)(x) is always defined for f ∈ L1 and for bounded f ∈ L1

loc. To
check the derivatives of u, we would need to differentiate under the integral. Here is more
32 Suppose that K is a function of two variables and define the integral transform

K[f ](x) :=

∫ b

a

K(x, ξ)f(ξ) dξ.

Then K is the kernel of K.
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great news: any x- or t-derivatives that would pass under the integral would only hit H,
since f does not depend on x or t. You can check that H is infinitely differentiable on the
region D :=

{
(x, t) ∈ R2

∣∣ x ∈ R, t > 0
}
, and, remarkably,

Ht = Hxx.

That is, the heat kernel itself satisfies the heat equation! For this reason, and for its role in
the convolution (5.4.5), the heat kernel is sometimes called the fundamental solution
of the heat equation And so a careful application of Leibniz’s rule for differentiating under
improper integrals shows that this u solves the heat equation.

Things are more delicate with the initial condition. The problem is that H(x, 0) is
undefined. However, if f is also continuous (which automatically implies f ∈ L1

loc), it is
possible to show

lim
(ξ,t)→(x,0+)

(H(·, t) ∗ f)(ξ) = f(x)

for all x ∈ R.
Here is everything that we have figured out.

5.4.4 Theorem.

Let f ∈ C(R). Then the function

u(x, t) :=


∫ ∞
−∞

e−(x−s)
2/4tf(s√

4πt
ds, t > 0

f(x), t = 0

is infinitely differentiable on D :=
{

(x, t) ∈ R2
∣∣ x ∈ R, t > 0

}
, continuous on D0 :={

(x, t) ∈ R2
∣∣ x ∈ R, t ≥ 0

}
, and satisfies ut = uxx on D.

This is where we finished on Friday, December 2, 2022.

5.4.2. The wave equation.

We already know how to solve the wave IVP
utt = c2uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞,

thanks to (among other things) Lemma 4.2.2. However, it is a good exercise to solve this
IVP using the Fourier transform; we will learn some new properties of the transform in the
process.

To apply the transform, we need f , g ∈ L1, but of course we don’t need that to solve the
IVP, per Lemma 4.2.2. This is a reminder that restricting ourselves to the Fourier point of
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view will limit how general our solutions can be. Anyway, if we take the transform of the
IVP, we find, using exactly the same reasoning as with Fourier series in Section 4.1, that

û(k, t) = f̂(k) cos(ckt) + ĝ(k) sinc(ckt)t, sinc(ξ) =
sin(ξ)

ξ
.

Our task is to see how properties of the transform can help us solve for u from this expression
for û and in particular recover something like Lemma 4.2.2.

Let’s look at each of the two terms in the expression for û separately. Both terms are
products. We might expect to manage f̂(k) cos(ckt) via convolution, except k 7→ cos(ckt) is
not the Fourier transform of any function in L1; indeed, Fourier transforms of functions in
L1 have to vanish as k → ±∞, and the cosine definitely does not vanish at ±∞. Rather, we
can use the complex form of the cosine to write

f̂(k) cos(ckt) = f̂(k)

(
eickt + e−ickt

2

)
=
f̂(k)eickt + f̂(k)e−ickt

2
.

Since the definition of f̂(k) involves an exponential of the form eikx, we might wonder how
the exponentials e±ickt could interact with f̂(k).

Quite nicely.

5.4.5 Theorem (Shifting the Fourier transform).

Let f ∈ L1 and d ∈ R and denote by f(·+ d) the map x 7→ f(x+ d). Then f(·+ d) ∈ L1

and
̂f(·+ d)(k) = F[f(·+ d)](k) = eikdf̂(k).

Thus

f̂(k) cos(ckt) =
f̂(k)eik(ct) + f̂(k)eik(−ct)

2
= F

[
f(·+ ct) + f(· − ct)

2

]
(k).

As for the second term ĝ(k) sinc(ckt)t in û, it turns out that the factor sinc(ckt)t is a
Fourier transform. Specifically, you can calculate the following.

5.4.6 Lemma.
For t ≥ 0, define

χ(x, t) :=

{
1, |x| ≤ t

0, |x| > t.

Then

χ̂(k, t) = F[χ(·, t)](k) =

√
2

π
sinc(kt)t.

The function χ(·, t) is sometimes called the characteristic or indicator function
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for [−t, t]. Here is a graph of χ(·, t) as a function of x for fixed t.

x

χ(x, t)

t−t

1

We should therefore be inclined to rewrite sinc(ckt)t as the Fourier transform of something
involving χ. There are probably several ways to proceed here depending on how we want to
treat c; we could consider c as scaling k and therefore use the preceding lemma and scaling
properties of the transform. However, I think it’s ultimately easier to keep c with t; after
all, that is how all of our counterpropagating waves work. So, after some casting about, we
might find

sinc(ckt)t =
1

c
sinc(k(ct))(ct) =

1

c

√
π

2

[√
2

π
sinc(k(ct)(ct))

]
=

1

c

√
π

2
χ̂(k, ct).

Thus

ĝ(k) sinc(ckt)t =
1

c

√
π

2

(
χ̂(k, ct)ĝ(k)

)
.

Now we would like to say that χ̂(k, ct)ĝ(k) is the transform of a convolution:

ĝ(k)χ̂(k, ct) =
F[χ(·, ct) ∗ g](k)√

2π
.

This is indeed valid by the convolution theorem, if we assume that g is bounded, since
χ(·, ct) ∈ L1 is already bounded. (You might notice that I flipped the order of the factors
from χ̂(k, ct)ĝ(k) to χ̂(k, ct)ĝ(k), so that the convolution would be χ(·, ct) ∗ g. Of course
χ(·, ct) ∗ g = g ∗ χ(·, ct), but I think it’s more polite to put the “arbitrary” function g second
in the multiplication, so that in the convolution integral the x− s thing doesn’t go inside g.)
And so we have

û(k, t) = F

[
f(·+ ct) + f(· − ct)

2
+
χ(·, ct) ∗ g

2c

]
(k).

Thus our formal solution to the wave IVP is

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

(χ(·, ct) ∗ g)(x)

2c
.

A good exercise for you is to massage the convolution χ(·, ct) ∗ g until you get the integral
term in Lemma 4.2.2.

I don’t think we learned anything new about the wave equation here, but I hope it was
good practice with the Fourier transform, and we learned about transforms of shifts and
indicator functions to boot.
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A. Differentiating Under the Integral

We all know from the fundamental theorem of calculus that

d

dt

[∫ t

0

f(s) ds

]
= f(t)

if f is continuous on [0, t]. But what happens if the integrand also depends on t? How do
you calculate things like

d

dt

[∫ t

0

f(t, s) ds

]
,

where the independent variable appears both as a limit of integration and within the inte-
grand? More generally, how do you calculate partial derivatives like

∂

∂x

[∫ t

0

f(φ(x, t, s), s) ds

]
and

∂

∂t

[∫ t

0

f(φ(x, t, s), s) ds

]
,

where f = f(X, s) and φ = φ(x, t, s) are given functions? This situation arises when checking
the formula for the solution to the nonhomogeneous transport equation; see (1.5.17), which
has us take

φ(x, t, s) =
bx− at

b
− as

b
.

A.1. Leibniz’s rule for differentiating under the integral.

It turns out to be simpler to address first the question of calculating a derivative like

d

dX

[∫ 1

0

f(X, s) ds

]
,

where the limits of integration are constant. So, we’ll start with that.
Let’s fool around. Put

F (X) :=

∫ 1

0

f(X, s) ds.

Then, if F is differentiable, we have

F ′(X) = lim
h→0

F (X + h)− F (X)

h
= lim

h→0

1

h

[∫ 1

0

f(X + h, s) ds−
∫ 1

0

f(X, s) ds

]
= lim

h→0

∫ 1

0

f(X + h, s)− f(X, s)

h
ds.

We would just love to interchange limh→0 and
∫ 1

0
, right? Then we would find

lim
h→0

∫ 1

0

f(X + h, s)− f(X, s)

h
ds =

∫ 1

0

lim
h→0

f(X + h, s)− f(X, s)

h
ds =

∫ 1

0

fX(X, s) ds.
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So, in a just world we should have

d

dX

[∫ 1

0

f(X, t) ds

]
=

∫ 1

0

fX(X, t) ds. (A.1.1)

That is, we should be able to “differentiate under the integral”: to pass the X-derivative
through the integral and onto the integrand.

A.1.1 Example.

Calculate
d

dX

[∫ 1

0

s cos(s2 +X) ds

]
by evaluating the integral with the fundamental theorem of calculus and then differentiating
the result. Compare your answer to what (A.1.1) optimistically predicts.

Solution. If we fix X and integrate with respect to s, then we have∫ 1

0

s cos(s2 +X) ds =
sin(s2 +X)

2

∣∣∣∣s=1

s=0

=
sin(1 +X)− sin(X)

2
.

Consequently,

d

dX

[∫ 1

0

s cos(s2 +X) ds

]
=

d

dX

[
sin(1 +X)− sin(X)

2

]
=

cos(1 +X)− cos(X)

2
.

Now let’s compare this to (A.1.1). We have f(X, s) = s cos(s2 +X). We calculate

fX(X, s) = −s sin(s2 +X).

We integrate∫ 1

0

fX(X, s) ds = −
∫ 1

0

s sin(s2 +X) ds =
cos(s2 +X)

2

∣∣∣∣s=1

s=0

=
cos(1 +X)− cos(X)

2
.

And so

d

dX

[∫ 1

0

s cos(s2 +X) ds

]
=

cos(1 +X)− cos(X)

2
=

∫ 1

0

∂

∂X
[s cos(s2 +X)] ds. N

In this example differentiating under the integral worked perfectly; whether the “integrate
with respect to s and then differentiate with respect to X” method at the start of the solution
was harder or easier is a matter of personal opinion. The deeper question is when is (A.1.1)
valid? The interchange of limh→0 and

∫ 1

0
is one of those “interchange of limits” operations

that plagues advanced analysis and drives a lot of the stuff that you might learn about
sequences and series of functions.

The world, unfortunately, is not just, and (A.1.1) can fail in a variety of circumstances.
The good news, however, is that all of those circumstances are somewhat contrived and
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require, if not pathological, then at least “naughty” behavior of the integrand f . You can,
and should, read several spicy examples in Appendix A.3 of our textbook for situations where
differentiating under the integral fails. In my experience, though, one can differentiate under
the integral in most situations that arise in practice. Here is the most benign of these
situations.

A.1.2 Theorem (Leibniz’s rule for differentiating under the integral).

Fix numbers α, β, γ, δ ∈ R with α < β and γ < δ. Let

U =
{

(X, s) ∈ R2
∣∣ α ≤ X ≤ β, γ ≤ s ≤ δ

}
.

Suppose that f ∈ C(U) and that fX exists on U with fX ∈ C(U). (We do not require
anything about the existence or continuity of fs, and so we do not require f ∈ C1(U).)
Then differentiating under the integral is permissible:

d

dX

[∫ δ

γ

f(X, s) ds

]
=

∫ δ

γ

fX(X, s) ds

for all α ≤ X ≤ β.

Observe that in Example A.1.1, we took f(X, s) = s cos(s2 +X), and so f ∈ C1(R2). In
particular, f satisfies the hypotheses of Leibniz’s rule for [γ, δ] = [0, 1] and [α, β] arbitrary.

Leibniz’s rule becomes more interesting, and more challenging, if we want to work with
improper integrals over unbounded intervals. There are very good reasons for wanting to
calculate something like

d

dX

[∫ ∞
−∞

f(X, s) ds

]
.

In those cases, to control for the unboundedness of the domain of integration, we would need
to add extra hypotheses to Leibniz’s rule.

A.2. Two variants of Leibniz’s rule.

Let’s return to our motivating question: how do you calculate partial derivatives like

∂

∂x

[∫ t

0

f(φ(x, t, s), s) ds

]
and

∂

∂t

[∫ t

0

f(φ(x, t, s), s) ds

]
, (A.2.1)

where f = f(X, s) and φ = φ(x, t, s) are given functions such that the composition (x, t, s) 7→
f(φ(x, t, s), s) is defined?

It will help to extend Leibniz’s rule to a slightly more complicated integrand.

A.2.1 Corollary (Leibniz’s rule with composition in the integrand).

Assume the notation and hypotheses of Theorem A.1.2. Now let α̃, β̃ ∈ R with α̃ < β̃,
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and let
Ũ =

{
(ξ, s) ∈ R2

∣∣∣ α̃ ≤ ξ ≤ β̃, γ ≤ s ≤ δ
}
.

Suppose that ψ ∈ C(Ũ) with ψξ ∈ C(Ũ) and α ≤ ψ(ξ) ≤ β for all ξ. Then

d

dξ

[∫ δ

γ

f(ψ(ξ, s), s) ds

]
=

∫ δ

γ

fX(ψ(ξ, s), s)ψξ(ξ, s) ds

for α̃ ≤ ξ ≤ β̃.

Proof. Put g(ξ, s) := f(ψ(ξ, s), s). The hypotheses and properties of continuity and deriva-
tives under function composition imply g ∈ C(Ũ) and gξ ∈ C(Ũ). Leibniz’s rule then says
that

d

dξ

[∫ δ

γ

f(ψ(ξ, s), s) ds

]
=

d

dξ

[∫ δ

γ

g(ξ, s) ds

]
=

∫ δ

γ

gξ(ξ, s) ds.

And gξ(ξ, s) = fX(ψ(ξ, s), s)ψξ(ξ, s) by the chain rule.

Calculating the x-partial in (A.2.1) isn’t too bad; when we take the partial with respect
to x, we’re assuming that t is constant, and so the limits of integration are constant. If φ is
continuous and φx exists and is continuous, then we can use the corollary to Leibniz’s rule
with ξ = x and ψ(x, s) = φ(x, t, s) to find

∂

∂x

[∫ t

0

f(φ(x, t, s), s) ds

]
=

∫ t

0

∂

∂x
[f(φ(x, t, s), s)] ds =

∫ t

0

fX(φ(x, t, s), s)φx(x, t, s) ds.

Calculating the t-derivative in (A.2.1), I’m sorry to say, is harder. The problem is that t
appears as a limit of integration as well as in the integrand. We need one more trick.

A.2.2 Corollary (Leibniz’s rule with a variable limit of integration).

Assume the notation and hypotheses of Theorem A.1.2. Then

d

dX

[∫ X

γ

f(X, s) ds

]
= f(X,X) +

∫ X

γ

fX(X, s) ds

for α ≤ X ≤ β.

Proof. We introduce the auxiliary function

H(X, ξ) :=

∫ ξ

γ

f(X, s) ds.

Then ∫ X

γ

f(X, s) ds = H(X,X).
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The multivariable chain rule then tells us that

d

dX

[∫ X

γ

f(X, s) ds

]
= HX(X,X) +Hξ(X,X). (A.2.2)

When ξ is fixed, Leibniz’s rule tells us that

HX(X, ξ) =
∂

∂X

[∫ ξ

γ

f(X, s) ds

]
=

∫ ξ

γ

fX(X, s) ds.

Thus in the particular case ξ = X, we have

HX(X,X) =

∫ X

γ

fX(X, s) ds. (A.2.3)

And when X is fixed, the fundamental theorem of calculus tells us

Hξ(X, ξ) =
∂

∂ξ

[∫ ξ

γ

f(X, s) ds

]
= f(X, ξ).

Thus in the particular case ξ = X, we have

Hξ(X,X) = f(X,X). (A.2.4)

If we put (A.2.2), (A.2.3), and (A.2.4) together, we get the desired derivative.

We use Leibniz’s rule with a variable limit of integration and, once more, the chain rule
to calculate the t-partial from (A.2.1):

∂

∂t

[∫ t

0

f(φ(x, t, s), s) ds

]
= f(φ(x, t, t), t) +

∫ t

0

∂

∂t

[
f(φ(x, t, s), s)

]
ds

= f(φ(x, t, t), t) +

∫ t

0

fX(φ(x, t, s), s)φt(x, t, s) ds.

A.3. Application to the nonhomogeneous transport equation.

Let’s conclude by going back to the transport equation, which started us down this dark
path. Can you calculate

∂

∂x

[∫ t

0

f

([
bx− at

b

]
+
as

b
, s

)
ds

]
and

∂

∂t

[∫ t

0

f

([
bx− at

b

]
+
as

b
, s

)
ds

]
?

And what hypotheses on f do you need to do it? (Hint: you need more than f ∈ C(R2), as
we stated in Theorem 1.5.7 but less than f ∈ C1(R2).)
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