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Day 1: Monday, January 9. We studied the initial value problem
f ′′(t)− 4f(t) = 0

f(0) = 1

f ′(0) = −1

and looked for a solution of the form f(t) = c1e
2t + c2e

−2t, since f1(t) = e2t and f2(t) = e−2t

each solve the differential equation but don’t meet the initial conditions. We chose this form
because the derivative respects linearity:

f ′(t) = c1f
′
1(t) + c2f

′
2(t).

To meet the initial conditions, we found that the numbers c1 and c2 needed to solve{
c1 + c2 = 1

2c1 − 2c2 = −1
(1)

We solved this system (there are many approaches) to find c1 = 1/4 and c2 = 3/4. We
then rewrote the system with x1 and x2 in place of c1 and c2 and turned that into an equality
of column vectors: [

c1 + c2
2c1 − 2c2

]
=

[
1
−1

]
.

This is the content of the first paragraph on p. 2 of the textbook.

Day 2: Wednesday, January 11. Almost everything we did today boiled down to under-
standing and manipulating the three equalities[

x1 + x2
2x1 − 2x2

]
=

[
x1
2x1

]
+

[
x2
−2x2

]
= x1

[
1
2

]
+ x2

[
1
−2

]
=

[
1 1
1 −2

] [
x1
x2

]
.

The first equality is vector addition, the second is scalar multiplication, and the third is
matrix-vector multiplication. The expression after the second equals sign is a linear combi-
nation. See pp. 2 and 32 for vector addition and scalar multiplication, pp. 3 and 33 for some
examples of linear combinations, and p. 33 for matrix-vector multiplication. See p. 3 for a
geometric interpretation of vector addition that works in two dimensions, but not really in
higher dimensions. We ended by talking very briefly about the dot product, defined on p.
11, and how matrix-vector multiplication can also be done with dot products (p. 34). We
will do this in much more detail next time. Worked Example 1.1 C compresses everything
from today into about a third of a page of work. Read it!

Here is a claim for you to ponder. If b1 and b2 are real numbers, and if we define

v :=

[
1
2

]
, w :=

[
1
−2

]
, and b :=

[
b1
b2

]
,

then the vector equation
x1v + x2w = b
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has only one solution:

x1 =
b1
2
+
b2
4

and x2 =
b1
2
− b2

4
.

Use algebraic techniques like we did on Monday to figure this out. Check that[
x1
x2

]
= b1

[
1/2
1/2

]
+ b2

[
1/2
−1/4

]
.

Everything that we did today allowed us to reinterpret Monday’s problem (1) in new
language, but we learned nothing new today about actually solving that problem! That will
come later. First we need to be comfortable with the right language for problem solving.

Also, everything that we did today was for vectors with 2 entries and square matrices with
2 columns and 2 rows. This can be generalized tremendously! Section 1.3 does arithmetic
with 3 entries, 3 columns, 3 rows, and so does Section 2.1. I want to think about a systematic
way of solving problems like (1) first. Then we’ll add more equations and unknowns and
appreciate matrix-vector language more.

Day 3: Friday, January 13. We defined the dot product[
v1
v2

]
·
[
w1

w2

]
= v1w1 + v2w2,

calculated [
1
2

]
·
[
3
4

]
= 11,

and then interpreted matrix-vector multiplication in terms of dot products. (Note that · can
mean dot product of vectors but also ordinary multiplication of numbers, e.g., 2 ·3 = 6.) We
have things like[
1 1
2 −2

] [
x1
x2

]
=

[
x1 + x2
2x1 − 2x2

]
with x1+x2 =

[
1
1

]
·
[
x1
x2

]
and 2x1−2x2 =

[
2
−2

]
·
[
x1
x2

]
.

It looks like matrix-vector multiplication can be expressed as the dot product of the rows
of the matrix, treated as columns, with the given vector. Huh? We need a new operation:
the transpose. This flips column vectors to rows and rows to columns:

v =

[
v1
v2

]
=⇒ vT :=

[
v1 v2

]
and w :=

[
w1 w2

]
=⇒ wT :=

[
w1

w2

]
.

(I like writing transpose with the sans-serif T; some people just uppercase T.)
So here are two slogans. (1) The matrix-vector product Ax is a linear combination of the

columns of A with “weights” from the entries of x. (2) The matrix-vector product Ax is the
vector whose entries are the dot products of the transposes of the rows of A with the vector
x. Yikes! I think the first slogan is better than the second. (I think Dr. Strang thinks so,
too.) Do you understand all the words in the slogans? Can you calculate[

1 2
3 4

] [
5
6

]
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using both slogans? The answer should be
[
17 39

]T either way. (Transposes do save space
while typing.)

Then we talked about dimensionality. Things like

[
1
2

]
+

34
5

 and
[
1
2

]
·

21
0


are undefined because the vectors don’t have the same number of entries. (A brief, lively
discussion ensued and suggested ways of “embedding” a smaller vector inside a larger vector
to make this work out.) In general, we denote the set of all column vectors with n entries
by Rn.

One particular vector shows up in all versions of Rn: the vector whose entries are all 0.
This is, of course, the zero vector. We write this as 0. (Note 0 6= 0.) Exercise for you: if A
is a 2× 2 matrix, what is A0? More exercises for you (which we did not discuss in class but
which come to mind now): let

I =

[
1 0
0 1

]
and J =

[
0 1
1 0

]
.

For x =
[
x1 x2

]T, calculate Ix and Jx and explain why we should call I an “identity”
matrix and J a “flip” matrix.

We have significantly digressed from our original goal of solving a linear system of equa-
tions into a deep consideration of matrix vector notation, language, and arithmetic. Let’s
go back to that original problem, which was{

x1 + x2 = 1

2x1 − 2x2 = −1

Here is what we did. Multiply both sides of the first equation by 2 and subtract that from
the second equation:

x1 + x2 = 1 −→ 2x1 + 2x2 = 2 −→ 2x1 − 2x2 − (2x1 + 2x2) = −1− 2 −→ −4x2 = −3.

Provided that x1 + x2 = 1, the equations 2x1 − 2x2 = −1 and −4x2 = −3 are the same.
Here’s why. Let a = 2x1 + 2x2. Then it is also the case that a = 2. And so

2x1 − 2x2 = −1 ⇐⇒ 2x1 − 2x2 − a = −1− a ⇐⇒ 2x1 − 2x2 − (2x1 + 2x2) = −1− 2.

This means that our original problem is equivalent to{
x1 + x2 = 1

− 4x2 = −3.

This problem is much nicer: solve for x2 = 3/4 and then x1 + 3/4 = 1, thus x1 = 1/4. This
is exactly what we saw on Monday.
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Let me compress this work euphemistically as follows:{
x1 + x2 = 1 (1)

2x1 − 2x2 = −1 (2)
⇐⇒

{
x1 + x2 = 1 (1)

− 4x2 = −3 (2)− 2 · (1)

Here’s our job for next week and beyond: how do we generalize this procedure to any system
of two equations in two unknowns? To any system of n equations in n unknowns?? To any
system of m equations in n unknowns, maybe with m 6= n??? Specifically, how did we get
the idea to “multiply by 2” and then “subtract that multiple from the second equation”?

The really new stuff today was our systematic approach to the original problem. See pp.
46–47 for the exact same arithmetic on a completely different system.

Day 4: Wednesday, January 18. We started out with one more 2× 2 problem:{
4x1 + x2 = 10 (1)

6x1 + 2x2 = 5 (2).

The fundamental idea was to subtract a multiple of the first equation from the second
equation to remove the 6x1 term in the second equation. The right multiplier was 6/4. The
result is the new system {

4x1 + x2 = 10 (1)
1

2
x2 = −10 (2)− 6

4
(1)

This is upper-triangular: see p. 46. We called the coefficient 4 the pivot in the first equa-
tion; the pivot is the first nonzero coefficient in an equation that you use to eliminate the
corresponding variable in the subsequent equations. See p. 47. We also called 1/2 the pivot
in the second equation of the new system; there is no more elimination to be done, but 1/2
is still the first nonzero coefficient in that equation.

This is a major goal of linear algebra. Start with a problem Ax = b. Convert this
problem to an upper-triangular problem Ux = c. The matrix c probably won’t be b! Then
back-solve to find x.

Then we worked on the larger problem
x1 + 2x2 + x3 = 3 (1)

3x1 − x2 − 3x3 = −1 (2)

2x1 + 3x2 + x3 = 4 (3).

The strategy was the same as above just with more numbers: subtract multiples of the first
equation from the second and third equations to eliminate the x1-terms. The pivot in the
first equation was 1. This brought us to

x1 + 2x2 + x3 = 3 (1)

− 7x2 − 6x3 = −10 (2′) = (2)− 3 · (1)
− x2 − x3 = −2 (3′) = (3)− 2 · (1).
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The goal was an upper-triangular structure, so we wanted to eliminate x2 from the third
equation. The pivot in the second equation was −7. (A thoughtful discussion ensued about
multiplying (2’) and (3’) by −1 and then exchanging them so that the pivot would be 1; this
is mathematically valid but too much work for us. We want to restrict ourselves to solving
this system to the “subtract a multiple of one row from another row” technique—these are
simply the rules of the game right now.) After subtracting a multiple of the second equation
from the third, we ended up with

x1 + 2x2 + x3 = 3 (1)

− 7x2 − 6x3 = −10 (2′)

− 1

7
x3 = −

4

7
(3′′) = (3′)− [(−1)/(−7)] · (2′).

This is an upper-triangular problem, and the pivot in the third equation is −1/7.
See pp. 49–50 for another example very much like this one.

Day 5: Friday, January 20. We discussed the general method of elimination in a more
abstract way than we have previously done. See the steps at the top of p. 46 and make sure
you are comfortable with applying them to all of the systems that we have seen so far. See
p. 51 for another discussion of the general elimination method.

We then talked about two “failures” of elimination. In general, a linear system Ax = b
has a unique solution or it doesn’t. If it doesn’t, then either it has no solution at all or
infinitely many solutions. See the examples on pp. 49–50.

There is a third “temporary” failure in which the current row/equation does not have a
pivot in the right place but another row does. In that case we interchange rows. See Example
3 on p. 49. I think it takes a large system to illustrate reasonably the need for row-swapping;
you might argue in Example 3 that the system starts out as “lower-triangular” and you could
just back-solve from the top down. Here is a problem in which you definitely want to flip
some rows (what are they?): 

x1 + 2x2 + 3x3 + 4x4 = 5

6x3 + 7x4 = 8

9x2 + 10x3 + 11x4 = 12

13x2 + 14x3 + 15x4 = 16.

It will be worthwhile to read through and fill in the details of each of the worked examples
on pp. 52–53.

Day 6: Monday, January 23. Stop. Go no further. Reread p. 51 right now to make
sure you understand the goal and utility of elimination and reduction to an upper-triangular
system. Then read p. 61. Does every single word make sense?

You may proceed. The goal is now to represent the act of elimination via the action of
matrices. Previously matrices (and vectors) just encoded the data of a system in a convenient,
evocative way. That was the static view of matrices (and vectors). Now we are going to
take the dynamic view: matrices do something. Specifically, matrices multiply vectors. This
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philosophy is p. 58. Read that page to get a sense of our ultimate goals for the next few
days.

I diverged from the text today and worked strictly with 2× 2 problems. This is morally
the same as pp. 60–62, which gives the 3× 3 set-up that we’ll do next time. Here is a brief
sketch.

Our very first problem in the course was

Ax = b, A :=

[
1 1
2 −2

]
, b :=

[
1
−1

]
. (1)

Elimination turned this into

Ux = c, U :=

[
1 1
0 −4

]
, c :=

[
1
−3

]
. (2)

How can we get U from A without doing elimination (in particular without introducing the
auxiliary, but ultimately unimportant, variables x1 and x2)?

Here is the right idea: view elimination as actions on vectors. In passing from A to U
and from b to c, we had the three “evolutions” of vectors:[

1
2

]
7→
[
1
0

]
,

[
1
−2

]
7→
[

1
−4

]
, and

[
1
−1

]
7→
[

1
−3

]
.

The first two “mappings” send the columns of A into the columns of U , and the third
“transforms” b into c.

I claim that all three mappings are the same, and they all have the same structure as
the elimination procedure: don’t change the first row, and define the new second row by
subtracting 2 times the old first row from the old second row. In symbols,[

v1
v2

]
7→
[

v1
v2 − 2v1

]
.

Here is the brilliance of our forebears in linear algebra: represent this transformation by a
matrix-vector multiplication. That is, if

v =

[
v1
v2

]
,

then find a matrix E such that
Ev =

[
v1

v2 − 2v1

]
.

Here’s how we do it. Remember that Ev is fundamentally a linear combination of the
columns of E “weighted” by the entries of v. So let’s look for a linear combination and
rewrite[

v1
v2 − 2v1

]
=

[
v1

−2v1

]
+

[
0
v2

]
= v1

[
1
−2

]
+ v2

[
0
1

]
=

[
1 0
−2 1

] [
v1
v2

]
=

[
1 0
−2 1

]
v.
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Do you completely understand each calculation above? I hope so, and I hope you agree
that setting

E :=

[
1 0
−2 1

]
was the right idea. Double-check right now that with E as defined above (“:=” for me means
“defined to be equal”), we have

E

[
1
2

]
=

[
1
0

]
, E

[
1
−2

]
=

[
1
−4

]
, and E

[
1
−1

]
=

[
1
−3

]
. (3)

So here is what we know. The original problem (1) tells us that if Ax = b, then
E(Ax) = Eb. We’re allowed to compute E(Ax) because Ax is a vector, so E(Ax) is matrix-
vector multiplication. But we can be more efficient.

Look back at (2) and notice (check) that c = Eb. So we have E(Ax) = c. But (2) also
says that c = Ux. So E(Ax) = Ux. Let’s cut out the variables, and the parentheses. I vote
that we define a new symbol EA to be equal to U . That is, the matrix-vector product EA
is U :

EA =

[
1 0
−2 1

] [
1 1
2 −2

]
=

[
1 1
0 −4

]
= U.

That’s a nice piece of bookkeeping, but the whole point of today was to compute U
without doing elimination. How does this definition help? Look at the columns. Say that
the columns of A are a1 and a2, i.e., A =

[
a1 a2

]
. The first two equalities in (3) say that

the columns of U are just Ea1 and Ea2. So we really should define the matrix product EA
to be

EA = E
[
a1 a2

]
:=
[
Ea1 Ea2

]
.

The columns of EA are the matrix-vector products of E with the columns of A.
Compute right now [

1 3
2 4

] [
5 7
6 8

]
.

What happens if you flip the order of these two matrix factors?
I think this is a remarkable development. We have compressed all of the elimination into

the action of multiplying by E.
What happens with a more general problem? We probably want to subtract a multiple

of the first row from the second row and leave the first row unchanged. Here’s how we do it.
Let ` be any real number and define

E :=

[
1 0
−` 1

]
.

Let
v =

[
v1
v2

]
and A =

[
a11 a12
a21 a22

]
.

Calculate Ev (this is old stuff) and EA (this is new stuff). Do you see that ` times the first
row is subtracted from the second and that the first row is unchanged?
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Last, look back at our old problem[
4 1
6 2

]
x =

[
10
5

]
.

I claim that the right elimination matrix is

E :=

[
1 0

−3/2 1

]
.

When you multiply by E, do you get the same results as you did on January 18?

Day 7: Wednesday, January 25. We talked about elimination matrices for 3×3 systems
on pp. 60–61 and augmented matrices on pp. 63–64.

More verbosely, we want to encode the action of subtracting ` times row j from row i. We
do this by multiplying by the matrix Eij, which is the identity matrix with the (i, j)-entry
replaced by −`. I called this a “claim” in class. Proving this claim for a problem of arbitrary
size could be a challenging exercise in notation, but here’s a very particular situation.

Say we want to subtract 1/7 times row 2 from row 3 in a 3× 3 problem. Then ` = 1/7,
j = 2, and i = 3. That is, the (3, 2)-entry of the elimination matrix should be −1/7. So we
should represent this action by the matrix

E32 =

1 0 0
0 1 0
0 −1/7 1

 .
I didn’t say the following in class, but you should think about it. Subtracting 1/7 times

row 1 from row 3 means that we want to do the following “transformation” on a vector:v1v2
v3

 7→
 v1

v2
v3 − v2/7

 . (4)

Note that we didn’t change the first two rows. We can represent this action by matrix-vector
multiplication if we do some clever algebra: v1

v2
v3 − v2/7

 = v1

10
0

+ v2

 0
1

−1/7

+ v3

00
1

 =

1 0 0
0 1 0
0 −1/7 1

v1v2
v3

 . (5)

And there we see E32 again.
For actions on small systems, you should be able to represent the “transformation” effected

by “Subtract ` times row j from row i” for given values of `, j, and i via a “mapping” like
that in (4). Then you should be comfortable doing vector arithmetic and recognizing matrix-
vector multiplication as a linear combination of the columns to get the equalities in (5).
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Day 8: Friday, January 27. Here is a statement in English: “Subtract ` times row 1 of a
column vector with 3 entries from row 2 of that vector, and do not change any other entries.”
Here is that statement in vector notation:v1v2

v3

 7→
 v1
v2 − `v1
v3

 . (1)

We can encode this action into an matrix using the claim from Wednesday or the second
box on p. 60. In the notation of that claim/box, we have j = 2 and i = 1, so the matrix is

E =

 1 0 0
−` 1 0
0 0 1

 .
Note that only row 2 in this matrix is different from the 3× 3 identity matrix, which is

I =

1 0 0
0 1 0
0 0 1

 .
Likewise, only column 1 in E is not the same as column 1 in I.

How can we prove this claim? The proof would have to work for arbitrarily large vectors,
not just ones with 2 or 3 entries. We could easily get bogged down in notation. Instead, we try
to recognize matrix-vector multiplication in the transformation (1). This is fundamentally a
linear combination of vectors. We can see the linear combination via algebra: v1
v2 − `v1
v3

 =

 v1
−`v1

0

+

 0
v2
0

+

 0
0
v3

 = v1

 1
−1
0

+ v2

01
0

+ v3

00
1

 =

 1 0 0
−` 1 0
0 0 1

v1v2
v3

 .
Then we worked on a whole system with elimination. Specifically, we studied a problem

from Day 4, which was 1 2 1
3 −1 −3
2 3 1

x =

 3
−1
4

 .
Call this matrix A and the vector on the right b, so the problem is Ax = b. We want to use
the pivot of 1 from the first row (the (1, 1)-entry of A) to eliminate the 3 and the 2 below.
So we want to subtract 3 times row 1 from row 2, which requires the elimination matrix

E21 :=

 1 0 0
−3 1 0
0 0 1

 .
And we want to subtract 2 times row 1 from row 3, which requires the elimination matrix

E31 :=

 1 0 0
0 1 0
−2 0 1

 .
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You can calculate (but I doubt you’d want to)

E31E21A =

1 2 1
0 −7 −6
0 −1 −1

 .
Now we want to use the pivot of −7 to eliminate the −1 below that, and so we want to

subtract −1/−7 = 1/7 times row 2 from row 3. Then we want to multiply by the elimination
matrix

E32 :=

1 0 0
0 1 0
0 1/7 1

 .
This leads to

E32E31E21A =

1 2 1
0 −7 −6
0 0 −1/7

 .
This is upper-triangular!

I hope you saw E31 and E21 directly from the structure of A. But you definitely did
not need to see (and probably could not see) E32 from A. The structure of E32 was only
apparent from the structure of E31E21A. Constructing elimination matrices is an iterative
process.

Also, look again at the structure of E31E21A. The elimination process has really become
a 2× 2 situation: we want to make [

−7 −6
−1 −1

]
upper-triangular, but we want to do so via action in a 3× 3 world.

Here are some questions. We really have four factors in the matrix product E32E31E21A
that produces the upper-triangular structure. How important is the order? We could prob-
ably have subtracted 2 times row 1 from row 3 before we subtracted 3 times row 1 from row
2, and so we might expect E31E21A = E21E31A. That is, in a just world, E31 and E21 should
commute (but remember that AB 6= BA typically for matrices—make up some matrices and
do the arithmetic!). Next, we have three elimination matrices in a row: E32E31E21. They
all have a very similar, but not identical, structure. Can we possibly combine them into one
big elimination matrix and cut down on the matrix multiplication?

Finally, our work above really shows that if x solves Ax = b, then x also solves
E32E31E21Ax = E32E31E21b. But why should a solution to E32E31E21Ax = E32E31E21b
also solve Ax = b. In other words, we know

Ax = b =⇒ E32E31E21Ax = E32E31E21b,

but do we have
E32E31E21Ax = E32E31E21b =⇒ Ax = b?

Just because we have an arrow going one way doesn’t mean it should go the other way!
These questions will guide some of our upcoming treatments of matrices, which will step

away from systems for a bit.
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Day 9: Monday, January 30. We finished one last elimination question: what if you
suddenly don’t have a pivot? Say your elimination work produces a matrix like1 2 3

0 0 4
0 5 6

 .
The first column looks good, but then you go to the second row and want to use that row
to get rid of the 5 in the third row, right? But you can’t, because of the 0 in the (2, 2)-
entry. What do you do? If we were working at the level of the system of equations with the
x-variables, you’d just interchange the second and third equations. Remember, the goal is
now to encode the action on the system via the action of a matrix. What matrix P satisfies

P

v1v2
v3

 =

v1v3
v2

?
I claim it’s

P =

1 0 0
0 0 1
0 1 0

 .
You can check this in two ways: (1) just do the matrix-vector multiplication and (2) rewrite
(v1, v3, v2) as a linear combination weighted by v1, v2, and v3, and then recognize that linear
combination as a certain matrix times (v1, v2, v3).

This is all covered on pp. 62–63. Now is a good time to read Worked Examples 2.3A and
2.3 B on pp. 64–65 before calling it quits on elimination.

We then switched focus to matrix arithmetic. This is how math goes: we started with a
concrete problem (solving linear systems of equations), we developed a tool for systematically
approaching that problem (elimination encoded in matrices), and now we are going to study
the tool in part for the sake of studying the tool and in part in the hopes of learning more
about the original problem.

We said that a matrix A is m × n (read “m times n”—this is not the product mn!) if
A has m rows and n columns. Rows always come before columns (except alphabetically).
Here are three important matrices in which 1 shows up in the size:

• The column vector: it’s an n× 1 matrix. Here is a 3× 1 matrix:12
3

 .
Thus all vectors are matrices, but not all matrices are vectors. (Except maybe in parts of
Chapter 3 later on.)

• The row vector: it’s a 1× n matrix. Here is a 1× 3 matrix:[
1 2 3

]
.
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• The 1 × 1 matrix, like
[
1
]
. This is not the same as the number 1! The array containing

the number 1 is just not the same as the number 1. (This is a matter of philosophy and
deeper math—what exactly is an “array”?! I can answer that for you, but it will involve set
theory from 2345/2390.)

We can add matrices if they are the same size—just add the corresponding entries. We
can multiply matrices by scalars—just multiply all the entries by the given scalar. We had an
enthusiastic discussion about how matrices of different size are inherently different objects,
even if they have all the same entries:0 0

0 0
0 0

 6= [0 0 0
0 0 0

]
6=
[
0
]
.

We wanted to define the matrix product AB by saying that the columns of AB are the
matrix-vector product of A with the columns of B. This means that each column of AB is
a linear combination of the columns of A weighted by the entries of a column of B. This
means that the columns of B have to have as many entries as A has columns. So if A is
m × n, then B has to be n × p. The numbers m and p don’t have to have anything to do
with each other. If all else fails, keep this in mind:

AB = A
[
b1 · · · bp

]
=
[
Ab1 · · · Abp

]
, where A is m× n and each bk is n× 1.

This material is discussed on pp. 70–71. You should understand everything on these two
pages. Go back to Worked Example 2.3 C on p. 65 and do the arithmetic—it’s the product
of a 3×2 and a 2×2 matrix. If you have the energy, look at the matrix S in Worked Example
2.4 A on p. 76 and check the calculations of S2 and S3. You might find the application of
this matrix interesting (or maybe not).

Day 10: Wednesday, February 1. We talked over several different interpretations of
matrix multiplication. The fundamental definition of AB when A is m × n and B is n × p
is that AB is formed by A multiplying the columns of B:

AB = A
[
b1 · · · bp

]
=
[
Ab1 · · · Abp

]
.

Let
A =

[
1 2

]
and B =

[
3
4

]
.

Then
AB =

[
11
]
.

This is the product of a 1 × 2 matrix with a 2 × 1 matrix, so the result is a 1 × 1 matrix.
The only column of B is the vector

b1 =

[
3
4

]
,
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so B =
[
b1

]
. Then AB =

[
Ab1

]
. This is really, therefore, a matrix-vector product. The

matrix A has the two columns a1 =
[
1
]
and a2 =

[
2
]
. Then

Ab1 = 3a1 + 4a2 = 3
[
1
]
+ 4

[
2
]
=
[
3
]
+
[
8
]
=
[
11
]
.

Look what happens if we flip things around. Say

A =

[
1
2

]
and B =

[
3 4

]
.

Then A is 1 × 2 and B is 2 × 1, so AB is defined and is 2 × 2. Now the columns of B are
the vectors b1 =

[
3
]
and b2 =

[
4
]
, so AB =

[
Ab1 Ab2

]
. The matrix-vector product Ab1

is the linear combination of the columns of A weighted by the entries of b1. But A has only
one column and b1 has only one entry, so

Ab1 =

[
1
2

] [
3
]
= 3

[
1
2

]
=

[
3
6

]
.

Similarly, and laboriously,

Ab2 =

[
1
2

] [
4
]
= 4

[
1
2

]
=

[
4
8

]
.

Thus
AB =

[
Ab1 Ab2

]
=

[
3 4
6 8

]
.

This is by no means the only way to view matrix multiplication. We keep asking what
the columns are doing in AB: the columns of AB are formed by A multiplying the columns
of B. But the rows are also doing something. I claim that the rows of AB are formed by
multiplying the rows of A with all of B. If A is m × n and B is n × p, then any row of
A is 1 × n, so that row times B is (1 × n) times (n × p), which is 1 × p. That should feel
comforting, because there are p columns in B, so each row of B has p entries. Here is the
formula: if

A =


−→a1
...
−→am

 ,
then

AB =


−→a1B
...
−→amB

 .
Here I am writing the rows of A as −→ak for k = 1, . . . ,m.

Put

A =

[
1 3 5
2 4 6

]
and B =

1 0
0 2
0 0

 .
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Then A is 2× 3 and B is 3× 2, so AB is defined and 2× 2. Let’s calculate AB by “rows of
A times B.” We have [

1 3 5
]
B =

[
1 3 5

] 1 0
0 2
0 0

 .
This is a 1× 3 matrix times a 3× 2 matrix, so the output needs to be a 1× 2 matrix. If we
think about the action of

[
1 3 5

]
on the columns of B, we get

[
1 3 5

] 10
0

 = 1
[
1
]
+0
[
3
]
+0
[
5
]
=
[
1
]

and (more succinctly)
[
1 3 5

] 02
0

 =
[
6
]
.

I thought this was excessive and pedantic on the board, but it feels worse to type! I hope
you are seeing that all this is just repeated applications of the original definition of matrix
multiplication. The first row of AB is then[

1 6
]
.

Much more briefly, the second row is

[
2 4 6

]
B =

[
2 4 6

] 1 0
0 2
0 0

 =
[
2 8

]
.

All together,

AB =

[
1 6
2 8

]
.

If you do this product again via the original definition (A acting on columns of B), do you
get the same thing?

Here is a third way to multiply AB, and maybe I should have started with this. We’ve
seen how A acts on the columns of B to produce columns of AB and how the rows of A act
on all of B to produce rows of AB. We can also ask how a single entry of AB arises. Here’s
the answer: the (i, j) entry of AB is the dot product of row i of A and column j of B. Here’s
a proof in a very special case: A will be a 3× 2 matrix and B will be a 2× 3 matrix, and I’ll
show you the (1,1) entry of AB. Write B =

[
b1 b2 b3

]
. Then AB =

[
Ab1 Ab2 Ab3

]
.

The (1, 1) entry of AB falls in the first column, so look at Ab1. Let’s write

A =
[
a1 a2

]
and b1 =

[
b11
b21

]
.

I am giving the entries of b1 two subscripts to indicate where they fall in b1 and that they
belong to b1. Also, b21 is the (2, 1)-entry of B, right?

Anyway,

Ab1 =
[
a1 a2

] [b11
b21

]
= b11a1 + b12a2.
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We want the first entry of Ab1 (right?), so we should write out the vectors a1 and a2 as

a1 =

a11a21
a31

 and a2 =

a12a22
a32


Observe that, for example, a32 is the (3, 2)-entry of A. So we get

Ab1 = b11a1 + b12a2 = b11

a11a21
a31

+ b12

a12a22
a32

 =

b11a11b11a21
b11a31

+

b12a12b12a22
b12a32

 =

b11a11 + b12a12
b11a21 + b12a22
b11a31 + b12a32

 .
The first entry of Ab1, which is the (1, 1)-entry of AB, is therefore

b11a11 + b12a12 =

[
a11
a12

]
·
[
b11
b12

]
=

[
a11
a12

]
· b1.

and this is the dot product of the first row of A, which is
[
a11 a12

]
, with the first column

of B, which is b1. Somebody tell me why I thought doing this on the board with A and B
as matrices of arbitrary (but compatible) sizes was a good idea.

Here is one last product: [
1 3
2 4

] [
1 0 3
0 2 0

]
.

This is the product of a 2× 2 matrix and a 2× 3 matrix, so the result is 2× 3. You might
be happier drawing lines in these matrices to separate the rows and columns:[

1 3
2 4

] [
1 0 3
0 2 0

]
.

Here are all the dot products for the (i, j)-entries of the final product:

(1, 1)-entry = row 1 of A · column 1 of B =

[
1
3

]
·
[
1
0

]
= (1 · 1) + (3 · 0) = 1,

(1, 2)-entry = row 1 of A · column 2 of B =

[
1
3

]
·
[
0
2

]
= (1 · 0) + (3 · 2) = 6

(1, 3)-entry = row 1 of A · column 3 of B =

[
1
3

]
·
[
3
0

]
= (1 · 3) + (3 · 0) = 3

(2, 1)-entry = row 2 of A · column 1 of B =

[
2
4

]
·
[
1
0

]
= (2 · 1) + (4 · 0) = 2

(2, 2)-entry = row 2 of A · column 2 of B =

[
2
4

]
·
[
0
2

]
= (2 · 0) + (4 · 2) = 8

(2, 3)-entry = row 2 of A · column 3 of B =

[
2
4

]
·
[
3
0

]
= (2 · 3) + (4 · 0) = 6
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All together, [
1 3
2 4

] [
1 0 3
0 2 0

]
=

[
1 6 3
2 8 6

]
.

Here are all the matrix products that we did today. Can you do each of them in the three
different ways? Which way do you like the most? The least? Why?

1.
[
1 2

] [3
4

]

2.
[
1
2

] [
3 4

]

3.
[
1 3 5
2 4 6

]1 0
0 2
0 0


4.
[
1 3
2 4

] [
1 0 3
0 2 0

]
This material is covered on pp. 71–72. Look at “ways” 1, 2, and 3.

Day 11: Friday, February 3. Today’s discussion covered (and augmented) pp. 72–73.
For practice, we multiplied two elimination matrices that we met on Day 8: 1 0 0

−3 1 0
0 0 1

 1 0 0
0 1 0
−2 0 1

 =

 1 0 0
−3 1 0
−2 0 1

 .
It looks like we just condensed the multipliers −3 and −2 into the appropriate slots in the
same matrix!

Then we talked about some algebra. When working with real numbers, multiplication is
associative:

2 · (3 · 4) = 2 · 12 = 24 and (2 · 3) · 4 = 6 · 4 = 24.

The same is true for matrices: if A, B, and C are such that the products AB and BC are
defined, then

A(BC) = (AB)C.

This is the associativity of matrix multiplication: the way you group the factors doesn’t
matter. Exercise for you: how do the sizes of A, B, and C relate so that the products above
are defined?

Multiplication of real numbers is also commutative:

2 · 3 = 6 and 3 · 2 = 6.

Unfortunately, the same is not true for matrices: if AB and BA are both defined (exercise
for you: show that A and B must be square if both products are defined), then, in general,
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AB 6= BA. The order in which you write the factors in a matrix product matters very much.
Check out Example 2.4 B!

Last, multiplication of real numbers distributes over addition:

2 · (3 + 4) = 2 · 7 = 14 and 2 · (3 + 4) = (2 · 3) + (2 · 4) = 6 + 8 = 14.

This is also true of matrix multiplication and addition:

A(B + C) = AB + AC and (B + C)D = BD + CD.

Again, what are the sizes of A, B, C, and D so that all the products above are defined?
Note that in the first equality I have written AB +AC, not BA+BC, and similarly in the
second equality.

Here is a nice application of how matrix multiplication distributes over addition. Consider
the product [

1 3
2 4

] [
5 0 7
0 6 0

]
.

Let me rewrite these matrices in a clever way:([
1 0
2 0

]
+

[
0 3
0 4

])([
5 0 7
0 0 0

]
+

[
0 0 0
0 6 0

])
.

I am going to call this product (A + B)(C + D). Then I will distribute A + B over the
addition C +D to get

(A+B)(C +D) = (A+B)C + (A+B)D.

Then I will distribute C and D over the addition A+B to get

(A+B)C + (A+B)D = AC +BC + AD +BD.

Let’s look at the first term, AC. This is the product[
1 0
2 0

] [
5 0 7
0 0 0

]
.

Morally, this should feel like the first column of our original first factor times the first row
of our original second factor. And it is. I claim that[

1 0
2 0

] [
5 0 7
0 0 0

]
=

[
1
2

] [
5 0 7

]
.

You should check this claim by doing the arithmetic. This is a great chance to use the dot
product—in the product on the right, the first factor has only one entry in each row, and
the second factor has only one entry in each column.

I also claim that BC and AD are both the 2× 2 zero matrix. And so in the end you get[
1 3
2 4

] [
5 0 7
0 6 0

]
=

[
1
2

] [
5 0 7

]
+

[
3
4

] [
0 6 0

]
= (column 1×row 1)+(column 2×row 2).

This is Strang’s “fourth way” of multiplying matrices.
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Day 12: Monday, February 6. We started with block matrices and block multiplication.
You should read all of pp. 74–75. In equation (6) on p. 75, just say A =

[
1
]
, since we haven’t

discussed inverse matrices.
Here is the example of block matrices that we did. (It’s morally the same as Example 4

on p. 75.) Put

A11

[
1
]
, A12 =

[
2 1

]
, A21 =

[
3
2

]
, and A22 =

[
−1 −3
3 1

]
to recognize an old friend:

A =

 1 2 1
3 −1 −3
2 3 1

 =

[
A11 A12

A21 A22

]
.

Hopefully this block structure makes clear what we want to do with elimination: use A11 to
zero out A21 while retaining A12 as it is and not caring about what A22 becomes. (We’ll care
later, but not now.)

We can represent elimination in the first column of A as a block matrix. Put

E11 =
[
1
]
, E12 =

[
0 0

]
, E21 =

[
−3
−2

]
, and E22 =

[
1 0
0 1

]
.

Then

E =

 1 0 0
−3 1 0
−2 0 1

 =

[
E11 E12

E21 E22

]
.

We followed our noses to multiply

EA =

[
E11 E12

E21 E22

] [
A11 A12

A21 A22

]
=

[
E11A11 + E12A21 E11A12 + E12A22

E21A11 + E21A21 E21A12 + E22A22

]
=

 1 2 1
0 −7 −6
0 −1 −1

 .
You should check that all of the matrix products above are defined and that they come out
to what I say they do. This is good practice with dimension counting!

I think block matrices make clear the structure of a general elimination problem. Say
that A is an n × n matrix and that the (1, 1)-entry of A is nonzero, so we can use it as a
pivot. That is, A has the form

A =

[
a11 A12

A21 A22

]
.

Exercise for you: what are the dimensions of A12, A21, and A22? Assume that a11 6= 0 and
put

E =

 1 0

− 1

a11
A21 I

 .
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Here 0 is a row vector of zeros (what is its size?). I claim that

EA =

[
a11 A12

0 Ã22

]
,

where 0 is a column vector of zeros (what is its size?) and Ã22 is. . .something. You should
check this claim. It’s abstract, but we did a concrete 3× 3 version just above.

Then we started talking about matrix inverses. We even proved something: say that
Ax = b and there is a matrix M such that MA = I, where I is the identity matrix. Then
MAx = Mb. And MAx = Ix = x, and so x = Mb. This is a uniqueness result: the only
possible solution of Ax = b is x = Mb. But this does not show that x = Mb actually is
a solution; we need to check if AMb = b. If we also had AM = I, then we’d be done, for
then AMb = Ib = b. We shouldn’t expect this automatically, since we don’t know if A and
M commute.

Over the next day or two, we will cover all of pp. 83–89, although maybe not in the exact
same order as Strang does.

Day 13: Wednesday, February 8. Last time we said we’d be happy if, given an n × n
matrix A, we could find an n× n matrix M such that AM =MA = I, where I is the n× n
identity matrix. The reason we’d be happy was Note 3 on p. 83, which you should read and
think about now.

Here is reason to be happier: there is only one such M . Suppose that M and M̃ are
n× n matrices such that

AM =MA = I and AM̃ = M̃A = I.

I claim that, then, M = M̃ . Here’s why. Let’s show M − M̃ = O. (I will write O to denote
the n× n matrix whose entries are all 0.)

We have

M − M̃ = (M − M̃)I = (M − M̃)AM = (MA− M̃A)M = (I − I)M = OM = O.

Do you agree with each equality? Can you explain why each equality is true?
We therefore defined the inverse of A to be the n×n matrixM such that AM =MA = I,

if such a matrix M exists. We said that such an A was invertible. We say “the” inverse, not
“an” ’ inverse, because by the calculation M = M̃ above, there can only be one inverse of A:
the inverse is unique. We write M = A−1.

The following also turns out to be true. If M is a matrix such that AM = I, then
automatically MA = I. And if M is a matrix such that MA = I, then AM = I. So, we can
say “AM = I if and only if MA = I.” This is not as easy to prove as the uniqueness of the
inverse above. Now is a good time to read Note 2 on p. 83 and make sure you know how to
prove that. These are good exam proofs!

We temporarily skipped Notes 4, 5, and 6 on p. 84 and worked on the inverse of the
product AB. We also talked about the inverse of an elimination matrix and said that if E
is the elimination matrix whose (i, j)-entry is −`, then E−1 is the elimination matrix whose
(i, j)-entry is `. You should read and work through Examples 2 and 3 on p. 85.
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Last, we started to think about how to calculate the inverse in general, when we can’t
assume that the matrix has the special structure of an elimination matrix. Consider the
2× 2 situation—this is just hard enough. If A is an invertible 2× 2 matrix, then its inverse
A−1 satisfies AA−1 = I, where I is the 2× 2 identity matrix. Write

e1 =

[
1
0

]
and e2 =

[
0
1

]
,

so I =
[
e1 e2

]
. Write A−1 =

[
x1 x2

]
. We are thinking of A−1 as “the unknown” right

now, and usually we denote unknowns with x.
So we have

AA−1 = I ⇐⇒ A
[
x1 x2

]
=
[
e1 e2

]
⇐⇒

[
Ax1 Ax2

]
=
[
e1 e2

]
⇐⇒ Ax1 = e1 and Ax2 = e2.

Do you agree with each step in the ⇐⇒ chain above?
Here is the good news: we have reduced the problem of finding the inverse A−1 to solving

the two linear equations Ax1 = e1 and Ax2 = e2. Remember, in principle you know A,
and the vectors e1 and e2 are defined above. We’ve spent the whole course thinking about
these two problems, and we should be able to solve each of them with elimination and back
substitution. (Assuming there are two pivots. . .) This is basically p. 86 up to the sentence
“The Gauss-Jordan method computes. . .”

Day 14: Friday, February 10. Today we did one 2×2 problem that proceeded analogously
to the 3×3 problem on pp. 86–87. A briefer treatment of a 2×2 inverse appears in Example
4 on p. 87. We will do a 3× 3 beast next time.

Let
A =

[
3 1
5 2

]
.

We want to find the inverse of A (if it exists). Last time we said that we had to solve the
two systems

Ax1 =

[
1
0

]
=: e1 and Ax2 =

[
0
1

]
=: e2

and then x1 and x2 would be the columns of A−1. That is, A−1 =
[
x1 x2

]
.

The right idea is not to solve these two linear systems separately (although we could
totally do that) but to do them simultaneously. Instead of doing elimination on the two 2×3
augmented matrices

[
A e1

]
and

[
A e2

]
, we’ll do elimination on the one 2× 4 augmented

matrix
[
A e1 e2

]
=
[
A I

]
. Here I is the 2× 2 identity matrix. Since

[
A I

]
=

[
3 1 1 0
5 2 0 1

]
,
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we should subtract 5/3 times row 1 from row 2. (Quick! What is the appropriate 2× 2 elim-
ination matrix that does this? And look out below for the identity E

[
A I

]
=
[
EA E

]
.)

So we have [
A I

]
=

[
3 1 1 0
5 2 0 1

]
(2)− 5/3 · (1)
−−−−−−−−−→

[
3 1 1 0
0 1/3 −5/3 1

]
.

What does this matrix on the right mean? Remember, sometimes matrices act, and some-
times matrices encode data. What’s encoded here? It’s the pair of upper-triangular systems[

3 1
0 1/3

]
x1 =

[
1

−5/3

]
and

[
3 1
0 1/3

]
x2 =

[
0
1

]
.

We could solve these via back-substitution as we have done in the past, but here’s a
chance to do something new, and better. To get the upper-triangular form, we used the
pivot 3 in the (1, 1)-entry of A to clear out the rest of the first column below the (1, 1)-entry.
This revealed the pivot of 1/3 in the (2, 2)-entry. Now we are going to use this pivot in the
(2, 2)-entry to clear out the rest of the second column above the (2, 2)-entry. Before we do
that, though, we will divide by 1/3 (a.k.a. multiply by 3) in the second row to make this
pivot nicer: [

3 1 1 0
0 1/3 −5/3 1

]
3 · (2)
−−−→

[
3 1 1 0
0 1 −5 3

]
.

Why was this legal? Remember, if we strip away all the matrices and put the variables
back in, the 2× 4 matrix on the left represents the two problems{

3x1 + x2 = 1

(1/3)x2 = −(5/3)
and

{
3x1 + x2 = 0

(1/3)x2 = 1
.

By multiplying both sides of the second equation in each system by 3, we should see that
the two systems are the same as{

3x1 + x2 = 1

x2 = −5
and

{
3x1 + x2 = 0

x2 = 3
.

And this is why the pairs of systems represented by the matrices[
3 1 1 0
0 1/3 −5/3 1

]
and

[
3 1 1 0
0 1 −5 3

]
are the same.

Now, how can we use the new pivot of 1 in the (2, 2)-entry to clear out the 1 above that
(i.e., the 1 in the (2, 1)-entry)? I say we subtract row 2 from row 1:[

3 1 1 0
0 1 −5 3

]
(1)− (2)
−−−−−→

[
3 0 6 −3
0 1 −5 3

]
.
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Look at the matrix in the left block: it’s diagonal! This 2× 4 problem represents the pair of
systems {

3x1 = 6

x2 = −5
and

{
3x1 = −3
x2 = 3

.

These systems are decoupled: the unknowns don’t both appear in the same equation. And
so they are very easy to solve: there is nothing to do in the second equation, and we just
divide the first equation by 3.

If we had divided the first row in our last matrix by 3, this would have been easier. So
let’s do that: [

3 0 6 −3
0 1 −5 3

]
1/3 · (1)
−−−−−→

[
1 0 2 −1
0 1 5 3

]
.

This represents the pair of systems{
x1 = 2

x2 = 5
and

{
x1 = −1
x2 = 3,

which is the kind of system you’ve been hoping to meet since you started the class. There’s
nothing to do!

Let me summarize our work in three levels. First, we found A−1 by solving the systems
Ax1 = e1 and Ax2 = e2, where

x1 =

[
2
5

]
and x2 =

[
−1
3

]
.

That is,

A−1 =

[
2 5
−1 3

]
.

You should check that AA−1 = I; this is just brute-force matrix multiplication.
Second, let’s summarize our work without numbers. We started with the augmented

matrix
[
A I

]
and we did “downwards” elimination to convert this matrix into

[
U ?

]
,

where U is upper-triangular and ? is some matrix. This “downwards” elimination is the
same elimination we’ve always done, and it hinged on having pivots. The new step was
“upwards” elimination, and we used the pivots again to eliminate

[
U ?

]
into the matrix[

D ??
]
, where D is diagonal with nonzero numbers and ?? is some other matrix. This was

only possible because the pivots, by definition, were nonzero numbers. The last step was to
divide each row by its entry from D, and this gave us the matrix

[
I A−1

]
.

Third, and last, let me put all the arithmetic together into one sequence:[
3 1 1 0
5 2 0 1

]
(2)− 3 · (1)
−−−−−−−−→

[
3 1 1 0
0 1/3 −5/3 1

]

3 · (2)
−−−→

[
3 1 1 0
0 1 −5 3

]
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(1)− (2)
−−−−−→

[
3 0 6 −3
0 1 −5 3

]

1/3 · (1)
−−−−−→

[
1 0 2 −1
0 1 5 3

]
.

Day 15: Monday, February 13. Today we inverted a 3×3 matrix. Another 3×3 example
appears on pp. 86–87, and the strategy is the same there as here. Let A be our old friend

A =

1 2 1
3 −1 −3
2 3 1

 .
The inverse of A is the matrix

[
x1 x2 x3

]
whose columns satisfy the three different linear

systems

Ax1 =

10
0

 , Ax2 =

01
0

 , and Ax3 =

00
1

 . (2)

We could solve these three systems separately, but why do the same work three different
times? Let’s work on the augmented matrix

[
A I

]
=

 1 2 1 1 0 0
3 −1 −3 0 1 0
2 3 1 0 0 1

 .
In these typed notes, I’m not separating A and I with a horizontal line in the matrix

[
A I

]
,

but I will put the line in when we’re working with actual numbers.
We are going to do the same thing to

[
A I

]
that we did to the 2× 2 version on Day 14,

but now we are going to keep much more careful track of the elimination matrices involved.
This is going to be a painful amount of data to manage, but the payoff will be tremendous.

First, we want to use elimination to reduce A to upper-triangular form, with I coming
along for the ride. Back on Day 8, we saw that the necessary elimination matrices were

E21 :=

 1 0 0
−3 1 0
0 0 1

 , E31 :=

 1 0 0
0 1 0
−2 0 1

 , and E32 :=

1 0 0
0 1 0
0 −1/7 1

 .
Let’s use the pivot of 1 in the (1, 1)-entry to clear out the rest of the first column of A and
in the process act on I:

E31E21

[
A I

]
=
[
E31E21A E31E21

]
=

 1 2 1 1 0 0
0 −7 −6 −3 1 0
0 −1 −1 −2 0 1

 .
Now let’s use the pivot of −7 in the (2, 2)-entry to clear out the rest of the second column:

E32

[
E31E21A E31E21

]
=
[
E32E31E21A E32E31E21

]
=

 1 2 1 1 0 0
0 −7 −6 −3 1 0
0 0 −1/7 −11/7 −1/7 1

 .
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This says that the three problems (2) are equivalent to the three upper-triangular prob-
lems

Ux1 =

 1
−3

−11/7

 , Ux2 =

 0
1

−1/7

 , and Ux3 =

00
1

 ,
where

U = E32E31E21A =

1 2 1
0 −7 −6
0 0 −1/7

 .
Of course, we could solve each by back-substitution, thanks to the upper-triangular structure
of U . But why do the same thing three times when we could do one different thing only
once? And, in particular, why work on an upper-triangular system when we could really
work on a diagonal system?

Look at U . The diagonal elements of U are the pivots of A; they are all nonzero, and
so we were able to use these pivots to perform elimination and get the upper-triangular
structure. This was “downwards” elimination: we subtracted a multiple of an upper row
from a lower row. For example, we subtracted 3 times row 1 of

[
A I

]
from row 3 and got

an equivalent system. Now we will perform “upwards” elimination: we will subtract a matrix
of a lower row from an upper row. First, though, we will rescale the rows to avoid fractions.

Let

D33 =

1 0 0
0 1 0
0 0 −7

 .
You should check that multiplying by D33 encodes the action of multiplying the third row
by −7:

D33

v1v2
v3

 =

 v1
v2
−7v3

 .
Then we calculate

D33

[
E32E31E21A E32E31E21

]
=
[
D33E32E31E21A D33E32E31E21

]
=

 1 2 1 1 0 0
0 −7 −6 −3 1 0
0 0 1 11 1 −7

 .
Now we want to use the 1 in the (3, 3)-entry to clear out the first and second rows of the

third column. This amounts to subtracting −6 times row 3 from row 2 and 1 times row 3
from row 1. You should check that the elimination matrices

E23 :=

1 0 0
0 1 6
0 0 1

 and E13 :=

1 0 −1
0 1 0
0 0 1


do the job. Note that these elimination matrices have the multiplier above the diagonal—we
haven’t seen that before, but we also haven’t had to subtract a lower row from an upper row
before, either. Then
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E23E13

[
D33E32E31E21A D33E32E31E21

]
=
[
E23E13D33E32E31E21A E23E13D33E32E31E21

]
=

 1 2 0 −10 −1 7
0 −7 0 63 7 −42
0 0 1 11 1 −7

 .
I think you can guess that we’ll divide the second row by −7, or, better yet, multiply by

D22 :=

1 0 0
0 −1/7 0
0 0 1


to find

D22

[
E23E13D33E32E31E21A E23E13D33E32E31E21

]
=
[
D22E23E13D33E32E31E21A D22E23E13D33E32E31E21

]
=

 1 2 0 −10 −1 7
0 1 0 9 1 −6
0 0 1 11 1 −7

 .
Last, we’ll subtract 2 times row 2 from row 1 via the elimination matrix

E12 :=

1 −2 0
0 1 0
0 0 1


to conclude

E12

[
D22E23E13D33E32E31E21A D22E23E13D33E32E31E21

]
=
[
E12D22E23E13D33E32E31E21A E12D22E23E13D33E32E31E21

]
=

 1 0 0 8 −1 −5
0 1 0 −9 −1 6
0 0 1 11 1 −7

 .
This should make us feel exhausted and burdened, but happy, too, for we have found

A−1. I claim

A−1 =

 8 −1 −5
−9 −1 6
11 1 −7

 .
Of course, you can go right ahead and check this by showing that AA−1 = I. We will analyze
this in more detail next time.

Below I’ll summarize the row-by-row arithmetic in case you want to check your work that
way. On top of the arrow is the row operation; below is the matrix that we used. 1 2 1 1 0 0

3 −1 −3 0 1 0
2 3 1 0 0 1

 (2)−3·(1)−−−−−→
E21

 1 2 1 1 0 0
0 −7 −6 −3 1 0
2 3 1 0 0 1
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(3)−2·(1)−−−−−→
E31

 1 2 1 1 0 0
0 −7 −6 −3 1 0
0 −1 −1 −2 0 1



(3)−(−1/−7)·(2)−−−−−−−−−→
E32

 1 2 1 1 0 0
0 −7 −6 −3 1 0
0 0 −1/7 −11/7 −1/7 1



−7·(3)−−−→
D22

 1 2 1 1 0 0
0 −7 −6 −3 1 0
0 0 1 11 1 −7



(2)−(−6)·(3)−−−−−−−→
E23

 1 2 1 1 0 0
0 −7 0 63 7 −42
0 0 1 11 1 −7



(1)−1·(3)−−−−−→
E13

 1 2 0 −10 −1 7
0 −7 0 63 7 −42
0 0 1 11 1 −7



(−1/7)·(3)−−−−−−→
D22

 1 2 0 −10 −1 7
0 1 0 −9 −1 6
0 0 1 11 1 −7



(1)−2·(2)−−−−−→
E12

 1 0 0 8 1 −5
0 1 0 −9 −1 6
0 0 1 11 1 −7


yikes.

Day 16: Wednesday, February 15. We briefly revisited the terrible, horrible, no good,
very bad calculation that we did on Day 15. Using the notation of that day, put

M1 = E32E31E21 and M2 = E12D22E23E13D33.

I claim that all of our calculations showed

M2M1A = I.

So if we abbreviate B =M2M1, then we have BA = I, and so A is invertible with A−1 = B.
That is, A−1 =M2M1. In other words, all of the elimination and diagonal matrices that we
constructed to convert A into I multiply together to give A−1.
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Here is the algorithm that we developed for computing A−1. We first use elimination to
convert A to upper-triangular form. This is the matrix M1A. The elimination proceeded
“downwards” and is often called “Gaussian elimination.” Then we did “upwards” elimination
to convert M1A into I =M2M1A. This is called “Gauss–Jordan elimination.”

We succeeded with the “upwards” elimination becauseA has three pivots, i.e., the diagonal
entries of the upper-triangular matrixM1A are the nonzero numbers 1, −7, and −1/7. Look
back at our work and convince yourself that the upwards elimination would have failed if
we had a 0 in place of one of these three numbers. Note that we did not just work with
elimination matrices but also “scaling” matrices (D22 and D33) to make the diagonal entries
equal to 1.

If you haven’t already done so, you should read the example with K on pp. 86–87. Then
read Example 4 and compare that result to Note 5 on p. 84; you can prove Note 5 by doing
Problem 2.2.4. You should check the inverse calculation at the top of p. 88 by hand and
then see if the steps in Example 5 make sense in the context of that calculation. Then
read Example 6. Last, work through Worked Examples 2.5 A, B, and C. Computing a
matrix inverse by hand via Gauss–Jordan elimination can be an ordeal, but you have lots of
examples to consult!

We then reviewed for Friday’s exam. There are several points that I want to make.

1. The dot product is only defined for column vectors of the same length:x1...
xn

 ·
y1...
yn

 = x1y1 + · · ·+ xnyn.

While the dot product is a very useful tool for calculating the product of matrices, we do
not define a dot product of matrices. In particular, please do not write A · B to denote the
matrix product; rather, use “juxtaposition” AB.

2. If A is an m× n matrix and x is a p× 1 column vector, then the matrix-vector product
Ax is defined only if n = p. In that case, if we write

A =
[
a1 · · · an

]
and x =

x1...
xn

 ,
then

Ax =
[
a1 · · · an

] x1...
xn

 = x1a1 + · · ·+ xnan.

Note that we have three different objects in play here: the scalars xk for k = 1, . . . , n, the
m×1 column vectors ak for k = 1, . . . , n, and the matrix A. Note also that I am writing these
three objects using different fonts in this typed document, and I handwrite them differently
on the board—ordinary text for scalars, bold/underlined text for vectors, and uppercase text
for matrices. Your writing should make it clear what kind of object is what. Good math
needs good communication!
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3. If A is an m× n matrix and B is a p× q matrix, then the matrix product AB is defined
only if n = p. In that case, if we write

B =
[
b1 · · · bq

]
,

then
AB = A

[
b1 · · · bq

]
=
[
Ab1 · · · Abq

]
.

Note that for k = 1, . . . , q, each bk is an n× 1 column vector, so the matrix-vector product
Abk is defined, as A is an m× n matrix. Note also that AB is an m× q matrix.

4. Here is why we chose this particular definition of matrix-vector multiplication. Let A be
m × n, B be n × q, and x be q × 1. Then the matrix product AB and the matrix-vector
products (AB)x, Bx, and A(Bx) are all defined. (Quick: check that.) Way back on Day 6,
we wanted AB to be the matrix such that (AB)x = A(Bx). Does our definition above of
AB allow us to juggle parentheses in this way? Let’s check:

(AB)x =
[
Ab1 · · · Abq

] x1...
xq

 = x1Ab1 + · · ·+ xqAbq,

Bx =
[
b1 · · · bq

] x1...
xq

 = x1b1 + · · ·+ xqbq,

and

A(Bx) = A(x1b1 + · · ·+ xqbq) = A(x1b1) + · · ·+ A(xqbq) = x1Ab1 + · · ·+ xqAbq.

So we get, indeed,
(AB)x = x1Ab1 + · · ·+ xqAbq = A(Bx).

5. I love this calculation. It involves algebra: manipulating two seemingly different things
and seeing they’re really the same thing. And it involves linearity: we have used the identities

A(v1 + v2) = Av1 + Av2 and A(cv) = cAv,

valid for any scalar c and matrix A and vectors v1, v2, and v for which the above matrix-
vector multiplications are defined. This is linear algebra!

Day 17: Friday, February 17. You took an exam.
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Day 18: Monday, February 20. We proved an if-and-only-if statement about matrix
inverses. (To prove P ⇐⇒ Q, you have to show P =⇒ Q and Q =⇒ P .) Here is that
statement: A is invertible if and only if for each b, there is a unique x such that Ax = b.

We’ve done the =⇒ part a lot (x = A−1b). How does the ⇐= part go? Why is it the
case that if we can always solve Ax = b uniquely, then A has an inverse? The answer comes
from Problem 2.4.32. We choose the vector b to be something special: assuming A is n× n,
put ek to be the vector with 1 in the kth row and 0 elsewhere. For example, if n = 3, then

e1 =

10
0

 , e2 =

01
0

 , and e3 =

00
1

 .
Then for each k, we find a (unique) xk such that Axk = ek. Put the xk together into a
matrix: X =

[
x1 · · · xk

]
. Then AX =

[
e1 · · · en

]
= I.

We now have a new test for invertibility. If you can find two vectors x1 and x2 such that
Ax1 = Ax2 but x1 6= x2, then A is not invertible. Or if you can find a single vector b such
that Ax 6= b for all x, then A is not invertible. I like these tests because (1) they’re useful
and (2) they remind us that a matrix acts on vectors.

Then we deployed this test to create a new test involving pivots. All of our work has
taught us that we can always transform a given matrix A into an upper-triangular matrix U
by multiplying by a suitable matrix M . That is, U = MA is upper-triangular. The matrix
M will be the product of a bunch of elimination matrices and maybe permutation matrices,
and therefore M is invertible. I claim that A is invertible if and only if MA is invertible.
Try Problem 2.5.12.

So, when is MA invertible? Since MA is upper-triangular, we may as well ask when any
upper-triangular matrix U is invertible. I claim that U is invertible if and only if all of the
diagonal entries of U are nonzero. Look at the 3 × 3 case and consider the linear system
Ux = b: ? ∗ ∗0 ? ∗

0 0 ?

x = b.

If each ? is nonzero (no one cares what ∗ is), then we can back-solve to figure out x, and
this x will be unique. Thus U is invertible by the work at the start of class. (I didn’t say the
following in class, but it’s important for completeness: if a ? is 0, then U is not invertible.
This might be a little tricky to show in general. Here is Strang’s argument from p. 88: if a
? is 0, then we can do more elimination/permutation on U via a matrix M̃ so that M̃U has
a row whose entries are only 0. This matrix M̃U can’t be invertible by the arguments that
I give below in the specific example.)

So we have

A is invertible ⇐⇒ MA is invertible ⇐⇒ Diagonal of MA is all nonzero.

But if all of the diagonal entries ofMA are nonzero, then A has n pivots. (Recall that a pivot
of A is a nonzero diagonal entry of the upper-triangular form of A.) We therefore concluded
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that A is invertible if and only if A has n pivots. You should now read the material under
“Singular versus Invertible” on pp. 88–89.

Then we looked at an example from the exam. Let

A =

1 −1 2
2 3 −1
7 3 4

 .
(Finally, a new A.) If you do the elimination correctly, you find an invertible matrix M
(what is M?) such that

MA =

1 −1 2
0 5 −5
0 0 0

 .
Then the pivots of A are 1 and 5, so A only has two, not three, pivots and therefore can’t
be invertible.

We can see that MA is not invertible due to that row of zeros. Indeed, for any x, we
have

MA

x1x2
x3

 =

x1 − x2 + 2x3
5x2 − 5x3

0

 .
So if you are going to solve MAx = b, the third entry of b better be 0. In particular, the
problem

MAx =

00
1


has no solution. Our work from the start of class then says that MA is not invertible.

Here is a good exercise for you: generalize the work above to show that if a matrix A has
a row consisting entirely of 0’s, then A is not invertible. If A has a column consisting of 0’s,
try to find a nonzero vector x such that Ax = 0. (Remember, Ax is a linear combination of
the columns of A weighted by entries of x; make most of those entries 0.)

We can see the noninvertibility of A from the point of view of Gauss–Jordan elimination,
too. If you try to do Gauss–Jordan elimination on A to find A−1, you’ll transform

[
A I

]
into  1 −1 2

0 5 −5 ???
0 0 0

 .
There is no way to do “upwards” elimination starting from that (3, 3)-entry of 0, and so
Gauss–Jordan fails.

Day 19: Wednesday, February 22. We took a new perspective on our perennial problem
Ax = b: factoring. Recall that factoring in general reveals useful information (what is
“useful” depends on what your problem is). Maybe you want prime factors: 24 = 23 · 3. Or
maybe you want roots of a polynomial: x2 − 3x + 2 = (x − 1)(x − 3). Now we will factor
matrices.
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Our discussion today followed pp. 97–99, stopping at (and not including) “Better balance
from LDU.” Then we picked up with “One Square System = Two Triangular Systems” on
pp. 100–101. There are many examples on these pages that substantially augment our work
from class. Read also Worked Examples 2.6 A and B.

Recall from Days 8 and 15 that if

A :=

1 2 1
3 −1 −3
2 3 1


and

E21 :=

 1 0 0
−3 1 0
0 0 1

 , E31 :=

 1 0 0
0 1 0
−2 0 1

 , and E32 :=

1 0 0
0 1 0
0 −1/7 1

 ,
then

E32E31E21A =

1 2 1
0 −7 −6
0 0 −1/7

 =: U,

so U is upper-triangular. Put
M = E32E31E21,

so
MA = U.

Then M is the product of elimination matrices, which are invertible, and so M is invertible
with

M−1 = E−121 E
−1
31 E

−1
32 .

Since MA = U , we have A =M−1U . This is a factorization of A!
Here is why this is a useful factorization. On Day 13, we learned how to invert elimination

matrices. We have

E−121 =

1 0 0
3 1 0
0 0 1

 , E−131 =

1 0 0
0 1 0
2 0 1

 , and E−132 =

1 0 0
0 1 0
0 1/7 1

 .
Side exercise for you: let E be the 3× 3 elimination matrix that subtracts ` times row 1

from row 2. So

E

v1v2
v3

 =

 v1
v2 − `v1
v3

 .
Morally, the inverse of E should be the 3× 3 elimination matrix F that adds ` times row 1
to row 2, so we want

F

v1v2
v3

 =

 v1
v2 + `v1
v3

 .
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Check that F (Ev) = v for all vectors v. Conclude that FE = I using the more general
principle that A = B if and only if Av = Bv for all v. Further exercise: prove this more
general principle. More basic exercise: do you understand all the notation? Talk to me!

Anyway, if you grind it out,

M−1 = E−121 E
−1
31 E

−1
32 =

1 0 0
0 1 0
0 1/7 1

 =

1 0 0
0 1 0
2 0 1

1 0 0
3 1 0
0 0 1

 =

1 0 0
3 1 0
2 1/7 1

 =: L.

And so we have factored

A =

1 2 1
3 −1 −3
2 3 1

 =

1 0 0
3 1 0
2 1/7 1

1 2 1
0 −7 −6
0 0 −1/7

 = LU.

Look at the data that this factorization contains. The entries of L below its diagonal are
the negatives of the multipliers that we used in elimination, and they end up in the correct
entries of L. For example, the (2, 1)-entry of L is 3, and the (2, 1)-entry of E21 was −3. And
the diagonal entries of U are the pivots of A. All along we’ve said that it’s hard to see this
data just from glancing at A, and yet there it is buried within this “LU -factorization.”

Here is how this LU -factorization is useful. Our goal in life is to solve Ax = b. Since
A = LU , this is the same as solving LUx = b. Suppose that we have a solution x. Then if we
define c := Ux, this vector c satisfies Lc = b. So we see that if we can solve LUx = b, then
we can also solve the pair of equations Ux = c and Lc = b. Conversely, suppose that we have
a solution c to Lc = b and a solution x to Ux = c. Then Ax = LUx = L(Ux) = Lc = b.
You should stare at this argument until it makes sense.

In summary, if A = LU , then

Ax = b ⇐⇒ LUx = b ⇐⇒

{
Lc = b

Ux = c.

This is true; why is it useful? We have turned one problem (Ax = b) into two (Lc = b and
Ux = c), and usually we’d prefer just one. (1 < 2.) But these two problems are triangular,
and therefore “easy.” We can solve both with back substitution.

Consider the problem 1 2 1
3 −1 −3
2 3 1

x =

 1
10
4

 .
Using the LU -factorization of A above, this problem is equivalent to1 0 0

3 1 0
2 1/7 1

 c =

 1
10
4

 and

1 2 1
0 −7 −6
0 0 −1/7

x = c.

We need c to solve the upper-triangular problem, so we do the lower-triangular one first.
It’s the system 

c1 = 1

3c1 + c2 = 10

2c1 +
c2
7
+ c3 = 4.
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Back-solving, we get 3 + c2 = 10, so c2 = 7, and then 2 + 1 + c3 = 4, so c3 = 1. Then the
upper-triangular problem is 1 2 1

0 −7 −6
0 0 −1/7

x =

17
1

 ,
and as a system this reads 

x1 + 2x2 + x3 = 1

−7x2 − 6x3 = 7

−x3
7

= 1.

Going up, we get x3 = −7, then −7x2 + 42 = 7, so x2 = 5, and last x1 + 10− 7 = −1, thus
x1 = −4. So

x =

−25
−7

 .
Day 20: Friday, February 24. We now have three methods for solving Ax = b.

1. Form the augmented matrix
[
A b

]
and use elimination to convert this to

[
U d

]
, where

U is upper-triangular. Solve the system Ux = d via back-substitution (this is possible
because U is upper-triangular). Be careful in that whatever you do to A to get U , you have
to do to b, which creates d.

2. Calculate A−1 if A is invertible. Then x = A−1b.

3. Obtain an LU -factorization of A and solve the two triangular problems Lc = b and then
Ux = c.

You should write out all of these methods on the same piece(s) of paper for the problem1 2 1
3 −1 −3
2 3 1

x =

 1
10
4

 .
We just did the LU -factorization on Day 19, but we never did elimination or an inverse for
this particular b.

The LU -factorization of A is always possible if we can reduce A to upper-triangular form
using elimination matrices but not permutation matrices. Thus

A =

0 1 2
3 4 5
0 0 6


does not have an LU -factorization since we need to use a permutation matrix to convert
A into upper-triangular. (Exercise for you: what is that permutation matrix, and what is
the resulting upper-triangular form?) The upshot is that when A has an LU -factorization,
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the diagonal of U contains the pivots of A (in order of use), and the entries of L below the
diagonal are the multipliers from elimination: if you need to subtract ` times row j from row
i in the elimination process, then L(i, j) = `. See p. 99.

So which method do we use, assuming that (1) A is invertible and (2) A has an LU -
factorization, so that all three methods are available? By hand, everything is probably
equally easy or difficult. In particular, elimination on the augmented matrix

[
A b

]
is prac-

tically the same work that will produce the LU -factorization. And Gauss–Jordan elimination
is elimination.

Maybe the better question is what do we do on a computer. Think about all the arithmetic
that we’ve done: it all boils down to addition, subtraction, multiplication, and division. If
A is an invertible n × n matrix, it turns out that you need about n3 arithmetic operations
to compute A−1. Then you need about n2 operations to compute x = A−1b. So solving
Ax = b via the matrix inverse requires about

n3 + n2

operations. If you do elimination on A, it turns out that you need about (n3−n)/3 operations
to convert A to upper-triangular U , and then about n2 operations to solve Ux = d. The
point is that elimination requires about

n3

3
− n

3
+ n2,

and
n3

3
− n

3
+ n2 < n3 + n2.

So elimination could be more efficient.
Now imagine you are solving a system of systems of equations, like Ax = b1, . . . , Ax = br.

You would need to do r multiplications by A−1, or r rounds of elimination. But say you do
the LU -factorization and solve the two systems Lck = bk and Ux = bk for k = 1, . . . , r.
You don’t have to recalculate L and U each time; they don’t change with k. So if you do
the LU -factorization only once, you can use it as many times as you want!

See pp. 101 and 510. I don’t expect you to memorize these operation counts, but I hope
they give you some perspective as to why we are trying multiple approaches to the same
problem.

Day 21: Monday, February 27. We added structure to our lives. The goal remains the
same: to solve Ax = b or to understand our failure to do so. This discussion corresponds
roughly to pp. 122–124, but with a little more set theory.

We need some basic terminology from sets to express new concepts clearly. A set is a
collection of objects; we call these objects the elements of the set. You can, and should,
argue that the word “collection” is not precisely defined—see how far you get with that before
you circle back to the word “set.”

If A is a set and x is an element of A, we write x ∈ A. If a set has only a few elements,
we often list them between curly braces. So, we’ll denote the set consisting of the integers 2,
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4, 6, and 8 by {2, 4, 6, 8}, and we’d say 2 ∈ {2, 4, 6, 8}. If y is not an element of A, we write
y 6∈ A, so 5 6∈ {2, 4, 6, 8}.

Often we form a set by selecting elements of another set with a certain property. For
example, {2, 4, 6, 8} consists of all the even integers in the open interval (0, 10). We write

{2, 4, 6, 8} ={x ∈ (0, 10) | x is an even integer} .

This is set-builder notation: we have a label for the elements (above they are x) and an
indication of the “larger” set to which they belong (the open interval (0, 10), which is the set
of all numbers between and not including 0 and 10) and then a description of the further
property that those elements satisfy (the sentence “x is an even integer”). Sometimes we
omit that larger set on the left side. Here’s another example:

{x ∈ (1, 3) | x is an integer} = {2}.

In linear algebra, the most important sets will be sets of vectors. Remember that R is
the set of all real numbers and Rn is the set of all column vectors with n entries. That is,

Rn =


x1...
xn


∣∣∣∣∣∣∣ x1, . . . , xn ∈ R

 .

We’d say [
0
0

]
∈ R2 but

[
0
0

]
6∈ R3.

Likewise, we write Rm×n for the set of all m×n matrices. Saying m and n allows for the
possibility that m 6= n, and maybe our matrices are not square. Then

Rm×n =


a11 · · · a1n

... . . . ...
am1 · · · amn


∣∣∣∣∣∣∣ aij ∈ R for i = 1, . . . ,m, j = 1, . . . , n

 .

This is a lot of data to remember—-a matrix A ∈ Rm×n has mn entries—so maybe the
column perspective is more concise. (Eventually we might take the row perspective, too.)
That is,

Rm×n =
{[

a1 · · · an

] ∣∣ a1, . . . , an ∈ Rm
}
.

Make sure you agree that the columns of an m × n matrix are vectors in Rm. Then, for
example, [

0 0
0 0

]
∈ R2×2,

[
0 0 0
0 0 0

]
∈ R2×3, but

[
0 0
0 0

]
6∈ R2×2.

While it is important and useful to be able to work concisely and clearly with set notation,
always try to interpret your sets in words. For example, the set

V :=

{[
c
2c

] ∣∣∣∣ c ∈ R
}
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is really the set of all scalar multiples of the vector
[
1
2

]
. Do you agree that

[
1
5

]
6∈ V?

We can use this notation to describe our main problem concisely. Let A ∈ Rm×n. We
want to solve an equation of the form Ax = b. Before we almost always worked with m = n;
now we will not require that. For this equation to make sense, we need the matrix-vector
product Ax to be defined. Since A is m× n, we need x to be n× 1. Then the product Ax
will be m× 1, so we need b to be m× 1.

All together, here is our goal. Given A ∈ Rm×n and b ∈ Rm, we want to find x ∈ Rn such
that Ax = b. (We could have said all this in the first week of class, but I hope experience
makes it easier for you to parse this sentence.)

The set Rn×1 of n× 1 matrices and the set Rn of column vectors with n entries are really
the same, and so we will (rarely) bother to distinguish them. Technically the sets R1 = R1×1

and R are different; after all, 0 ∈ R, but
[
0
]
6∈ R. I think making such a distinction was

useful earlier in the course, when we were thinking hard about how scalars, vectors, and
matrices interacted. Now we will not make such a big deal about that distinction, but it will
also arise only rarely (if ever) in practice.

Day 22: Wednesday, March 1. We defined the column space of A ∈ Rm×n. Strang
denotes this by C(A), but I will usually write col(A). I say

col(A) ={Ax | x ∈ Rn} ,

and every vector in col(A) is a vector in Rm. The big question in solving Ax = b is if
b ∈ col(A). Maybe col(A) 6= Rm, in which case we’ll fail to solve Ax = b sometimes. See
pp. 126–127, up to but not including “Important.” (That will be important next time.)

Motivated by some properties of the column space, which we proved, we defined the
notion of subspace of Rn. See pp. 124. We showed that the set

V :=

{
c

[
1
2

] ∣∣∣∣ c ∈ R
}

is a subspace of R2. Here’s a generalization of that: let v ∈ Rn be a particular vector. Then
the set of scalar multiples of v, which is

{cv | c ∈ R} ,

is a subspace of Rn.
Now read pp. 124–125 on subspaces and stop at (do not read yet) Example 3. Subspaces

of Rn are the most natural place to start, and we will spend most of our time there, but
there is a further level of useful abstraction to consider: the vector space. Coming soon.

Day 23: Friday, March 3. We showed that the set

V :=

{[
c
2

] ∣∣∣∣ c ∈ R
}
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is not a subspace of R2. All you have to do is break one of the subspace axioms, but this one
breaks all three. (Caution: if v ∈ V , then αv ∈ V if α = 1, so not quite all scalar multiples
fail to belong to V .)

Then we showed that

W :=


10
0

 ,
01
0


is not a subspace of R3. Among other things, it lacks the zero vector.

More broadly, I claimed that if V = {v1, . . . ,vp} is a finite set of vectors in Rn, then V
is never a subspace of Rn, unless V = {0}. You should think about why this is true. Try
checking scalar multiples and think about how many scalar multiples cv1 there are if v1 6= 0.

This led us to ask how a finite subset {v1, . . . ,vp} can be related to a subspace. Here is
the new tool: the span. The span of v1, . . . ,vp ∈ Rn is the set of all linear combinations of
v1, . . . ,vp. Recall that a linear combination of v1, . . .vp is a vector of the form

c1v1 + · · ·+ cpvp,

where c1, . . . , cp ∈ R. I’ll denote this set by span({v1, . . . ,vp}).
I claim that span({v1, . . . ,vp}) is always a subspace of Rn. This is a little annoying to

check for p in general, but think about it for p = 2 or p = 3, where you probably don’t need
to write “· · · ” all that much.

We checked that

span


10
0

 ,
01
0


 =


x1x2
0

 ∣∣∣∣∣∣ x1, x2 ∈ R

 6= R3.

Last, we rephrased the column space in terms of spans: for A ∈ Rm×n,

col(A) ={Ax | x ∈ Rn} =

[a1 · · · an

] x1...
xn


∣∣∣∣∣∣∣ x1, . . . , xn ∈ R


={x1a1 + · · ·+ xnan | x1, . . . , xn ∈ R} = span({a1, . . . , an}).

By now you can and should read all of Section 3.1.

Monday, March 13. We introduced the null space of A ∈ Rm×n, which we’ll denote by
N(A) and maybe sometimes ker(A), as it’s also called the kernel of A. We showed that

N

([
1 2
0 3

])
= {0}

and I claimed more generally that if A ∈ Rn×n is invertible, then N(A) = {0}. You should
prove this.
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After some discussion and icky experience, we agreed to denote the zero vector in Rn by
0n. For example,

02 =

[
0
0

]
.

This notation is not universally accepted, so watch out. This allows us to write

N(A) ={x ∈ Rn | Ax = 0m} .

Then we checked that N(A) is a subspace of Rn. This is an important result, but what’s
really important is our thought process in proving this. First, think about what you want.
There are three things to check. With each thing, ask yourself what you already know and
what you want to know. Also, ask yourself if you know what all the words mean.

1. Do we have 0n ∈ N(A)? We want A0n = 0m. Is this true? Grind it out:

A0n =
[
a1 · · · an

] 0...
0

 = 0a1 + · · ·+ 0an = 0m + · · ·+ 0m = 0m.

So, yes, 0n ∈ N(A).

2. If x1, x2 ∈ N(A), do we have x1 + x2 ∈ N(A)? We know Ax1 = 0m and Ax2 = 0m, and
we want A(x1 + x2) = 0m. Is this true? Let’s compute

A(x1 + x2) = Ax1 + Ax2 = 0m + 0m = 0m.

So, yes, x1 + x2 ∈ N(A).

3. If x ∈ N(A) and c ∈ R, do we have cx ∈ N(A)? We know Ax = 0m and we want
A(cx) = 0m. So we compute

A(cx) = cAx = c0m = 0m.

So, yes, N(A) is a subspace of Rn.
We now have two “fundamental” subspaces associated with a matrix A ∈ Rm×n. There

is the column space, col(A), which is a subspace of Rm. And now there is the null space,
N(A), which is a subspace of Rn. Both of these spaces tell us things about our favorite
problem Ax = b. To be able to solve Ax = b, we need b ∈ col(A). (You should be able to
explain this by now.) So the column space tells us about existence of solutions: a solution x
to Ax = b exists if b ∈ col(A).

It turns out that the null space tells us about uniqueness of solutions, and that is why we
care about it. Say that Ax1 = b and Ax2 = b for some vectors x1, x2 ∈ Rn with x1 6= x2.
(By the way, this means b ∈ col(A), right?) Calculate with me now:

A(x1 − x2) = Ax1 − Ax2 = b− b = 0m.

So x1 − x2 ∈ N(A). Moreover, since x1 6= x2, we have x1 − x2 6= 0n, and so N(A) 6= {0n}.
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Here is the slogan: if there are two different solutions to Ax = b, then the null space
of A contains more than just the zero vector. And here is why this matters: if the null
space of A contains more than just the zero vector, then the problem Ax = b never has a
unique solution. (Watch the tricky language: we’re not assuming that this problem has any
solution. Rather, we’re saying that if the problem has one solution, then it doesn’t just have
one solution.)

Here’s why. Say that x ∈ Rn with Ax = b and v ∈ N(A) with v 6= 0n. Let c ∈ R. Then
compute

A(x+ cv) = Ax+ A(cv) = b+ cAv = b+ c0m = b+ 0m = b.

So x + cv is another solution to the problem! Moreover, since v 6= 0n, each different value
of c ∈ R gives a new solution x+ cv. Not only is the solution not unique, there are infinitely
many solutions!

Summing up, we can use the column space to tell us if we can solve a problem, and we
can use the null space to tell us if the solution to that problem is unique. You should read pp.
134–135 up to, but not including, the box beginning “The two key steps of this section. . .”

Day 25: Wednesday, March 15. If you haven’t read pp. 134–135, check them out now.
We computed several concrete null spaces today, and these were more variations on Examples
1, 2, and 3 in Section 3.2. The general strategy that I hinted at appears on pp. 136–137,
and we will do that next time.

Here were the concrete examples. We first showed

N

([
2 3
4 6

])
= span

({[
−3/2

1

]})
and then

N

([
2 3 4
4 6 8

])
span


−3/21

0

 ,
−20

1




and finally

N

([
2 3 4
4 9 14

])
= span


 1
−2
1


 .

Each of these calculations had some elements in common. To determine N(A), we need to
find all solutions to Ax = 0. One way to do this is to perform elimination on the augmented
matrix

[
A 0

]
and convert that augmented matrix to

[
U 0

]
, where U is upper-triangular.

Here’s an exercise for you: say that M is the product of all the elimination and maybe
permutation matrices that you need to make A upper-triangular, i.e., MA = U . Check that
M
[
A 0

]
=
[
U 0

]
.

The point is that we can just reduce A to upper-triangular form and then solve Ux = 0.
For example, [

2 3 4
4 6 8

]
(2)−2·(1)−−−−−→

E21

[
2 3 4
0 0 0

]
.
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Once in upper-triangular form, we studied the resulting system of equations:{
2x1 + 3x2 + 4x3 = 0

0 = 0.

We don’t have nearly enough information to determine exactly the values of x1, x2, and x3,
but we can say

x1 = −
3

2
x2 − 2x3.

For definiteness in our algorithmic process, we’ll solve for the “earlier” variable in terms of
the “later” variables. Thus any solution x to Ax = 0 has the form

x =

x1x2
x3

 =

(−3/2)x2 − 2x3
x2
x3

 = x2

−3/21
0

+ x3

−20
1

 .
Look at the upper-triangular form [

2 3 4
0 0 0

]
.

There is one pivot: 2. This pivot appears in the first column. The second and third columns
do not have pivots. It is not a coincidence that we were able to solve for x1 (which, in the
matrix-vector multiplication Ux, hits the column with a pivot) in terms of the variables x2
and x3 (which do not hit the pivots).

For the third null space, we took our sweet time and did a little more work that was
basically Gauss–Jordan elimination. We didn’t stop with an upper-triangular matrix; we
“eliminated upwards,” too. Here was the sequence of operations:[
2 3 4
4 9 14

]
(2)−2·(1)−−−−−→

E21

[
2 3 4
0 3 6

]
(1/3)·(2)−−−−−→

D2

[
2 3 4
0 1 2

]
(1)−3·(2)−−−−−→

E12

[
2 0 −2
0 1 2

]
(1/2)·(1)−−−−−→

D1

[
1 0 −1
0 1 2

]
.

If we put

A =

[
2 3 4
4 9 14

]
, R =

[
1 0 −1
0 1 2

]
, and M = D1E12D2E21,

then M ∈ R2×2 (check that), M is invertible, and R = MA. I claim that since M is
invertible, N(A) = N(MA); you should check that. Thus N(A) = N(R), and that’s how we
got the last null space above.

Each of the four matrices above represents a different stage in the evolution of A to a
more useful, tractable form. We’ll discuss those stages next time. The final stage, R, is the
reduced row echelon form of A, which appears on pp. 136–138.



MATH 3260 (Section 55, Spring 2023) Daily Log 41

Day 26: Friday, March 17. We revisited the five related matrices from the end of Day
25. Start with

A =

[
2 3 4
4 9 14

]
.

We want to understand N(A). Solving Ax = 02 is the same as solving Ux = 02, where

U =

[
2 3 4
0 3 6

]
.

This is because we obtained U from A via elimination.
Note that U is upper-triangular. I don’t think we ever gave a rigorous definition of upper-

triangular, so let’s do so now. A matrix U ∈ Rm×n is upper-triangular if U(i, j) = 0 when
i > j. Informally, if you’re further down the matrix than across, you’re 0. In U above, we
have U(2, 1) = 0, which we need because 2 > 1, but we have U(2, 2) 6= 0 and U(2, 3) 6= 0,
and both are okay because 2 = 2 and 2 < 3.

Solving Ux = 02 is a bit easier than solving Ax = 02, but we can do better. Going
slightly out of order compared to Day 25, let’s rescale and define

R̃ =

[
1 3/2 2
0 1 2

]
.

Then Ux = 02 if and only if R̃x = 02. The matrix R̃ is a bit nicer than U because not only
is R̃ upper-triangular, both pivots of R̃ are 1.

A matrix like R̃ has a name. A matrix in Rm×n is in row echelon form if

(1) Rows with all zero entries are below any row that has at least one nonzero entry. (The
matrix doesn’t have to have a row of all zeros, but if it does, that row is at the bottom.)

(2) The first nonzero entry in each row is 1. (And so all pivots are 1.)

(3) If i < j, the first nonzero entry in row i is in a column strictly to the left of the column
containing the first nonzero entry in row j. (If one row is below another row, the row below
has to “start” its nonzero entries to the right of the row above.)

A glance at R̃ above shows that it satisfies these three properties. Note that the first
doesn’t really count here, because R̃ has no row of zeros.

We can always use elimination (and maybe permutation) and scaling to put a matrix in
row echelon form. Row echelon form helps us count pivots and compute null spaces, because
the data in row echelon form is arguably going to be simpler than the data of our original
matrix.

We can go one step further from row echelon form. A matrix in Rm×n is in reduced
row echelon form if it is already in row echelon form (i.e., if (1), (2), and (3) above are
satisfied) and if also

(4) If a column contains a pivot (which by (2) necessarily has the value of 1), then all of
the other entries in that column are 0.
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Look at the second column in R̃. That entry of 3/2 prevents R̃ from being in reduced
row echelon form. But we can “eliminate upwards” (i.e., perform Gauss–Jordan elimination)
to convert R̃ to

R =

[
1 0 −1
0 1 2

]
.

This is definitely in reduced row echelon form.
Reduced row echelon form cleanly and clearly reveals how many pivots a matrix has and

makes it very easy to compute the null space of that matrix. Once we are in row echelon
form (which we get via elimination/permutation and scaling), use Gauss–Jordan elimination
(“upward” elimination) to arrive at reduced row echelon form.

Here’s another example. Start with

A =

1 2
1 3
2 7

 .
Do elimination on the first column of A and convert A to the matrix1 2

0 1
0 1

 .
This matrix is not upper-triangular because its (3, 2)-entry is 1, not 0. So do elimination in
the second column to get 1 2

0 1
0 0

 .
Check that this matrix is in row echelon form; note that we do have a row of all zero entries
and (rather naturally) it fell out at the bottom. Last, do Gauss-Jordan elimination to get
rid of that 2; then the reduced row echelon form of A is

R =

1 0
0 1
0 0

 .
Exercise for you: find a matrix M such that R = MA. This M needs to be invertible and
square—so M ∈ Rn×n with n = what?

Now we have Ax = 03 if and only if Rx = 03. (Note that x ∈ R2, right?) And1 0
0 1
0 0

[x1
x2

]
=

00
0

 ⇐⇒

x1 = 0

x2 = 0

0 = 0.

So the only solution is x = 02; that is, N(A) = {02}. Look how easy it was to compute the
null space once we had the reduced row echelon form.
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Contrast the matrices

R1 =

[
1 0 −1
0 1 2

]
and R2 =

1 0
0 1
0 0

 .
Both matrices have two pivots, but one has the trivial null space N(R2) = {02}, while R1

has a more complicated null space (which we previously found on Day 25).
Counting pivots relative to the dimensions of our matrix is going to be key to controlling

null spaces (and column spaces)—and these spaces control our ability to solve Ax = b, which
is the point of life, more or less. You should now read about the reduced row echelon form
on pp. 136–137.

Day 27: Monday, March 20. A good way to see if you understand the definition of the
RREF is to build some matrices in RREF. Say that we want a matrix R ∈ R3×4 with pivots
in columns 1 and 3 only. So the matrix looks like

R =

 ? ∗ ∗ ∗
? ∗ ∗ ∗
? ∗ ∗ ∗

 .
Let’s focus on that first column, which is why I singled it out. We want a pivot in that column,
so one of the entries needs to be 1, and the rest are 0. Here are the three possibilities: 1 ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗

 or

 0 ∗ ∗ ∗
1 ∗ ∗ ∗
0 ∗ ∗ ∗

 or

 0 ∗ ∗ ∗
0 ∗ ∗ ∗
1 ∗ ∗ ∗

 . (1)

The first one looks fine to me, but I have problems with the second and third.
We know the first row of the second matrix in (1) can’t be all 0, so maybe the second

matrix really is  0 a ∗ ∗
1 ∗ ∗ ∗
0 ∗ ∗ ∗


with a 6= 0. But then the first nonzero entry in row 1 is not strictly to the left of the first
nonzero entry in row 2. The same problem happens if the second matrix in (1) has the form 0 0 a ∗

1 ∗ ∗ ∗
0 ∗ ∗ ∗

 or

 0 0 0 a
1 ∗ ∗ ∗
0 ∗ ∗ ∗


with a 6= 0. And I claim the same problem happens with the third matrix in (1). So only
the first matrix in (1) works as an RREF so far.

Now let’s turn our attention to the second column in 1 ? ∗ ∗
0 ? ∗ ∗
0 ? ∗ ∗

 .
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The (2, 2)- and (3, 2)-entries have to be 0; if they’re nonzero, then they’re leading nonzero
entries in their rows, and thus pivots. But this matrix has no pivots in column 2. So the
matrix has the form  1 ? ∗ ∗

0 0 ∗ ∗
0 0 ∗ ∗

 .
If we look carefully at the rules for the RREF, we see no restrictions on the (1, 2)-entry.
Making it nonzero will not create a pivot in the second column; making it zero will not
create a row of zeros in row 1. So we can say that the matrix has the form 1 a ∗ ∗

0 0 ∗ ∗
0 0 ∗ ∗


for an arbitrary a ∈ R.

Now we focus on the third column in 1 a ? ∗
0 0 ? ∗
0 0 ? ∗

 .
It has a pivot, so precisely one entry is 1 and the other two are 0. Here are the three
possibilities:  1 a 1 ∗

0 0 0 ∗
0 0 0 ∗

 or

 1 a 0 ∗
0 0 1 ∗
0 0 0 ∗

 or

 1 a 0 ∗
0 0 0 ∗
0 0 1 ∗

 .
The first matrix won’t work as there is no leading 1 in any row of column 3; thus column 3
does not contain a pivot. The second matrix definitely works, as it has a leading 1 in row 2,
thus a pivot there. The third matrix does have a leading 1 in row 3, thus a pivot there, but
since column 4 can’t contain a pivot, this third matrix would have to be 1 a 0 ∗

0 0 0 0
0 0 1 ∗

 .
Otherwise, if that (2, 4)-entry is nonzero, then there is a leading 1 and thus a pivot in column
4.

So, our matrix now has the form  1 a 0 ?
0 0 1 ?
0 0 0 ?

 .
The RREF rules don’t restrict the (1, 4)- and (2, 4)-entries, as they will never be pivots in a
matrix of this form. We do have to set the (3, 4)-entry to be 0, as if it’s nonzero, then it’s a
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pivot. Thus any matrix R ∈ R3×4 that (1) is in RREF and (2) has pivots in columns 1 and
3 only has the form

R =

 1 a 0 b
0 0 1 c
0 0 0 0


for some a, b, c ∈ R.

Here’s a game to play with yourself or a friend. (It’s not a fun game, but there are much
worse games to play.) Pick dimensions for your matrix—say you want R ∈ Rm×n with m
and n given. Pick some columns between 1 and n to have pivots. How many matrices of
this form can you make? What if you pick some rows between 1 and m to have pivots?

Remember that the point of RREF is that it’s “easy” to get the null space from RREF.
Let’s do another example of that. Say that A ∈ R3×4 has the RREF above with the a, b,
and c entries arbitrary. Then Ax = 03 if and only if Rx = 03, and1 a 0 b

0 0 1 c
0 0 0 0



x1
x2
x3
x4

 =

00
0

 ⇐⇒

x1 + ax2 + bx4 = 0

x3 + cx4 = 0

0 = 0.

We can therefore solve for x1 and x3 in terms of x2 and x4 (. . .dare I say that x1 and x3 are
functions of x2 and x4?):

x1 = −ax2 − bx4 and x3 = −cx4.

Then the solution x to Rx = 03 has the form

x =


x1
x2
x3
x4

 =


−ax2 − bx4

x2
−cx4
x4

 =


−ax2
x2
0
0

+


−bx4
0
−cx4
x4

 = x2


−a
1
0
0

+ x4


−b
0
−c
1

 .
Thus

N(A) = N(R) = span




−a
1
0
0

 ,

−b
0
−c
1



 .

Strang is calling the vectors 
−a
1
0
0

 and


−b
0
−c
1


the “special solutions” to Rx = 03; they are “special” because any other solution to Rx = 03

is a linear combination of them.
Then we introduced the terminology of free variables and pivot variables, and free columns

and pivot columns. If A ∈ R3×4 has the RREF given by R, then the free variables are x2 and
x4, the pivot variables are x1 and x3, the free columns are columns 2 and 4, and the pivot



MATH 3260 (Section 55, Spring 2023) Daily Log 46

columns are columns 1 and 3. By the way, if R ∈ Rm×n is the RREf of A ∈ Rm×n, then I’ll
sometimes write R = rref(A). This presumes that A has only one RREF, which probably
needs to be checked.

Counting pivots tells us how many free variables a matrix has, and that tells us something
about the “size” of the matrix’s null space. (We will be more precise with “size” later.) If
there are no free variables, then the null space is trivial, because then the only solution to
Rx = 0m is x = 0n. Otherwise, if there are free variables, then the null space contains
nonzero vectors, and that destroys uniqueness of solutions to our favorite problem Ax = b.

There is one situation in which a matrix always has free variables. If A ∈ Rm×n, then A
has m rows; since there can be at most one pivot per row, A has at most m pivots. Solving
any problem Ax = b requires n variables in x. If m < n, then A cannot have as many pivots
as variables in the problem, and so there will be n−m > 0 free variables. This shows that
if A ∈ Rm×n with m < n, then there are always nonzero vectors in N(A), and so Ax = b
cannot have a unique solution. (Maybe it has no solution!) Think of such a matrix as “short
and wide”; think of this situation as having more unknowns than it does equations.

You can now read up to p. 138, stopping at “The rank of a matrix.” Look at Worked
Examples 3.2 A and B.

Day 28: Wednesday, March 22. We defined the rank of A to be the number of pivots
in rref(A); we write it as rank(A). We argued that if A ∈ Rm×n, then 0 ≤ rank(A) ≤ m.
You should work through Worked Example 3.2 C right now.

We explored the peculiar case of a rank 1 matrix: its RREF has precisely one pivot. Say
that A ∈ R3×4 has rank 1. Then

rref(A) =

1 r2 r3 r4
0 0 0 0
0 0 0 0

 ,
where r2, r3, r4 ∈ R. A good exercise for you is to explain why rref(A) has exactly this form.
(What goes wrong if the 1 goes anywhere else?) We also know that there is an invertible
matrix E ∈ R3×3 such that EA = R; the matrix E encodes all the elimination, permutation,
and scaling needed to transform A into R. See Day 24 for an example of how such an E
arises in practice. Then we have A = E−1R; put F = E−1, so this reads A = FR, and write
A =

[
f1 f2 f3

]
.

I claim that
A = FR =

[
f1 r2f1 r3f1 r4f1

]
.

Another good exercise for you is to do this matrix multiplication (multiply F against the
columns of R). So, all the columns of A are just scalar multiples of the first column! In fact,
check further that

A = f1
[
1 r2 r3 r4

]
.

That is, A is the product of a 3×1 matrix and a 1×4 matrix. See p. 139 for more examples.
Can you generalize this line of argument to show that if A ∈ Rm×n has rank 1, then A = UV
for some U ∈ Rm×1 and V ∈ R1×n. And if you don’t have enough work to do, check that

A :=

[
2 3 4
4 6 8

]
=

[
2
4

] [
1 3/2 2

]
.



MATH 3260 (Section 55, Spring 2023) Daily Log 47

In the context of the work above, how does the vector
[
2
4

]
relate to an elimination matrix

that operates on A? (Yes, I know this vector is the first column of A, but it also shows up
in elimination, or the inverse thereof.)

We finally stopped talking about null spaces exclusively and worked on a concrete version
of the major problem Ax = b. Let

A =

[
2 3 4
4 6 8

]
and b =

[
1
2

]
.

A good way to approach Ax = b is to consider the augmented matrix
[
A b

]
and convert A

to R = rref(A), doing the same operations to b that you do to A. Then you get
[
R d

]
=

E
[
A b

]
for some invertible matrix E.

Specifically, here’s what happens:[
2 3 4 1
4 6 8 2

]
(2)−2·(1)−−−−−→

E21

[
2 3 4 1
0 0 0 0

]
(1/2)·(1)−−−−−→

D1

[
1 3/2 2 1/2
0 0 0 0

]
.

(So what’s E?)
The matrix [

1 3/2 2 1/2
0 0 0 0

]
represents the system {

x1 + (3/2)x2 + 2x3 = 1/2

0 = 0.

We solve for x1 as
x1 =

1

2
− 3x2

2
− 2x3

3
,

and so the solution x to Ax = b has the form

x =

x1x2
x3

 =

1/2− (3/2)x2 − (2/3)x3
x2
x3

 =

1/20
0

+

(−3/2)x2x2
0

+

−(2/3)x30
x3


=

1/20
0

+ x2

(−3/2)1
0

+ x3

−(2/3)0
1

 .
This problem has infinitely many solutions because we can take x2 and x3 to be any real

numbers that we like. We can condense our notation by setting

xp =

1/20
0

 , s1 =

(−3/2)1
0

 , and s2 =

−(2/3)0
1

 .
All our work above then says that any solution x to Ax = b has the form

x = xp + x2s1 + x3s2 (2)
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for some x2, x3 ∈ R. Note that if we take x2 = x3 = 0, then we just get x = xp, and so xp

is a “particular” solution to the problem.
Here is another aspect of our solution’s structure. Back on Day 25 we showed that

N(A) = span({s1, s2}).

Now we see those vectors s1 and s2 show up in the solution to the problem Ax = b, and we
see precisely how s1 and s2 create infinitely many solutions to this problem. This is what we
have said all along: the null space destroys uniqueness of solutions.

Here is a third aspect of our solution’s structure. The formula (2) tells us how any two
solutions to Ax = b are related: just add some vector from the null space. Specifically, and
generally, let A ∈ Rm×n and let b ∈ Rm. Suppose that Axp = b and Ax = b. I’ll let you
check that A(x−xp) = 0m. Thus x−xp ∈ N(A). If we put x0 := x−xp, then you can also
check that x = xp + x0. And so if we know one particular solution xp, we just have to add
an appropriate vector x0 in N(A) to get any other solution x.

This is a big deal. Our work above says that if just get one solution to the problem
Ax = b and if we know all about the null space of A, then we know what every solution to
Ax = b is.

You can now read Worked Example 3.2 C and then pp. 149–151 up to (but not including)
Example 1. Skip p. 148 for now, but we will come back to it.

Day 29: Friday, March 24. We did two more illustrative examples of solving, or failing
to solve, Ax = b via transformation to the RREF. Consider[

2 3 4
4 6 8

]
x =

[
1
1

]
.

Here is the conversion:[
2 3 4 1
4 6 8 1

]
(2)−2·(1)−−−−−→

E21

[
2 3 4 1
0 0 0 −1

]
(1/2)·(1)−−−−−→

D1

[
1 3/2 2 1/2
0 0 0 −1

]
.

The last matrix above encodes the systemx1 +
3x2
2

+ 2x3 =
1

2
0 = −1.

The equation 0 = −1 is false, and so this system has no solutions.
Here is the broader lesson. Let A ∈ Rm×n, b ∈ Rm, and convert the augmented matrix[

A b
]
to
[
R d

]
, where R = rref(A). Then R = EA for some invertible E ∈ Rm×m, and

so d = Eb. Then x ∈ Rn satisfies Ax = b if and only if Rx = d. If row i of R is all 0, then
the ith entry of Rx will be 0, and so the ith entry of d will be 0, too. This is a solvability
condition for our problem: if we can solve Ax = b and if the ith row of R = EA is all 0,
then the ith entry of d = Eb is 0, too. And so if the ith row of R is all 0 and the ith entry
of d is not 0, then we cannot solve the problem Ax = b!
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Let’s do another example: let

A =

1 2
1 3
2 7

 and b =

34
9

 .
We work on the augmented matrix: 1 2 3

1 3 4
2 7 9

 (2)−(1)−−−−→
E21

 1 2 3
0 1 1
2 7 9

 (3)−2·(1)−−−−−→
E31

 1 2 3
0 1 1
0 3 3

 (3)−3·(2)−−−−−→
E32

 1 2 3
0 1 1
0 0 0

 (1)−2·(2)−−−−−→
E12

 1 0 1
0 1 1
0 0 0

 .
Here we have converted

[
A b

]
to
[
R d

]
, where

R =

1 0
0 1
0 0

 and d =

11
0

 .
Again, R = rref(A) has a row of all 0 entries, but the corresponding row in d is 0. The
problem Rx = d simply reads 

x1 = 1

x2 = 1

0 = 0.

Not only do we have a solution x, we have only one solution. Observe that R has two pivots,
but A only has two columns; thus both x1 and x2 are pivot variables of A, both columns 1
and 2 are pivot columns of A, and there are no free variables or free columns. In particular,
N(A) = {02}, so if Ax = b has a solution, then necessarily that solution is unique. Note
that we got information about N(A) even though we didn’t set out to solve Ax = 02 here;
we just read this information off from the RREF.

This is the situation of full column rank. Say that A ∈ Rm×n and rank(A) = n.
(This presumes m ≥ n, right? For we know rank(A) ≤ m in general, so here in particular
n = rank(A) ≤ m.) Then A has no free variables, since there are only n variables in play
anyway, and all of them are pivot variables. Thus N(A) = {0n}, and so if Ax = b has a
solution x, then the only solution is that x. No guarantees that a solution exists—in the last
example above, try finding b ∈ R3 such that

E12E32E31E21b =

d1d2
d3


with d3 6= 0.

Please read Example 1 on p. 151 now and the very important box on p. 152.



MATH 3260 (Section 55, Spring 2023) Daily Log 50

Day 30: Monday, March 27. If A ∈ Rm×n has full column rank, then rank(A) = n. You
might expect, then, that if A has full row rank, then rank(A) = m. Full column rank
guarantees that the null space is trivial. What good stuff does full column rank give us?

Let’s look at an example: we have calculated that the RREF of

A =

[
2 3 4
4 9 14

]
is [

1 0 −1
0 1 2

]
.

We see then that rank(A) = 2, x1 and x2 are pivot variables, and x3 is the only free variable.
I claim this means that we can always solve Ax = b for any b ∈ R2. Let’s do the

particular example of b =

[
1
1

]
. I’ll show the elimination steps in full detail just to help us

review:[
2 3 4 1
4 9 14 1

]
(2)−2·(1)−−−−−→

E21

[
2 3 4 1
0 3 6 −1

]
(1/3)·(2)−−−−−→

D2

[
2 3 4 1
0 1 2 −1/3

]
(1)−3·(2)−−−−−→

E12

[
2 0 −2 2
0 1 2 −1/3

]
(1/2)·(1)−−−−−→

D1

[
1 0 −1 1
0 1 2 −1/3

]
.

Thus Ax = b if and only if x1 − x3 = 1

x2 + 2x3 = −
1

3

,

and so
x1 = 1 + x3 and x2 = −

1

3
− 2x3.

Thus all solutions x to Ax = b have the form

x =

x1x2
x3

 =

 1 + x3
−1/3− 2x3

x3

 =

 1
−1/3
0

+ x3

 1
−2
1


This example illustrates a general phenomenon: if A ∈ Rm×n has rank m (full row rank),

then we can always solve the problem Ax = b, but, as we already know, the solution will
not be unique if m < n, as then there will be free variables. Here is how you can argue that
Ax = b has a solution for any b ∈ Rm; we’ll keep working with the previous example. Do
your elimination and convert the augmented matrix

[
A b

]
to
[
R d

]
. In the context of the

work above, we get [
R d

]
=

[
1 0 −1 d1
0 1 2 d2

]
.

Do you see the identity matrix there? We really have[
R d

]
=
[
I r3 d

]
,
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where I is the 2× 2 identity matrix. Then Rx = d if and only if

I

[
x1
x2

]
+ x3r3 = d.

We can force this equality to be true by taking[
x1
x2

]
= d and x3 = 0.

You should now read pp. 152–154. Pay careful attention to the four cases on p. 154—do
you understand them all? Can you give concrete examples of A and b in each case? We’ve
probably done all of them in class. Worked Examples 3.3 A, B, and C contain tons of useful
details!

Day 31: Wednesday March 29. Everything that we do in this class is in service to
understanding the problem Ax = b, where A ∈ Rm×n and b ∈ Rm. We know that to solve
this problem we need b ∈ col(A) = column space = the set of all linear combinations of the
columns of A. We know that to guarantee that the solution is unique (if it exists in the first
place), we need N(A) = {0n}, where N(A) = null space = {x ∈ Rn | Ax = 0m} and 0n is
the zero vector in Rn. Life teaches us that we should want solutions (1) to exist and (2) to
be unique. So it’s probably reasonable to say that we want the column space of A to be as
large as possible and the null space of A to be as small as possible. That is, we want col(A)
to contain as much of Rm as possible and N(A) to contain as little of Rn as possible.

Our next task will be to quantify “as much” and “as little” in meaningful ways. A natural
but fruitless idea is to ask how many vectors col(A) and N(A) contain. This certainly would
give a notion of “size” for these two key subspaces. But here’s the problem: any subspace
that is not {0n} in fact contains infinitely many vectors. That is, if V is a subspace of Rn

and there is v ∈ V such that v 6= 0n, then V contains infinitely many elements.
Here’s why. Let v ∈ V be nonzero. Then c1v 6= c2v for any c1, c2 ∈ R. (You should figure

this out on your own. Think about the vector (c1 − c2)v: is it the zero vector?) Moreover,
cv ∈ V for each c ∈ R by the definition of subspace.

So, as soon as a subspace contains at least one vector different from the zero vector, that
subset contains infinitely many vectors (all the scalar multiples of that nonzero vector), and
therefore asking “how many vectors are in the column space or the null space?” won’t give
us really meaningful data about our favorite problem Ax = b. Instead, we need to do more
work and get some new ideas.

Let’s think about the column space. We’ve spent a large amount of time computing null
spaces from reduced row echelon forms, but we never really computed a column space. But
we didn’t really need to—a “formula” for the column space is built into its definition as the
“span of all the columns of the matrix.”

Here’s an example. Let

A =

[
2 3 4
4 6 8

]
.

We’ve worked with this matrix several times before. Its column space is

col(A) = span

([
2
4

]
,

[
3
6

]
,

[
4
8

])
=

{
x1

[
2
4

]
+ x2

[
3
6

]
+ x3

[
4
8

] ∣∣∣∣ x1, x2, x3 ∈ R
}
.
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It looks like the column space is defined by three vectors (there are, after all, only three
columns in A), but some of these vectors are redundant. Let’s do a little algebra:

x1

[
2
4

]
+ x2

[
3
6

]
+ x3

[
4
8

]
= 2x1

[
1
2

]
+ 3x2

[
1
2

]
+ 4x3

[
1
2

]
= (2x1 + 3x2 + 4x3)

[
1
2

]
.

Every vector in col(A) is therefore just a scalar multiple of the one vector
[
1
2

]
. And so

col(A) = span

([
1
2

])
.

Consequently, there is a certain “redundancy” in writing the column space as the span of
three vectors when really it is the span of one vector. Our real job going forward will be to
eliminate that redundancy in describing subspaces—why say more when you could say less,
and do less work in the process?

Let’s look at the null space of this A. Here it is useful to appeal to the reduced row
echelon form of A, which in the past we’ve calculated to be

R =

[
1 3/2 2
0 0 0

]
.

This told us, after some work, that

N(A) = span

−3/21
0

 ,
−20

1

 .

Cautioned by our experience with col(A), we might ask if N(A) can be written as the span
of fewer vectors. The only thing fewer than two is one, so could we have N(A) = span(v)
for a single v ∈ R3?

If so, then −3/21
0

 = c1v and

−20
1

 = c2v

for some c1, c2 ∈ R. Both c1 and c2 are nonzero (think about what happens otherwise), and
so we can do a very clever rewriting:−3/21

0

 = c1v =

(
c2
c2

)
c1v =

c1
c2
(c2v) =

c1
c2

−20
1

 .
Look at the second components of the vectors on the far left and the far right. The second
component on the left is 1 and the right is 0. So 1 = 0, which is impossible. We have
therefore shown that N(A) cannot be the span of a single vector. Thus, in the description of
N(A) above as a span, there is no redundancy, and we really need to have those two vectors
“generating” the span.
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By the way, you can and should check that another way of writing col(A) is

col(A) = span

([
2
4

])
.

When we look at the reduced row echelon form, we see that
[
2
4

]
is the only pivot column of

A. We will see this pattern again. . .right now!
Here’s another example. Let

A =

[
2 3 4
4 9 14

]
.

We’ve worked with this matrix a lot, too; you know this beastie already. Its RREF is

R =

[
1 0 −1
0 1 2

]
.

Previously we calculated

N(A) = span

 1
−2
1

 ,

but now let’s focus on the column space. It doesn’t look like any two columns are scalar
multiples of a third (unlike our previous example), so let’s dig a little deeper.

The key idea is to relate the RREF back toA. Remember thatR = EA for some invertible
E ∈ R2×2, where E “encodes” all the work that we did to convert A to R (elimination and
scaling). Then A = E−1R; abbreviate F = E−1 to get A = FR. Say that F =

[
f1 f2

]
. It’s

not important right now exactly what the columns of F are.
Let’s do the multiplication FR by multiplying F against the columns of R. Going column

by column on R, we have

[
f1 f2

] [1
0

]
= f1,

[
f1 f2

] [0
1

]
= f2, and

[
f1 f2

] [−1
2

]
= −f1 + 2f2.

Remember that A = FR, and so[
2
4

]
= f1,

[
3
9

]
= f2, and

[
4
14

]
= −f1 + 2f2.

The third equality is the key. It says that the third column of A is a linear combination of
the first two columns. You can check in your spare time that

−
[
2
4

]
+ 2

[
3
9

]
=

[
4
14

]
. (3)

I claim this means that the column space is really

span

([
2
4

]
,

[
3
9

])
.
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Actually, I’m going to leave that for you to check: use the identity (3) to rewrite any linear
combination

x1

[
2
4

]
+ x2

[
3
9

]
+ x3

[
4
14

]
in the form

y1

[
2
4

]
+ y2

[
3
9

]
.

And so the column space of A is not just a linear combinations of the columns of A—
which includes some redundant data—but a linear combination of its pivot columns. You do
see that [

2
4

]
and

[
3
9

]
are the pivot columns of A, right?

We have calculated two column spaces and two null spaces today. All four spaces were
the spans of certain sets of vectors—some redundant, some not. By removing the redundant
vectors from consideration, we obtained simpler descriptions of the subspaces and maybe a
better sense of their “size”—all nonzero subspaces are infinite, but maybe we can describe
them as spans of as few vectors as possible. Our next task will be to make mathematically
meaningful this intuitive feeling of “redundancy,” and that will hinge on understanding the
situation with the columns of our last matrix: when some vectors in the span are already
linear combinations of the others.

Day 32: Friday March 31. You took an exam. What fun!

Day 33: Monday, April 3. Today’s class was brought to you not by the Department of
Mathematics but by the Department of Redundancy Department. On Day 31, you saw that
the matrix

A =

[
2 3 4
4 9 14

]
=
[
a1 a2 a3

]
had the relationship

−a1 + 2a2 = a3

among its columns. (You can check that right now if you need to.) This relationship wasn’t
obvious, but it was there. It means that although col(A) = span(a1, a2, a3) by definition of
the column space, really we just need two vectors in the span: col(A) = span(a1, a2).

We are working so much with subspaces given by spans that we could use some jargon:
a set S in Rm spans a subspace V of Rm if V = span(S), where span(S) is, as always, the
set of all linear combinations of vectors in S. We might also say that V is spanned by S, or
that S is a spanning set for V . For example, the columns of A ∈ Rm×n form a spanning set
for the subspace col(A) of Rm.

Back to the A with the redundant columns. You’re going to have to trust me on this,
but it turns out that the most useful way to view the redundancy is not that a3 is a linear
combination of a1 and a2 (although it is) but rather that the following identity holds:

−a1 + 2a2 − a3 = 02.
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I’ll rewrite this a little to make the coefficients in the linear combination more apparent:

(−1)a1 + 2a2 + (−1)a3 = 02.

We are going to make this phenomenon both more abstract and more precise. I promise
that, in the end, our new tools will help us answer the question “What is the best spanning
set for a subspace?” or maybe “What is the least redundant spanning set?", as “best” might
be subjective.

The vectors v1, . . . ,vn ∈ Rm are linearly independent if the only linear combination
x1v1+· · ·+xnvn of these vectors that adds up to 0m is the combination with x1 = 0, . . . , xn =
0. Here is the “test for linear independence”: assume that x1v1 + · · ·+ xnvn = 0m and show
that x1 = 0, . . . , xn = 0. We also have linear dependence: when the list of vectors is
not linearly independent (big help). Here is the “test for linear dependence”: find numbers
x1, . . . , xn not all zero such that x1v1 + · · ·+ xnvn = 0m.

We did several examples and had a spirited discussion. I will just list the examples but
omit the work.

1. The vectors
[
1
0

]
and

[
0
1

]
are linearly independent.

2. The vectors
[
1
0

]
,
[
0
1

]
, and

[
2
3

]
are linearly dependent.

3. The vectors v1, . . . ,vn ∈ Rm are linearly independent if and only if the null space of the
matrix

[
v1 · · · vn

]
is the trivial null space {0n}. In the context of the example above, how

does looking at the RREF and the null space help?

4. Any list of vectors containing the zero vector (in Rm) is linearly dependent.

5. A single vector (in the definition above, take n = 1 and replace “are” with “is”) is linearly
independent if and only if that vector is not the zero vector.

You can now read pp. 163–166. Look at Worked Example 3.4 B.

Day 34: Wednesday, April 5. We did two more examples of linear (in)dependence.

6. A list of vectors in Rm that contains some repeated vectors is linearly dependent. For
simplicity, suppose the list is v, v, v3, v4. The last two vectors can be anything, but the
first two are definitely the same.

7. A list of vectors is linearly dependent if and only if one vector in the list is a linear
combination of the others. This crystallizes how linear independence prevents redundancy
in a spanning set: the set is LI if and only if no vector in the set is a linear combination of
the others.

We then went further into how properties of matrices reveal linear (in)dependence of
columns. We know that v1, . . . ,vn ∈ Rm is linearly independent if and only ifN(

[
v1 · · · vn

]
) =
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{0n}. This happens if and only if the matrix A =
[
v1 · · · vn

]
∈ Rm×n has no free vari-

ables, which happens if and only if A has n pivot variables, which happens if and only if
rank(A) = n. Since rank(A) ≤ m, if rank(A) = n as well, then n ≤ m. So there cannot be
more columns than rows.

Here’s the translation: any list of n vectors in Rm is linearly dependent if n > m. The
columns of a matrix form a linearly dependent list if there are more columns than rows. Just
by counting rows vs. columns, then, you can see that the columns of[

2 3 4
4 9 14

]
are linearly dependent. But you have to do more work to figure out which column is a linear
combination of the others.

The last thing we discussed, briefly, was the concept of basis. The basis is the resolution
of the “Goldilocks” problem for spanning sets. A set may be too small to span a subspace—
then that set is not a basis. The vectors in a set may not be linearly independent and may
therefore be linear combinations of each other—that set is not a basis. The concept of basis
prevents redundancies. See p. 167 for the definition. We proved that the vectors[

1
0

]
and

[
0
1

]
form a basis for R2. (Note that Rm is a subspace of itself.)

You can now read pp. 166–168 (stop at and don’t read Example 7 for now). Ignore row
spaces for now; we’ll do them later.

Day 34: Friday, April 7. Generalizing our last example, the columns of them×m identity
matrix form a basis for Rm for any m. We call this basis the standard basis for Rm.

But a subspace can have plenty of bases. Read Worked Example 3.4 C right now. It’s
pretty amazing.

Here’s another basis for R2: [
1
2

]
and

[
3
4

]
.

You can check that the rank of the matrix

A :=

[
1 3
2 4

]
is 2. So, this matrix has full column rank, and its null space is trivial. Therefore its columns
are linearly independent. And this matrix has full column rank, and so we can always solve
Ax = b for any b ∈ R2. Thus col(A) = R2, which is to say that every vector in R2 is in the
span of the columns of A. So the two vectors above span R2.

There are lots of ways to check that a given list of vectors forms a basis. Unless told
otherwise, you should probably do what feels right and easiest to you.

Without doing any real work, we then said that[
1
2

]
,

[
3
4

]
, and

[
5
6

]
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can’t form a basis for R2: there are too many vectors. Two rows, three columns, no way.
Then we did a proof by “· · · .” A basis is a spanning set—this gives us control over the

subspace in question. And a basis is linearly independent—this prevents redundant vectors
and gives us efficiency. We can get something even better.

Say that v1, . . . ,vn is a basis for the subspace V of Rm. Then V = span(v1, . . . ,vn), so if
v ∈ V , then there are scalars x1, . . . , xn ∈ R such that v = x1v1 + · · ·+ xnvn. We can think
of these scalars as “coordinates” of v with respect to the basis: they tell us how to assemble
the vectors in the basis to form v. What’s great is that these coordinates are unique: there’s
only one way to pick them. Say that

x1v1 + · · ·+ xnvn = y1v1 + · · ·+ ynvn.

Subtract to get
(x1v1 − y1v1) + · · ·+ (xnvn − ynvn) = 0m.

Factor to get
(x1 − y1)v1 + · · ·+ (xn − yn)vn = 0m.

Use linear independence to get

x1 − y1 = 0, . . . , xn − yn = 0.

Add to get
x1 = y1, . . . , y1 = yn.

Call it a day.
One last little thing: all this time we’ve been saying things like “Let v1, . . . ,vn be a

basis for V .” How do we know that a subspace even has a basis? In particular, how do we
construct bases for really important subspaces like column spaces and null spaces?

We’ll do the construction next week; as you can imagine, it boils down to the RREF.
Here’s an existence proof. I say that every subspace of Rm other than {0m} has a basis.
(Exercise for you: why can’t {0m} have a basis?)

For simplicity, let’s put m = 4. Let V be a subspace of R4. Suppose V 6= {04}. Then
there is a vector v1 ∈ V such that v1 6= 0m. Either V = span(v1) or V 6= span(v1). If
V = span(v1), then the vector v1 by itself is a basis for V : certainly v1 spans V , and v1 is
linearly independent because it’s nonzero.

Now suppose V 6= span(v1). Then there is a vector v2 ∈ V such that v2 6∈ span(v1). I
claim that v1 and v2 are linearly independent. To prove this, suppose x1v1 + x2v2 = 0m.
We need to show x1 = x2 = 0. Suppose x2 6= 0. Then we can get v2 = −(x1/x2)v1, and
so v2 ∈ span(v1). So x2 = 0. Then x1v1 = 0, so x1 = 0 because v1 6= 04. So we have
x1 = x2 = 0.

Now we either have V = span(v1,v2) or V 6= span(v1,v2). If V = span(v1,v2), then
v1 and v2 form a basis for V because they’re linearly independent. If V 6= span(v1,v2),
then there is v3 ∈ V such that v3 6∈ span(v1,v2). I claim that v1, v2, and v3 are linearly
independent—can you figure that out as we did in the previous paragraph? So either V =
span(v1,v2,v3), in which case v1, v2, and v3 form a basis for V , or V 6= span(v1,v2,v3).
What do you think happens then?



MATH 3260 (Section 55, Spring 2023) Daily Log 58

Day 36: Monday, April 10. I hope you said that there is v4 ∈ V such that v4 6∈
span(v1,v2,v3). You can then argue that v1, v2, v3, and v4 are linearly independent.
Now something special happens: we’re working in R4, and we have four linearly indepen-
dent vectors. I claim then that v1, v2, v3, and v4 therefore form a basis for R4. That is,
span(v1,v2,v3,v4) = R4. Since this span is already contained in V , and since V is contained
in R4, we set-theoretically “squeeze” V so that it equals R4. That is, the only, and last,
possibility for V is that V = R4.

Here’s the justification of my claim. All we have to do is show that v1, v2, v3, and v4

span R4, since they are already linearly independent. Put the four vectors into a matrix:
A =

[
v1 v2 v3 v4

]
. We want to show col(A) = R4. We know N(A) = {04}, so rank(A) =

4, and so rref(A) has four pivots. But rref(A) is a 4×4 matrix, so R = rref(A) = I, where I
is the 4× 4 identity matrix. So A = ER = E, where E is an invertible matrix, and therefore
A is invertible, and therefore col(A) = R4, right? (You want to be able to solve Ax = b for
any b ∈ R4 . . .)

Can you generalize this argument to show that any list of m linearly independent vectors
in Rm is a basis for Rm?

We now know (1) what a basis is, (2) some methods of checking that a given list is (or
is not) a basis for a given subspace, and (3) that every subspace of Rm has a basis. We
really should figure out how to actually find a basis for a given subspace from scratch, but
there’s one more general concept that I want to share with you first. In the argument above,
when we showed that any subspace of Rm (okay, R4), has a basis, there was an aspect of
counting—either the basis had one vector, or it had two, or it had. . .m (well, 4). We might
wonder if two bases for the same subspace can have different numbers of vectors. This would
be bad! We are striving for efficiency with bases, and if my basis has more vectors than
yours, I’d say that mine is less efficient than yours.

Here is the fact: every basis for a subspace of Rm has the same number of vectors. There
is a great proof on pp. 169–170 of the book, which I will adapt here. Say that V is a subspace
of Rm and we have two bases for V : the vectors v1, . . . ,vn, and the vectors w1, . . . ,wp. All
of the vectors in each basis are distinct (because repetition destroys linear independence),
so the first basis has n vectors and the second has p. We want to show that n = p.

What goes wrong if n 6= p? Then one has to be bigger than the other. To make things
really concrete in class, let’s say n = 2 and p = 3, and let’s keep m arbitrary, so we’re still
working in Rm. (You can always read the full argument in the book later.) Since v1 and v2

form a basis for V , and since w1, w2, w3 ∈ V , we can write each wk as a linear combination
of v1 and v2:

w1 = x1v1 + x2v2, w2 = y1v1 + y2v2, and w3 = z1v1 + z2v2.

This looks like matrix-vector multiplication to me:

w1 =
[
v1 v2

] [x1
x2

]
w2 =

[
v1 v2

] [y1
y2

]
and w3 =

[
v1 v2

] [z1
z2

]
.

And this looks like matrix-matrix multiplication now:[
w1 w2 w3

]
=
[
v1 v2

] [x1 y1 z1
x2 y2 z2

]
.
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Call the product above C = AB. Let’s count sizes. So C ∈ Rm×3, A ∈ Rm×2, and
B ∈ R2×3. There are more columns than rows in B, so N(B) 6= {02}. That is, there is x ∈ R2

such that x 6= 02 and Bx = 03. Then ABx = 03, too. And so Cx = 03, so N(C) 6= 03. But
then the vectors w1, w2, and w3 are linearly dependent. Boom, contradiction.

So, now every subspace of Rm has a basis, and every basis has the same number of
vectors—this number is the dimension of the subspace. Since the m columns of the m×m
identity matrix are a basis for Rm, the dimension of Rm is m—I mean, what else could it
be? Let’s start finding bases!

I say we begin with the column space, as this controls our ability to solve Ax = b. Look
at our old friend

A =

[
2 3 4
4 9 14

]
.

By definition, the column space is

col(A) = span

([
2
4

]
,

[
3
9

]
,

[
4
14

])
,

but you also know that [
4
14

]
= −

[
2
4

]
+ 2

[
3
9

]
,

and so really

col(A) = span

([
2
4

]
,

[
3
9

])
.

I’ll leave it to you to check that these two vectors are linearly independent, and so they form
a basis for col(A), and the dimension of col(A) is 2.

You figured this out via brute force (the best force), but now we can be more elegant.
As usual, the answer lies in the RREF. Here it is

R = rref(A) =

[
1 0 −1
0 1 2

]
.

The pivot columns are columns 1 and 2, and these are the columns of A that formed the
basis for col(A). And the rank of A is 2, which is the dimension of the column space.

This sounds to me like a conjecture: for A ∈ Rm×n, the pivot columns of A form a basis
for the column space of A, and the dimension of the column space is the rank of A. If this is
true, then we have a nice algorithm for controlling the column space: get the RREF, figure
out the pivot columns of A (careful—A and the RREF have different columns), and count
pivots.

You should now read pp. 168–170 and Worked Examples 3.4 A and 3.4 C.

Day 37: Wednesday, April 12. So, tell me about the column space of

A =

[
2 4
4 8

]
.
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Let’s get the RREF: [
2 4
4 8

]
(2)−2·(1)−−−−−→

E21

[
2 4
0 0

]
(1/2)·(1)−−−−−→

D1

[
1 2
0 0

]
.

So column 1 is the pivot column, and the rank is 1, so the dimension of the column space is

1. In particular, a basis for the column space is the single vector
[
2
4

]
, and

col(A) = span

([
2
4

])
=

{
x

[
2
4

] ∣∣∣∣ x ∈ R
}
.

Note that we cannot use the pivot column of R here! If you believe the conjecture, then the
column space of R is spanned by its only pivot column:

col(R) = span

([
1
0

])
=

{
x

[
1
0

] ∣∣∣∣ x ∈ R
}
.

Then it’s definitely the case that col(A) 6= col(R). For example,[
6
12

]
∈ col(A),

[
6
12

]
/∈ col(R),

[
6
0

]
∈ col(R), and

[
6
0

]
/∈ col(A).

We use the RREF to understand the column space of A, but the column space of the RREF
is (usually) not the column space of A.

Back to the claim: why do the pivot columns of A form a basis for its column space?
Start with A ∈ Rm×n, let R = rref(A), and let E ∈ Rm×m be an invertible matrix such that
R = EA. Put F = E−1, so A = FR.

The pivot columns of R are some (maybe all?) of the columns in the m × m identity
matrix. They have m rows, a 1 in precisely one entry, and a 0 in every other entry. The
pivot columns of R are therefore linearly independent.

Moreover, the nonpivot columns of R have nonzero entries only in rows in which there
is a pivot to the left. Otherwise, if an entry in a nonpivot column is the only nonzero entry
in its row in R, then that column would be a pivot column. So a nonpivot columns of R is
a linear combinations of the pivot columns—specifically, of the pivot columns to the left of
that nonpivot column. This is a “proof in words” (all proofs are in words, but this is wordier
than usual); you could do a proof in more precise notation, but I worry translating things
precisely could obscure their meaning.

Here’s a picture:

R =

1 2 0 3
0 0 1 4
0 0 0 0

 .
Columns 1 and 3 are pivot columns, column 2 is 2 times column 1, and column 4 is 3 times
column 1 plus 4 times column 3. The nonpivot columns are linear combinations of the pivot
columns. Note that the nonpivot column 2 is only a linear combination of the pivot column
1, i.e., the pivot column to the left of column 2.

Let’s label the pivot columns as p1, . . . ,pr, where r = rank(A). Then the pivot columns
of A are Fp1, . . . , Fpr. Worked Example 3.4 C in the book says that Fp1, . . . , Fpr are
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linearly independent. That is, the pivot columns of A are linearly independent. Now let
a be any nonpivot column of A. Then a = Fq, where q is a nonpivot column of R. So
q = x1p1 + · · · + xrpr for some x1, . . . , xr ∈ R. Then a = x1Fp1 + · · · + xrFpr. So every
nonpivot column of A is a linear combination of the pivot columns of A.

By definition, the columns of A form a spanning set for col(A). Let’s remove the nonpivot
columns from this spanning set. Then we are just left with the pivot columns. Since those
nonpivot columns are linear combinations of the pivot columns, the span of the pivot columns
equals the span of all the columns. So, the span of the pivot columns equals the column
space of A. And the pivot columns are linearly independent. So, the pivot columns form a
basis for the column space. And there are as many pivot columns as the rank of A. So, the
dimension of the column space is the rank of A.

If we look back at the same matrix that we studied on Monday to motivate our conjecture,
we had

rref

([
2 3 4
4 9 14

])
=

[
1 0 −1
0 1 2

]
,

so the first and second columns of the original matrix are its pivot columns and therefore
form a basis for its column space. That is,[

2
4

]
and

[
3
9

]
form a basis for the column space. (Incidentally, the column space is R2, right?)

What about the null space of A ∈ Rm×n? We have seen that each free variable kicks
another vector into a spanning set for N(A), so maybe we should conjecture that the di-
mension of the null space is the number of free variables, which is n − rank(A). Say that
A ∈ R3×4 has the RREF

rref(A) = R =

1 2 0 3
0 0 1 4
0 0 0 0

 .
We have

Ax = 03 ⇐⇒ Rx = 03 ⇐⇒


x1 + 2x2 + 3x4 = 0

x3 + 4x4 = 0

0 = 0

⇐⇒

{
x1 = −2x2 − 3x4

x3 = −4x4

⇐⇒ x =


−2x2 − 3x4

x2
−4x4
x4

 = x2


−2
1
0
0

+ x4


−3
0
−4
1

 .
We definitely have, then

N(A) = span



−2
1
0
0

 ,

−3
0
−4
1


 .

Are these vectors actually a basis for N(A), and is the dimension of N(A) equal to 2?
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The key observation is that these two vectors have a special arrangement of the numbers
0 and 1. Each vector has a 0 in a row where the other has a 1 and a 1 in a row where the
other has a 0. I’ve illustrated this in blue for you:

−2
1
0
0

 and


−3
0
−4
1


So suppose

c1


−2
1
0
0

+ c2


−3
0
−4
1

 =


0
0
0
0

 .
(I’m using c1 and c2 so as not to overwork x from above.) Then, just focusing on the blue
rows, we must have {

(c1 · 1) + (c2 · 0) = 0

(c1 · 0) + (c2 · 1) = 0
=⇒ c1 = 0 and c2 = 0.

The vectors are therefore linearly independent.
Now look again at the arrangement of 0 and 1 in these vectors. The vector

−2
1
0
0


was weighted by the x2 free variable, and this vector has a 1 in row 2 and a 0 in row 4. The
vector 

−3
0
−4
1


was weighted by the x4 free variable, and this vector has a 1 in row 4 and a 0 in row 2. This
pattern is not an accident.

If you haven’t done so, now is a good time to read Example 9 on p. 169 (keep omitting
the row space—we’ll come back to that). Then read #2 on p. 181 and #2 on pp. 181–182.

Day 38: Friday, April 14. We are going to justify the conjecture that the dimension of
N(A), for A ∈ Rm×n, is n− rank(A) = the number of free variables. Start with A ∈ Rm×n

and convert A to R = rref(A). Then Ax = 0m if and only if Rx = 0m. We solve Rx = 0m

by working row-by-row and writing each pivot variable as a function of the free variables.
However, we can’t solve for a free variable in terms of any other variables, so we just leave
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the free variable as a function of itself. For example, from last time,

1 2 0 3
0 0 1 4
0 0 0 0



x1
x2
x3
x4

 =

00
0

 ⇐⇒

x1 = −2x2 − 3x3

x2 = x2

x3 = −4x4
x4 = x4.

I emphasized the “free variables as functions of themselves” in blue here, and I hope
you agree that those equations are silly and redundant, which is why we never wrote them
before. But now we can rewrite each row of the solution x as a linear combination of the
free variables—and if xi is a free variable, then row i of x just contains xi:

x =


−2x2 − 3x3

x2
−4x4
x4

 .
We can then rewrite x as a linear combination of as many vectors (in Rn, by the way) as
there are free variables; each vector is multiplied by one free variable. The vector multiplied
by the free variable xi will have a 1 in row i and a 0 in any other row corresponding to a
different free variable.

Now we need a bit more precise notation (I’m sorry—I just can’t say this clearly using
“only words”!). Say that the free variables are xk1 , . . . , xkd with d = n − rank(A). In the
example above, d = 2, k1 = 2, and k2 = 4. Say that the vectors are v1, . . . ,vd. That is,
if x ∈ N(A), then x = xk1v1 + · · · + xkdvd. The entries in rows k1, . . . , kd of vi are all 0
except for the entry in row ki, which is 1. Then the entry in row ki of any linear combination
c1v1 + · · ·+ cdvd is ci. So if c1v1 + · · ·+ cdvd = 0n, we look at rows k1, . . . , kd on both sides
of the equality. On the left, row ki is the coefficient ci. On the right, row ki is 0. So ci = 0
for each i.

You should now read #3 on p. 182 and #3 on p. 183.
We have spent the course trying to solve Ax = b for A ∈ Rm×n, x ∈ Rn, and b ∈ Rm.

Our ideal of success is probably that col(A) = Rm and N(A) = {0n}. Having col(A) = Rm

means that we can always solve the problem for any b ∈ Rm. Having N(A) = {0n} means
that the solution is unique. Here is the bad news: if both col(A) = Rm and N(A) = {0n},
thenm = n. In other words, if we can always solve our problem uniquely, then the underlying
matrix must be square.

Here’s why. Since col(A) = Rm, and the dimension of Rm is m, the dimension of col(A)
is also m. That is, rank(A) = m. And rank(A) is the number of pivot variables, so A has m
pivot variables. But N(A) = {0n}, so A has no free variables and every variable is a pivot
variable. Since there are n variables total in play, we must have m = n.

So, as soon as we study a nonsquare problem, we will either fail at existence or uniqueness.
If m < n, then there are more columns than rows, and so more variables than equations.
This kind of problem is “underdetermined,” and it can’t have a unique solution. If n < m,
then there are more rows than columns, and so more equations than variables. This kind of
problem is “overdetermined,” and it need not have a solution at all.
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What can we learn, then, in case of failure? Let’s go back to a familiar RREF—actually,
let’s just suppose that our matrix A is already in RREF:

A =

1 2 0 3
0 0 1 4
0 0 0 0

 .
Columns 1 and 3 are the pivot columns, so

col(A) = span

10
0

 ,
01
0

 =


x1x2
0

 ∣∣∣∣∣∣ x1, x2 ∈ R

 .

Pretty quickly we see that any vector b ∈ R3 whose third component is nonzero isn’t in
col(A). That is,

S =
{
b ∈ R3

∣∣ b 6∈ col(A)
}
=


b1b2
b3

 ∣∣∣∣∣∣ b1, b2, b3 ∈ R, b3 6= 0

 .

This set S certainly captures all the b ∈ R3 for which we can’t solve Ax = b, but it’s not the
best way of describing our failure. For example, S is not a subspace. (Check that: what’s
up with 03? Is the sum of two vectors in S still in S? I grant you that cv ∈ S for all c ∈ R
and v ∈ S, as long as c 6= 0.) That’s bad! This is linear algebra, and so we want all of our
structures to respect linearity as much as possible.

Instead, look at the two vectors in the basis for col(A) above. They’re just the first two
columns of the 3 × 3 identity matrix. All we’re missing is the third column, and then we’d
have a basis for R3. So, put VA = col(A) and

WA = span

00
1

 =


 0
0
x3

 ∣∣∣∣∣∣ x3 ∈ R

 .

I’m decorating these with the subscript A because later I’ll want to use V and W for more
general subspaces, but those subspaces will always have some things in common with these
very specific VA and WA.

Then given b ∈ R3, we can write

b =

b1b2
b3

 =

b1b2
0

+

 0
0
b3

 .
The first vector in the sum above is in VA and the second vector is in WA. Moreover, this
decomposition is the only way to write a vector in R3 as the sum of a vector in VA and a
vector in WA. I hope that’s obvious, but maybe you should check it yourself?

Summing up, we have shown that for each b ∈ R3, there exist unique v ∈ VA andw ∈ WA

such that b = v +w. In other words, every vector in R3 is the sum of a unique vector v in
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col(A) and a “corrector” term w in a different subspace. Studying that “corrector” term can
tell us just how “far off” a vector in R3 is from being in col(A).

That’s half of the story. The other half is that there is a very useful geometric relationship
between VA and WA. Recall the dot product of x ∈ Rm and y ∈ Rm:

x · y =

x1...
xm

 ·
y1...
ym

 = x1y1 + · · ·+ xmym =
m∑
k=1

xkyk.

Careful—we never write xy, always x · y. And we don’t take the dot product of matrices—
always AB, never A ·B. If you feel a bit rusty on dot products, reread pp. 11–12 and Worked
Example 1.2 C.

We used the dot product before as a slick tool for multiplying matrices: the (i, j)-entry
of AB was the dot product of row i of A (viewed as a column vector) with column j of B.
The dot product is also a handy tool for extracting data about vectors: I claim that if ek is
the kth column of the m×m identity matrix, then v · ek = vk, where vk is the entry in the
kth row of v. Can you show why?

Back to VA and WA from above. If v ∈ VA and w ∈ WA, then we have

v ·w = 0.

Please check that, just to be sure.
Big picture—we are going to use material from Section 3.5 to understand the geometry

of Section 4.1. But I’m going to do this out of order from the book. Bear with me, and I’ll
point you to specific parts of those sections soon!

Day 39: Monday, April 17. If v, w ∈ Rn with v ·w = 0, then we say that v and w are
orthogonal, which is a fancy word for perpendicular. We sometimes denote this as v ⊥ w.
(I read this as “v perp w.”)

So, here is what we’ve built out of our failure to solve Ax = b: a deeper understanding
of the structure of R3. Every vector in R3 is the sum of a vector in col(A) and a term
orthogonal to that first vector. If we pause for a bit to generalize some of these ideas, it will
pay off down the line.

First, why do we let the dot product capture perpendicularity? Look at[
1
0

]
·
[
0
1

]
= 0 and

[
1
1

]
·
[

1
−1

]
.

If you plot those vectors as arrows in R2, do you see the right angles? That’s why we say
that the dot product measures perpendicularity.

More generally, we say that two subspaces V and W are orthogonal if v ⊥ w for each
v ∈ V and w ∈ W . We abbreviate this with the sentence V ⊥ W . (Now you see why I used
VA and WA before for our specific matrix.)

And so in the case above, we have VA ⊥ WA, where

VA = span

10
0

 ,
01
0

 and WA = span

00
1

 .



MATH 3260 (Section 55, Spring 2023) Daily Log 66

But there’s more: it’s really the case that

WA =
{
w ∈ R3

∣∣ v ⊥ w for all v ∈ VA
}
.

Here’s why. Certainly if w ∈ WA, then v ·w = 0 for any v ∈ VA. I mean, you just figured
that out. But now suppose that w is any vector in R3 such that v ·w for all v ∈ VA. Let’s
choose our v judiciously: take v = e1 to see that w1 = 0 and v = e2 to see that w2 = 0. So
the only nonzero entry of w is its third entry, and therefore w ∈ WA.

This is an example of a more general phenomenon. Let V be a subspace of Rm. Define

V⊥ ={w ∈ Rm | v ⊥ w = 0 for all v ∈ V} .

We call V⊥ the orthogonal complement of V in Rm, but I usually just pronounce it “V perp.”
So, in the work above, with

VA = span

10
0

 ,
01
0

 ,

we have

V⊥A = span

00
1

 =WA.

I claim that if V is a subspace of Rm, then so is V⊥ is a subspace of Rm—you should
check that! The rules for dot products in Problem 19 of Section 1.2 (p. 20) will be very
helpful. You should also convince yourself that V ⊥ V⊥ . . .the notation would be silly if
this didn’t happen. However, I claim that just because V ⊥ W for some subspace W , that
doesn’t imply W = V⊥. Take V and W each to be the span of a single, different column of
the m×m identity matrix.

We got very lucky in the work above with A in finding V⊥A = col(A)⊥ =WA, because A
had an incredibly transparent structure. How do we generalize this? Given A ∈ Rm×n, can
we always write a vector b ∈ Rm as the sum of unique, orthogonal vectors in col(A) and
col(A)⊥? And can we give a simple “formula” for col(A)⊥, one that we could read off from
the structure of A, the way we do for col(A) or, more or less, N(A)? It’s taken us a while
to get to this question, and we have a bit more work to do, but the good news is that the
answer, when we finally arrive there, is really simple. (Think “a basis for the column space
is the pivot columns” simple.)

Before proceeding, we need a few more tools about orthogonal subspaces. First, I claim
that an orthogonal decomposition, if it exists, always involves unique orthogonal vectors.
Let V be a subspace of Rm and suppose that for some x ∈ Rm, we have x = v+w for some
v ∈ V and w ∈ V⊥. Then those terms v and w are unique; there is only one way to choose
them. Just believe me for now.

Day 40: Wednesday, April 19. So, if it is possible to write each vector x ∈ Rm as the
sum of a vector in col(A) and a vector in col(A)⊥, then there is only one way to choose those
vectors. That’s good—no one likes ambiguity or redundancy. But why would it even be
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possible to make this decomposition? We need more control over col(A)⊥. Let’s think about
what it means to be in this subspace. All we have is the definition

col(A)⊥ ={w ∈ Rm | v ⊥ w for all v ∈ col(A)} ,

so let’s use that. We have

w ∈ col(A)⊥ ⇐⇒ v ⊥ w for all v ∈ col(A)

⇐⇒ v ·w = 0 for all v ∈ col(A)

⇐⇒ (Ax) ·w = 0 for all x ∈ Rn.

Here is the big idea. We know that if A were just a scalar a ∈ R, then (ax) ·w = x · (aw).
At least, I hope we know that—you probably should check that this is true. Can we “jump”
A across the dot product and write

(Ax) ·w = x · (Bw)

for some matrix B?
First, this matrix B would have to be in Rn×m, since w ∈ Rm, and we want Bw ∈ Rn so

that we can take the dot product of x and Bw. If such a matrix exists (it does!), then we
have

w ∈ col(A)⊥ ⇐⇒ x · (Bw) = 0 for all x ∈ Rn.

But here’s the great thing: if for some y ∈ Rn, it is the case that x · y = 0 for all x ∈ Rn,
then really y = 0n. Why? Just take x to be the columns of the n × n identity matrix.
Then you’ll see that each of the components of y has to be 0. And so if w ∈ col(A)⊥, then
w ∈ N(B). Conversely, if w ∈ N(B), then w ∈ col(A)⊥ by reversing all the work above.
(Please do check that yourself.)

So what is B? I’m going to spoil the surprise and tell you the answer now so we can do
some concrete calculations. Then we’ll revisit this question and see why the answer is the
right one in general. Here it is: B = AT, the transpose of A.

The transpose of any A ∈ Rm×n is the matrix AT ∈ Rm×n whose rows are the columns
of A, or whose columns are the rows of A, or whose (i, j)-entry is the (j, i)-entry of A. For
that last one, AT(i, j) = A(j, i). For example, if

A =

1 2 0 3
0 0 1 4
0 0 0 0

 ,
then

AT =


1 0 0
2 0 0
0 1 0
3 4 0

 .
This is not as nice as before! Previously A was in RREF, but now AT is not. So here’s a
warning: taking the transpose does not necessarily preserve the RREF. Look at p. 108 in
the book, but don’t read the last paragraph yet.
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Returning to the problem of describing col(A)⊥ in a transparent way, all our work leads
us to conjecture that col(A)⊥ = N(AT). Just put B = AT above.

Strang calls N(AT) the “left nullspace of A.” (Gotta call it something.) This is defined
on p. 180 in #4 of the “four fundamental subspaces”; see the second paragraph below that
for why it’s “left.” Now you can read pp. 193–196, if you believe that Ax · y = x · ATy for
all A ∈ Rm×n, x ∈ Rn, and y ∈ Rm.

Let’s confirm that col(A)⊥ = N(AT) in the context of

A =

1 2 0 3
0 0 1 4
0 0 0 0

 .
We’ve known

col(A) = span

10
0

 ,
01
0

 and col(A)⊥ = span

00
1


for some time, and now we can calculate N(AT). We need a bit of elimination and, believe
it or not, permutation, to get rref(AT):

AT =


1 0 0
2 0 0
0 1 0
3 4 0

 (2)−2·(1)−−−−−→
E21


1 0 0
0 0 0
0 1 0
3 4 0

 (4)−3·(1)−−−−−→
E41


1 0 0
0 0 0
0 1 0
0 4 0

 (4)−4·(3)−−−−−→
E42


1 0 0
0 0 0
0 1 0
0 0 0


(2)↔(3)−−−−→

P23


1 0 0
0 1 0
0 0 0
0 0 0

 .
Here P23 is the permutation matrix that interchanges rows 2 and 3—what is that matrix, ex-
actly? Also, what are the dimensions of all the elimination matrices? (For that matter, what
are they explicitly?) Last, note that rank(AT) = 2 = rank(A). This is not a coincidence,
even though rref(A)T 6= rref(AT), sadly.

We then have

AT

x1x2
x3

 = 04 ⇐⇒


x1 = 0

x2 = 0

x3 = x3,

and so all x ∈ N(AT) have the form

x = x3

00
1


for some x3 ∈ R. That is,

N(AT) = span

00
1

 = col(A)⊥,
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exactly as we figured out earlier.

Day 41: Friday, April 21. Here’s a recap of our work from Wednesday. Let A ∈ Rm×n.
The key action of the transpose is that Ax · y = x · ATy for all x ∈ Rn and y ∈ Rm. Then

w ∈ col(A)⊥ ⇐⇒ v ·w = 0 for all v ∈ col(A) by definition of col(A)⊥

⇐⇒ Ax ·w = 0 for allx ∈ Rn, as col(A) ={w ∈ Rm | w = Ax for some x ∈ Rn}
⇐⇒ x · ATw = 0 for all x ∈ Rn, by properties of the transpose
⇐⇒ ATw = 0 by taking x = columns of identity
⇐⇒ w ∈ N(AT) by definition of N(AT).

This is our proof that col(A)⊥ = N(AT).
We are going to keep studying this equality quite a bit further, but let’s retread and

ask why we’d use the transpose here in the first place. Who would have guessed that
Ax · y = x · ATy if they didn’t know it already? Well, we started out with w ∈ col(A)⊥,
and we saw that this was equivalent to Ax ·w = 0 for all x ∈ Rn. Maybe someone thought
that this equality would be easier if they could move the matrix over to w. After all, if we
just had scalar multiplication, that would work: (ax) ·w = x · (aw) for any a ∈ R. Is there
a matrix B such that Ax · y = x ·By all the time?

Fool around with a really simple case:

A =

[
a b
c d

]
∈ R2×2, x =

[
x1
x2

]
∈ R2, and y =

[
y1
y2

]
∈ R2.

We compute

Ax =

[
ax1 + bx2
cx1 + dx2

]
and then

(Ax) · y =

[
ax1 + bx2
cx1 + dx2

]
·
[
y1
y2

]
= (ax1 + bx2)y1 + (cx1 + dx2)y2.

We want to recognize this as a dot product of the form x · (By). We may not know what
B is, but we should expect there to be two terms, one with a factor of x1 and the other with
a factor of x2. So let’s rewrite

(ax1 + bx2)y1 + (cx1 + dx2)y2 = ax1y1 + bx2y1 + cx1y2 + dx2y2

= (ax1y1 + cx1y2) + (bx2y1 + dx2y2)

= (ay1 + cy2)x1 + (by1 + dy2)x2

=

[
x1
x2

]
·
[
ay1 + cy2
by1 + dy2

]
.

Now we want to recognize the vector [
ay1 + cy2
by1 + dy2

]
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as the matrix-vector product By for some matrix B. After a moment of thinking, hopefully
we see [

ay1 + cy2
by1 + dy2

]
=

[
a c
b d

]
y.

That’s our B! The rows of B are the columns of A; equivalently, the columns of B are
the rows of A. The matrix B is the transpose of A: B = AT.

Now back to the equality col(A)⊥ = N(AT). This tells us stuff about dimension. Let me
write dim[V ] for the dimension of a subspace V . For example, dim[col(A)] = rank(A). Since
col(A)⊥ = N(AT), we have

dim[col(A)⊥] = dim[N(AT)].

But we know how to find the dimension of a null space. For A ∈ Rm×n, it’s dim[N(A)] =
n− rank(A), so for B ∈ Rn×m, it’s dim[N(B)] = m− rank(B). Thus

dim[N(AT)] = m− rank(AT),

and therefore
dim[col(A)⊥] = m− rank(AT).

So, what is rank(AT) = dim[col(AT)]? That’s our new task. Let’s look at our faithful
friend:

A =

1 2 0 3
0 0 1 4
0 0 0 0

 and AT =


1 0 0
2 0 0
0 1 0
3 4 0

 .
We know rank(A) = 2 here, and we did figure out rref(AT) before, but we don’t actually
need that. Because the third column of AT is 04, col(AT) is spanned just by the first two
columns of AT. And those first two columns of AT are linearly independent. Look at the 1’s
that I’ve highlighted in blue:

c1


1
2
0
3

+ c2


0
0
1
4

 =


0
0
0
0

 =⇒ c1 = 0 and c2 = 0.

So dim[col(AT)] = 2, and therefore rank(AT) = 2 = rank(A).
This turns out to be true in general. In fact, we can say something explicit about not

just rank(AT) but also a basis for col(AT). Say that a row in rref(A) is a pivot row if that
row contains a pivot, just like a pivot column is a column that contains a pivot. Here we
have

pivot columns are 1 and 3:

1 2 0 3
0 0 1 4
0 0 0 0

 , pivot rows are 1 and 2:

1 2 0 3
0 0 1 4
0 0 0 0
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The pivot rows of rref(A) are the pivot columns of AT:

pivot columns are 1 and 2:


1 0 0
2 0 0
0 1 0
3 4 0

 .
The only unfortunate thing with this example is that A = rref(A) here. We’ll need to

do some more work to study A when it’s not already in RREF. But the principles are the
same:

basis for col(A) = pivot columns of A,

rank(A) = rank(AT),

and
basis for col(AT) = pivot rows of rref(A).

Day 42: Monday, April 24. Let A ∈ Rm×n. We know

col(A)⊥ ={w ∈ Rm | v ·w = 0} = N(AT).

And so
dim[col(A)⊥] = dim[N(AT)] = m− rank(AT).

So what is rank(AT)? By definition it’s dim[col(AT)], but can we express that solely in terms
of data about A? Our conjecture is that rank(AT) = rank(A).

Before we always worked with a matrix A already in RREF. Suppose now that we just
know A = FR, where R = rref(A), and F ∈ Rm×m is invertible. For example, what if

A = FR = F

1 2 0 3
0 0 1 4
0 0 0 0


for some invertible F ∈ R3×3? There’s a lot of good data stored in that R, but we still have
work to do.

We want to study AT = (FR)T, so we should figure out what the transpose of a product
is. This is not the first time that we’ve applied an operation to a product that is valid on
each of the factors. Remember that if G and H (I’m running out of letters!) are square
invertible matrices, then (GH)−1 = H−1G−1. We might guess, then, that (FR)T = RTFT.

This is true in general. First, please check that if G and H are matrices such that the
product GH is defined, then the product HTGT is also defined. There are (at least) a couple
of proofs that (GH)T = HTGT. One argument appears on p. 109 in equation (4); this
equation uses the “third way” of matrix multiplication back on p. 72.

Here’s another argument, which I encourage you to chase through. First, convince your-
self that if J ∈ Rm×n satisfies Jx · y = 0 for all x ∈ Rn and y ∈ Rm, then J is the m × n
zero matrix. (Here’s why: pick x to be one of the standard basis vectors for Rn, so that Jx
is one of the columns of J . Which column? Then pick y to be one of the standard basis
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vectors for Rm, so Jx · y is an entry of one of the columns of J . Which entry? Conclude
that all of the entries of J are 0.) Now look at the dot product

(HTGT − (GH)T)x · y.

Use the fundamental property of the transpose relative to dot products to show that this
dot product is always 0.

So, we see that if A = FR, then AT = RTFT. Remember that F is invertible. I claim
this means FT is invertible. All we have to do is find some matrix H such that FTH = I,
right? Let’s see if we can squeeze F−1 in there somewhere. We have

FT(F−1)T = (F−1F )T = IT = I.

The transpose of the identity matrix is the identity matrix, right? And so we have shown
that FT is invertible with

(FT)−1 = (F−1)T.

Remember that the goal is to study col(AT) = col(RTFT). I claim that because FT is
invertible and multiplying RT on the right, we really have col(RTFT) = col(RT). Hold on,
you say! One of the (few) disappointments of the RREF is that a matrix and its RREF can
have different column spaces, i.e., even though A = FR, we should expect col(A) 6= col(FR).
What’s different here? It’s the multiplication by FT on the right in the product RTFT, in
contrast to multiplication by F on the left in FR.

Here’s the more general truth. Suppose that G and H are matrices such that the product
GH is defined. (How big are they again?) Suppose also that H is invertible. Then col(G) =
col(GH). Here’s why. If b ∈ col(G), then b = Gx for some x. Here’s the great trick: multiply
by 1, or, really, by I. We have Gx = (GH)(H−1x) ∈ col(GH). And if b ∈ col(GH), then
b = G(Hx) ∈ col(G). Sound good?

And so it all comes down to this:

col(AT) = col((FR)T) = col(RTFT) = col(RT).

In particular, a basis for col(RT) will be a basis for col(AT), as they’re the same spaces.
But it probably won’t be the case that a basis for col(R) will be a basis for col(A)! And
rank(AT) = rank(RT).

So, what is a basis for col(RT)? Remember what RT is. The columns of RT are the rows
of R. And the rows of R are either pivot rows (that is, rows with pivots) or rows of all 0.
Remember our favorite R:

pivot rows in R =

1 2 0 3
0 0 1 4
0 0 0 0

 become pivot columns in RT =


1 0 0
2 0 0
0 1 0
3 4 0

 .
So, every column of RT is either a pivot row of R (written as a column) or a column of

all 0. A column of all 0 adds nothing to a span. Thus col(RT) is the span of the pivot rows
of R.
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I claim that those pivot rows are linearly independent because, if rank(R) = r, those
rows contain the r × r identity matrix. Here is that identity matrix highlighted in R and
RT:

R =

1 2 0 3
0 0 1 4
0 0 0 0

 and RT


1 0 0
2 0 0
0 1 0
3 4 0

 .
There is no way for a linear combination of vectors whose rows contain an identity matrix to
add up to the zero vector unless all the coefficients in that combination are 0. Consequently,
the pivot rows are linearly independent. Since col(RT) is already the span of the pivot rows
of R, the pivot rows of R form a basis for col(RT). And there are r = rank(A) = rank(R)
pivot rows, because there are r pivots.

We conclude that col(AT) = col(RT), that the pivot rows of R form a basis for col(RT)
and thus for col(AT), and that rank(AT) = rank(A). In particular, dim[col(A)⊥] = m −
rank(AT) = m− rank(A). Wow.

You should now read #1 on p. 181 and then #1 on p. 183. In fact, you could put all of
our work together and read pp. 180–184. Watch out, though, as there are serious typos in
the “Four fundamental subspaces” box on p. 180. The row space should be C(AT) and the
column space should be C(A).

Day 43: Wednesday, April 26. Here is a summary of some of the highlights of our class.
Remember that the dimension of any subspace V of Rn is the number of vectors in a basis
for V ; we write this number as dim[V ]. Every subspace has a basis, and every basis for a
subspace has the same number of vectors.

Let A ∈ Rm×n.

1. The pivot rows of A form a basis for col(A).

2. dim[col(A)] = rank(A) = the number of pivot variables.

3. dim[N(A)] = n− rank(A) = the number of free variables.

4. col(A)⊥ = N(AT).

5. rank(AT) = rank(A).

6. The pivot rows of rref(A) form a basis for col(AT), which is sometimes called the row
space of A.

7. dim[col(A)⊥] = dim[N(AT)] = m− rank(A).

Let’s do an example with actual numbers. Let

A =

 1 2 −1 −2
−3 −4 3 4
−3 8 4 2

 .
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I claim that

R = rref(A) =

1 0 0 10
0 1 0 −1
0 0 1 10

 .
At this point in the course, you should be able to figure that out without too much grief.
The pivot columns of A are columns 1, 2, and 3, and the only free variable is x4. Then a
basis for the column space of A is 1

−3
−3

 ,
 2
−4
8

 , and

−13
4

 .
This is a three-dimensional subspace of R3, so col(A) = R3. Great—we can always solve
Ax = b for any b ∈ R3.

Why? I claim we did something like that on Day 36. Here’s a more general proof—
you should fill in some of the justification gaps. Let V be a subspace of Rm such that
dim[V ] = m. Let v1, . . . ,vm be a basis for V . Put B =

[
v1 · · · vm

]
. Then B ∈ Rm×nm

and the columns of B are linearly independent, so B is invertible. Now let b ∈ Rm. Then
b = B(B−1b) ∈ col(B), and col(B) = V . So Rm = V .

Back to A. Do you see the linear dependence relation in the columns of A:

10

 1
−3
−3

−
 2
−4
8

+ 10

−13
4

 =

−24
2

?
Next, we determine N(A) by solving Rx = 03: we get

Rx = 03 ⇐⇒


x1 + 10x4 = 0

x2 − x4 = 0

x3 + 10x4 = 0

⇐⇒ x =


−10x4
x4
−10x4
x4

 = x4


−10

1
−10

1

 .
Hence a basis for N(A) consists of the single vector

−10
1

−10
1

 .
Consequently, we can always solve Ax = b for any b ∈ R3, but we can never do so

uniquely. Indeed, if Ax? = b for some x? ∈ R4, then every solution x to Ax = b has the
form

x = x? + c


−10

1
−10

1


for some c ∈ R. I claim we talked about this on Day 28.
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Third, a basis for col(AT) consists of the pivot rows of R written as column vectors in
R4. Each row of R is a pivot row, so a basis for col(AT) is

1
0
0
10

 ,


0
1
0
−1

 , and


0
0
1
10

 .
Finally, to get a basis for N(AT), we would need to solve ATx = 04. Unfortunately, we

can’t use the RREF of A here, since rref(A)T 6= rref(AT). I mean, rref(A)T isn’t even in
RREF.

For more examples, see Examples 1, 2, and 3 on pp. 184–186. In Example 3, you can
ignore the discussion of graphs and just focus on the four fundamental subspaces of the given
matrix.

There is one last thing for us to figure out. A long time ago we looked at a particular
matrix A ∈ R3×4 and saw explicitly that we could write each b ∈ R3 as the sum of unique
vectors v ∈ col(A) and w ∈ col(A)⊥. That is, for each b ∈ R3, there are vectors v ∈ col(A)
and w ∈ col(A)⊥ such that b = v +w, and there is only one way to choose these v and w.

Given A ∈ Rm×n, why can we write each b ∈ Rm as a sum b = v + w for v ∈ col(A)
and w ∈ col(A)⊥ = N(AT)? And why are the vectors v and w unique? First we handle
existence: why are there v and w that do this in the first place? Abbreviate r = rank(A), so
dim[col(A)] = r and, thanks to our hard work above, dim[N(AT)] = m − r. Let v1, . . . ,vr

be a basis for col(A) and let w1, . . . ,wm−r be a basis for N(AT). Then there are m vectors
in the list v1, . . . ,vr,w1, . . . ,wm−r, so if we just show that this list is linearly independent,
then it will be a basis for Rm. (Why? Suppose they’re linearly independent. Let V =
span(v1, . . . ,vr,w1, . . . ,wm−r), so dim[V ] = m. We showed above that if V is a subspace of
Rm with dim[V ] = m, then V = Rm.)

Assume
c1v1 + · · ·+ crvr + cr+1w1 + · · ·+ cmwm−r = 0m.

Abbreviate
v = c1v1 + · · ·+ crvr and w = cr+1w1 + · · ·+ cmwm−r.

Then we know three things: v ∈ col(A), w ∈ N(AT), and v + w = 0m. These things tell
us v = −w ∈ N(AT) = col(A)⊥. Thus v ∈ col(A) and v ∈ col(A)⊥. I claim that if V is
a subspace of Rm, then the only vector in both V and V⊥ is the zero vector. (Check this
yourself: if v ∈ V and V⊥, then v · v = 0, right? Show that 0 = v · v = v21 + · · · + v2m ≥ 0.
Since v2k ≥ 0 always, if v2k > 0, then v · v > 0, which can’t be true. So v2k = 0 for all k.)

And so v = 0m. Can you also show that w = 0m using the same reasoning? And so
c1v1+ · · ·+ crvr = 0m. Since v1, . . . ,vr are linearly independent, we have c1 = · · · = cr = 0.
Can you also show that cr+1 = · · · = cm = 0 using the same reasoning?

For uniqueness, I claim that if V is a subspace of Rm and b ∈ Rm can be written as
b = v +w for some v ∈ V and w ∈ V⊥, then there is only one way to choose these v and
w. Otherwise, if b = ṽ+ w̃ for some ṽ ∈ V and w̃ ∈ V⊥, then we have v+w = ṽ+ w̃, thus
v − ṽ = w̃ −w. Since w, w̃ ∈ V⊥, and V⊥ is a subspace, we also have w̃ −w ∈ V⊥. But
then v − ṽ ∈ V⊥, and we already know v − ṽ ∈ V , right? Doesn’t this mean v − ṽ = 0m?
Is that useful? And can you also show that w − w̃ = 0m?
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So there we go. Every vector in Rm is the sum of orthogonal vectors in col(A) and N(AT),
and the vectors in this sum are necessarily unique. See p. 199.

Day 45: Friday, April 28. Look at the pictures on the front cover (and the blurb on p.
iii under “The front cover captures a central idea of linear algebra”), in Figure 3.5 on p. 183,
and in Figure 4.3 on p. 198. This is their story, and ours.

Let A ∈ Rm×n with rank(A) = r. We have shown that every vector b ∈ Rm is the
sum of a unique vector v ∈ col(A) and a unique vector w ∈ col(A)⊥ = N(AT). Moreover,
v · w = 0. We might euphemistically write Rm = col(A) ⊕ N(AT). Also, dim[col(A)] = r,
and dim[N(AT)] = m− r.

Now let B = AT. Then B ∈ Rn×m, and we also know rank(B) = rank(AT) = rank(A) =
r. The results in the previous paragraph say that every vector x ∈ Rn is the sum of a unique
vector c ∈ col(B) and a unique vector d ∈ N(BT) such that c ·d = 0. But BT = (AT)T = A,
so every vector in Rn is the sum of unique orthogonal vectors in col(AT) and N(A). So
Rn = N(A)⊕ col(AT). Also, dim[col(AT)] = r and dim[N(A)] = n− r.

This is what Figure 3.5 says and one of the things that A does: A induces meaningful
orthogonal decompositions of Rn and Rm. Now look at Figure 4.3. This is one of the other
things that A does: A acts on vectors in Rn and sends them to the column space. This is
what the front cover says; this is what linear algebra is.

While we started out using matrices as a convenient organization tool for storing and
representing systems of equations, they do much more than that. For me, these are the
things to remember from the course long after you’ve forgotten how to compute a RREF or
check if something is a subspace.

1. Yes, a matrix fundamentally encodes data about a linear system Ax = b.

2. But a matrix also acts on data: if A ∈ Rm×n, then A transforms x ∈ Rn into Ax ∈ Rm.

3. And so a matrix links two kinds of data: things in Rn with things in Rm. But more than
linking, a matrix decomposes: if A ∈ Rm×n, then we can recognize and orient everything in Rn

and Rm relative to A via the “orthogonal direct sum” representations Rn = col(AT)⊕N(A)
and Rm = col(A)⊕N(AT).
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