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Day 1: Monday, January 9

We talked about our feelings about calculus and got to know each other. We did some of
the basic arithmetic on p. 4 of the textbook and thought about the complex plane (C = R2,
from a certain point of view) as on p. 13. We studied the modulus on p. 15.

Day 2: Wednesday, January 11

We studied the conjugate on p. 4 and the multiplicative inverse (= division = reciprocal) on
pp. 5–6. The properties of the conjugate in Proposition 1.1.5 are very useful. We connected
the conjugate and the modulus via Proposition 1.2.5. We talked about the inequalities
in Proposition 1.2.8, whose lengthy proof you don’t have to read. Last, we talked about
polar coordinates, arguments, and principal arguments, as on pp. 25–30. By the way, polar
coordinates are only defined for nonzero complex numbers, and I will write C \ {0} :=
{z ∈ C | z 6= 0} to denote the set of those nonzero numbers. It is worth knowing that
equation (1.3.13) on p. 30 contains a comprehensive formula for the principal argument, but
you definitely don’t have to memorize it. Consider working through Examples 1.1.2, 1.1.4,
1.1.6, 1.2.3, 1.2.7, 1.3.3, and 1.3.4.

Day 3: Friday, January 13

We continued talking about polar coordinates, moduli, and arguments. I think this is the
key picture to keep in mind.

R

iR

r−r

ir

−ir

θ

all points on this ray
have argument θall points on this circle

have modulus r

We did several calculations, stated (but not solved) below. Last, we actually defined the
complex numbers formally, as the book did all the way back on p. 4. We have identified the
complex number x+ iy with the ordered pair (x, y) in the past, and so in particular identify
x with (x, 0) and i with (0, 1). Now we will make this into a definition.

Specifically, a complex number is an ordered pair of real numbers:

C := R2 ={(x, y) | x, y ∈ R} .
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In the following, I will presume that we know all about real numbers, and that we could
define (x, y) set-theoretically if we had to. The game is to define operations on complex
numbers just in terms of operations on real numbers and ordered pairs. I think there’s only
one way to add ordered pairs:

(x, y)⊕ (u, v) := (x+ u, y + v).

I am writing ⊕ to emphasize that adding ordered pairs is not the same as adding real
numbers. Next, we want, after FOILing it out,

(x+ iy)(u+ iv) = xu− yv + i(xv + yu),

and so we define
(x, y)� (u, v) := (xu− yv, xv + yu).

If you’ve taken algebra, you can (and should) show that C is a field.
The most important property (I think) of � is

(0, 1)� (0, 1) =
(
(0 · 0)− (1 · 1), (0 · 1) + (1 · 0)

)
= (−1, 0),

where · means multiplication of real numbers (which we presume to understand perfectly).
I will leave it to you to check that

(x, y) = (x, 0)⊕
[
(0, 1)� (y, 0)

]
.

This is exactly the expansion of a complex number that we expect from the expression x+iy.
So, from now on, if someone asks you for a rigorous definition of i, say i = (0, 1).

There are just two problems. First, ordered pair notation and the � operation are too
bulky for daily use. Second, we expect that every real number is a complex number, but R
is not a subset of R2 = C. We get around the second issue by “identifying” each real number
x with the natural relative (x, 0) as an ordered pair. For the algebraically minded, R is
isomorphic to a subfield (call it CR) of C, and we just denote elements (x, 0) of this subfield
CR by their “pullback” x in R For the first issue, we use this identification of (x, 0) ∈ R2

with x ∈ R and express any calculations with (x, y) by x+ iy. From time to time, especially
when we talk about limits and continuity, it will be very useful to import properties of R2

from multivariable calculus into our work, but otherwise let us never speak of this again.
Here are some exercises for you, some of which we did in class.

3.1 Problem. For z = −1+ i, find Arg(z), write z in its polar form, and calculate Re(1/z).

3.2 Problem. Compute the principal argument of each kind of point labeled in the plane
below. These are the kinds of arguments that we will use most often in the course (so long,
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30–60–90 triangles).

R

iR

1

2

3

4

5

6

7

8

1 Re(z) > 0, Im(z) = 0
2 Re(z) = Im(z) > 0
3 Re(z) = 0, Im(z) > 0
4 Re(z) = − Im(z), Im(z) > 0
5 Re(z) < 0, Im(z) = 0
6 Im(z) = Re(z), Re(z) < 0
7 Re(z) = 0, Im(z) < 0
8 Im(z) = −Re(z), Re(z) > 0

3.3 Problem. Explain how the values of in are “4-periodic” in n, i.e., in = in+4 for all
n ∈ Z, and use this to compute something like i1977 quickly.

3.4 Problem. (Wholly optional.) If you’ve taken abstract algebra, look up the definition
of a field and then prove that C is a field under ⊕ and �. Prove that R is isomorphic to
the subfield R× {0} ={(x, 0) | x ∈ R} of C.

3.5 Problem. (Wholly optional.) If you’ve taken linear and abstract algebra, check that
� is really matrix-vector multiplication:

(x, y)� (u, v) = (xu− yv, xv + yu) =

[
xu− yv
xv + yu

]
=

[
x −y
y x

] [
u
v

]
=

[
u −v
v u

] [
x
y

]
.

Now put

R2×2
C :=

{[
x −y
y x

]
∈ R2×2

∣∣∣∣ x, y ∈ R
}

and check that R2 and R2×2
C are isomorphic as fields, where addition in both is componen-

twise, multiplication in R2 is �, and multiplication in R2×2
C is the usual multiplication of

2× 2 matrices. And so if you want to think of C as a special set of matrices, you can.

Day 4: Wednesday, January 18

We started talking about functions, and we’ll continue to do so for the rest of the course.
See pp. 41–42 for some definitions.

In my notation, the string of five symbols f : D → C should be read as “the function f
from D to C.” Here D ⊆ C is the domain of f . (We will use the word “domain” with at least
one other meaning later on, so watch the context.) By D ⊆ C I mean that if z ∈ D, then
z ∈ C.
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Informally, a function f : D → C is a rule that pairs each number z ∈ D with a unique
number w ∈ C, and we write w = f(z). The set f(D) := {f(z) | z ∈ C} is the range or
image of f (image starts with “im,” which already has another meaning in this course, so
we’ll say “range”). The set-theoretic meaning of f : D → C (which you should understand,
but which in practice we won’t invoke too much, if at all) is that f is a set of ordered pairs
of complex numbers such that for each z ∈ D, there is a unique w ∈ C such that (z, w) ∈ f ,
and of course we write w = f(z).

We know a handful of functions already, like integer powers: for n ∈ Z = {0,±1,±2, . . .},
we put

zn =


1, n = 0 (even for )z = 0

zzn−1, n ≥ 1(
1

z

)|n|
, n ≤ −1 and z 6= 0, with

1

z
:=

z

|z|2
.

Polynomials are linear combinations of nonnegative integer powers: f(z) =
∑n

k=0akz
k with

a0, . . . , an ∈ C. We have the “projections” onto real and imaginary parts, like f(z) = Re(z);
in that case, we might use the notation

f : C→ R : z 7→ Re(z)

to emphasize (1) that the range of f is a subset of R and (2) that the “formula” for f is
f(z) = Re(z).

Here is something that is not a function: for z ∈ C \ {0}, if z = |z|(cos(θ) + i sin(θ)),
let f(z) = θ. The problem is that we could use θ or θ + 2π. This function is not “well-
defined.” (Set-theoretically, it is a relation: all functions are relations, but not all relations are
functions.) However, if we specify θ more precisely, we do get a function, say, Arg : C\{0} →
(−π, π]. Are you comfortable with every piece of notation in the string of symbols

Arg : C \ {0} → (−π, π]?

See p. 42 for sketches of how to visualize maps from C to C and draw a picture like
that on p. 42 for f(z) = z with the domain as D ={z ∈ C | Re(z) > 0, Im(z) > 0}, i.e., as
Quadrant I. What is the range?

We often express the action of a function on the real and imaginary parts of its input by
first writing f(z) = Re[f(z)]+i Im[f(z)] and then z = x+iy, so f(x+iy) = u(x, y)+iv(x, y).
It is helpful to view u and v as functions from (subsets of) R2 to R, so we can use multivariable
calculus, but remember R2 = C anyway. Example 1.4.4 explores this with both formulas
and pictures.

Last, we started talking about sequences. See the first two paragraphs of Section 1.5
on p. 52. Sequences are the building blocks of “interesting” functions, which we mostly
express via series. Sequences are also phenomenal tools for analysis—they allow us to express
“continuous” concepts in “discrete” language. We’ll see both of these uses of sequences
throughout the term.

Initially, a sequence for us will be a function from the positive integers N = {1, 2, 3, . . .}
to C. That is, a sequence is a function f : N → C. We usually write zn := f(n) and then
say f = (zn). To be absolutely clear: the symbol (zn) is the function from N to C that
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pairs n with zn, i.e., (n, zn) ∈ (zn). You should think of the string of three (maybe four?)
symbols (zn) as representing a single function. The book writes {zn}∞n=1 with curly braces;
emphasizing the starting index at n = 1 may be helpful, but writing curly braces makes me
think of a set. I won’t use curly braces.

For example, if zn = (−1)n, then (zn) is the function f : N→ C such that f(n) = (−1)n,
but the range of this function is the set {1,−1}. Don’t confuse ranges with functions!

Day 5: Friday, January 20

We spent the day talking about sequences. My hope is that we will develop a more precise
understanding of sequences than we might have seen in calculus, but not so precise and
technical an understanding as in real analysis. See Definition 1.5.1 and Figure 1.31 for the
definition of convergence and the notation at the top of p. 53. Proposition 1.5.2 should be
comforting. Example 1.5.3 is essentially a different version of what we did in class. Theorem
1.5.7 contains the “stability” properties of limits with respect to standard algebraic operations
in C.

We finished by talking about Theorem 1.5.8. The proof in the book is a little different
from my argument, which I reproduce here. Suppose zn → z. We want to show Re(zn) →
Re(z) and Im(zn)→ Im(z). We compute

|Re(zn)− Re(z)| = |Re(zn − z)| ≤ |zn − z| → 0.

Here we used the properties Re(v)− Re(w) = Re(v − w) and |Re(w)| ≤ |w|, valid for all v,
w ∈ C.

Day 6: Monday, January 23

We continued working with Theorem 1.5.8. We showed that if Re(zn)→ Re(z) and Im(zn)→
Im(z), then zn → z. We compute

|zn− z| = |[Re(zn) + i Im(zn)]− [Re(z) + i Im(z)]| = |[Re(zn)−Re(z)] + i[Im(zn)− Im(z)]|
≤ |Re(zn)− Re(z)|+ |i[Im(zn)− Im(z)]|.

Since zn → z, we have |Re(zn)−Re(z)| → 0. And |i[Im(zn)−Im(z)]| = | Im(zn)−Im(z)| → 0.
Here we used the triangle inequality |v + w| ≤ |v|+ |w| and the identity |iv| = |i| · |v| = |v|.

Then we started talking about series, which will allow us to define many useful functions
and, later, express many profound ideas in precise language. See p. 56 for definitions. Here
is my formal definition of a series, which is slightly different.

6.1 Definition. Let (zn) be a sequence of complex numbers with n ≥ 0. The series∑∞
k=0zk is the sequence of nth partial sums, which are

∑n
k=0zk. That is,

∞∑
k=0

zk :=

(
n∑
k=0

zk

)
.

Additionally, if the sequence of nth partial sums converges, then
∑∞

k=0zk also denotes that
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limit and is called the sum of the series. That is, if limn→∞
∑n

k=0zk exists, then

∞∑
k=0

zk := lim
n→∞

n∑
k=0

zk.

Thus the symbol
∑∞

k=0zk may have two very different meanings; it is always a sequence,
and it may be the limit of that sequence, if that limit exists. Context will make clear the
intended meaning of

∑∞
k=0zk.

See Example 1.5.13 for the geometric series. I discussed telescoping:
n∑
k=0

(zk − zk+1) = 1− zn+1

from the more general telescoping identity
n∑
k=0

(wk − wk+1) = w0 − wn+1,

valid for any sequence (wn). We did not prove divergence in the case |z| = 1, which the
book does using Example 1.5.9. That’s a great example to read, but it’s more detail than I
wanted to show in class.

We briefly discussed some convergence tests, which we’ll pick up next time. Broadly, it
is good to be familiar with the results on pp. 58–63 (or at least know what page to turn to
when you need something), but I will single out three particular tools.

Day 7: Wednesday, January 25

I say these are the three most important convergence tests to know and memorize; you can
always look up everything else.

1. Test for divergence: if limn→∞ zn 6= 0, then
∑∞

k=0zk diverges. The contrapositive is help-
ful, too: if

∑∞
k=0zk converges, then limn→∞ zn = 0.

2. Absolute convergence: if
∑∞

k=0|zk| converges, then
∑∞

k=0zk also converges. The con-
vergence of

∑∞
k=0zk does not imply the convergence of

∑∞
k=0|zk|; think about alternating

series.

3. Comparison test: if 0 ≤ vk ≤ wk and
∑∞

k=0wk converges, then
∑∞

k=0vk also converges.

We frequently combine absolute convergence and the comparison test as follows. To show
that

∑∞
k=0zk converges, first develop an estimate of the form 0 ≤ |zk| ≤ wk. The “domi-

nating” terms wk should be somehow “nice” in that you can show that
∑∞

k=0wk converges.
The comparison test forces convergence of

∑∞
k=0|zk|, and then absolute convergence forces

convergence of
∑∞

k=0zk. To develop the convergence of
∑∞

k=0wk, you may need to use the
comparison test again or some other test. The important thing is that wk ≥ 0, and there



MATH 4391 (Section 51, Spring 2023) Daily Log 9

are many tests for convergence that apply to series with nonnegative terms. Again, you may
need to check pp. 58–63 from time to time.

Now we finally have the tools to do some stuff that’s really unique to complex analysis
and that doesn’t just follow by writing z where previously we wrote x. A fundamental
problem is that of extensions. Say that f : I ⊆ R → R is a function. (Recall notation: this
means that f is a function defined on I, and I is a subset of R, and the range of f is a subset
of R.) Say that D ⊆ C is a set with I ⊆ D. Can we define a function g : D → C such that
g(z) = f(z) for all z ∈ I? In this case we call g an extension of f to D. Equivalently, if
g
∣∣
I
: I → C : z 7→ g(z) is the restriction of g to I, do we have g

∣∣
I

= f?
The answer is “of course,” if we are lazy. Just put

g(z) :=

{
f(z), z ∈ I
0, z ∈ D \ I.

A better question is if we can find an extension g that shares “meaningful properties” with
f .

We started with the exponential and extended it to C via the power series definition.
See pp. 64–66. In particular, Theorem 1.6.2 gives a detailed proof of the functional
equation ez+w = ezew. I partially showed in class how the functional equation proves that
ex > 0 for x ∈ R. Here’s the full proof. First,

ex = ex/2+x/2 = ex/2ex/2 = (ex/2)2 ≥ 0.

This inequality is, of course, only true because ex/2 ∈ R; in general, z2 need not be real (and
therefore not positive, negative, or zero) for z ∈ C. Next, the power series formula for e0

gives e0 = 1. Then
1 = e0 = ex−x = exe−x,

and so ex 6= 0. Thus ex ≥ 0 and ex 6= 0, so ex > 0 for all x ∈ R.
What is really new is Proposition 1.6.3: Euler’s formula, which says

eiy = cos(y) + i sin(y)

for y ∈ R (because, as of yet, cosine and sine aren’t defined for y ∈ C), and thus from the
functional equation,

ex+iy = exeiy = ex
(

cos(y) + i sin(y)
)
.

The consequences of this identity are pretty vast. Here’s one: ez+2πik = ez for all k ∈ Z, and
so the complex exponential is not one-to-one like the real exponential.

Day 8: Friday, January 27

We used the functional equation ez+w = ezew and the direct calculation of e0 = 1 to show
that eze−z = 1, and therefore ez 6= 0 for all z ∈ C. We knew ex 6= 0 for all x ∈ R, but this is
new. This identity also gives

1

ez
= e−z.
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By definition, we only knew
1

ez
=

ez

|ez|2
,

so this formula for 1/ez is better, and probably not apparent from the power series definition.
This was Theorem 1.6.2.

Next we talked about the polar form of ez; see Corollary 1.6.4 and p. 68. I encourage
you to work through the calculations in Examples 1.6.5 and 1.6.6. We saw that |eit| = 1 for
all t ∈ R, but can you find z ∈ C such that |eiz| 6= 1?

Some calculations revealed the (possibly surprising) facts that ez can be negative (eiπ =
−1 and, more generally, eikπ = (−1)k for k ∈ Z) and that the exponential is not one-to-one
on C: e0 = 2e2πi = 1, and more generally ez+2πik = ez for all k ∈ Z. Then we found all
z ∈ C such that ez = 1: these are z = 2πik for k ∈ Z (you might say z ∈ 2πiZ). This
is Proposition 1.6.7. In particular, this proposition tells us that the exponential is periodic
with period 2πik for any k ∈ Z but not P -periodic for any other P . Indeed, if ez+P = ez for
any z, P ∈ C, then the functional equation forces eP = 1, and therefore P = 2πik for some
k ∈ Z.

Finally, we exploited the appearance of the complex exponential in polar representations.
For z ∈ C \ {0}, we can write

z = |z|
(

cos(θ) + i sin(θ)
)
,

where θ ∈ R is an argument of z. But this is just

z = |z|eiθ.

See Proposition 1.6.8 (and note that equation (1.6.19) makes the last problem of Problem
Set 2 much easier!).

We can use polar representations to solve algebraic problems. Go all the way back to p. 2
to recall that C exists because we want to solve x2 + 1 = 0. More generally, let’s try solving
zn = w given an integer n ∈ Z and w ∈ C \ {0}. Note that w = 0 is not too interesting,
since zn = 0 if and only if z = 0. Note that n has to be an integer, since we have not treated
noninteger complex powers (they’re weird!).

Let’s work backward. Suppose zn = w and write z and w in polar form:

z = |z|eiθ and w = |w|eiφ.

You should think of |w| ∈ [0,∞) and φ ∈ R as given information (feel free to specify
φ = Arg(w)) and |z|, θ as unknowns. Then we need

|w|eiφ = w = zn = [|z|eiθ]n = |z|n[eiθ]n = |z|einθ.

Here is the key identity: [eiθ]n = einθ. This is what we expect from real numbers, e.g.,
(xp)q = xpq. While we haven’t defined noninteger complex powers yet, we do have the
identity (ev)n = env for v ∈ C and n ∈ Z thanks to the functional equation.

So, we have
zn = w =⇒ |z|neinθ = |w|eiφ.
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Take the modulus of both sides to get∣∣|z|neinθ∣∣ =
∣∣|w|eiφ∣∣ =⇒ |z|n = |w|,

since |eit| = 1 for all t ∈ R. Thus |z| = |w|1/n, where |w|1/n is the usual nth root of |w|. (We
probably should make that more precise. We will.)

We’ll finish this next time. This is morally the same as the material on p. 34.

Day 9: Monday, January 30

Picking up from Friday, we figured out that einθ = eiφ, thus ei(nθ−φ) = 1, and so i(nθ− φ) =
2πik for some integer k ∈ Z. We solve for θ as θ = (φ+ 2πk)/n, and therefore every solution
to zn = w has the form

z = |w|1/n exp

(
i(φ+ 2πk)

n

)
= |w|1/n exp

(
i(Arg(w) + 2πk)

n

)
=: zk.

You should check that we get n distinct solutions in the following sense: zk+n = zk for all
k ∈ Z, but if 1 ≤ j < k ≤ n, then zj 6= zk. You should also compare this result to Proposition
1.3.10.

Then we solved z3 = 1 and talked about nth roots of unity. See Example 1.3.11 and also
Example 1.3.12. Look at the circles in Figures 1.20 and 1.21. Last, use the formula for zk
above to convince yourself that the only solutions to z2 = −1 are z = ±i.

Last, we discussed logarithms. The point of a logarithm is to invert the exponential, i.e.,
to solve ez = w for z given w. We know that we have to take w 6= 0 since ez 6= 0 for all z. We
also don’t expect unique solutions, since ez = 1 has the infinitely many solutions z = 2πik,
k ∈ Z. We got down to (1.8.3) on p. 86 and then discussed the principal log (Definition
1.8.2) and the αth branch of the argument and the log (Definition 1.8.4). Next time: lots of
filthy, filthy calculations with logs.

Day 10: Wednesday, February 1

We started by calculating the thing you’ve always wanted to do: the logarithm of −1.
Specifically, we found Log(−1) = iπ, logπ(−1) = 3πi, and log(−1) = (2k + 1)πi with k ∈ Z.
That last equality really means

log(−1) ={(2k + 1)πi | k ∈ Z} ,

but usually we don’t write logs in this set notation. Then we checked

elog(z) = z and log(ez) = z + 2πik, k ∈ Z.

Both of these equalities are really set equalities in disguise. The first says

{ew | w ∈ log(z)} = {z},

or, if you prefer,
w ∈ log(z) =⇒ ew = z,
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and the second says
log(ez) ={z + 2πik | k ∈ Z} .

The takeaway for me is that elog(z) is what you think it is, but log(ez) is always multi-valued.
Calculating elog(z) = z is not much more than using the definition of log(·), the functional

equation for the exponential, and the identity e2πik = 1 for k ∈ Z. Calculating log(ez) =
z + 2πik takes more work.

Here’s some of that work. Start with

log(ez) = ln(|ez|) + iArg(ez) + 2πik, where ln(|ez|) = ln(eRe(z)) = Re(z).

Now recall the polar form

ez = eRe(z)+i Im(z) = eRe(z)ei Im(z) = |ez|ei Im(z),

which reminds us that Im(z) is an argument of ez, but maybe not the principal argument.
But we can always find a (unique) integer K(z) ∈ Z such that Im(z) + 2K(z)π ∈ (−π, π],
since we can write R as the disjoint union R = ∪∞k=−∞(kπ, (k+ 2)π], and therefore Arg(z) =
Im(z) + 2K(z)π. Thus

log(ez) = Re(z) + i Im(z) + 2πi(k +K(z)) = z + 2πi(k +K(z)).

Since k +K(z) ∈ Z, we have the equality above.
You should read Examples 1.8.1, 1.8.3, and 1.8.5 and contemplate deeply the four bullet

points at the top of p. 88. They’re weird! Here is another good exercise. Let r > 0 and
z = x+ iy. Calculate log(rez) in terms of r, x and y. What do you do if y 6= Arg(z)?

Last, we talked about powers. We know what z2 means, but what about z1/2? 2i? To
figure out a good definition for the complex power za, we thought about the real situation of
xa, where x > 0 and a ∈ R. With y = xa, we calculated ln(y) = a ln(x), and so y = ea ln(x).
That is, whatever xa is, it should satisfy xa = ea ln(x). We know what ln(·) is, because it’s
the integral ln(x) =

∫ x
1
t−1 dt. We know what e(·) is, because it’s a power series. And so xa

really is

xa = ea ln(x) =
∞∑
k=0

[a ln(x)]k

k!
.

I love this: we went from what xa does to what xa is. That’s how math goes!
From this, we defined, for z ∈ C \ {0} and a ∈ C,

za := ea log(z).

We exclude z = 0 because 0anything should be 0. This definition of za is inherently multi-
valued:

za ={eaw | w ∈ log(z)} =
{
ea[ln(|z|)+iArg(z)+2πik

∣∣ k ∈ Z
}

=
{
eaLog(z)e2πika

∣∣ k ∈ Z
}
.

As before, we usually suppress the set notation, and so we will often think of za as

za = eaLog(z)e2πika, k ∈ Z.
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We did the quick calculation

(−1)1/2 = eLog(−1)/2e2πik/2 = eiπ/2eiπk = i(−1)k = ±i,

which is exactly what it should be, and so we left class happy. You can find more happiness
with powers on pp. 90–91 (which you should read carefully, but you can skip Example 1.8.8).

Day 11: Friday, February 3

We started by calculating 1i = e−2πk for k ∈ Z. What this is really saying is that 1i is the set{
e−2πk

∣∣ k ∈ Z
}
. We probably used to expect 1x = 1 for all x ∈ R, but that may no longer

be true. You might want to calculate 1z for an arbitrary z ∈ C.
We talked about ambiguity: is ez the power series that we know and love, or is it ez =

ez Log(e)e2πizk? For consistency, we will always interpret the symbol ez as the power series,
never the set.

Then we worked through Case (i) on p. 90 and assured ourselves that zn has only one
possible meaning for n ∈ Z. You should read the other two cases on pp. 90–91, and you
might find Project Problems 1.8.53 and 1.8.54 on p. 94 interesting. The book doesn’t quite
spell this out, but we can specify, for α ∈ R, the αth branch of the power za to be the single
number ea logα(z).

After that, we thought about identities like (xp)q = xpq and xpxq = xp+q, which hold
when x > 0 and p, q ∈ R. It is very difficult to make sense of these for z ∈ C \ {0} with
complex exponents. For example, since za =

{
eaLog(z)e2πika

∣∣ k ∈ Z
}
, we might expect that

(za)b =
{
ebLog(w)e2πikb

∣∣ w ∈ za} .
How on earth can this compare to zab =

{
eabLog(z)e2πikab

∣∣ k ∈ Z
}
? You could spend weeks

of your life puzzling out when, and to what extent, power identities still hold for complex
numbers, but you shouldn’t.

Here’s my takeaway: we tried to defined za in as reasonable a manner as possible to be
in accord with what we expect from real numbers. Opening powers to complex inputs opens
a multiverse of dangerous possibilities! You should be able to compute za as a set-valued
expression, and from time to time we may use a branch of this power as a useful example of
a function. Otherwise, don’t worry too much about powers.

Last, we went back to Section 1.7 and talked about trig functions. For me, the sine is a
power series:

sin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
, x ∈ R.

You can show that this converges absolutely using the ratio test. One way to define the sine
for complex inputs is to replace x with z:

sin(z) =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
, z ∈ C.
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You can, and should, check the absolute convergence of this series, too.
This is an unambiguous definition of the complex sine, but it’s not always the most useful

definition. Here’s a more flexible one for real x:

sin(x) =
eix − e−ix

2i
.

See p. 76. This suggests that we should have

sin(z) =
eiz − e−iz

2i

for z ∈ C, and indeed we do; grind it out using the power series definition of e±iz and the
power series definition of sin(z).

We finished by doing Example 1.7.7 (a) and asking the following question: if we define a
function on R in two ways, and if we extend each of those definitions to C, do we still have
the same function? Conversely, if f1 and f2 are functions on (the same subset of) C, and
f1(x) = f2(x) for all x ∈ R, should we have f1(z) = f2(z) for all z?

Day 12: Monday, February 6

We continued talking about trig functions (really, the sine). We showed that the sine doesn’t
pick up any new periods on C. I don’t think this is in the book, so here’s a sketch. Suppose
sin(z + P ) = sin(z) for all z ∈ C. What do we know about P? Take z = 0 to see
sin(P ) = sin(0) = 0 and therefore P = kπ for some k ∈ Z. We can do better, as we expect
the periods of the sine to be even integer multiples of π. So what if k = 2j + 1 for some
j ∈ Z? Then sin(z+(2j+1)π) = sin(z) for all z ∈ C. If we’re clever, we can find some value
of z that results in a contradiction. We can’t use an integer multiple of π (as that would just
give 0 = 0), so try z = π/2. Use the fact that the sine is already 2π-periodic to get down to
sin(π/2 + π) = sin(π/2), or −1 = 1.

Then we showed that the sine is not bounded on C, whereas | sin(x)| ≤ 1 for all x ∈ R.
This is Example 1.7.5; see the two equations right above for the hyperbolic trig definitions.

You should read Example 1.7.2 and Propositions 1.7.3 and 1.7.4 for extra practice with
the complex sine and cosine. We won’t do anything else from Section 1.7. Last, you should
use the definition

cos(z) =
eiz + e−iz

2

to find all zeros and periods of the cosine on C and to see that the cosine is unbounded on
C. You could use the identity cos(z) = sin(z + π/2), but I think it’s good practice to work
directly with this definition.

This brings us to the end of the precalculus phase of our course: we’ve learned arithmetic,
geometry, a bit of algebra, what functions are, and the definitions and properties of the
essential transcendental functions (exponentials, logs, powers, and trig). Now it’s time for
calculus! We began with the pretty cut-and-dry definition of the limit as in Definition 2.2.1:
for a function f : D → C and numbers a, L ∈ C, we say limz→a f(z) = L if we can make
f(z) arbitrarily close to L by taking z sufficiently close to a. Of course, we measure “close”
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by studying the moduli |z − a| and |f(z) − L|, and we measure the adverbs “arbitrarily”
and “sufficiently” via ε, δ, and quantifiers. Specifically, limz→a f(z) = L if and only if for all
ε > 0, there is δ > 0 such that if 0 < |z − a| < δ and z ∈ D, then |f(z) − L| < ε. We
require z ∈ D so that f(z) is defined; maybe there are z ∈ C such that 0 < |z − a| < δ
but z 6∈ D. Also, we specify 0 < |z − a| because we don’t want to require anything about
z = a. Maybe a 6∈ D, in which case f(a) is not defined. Or maybe f(a) 6= L; this happens
a lot with limits. In any case, best to avoid saying anything about z = a right now. One
last thing from the precalculus phase. It absolutely, positively does not make sense to try
to compare complex numbers using inequalities. For example, the sentence i < 2i has no
meaning, although 1 < 2 and |i| < |2i|. This begs the question of <. Here is a rigorous
answer: it is a fact that there exists a set P ⊆ R with the following two properties. First,
for each x ∈ R, exactly one of the following holds: either x ∈ P or −x ∈ P or x = 0. This
property is called trichotomy. Second, for each x, y ∈ P , it is the case that x + y ∈ P and
xy ∈ P . If x ∈ P , then we write 0 < x, and for x, y ∈ R, we write x < y if 0 < y − x,
equivalently, if y − x ∈ P . Of course, P = (0,∞), but note that we can characterize P just
via trichotomy and algebra. We might say that P defines an order on R via the relation <.

Can we define an order on C in a similar way? Is there a set PC ⊆ C such that for all
z ∈ C, exactly one of z ∈ PC, −z ∈ PC, or z = 0 holds, and such that if z, w ∈ PC, then
z + w, zw ∈ PC? I say no. For if there is such a PC, then either i ∈ PC or −i ∈ PC, since
i 6= 0 (note that if i = 0, then 0 = i2 = −1). If i ∈ PC, then −1 = i2 ∈ PC, and then
−i = (−1)i ∈ PC. A similar contradiction results if −i ∈ PC.

Bottom line: if complex numbers appear in an inequality, they better be plugged into a
modulus! Saying |z| ≤ |w| is fine; saying z ≤ w is not.

Day 13: Wednesday, February 8

We talked about properties of limits. The good news is that the algebra that you know
from calculus in R carries over to calculus in C. This is because C has basically the same
algebraic properties as R does (except for that little business of i2 = −1), and the proofs of
many limit properties care less about whether the numbers involved are real or complex and
more about the underlying algebra. See, for example, Theorem 2.2.7 (ignore the language
about “accumulation points” for right now) and look at Example 2.2.8.

We discussed a “sequential characterization” of limits that’s not in the book. This is
an instance of how sequences turn “continuous” concepts (think about the ε-δ definition of
a limit) into “discrete” ones (sequences are indexed by discrete integers). Here is a formal
statement.

13.1 Theorem. Let f : D → C be a function and a, L ∈ C. Then limz→a f(z) = L if and
only if for all sequences (zn) in D \ {a} with zn → a, it is also the case that f(zn)→ L.

Here are some comments on the proposition. The sentence limz→a f(z) = L encodes the
idea that we can make f(z) arbitrarily close to L by taking z sufficiently close to (but maybe
not equal to) a. Saying that the sequence (zn) converges to a encodes this idea of having
z sufficiently close to a. Requiring zn ∈ D \ {a} removes the possibility of setting zn = a
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for all n, for in that case we would have zn → a but f(zn) = f(a), and we do not want to
require f(a) = L in the sentence limz→a f(z) = L. Last, saying f(zn)→ L encodes the idea
of making f(z) arbitrarily close to L.

We looked at part of Example 2.2.17 and showed that limz→−1 Arg(z) does not exist. We
did this by applying the sequential characterization of limits, but really we got the idea by
drawing a picture; see Figure 2.10. Define sequences (zn) and (wn) by zn = ei(π−1/n) and
wn = ei(−π+1/n). Then zn → −1 and wn → −1 (break zn and wn into real and imaginary
parts and use the continuity of the real sine and cosine) but Arg(zn) = π − 1/n → π while
Arg(wn) = −π + 1/n → −π. (To calculate the principal argument, recall Arg(eiθ) = θ if
−π < θ ≤ π.)

Then we talked about the squeeze theorem for complex-valued functions. See Theorem
2.2.5. As always when using inequalities with complex numbers, there must be moduli
involved! We showed limz→0 z sin(1/Re(z)) = 0, which proceeded in a manner similar to
Example 2.2.6.

Last, we defined continuity; see Definition 2.2.12. The work above shows that Arg(·) is
discontinuous on (−∞, 0). Since Arg(·) is not defined at 0, it is also discontinuous at 0. Thus
Arg(·) is discontinuous on (−∞, 0]. If you look back at the general formula for Arg(·) on p.
30, it is possible (though probably tedious) to show that Arg(·) is continuous on C\ (−∞, 0].
This is most of the rest of Example 2.2.17.

Day 14: Friday, February 10

We discussed removable and nonremovable discontinuities. The book defines these implicitly
on p. 110; here is a formal definition.

14.1 Definition. Let f : D → C be a function and let a ∈ C be such that L := limz→a f(z).
Suppose that either a 6∈ D or, if a ∈ D, then f(a) 6= L. Then f has a removable
discontinuity at a. Otherwise, if limz→a f(z) does not exist, then f has a nonre-
movable discontinuity at a.

Then we proved the following.

14.2 Theorem. Suppose that the function f : D → C has a removable discontinuity at
a ∈ C with L := limz→a f(z) and define

f̃(z) :=

{
f(z), z ∈ D \ {a}
L, z = a.

Then f̃ is continuous at a.

Here is the proof: since f(z) = f̃(z) for z ∈ D \ {a}, and since limz→a f(z) exists, the
limit limz→a f̃(z) also exists and equals limz→a f(z). That is,

lim
z→a

f̃(z) = lim
z→a

f(z) = L = f̃(a),
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and so f̃ is continuous at a.
Examples 2.2.15, 2.2.16, and 2.2.17 all feature removable and nonremovable discontinu-

ities and are worth reading.
Then we discussed how the existence of limits boils down to studying the limits of real

and imaginary parts; see Theorem 2.2.9. Note that this could also be proved using the
sequential characterization of limits and Theorem 1.5.8. Likewise, continuity respects real
and imaginary parts; see Theorem 2.2.13 and also the juicy algebra therein. Thus problems
of limits and continuity in C often can be resolved by thinking about limits and continuity
for functions from R2 to R as in multivariable calculus. See Proposition 2.2.18 (to which I
would add that h(x, y) = φ(x)ψ(y) and k(x, y) = φ(x)+ψ(y) are continuous on R2 whenever
φ and ψ are continuous on R) and Example 2.2.19 and Theorem 2.2.21. Note that we could
get Example 2.2.20 by thinking about the continuity of the function (x, y) 7→

√
x2 + y2.

Day 15: Monday, February 13

We introduced some topological and set-theoretical concepts from Section 2.1 that we’ve so
far avoided.

15.1 Definition.

(i) The open ball of radius r > 0 centered at z0 ∈ C is

B(z0; r) :={z ∈ C | |z − z0| < r} .

(ii) The closed ball of radius r > 0 centered at z0 ∈ C is

B(z0; r) :={z ∈ C | |z − z0| ≤ r} .

(iii) The punctured (open) ball of radius r > 0 centered at z0 ∈ C is

B∗(z0; r) := B(z0; r) \ {z0} ={z ∈ C | 0 < |z − z0| < r} .

See pp. 96–97 and also p. 98 and note the book’s slightly different notation.
A good exercise is to check that

B(z0; r) =
{
z0 + seit

∣∣ 0 ≤ s < r, 0 ≤ t ≤ 2π
}

and to “parametrize” the balls B(z0; r) and B∗(z0; r) in similar ways. Another good exercise,
which we did in class, is to rewrite the definition of a limit in terms of open balls. For
f : D → C and a, L ∈ C, we have

lim
z→a

f(z) = L ⇐⇒ for all ε > 0 there is δ > 0 such that z ∈ B∗(a; δ)∩D =⇒ f(z) ∈ B(L; ε).

You should revisit the geometry of Figure 2.8 (p. 103) in terms of balls. See pp. 98–99 to
review intersections (∩) and unions (∪) of sets.

Then we talked about accumulation points, see p. 98 once again. The book’s defini-
tion of a limit (Definition 2.2.1) and most of the good results on limits assumes that for
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limz→a f(z) = L to exist, the point a has to be an “accumulation point” of the domain of f .
Why? Consider the situation of D = B(0; 1) ∪ {2i} and f really any function on D. Check
that B∗(2i; δ) ∩ D is empty for 0 < δ < 1. Conclude that the statement z ∈ B∗(2i; δ) ∩ D is
false whenever 0 < δ < 1, and therefore the if-then statement

z ∈ B∗(2i; δ) ∩ D =⇒ f(z) ∈ B(L; ε)

is true for any choice of L ∈ C and ε > 0. Conclude, finally, that limz→2i f(z) = L for any
function f on D and any L ∈ C. In particular, the limit can have infinitely many values.

This is absurd, and excessive, and this is why we really have to restrict the point a in the
definition of a limit to be an accumulation point of the domain D. (I intentionally didn’t
stress this before, but now we are wiser.) As an example, you should check that 2i is not an
accumulation point of B(0; 1) ∪ {2i} and, more generally, that if z ∈ B(z0; r), then z is an
accumulation point of B(z0; r), while if w 6∈ B(z0; r), then w is not an accumulation point
of B(z0; r). Finally, look at Proposition 2.2.2, which proves that limits are unique. I claim
that the book is tacitly using the fact that z0 is an accumulation point of S when it uses the
point z such that 0 < |z − z0| < δ.

Finally, we talked about derivatives. I will use the word holomorphic as a synonym
for “(complex) differentiable” and in preference, for now, to “analytic.” All of the material
on pp. 114–118 up to and including Proposition 2.3.8 should feel very familiar. Because
the algebraic properties of C (as, strictly speaking, a field) are the same as those of R
(notwithstanding the role of i . . .), all of the proofs of differentiation theorems go through
exactly the same in C as they do in R. Here are some more interesting questions that we
will consider in detail.

1. What can we say about the differentiability of our “new” functions on C, e.g., exponentials,
logs, trig, powers? We know they are (more or less) differentiable on R, but what happens
when we extend them to C? Already we’ve seen some weird behavior with limits and
continuity.

2. How does two-dimensional geometry/two-dimensional limits affect the existence and prop-
erties of the derivative? This has definitely been an issue for continuity.

3. What does the differentiability of f say about its real and imaginary parts? They’re
functions from R2 to R, so presumably we could study them with multivariable calculus
(i.e., partial derivatives).

Our very last activity was working on part (a) of Example 2.3.9.

Day 16: Wednesday, February 15

We revisited the nondifferentiability of f(z) = z using the idea of paths. A path in C is just
a function γ : [a, b] ⊆ R → C. So, a path is a parametric curve γ(t) =

(
Re[γ(t)], Im[γ(t)]

)
.

We can recast limits not just in terms of sequences but also paths. Here is the “path
characterization” of limits.
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16.1 Theorem. Let f : D → C be a function and w, L ∈ C. Then limz→w f(z) = L if and
only if for all paths γ : [a, b]→ D, whenever limt→t0 γ(t) = w for some t0 ∈ [a, b], it is also
the case that limt→t0 f(γ(t)) = L. (If t0 = a or t0 = b, only the right or left limit as t→ t0,
respectively, is required to hold.)

Unlike the sequential characterization of limits, which defines limits of functions in terms
of limits of sequences, the path characterization of limits defines limits of functions also in
terms of limits of functions. However, the path characterization reduces knowledge of limits
of functions of a complex variable to limits of functions strictly of a real variable.

We can use the path characterization of limits to show that limz→x Arg(z) does not
exist for any x < 0. Take γ1(t) = |x|eit on [0, π], so limt→π− γ1(t) = |x|eiπ = −|x| = x and,
for 0 ≤ t ≤ π, Arg(γ1(t)) = t, so limt→π− Arg(γ1(t)) = π. Then take γ2(t) = |x|eit on
[−π, 0], so limt→−π+ γ2(t) = |x|e−iπ = −|x| = x and, for −π < t ≤ 0, Arg(γ2(t)) = t, so
limt→−π+ Arg(γ2(t)) = −π. Thus Arg(·) approaches two different limits along the paths γ1

and γ2, even though both of those paths approach x, so limz→x Arg(z) does not exist.
I think that neither the sequential characterization nor the path characterization of limits

is as immediately convincing as a good picture, which is how we originally studied Arg(·).
Rather, these two characterizations are methods of encoding and formalizing our mathe-
matical intuition, which allows us to check our work and communicate effectively with each
other.

It will sometimes be more convenient to use the path characterization of limits in connec-
tion with derivatives than the sequential characterization. This is really how we showed that
f(z) = z is nowhere differentiable. In the limit of the difference quotients [f(z+h)−f(z)]/h
as h → 0, we approached 0 along the path of the real axis, and got a limit of 1, and the
imaginary axis, and got a limit of −1. See Figure 2.13 on p. 119.

To test the differentiability of a function f at a point z (or exploit the differentiability if
it’s known), we might want to approach 0 along multiple paths. This requires us to evaluate
f(z + h) for h approaching 0 in arbitrary directions. Equivalently, if we think about the
difference quotients [f(w)− f(z)]/(w− z) as w → z, we want to allow w to approach z from
arbitrary directions. Depending on the domain D of f , this may not always be possible;
perhaps some directions of approach don’t lie in D.

This, however, is possible if D is open: for each z ∈ D, there is r > 0 such that
B(z; r) ⊆ D. See Definition 2.1.4 and some slightly different language on pp. 96–98. I
claim that if D is open and if γ : [a, b] → C is a path such that limt→t0 γ(t) = 0, then for t
sufficiently small we have z + γ(t) ∈ D.

16.2 Theorem. Let D ⊆ C be open, and let f : D → C be a function and z ∈ D. If
f is differentiable at z, and if γ : [a, b] → C is a path such that, for some t0 ∈ [a, b],
limt→t0 γ(t) = 0, then it is also the case that

f ′(z) = lim
t→t0

f(z + γ(t))− f(z)

γ(t)
.

Conversely, suppose that γ1 : [a1, b1]→ C and γ2 : [a2, b2]→ C are paths such that for some
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t1 ∈ [a1, b1] and t2 ∈ [a2, b2],

lim
t→t1

γ1(t) = lim
t→t2

γ2(t) = 0.

If

lim
t→t1

f(z + γ1(t))− f(z)

γ1(t)
6= lim

t→t2

f(z + γ2(t))− f(z)

γ2(t)
,

or if the two limits above do not exist, then f is not differentiable at z.

With this proposition, we revisited f(z) = z by taking γ1(t) = t and γ2(t) = it, both
defined on, say, [0, 1]. Then we have

lim
t→0

γ1(t) = lim
t→0

γ2(t) = 0 but lim
t→0

f(γ1(t)) = 1 while lim
t→0

f(γ2(t)) = −1.

Day 17: Friday, February 17

You took an exam.

Day 18: Monday, February 20

We proved the Cauchy–Riemann equations. See pp. 130–132. The crux of the proof is the
geometry in Figures 2.21 and 2.22 and the algebra of (1) equating real and imaginary parts
of limits and (2) using the identity 1/i = −i. Then we used the Cauchy–Riemann equations
to give a shorter proof that f(z) = z is not differentiable at any z ∈ C. Last, we stated the
converse to the Cauchy–Riemann equations. The book packages the equations as Theorem
2.5.1; here is the version that we used in class. We proved part (i) but not part (ii).

18.1 Theorem. Suppose that D ⊆ C is open and let f : D → C be a function. Write
f(x+ iy) = u(x, y) + iv(x, y).

(i) Suppose that f is differentiable at a point z = x0 +iy0 ∈ D. Then the partial derivatives
ux, uy, vx, and vy exist at (x0, y0) and satisfy the Cauchy–Riemann equations{

ux(x0, y0) = vy(x0, y0)

uy(x0, y0) = −vx(x0, y0).
(∗)

Moreover,

f ′(x0 + iy0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0). (∗∗)

(ii) Let x0 + iy0 ∈ D and let r > 0 be such that B(x0 + iy0; r) ⊆ D. Suppose that the four
partial derivatives ux, uy, vx, and vy exist and are continuous on B(x0 + iy0; r). Moreover,
suppose that the partials satisfy the Cauchy–Riemann equations (∗) at x0 + iy0. Then f is
differentiable at x0 + iy0 and (∗∗) holds.
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Day 19: Wednesday, February 22

First we used the Cauchy–Riemann equations to prove the differentiability of the exponential,
and then we used the chain rule and the linearity of the derivative to prove the differentiability
of the sine. These are Examples 2.5.3 and 2.5.4.

Then we inquired about the differentiability of the principal logarithm. We have

Log(x+ iy) = ln(
√
x2 + y2) + iArg(x+ iy),

so we would want to study u(x, y) = ln(
√
x2 + y2) and v(x, y) = Arg(x+ iy). Working with

u is not bad, but how do we differentiate v? The piecewise definition on p. 30 is true but
tough.

The right idea was to use a variant of the reverse chain rule. The book does this in
Theorem 2.3.12 and Example 2.5.5. Here is our approach from class, which used somewhat
different tools. First we proved a lemma, then a variant of Theorem 2.3.12, and then we did
Example 2.5.5.

19.1 Lemma (Difference quotient). Let D ⊆ C be open and let f : D → C be differen-
tiable. Fix a ∈ D and define

φ : D → C : z 7→


f(z)− f(a)

z − a
, z ∈ D \ {a}

f ′(a), z = a.

Then φ is differentiable on D \ {a} and continuous on D.

Proof. Continuity on D \ {a} will follow from differentiability on D \ {a}. Continuity at a
follows from the calculation

lim
z→a

φ(z) = lim
z→a

f(z)− f(a)

z − a
= f ′(a) = φ(a).

Here we are using the “other” definition of the derivative.
As for the differentiability on D \ {a}, this is essentially the quotient rule. The map

z 7→ f(z) − f(a) is differentiable on D as f is differentiable on D and f(a) is constant;
the map z 7→ z − a is differentiable on C, so the quotient z 7→

(
f(z) − f(a)

)
/(z − a) is

differentiable as long as the denominator is not zero, i.e., on D \ {a}. �

19.2 Theorem (Reverse chain rule). Let D1, D2 ⊆ C with D1 ⊆ D2. Let f : D1 → D2

be continuous and let g : D2 → C be differentiable. Suppose that g(f(z)) = z for all z ∈ D1

and g′(f(z)) 6= 0 for all z ∈ D1. Then f is differentiable on D1 and

f ′(z) =
1

g′(f(z))
.
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First, a remark: if we also know that f is differentiable, then the formula for f ′ follows
from the chain rule as usual. Indeed, since g(f(z)) = z, we differentiate both sides to
find g′(f(z))f ′(z) = 1, and then we solve for f ′(z). But here we do not know that f is
differentiable, so we have work to do.

Proof. Fix a ∈ D1. We need to show that

lim
z→a

f(z)− f(a)

z − a
=

1

g′(f(z))
.

The hypothesis g(f(z)) = z for all z lets us rewrite the difference quotient as

f(z)− f(a)

z − a
=

f(z)− f(a)

g(f(z))− g(f(a))
. (19.1)

Now put

φ : D2 → C : w 7→


g(w)− g(f(a))

w − f(a)
, w ∈ D2 \ {f(a)}

g′(f(a)), w = f(a).

The difference quotient lemma tells us that φ is continuous on D2, so in particular

lim
w→f(a)

φ(w) = φ(f(a)) = g′(f(a)) 6= 0.

Properties of continuity then tell us that for w close to f(a), we have φ(w) 6= 0, and so
the quotient 1/φ is also continuous at f(a). That is,

lim
w→f(a)

1

φ(w)
=

1

φ(f(a))
=

1

g′(f(a))
.

Since f is continuous at a, we have limz→a f(z) = f(a). Then properties of limits and function
composition give

lim
z→a

1

φ(f(z))
=

1

φ(f(a))
=

1

g′(f(a))
.

We claim that
1

φ(f(z))
=

f(z)− f(a)

g(f(z))− g(f(a))
.

If this is true, then (19.1) shows

lim
z→a

f(z)− f(a)

z − a
= lim

z→a

1

φ(f(z))
=

1

g′(f(a))
,

as desired. To prove the claim, we just need to check that f(z) 6= f(a) for z close to a.
Then the claim will follow from the piecewise definition of φ. If f(z) = f(a) for some z 6= a,
then the hypotheses imply a = g(f(a)) = g(f(z)) = z, a contradiction. Thus the claim is
true. �

We applied these results to the principal logarithm by setting f(z) = Log(z), D1 =
C \ (−∞, 0], g(z) = ez, and D2 = C. Then g(f(z)) = eLog(z) = z, g′(z) = ez, and g′(f(z)) =
eLog(z) = z 6= 0, since z 6= 0 here.
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Day 20: Friday, February 22

Recommended reading

Today’s material departed from the text, so the following notes are more detailed. We are
working our way up to proving Theorem 2.5.7, but I am trying to motivate the need for
the topological machinery of connectedness (pp. 99–101). We ended by proving a “weak”
version of Theorem 2.5.7 in the case that the domain is only open, not a “region.” Then
we discussed piecewise continuous differentiability, see Definition 3.2.1, and some other
issues of calculus for functions γ : [a, b] ⊆ R→ C as on pp. 143–145.

Motivated by the powerful relationship between the real and imaginary parts of a differ-
entiable function, we discussed the situation where f : D → C is differentiable, D is open,
and Im(f(z)) = 0 for all z ∈ D. Then f(x + iy) = u(x, y) + iv(x, y) with v(x, y) = 0,
so the Cauchy–Riemann equations gave ux = uy = 0. Since vx = 0 as well, we have
f ′(x + iy) = ux(x, y) + iv(x, y) = 0. Instinct tells us that f should be constant if its
derivative is 0, but instinct is wrong: consider

f : C \ iR→ C : z 7→

{
−1,Re(z) < 0

1,Re(z) > 0.

This f is only locally constant.

20.1 Definition. A function f : D → C is locally constant if for each z ∈ D,
whenever r > 0 is such that B(z; r) ⊆ D, then f is constant on B(z; r).

To prove the next theorem, we will use (among other options) the fundamental theorem
of calculus: if f : [a, b] ⊆ R→ R is differentiable and f ′ is continuous, then∫ b

a

f ′(t) dt = f(b)− f(a).

We will eventually prove the FTC, but we will just accept it as true for now. This generalizes
nicely to partial derivatives. If u : D ⊆ C→ C has continuous partial derivatives ux and uy
on D, and if x+ iy ∈ D for a ≤ x ≤ b, then∫ b

a

ux(x, y) dx = u(b, y)− u(a, y).

20.2 Theorem. Let D ⊆ C be open. Suppose that f : D → C is differentiable with f ′(z) = 0
for all z ∈ D. Then f is locally constant on D.

Proof. Let z0 = x0 + iy0 ∈ D and r > 0 such that B(z0; r) ⊆ D. We want to show that
f(z0) = f(z) for all z ∈ B(z0; r).

Write f(x+ iy) = u(x, y) + iv(x, y). Since D is open and f is differentiable, the Cauchy–
Riemann equations tell us that the partial derivatives ux, uy, vx, and vy exist on D. Moreover,
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since f ′(x + iy) = 0 for all x + iy ∈ D, we have ux = uy = vx = vy = 0 on D. It
therefore suffices to show that for x1 + iy1 ∈ B(z0; r), we have u(x1, y1) = u(x0, y0) and
v(x1, y1) = v(x0, y0). We will only do this for u, as the proof for v is analogous.

We claim that since x0 + iy0 = z0 ∈ B(z0; r) and x1 + iy1 ∈ B(z0; r), we have x + iy ∈
B(z0; r) for all x between x0 and x1 and all y between y0 and 1. (By “between,” we mean
that if x0 ≤ x1, then x0 ≤ x ≤ x1, and if x1 ≤ x0, then x1 ≤ x ≤ x0.) We leave the proof of
this claim as an exercise. Here is the picture of one arrangement of x0 + iy0 and x1 + iy1.

R

iR

x0 x1x

iy0

iy1

iy

Now we “add zero” and rewrite

u(x1, y1)− u(x0, y0) =
[
u(x1, y1)− u(x1, y0)

]
+
[
u(x1, y0)− u(x0, y0)

]
.

Since ux(x, y0) = 0 for all x ∈ [x0, x1] and uy(x1, y) = 0 for all y ∈ [y0, y1], we have

u(x1, y1)− u(x1, y0) =

∫ y1

y0

uy(x1, y) dy =

∫ y1

y0

0 dy = 0

and
u(x1, y0)− u(x0, y0) =

∫ x1

x0

ux(x, y0) dx =

∫ x1

x0

0 dx = 0.

This proves that u is constant. Exactly the same arguments work for v, and otherwise we
switch the limits of integration around in the event, say, that x1 ≤ x0. �

20.3 Corollary. Suppose that D ⊆ C is open and f : D → C is differentiable with either
Re(f) or Im(f) locally constant on D. Then f is locally constant on D.

Proof. Write f(x + iy) = u(x, y) + iv(x, y). Say that u = Re(f) is locally constant on D.
Then ux = uy = 0, so vx = vy = 0 as well, and therefore f ′ = ux + ivx = 0. �

This suggests that the values of a complex differentiable function defined on an open
subset of C must exhibit a certain “diversity.” It is no problem for a f : [a, b] ⊆ R → R to
be differentiable, strictly real-valued, and not locally constant; this is the meat and potatoes
of real-valued calculus, of course. But as soon as we expand the domain of f to be an open
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subset of C (now is a good time to check that no subset of R is open in C), then f cannot
take just real (or just imaginary) values without being very “dull.”

We can strengthen the preceding results significantly if we introduce some new topolog-
ical machinery. First, we need to recall some technical facts about limits, continuity, and
differentiability for functions γ : D → C where D ⊆ R. Note that the original definition of
the limit of a function f : D ⊆ C → C at a point a ∈ C (Definition 2.2.1) permitted, or at
least did not prohibit, D ⊆ R. Likewise, although Definition 2.3.1 for the derivative required
D ⊆ C to be open, which explicitly excludes D ⊆ R (why?), nothing in the definition of the
derivative intrinsically required D to be open, and none of the proofs of the major conse-
quences of differentiability (Theorems 2.3.4 and 2.3.5) required D to be open, either. The
bottom line is that the calculus of limits, continuity, and derivatives works the way it should
for functions γ : D ⊆ R → C, and results like Proposition 3.1.6 and Theorem 3.1.8 do not
need special singling out. (Note, though, that the mean value theorem need not hold if γ is
not strictly real-valued; see pp. 145.) Nonetheless, for clarity, we single out some important
properties of functions from subintervals of R to C.

20.4 Definition. Let γ : [a, b] ⊆ R→ C be a function.

(i) γ is continuous on [a, b] if limτ→t γ(τ) = γ(t) for all t ∈ [a, b]. A close reading of
the formal definition of the limit (Definition 2.2.1) actually requires

lim
τ→a+

γ(τ) = γ(a), lim
τ→t

γ(τ) = γ(t), a < t < b, and lim
τ→b−

γ(τ) = γ(b).

(ii) γ : [a, b] ⊆ R→ C is differentiable on [a, b] if the limits

γ′(t) :=



lim
h→0+

γ(a+ h)− γ(a)

h
, t = a

lim
h→0

γ(t+ h)− γ(t)

h
, a < t < b

lim
h→0−

γ(b+ h)− γ(b)

h
, t = b

all exist.

(iii) γ : [a, b] ⊆ R → C is continuously differentiable on [a, b] if γ is differen-
tiable on [a, b] in the sense of part (ii) and if γ′ is continuous on [a, b] in the sense of part
(i).

(iv) γ : [a, b] ⊆ R → C is piecewise continuously differentiable on [a, b] if
there are numbers t0, . . . , tn ∈ [a, b] such that a = t0 < · · · < tn = b and such that the
restrictions γ

∣∣
[tk−1,tk]

are continuously differentiable on [tk−1, tk] in the sense of part (iii).

Here, if I ⊆ R is an interval and J ⊆ I, then the restriction to J of a function f : I → C
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is the function
f
∣∣
J

: J → C : t 7→ f(t).

20.5 Example. The map γ : [−1, 1] → C : t 7→ |t| is piecewise continuously differentiable
but not continuously differentiable. If we put t0 = −1, t1 = 0, and t2 = 1, then γ(t) = −t
for −1 ≤ t ≤ 0 and γ(t) = t for 0 ≤ t ≤ 1. Then γ

∣∣
[−1,0]

and γ
∣∣
[0,1]

are differentiable with
(γ
∣∣
[−1,0]

)′(t) = −1 and (γ
∣∣
[0,1]

)′(t) = 1. Nonetheless,

lim
h→0

γ(h)− γ(0)

h

does not exist, so γ is not differentiable at 0.

20.6 Remark. A function γ : [a, b] ⊆ R → C is continuous/differentiable/continuously
differentiable/piecewise continuously differentiable if and only if Re(γ) and Im(γ) are. In
particular, if γ = µ+ iν, where µ, ν : [a, b]→ R, and if γ is differentiable, then γ′ = µ′+ iν ′.

It follows at once from the definition that if γ : [a, b] → C is continuously differentiable,
then γ is also piecewise continuously differentiable on [a, b]. Likewise, since differentiable
functions are continuous, continuously differentiable functions are continuous. It also turns
out that piecewise continuously differentiable functions are continuous, although this takes
a bit of work. We did not prove the following result in class, and you should feel free to skip
the proof.

20.7 Lemma. If γ : [a, b] → C is piecewise continuously differentiable, then γ is also
continuous in the sense of (i).

Proof. If n = 1 in part (iv) above, then γ is continuously differentiable on all of [a, b], and
there is nothing to prove. Otherwise, suppose n ≥ 2.

We first show continuity at a. Since γ
∣∣
[t0,t1]

is continuously differentiable and therefore
continuous in the sense of part (i), and since t0 = a, we have

lim
τ→a+

γ(τ) = lim
τ→t+0

γ
∣∣
[t0,t1]

(τ) = γ
∣∣
[t0,t1]

(t0) = γ(t0) = γ(a).

A similar argument shows limτ→b− γ(τ) = γ(b).
Now suppose t ∈ (a, b). Then there is k such that t ∈ [tk−1, tk]. If tk−1 < t < tk, then

since γ
∣∣
[tk−1,tk]

is continuously differentiable and therefore continuous in the sense of part ??,
we have

lim
τ→t

γ(τ) = lim
τ→t

γ
∣∣
[tk−1,tk]

(τ) = γ
∣∣
[tk−1,tk]

(t) = γ(t).

Otherwise, if t is an endpoint of [tk−1, tk], we need to do more work. If t = tk−1 and
k = 1, then t = t0 = a, so we already know continuity at t. So, suppose t = tk−1 and k ≥ 2.
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(This is allowed since k ≤ n and n ≥ 2.) Then the continuity of γ
∣∣
[tk−1,tk]

gives

lim
τ→t+k−1

γ(τ) = lim
τ→t+k−1

γ
∣∣
[tk−1,tk]

(τ) = γ
∣∣
[tk−1,tk]

(tk−1) = γ(tk−1).

But since k ≥ 2, we can also use the continuity of γ
∣∣
[tk−2,tk−1]

to find

lim
τ→t−k−1

γ(τ) = lim
τ→t−k−1

γ
∣∣
[tk−2,tk−1]

(τ) = γ
∣∣
[tk−2,tk−1]

(tk−1) = γ(tk−1).

Similar arguments prove continuity at tk if we consider the case k = n (which implies
tn = b) separately from the case k < n. �

Nonetheless, a piecewise continuously differentiable function γ : [a, b] → C need not be
differentiable on all of [a, b]. The left and right derivatives

lim
h→0+

γ(t+ h)− γ(t)

h
and lim

h→0−

γ(t+ h)− γ(t)

h

are indeed defined for all t ∈ (a, b) and, moreover, equal for all but finitely many t ∈ (a, b).
However, at a tk ∈ (a, b), we may have

lim
h→0+

γ(tk + h)− γ(tk)

h
6= lim

h→0−

γ(tk + h)− γ(tk)

h
,

in which case γ′(tk) will not be defined. And so we should not hope that γ′ will be continuous
on all of [a, b] if γ is only piecewise continuously differentiable.

Day 21: Monday, February 27

Recommended reading

We discussed antiderivatives and integrals. Today’s discussion corresponded, broadly, to
Definition 3.1.1, Definition 3.1.10, Example 3.1.12, Example 3.1.14, Definition 3.1.4, and
Example 3.1.5.

This diversion into continuity and differentiability helps us define a new tool that we will
regularly deploy for the rest of the course.

21.1 Definition. A path in C is a piecewise continuously differentiable map γ : [a, b] ⊆
R → C. A path in D ⊆ C is a path γ : [a, b] ⊆ R → D. The image of a path
γ : [a, b] ⊆ R→ C is the set

γ([a, b]) :={γ(t) | a ≤ t ≤ b}

i.e., the image of γ is the range of γ. (Below, the image of γ is the blue curve.) The
initial point of γ is γ(a) and the terminal point of γ is γ(b); if γ(a) = γ(b), then γ is
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closed.

R

iR

γ(a)

γ(b)

Here is a gentle example of one of the most important paths in all of complex analysis.

21.2 Example. The map γ : [0, 2π] → C : t 7→ eit is a path, and the image of this path is
the unit circle. That is, {

eit
∣∣ 0 ≤ t ≤ 2π

}
={z ∈ C | |z| = 1} .

R

iR

1

i

The image of this path has an inherent orientation: it starts at 1 and “moves counterclock-
wise” to i, then to −1, then to −i and, last, back to 1. Thus γ is closed.

Note carefully that a path is a function, while the image of a path is a set. A given
set in C may be the image of many paths; for example, the unit circle is also the image of
γk : [0, 2π]→ C : t 7→ eikt for any k ∈ Z.

21.3 Problem. Prove this. That is, show that if k ∈ Z, then

{z ∈ C | |z| = 1} =
{
eikt

∣∣ 0 ≤ t ≤ 2π
}
.

Here is the precise differentiation among “set,” “path,” and “image.”

21.4 Definition. A set Γ ⊆ C is parametrized by the path γ : [a, b] ⊆ R → C if the
image of γ is Γ, i.e., if Γ = γ([a, b]). In this case we say that γ is a parametrization
of Γ.
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21.5 Example. Here are four different parametrizations of the the unit circle, which is the
set {z ∈ C | |z| = 1}:

γ1 : [0, 2π] ⊆ R→ C : t 7→ eit

γ2 : [0, 2π] ⊆ R→ C : t 7→ e−it

γ3 : [0, π] ⊆ R→ C : t 7→ e2it

γ4 : [0, 2π] ⊆ R→ C : t 7→ e4it.

The path γ1 is probably what we think of as the “usual” parametrization, which “traces
out” the unit circle “counterclockwise.” (Hopefully the overabundance of quotation marks
emphasizes that none of these words or phrases has been given a rigorous mathematical
definition yet.) The path γ2 traces out the unit circle clockwise, e.g., γ2(π/2) = −i, whereas
γ2(π/2) = i. The path γ3 traces out the unit circle in “half the time” as γ1 and γ2, e.g.,
γ3(π/4) = i. And the path γ4 traces out the unit circle a whopping four times, e.g.,
γ4(t) = 1 for k = 0, π/2, π, 3π/2, and 2π. It turns out that the paths γ1, γ2, and γ3 are
closely related and can be “obtained” from each other by various operations that we will
define on paths in general.

21.6 Problem. Define the circle of radius r > 0 centered at z0 ∈ C to be the set of all
points z that lie at a distance r from z0, i.e., this circle is the set {z ∈ C | |z − z0| = r}.
Show that γ : [0, 2π] ⊆ R → C : t 7→ z0 + reit is a parametrization of this circle. Can you
describe γ “dynamically” as encoding a translation and a dilation of the unit circle?

r

z0

γ(t) = z0 + reit, 0 ≤ t ≤ 2π

21.7 Remark. Do not confuse the image of a path γ : [a, b] ⊆ R→ C with the graph of that
path. In calculus, typically we think of the graph of a function f : I ⊆ R → R as the set
{(t, f(t)) | t ∈ I} ⊆ R2. From our earlier formal definition of a function as a set of ordered
pairs, we should see that a function’s graph is that function, i.e., f ={(t, f(t)) | t ∈ I}.

But then the corresponding “graph” of γ : [a, b] ⊆ R → C would be the set
{(t, γ(t)) | a ≤ t ≤ b}. Since γ(t) = Re(γ(t)) + i Im(γ(t)) =

(
Re(γ(t)), Im(γ(t))

)
, per our

underlying definition of complex numbers as ordered pairs, we might identify the graph
of γ as the set of ordered triples

{(
t,Re(γ(t)), Im(γ(t))

) ∣∣ a ≤ t ≤ b
}
⊆ R3. However, the

image of γ is just a subset of C = R2. In general, we will never “graph” a path as we did
in prior calculus, but we will frequently study a path’s image.
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21.8 Problem. Do not judge the smoothness (i.e., the differentiability) of a path by the
smoothness of its image.

(i) What is the image of
γ1 : [−1, 1] ⊆ R→ C : t 7→ |t|?

Is this image the same as that of

γ2 : [−1, 1] ⊆ R→ C : t 7→ t+ i|t|?

(ii) Show that the image of γ2 is the same as the image of

γ3 : [−1, 1] ⊆ R→ C : t 7→ t3 + i|t|3.

Conclude that a set Γ ⊆ C may be both the graph of a function from a subset of R to R
that is not differentiable and the image of a continuously differentiable map from a subset
of R to C.

In addition to circles, line segments are also among the most important paths that we
will study.

21.9 Definition. Let z1, z2 ∈ C. The line segment from z1 to z2 is the path

γ : [0, 1] ⊆ R→ C : t 7→ (1− t)z1 + tz2.

We will often refer to both this path (as a function) and its image (as a set) as [z1, z2].
Context will make our intentions clear.

If z1, z2 ∈ R, the notation [z1, z2] may permit uncomfortable expressions like [1, 0]. Such
is life. We will continue to emphasize that the domain of a path is a subset of R by writing,
as we have always done, γ : [a, b] ⊆ R → C, not γ : [a, b] → C, when γ is a path. A path is
always defined on a closed, bounded subset of R.

21.10 Problem.

(i) Sometimes it is convenient to represent the same line segment in multiple ways. Let
z1, z2 ∈ C. Show that

{(1− t)z1 + tz2 | 0 ≤ t ≤ 1} ={τz1 + (1− τ)z2 | 0 ≤ τ ≤ 1}
={tz1 + τz2 | 0 ≤ t, τ ≤ 1 and t+ τ = 1}

In particular, conclude that as sets [z1, z2] = [z2, z1].

(ii) If a, b ∈ R with a ≤ b, then of course we want to think of the line segment [a, b] as the
set {x ∈ R | a ≤ x ≤ b}. Show that this is still the case per Definition 21.9. That is, show

{x ∈ R | a ≤ x ≤ b} ={(1− t)a+ tb | 0 ≤ t ≤ 1} .
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21.11 Example. Let z1, z2 ∈ C be distinct points. What is the difference between the
paths

γ1(t) : [0, 1] ⊆ R→ C : t 7→ (1−t)z1+tz2 and γ2(t) : [0, 1] ⊆ R→ C : t 7→ (1−t)z2+tz1?

How does this situation resemble the paths γ1 and γ2 from Example 21.5?

Solution. The path γ1 parametrizes [z1, z2], while the path γ2 parametrizes [z2, z1]. The
images of these paths are the same, since as sets [z1, z2] = [z2, z1]. However, γ1(0) = z1 6=
z2 = γ2(0), so γ1 and γ2 are distinct functions. (In fact, one can check that γ1(t) = γ2(t) if
and only if t = 1/2, so these functions certainly are not equal.) This calculation also tells us
that the initial point of γ1 is the terminal point of γ2, and vice-versa. It appears, then, that
γ1 and γ2 both “trace out” the same image but in the “reverse direction.”

R

iR

z0

z1

R

iR
z1

z0

In fact, a little algebra shows

γ1(t) = γ2(1− t), 0 ≤ t ≤ 1. (21.2)

This is the same situation as with γ1 and γ2 in Example 21.5. There, we had γ1(t) = eit and
γ2(t) = e−it, both defined on [0, 2π]. The images of both paths were closed, so the initial and
terminal points were all the same, but intuitively we saw that γ2 proceeded in the “reverse
orientation” from γ1. We also had the equality γ2(t) = γ1(2π − t), which resembles (21.2).

N

We formally define this notion of “reverse.”

21.12 Definition. Suppose that γ : [a, b]→ C is a path. The reverse of γ is the path

γ−(t) := γ(a+ b− t), a ≤ t ≤ b.

Some sources denote this path by −γ or γ∗ instead.

This definition shows that the pairs of paths γ1 and γ2 from Examples 21.5 and 21.11 are
the reverse paths of each other.

21.13 Problem. Let γ : [a, b] ⊆ R → C be a path. Check that γ−(a) = γ(b) and
γ−(b) = γ(a), so γ− does indeed “reverse” the initial and terminal points of γ. Check
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moreover that if a ≤ t ≤ b, then a ≤ a+ b− t ≤ b, and so γ(a+ b− t) is indeed defined if
γ is defined on [a, b].

Day 22: Wednesday, March 1

We talked about some issues with the exam and the most recent problem set and renewed
our understanding of domains of functions, limits, and (non)removable discontinuities. Then
we finished Example 21.11.

Now we consider the relationship of the paths

γ1 : [0, 2π] ⊆ R→ C : t 7→ eit and γ3 : [0, π] ⊆ R→ C : t 7→ e2it

from Example 21.5. We said that both paths appeared to trace out the unit circle in the
same orientation (starting from z = 1 and moving counterclockwise), and both paths traced
out the unit circle only once.

Observe that γ3(t) = γ1(2t), and the map ϕ13 : [0, π] → [0, 2π] : t 7→ 2t is continuously
differentiable with ϕ′13(t) = 2 > 0 for all t. Observe also that γ1(t) = γ3(t/2), and the map
ϕ31 : [0, 2π] → [0, π] : t 7→ t/2 is continuously differentiable with ϕ′31(t) = 1/2 > 0 for all
t. This dual way of viewing γ3 as the composition γ3 = γ1 ◦ ϕ13 and of viewing γ1 as the
composition γ1 = γ3 ◦ ϕ31 is an illustration of a more general phenomenon.

Day 23: Friday, March 3

Recommended reading

We continued studying paths. See Definition 3.1.11, Examples 3.1.12 and 3.1.13, and
Definition 3.2.16. We also talked about connectedness, see pp. 99–101. I would call
the book’s definition of connectedness (Definition 2.1.5) polygonal connectedness; our
definition and the book’s our equivalent, but one direction of that equivalence takes some
work. You should read the statement of Proposition 2.1.7 but you are not responsible for
its proof.

23.1 Definition. Let γ1 : [a, b] ⊆ R→ C and γ2 : [c, d] ⊆ R→ C be paths. Then γ1 and γ2

are equivalent if there is a continuously differentiable map ϕ : [c, d]→ [a, b] such that

(i) ϕ′(t) > 0 for all t ∈ [c, d].

(ii) ϕ(c) = a and ϕ(d) = a.

(iii) γ2(t) = γ1(ϕ(t)) for all t ∈ [c, d].

We say that γ1 and γ2 are reparametrizations of each other.
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R

R

c d

a b
ϕ

R

iR

γ1

γ2 = γ1 ◦ ϕ

γ1(a) = γ2(c)

γ1(b) = γ2(d)

The condition that ϕ′(t) > 0 in this definition ensures that ϕ is strictly increasing on
[a, b] and therefore one-to-one. This, morally, encodes the idea that γ2 = γ1 ◦ ϕ “traces out
the same image” as γ1 does in the “same orientation.”

23.2 Problem. It is sometimes convenient to assume that the domain of a path is the
interval [0, 1]. Show that it is always possible to reparametrize a path γ : [a, b] ⊆ R → C
by finding a continuously differentiable map ψ : [a, b] → [0, 1] that satisfies the conditions
of Definition 23.1.

23.3 Problem. Show that if the path γ1 is a reparametrization of the path γ2, then γ1 and
γ2 have the same image.

23.4 Problem. Is the reverse of a path ever a reparametrization of that path?

We now have a way of constructing a new path from an old one (the reverse) and a
way of relating two paths that may be different formulaically but really are the same (the
reparametrization). If the reverse is morally the equivalent of “multiplying by −1” (which is
what multiplying by −1 usually does), then it is only natural that we have an analogue of
“adding” paths.

23.5 Definition. Suppose γ1 : [a, b]→ C and γ2 : [c, d]→ C are two paths with γ1(b) = γ2(c).
Then the composition of γ1 and γ2 is the path

γ1 ⊕ γ2 : [a, b+ (d− c)]→ C : t 7→

{
γ1(t), a ≤ t ≤ b

γ2(t− b+ c), b ≤ t ≤ b+ d− c.

Sometimes this path is denoted by γ1 + γ2 or [γ1, γ2] instead.
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23.6 Problem. Check that if b ≤ t ≤ b+ d− c, then c ≤ t− b+ c ≤ d, and so γ2(t− b+ c)
is defined if γ2 is defined on [c, d].

Here is a visualization of composition.

γ1

R

iR

R
a b

R

iR

γ1(a)

γ1(b) = γ2(c)

γ2

R

iR

R
c d

R

iR

γ1(b) = γ2(c)

γ2(d)

γ1 ⊕ γ2

R

iR

R
a b b+ (d− c)

R

iR

γ1(a)

γ2(d)

23.7 Example. Let z1, z2, z3 ∈ C. Then the line segment from z1 to z2 is parametrized by

γ1 : [0, 1]→ C : t 7→ (1− t)z1 + tz2

and the line segment from z2 to z3 is parametrized by

γ2 : [0, 1]→ C : t 7→ (1− t)z2 + tz3.
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Since γ1(1) = z1 = γ2(0), we can compose γ1 and γ2 as

γ1 ⊕ γ2 : [0, 2]→ C : t 7→

{
γ1(t), 0 ≤ t ≤ 1

γ2(t− 1), 1 ≤ t ≤ 2.

Then we can calculate

(
γ1 ⊕ γ2)(t) =

{
(1− t)z1 + tz2, 0 ≤ t ≤ 1

(1− (1− t))z2 + (t− 1)z3, 1 ≤ t ≤ 2
=

{
(1− t)z1 + tz2, 0 ≤ t ≤ 1

tz2 + (t− 1)z3, 1 ≤ t ≤ 2.

R

iR

γ1

γ2

γ3

γ1 ⊕ γ2 ⊕ γ3

23.8 Problem. Let γ : [a, b] ⊆ R→ C be a path.

(i) Show that γ and γ− have the same image.

(ii) Show that if φ = γ−, then φ− = γ. That is, show (γ−)− = γ.

(iii) Let µ : [c, d] ⊆ R → C also be a path such that the initial point of µ is the terminal
point of γ. By considering the domains of (γ ⊕ µ)− and µ− ⊕ γ−, explain why we should
not expect (γ ⊕ µ)− = µ− ⊕ γ− in general. However, if a = c = 0 and b = d = 1, show
that the equality (γ ⊕ µ)− = µ− ⊕ γ− is true. (In practice, we could always reparametrize
γ and µ so that both are defined on [0, 1], and any question that we have about (γ ⊕ µ)−

and µ− ⊕ γ− would likely be invariant under this parametrization.)

We will frequently need to compose more than two paths at once, and so we extend the
previous definition accordingly.

23.9 Definition. More generally, if, for k = 1, . . . , n and n ≥ 2 there are paths
γk : [ak, bk] → C with γk(bk) = γk+1(ak+1) for k = 1, . . . , n − 1, then we define their
composition ⊕nk=1γk recursively via

⊕nk=1 γk = γ1 ⊕ · · · ⊕ γn :=


γ1 ⊕ γ2, n = 2

(
⊕n−1
k=1 γk

)
⊕ γn, n ≥ 2.

(23.3)

Sometimes this composition is denoted by γ1 + · · ·+ γn or [γ1, . . . , γn].
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When we consider a “large” composition like ⊕nk=1γk in (23.3) above, we will rarely need
to know what the domain of ⊕nk=1γk actually is; it usually suffices to keep track of the
individual domains of the components.

23.10 Example. Let 0 < r < R. Find four paths γ1, γ2, γ3, γ4 such that the image of
γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4 is the path below

R

iR

−R −r r R

ir

iR

Solution. The line segment from z = r to z = R is parametrized by

γ1(t) := (1− t)r + tR = (R− r)t+ r, 0 ≤ t ≤ 1.

The upper half of the circle of radius R with “counterclockwise” orientation is parametrized
by

γ2(t) := Reit, 0 ≤ t ≤ π.

The line segment from z = −R to z = −r is parametrized by

γ3(t) := (1− t)(−R) + t(−r) = (t− 1)R− rt = (R− r)t−R, 0 ≤ t ≤ 1.

And the upper half of the circle of radius r with “clockwise” orientation is parametrized by

γ4(t) := −rei(π−t), 0 ≤ t ≤ π.

Note that the path γ4 needs to be the reverse of the path t 7→ reit on [0, π]. N

In the preceding example, we could write a piecewise formula for γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4 over
some domain [0, b] for some b > 0. However, we will actually never use such a formula when
we work with compositions of paths later, and such a formula would only obscure the four
individual domains above. Indeed, although a path need not be continuously differentiable,
it can always be expressed as the composition of continuously differentiable.

23.11 Lemma. Suppose that γ : [a, b] ⊆ R→ C is a path. Then there exist a partition a =
t0 < t1 < · · · < tn = b of [a, b] and continuously differentiable paths γk : [tk−1, tk] ⊆ R→ C
such that γ = ⊕nk=1γk.

23.12 Problem. Prove this lemma as follows, referring to Definition 20.4 as needed. Let
a = t0 < t1 < · · · < tn = b be a partition of [a, b] such that γk := γ

∣∣
[tk−1,tk]

is continuously
differentiable. Check that γk(tk) = γk+1(tk) for k = 1, . . . , n − 1, and so the composition
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⊕nk=1γk is defined. Check that the domain of ⊕nk=1γk is [a, b] and that
(
⊕nk=1 γk

)
(t) = γ(t)

for all t. You may assume that n = 3; this will be just complicated enough to illustrate
the definition of ⊕nk=1γk.

23.13 Problem. Find formulas for four paths γk, k = 1, 2, 3, 4, such that the image of
γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4 is the unit square sketched below.

R

iR

1

1 + ii

You do not need to find a “common domain” for the composition but instead can just
give formulas for the four paths as in Example 23.10. Note that the curve as drawn is
oriented roughly “counterclockwise” in the sense that as you traverse the curve in the
direction indicated the “inside” square stays on your left. This is the same phenomenon
that happens when we orient a circle counterclockwise.

23.14 Problem. Let 0 < r < R and 0 < θ < π/2. Parametrize the “keyhole contour” below
by finding formulas for four paths γ1, γ2, γ3, and γ4 such that the image of γ1⊕γ2⊕γ3⊕γ4

is the curve below. The angle of the “opening” is 2θ radians. Again, you do not need to
find a “common domain” for the composition but instead can just give formulas for the
four paths as in Example 23.10.

R

iR

−R −r

ir

iR

θ

−θ

Do you see a “counterclockwise” orientation to this curve?

We conclude with an application of paths that strengthens our prior results about func-
tions with identically zero derivatives. First, we need to augment the geometry of our
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underlying domains.

23.15 Definition. A set D ⊆ C is connected if for any z, w ∈ D, there is a path
γ : [a, b] ⊆ R → D such that γ(a) = z and γ(b) = w. Sometimes such a set is called
path-connected, not just connected.

Informally, any points z, w ∈ D can be “connected” by a path that lies entirely in D.

z
w

23.16 Example.

(i) Any open ball B(z0; r) is connected. Given z, w ∈ B(z0; r), it is intuitively plausible
that we could connect them by the line segment from z to z0 and then from z0 to w, or
just by the line segment from z to w. This turns out to be true.

(ii) The set {z ∈ C | Re(z) < −1 or Re(z) > 1} is not connected. Intuitively, any curve
connecting z with Re(z) < −1 to w with Re(w) > 1 must pass through the strip
{z ∈ C | −1 ≤ Re(z) ≤ 1}. Proving this requires some thought, possibly involving the
intermediate value theorem.

23.17 Problem. Prove both of the claims in the previous example.

23.18 Theorem. Suppose that D ⊆ C is open and connected. If f : D → C is differentiable
with f ′(z) = 0 for all z ∈ D, then f is constant on D: there is c ∈ C such that f(z) = c
for all z ∈ D.

Proof. Fix z, w ∈ D; we will show that f(z) = f(w). Since D is path-connected, there is a
path γ : [a, b] ⊆ R→ D such that γ(a) = z and γ(b) = w.

First suppose that γ is continuously differentiable on all of [a, b]. Set g(t) := f(γ(t)), so
g is also differentiable on [a, b] by the chain rule, and g′(t) = f ′(γ(t))γ′(t) = 0. By the mean
value theorem, Re(g) and Im(g) are constant, so g is constant. Thus f(z) = g(a) = g(b) =
f(w).

Now suppose that γ is piecewise continuously differentiable on [a, b]. For simplicity, take
n = 2 in part (iv) of Definition 20.4 and suppose there is t1 ∈ (a, b) such that γ

∣∣
[a,t1]

and
γ
∣∣
[t1,b]

are continuously differentiable. Define

g1 : [a, t1]→ D : t 7→ f(γ
∣∣
[a,t1]

(t)) and g2 : [t1, b]→ D : f(γ
∣∣
[t1,b]

(t)).

Of course, g1(t) = f(γ(t)) and g2(t) = f(γ2(t)), but the domains of g1 and g2 are different
intervals, so g1 and g2 are different functions. However, the utility of taking different domains
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is that g1 and g2 are now differentiable, with g′1 = 0 and g′2 = 0, so g1 is constant on [a, t1]
and g2 is constant on [t1, b]. Then

f(z) = g1(a) = g1(t1) = f(γ(t1)) = g2(t1) = g2(b) = f(w).

If γ is piecewise continuously differentiable with an arbitrary n from part (iv) of Definition
20.4, we can generalize this argument to include n functions gk := f ◦γ

∣∣
[tk−1,tk]

, and we obtain
gk(tk−1) = gk(tk) = f(γ(tk)) = gk+1(tk) = gk+1(tk+1) = f(γ(tk+1)) for k = 1, . . . , n− 1. �

23.19 Problem. Reread the proof of Theorem 20.2. Recall that we fixed z0 ∈ D and took
r0 > 0 such that B(z0; r0) ⊆ D. By Problem 23.17, the ball B(z0; r0) is open and connected,
and so f is constant on B(z0; r0). Do you see where in the proof of Theorem 20.2 we used
the connectedness of B(z0; r0)? [Hint: consider [x0 + iy0, x1 + iy0]⊕ [x1 + iy0, x1 + iy1].]

Day 24: Monday, March 13

Recommended reading

We discussed antiderivatives and definite integrals. This broadly corresponds to Definition
3.2.2, Proposition 3.2.3, Definition 3.2.5, and Theorem 3.2.7, with a number of deviations
and alterations. See also Definition 3.3.1 and Example 3.3.2 for antiderivatives of functions
of a complex variable.

We have now completed the first two phases of the course. We are adept in the precalculus
of complex numbers—arithmetic, geometry, algebra, and elementary functions—and the
differential calculus—limits, continuity, derivatives, and the surprising relationships among
the real and imaginary parts of a holomorphic function. Now we will integrate. Our initial
goal in this third phase will be the construction of antiderivatives.

24.1 Definition. Let D ⊆ C. A holomorphic function F : D → C is an antiderivative
of f : D → C if F ′(z) = f(z) for all z ∈ D.

24.2 Example.

(i) The function F (z) = z is an antiderivative of the function f(z) = 1 on D = C.

(ii) By the chain rule, the function F (t) = −ieit satisfies F ′(t) = −i2eit = eit, and so F is
an antiderivative of f(t) = e−it.

WhenD = [a, b] ⊆ R is a real interval, it turns out that there is not much new about antid-
ifferentiation onD; one simply antidifferentiates the real and imaginary parts of f : [a, b]→ C.
But whenD ⊆ R is open and therefore genuinely two-dimensional, the antiderivative problem
becomes much more surprising, rather like the question of differentiating. We need two tools
to resolve the antiderivative problem. We have already mastered the first: paths will play a
key role, as we will “integrate over” paths, not just intervals in R. That is, we will study line
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integrals, first for their role as antiderivatives and subsequently for their tremendous value
as instruments that reveal key features of functions.

But to construct these line integrals, we need a second tool: a definite integral for func-
tions defined on a closed bounded interval [a, b] ⊆ R but now taking values in C. We will
build this integral out of the ordinary (Riemann) integral.

What is an integral? We will separate the question of what an integral is from the
question of what an integral does. The former can be quite technical to define precisely,
but the latter is actually quite simple. Here are four fundamental “behaviors” that a “good”
integral should exhibit.

(
∫
1) First, the integral of a function f : [a, b] ⊆ R → R should somehow measure the net

area of the region between the graph of f and the interval [a, b]. Since the most fundamental
area is the area of a rectangle, we should expect∫ b

a

1 dt = b− a.

(
∫
2) If f is nonnegative, the net area of the region between the graph of f and the interval

[a, b] should be the genuine area of the region between the graph of f and the interval [a, b],
and this should be a positive quantity. So, we expect that if 0 ≤ f(t) on [a, b], then

0 ≤
∫ b

a

f(t) dt.

(
∫
3) If we divide the region between the graph of f and the interval [a, b] into multiple

components, measure the net area of those components, and add those net areas together,
we should get the total net area of the region between the graph of f and the interval
[a, b]. There are many such ways to accomplish this division, but perhaps one of the most
straightforward is to split [a, b] up into two or more subintervals and consider the net areas of
the regions between the graph of f and those subintervals. So, we expect that if a ≤ c ≤ b,
then ∫ c

a

f(t) dt+

∫ b

c

f(t) dt =

∫ b

a

f(t) dt.

(
∫
4) Adding two functions f , g : [a, b] ⊆ R→ R should “stack” the graphs of f and g on top

of each other. Then the region between the graph of f and the interval [a, b] gets “stacked”
on top of region between the graph of g and the interval [a, b]. Consequently, the net area of
the region between the graph of f + g and the interval [a, b] should just be the sum of these
two areas: ∫ b

a

f(t) dt+

∫ b

a

g(t) dt =

∫ b

a

[
f(t) + g(t)

]
dt.

Next, multiplying a function f : [a, b] ⊆ R → R by a constant α ∈ R should somehow
“scale” the net area of the region between the graph of f and the interval [a, b] by that factor
α. For example, the area under the graph of 2f over [a, b] should be double the area under
the graph. Consequently, the net area of the region between the graph of αf and the interval
[a, b] should be the product ∫ b

a

αf(t) dt = α

∫ b

a

f(t) dt.
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These four properties are exactly the properties of a “good” integral that we will need—no
more, no less. Below, we will assert that we can always integrate continuous functions in
a manner consistent with the properties above. Before that, we give in to temptation and
drop one aspect of integral notation.

24.3 Remark. Contrary to everything that we are taught in calculus, we will typically not
write a variable of integration unless we actually need one for clarification (say, to write
out the formula for the integrand explicitly, or when changing variables). That is, we write∫ b

a

f, not
∫ b

a

f(t) dt or
∫ b

a

f(τ) dτ.

However, when we do include the variable of integration, we follow the custom that any
variable may be used, thus∫ b

a

f =

∫ b

a

f(t) dt =

∫ b

a

f(τ) dτ =

∫ b

a

f(s) ds = · · · .

Also, we will use the words “integral” and “definite integral” more or less interchange-
ably. (Eventually we will meet a “line integral,” and we will sometimes call that just an
“integral”—we will add the adjectives “definite” or “line” as needed for emphasis.) But we
will never use the words “indefinite integral.”

Our view of the definite integral will be “dynamic”: the integral is characterized by what
it does. And integrals act on both integrands and limits of integration.

24.4 Theorem. Let I ⊆ R be an interval and denote by C(I) the set of all continuous
functions from I to R. There exists a map∫

: {(f, a, b) | f ∈ C(I), a, b ∈ I} → R : (f, a, b) 7→
∫ b

a

f

with the following properties.

(
∫
1) [Constants] If a, b ∈ I, then ∫ b

a

1 = b− a.

(
∫
2) [Monotonicity] If f ∈ C(I) and a, b ∈ I with a ≤ b and 0 ≤ f(t) for all t ∈ [a, b],

then

0 ≤
∫ b

a

f.

(
∫
3) [Additivity of the domain] If f ∈ C(I) and a, b, c ∈ I, then∫ c

a

f +

∫ b

c

f =

∫ b

a

f.
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(
∫
4) [Linearity in the integrand] If f , g ∈ C(I), a, b ∈ I, and α ∈ R, then∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g and
∫ b

a

αf = α

∫ b

a

f.

The number
∫ b
a
f is the definite integral of f from a to b.

Properties (
∫
4) encodes the linearity of the integral as an operator on the integrand with

the limits of integration fixed, while property (
∫
3) is its additivity over subintervals with

the integrand fixed. Property (
∫
2) encodes the idea that a nonnegative function should have

a nonnegative integral, while property (
∫
1) defines the one value of the integral that it most

certainly should have from the point of view of area.
While these properties tell us what an integral does, they do not really tell us what an

integral is. That is, except for constant functions, the properties above do not give us a
formula for computing an integral. This is the challenge of integration; the integral is a limit
of sorts, but it is not nearly as transparent a limit as, say, the derivative. It turns out that
if f is continuous on the interval [a, b], then∫ b

a

f = lim
n→∞

b− a
n

n∑
k=1

f

(
a+

k(b− a)

n

)
. (24.4)

The terms of the sequence on the right are the right-endpoint Riemann sums for f over
[a, b]. Taking this limit as the definition of the integral—and tacitly assuming that the
sequence of Riemann sums converges if f is continuous—we can prove properties (

∫
1), (

∫
2),

and (
∫
4) quite easily. Property (

∫
3) is not so obvious from (24.4), and in fact this property

hinges on expressing
∫ b
a
f as a “limit” of several kinds of Riemann sums, not just the right-

endpoint sum. And then there is still the challenge of ensuring that limits of all sorts of
“well-behaved” Riemann sums for f (including, but not limited to, left and right endpoint
and midpoint sums) all converge to the same number. Moreover, it is plausible that one
might want to integrate functions that are not continuous.

These deeper questions of integration, while tremendously worthwhile, will have no bear-
ing on our further study of complex analysis. We will only need to integrate continuous
functions, and we will only need properties (

∫
1), (

∫
2), (

∫
3), and (

∫
4). So, equipped with

the integral for real-valued functions, we turn to the complex-valued case.

24.5 Definition. Let f : I ⊆ R→ C be continuous and let a, b ∈ I. The integral of f
from a to b is ∫ b

a

f :=

∫ b

a

Re(f) + i

∫ b

a

Im(f). (24.5)

24.6 Remark. The terms (b − a)n−1
∑n

k=1f(a + k(b − a)/n) in the Riemann sum limit
(24.4) are perfectly well-defined for a function f : I ⊆ R → C, if a, b ∈ I. Thus one
could in principle prove Theorem 24.4 not assuming that f is only real-valued. There are,
however, certain advantages to assuming that f is indeed real-valued—namely, the ability
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to manipulate inequalities involving Riemann sums.

The complex-valued integral inherits many properties from the real-valued version.

24.7 Problem. Let I ⊆ R be an interval and f , g : I → C be continuous. Let a, b, c ∈ I
and α ∈ C. Using only Definition 24.5 and Theorem 24.4, prove the following.

(i) Re

(∫ b

a

f

)
=

∫ b

a

Re(f) and Im

(∫ b

a

f

)
=

∫ b

a

Im(f)

(ii)
∫ b

a

f =

∫ b

a

f , where f(t) := f(t)

(iii) [Generalization of (
∫
1)]

∫ b

a

α = α(b− a)

(iv) [Generalization of (
∫
3)]

∫ c

a

f +

∫ b

c

f =

∫ b

a

f

(v) [Generalization of (
∫
4)]

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g and
∫ b

a

αf = α

∫ b

a

f

(vi)
∫ a

a

f = 0

(vii)
∫ b

a

f = −
∫ a

b

f

24.8 Problem. Use induction to generalize additivity as follows. Let I ⊆ R be an interval
and f : I → C be continuous. If t0, . . . , tn ∈ I, then∫ tn

t0

f =
n∑
k=1

∫ tk

tk−1

f.

Note that Problem 24.7 does not discuss the monotonicity of the integral, as inequalities
do not make sense for functions that are complex-and-not-real-valued. If we return to real-
valued functions, then we can extend monotonicity in a useful way.

24.9 Problem. Let I ⊆ R be an interval.

(i) Suppose that f , g : I → R are continuous and a, b ∈ R with a ≤ b. If f(t) ≤ g(t) for
all t ∈ [a, b], show that ∫ b

a

f ≤
∫ b

a

g. (24.6)
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(ii) Suppose that f : I → R is continuous and there arem,M ∈ R such thatm ≤ f(t) ≤M
for all t ∈ [a, b]. Show that

m(b− a) ≤
∫ b

a

f ≤M(b− a). (24.7)

A double application of (24.6) yields one of the most important estimates on integrals
possible.

24.10 Theorem (Real triangle inequality). Let I ⊆ R be an interval, let f : I → R be
continuous, and let a, b ∈ I with a ≤ b. Then∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |. (24.8)

Proof. Use the inequalities −|f(t)| ≤ f(t) ≤ |f(t)| and (24.6) to find∫ b

a

−|f | ≤
∫ b

a

f ≤
∫ b

a

|f |.

By linearity, this is

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |,

and by properties of absolute value, this is equivalent to (24.8). �

24.11 Problem. Show that if we remove the hypothesis a ≤ b, then the estimate (24.8)
becomes ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

|f |
∣∣∣∣ .

Why is the extra absolute value on the right necessary here?

The triangle inequality is also true in the complex-valued setting, but it needs a new
proof, since the proof of Theorem 24.10 used monotonicity.

24.12 Theorem (Complex triangle inequality). Let I ⊆ R be an interval, let f : I → C
be continuous, and let a, b ∈ I with a ≤ b. Then∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

Proof. The proof employs polar coordinates. If
∫ b
a
f = 0, then there is nothing to prove,

as the inequality simply reads 0 ≤
∫ b
a
|f |. Otherwise, if z :=

∫ b
a
f 6= 0, we can write z in

its polar form: z = |z|eiθ. Then |z| = e−iθz. Note that e−iθz ∈ R, since |z| ∈ R. Thus
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e−iθz = Re(e−iθz). Since Re(e−iθz) ∈ R, we have Re(e−iθz) ≤ |Re(e−iθz)|. We conclude

|z| = e−iθz = Re(e−iθz) ≤ |Re(e−iθz)|. (24.9)

Returning to the definition z =
∫ b
a
f , (24.9) reads∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∣∣∣∣Re

(
e−iθ

∫ b

a

f

)∣∣∣∣ . (24.10)

The linearity of the integral gives

e−iθ
∫ b

a

f =

∫ b

a

e−iθf,

and then part (i) of Problem 24.7 gives

Re

(∫ b

a

e−iθf

)
=

∫ b

a

Re(e−iθf). (24.11)

Then the triangle inequality for real-valued integrands gives∣∣∣∣∫ b

a

Re(e−iθf)

∣∣∣∣ ≤ ∫ b

a

|Re(e−iθf)|. (24.12)

Since
|Re(e−iθf(t))| ≤ |e−iθf(t)| = |f(t)|

for any t ∈ [a, b], monotonicity for the real-valued integrand (part (i) of Problem 24.9) gives∫ b

a

|Re(e−iθf)| ≤
∫ b

a

|f |. (24.13)

We put (24.10), (24.11), (24.12), and (24.13) together to read∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∣∣∣∣Re

(
e−iθ

∫ b

a

e−iθf

)∣∣∣∣ =

∣∣∣∣∫ b

a

Re(e−iθf)

∣∣∣∣ ≤ ∫ b

a

|Re(e−iθf)| ≤
∫ b

a

|e−iθf | =
∫ b

a

|f |.

This is the triangle inequality. �

We now have only a handful of results about the definite integral, and yet they are enough
to prove the fundamental theorem of calculus.

24.13 Theorem (FTC1). Let f : I → C be continuous and fix a ∈ I. Define

F : I → C : t 7→
∫ t

a

f

Then F is an antiderivative of f on I.
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Proof. Fix t ∈ I. We need to show that F is differentiable at t with F ′(t) = f(t). That is,
we want

lim
h→0

F (t+ h)− F (t)

h
= f(t),

equivalently,

lim
h→0

F (t+ h)− F (t)− hf(t)

h
= 0.

We first compute

F (t+ h)− F (t) =

∫ t+h

a

f(τ) dτ−
∫ t

a

f(τ) dτ

=

∫ t+h

a

f(τ) dτ +

∫ a

t

f(τ) dτ

=

∫ t+h

t

f(τ) dτ.

Next,

hf(t) = f(t)[(t+ h)− t] = f(t)

∫ t+h

t

1 dτ =

∫ t+h

t

f(t) dτ.

We then have

F (t+ h)− F (t)− hf(t) =

∫ t+h

t

f(τ) dτ−
∫ t+h

t

f(t) dτ =

∫ t+h

t

[
f(τ)− f(t)

]
dτ.

Note that this is one instance in which using the variable of integration τ clarifies the fact
that t is constant here. It therefore suffices to show that

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0,

and we do that in the following lemma. �

24.14 Lemma. Let I ⊆ R be an interval and let f : I → C be continuous. Then

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0

for any t ∈ I.

Proof. Fix t ∈ I. It suffices to show that the left and right limits

lim
h→0±

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0 (24.14)
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hold separately. We do this only for the right limit and leave the left limit as an exercise.
We want to show that given ε > 0, there is δ > 0 such that if 0 < h < δ, then∣∣∣∣∫ t+h

t

1

h

[
f(τ)− f(t)

]
dτ

∣∣∣∣ < ε. (24.15)

The continuity of f at t provides δ > 0 such that if |τ− t| < δ, then |f(τ)− f(t)| < ε. Take
0 < h < δ. Then if t ≤ τ ≤ t + h, we have 0 ≤ τ − t ≤ h < δ, and so |τ − t| < δ. Thus
|f(τ)− f(t)| < ε for all τ ∈ [t, t+ h], and so the triangle inequality gives∣∣∣∣∫ t+h

t

[
f(τ)− f(t)

]
dτ

∣∣∣∣ ≤ ∫ t+h

t

∣∣f(τ)− f(t)
∣∣ dτ ≤ ∫ t+h

t

ε dτ = ε(t+ h− t) = εh.

Dividing by h, we obtain (24.15). �

24.15 Problem. Prove that the left limit (24.14) holds. What specific changes are needed
when h < 0?

Day 25: Wednesday, March 15

With FTC1, we can prove a second version that facilitates the computation of integrals via
antiderivatives.

25.1 Corollary (FTC2). Let I ⊆ R be an interval and let f : I → C be continuous. If F
is any antiderivative of f on I, then∫ b

a

f = F (b)− F (a)

for all a, b ∈ I.

Proof. Let F?(t) =
∫ t
a
f , so F? is also an antiderivative of f . Put h = F? − F , so h′ = 0

on I. If we also write h(t) = h1(t) + ih2(t) for real-valued functions h1 and h2, we have
h′1 = h′2 = 0 on I. Since I is an interval, by the mean value theorem (for real-valued
functions of a real variable), h1 and h2 are constant, so h is constant, say, h(t) = h(a) for all
t. Then F?(t) = F (t) + h(a) for all t, so∫ b

a

f = F?(b) = h(b) + F (b) = h(a) + F (b) = F?(a)− F (a) + F (b) = F (b)− F (a)

since F?(a) = 0. �

25.2 Example. Since F (t) = eit/i is an antiderivative of f(t) = eit, we have∫ 2π

0

eit dt =
eit

i

∣∣∣∣t=2π

t=0

=
e2πi − e0

i
=

1− 1

i
= 0.
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The fundamental theorems of calculus are, of course, the keys to both substitution and
integration by parts, two of the most general techniques for evaluating integrals in terms of
simpler functions.

25.3 Theorem (Substitution). Let I, J ⊆ R be intervals with a, b ∈ J . Let ϕ : J → I be
continuously differentiable and let f : I → C be continuous. Then∫ b

a

(f ◦ ϕ)ϕ′ =

∫ ϕ(b)

ϕ(a)

f.

Proof. Put

F (t) :=

∫ t

ϕ(a)

f,

so F ′(t) = f(t) for all t ∈ I by FTC1. Next, put

G(t) := F (ϕ(t)),

so
G′(t) = F ′(ϕ(t))ϕ′(t) = f(ϕ(t))ϕ′(t).

That is, G is an antiderivative of (f ◦ ϕ)ϕ′, and so∫ b

a

(f ◦ ϕ)ϕ′ = G(b)−G(a)

by FTC2. But

G(b)−G(a) = F (ϕ(b))− F (ϕ(a)) =

∫ ϕ(b)

ϕ(a)

f −
∫ ϕ(a)

ϕ(a)

f =

∫ ϕ(b)

ϕ(a)

f. �

25.4 Example. Let k ∈ Z \ {0} and put ϕ(τ) = kτ. Then∫ 2π

0

eikτ dτ =
1

k

∫ 2π

0

eikτk dτ =
1

k

∫ 2π

0

eiϕ(τ)ϕ′(τ) dτ =
1

k

∫ ϕ(2π)

ϕ(0)

eit dt =
1

k

∫ 2kπ

0

eit dt

=
1

ik
eit
∣∣∣∣t=2π

t=0

=
e2πi − e0

ik
=

1− 1

ik
= 0.

A recurring theme of our subsequent applications of integrals will be that we are trying
to estimate or control some kind of difference (this is roughly 90% of analysis), and it turns
out to be possible to rewrite that difference in a tractable way by introducing an integral.
It may be possible to manipulate further terms under consideration by rewriting them as
integrals, too. The fundamental identity that we will use in the future is (25.16) below.
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25.5 Example. FTC2 allows us to rewrite a functional difference as an integral. When
we incorporate substitution, we can get a very simple formula for that difference. Suppose
that I ⊆ R is an interval, f : I → C is continuously differentiable, and t, t+ h ∈ I. Then

f(t+ h)− f(t) =

∫ t+h

t

f ′.

With
ϕ(τ) = (1− τ)t+ τ(t+ h) = t+ hτ,

we have ϕ′(τ) = h, ϕ(0) = t, and ϕ(1) = t+ h, so substitution implies∫ t+h

t

f ′ =

∫ 1

0

f ′(t+ hτ)h dτ.

Thus if f is differentiable and f ′ continuous on an interval containing t and t+ h, then

f(t+ h)− f(t) = h

∫ 1

0

f ′(t+ hτ) dτ. (25.16)

This equality allows us to control the distance between f(t+h) and f(t) using the explicit
factor of h on the right above and the triangle inequality on the integral with the constant
limits of 0 and 1. In particular, knowing the size of f ′ controls the difference. We could
obtain a similar result from the mean value theorem (at least, if f is real-valued), but the
explicit formula (25.16) eliminates a possibly vague “existential” result from the MVT.

This identity can be generalized to partial derivatives, e.g., if f = f(t, s) is differentiable
with respect to t and ft is continuous, then

f(t+ h, s)− f(t, s) = h

∫ 1

0

ft(t+ τh, s) dτ.

25.6 Problem. Prove the following variant of Example 25.5: if I ⊆ R is an interval,
f : I → C is continuously differentiable, and a, b ∈ I, then

f(b)− f(a) = (b− a)

∫ 1

0

f ′(a+ t(b− a)) dt.

Integration by parts works nicely for complex-valued functions of a real variable, because
the product rule, the FTC, and antiderivatives work as we think they should in this setting.

25.7 Theorem (Integration by parts). Suppose that f , g : [a, b] → C are differentiable
with f ′, g′ continuous. Then∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g. (25.17)



MATH 4391 (Section 51, Spring 2023) Daily Log 50

Proof. Put H(t) = f(t)g(t), so the product rule (for complex-valued functions of a real
variable) gives

H ′(t) = f ′(t)g(t) + f(t)g′(t).

Then FTC2 gives ∫ b

a

H ′ = H(b)−H(a) = f(b)g(b)− f(a)g(a). (25.18)

But by linearity ∫ b

a

H ′ =

∫ b

a

f ′g −
∫ b

a

fg′, (25.19)

and so (25.17) follows by equating (25.18) and (25.19). �

Day 26: Friday, March 17

Recommended reading

We discussed line integrals (which the book calls path or contour integrals). See Definition
3.2.9. We did a version of Example 3.2.10. Examples 3.2.11, 3.2.13, and 3.2.14 provide
valuable detail; you should read and work through them carefully. The book treats our
version of the FTC in the proof of Theorem 3.3.4 (see p. 169 and the discussion on how
part (a) implies (b) there). Proposition 3.2.12 contains useful properties of the line integral
and proofs for some of the problems below.

We extend the definite integral to functions of a complex variable as a line integral.
While there is some reasonable motivation for the following definition as a “limit” of certain
Riemann sums, we do not consider that (although see Problem 26.6 to view a definite integral
as a specific line integral). Instead, we take the position that the line integral is simply the
best instrument for extracting critical information about functions, although its full utility
will not be apparent for some time.

26.1 Definition. Let D ⊆ C and let f : D → C be continuous. Let γ : [a, b] ⊆ R → D be
continuously differentiable. Then the line integral of f over γ is∫

γ

f =

∫
γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

(f ◦ γ)γ′. (26.20)

26.2 Remark. The integrand in (26.20) is the product (f ◦ γ)γ′. This is a continuous
function since γ is continuously differentiable. Thus Definition 24.5 applies.

As with definite integrals, we will often omit the variable of integration in line integrals
and include it for clarity when necessary. When we do include it, we continue the custom
that we can change the symbol at will:∫

γ

f =

∫
γ

f(z) dz =

∫
γ

f(w) dw =

∫
γ

f(ξ) dξ = · · · .
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We will frequently integrate over lines and circles, and so the following two examples
contain extremely important calculations.

26.3 Example. Parametrize the line segment [0, i] by

γ : [0, 1] ⊆ R→ C : t 7→ (1− t)0 + ti = it.

Then γ′(t) = i for all t. The function f(z) := z is continuous on C, and so we may compute∫
γ

z dz =

∫ 1

0

γ(t)γ′(t) dt =

∫ 1

0

it(i) dt =

∫ 1

0

−it(i) dt =

∫ 1

0

t dt =
1

2
.

26.4 Example. Let z0 ∈ C, r > 0, and n ∈ Z and parametrize the circle of radius r
centered at z0 by γ(t) := z0 + reit for t ∈ [0, 2π]. Then γ′(t) = ireit, and so∫
γ

(z−z0)n dz =

∫ 2π

0

(
(z0+reit)−z0

)n
(ireit) dt = ir

∫ 2π

0

(reit)neit dt = irn+1

∫ 2π

0

ei(n+1)t dt.

If n = −1, then ∫
γ

dz

z − z0

= i

∫ 2π

0

1 dt = 2πi.

If n 6= −1, then since F (t) := ei(n+1)t/(i(n + 1)) is an antiderivative of f(t) := ei(n+1)t, we
have ∫

γ

(z − z0)n dz = irn+1 e
i(n+1)t

i(n+ 1)

∣∣∣∣t=2π

t=0

= irn+1

(
1− 1

i(n+ 1)

)
= 0.

Here it is essential that n ∈ Z.

26.5 Remark. Since we will integrate over line segments and circles so often, we will use
a special, suggestive notation for their line integrals that will relieve us from writing out
their parameterizations each time. Assume below that f is continuous at least on the given
line segment and circle.

(i) For z1, z2 ∈ C, define∫
[z1,z2]

f := (z2 − z1)

∫ 1

0

f((1− t)z1 + tz2) dt.

This line integral is oriented “from z1 to z2.”

(ii) For z0 ∈ C and r > 0, define∫
|z−z0|=r

f := ir

∫ 2π

0

f(z0 + reit)eit dt.

This line integral is oriented with the circle traversed “counterclockwise.”
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26.6 Problem. Let I ⊆ R be an interval and let f : I → R be continuous. Show that for
any a, b ∈ I, we have ∫

[a,b]

f =

∫ b

a

f,

where the integral on the left is the line integral over the path [a, b], and the integral on
the right is the ordinary Riemann integral.

Now we extend our definition of the line integral to paths that are only piecewise contin-
uously differentiable, not just continuously differentiable.

26.7 Definition. Let D ⊆ C and let f : D → C be continuous. Let γ : [a, b] ⊆ R→ D be a
path in D and write γ = ⊕nk=1γk, where γk : [ak, bk] ⊆ R→ D is continuously differentiable.
Then the line integral of f over γ is∫

γ

f =

∫
γ

f(z) dz :=
n∑
k=1

∫
γk

f =
n∑
k=1

∫ bk

ak

f(γk(t))γ
′
k(t) dt.

Since the preceding definition depends on the representation chosen for γ as a composition
of particular paths, we need to be sure that different choices of representations actually do
not give different line integrals.

26.8 Problem. Check that the line integral from Definition 26.7 is well-defined in the
following sense. Let D ⊆ C and let f : D → C be continuous. Suppose that γ : [a, b] ⊆
R→ D be a path in D with

γ = ⊕nk=1γk and γ = ⊕mk=1µk,

where γk : [ak, bk] ⊆ R → D and µk : [ck, dk] ⊆ R → D are all continuously differentiable.
Show that

n∑
k=1

∫
γk

f =
m∑
k=1

∫
µk

f.

The line integral enjoys mostly obvious properties that generalize those of the definite
integral.

26.9 Problem. Let D ⊆ C and let f : D → C be continuous. The following results hold for
all paths, but in your work you may assume that the paths are continuously differentiable,
not merely piecewise continuously differentiable. In the context of Problem 26.6, how do
parts (i), (ii), and (iii) below generalize results from Problem 24.7?

(i) Let γ1 and γ2 be paths in D and suppose that the terminal point of γ1 is the initial
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point of γ2. Show that ∫
γ1⊕γ2

f =

∫
γ1

f ⊕
∫
γ2

f.

(ii) Let γ be a path in D. Show that∫
γ−
f = −

∫
γ

f.

(iii) Let γ be a path in D, let g : D → C also be continuous, and let α ∈ C. Show that∫
γ

(f + g) =

∫
γ

f +

∫
γ

g and
∫
γ

αf = α

∫
γ

f.

(iv) Show that if γ1 and γ2 are equivalent paths in D, i.e., γ1 is a reparametrization of γ2,
then ∫

γ1

f =

∫
γ2

f.

26.10 Problem. Let D ⊆ C and let f : D → C be continuous.

(i) Let γ be a path in D. What is the value of∫
γ⊕γ−

f?

Does this remind you of a result from Problem 24.7?

(ii) Fix z0 ∈ D and let γ be the “constant” path γ : [a, b] ⊆ R → D : t 7→ z0. What is the
value of ∫

γ

f?

Does this remind you of a result from Problem 24.7?

(iii) Explain why we should expect, in general, that∫
γ

f 6=
∫
γ

f,

and give a specific example of f and γ for which the equality does not hold.

The fundamental theorem of calculus nicely extends to line integrals and thereby gener-
alizes the FTC for definite integrals.

26.11 Theorem (FTC for line integrals). Let D ⊆ C and f : D → C be continuous.
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Suppose that F : D → C is an antiderivative of f . Then if γ : [a, b] ⊆ R→ D is a path,∫
γ

f = F (γ(b))− F (γ(a)).

Proof. We only give the proof in the special case that γ is continuously differentiable. Then∫
γ

f =

∫ b

a

(f ◦ γ)γ′ =

∫ b

a

(F ◦ γ)′ = F (γ(b))− F (γ(a)).

If γ is only piecewise continuously differentiable, express γ as the composition of continuously
differentiable paths, apply the result just proved to each of those paths, add, and simplify
using telescoping. �

26.12 Problem.

(i) Let D ⊆ C and f : D → C be continuous. Show that if f has an antiderivative on D
and γ is a closed path in D, then ∫

γ

f = 0.

(ii) Compute ∫
|z|=1

z dz.

Does f(z) = z have an antiderivative on D = C?

(iii) Compute ∫
|z|=1

dz

z
.

Does f(z) = 1/z have an antiderivative on D = C \ {0}?

Day 27: Monday, March 20

Recommended reading

We discussed arc length for paths and the ML-inequality for line integrals, see pp. 161–164.
Then we discussed challenges in extending the FTC for functions on subintervals of R to
functions on subsets of C. We concluded with the need for independence of path, which
the book discusses in Theorem 3.3.4.

In calculus we learned that if f : [a, b] → R is continuously differentiable, then, by a
limiting argument with Riemann sums, the integral∫ b

a

|f ′(t)| dt
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captures the natural notion of the “length” of the graph of f . We import this concept to
paths.

27.1 Definition. The arc length of a continuously differentiable path γ : [a, b] ⊆ R→ C
is

`(γ) :=

∫ b

a

|γ′(t)| dt.

If γ = ⊕nk=1γk is piecewise continuously differentiable with each γk continuously differen-
tiable, then the arc length of γ is

`(γ) :=
n∑
k=1

`(γk).

27.2 Problem.

(i) Let k ∈ Z and define γk : [0, 2π] ⊆ R → C : t 7→ eikt. What is `(γk)? Is this what you
expected?

(ii) What is the arc length of a line segment? Is it what you expected?

27.3 Problem. Check that arc length is well-defined in the sense that if γ is piecewise
continuously differentiable with both γ = ⊕nk=1γk and γ = ⊕mk=1µk, then

n∑
k=1

`(γk) =
m∑
k=1

`(µk).

We have not yet stated a triangle inequality for line integrals; in fact, the natural (but,
alas, naive) estimate ∣∣∣∣∫

γ

f

∣∣∣∣ ≤ ∫
γ

|f |

does not even make sense.

27.4 Problem. Why not? Explain why we should not expect the quantity
∫
γ
|f | to be

real-valued, and therefore it has no place in an inequality.

Instead, the concept of arc length permits the correct adaptation of the triangle inequality
for line integrals. The following estimate is sometimes called the “ML-inequality” or “ML-
estimate” because the right side is the product of amaximum and an arc length. In particular,
it is an extension of part (ii) of Problem 24.9.

27.5 Theorem (ML-inequality). Let D ⊆ C and suppose that f : D → C is continuous.
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Let γ : [a, b] ⊆ R→ C be a path in D. Then∣∣∣∣∫
γ

f

∣∣∣∣ ≤ (max
a≤t≤b

|f(γ(t))|
)
`(γ).

Proof. The definition of the line integral and the triangle inequality for definite integrals
yield the following estimate:∣∣∣∣∫

γ

f

∣∣∣∣ =

∣∣∣∣∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣ ≤ ∫ b

a

|f(γ(t))γ′(t)| dt =

∫ b

a

|f(γ(t))||γ′(t)| dt.

The function
g : [a, b] ⊆ R→ R : t 7→ |f(γ(t))|

is continuous (because f , γ, and the modulus are all continuous), and so g has a maximum
on the closed, bounded interval [a, b] by the extreme value theorem. (Here it is important
that g is real-valued, as otherwise the notion of maximum does not make sense.) Then for
all t ∈ [a, b], we have

|f(γ(t))||γ′(t)| ≤M |γ′(t)|,
and so monotonicity for the definite integral of a real-valued function provides∫ b

a

|f(γ(t))γ′(t)| dt ≤M

∫ b

a

|γ′(t)| dt = M`(γ).

If γ is only piecewise continuously differentiable, then we express γ = ⊕nk=1γk with γk
continuously differentiable and use the argument above, the triangle inequality, and the
definition of arc length. �

27.6 Problem. How does the ML-inequality generalize the estimate (24.7) for definite
integrals?

27.7 Example. Let D = {z ∈ C | | Im(z)| ≤ 1}, i.e., D is an infinite horizontal strip of
width 2 containing the real line. Suppose that f : D → C is holomorphic and satisfies
|f(z)| ≤ |Re(z)|−1 when z ∈ D with |z| ≥ 1. We can use the ML-inequality to show

lim
R→∞

∣∣∣∣∫
[R,R+i]

f

∣∣∣∣ = 0.

The length of the line segment [R,R + i] is |(R + i)−R| = |i| = 1, so we estimate∣∣∣∣∫
[R,R+i]

f

∣∣∣∣ ≤ max
z∈[R,R+i]

|f(z)| ≤ max
z∈[R,R+i]

1

|Re(z)|
.

Parametrize this line segment, as usual, by t 7→ (1−t)R+t(R+i) = R+it, so if z ∈ [R,R+i],
then Re(z) = R. Thus ∣∣∣∣∫

[R,R+i]

f

∣∣∣∣ ≤ 1

R
→ 0 as R→∞.
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At last we tackle the problem of antiderivatives on a general subset of C. FTC1 tells us
that if I ⊆ R is an interval and f : I → C is continuous, then f has an antiderivative, and
specifically FTC1 constructs an antiderivative for f . For any fixed a ∈ I, an antiderivative
is F (t) :=

∫ t
a
f ; from the point of view of the line integral (recall Problem 26.6), we have

integrated f over the line segment [a, t]. This approach to antiderivatives will not quite
succeed if we broaden the domain beyond real intervals.

First, continuity alone does not guarantee antiderivatives; the functions in parts (ii)
and (iii) of Problem 26.12 are continuous on their domains but do not have antiderivatives.
Rather, part (i) gives a necessary condition for the existence of an antiderivative: the integral
around a closed path must be zero.

Second, even if we knew that a function under consideration integrated to zero around
closed paths, how might we try to construct its antiderivative? Could we replicate the
technique of FTC1? We could fix some z0 ∈ D and try to “base” our antiderivative there.
We might then try to define an antiderivative as

F (z) :=

∫
[z0,z]

f,

where [z0, z] is the line segment from z0 to z.
This attempted definition has two underlying assumptions. First, this presumes that f

is continuous on D, as we have only defined line integrals for continuous functions, although
we know from Problem 26.12 that continuity alone will ultimately not be enough to get an
antiderivative. Second, this presumes that [z0, z] ⊆ D for any z ∈ D, as f needs to be defined
over [z0, z] for

∫
[z0,z]

f to be defined. However, depending on the geometry of D, we have no
guarantee that [z0, z] ⊆ D for all z ∈ D.

z0

z

The next option would be not to restrict ourselves to line segments. Suppose we take
an arbitrary path γz in D whose initial point is z0 and whose terminal point is z. Then we
could define

F (z) :=

∫
γz

f (27.21)

and perhaps that would be an antiderivative of f .
There are, again, problems with this approach. First, we have no guarantee that there
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is a point z0 ∈ D such that for any z ∈ D, there is also a path in D connecting z0 and z.

???
z w

This is not so hard to remediate; just take D to be path connected. For technical reasons
that are, perhaps, less obvious than the value of path connectedness, we will also want our
functions to be defined on open sets, and so we pause for a definition.

27.8 Definition. A set D ⊆ C that is both open and connected will be called, hereafter, a
domain. Some books use the term region instead of domain.

Neither term in the preceding definition is ideal: every function has a domain, but not
every function has a domain that is a domain! Every subset of C could reasonably be called
a region, but not every region is a region!

Now, even if D is a domain, how do we know that the function F in (27.21) is well-
defined? That is, perhaps there are paths γz and φz in D whose initial points are both z0

and whose terminal points are both z, but for which∫
γz

f 6=
∫
φz

f.

In that case, would the antiderivative depend on which path we pick? How would we
know which one to choose? Or could the integral of f over a path connecting z0 and z be
“independent of path” in the sense that the integral is the same no matter what the path is
(provided those endpoints z0 and z remain the same)?

This turns out to be a tremendously significant issue, so we first formalize it in a definition
and then state and prove a theorem.

27.9 Definition. Let D ⊆ C. A continuous function f : D → C is path independent
on D or independent of path on D if whenever γ1 and γ2 are paths in D with the
same initial and terminal points, then ∫

γ1

f =

∫
γ2

f.

It is important to specify the set on which a function is path independent. We will see
examples of functions f : D → C that are path independent on some smaller D0 ⊆ D but
not on all of D.
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Day 28: Wednesday, March 22

Recommended reading

We studied independence of path. This is covered in Section 3.3, which you should read
in its entirety. We proved Theorem 3.3.4 in two steps and cited but did not prove Lemma
3.3.3. Examples 3.3.5 through 3.3.9 are diverse, useful, and interesting, and you may find
them helpful for future work. Last, we introduced the new geometric tool of star-shaped
sets, see Definition 3.5.3 and Figure 3.39 on pp. 184–185.

28.1 Theorem (Path independence). Let D ⊆ C be a domain and suppose that f : D →
C is continuous and path independent. Then f has an antiderivative on D.

Proof. Fix z? ∈ D. For z ∈ D, define

F (z) :=

∫
γz

f,

where γz is a path in D whose initial point is z? and whose terminal point is z. Such a path
exists because D is a domain. The function F above is well-defined because f is independent
of path: if µz is another path in D whose initial point is z? and whose terminal point is z,
then ∫

γz

f =

∫
µz

f.

We will show that F is differentiable on D with F ′(z) = f(z) for all z ∈ D. The proof is
very similar to that of FTC1 (Theorem 24.13). Fix z ∈ D. We need to show that

lim
h→0

F (z + h)− F (z)

h
= f(z),

equivalently,

lim
h→0

F (z + h)− F (z)− hf(z)

h
= 0. (28.22)

Let h ∈ C \ {0} with |h| small enough that [z, z + h] ⊆ D. This is possible since D is
open, and so there is r > 0 such that B(z; r) ⊆ D. Let γz be any path in D with initial
point z0 and terminal point z. Then γz ⊕ [z, z + h] is a path in D with initial point z0 and
terminal point z + h, so

F (z + h) =

∫
γz⊕[z,z+h]

f =

∫
γz

f +

∫
[z,z+h]

f.
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Here is a sketch of this situation.

z?

z

γz

z + h

We therefore may calculate

F (z + h)− F (z) =

(∫
γz

f +

∫
[z,z+h]

f

)
−
∫
γz

f =

∫
[z,z+h]

f. (28.23)

Parametrize the line segment [z, z + h] by t 7→ (1 − t)z + t(z + h) = z + th, 0 ≤ t ≤ 1, as
usual, so γ′(t) = h and∫

[z,z+h]

f =

∫ 1

0

f(z + th)h dt = h

∫ 1

0

f(z + th) dt.

We combine this with (28.23) to find

F (z + h)− F (z)− hf(z) = h

∫ 1

0

f(z + th) dt− hf(z) = h

∫ 1

0

f(z + th) dt− h
∫ 1

0

f(z) dt

= h

∫ 1

0

[
f(z + th)− f(z)

]
dt. (28.24)

Then
F (z + h)− F (z)− hf(z)

h
=

∫ 1

0

[
f(z + th)− f(z)

]
dt. (28.25)

To prove the desired limit (28.22), it therefore suffices to show

lim
h→0

∫ 1

0

[
f(z + th)− f(z)

]
dt = 0.

This is true by the continuity of f at z, as we show in the following lemma. �

28.2 Lemma. Let D ⊆ C be open and let f : D → C be continuous. Then

lim
h→0

∫ 1

0

[
f(z + th)− f(z)

]
dt = 0

for each z ∈ D.
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Proof. This proof, too, is very similar to that of FTC1 (Theorem 24.13). Fix z ∈ D. We
need to show that given ε > 0, there is δ > 0 such that if h ∈ C \ {0} with |h| < δ, then∣∣∣∣∫ 1

0

[
f(z + th)− f(z)

]
dt

∣∣∣∣ < ε. (28.26)

Since f is continuous at z, there is δ > 0 such that if w ∈ D with |w − z| < δ, then
|f(w)− f(z)| < ε. Now suppose 0 < |h| < δ. If 0 ≤ t ≤ 1, then

|(z + th)− z| = |th| = |t||h| ≤ |h| < δ,

and therefore
max
0≤t≤1

|f(z + th)− f(z)| < ε.

Then the triangle inequality shows∣∣∣∣∫ 1

0

[
f(z + th)− f(z)

]
dt

∣∣∣∣ ≤ ∫ 1

0

∣∣f(z + th)− f(z)
∣∣ dt < ∫ 1

0

ε dt = ε. �

28.3 Problem. Compare the proofs for definite integrals of Theorem 24.13 (FTC1) and
Lemma 24.14 to the proofs for line integrals of Theorem 28.1 and Lemma 28.2. Identify
explicitly where the proofs are identical and how, if at all, they are different.

We have now obtained a sufficient condition for a continuous function (whose domain is
a. . .domain. . .) to have an antiderivative: the function should be path independent on that
domain. We might ask if we could weaken or change this condition and still guarantee an
antiderivative’s existence.

We cannot.
In fact, earlier, in Problem 26.12 we saw a necessary condition for an antiderivative’s

existence: if a function has an antiderivative, then that function integrates to zero over
closed paths. This condition turns out to be sufficient in that it implies path independence
and thus the existence of an antiderivative. We collect these seemingly disparate results into
one theorem.

28.4 Theorem. Let D ⊆ C be a domain and let f : D → C be continuous. The following
are equivalent:

(i) f has an antiderivative on D.

(ii) If γ is a closed path in D, then ∫
γ

f = 0.

(iii) f is independent of path in D.

Proof. (i) =⇒ (ii) This is part (i) of Problem 26.12.
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(ii) =⇒ (iii) Suppose that γ1 and γ2 are paths in D with the same initial point z0 and the
same terminal point z1, as in the sketch below.

z0

z1

γ1

γ2

z0

z1

γ1

γ−2

Then the path γ1 ⊕ γ−2 is closed, so part (ii) implies

0 =

∫
γ1⊕γ−2

f =

∫
γ1

f −
∫
γ2

f

and so ∫
γ1

f =

∫
γ2

f.

(iii) =⇒ (i) This is Theorem 28.1. �

We now have new tools available in our quest for antiderivatives: we could check indepen-
dence of path, or we could check that integrals over closed paths vanish. For a given function,
both conditions are arguably somewhat difficult to check, as they require an infinite number
of conditions to be met. The integral over every closed path must vanish—and any domain
contains infinitely many closed paths (just consider all the circular ones). Or the integrals
over any pair of paths with the same initial and terminal points must be the same—and we
can probably find infinitely many paths connecting any two points in a domain.

A repeated theme in our course has been the starring roles of algebra (i2 = −1), analysis
(limits), and geometry (C = R2). We will find a surprising resurgence of these roles in the
antiderivative problem. For a function f : D → C to be guaranteed to have an antiderivative,
it turns out that both the differentiability of f and a sufficiently nice geometric structure of
D must be ensured.

Recall again Problem 26.12, which presented two continuous functions that did not inte-
grate to 0 over certain closed paths in their domains. Consequently, those functions do not
have antiderivatives on those domains. Here are some details.

• The function
f : C \ {0} → C : z 7→ 1

z

is differentiable on C \ {0} but has no antiderivative there. The geometry of C \ {0} turns
out to be problematic—even though C \ {0} is a domain, i.e., open and connected.

• The function
g : C→ C : z 7→ z
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is continuous but nowhere holomorphic on C and has no antiderivative on C. The set C is
also a domain, like C \ {0}, and turns out to have some nicer structural properties (C is
star-shaped—see Definition 28.5; C \ {0} is not.)

These examples reinforce the comment above that f must be differentiable (an analytic
property) and the domain of f must be sufficiently nice (a geometric property). This con-
tinues our theme of successively demanding more refined geometric properties of the sets on
which our functions are defined. First we worked on any D ⊆ C, which permitted D ⊆ R. To
achieve the Cauchy–Riemann equations, we specialized to open D, which excluded subsets
of R. To prove that differentiable functions f on D with f ′ = 0 were genuinely constant,
not locally constant, we introduced the domain (i.e., the open and connected set—here “do-
main” is not just the set on which a function is defined!), and that served us quite well with
independence of path.

Now we want a special kind of domain. In Theorem 28.1, we worked on a domain D, fixed
a point z? ∈ D, and integrated over paths connecting z? to other z ∈ D. We will consider
those domains D for which the path connecting z? to z is always the line segment [z?, z].

28.5 Definition. A set D ⊆ C is star-shaped if there is a point z? ∈ D such that
[z?, z] ⊆ D for all z ∈ D. The point z? is called a star-center for D. A star-shaped
domain or a star domain is a domain that is also star-shaped.

28.6 Example.

(i) We should (unsurprisingly!) expect that the set below is star-shaped, and its star-center
should be the point indicated by the symbol ?.

?

(ii) Let 0 ≤ r < R ≤ ∞. Any annulus of the form A := {z ∈ C | r < |z| < R} is not
star-shaped: if z ∈ A, then −z ∈ A. However, 0 ∈ [z,−z] and 0 6∈ A, so [z,−z] 6⊆ A. That
is, no matter what point z we try to pick for the star-center, we cannot connect z to −z
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by a line segment that is wholly contained in A.

z

−z

(iii) For any z0 ∈ C and r > 0, the open ball B(z0; r) is star-shaped, and any point in
B(z0; r) is a star-center. Below we see that the line segments from both the center of the
ball z0 and an arbitrary point z in the ball can reach any other point w in the ball.

z0

z
w

28.7 Problem. Fill in the following technical details from Example 28.6.

(i) For any z ∈ C, show that 0 ∈ [z,−z].

(ii) Fix z0 ∈ C and r > 0. Show that if z, w ∈ B(z0; r), then [z, w] ⊆ B(z0; r). [Hint: show
that z0 − ((1− t)z + tw) = (1− t)(z0 − z) + t(z0 − w).]

28.8 Problem. Let z =∈ C \ {0}. Show that 0 ∈ [z,−z]. Why does this tell you that
no point in C \ {0} can be a star center for C \ {0}, and therefore that C \ {0} is not
star-shaped?

28.9 Problem.

(i) Prove that any star-shaped set is connected.

(ii) A set D ⊆ C is convex if [z, w] ⊆ C for any z, w ∈ C. Prove that every convex set
is connected and every star-shaped set is convex.

(iii) Is every connected set star-shaped? Is every convex set star-shaped?
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Day 29: Friday, March 24

Recommended reading

We discussed differentiating under the (definite) integral and proved a “weak” version of
Cauchy’s integral theorem. If you’re interested, the book presents a version of differen-
tiating under the integral for line integrals in Theorem 3.8.5, although we will not use
that. The book also presents a version of Cauchy’s integral theorem proved using Green’s
theorem from vector calculus; see Section 3.4. This requires a version of the Jordan curve
theorem (p. 177), which I wholeheartedly disdain. You are not responsible for the material
in Section 3.4, but you can read Examples 3.4.7 and 3.4.8 with our version of the Cauchy
integral theorem from class. Also, read Remark 3.4.6 and think about why C \ {0} is not
a star domain.

We can now show that with the additional geometric structure of the star domain, we
can give a simple condition under which a function has an antiderivative. Namely, we show
that if f is holomorphic on the star domain D and f ′ is continuous on D, then

∫
γ
f = 0 for

all closed paths γ in D. By Theorem 28.4, this implies that f has an antiderivative on D.
We will employ an important auxiliary technique called “differentiating under the inte-

gral.” Suppose that I ⊆ R is an interval and f : I × [a, b]→ R is a function, where

I × [a, b] ={t+ is ∈ C | t ∈ I, a ≤ s ≤ b} .

Denote by f(t, ·) the map f(t, ·) : [a, b]→ C : s 7→ f(t, s). If for each t ∈ I, the map f(t, ·) is
integrable on [a, b], then we can define a new function via

φ(t) :=

∫ b

a

f(t, s) ds.

It is natural to ask if φ is differentiable, and since the integral has many properties in common
with sums, and since finite sums and integrals can readily be interchanged, we might expect
that

φ′(t) =
d

dt

∫ b

a

f(t, s) ds =

∫ b

a

∂

∂t
[f(t, s)] ds,

at least if f is differentiable with respect to t and if the partial derivative ft(t, ·) is integrable.
Happily, this turns out to be the case, although the proof requires some nuance to make

rigorous this interchange of derivative and integral. In particular, we need the tool of uniform
continuity, as developed in real analysis or, more generally, metric space topology.

29.1 Lemma (Uniform continuity). Suppose that f : D ⊆ C → C is continuous, where
D is a set of the form

D ={x+ iy | x0 ≤ x ≤ x1, y0 ≤ y ≤ y1} or D = B(x0 + iy0; r0). (29.27)

Then for all ε > 0, there exists δ > 0 such that if w, z ∈ D with |w − z| < δ, then

|f(w)− f(z)| < ε.
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We will not prove this lemma, but we contrast its “uniformity” with “ordinary continuity,”
which would say that for all ε > 0 and z ∈ D, there is δ > 0 such that if |w − z| < δ, then
|f(w)− f(z)| < ε. In “ordinary” continuity, the threshold δ can depend on both ε and z; in
“uniform” continuity, the same δ works for the whole set D. The key is that the two varieties
of D in (29.27) are closed and bounded sets (and so Lemma 29.1 turns out to hold for much
more general D than these varieties, though we will not need them).

29.2 Theorem (Leibniz’s rule for differentiating under the integral). Suppose that
I ⊆ R is an interval and a, b ∈ R with a ≤ b. Let f : I × [a, b] → C : (t, s) 7→ f(t, s) be
a continuous function such that ft exists and is continuous on I × [a, b]. Then the map
φ(t) :=

∫ b
a
f(t, s) ds is defined and differentiable on I and

φ′(t) =

∫ b

a

ft(t, s) ds.

Proof. Fix t ∈ I. We want to show that

lim
h→0

φ(t+ h)− φ(t)

h
=

∫ b

a

ft(t, s) ds,

equivalently,

lim
h→0

1

h

(
φ(t+ h)− φ(t)− h

∫ b

a

ft(t, s) ds

)
= 0.

That is, we want to show that for all ε > 0, there is δ > 0 such that if |h| < δ, then∣∣∣∣1h
(
φ(t+ h)− φ(t)− h

∫ b

a

ft(t, s) ds

)∣∣∣∣ < ε. (29.28)

We compute

φ(t+ h)− φ(t)− h
∫ b

a

ft(t, s) ds =

∫ b

a

f(t+ h, s) ds−
∫ b

a

f(t, s) ds− h
∫ b

a

ft(t, s) ds

=

∫ b

a

[
f(t+ h, s)− f(t, s)− hft(t, s)

]
ds. (29.29)

It therefore suffices to show

lim
h→0

∫ b

a

f(t+ h, s)− f(t, s)− hft(t, s)
h

ds = 0. (29.30)

By definition of the partial derivative, we know that

lim
h→0

f(t+ h, s)− f(t, s)− hft(t, s)
h

= 0

for any fixed t and s. Our challenge is now to make this limit hold “uniformly” over all
s ∈ [0, 1] so that we can “pass the limit through the integral” in (29.30).
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Example 25.5 allows us to rewrite

f(t+ h, s)− f(t, s) = h

∫ 1

0

ft(t+ hτ, s) dτ,

and so∫ b

a

[
f(t+ h, s)− f(t, s)− hft(t, s)

]
ds =

∫ b

a

[
h

∫ 1

0

ft(t+ hτ, s) dτ− hft(t, s)
]
ds. (29.31)

Now rewrite

ft(t, s) = ft(t, s)

∫ 1

0

1 dτ =

∫ 1

0

ft(t, s) dτ,

so that∫ b

a

[
h

∫ 1

0

ft(t+ hτ, s) dτ− hft(t, s)
]
ds = h

∫ b

a

∫ 1

0

[
ft(t+hτ, s)− ft(t, s)

]
dτ ds. (29.32)

We combine (29.29), (29.31), and (29.32) to conclude that

1

h

(
φ(t+ h)− φ(t)− h

∫ b

a

ft(t, s) ds

)
=

∫ b

a

∫ 1

0

[
ft(t+ hτ, s)− ft(t, s)

]
dτ ds,

and so we estimate with two applications of the triangle inequality that∣∣∣∣1h
(
φ(t+ h)− φ(t)− h

∫ b

a

ft(t, s) ds

)∣∣∣∣ ≤ (b− a) max
a≤s≤b

∣∣∣∣∫ 1

0

[
ft(t+ hτ, s)− ft(t, s)

]
dτ

∣∣∣∣
≤ (b− a) max

a≤s≤b

(
max
0≤τ≤1

∣∣ft(t+ hτ, s)− ft(t, s)
∣∣) .

Now we will use uniform continuity. Since I is an interval and t ∈ I, there are t0, t1 ∈ I
such that t0 < t < t1 and [t0, t1] ⊆ I. Then ft is continuous on a set D of the first form in
(29.27), and so given ε > 0, there is δ > 0 such that both [t− δ, t+ δ] ⊆ I and, if |ξ− t| < δ,
then ∣∣ft(ξ, s)− ft(t, s)∣∣ < ε

b− a
for all s ∈ [a, b]. What is critical here is that we can make the difference above uniformly
small over all s ∈ [a, b].

Take 0 < |h| < δ, so that |(t+hτ)−t| = |h||τ < |h| < δ, since 0 ≤ τ ≤ 1. This guarantees∣∣ft(t+ hτ, s)− ft(t, s)
∣∣ < ε

b− a
,

and thus
(b− a) max

a≤s≤b

(
max
0≤τ≤1

∣∣ft(t+ hτ, s)− ft(t, s)
∣∣) < ε

when 0 < |h| < δ. This proves the desired estimate (29.28). �
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29.3 Problem. Let

φ(t) :=

[∫ 1

0

s cos(s2 + t) ds

]
.

Calculate φ′ in two ways in two ways: first by evaluating the integral with FTC2 and dif-
ferentiating the result and second by differentiating under the integral and then simplifying
the result with FTC2. (The point is to convince you that differentiating under the integral
works.)

Now we are ready to prove our first pass1 at the Cauchy integral theorem.

29.4 Theorem (“Weak” Cauchy integral theorem). Let D ⊆ C be a star domain and
let f : D → C be holomorphic with f ′ continuous on D. Then∫

γ

f = 0

for any closed path γ in D.

Proof. We prove this only in the case that γ : [0, 1] ⊆ R→ D is continuously differentiable.
For simplicity, assume that γ is (re)parametrized over [0, 1]. Let z? be a star center for D.
Then [z?, γ(t)] ⊆ D for each t ∈ [0, 1], so (1−r)z?+rγ(t) ∈ D for each r ∈ [0, 1] and t ∈ [0, 1].
Define

γr : [0, 1] ⊆ R→ D : t 7→ (1− r)z? + rγ(t).

Then γr is a continuously differentiable path in D with γ1 = γ and γ0(t) = z?. Here is a
sketch.

γ

γr

z?

We integrate f over γr and define

I : [0, 1] ⊆ R→ C : r 7→
∫
γr

f =

∫ 1

0

f((1− r)z? + rγ(t))rγ′(t) dt.

Note that
I(0) = 0 and I(1) =

∫
γ

f.

1 I learned this proof from my advisor, Doug Wright, at Drexel University. I’m calling it a “weak” version
not because the math is wimpy but because of the hypothesis that f ′ is continuous—a result is “stronger” if
we can prove it with fewer hypotheses. Shortly we will drop this hypothesis, at the expense of much more
work.
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We will show that I is constant on [0, 1] by computing I ′ via differentiation under the
integral; we will obtain I ′(r) = 0 for each r, and thus I(1) = I(0) = 0.

The integrand here is

g(r, t) := f((1− r)z? + rγ(t))rγ′(t) = f(z? + (γ(t)− z?)r)rγ′(t).

Since γ is continuously differentiable on [0, 1] and since f is holomorphic on D with f ′

continuous, it follows that g is continuous on J := [0, 1]× [0, 1], that g is differentiable with
respect to r on J , and that gr is continuous on J . In particular, the product rule gives

gr(r, t) = f ′(z? + (γ(t)− z?)r)(γ(t)− z?)rγ′t(t) + f(z? + (γ(t)− z?)r)γ′(t).

Then

I ′(r) =

∫ 1

0

gr(r, t) dt =

∫ 1

0

f ′(z?+(γ(t)−z?)r)(γ(t)−z?)rγ′t(t) dt+
∫ 1

0

f(z?+(γ(t)−z?)r)γ′(t) dt.

(29.33)
We evaluate ∫ 1

0

f ′(z? + (γ(t)− z?)r)(γ(t)− z?)rγ′t(t) dt

using integration by parts. Take

u = γ(t)− z? dv = f ′(z? + (γ(t)− z?)r)rγ′(t) dt
du = γ′(t) dt v = f ′(z? + (γ(t)− z?)r).

Then∫ 1

0

f ′(z? + (γ(t)− z?)r)(γ(t)− z?)rγ′t(t) dt =
(
γ(t)− z?

)(
f((1− r)z? + rγ(t)

)∣∣t=1

t=0

−
∫ 1

0

f ′(z? + (γ(t)− z?)r) dt. (29.34)

Since γ is closed, we have γ(0) = γ(1), and so it follows that(
γ(t)− z?

)(
f((1− r)z? + rγ(t)

)∣∣t=1

t=0
= 0. (29.35)

Combining (29.33), (29.34), and (29.35) yields I ′(r) = 0 for all r ∈ [0, 1]. �

29.5 Problem. Check that (29.35) is true. Remember that γ(0) = γ(1).

29.6 Problem. Adapt the proof of the “weak” Cauchy integral theorem to the case where γ
is only piecewise continuously differentiable. Proceed as follows. First, write γ = ⊕nk=1γk,
where each γk is continuously differentiable on [0, 1] with γk−1(1) = γk(0) for k = 1, . . . , n.
Then put γk,r(t) := (1 − r)z? + rγk(t) and γr := ⊕nk=1γk,r. Set Ik(r) :=

∫
γk,r

f , so I(r) =
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∑n
k=1Ik(r). Differentiate under each integral and obtain

I ′k(r) =
(
γk(t)− z?

)(
f((1− r)z? + rγk(t)

)∣∣t=1

t=0
.

Use this to recognize
∑n

k=1Ik(r) as a telescoping sum.

29.7 Example. It is notoriously difficult (impossible) in calculus to find a formula in terms
of “elementary functions” for an antiderivative of f(x) = ex

2

; we know that one exists on
R because f is continuous, and so we can use the fundamental theorem of calculus. When
we extend f to C, we observe that f(z) = ez

2

is holomorphic with f ′(z) = 2zez
2

; this is
continuous, and so f has an antiderivative on C.

In fact, we could take this antiderivative to be

F (z) :=

∫
[0,z]

ew
2

dw,

if we repeat the proof of Theorem 28.1 for this particular integrand. We will do just that
shortly under different hypotheses and in a broader context.

Day 30: Monday, March 27

Recommended reading

We proved a specialized “deformation” lemma as a consequence of the Cauchy integral
theorem. The notion of “deformation of curves” can be made both much more precise and
much more general. See Section 3.6; in particular, the three cases on p. 187 and Definition
3.6.1 offer this precision and generality. The integral invariance that we proved is really a
special case of Theorem 3.6.5. You are not required to read any of this, but know that
there’s a big world beyond what we discussed.

30.1 Example. Let z1, z2 ∈ C with 0 ≤ |z1| < |z2|. Fix 0 < R < |z1| and let γ be any
closed curve in B(0;R). Then ∫

γ

dz

(z − z1)(z − z2)2
= 0,

since the function f(z) := 1/[(z − z1)(z − z2)2] is holomorphic on the star domain B(0;R)
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with f ′ continuous there.

R

iR

z1

z2

γ

A leitmotif of complex integration theory turns out to be deformation of curves. It may
be possible to “deform” one curve onto another in a “continuous” way; if the underlying
domain is suitably nice (possibly, but not necessarily, a star domain) and if the integrand is
suitably nice (holomorphic), then a line integral of a function over one curve should equal
a line integral of that function over the other curve. We saw this in our proof of the weak
Cauchy integral theorem; the curve γ was deformed onto the “constant” curve z?, or, really,
the line segment [z?, z?], and the integral over this line segment was 0.

It is possible to make this notion of deformation very precise and to prove a version of the
Cauchy integral theorem stating that the line integral of a holomorphic function is invariant
under deformation of curves if the domain is geometrically suitable. We will not explore this
and will instead be content with one very specific kind of deformation involving circles.

30.2 Lemma (Death Star). Let D ⊆ C be open and suppose that z, z0 ∈ D and R, r,
s > 0 with B(z; s) ⊆ B(z0; r) ⊆ B(z0;R) ⊆ D. (See the sketch below.) Suppose that
f : D \ {z} → C is holomorphic. Then∫

|w−z0|=r
f =

∫
|w−z|=s

f.

Proof. First we sketch the set-up of the subset containment B(z; s) ⊆ B(z0; r) ⊆ B(z0;R) ⊆
D. The dotted circle is the circle of radius R centered at z0; the thick solid circle is the circle
of radius r centered at z0; and the thin solid circle is the circle of radius s centered at z.

z0

z
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z0

µ1 µ2

z

Γ1

Γ2

γ1

γ2

We split the circle of radius r centered at z0 and the circle of radius s centered at z into
a number of auxiliary paths. The paths Γ1 and γ1 are the upper halves of their respective
circles, and Γ2 and γ2 are the lower halves. The paths µ1 and µ2 are line segments. In
particular, we have ∫

|w−z0|=r
f =

∫
Γ1⊕Γ2

f and
∫
|w−z|=s

f =

∫
γ1⊕γ2

f. (30.36)

Consider the path µ1 ⊕ γ−1 ⊕ γ2 ⊕ Γ1, which we draw in solid blue in the first circle
below. This is a closed path contained in B(z0;R); we draw the circle of radius R centered
at z0 in dotted black below. Delete from B(z0;R) the line segment from z to the circle of
radius R centered at z0 and call the resulting set V ; this is the second circle below. Then
µ1⊕ γ−1 ⊕ γ2⊕ Γ1 is still a path in V . Also, f is holomorphic on V since z 6∈ V . Finally, V is
a star domain; this is somewhat technical to prove precisely, but any point ? on the dotted
blue line in the third circle below will be a star center for V .

z0 z

ν

z0 z

ν

?
z0 z
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The Cauchy integral theorem2 then implies that∫
µ1⊕γ−1 ⊕µ2⊕Γ1

f = 0. (30.37)

Exactly the same arguments show that∫
µ1⊕γ2⊕µ2⊕Γ−

2

f = 0. (30.38)

Equating (30.37) and (30.38) and using the algebra and arithmetic of line integrals shows∫
Γ1⊕Γ2

f =

∫
γ1⊕γ2

f, (30.39)

and, by (30.36), this is the desired conclusion. �

30.3 Problem. Carry out the algebra and arithmetic of line integrals to prove (30.39),
assuming that (30.37) and (30.38) hold.

30.4 Problem. Use the Death Star lemma and Example 26.4 to show that∫
|w−z0|=r

dw

w − z
= 2πi

for all r > 0 and z, z0 ∈ C such that |z − z0| < r. Be sure to check that all the (very
technical) hypotheses of the Death Star lemma are met.

30.5 Remark. Don’t be too proud of this technological terror we’ve constructed in Lemma
30.2. The ability to deform one circle onto another and preserve the line integral is in-
significant next to the power of the Cauchy theorems.

2 Specifically, Theorem 31.4, since we are not assuming that f ′ is continuous here. This version of the Cauchy
integral theorem does not depend on the Death Star lemma; we are proving this lemma first due to my
travel plans.
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Day 31: Wednesday, March 29

Recommended reading

The book divides the proof of the Cauchy–Goursat theorem into two stages. The first is
Lemma 3.5.1; this is, broadly, the “analysis” stage, which estimates an integral using the
definition of the derivative and the calculation of a polynomial antiderivative. The second
is Theorem 3.5.2; this is the “geometry” stage, which estimates an integral by rewriting
it as a sum of integrals over related paths. The Cauchy–Goursat theorem illustrates the
power of the triangle: if we can get a challenging, technical result only for line integrals
over triangles (a fairly benign sort of path), then we can get a powerful result for many
other kinds of curves. You are not required to know either Lemma 3.5.1 or Theorem 3.5.2,
but you should at least glance at their proofs. The book’s proof of Theorem 3.5.4 closely
resembles our version.

We can improve our initial version of the Cauchy integral theorem in a subtle, but
important, way: the derivative does not have to be continuous. To accomplish this, we
need more powerful tools, and so we will call upon the fearsome power of the triangle. This
completes our return to kindergarten geometry begun with lines and circles.

What is a triangle? Let z1, z2, z3 ∈ C. Surely the path below is a triangle.

z1 z2

z3

We recognize this path as the composition of three line segments in a particular order,
namely [z1, z2] ⊕ [z2, z3] ⊕ [z3, z1]. However, we might also argue that the two-dimensional
region below is a triangle as well.

z1 z2

z3

Both “triangular paths” and “triangular regions” will be very useful to us, and so we should
give precise definitions of them both, and use notation that distinguishes them. While
we recognized the triangular path above as a composition of line segments, how might we
tractably describe the triangular region above in terms of z1, z2, z2?
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One useful approach is to recognize the region as a union of line segments—specifically,
all line segments whose initial point is z1 and whose terminal point lies on the line segment
[z2, z3].

z1 z2

z3

Based on this reasoning, we make the following definition.

31.1 Definition. Let z1, z2, z3 ∈ C.

(i) The triangle spanned by z1, z2, and z3 is the set

∆(z1, z2, z3) :=
⋃

0≤s≤1

[z1, (1− s)z2 + sz3] =
{

(1− t)z1 + t
(
(1− s)z2 + sz3

) ∣∣ 0 ≤ s, t ≤ 1
}
.

(31.40)

(ii) The triangular path spanned by z1, z2, and z3 is the closed path

∂∆(z1, z2, z3) := [z1, z2]⊕ [z2, z3]⊕ [z3, z1]. (31.41)

31.2 Problem. Let z1, z2, z3 ∈ C.

(i) Prove that the order in which we specify the endpoints of a triangle is irrelevant in the
sense that

∆(z1, z2, z3) = ∆(zσ(1), zσ(2), zσ(3))

for any function σ : {1, 2, 3} → {1, 2, 3} that is one-to-one and onto (i.e., any permutation).
Explain why the order of the points matters very much when we are working with a
triangular path.

(ii) Suppose that two or more of the points z1, z2, z3 are equal, or that all three points
belong to some line segment [z, w]. Prove that ∆(z1, z2, z3) is really a line segment. (Re-
markably, this “degenerate” case will not require any special treatment in our subsequent
use of triangles!)

The key to a version of the Cauchy integral theorem that drops the hypothesis of conti-
nuity on f ′ is that f should integrate to 0 over triangles. This turns out to be true.

31.3 Theorem (Cauchy–Goursat theorem). Suppose that f is holomorphic on an open
set D (which need not be star-shaped or even a domain). Let z1, z2, z3 ∈ D such that
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∆(z1, z2, z3) ⊆ D. Then ∫
∂∆(z1,z2,z3)

f = 0.

We will not prove this theorem here; its proof is a wonderful union of analysis (careful
estimates using the definition of the derivative and the triangle inequality for integrals)
and geometry (breaking a given triangle into an infinite sequence of nested triangles) and
more analysis (estimating integrals over those nested triangles and finding a subsequence of
triangles whose intersection is nonempty).

At last we are ready to prove that a holomorphic function integrates to 0 around closed
paths without assuming that the derivative is continuous and without assuming that the path
is a triangle.

31.4 Theorem (Cauchy integral theorem). Let D ⊆ C be a star domain and let f : D →
C be holomorphic on D. Then ∫

γ

f = 0

for any closed path γ in D.

Proof. Let z? be a star center for D. We show that

F (z) :=

∫
[z?,z]

f

is an antiderivative of f on D. The proof is very similar to that of Theorem 28.1, except we
have replaced the general path connecting z? and z with the line segment [z?, z].

Fix z ∈ D. As always, we want to show that

lim
h→0

F (z + h)− F (z)

h
= f(z),

equivalently,

lim
h→0

F (z + h)− F (z)− hf(z)

h
= 0.

By Problem 31.5 below, there is r > 0 such that if h ∈ C with |h| < r, then ∆(z?, z, z+h) ⊆
D. Assume that h ∈ C satisfies |h| < r from now on.

We calculate

F (z + h)− F (z) =

∫
[z?,z+h]

f −
∫

[z?,z]

f =

∫
[z?,z+h]

f +

∫
[z,z?]

f.

If we add and subtract the integral of f over [z + h, z], then we will have integrated f over
the triangle ∂∆(z?, z+h, z), and this integral is 0 by the Cauchy–Goursat theorem. That is,∫

∂∆(z?,z+h,z)

f = 0.



MATH 4391 (Section 51, Spring 2023) Daily Log 77

z?

z + hz

So, we do just that:

F (z + h)− F (z) =

∫
[z?,z+h]

f +

∫
[z+h,z]

f +

∫
[z,z?]

f −
∫

[z+h,z]

f

=

∫
[z?,z+h]⊕[z+h,z]⊕[z,z?]

f +

∫
[z,z+h]

f

=

∫
∂∆(z?,z+h,z)

f +

∫
[z,z+h]

f

=

∫
[z,z+h]

f.

Then

F (z + h)− F (z)− hf(z) =

∫
[z,z+h]

f − hf(z) = h

∫ 1

0

[
f(z + th)− f(z)

]
dt,

as we previously calculated in (28.24). Lemma 28.2 then implies

lim
h→0

F (z + h)− F (z)− hf(z)

h
= lim

h→0

∫ 1

0

[
f(z + th)− f(z)

]
dt = 0,

as desired. �

31.5 Problem. Let D ⊆ C be a star domain with star center z? and let z ∈ D. Since
D is open, there is r > 0 such that B(z; r) ⊆ D. Prove that if h ∈ C with |h| < r, then
∆(z?, z, z + h) ⊆ D. [Hint: use the definition of a triangle as a union of line segments, the
definition of an open ball, and a lot of estimates.] Note that for arbitrary z1, z2 ∈ D, the
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triangle ∆(z?, z1, z2) need not be wholly contained in D.

z1

z2

z?

In the context of our quest for antiderivatives, the Cauchy integral theorem was a welcome
result. In lieu of checking independence of path, it gave us a simple sufficient condition for
the existence of an antiderivative: differentiability itself. That is, for a function defined on
a star domain to have an antiderivative on that star domain, it suffices for the function
to be differentiable. However, one might rightly quibble that the star domain is a very
special geometric form. Are there more “relaxed” geometries that guarantee the existence of
antiderivatives for suitably nice functions?

We answer our question with a (somewhat circular) definition.

31.6 Definition. A domain (i.e., open and connected) D ⊆ C is an elementary do-
main if every holomorphic function on D has an antiderivative on D.

31.7 Problem. Is C \ {0} an elementary domain?

Certainly star domains are elementary domains, thanks to Cauchy’s integral theorem,
but are there others? It turns out that we can easily build new elementary domains out of
given ones, and so in particular we can build elementary domains out of star domains. To
do this, we need to be able to “glue” certain holomorphic functions together to produce a
new holomorphic function that agrees, under certain restrictions, with the old ones.

31.8 Lemma (Merging). Let D1, D2 ⊆ C be open with D1 ∩D2 open and nonempty. Let
f1 : D1 → C and f2 : D2 → C be holomorphic, and suppose f1(z) = f2(z) for all z ∈ D1∩D2.
Then there is a unique holomorphic function f : D1 ∪ D2 → C such that f

∣∣
D1

= f1 and
f
∣∣
D2

= D2. In particular,

f ′(z) =

{
f ′1(z), z ∈ D1

f ′2(z), z ∈ D2.

Proof. Define

f : D1 ∪ D2 → C : z 7→


f1(z), z ∈ D1 \ D2

f1(z), z ∈ D1 ∩ D2

f2(z), z ∈ D2 \ D1.
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Since the three sets D1 \D2, D1∩D2, and D2 \D1 are disjoint, the function f is well-defined.
We now show that f is holomorphic. Consider the following three cases on z ∈ D1 ∪ D2.

1. z ∈ D1 \ D2. Since D1 is open, there is r > 0 such that B(z; r) ⊆ D1. We claim that
f
∣∣
B(z;r)

= f1

∣∣
B(z;r)

. In that case, for w ∈ D1 ∪D2 sufficiently close to z, we have w ∈ B(z; r),
and then

f(w)− f(z)

w − z
=
f1(w)− f1(z)

w − z
,

from which we have
lim
w→z

f(w)− f(z)

w − z
= f ′1(z).

Now we prove the claim. Take w ∈ B(z; r), so w ∈ D1. If w ∈ D1\D2, then f(w) = f1(w)
by definition. And if w ∈ D1 ∩ D2, then, again, f(w) = f1(w) by definition.

2. z ∈ D1∩D2. Again, take r > 0 such that B(z; r) ⊆ D1. If w ∈ B(z; r), then f(w) = f1(w)
by the argument in the preceding paragraph, from which it follows as before that f is
differentiable at z with f ′(z) = f ′1(z).

3. z ∈ D2 \D1. Take r > 0 such that B(z; r) ⊆ D2 and let w ∈ B(z; r). If w ∈ D2 \D1, then
f(w) = f2(w) by definition, and it w ∈ D1 ∩ D2, then f(w) = f1(w) by definition, but then
f(w) = f2(w) by hypothesis. Then f

∣∣
B(z;r)

= f2

∣∣
B(z;r)

, and so f is differentiable at z with
f ′(z) = f ′2(z).

Last, for uniqueness, if g : D1 ∪ D2 → C satisfies g
∣∣
D1

= f1 and g
∣∣
D2

= f2, then g(z) =

f1(z) for all z ∈ D1\D2, g(z) = f1(z) for all z ∈ D1∩D2, and g(z) = f2(z) for all z ∈ D2\D1,
thus g = f , and so the extension f is unique. �

31.9 Theorem. Let D1 and D2 be elementary domains such that their intersection

D1 ∩ D2 :={z ∈ C | z ∈ D1 and z ∈ D2}

is nonempty and connected. Then their union

D1 ∪ D2 :={z ∈ C | z ∈ D1 or z ∈ D2}

is also an elementary domain.

Proof. Let f : D1 ∪ D2 → C be holomorphic; we want to show that f has an antiderivative
on all of D1 ∪D2. The restrictions f

∣∣
D1

and f
∣∣
D2

are also holomorphic; since D1 and D2 are
elementary domains, there are holomorphic maps F1 : D1 → C and F2 : D2 → C such that
F ′1(z) = f(z) for z ∈ D1 and F ′2(z) = f(z) for z ∈ D2.

Now define
g : D1 ∩ D2 → C : z 7→ F1(z)− F2(z).

Then g′(z) = 0 for all z ∈ D1 ∩ D2. Since D1 ∩ D2 is a domain, Theorem 23.18 implies
that g is constant on D1 ∩ D2; take C ∈ C such that g(z) = C for all z ∈ D1 ∩ D2. Thus
F1(z) = F2(z) + C for all z ∈ D1 ∩ D2.
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The functions F1 on D1 and F2 +C on D2 therefore satisfy the hypotheses of the merging
lemma, and so there is a (unique) holomorphic function F : D1 ∪D2 → C such that F ′

∣∣
D1

=

F ′1 = f1 and F ′
∣∣
D2

= F ′2 = f2. Thus F ′ = f on D1 ∪ D2, so F is an antiderivative of f . �

31.10 Example. Since open balls are star domains, we can “glue” overlapping balls onto an
existing star domain and get an elementary domain that is (probably) not a star domain.

Day 32: Friday, March 31

You took an exam. Good times!

Day 33: Monday, April 3

Recommended reading

We proved the Cauchy integral formula. Our proof closely resembled that of Theorem 3.8.1
in the book with two major exceptions. First, we only proved the Cauchy integral formula
over circles, not arbitrary curves; we had no need of “positive orientation” or “interior.”
Second, we did not use Theorem 3.7.2 but rather the Death Star lemma. You should read
Example 3.8.2. Next, try rewriting the integral in Example 3.8.3 using partial fractions and
then use the Cauchy integral formula; don’t apply Theorem 3.7.2 as in the book. Finally,
we started to discuss the generalized Cauchy integral formula, which appears in Theorem
3.8.6.

We will now prove one of the most important results in complex analysis, a formula that
relates the values of a function in the interior of a ball to its values on the (circular) boundary
of that ball. The full utility of this result will probably not be apparent right now, but it
will serve us for the rest of the course.

33.1 Theorem (Cauchy integral formula). Let D ⊆ C be open and let f : D → C be
holomorphic. Let z0 ∈ D and R > 0 such that B(z0;R) ⊆ D. Then

f(z) =
1

2πi

∫
|w−z0|=r

f(w)

w − z
dw (33.42)
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for 0 < r < R and all z ∈ B(z0; r).

Proof. The key to the proof, and indeed the motivation for the identity (33.42), is Problem
30.4, which told us ∫

|w−z0|=r

dw

w − z
= 2πi.

Then we have

f(z) =
1

2πi

(
f(z)2πi

)
=

1

2πi
f(z)

∫
|w−z0|=r

dw

w − z
=

1

2πi

∫
|w−z0|=r

f(z)

w − z
dw.

Then (33.42) is equivalent to

1

2πi

∫
|w−z0|=r

f(w)− f(z)

w − z
dw = 0. (33.43)

We will achieve (33.43) by showing that∣∣∣∣∫
|w−z0|=r

f(w)− f(z)

w − z
dw

∣∣∣∣ < ε (33.44)

for all ε > 0. Indeed, if (33.44) is true and (33.43) is false, then we have

ε∗ :=

∣∣∣∣∫
|w−z0|=r

f(w)− f(z)

w − z
dw

∣∣∣∣ > 0,

in which case (33.44) is false with ε = ε∗/2.
Here is how we prove (33.44). We have seen a function like the integrand before, in

the difference quotient lemma (Lemma 19.1). In particular, this integrand is holomorphic
on D \ {z}, and so we may appeal to the Death Star lemma. Specifically, since B(z0; r) is
open, we may take s0 > 0 such that B(z; s0) ⊆ B(z0; r). Then if 0 < s < s0/2, we have
B(z; s) ⊆ B(z0; r) ⊆ B(z0;R). The Death Star lemma therefore implies∫

|w−z0|=r

f(w)− f(z)

w − z
dw =

∫
|w−z|=s

f(w)− f(z)

w − z
dw. (33.45)

We will estimate the integral on the right with the ML-inequality. Given ε > 0, the
continuity of f at z allows us to choose s > 0 so that if |w−z| < s, then |f(w)−f(z)| < ε/2π.
Then

max
|w−s|=s

∣∣∣∣f(w)− f(z)

w − z

∣∣∣∣ ≤ ε

2πs
,

and so the ML-inequality implies∣∣∣∣∫
|w−z|=s

f(w)− f(z)

w − z
dw

∣∣∣∣ ≤ 2πs
( ε

2πs

)
= ε.

By (33.45), this proves the desired inequality (33.44) for any ε > 0. �
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33.2 Example. Let z1, z2 ∈ C with 0 ≤ |z1| < |z2|. Fix |z1| < r < ρ < |z2|. Then∫
|z|=r

dz

(z − z1)(z − z2)2
=

∫
|z|=r

1/(z − z2)2

z − z1

dz =
2πi

(z1 − z2)2
,

since the function f(z) := 1/(z − z2)2 is holomorphic on the open set D := B(0; ρ) and,
with R := (r + ρ)/2, we have r < R and B(0;R) ⊆ D.

R

iR

z1

z2

33.3 Problem. Contrast the result (and the drawing) above with Example 30.1.

33.4 Problem. Explain why the Cauchy integral formula does not (apparently) allow us
to evaluate ∫

|z|=2

dz

z2 − 1
.

Then rewrite the integrand using partial fractions and realize that the Cauchy integral
formula (or maybe just the Death Star lemma!) does, in fact, apply.

The true value of the Cauchy integral formula (CIF) is not that it enables us to compute
certain line integrals that would otherwise be difficult or impossible (although it does).
Rather, the CIF provides an integral representation of a function, and integrals are the key
instrument for extract information about functions.

Specifically, the CIF uses one-dimensional information about a function f—the values
of w 7→ f(w)/(w − z) on the circle of radius r centered at z0—to compute two-dimensional
information about f—its values on the ball of radius r centered at z0. This may feel similar
to the fundamental theorem of calculus, which reads∫ b

a

f ′ = f(b)− f(a)

when f is differentiable on [a, b] and f ′ is continuous on [a, b]. Both the CCIF and the
FTC give information about a function from an integral whose integrand is related to that
function.
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The CIF, however, might have at least two advantages over our beloved FTC. First,
the FTC requires information about the derivative on the whole interval [a, b] to produce
information about f at the endpoints; we need one-dimensional data (values on an interval)
to get zero-dimensional data (the difference of values at the endpoints). Second, the FTC
requires information about a function other than f (namely, the derivative of f), whereas
the integrand in the CIF is really just f gussied up via division by a linear polynomial.

We only proved the Cauchy integral formula for line integrals over circles, whereas the
Cauchy integral theorem holds for line integrals over arbitrary closed paths. We will eventu-
ally generalize the integral formula to permit more arbitrary closed paths, but that will also
require us to account for a notion of “orientation” on the paths. As it stands, our version of
the integral formula above is perfectly suited to give us a rich amount of information about
functions.

Here is the first of many deep consequences of the Cauchy integral formula. Suppose
that the hypotheses of the Cauchy integral formula are met. That is, we have an open set
D and a holomorphic function f : D → C, and we have fixed z0 ∈ D and R > 0 such that
B(z0;R) ⊆ D. Then for any r ∈ (0, R) and z ∈ B(z0; r), we can write

f(z) =
1

2πi

∫
|w−z0|=r

K(w, z) dw, where K(z, w) :=
f(w)

w − z
.

The map K is defined on the set

D0 :=
{

(z, w) ∈ C2
∣∣ |z − z0| < r, |w − z0| = r

}
.

In particular, for (z, w) ∈ D0, we have z 6= w. It should follow, then, that K is continuous
on D0 (this needs some development, since we have not discussed continuity for functions
defined on subsets of C2) and that K is differentiable with respect to z (this too needs
development, since we have not discussed partial derivatives for functions of several complex
variables), and that

Kz(z, w) =
f(w)

(w − z)2
.

If this is all indeed true (it is), then we might expect that we could differentiate under the
(line) integral as in Leibniz’s rule (Theorem 29.2) and find

f ′(z) =
1

2πi

∫
|w−z0|=r

Kz(z, w) dw =
1

2πi

∫
|w−z0|=r

f(w)

(w − z)2
dw.

Now look at this integrand. Exactly the same reasoning as above suggests that we can
differentiate under the integral again to conclude that f ′ is differentiable and

f ′′(z) = 2

(
1

2πi

∫
|w−z0|=r

f(w)

(w − z)3
dw

)
.

Turn the crank and be convinced that f ′′ is differentiable. . .
If this reasoning holds, then we have discovered something remarkble. A holomorphic

function is not just once differentiable but infinitely many times differentiable, and we can
represent all derivatives as a line integral of the quotient of the original function and a
polynomial. This result is called the generalized Cauchy integral formula, and it has many
proofs.
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Day 34: Wednesday, April 5

Recommended reading

We completed our discussion of the generalized Cauchy integral formula and some of its
consequences. Our proof of the generalized formula followed that of Theorem 3.8.6, but
we did not use the more general differentiation under the integral technique that the book
did. As with the original formula, we got the generalized Cauchy integral formula only for
line integrals over circles, not arbitrary curves. Read Example 3.8.7 (a). After that, we
discussed Liouville’s theorem (Theorem 3.9.2).

The first proof of the generalized Cauchy integral formula that we will give hinges on the
venerable mathematical technique known as brute force.

34.1 Remark. Brute force is the best force.

Here is the brute force part of the proof.

34.2 Lemma. Let D ⊆ C be open and let f : D → C be continuous. Fix z0 ∈ D and take
R > 0 such that B(z0;R) ⊆ D. Let r ∈ (0, R) and let m ≥ 1 be an integer. Define

Fm : B(z0; r)→ C : z 7→
∫
|w−z0|=r

f(w)

(w − z)m
dw. (34.46)

Then Fm is holomorphic with F ′m = mFm+1.

Proof. This is essentially a differentiation under the integral argument for a very specific
integrand. We need to show that for any z ∈ B(z0; r), we have

lim
h→0

Fm(z + h)− Fm(z)

h
= mFm+1(z),

equivalently,

lim
h→0

Fm(z + h)− Fm(z)− hmFm+1(z)

h
. (34.47)

We compute

Fm(z + h)− Fm(z)− hmFm+1(z)

=

∫
|w−z0|=r

f(w)

[
(w − z)m+1 − (w − z)((w − z)− h)m − hm((w − z)− h)m

(w − z)m+1((w − z)− h)

]
dw.

(34.48)

This calculation just requires finding a common denominator inside the integral.
We claim that for all integers m ≥ 1, there is a function Pm : C2 → C and a constant

Cm > 0 such that

ξm+1 − ξ(ξ + h)m +mh(ξ + h)m = h2Pm(ξ, h) and |Pm(ξ, h)| ≤ Cm|h|2(|ξ|+ |h|)m−1

(34.49)
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for all ξ, h ∈ C. The proof of this claim is Problem 34.3. With this claim in hand, we can
estimate the integral on the right in (34.48) via the ML-inequality.

Put
M := max

|w−z0|=r
|f(w)|.

Since h→ 0, we may as well assume that

|h| ≤ min{1, (r − |z − z0|)/2}. (34.50)

Since |w − z0| = r and |z − z0| < r, the triangle inequality gives

|w − z| = |(w − z0) + (z0 − z)| ≤ |w − z0|+ |z − z0| = r + |z − z0| < 2r.

Then∣∣(w − z)m+1 − (w − z)((w − z)− h)m − hm((w − z)− h)m
∣∣ = |Pm(w − z,−h)|

≤ Cm|h|2(|w − z|+ | − h|)m−1 ≤ Cm|h|2(2r + 1)m−1.

Next, the reverse triangle inequality implies

|w − z| = |(w − z0)− (z − z0)| ≥ |w − z0| − |z − z0| = r − |z − z0|

and
|(w − z)− h| ≥ |w − z| − |h| ≥ r − |z − z0| −

r − |z − z0|
2

=
r − |z − z0|

2
.

Here we have used the estimate (34.50) on |h|.
We combine all of these estimates to conclude that if |w − z0| = r, then

∣∣Fm(z + h)− Fm(z)− hmFm+1(z)
∣∣ ≤ 2πrMCm|h|2(2r + 1)m−1(

r − |z − z0|
)m+1

(
r − |z − z0|

2

) .
If we divide both sides by |h|, we conclude∣∣∣∣Fm(z + h)− Fm(z)− hmFm+1(z)

h

∣∣∣∣ ≤ C|h|,

where C depends on r, m, z, z0, and M , but not on h. The squeeze theorem then yields the
limit (34.47). �

34.3 Problem. Prove the claim (34.49) using one of the following options.

(i) Add and subtract (ξ + h)m+1 to find

ξm+1 − ξ(ξ + h)m +mh(ξ + h)m = −
(
(ξ + h)m+1 − ξm+1

)
+ (m+ 1)h(ξ + h)m.
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Rewrite

(ξ + h)m+1 − ξm+1 = (m+ 1)h

∫ 1

0

(ξ + th)m dt

using the fundamental theorem of calculus and obtain

ξm+1 − ξ(ξ + h)m +mh(ξ + h)m = (m+ 1)h

(∫ 1

0

[
(ξ + h)m − (ξ + th)m

]
dt

)
.

Use the fundamental theorem of calculus again to rewrite∫ 1

0

[
(ξ + h)m − (ξ + th)m

]
dt = mh

∫ 1

0

∫ 1

0

(1− t)
(
ξ + th+ τh(1− t)

)m−1
dτ dt.

Define

Pm(ξ, h) := m(m+ 1)

∫ 1

0

∫ 1

0

(1− t)
(
ξ + th+ τh(1− t)

)m−1
dτ dt.

Prove the estimate on Pm using multiple applications of the triangle inequality.

(ii) Expand (ξ + h)m using the binomial theorem:

(ξ + h)m =
m∑
k=0

(
m

k

)
ξkhm−k = ξm +mξm−1h+

m−2∑
k=0

(
m

k

)
ξkhm−k.

Then do arithmetic.

34.4 Theorem (Generalized Cauchy integral formula). Suppose that D ⊆ C is open
and f : D → C is holomorphic. Then f is infinitely differentiable on D. In particular, if
z0 ∈ D with B(z0;R) ⊆ D, then for any r ∈ (0, R), z ∈ B(z0;R), and n ≥ 0, the nth
derivative of f is

f (n)(z) =
n!

2πi

∫
|w−z0|=r

f(w)

(w − z)n+1
dw. (34.51)

Proof. We induct on n, starting with n = 0, i.e., f (0) = f . Then (34.51) is just the Cauchy
integral formula. Assume that (34.51) holds for some n ≥ 0; then

f (n) =
n!

2πi
Fn+1,

where Fn+1 was defined in (34.46). Lemma 34.2 implies that Fn+1 is holomorphic with
F ′n+1 = (n+ 1)Fn+2. Consequently, f (n) is differentiable with

f (n+1)(z) = (f (n))′(z) = (n+1)Fn+2(z) =
(n+ 1)n!

2πi
Fn+2(z) =

(n+ 1)!

2πi

∫
|w−z0|=r

f(w)

(w − z)n+2
dw.

This is the desired form of f (n+1) from (34.51). �
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34.5 Example. Let z1, z2 ∈ C with 0 < |z1| < |z2|. Let 0 < ρ < |z2| − |z1| and 0 < r < ρ.
Then∫
|z−z2|=r

dz

(z − z1)(z − z2)2
=

∫
|z−z2|=r

1/(z − z1)

(z − z2)1+1
dz = 2πi

d

dz

[
1

z − z1

] ∣∣∣∣
z=z2

= − 2πi

(z1 − z2)2
,

since the function f(z) := 1/(z − z1) is holomorphic on the open set D := B(z2; ρ) and,
with R := (r + ρ)/2, we have r < R and B(z2;R) ⊆ D.

R

iR

z1

z2

34.6 Problem. Show that the function

f : R→ C : t 7→

{
t2, t ≥ 0

−t2, t < 0

is differentiable on R and that f ′ is continuous on R but not differentiable at 0.

At last, we can fully characterize when a function has an antiderivative. This effectively
completes the third phase of our course—the integral calculus phase—and opens the way to
a multiverse of complex analytic possibilities.

34.7 Problem.

(i) Let D ⊆ C be an elementary domain (such as, but not necessarily, a star domain—see
Definition 31.6). Show that a function f : D → C is holomorphic if and only if f has an
antiderivative on D. [Hint: one direction is the definition; for the other, if F ′ = f , what
do you know about F ′′?]

(ii) Suppose that D ⊆ C is open (not necessarily a star domain or even connected). Show
that f : D → C is holomorphic if and only if f is “locally antidifferentiable” in the sense
that if z0 ∈ D and r > 0 such that B(z0; r) ⊆ D, then there is a holomorphic function
F : B(z0; r)→ C such that F ′(z) = f(z) for all z ∈ B(z0; r). [Hint: an open ball B(z0; r) is
a star domain.]

(iii) Use part (iii) of Problem 26.12 to show that the result in part (ii) above is the best
that we can expect when the underlying set is not necessarily an elementary domain.
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Here is a first result from that multiverse of possibilities. We have not used the following
definition all that much, so now is a good time to bring it up.

34.8 Definition. A holomorphic function f : C→ C is called entire. That is, f : C→ C
is entire if f is differentiable at each z ∈ C.

If we replace C by R in the preceding definition, we are familiar with many functions
that are infinitely differentiable on R. And many of those functions are bounded; consider
f(t) = sin(t), which satisfies | sin(t)| ≤ 1 for all t ∈ R. It turns out that only the most trivial
of bounded functions can be entire.

34.9 Theorem (Liouville). Suppose that f : C → C is entire and bounded, i.e., there is
M > 0 such that |f(z)| ≤M for all z. Then f is constant.

Proof. We show that f ′(z) = 0 for all z; since C is a domain, it follows that f is constant.
Fix z ∈ C and r > 0. The generalized Cauchy integral formula (with R = 2r) gives

f ′(z) =
1

2πi

∫
|w−z|=r

f(w)

(w − z)2
dw,

and if |w − z| = r, then we can estimate the integrand as∣∣∣∣ f(w)

(w − z)2

∣∣∣∣ =
|f(w)|
|w − z|2

=
|f(w)|
r2

≤ M

r2
.

Then the ML-inequality implies

|f ′(z)| =
∣∣∣∣ 1

2πi

∫
|w−z|=r

f(w)

(w − z)2
dw

∣∣∣∣ ≤ 2πrM

2πr2
=
M

r2
.

Since this is true for an arbitrary r > 0, we can use the squeeze theorem and send r → ∞
to conclude |f ′(z)| = 0, thus f ′(z) = 0. �

Day 35: Friday, April 7

Recommended reading

We continued discussing Liouville’s theorem and its useful consequences. Specifically, we
proved a version of the fundamental theorem of algebra (Theorem 3.9.4). There are many,
many proofs of this theorem, and we will see a stronger version of it later. Then we
returned to the Cauchy integral formula and exposed the power series lurking within it.
That is, we proved Theorem 4.3.1. You should read Definition 4.2.1 and Example 4.2.2.
Theorem 4.2.5 is a more precise version of our statement about the radius of convergence,
but it requires the tool of the limsup, which you don’t need to know for this class.



MATH 4391 (Section 51, Spring 2023) Daily Log 89

35.1 Example. Previously we have seen that sin(·) is unbounded on C, e.g., by considering

sin(iy) =
ei(iy) − e−i(iy)

2i
=
e−y − ey

2i
,

thus
| sin(iy)| = |e

−y − ey|
2

→∞ as y → ±∞.

But even without this estimate, since we know that sin(·) is entire and not constant (e.g.,
sin(0) = 0 and sin(π/2) = 1), we are guaranteed that sin(·) is unbounded on C. This is, of
course, a marked contrast to the familiar estimate | sin(x)| ≤ 1 for x ∈ R.

As an application of Liouville’s theorem, we derive a first (somewhat rough) version
of the fundamental theorem of algebra, which states that every polynomial with complex
coefficients has a root in C. Note that not every polynomial with real coefficients has a root
in R (think of the most famous quadratic in the world, which is, from one point of view, the
reason this course exists).

35.2 Theorem. Let f(z) =
∑n

k=0akz
k be a polynomial of degree n ≥ 1, i.e., a0, . . . , an ∈ C

and an 6= 0. Then f has a root in C: there is z0 ∈ C such that f(z0) = 0.

Proof. Suppose not. Then f(z) 6= 0 for all z ∈ C, and so the function g := 1/f is defined
on C; moreover, g is holomorphic on C. If we can show that g is also bounded on C, i.e.,
there is M > 0 such that |g(z)| ≤M for all z ∈ C, then Liouville’s theorem will tell us that
g is constant. That is, there is c ∈ C such that g(z) = c for all z ∈ C, and so f(z) = 1/c for
all z ∈ C. But then f is not a polynomial of degree at least 1.

The proof that g is bounded is somewhat technical, so here is a sketch of how it would
proceed for a polynomial with real coefficients on R. That is, suppose that ak ∈ R for each
k. We know from calculus that limx→±∞ |f(x)| =∞, so limx→±∞ |g(x)| = 0. Then for some
r > 0 we have |g(x)| ≤ 1 for all |x| ≥ r. Since g is continuous on [−r, r], there isMr > 0 such
that |g(x)| ≤Mr for x ∈ [−r, r]. Put M = max{1,Mr} to see that |g(x)| ≤M for all x ∈ R.
Of course, the boundedness of the infinitely differentiable function g = 1/f on R alone is
not enough to imply that g is constant; there are many bounded infinitely differentiable
functions on R. �

The fact that a once-differentiable function is really infinitely many times differentiable
should be surprising, if not shocking. We will now develop a result that is nothing short of
staggering. Suppose that D ⊆ C is open and z0 ∈ D with R > 0 such that B(z0;R) ⊆ D.
Fix z ∈ B(z0; r) with 0 < r < R. Then the Cauchy integral formula gives

f(z) =
1

2πi

∫
|w−z0|=r

f(w)

w − z
dw. (35.52)

It has been some time, but we once expanded 1/(w − z) using the geometric series.
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Specifically, since |w − z0| > 0 and |z − z0| < |w − z0|, we have

1

w − z
=
∞∑
k=0

(z − z0)k

(w − z0)k+1
. (35.53)

Then ∫
|w−z0|=r

f(w)

w − z
dw =

∫
|w−z0|=r

f(w)
∞∑
k=0

(z − z0)k

(w − z0)k+1
dw

Suppose for the moment that we can “interchange” the line integral and the series, i.e.,∫
|w−z0|=r

f(w)
∞∑
k=0

(z − z0)k

(w − z0)k+1
dw =

∞∑
k=0

∫
|w−z0|=r

f(w)
(z − z0)k

(w − z0)k+1
dw. (35.54)

This is certainly true if the series is just a finite sum, and morally it should smack of
differentiating under the integral; both there and here we are swapping an integral and a
limiting procedure. Now,

∞∑
k=0

∫
|w−z0|=r

f(w)
(z − z0)k

(w − z0)k+1
dw =

∞∑
k=0

(∫
|w−z0|=r

f(w)

(w − z0)k+1
dw

)
(z − z0)k,

and so if (35.54) is indeed permitted, then we have shown

f(z) =
∞∑
k=0

(
1

2πi

∫
|w−z0|=r

f(w)

(w − z0)k+1
dw

)
(z − z0)k.

If we put

ak :=
1

2πi

∫
|w−z0|=r

f(w)

(w − z0)k+1
dw, (35.55)

then this just compresses to

f(z) =
∞∑
k=0

ak(z − z0)k,

and we might remember that

ak =
f (k)(z0)

k!
.

In other words, if (35.54) is true, then f is really a power series—at least locally, around
a given point—and the coefficients in this power series expansion effectively arise from the
generalized Cauchy integral formula.

We will explore the consequences of this calculation in detail, and later we will justify
the interchange (35.54). For now, we collect (and slightly rephrase) the result above as a
formal theorem.

35.3 Theorem (Taylor). Let D ⊆ C be open and let f : D → C be holomorphic. Let
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z0 ∈ D and R > 0 such that B(z0;R) ⊆ D. Then

f(z) =
∞∑
k=0

ak(z − z0)k, ak :=
f (k)(z0)

k!
(35.56)

for each z ∈ B(z0;R). The series (35.56) is the Taylor series of f at z0.

Proof. Up to justifying (35.54), all that we need to change from the work above is the
former hypothesis B(z0; r) ⊆ D from the Cauchy integral formula. Now we are just assuming
B(z0;R) ⊆ D. So, fix z ∈ B(z0;R) and take r, ρ > 0 such that |z − z0| < r < ρ < R. Then
B(z0; ρ) ⊆ D, so we can apply the Cauchy integral formula on B(z0; ρ) and get (35.52). From
there the work above proceeds to give the power series expansion. �

We will now step away from (ostensibly) studying holomorphic functions to review some
essential features of power series. We will return to discuss Taylor series extensively. In-
cidentally, calculus textbooks usually call the Taylor series at z0 = 0 (if f is defined there
and holomorphic on a ball centered at 0) the Maclaurin series. Outside of calculus classes,
virtually no one uses this terminology.

35.4 Definition. Let (ak) be a sequence in C and z0 ∈ C. The power series centered
at z0 with coefficients (ak) is the series

∞∑
k=0

ak(z − z0)k.

Recall that the symbol
∑∞

k=0ak(z − z0)k plays the dual role of denoting the sequence of
partial sums

(∑n
k=0ak(z − z0)k

)
and the limit of this sequence, if this limit exists. A power

series carries z as an extra parameter, and so the convergence of a power series will depend
on the value of z. In particular, a power series centered at z0 always converges at z = z0.

35.5 Problem. To what? Recall the convention of denoting z0 = 1, even when z = 0.

We will now state a general convergence theorem for power series which we also likely
saw for real power series in calculus. We will not prove it here, as the proof will not teach
us anything new specifically about complex analysis.

35.6 Theorem. Let (ak) be a sequence in C and z0 ∈ C. There exists a unique (extended)
real number R ≥ 0 such that the power series

∑∞
k=0ak(z − z0)k converges for |z − z0| < R

and diverges for |z − z0| > R. This number R is the radius of convergence of the
power series.

While there is a formula for R in terms of the coefficients (ak), and while this formula
always works, it is both complicated and unwieldy. Often it is best to use the ratio or root
tests or to recognize the power series as the Taylor series for a holomorphic function. Indeed,
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we can paraphrase Theorem 35.3 in the following useful way.

35.7 Corollary. The radius of convergence of the Taylor series centered at z0 for a holomor-
phic function f on an open set is at least as large as the radius of any open ball centered at
z0 and contained in that open set. Unlike the Taylor series of a function of a real variable,
we do not have to check any estimates on the remainder in the series; we just squeeze the
largest open ball possible into the domain of our holomorphic function.

As in real calculus, a power series may converge or diverge for z ∈ C with |z − z0| = R.
The behavior varies from series to series. It is even possible for a series to converge at some
z with |z − z0| = R and diverge at others.

35.8 Example. The coefficients and center of the series

∞∑
k=0

zk

k2 + 1

are ak = 1/(k2 + 1) and 0, respectively. For a fixed z ∈ C, the terms of this series are
Ak := zk/(k2 + 1). To study the convergence of this series, we use the ratio test and
compute ∣∣∣∣Ak+1

Ak

∣∣∣∣ =

∣∣∣∣ zk+1

(k + 1)2 + 1
· k

2 + 1

zk

∣∣∣∣ = |z| k2 + 1

(k + 1)2 + 1
→ |z| as k →∞.

Per the ratio test, the series therefore converges for |z| < 1 and diverges for |z| > 1.
When |z| = 1, we need to study the series differently; the ratio test will be inconclusive.

In this case, we attempt to discern absolute convergence and compute∣∣∣∣ zk

k2 + 1

∣∣∣∣ =
|z|k

k2 + 1
=

1

k2 + 1
≤ 1

k2

for k ≥ 1. By comparison with the p-series
∑∞

k=1k
−2, we obtain absolute convergence for

all z ∈ C with |z| = 1, and therefore convergence.

Day 36: Monday, April 10

Recommended reading

We did a number of examples of Taylor series. The book has many more: see Examples
4.3.4, 4.3.6, 4.3.7, 4.3.8, and 4.3.9.
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36.1 Example. The familiar geometric series

∞∑
k=0

zk

is certainly a power series with coefficients ak = 1 for all k and center 0. We have previously
established its convergence for |z| < 1 by computing its partial sums and its divergence for
|z| ≥ 1 via the test for divergence (which we reiterate below in the case |z| = 1). For extra
practice, we could use the root test and check

|zk|1/k = (|z|k)1/k = |z| → |z| as k →∞,

and thus the geometric series converges for |z| < 1 and diverges for |z| > 1. When |z| = 1,
we have |zk| = |z|k = 1 for all k, and so

lim
k→∞
|zk| = 1 6= 0.

Thus limk→∞ z
k 6= 0 either, for |z| = 1, and so the test for divergence shows that

∑∞
k=0z

k

diverges for |z| = 1.

36.2 Example. Consider the series

∞∑
k=0

(−1)k

k + 1
zk.

We use the ratio test and study∣∣∣∣ (−1)k+1

(k + 1) + 1
zk+1 · k + 1

(−1)kzk

∣∣∣∣ = |z|k + 1

k + 2
→ |z| as k →∞.

Thus (like our previous two examples) the series converges for |z| < 1 and diverges for
|z| > 1.

When |z| = 1, we may have convergence or divergence: take z = 1 to see that the series
is the alternating harmonic series

∞∑
k=0

(−1)k

k + 1
(1)k =

∞∑
k=0

(−1)k
1

k + 1
= −

∞∑
j=1

(−1)j

j
,

which converges. Take z = −1 to see that the series is the harmonic series

∞∑
k=0

(−1)k

k + 1
(−1)k =

∞∑
k=0

1

k + 1
=
∞∑
j=1

1

j
,

which diverges.
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To determine the Taylor series for a function at a given point, we often have three options,
which we list below from least to most preferred.

1. Calculate the coefficients using the generalized Cauchy integral formula, e.g., (35.55).

2. Calculate lots of derivatives of f .

3. Recognize f as some modification of a function whose Taylor series is known, and ma-
nipulate that known Taylor series.

36.3 Example. Let f(z) = 1/(1− z). We know that f is holomorphic on C \ {1} and that
f(z) =

∑∞
k=0z

k for |z| < 1, but what is the Taylor series expansion for f centered at an
arbitrary z0 ∈ C \ {1}, and what is the largest ball on which that series converges? There
are several ways of proceeding here.

(i) We could draw pictures and just figure out what is the largest ball B(z0;R) contained
in C \ {1}. Then we could use Theorem 35.3 or Corollary 35.7 to ensure convergence of
the Taylor series on B(z0;R). Note, though, that these results do not imply the divergence
of the Taylor series outside B(z0;R). Pretty quickly the pictures will convince us that
R = |1− z0|, and then we would have to do some further analysis to ensure that R cannot
be larger.

R

iR

(ii) Here is one approach to that further analysis. We could differentiate f repeatedly and
observe patterns:

f(z) = (1− z)−1, f ′(z) = −(1− z)−2(−1) = (1− z)−2,

f ′′(z) = −2(1−z)−3(−1) = 2(1−z)−3, f (3)(z) = −6(1−z)−4(−1) = 6(1−z)−4, . . .

A formal induction argument establishes

f (k)(z) = k!(1− z)−(k+1),

and so the Taylor series for f centered at z0 is

∞∑
k=0

k!(1− z0)−(k+1)

k!
(z − z0)k =

∞∑
k=0

1

(1− z0)k+1
(z − z0)k.

Since f is holomorphic on the open set C \ {1}, this Taylor series converges on any ball
B(z0;R) such that B(z0;R) ⊆ C \ {1}. How can we find R just from the coefficients of this
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series? We could use the ratio test and calculate∣∣∣∣ (z − z0)k+1

(1− z0)(k+1)+1
· (1− z0)k+1

(z − z0)k

∣∣∣∣ =
|z − z0|
|1− z0|

→ |z − z0|
|1− z0|

as k →∞.

Thus the series converges for |z − z0| < |1 − z0| and diverges for |z − z0| > |1 − z0|. (We
will not investigate convergence at |z − z0| = |1 − z0| except to note divergence at z = 1
via the test for divergence.)

(iii) In lieu of the differentiation above, we could try to use a known Taylor series. Specif-
ically, we would write, for z, z0 ∈ C \ {1},

f(z) =
1

1− z
=

1

1− z0 + z0 − z
=

1

1− z0 − (z − z0)
=

1

(1− z0)

[
1−

(
z − z0

1− z0

)]

=

(
1

1− z0

) 1

1−
(
z − z0

1− z0

)
 =

1

1− z0

f

(
z − z0

1− z0

)
.

Since f(w) =
∑∞

k=0w
k for |w| < 1, we therefore have

f(z) =
1

1− z0

∞∑
k=0

(
z − z0

1− z0

)k
for

∣∣∣∣z − z0

1− z0

∣∣∣∣ < 1,

and this gives the same Taylor series as above.

Day 37: Wednesday, April 12

Recommended reading

We did an example that illustrated Remark 4.3.3 in the book. See the paragraph after
Example 4.3.6 as well for another curious situation, and (re)read the first paragraph on p.
227. This will shed further light on the distinction between real analytic functions on R and
holomorphic/analytic functions on C. Then we talked about differentiating power series,
which is Corollary 4.2.9 in the book. See Examples 4.2.12 and 4.2.13 to practice recognizing
certain power series as derivatives of known functions. Proposition 4.3.5 partially answers
our question of the existence and uniqueness of analytic continuations, which we will resolve
in more detail later.

37.1 Example. The function f(z) = Log(z) is holomorphic on C \ (−∞, 0] and, for z in
this set, its derivative is (as we expect) f ′(z) = 1/z = z−1. Taking more derivatives, we
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have

f ′′(z) = −z−2, f ′′′(z) = 2z−3, f (4)(z) = −6z−4, f (5)(z) = 24z−5, . . . ,

and so, observing this pattern and/or inducting, we find

f (k)(z) = (−1)k+1(k − 1)!z−k.

Then the Taylor series for Log(·) centered at any z0 ∈ C \ (−∞, 0] is

∞∑
k=0

f (k)(z0)

k!
(z − z0)k = Log(z0) +

∞∑
k=1

(−1)k+1(k − 1)!

k!
z−k0 (z − z0)k

= Log(z0) +
∞∑
k=0

(−1)k+1

kzk0
(z − z0)k.

By Theorem 35.3 and Corollary 35.7, this series definitely converges for any ball B(z0;R) ⊆
C \ (−∞, 0].

We can also test the convergence of the series (starting with k = 1, since we can ignore
finitely many terms in the series without affecting convergence) with the ratio test:∣∣∣∣(−1)(k+1)+1

(k + 1)zk+1
0

(z − z0)k+1 · kzk0
(−1)k+1(z − z0)k

∣∣∣∣ =
k

k + 1

(
|z − z0|
|z0|

)
→ |z − z0|

|z0|
as k →∞.

Consequently, the series converges if |z − z0| < |z0|.
How does this compare to what ? Here are sketches of some balls of the form B(z0; |z0|)

for various z0 ∈ C.

R

iR

These pictures suggest that if Re(z0) < 0, then B(z0; |z0|) may intersect nontrivially
with (−∞, 0], whereas the largest ball centered at z0 that does not intersect (−∞, 0] is
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B(z0, | Im(z0)|).

R

iR

Thus the Taylor series for Log(·) converges on a larger ball than one that fits in the domain
of Log(·), and so the Taylor series cannot converge to Log(·) on all of this larger ball!

Notwithstanding the oddities above, power series are some of the nicest functions in
existence, because calculus-type computations with them are very easy—and so it is a wonder
of nature that holomorphic functions are (locally) power series. Here is another theorem
about power series that should be familiar from calculus, and which we will not prove.

37.2 Theorem. Suppose that the power series
∑∞

k=0ak(z − z0)k converges on B(z0;R).
Then the function f(z) :=

∑∞
k=0ak(z − z0)k is holomorphic on B(z0;R) with

f (n)(z) =
∞∑
k=n

(
n−1∏
j=0

(k − j)

)
ak(z − z0)k−n =

∞∑
k=n

k!

(k − n)!
ak(z − z0)k−n (37.57)

for each z ∈ B(z0;R) and each integer n ≥ 0. In particular, the series in (37.57) converges
on B(z0;R), and

ak =
f (n)(z0)

k!
. (37.58)

Note that (37.58) follows directly from (37.57) by substituting z = z0.

37.3 Problem. To motivate the equality (37.57), try differentiating f(z) = zk some n
times, observe patterns, and try to rewrite the coefficients in the derivatives as quotients
of factorials. For example, calculate f ′, . . . , f (6) for f(z) = z5.

37.4 Problem. The coefficients of a power series are unique in the following sense. Let
z0 ∈ C and let (ak) and (bk) be sequences in C such that for some R > 0,

∞∑
k=0

ak(z − z0)k =
∞∑
k=0

bk(z − z0)k

for all z ∈ B(z0;R). Show that ak = bk for all k. [Hint: let f be the difference of the series
and use Theorem 37.2.]
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37.5 Problem. Here is another proof of Liouville’s theorem (Theorem 34.9). Suppose that
f : C→ C is entire; explain why

f(z) =
∞∑
k=0

akz
k, ak :=

f (k)(0)

k!

for all z ∈ C. If M > 0 satisfies |f(z)| ≤ M for all z ∈ C, use the generalized Cauchy
integral theorem to show

|ak| ≤Mr−k

for all r > 0 and k ≥ 0. Send r →∞ and conclude ak = 0 for k ≥ 1.

37.6 Example. Recognizing a given power series as the derivative of another is a useful
skill. For example, at first glance the series

∞∑
k=2

k(k − 1)zk

looks like a second derivative, since the starting index is 2. For k ≥ 2, we calculate

k!

(k − 2)!
=
k(k − 1)(k − 2)!

(k − 2)!
= k(k − 1),

and so all that is “wrong” in this series is the power of z. We therefore rewrite

∞∑
k=2

k(k − 1)zk = z2

∞∑
k=2

k!

(k − 2)!
zk−2 = z2f ′′(z), where f(z) =

∞∑
k=0

zk =
1

1− z
.

This works assuming |z| < 1, and so, for such z, we obtain

∞∑
k=2

k(k − 1)zk = z2

(
2

(1− z)3

)
=

2z2

(1− z)3
.

Last, we can use the ratio test to check that the original series converges for |z| < 1 and
diverges for |z| > 1, and so the restriction to |z| < 1 above is reasonable.

The identity (37.58) agrees with Theorem 35.3 and shows that we can either start with a
holomorphic function and obtain a power (Taylor) series, or we can start with a power series
and recognize it as the Taylor series of a function. Morally, the two approaches to complex
analysis are the same. For this reason, we now introduce a piece of standard terminology
that we have heretofore delayed.

37.7 Definition. Let D ⊆ C. A function f : D → C is analytic on D if for each z0 ∈ D,
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there is r > 0 and a sequence (ak) in C such that

f(z) =
∞∑
k=0

ak(z − z0)k (37.59)

for each z ∈ B(z0; r) ∩ D.

Theorems 35.3 and 37.2 combine to tell us that analytic functions are precisely the
holomorphic functions.

37.8 Theorem. Let D ⊆ C be open. A function f : D → C is analytic if and only if f is
holomorphic, in which case the series expansion (37.59) of f about a point z0 ∈ D is its
Taylor series.

37.9 Example. Many familiar functions are analytic on C because of how we chose to
define them as power series. This includes the exponential, the sine, and the cosine:

ez = exp(z) =
∞∑
k=0

1

k!
zk, sin(z) =

∞∑
k=0

(−1)k

(2k + 1)!
z2k+1, and cos(z) =

∞∑
k=0

(−1)k

(2k)!
z2k.

Although we do not usually employ this terminology in real-variable calculus, it is entirely
possible for a function defined on (a subinterval of) R to be analytic in the sense that for
each point in that interval, the function equals its Taylor series around that point. Indeed,
that is probably how we first rigorously met the exponential and trigonometric functions in
calculus.

37.10 Definition. Let I ⊆ R be an interval. A function f : I → R is real analytic
on I if for each t0 ∈ I, there is a sequence of real numbers (ak) and a real number δ > 0
such that for t ∈ (t0 − δ, t0 + δ) ∩ I,

f(t) =
∞∑
k=0

ak(t− t0)k. (37.60)

Theorem 37.2 holds for real analytic functions with essentially the same proof as in
the complex-variable case: a real analytic function is infinitely differentiable, and in the
expansion (37.60), the coefficients satisfy ak = f (k)(t0)/k!. However, Theorem 37.8 does
not. There are plenty of infinitely differentiable functions on R that are not real analytic; a
classical counterexample is

f(t) :=

{
e−1/t2 , t 6= 0

0, t = 0.

One can show that f is infinitely differentiable on R and f (k)(0) = 0 for all k. Thus the
Taylor series for f centered at 0 converges to the zero function R, and that is definitely not
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f . This is in line with our previous remarks that, as we know well from calculus, a function
on R can be n-times differentiable but not (n+1)-times differentiable. Differentiability on C
is much stronger: the existence of one derivative guarantees the existence of all derivatives
and the convergence of the Taylor series back to the original function to boot.

But in the happy case that we do have a real analytic function f : I ⊆ R → R, can we
extend it to an analytic function on some open set D ⊆ C with I ⊆ D? After all, we did
that quite successfully with the exponential and trigonometric functions. Such an extension
has a formal name.

37.11 Definition. Let D0 ⊆ D ⊆ C. A function f : D → C is an analytic continu-
ation of a function f0 : D0 → C if f is analytic and if f

∣∣
D0

= f0, i.e., if f(z) = f0(z) for
all z ∈ D0.

So, when does a real analytic function have an analytic continuation from a real interval
to an open subset of the plane? And if a function has an analytic continuation, is that
continuation unique? That is, could a function f0 have two analytic continuations, f1 and
f2, with f1 6= f2? Such a possibility should be frightening, as it might mean that there is
more than one way to extend, say, the exponential to the plane—and so perhaps we have
been working with the wrong exponential all along!

Of course, this is nonsense. Analytic continuations, if they exist, are unique. Forcing two
functions f1 and f2 to be the same is really saying that f1 − f2 = 0. And so we will take up
the study of the zeros of an analytic function: if f is analytic, what can we say about those
z at which f(z) = 0? In particular, what is the minimum amount of data about a function
that we need to conclude that it is always zero? (Not much.)

Day 38: Friday, April 14

Recommended reading

We discussed the zeros of an analytic function, which corresponds to Definition 4.5.1,
Theorem 4.5.2, and Example 4.5.3.

Power series are, euphemistically, “just” polynomials of “infinite” degree. A spot of work
with the roots of polynomials, then, will motivate some of the broader results on analytic
functions that we will develop.

Let f(z) =
∑n

k=0akz
k be a polynomial of degree n ≥ 1. Note that this formula for f is its

Taylor expansion centered at 0, since f (k)(z) = 0 for all integers k ≥ n+ 1 and all z ∈ C. By
the fundamental theorem of algebra, f has a root z1 ∈ C. Since f is entire, we may expand
f as a power series centered at z1: f(z) =

∑∞
k=0bk(z − z1)k. Here b0 = f(z1) = 0, and also

bk = f (k)(z1)/k! = 0 for k ≥ n+ 1. Thus f(z) =
∑n

k=1bk(z − z1)k, and so we may factor

f(z) = (z − z1)
n∑
k=1

bk(z − z1)k−1 = (z − z1)p1(z), p1(z) =
n−1∑
j=0

bj+1(z − z1)j.

We now recognize p1 as a polynomial of degree n− 1; if n = 1, then p1 is constant, and
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in particular p1(z1) 6= 0. Otherwise, f = 0, and then f would not be a polynomial of degree
at least 1. If n ≥ 2, then either p1(z1) 6= 0, or p1(z1) = 0, in which case we can repeat the
argument above and factor

p1(z) = (z − z1)p2(z),

where p2 is a polynomial of degree n− 2. In this case, we can rewrite

f(z) = (z − z1)2p2(z).

And then the process continues to allow us to conclude that for some integer m1 ≥ 1, there
is a polynomial p1 of degree n−m1 such that p1(z1) 6= 0 and

f(z) = (z − z1)m1p1(z). (38.61)

We want to call the integer m1 the multiplicity or order of z1 as a root of f . As with
most integer-dependent processes, a rigorous proof of the factorization (38.61) would use
induction on n.

We could go further from (38.61) and say that, if m < n, then p1 is a polynomial of
degree at least 1, and therefore p1 has a root z2. Note that z2 6= z1 since p1(z1) 6= 0. Then
we could write p1(z) = (z − z2)m2p2(z), where p2(z1) 6= 0. And so on. Eventually we would
factor

f(z) = a(z − z1)m1 · · · (z − zr)mr ,

where z1, . . . , zr ∈ C are distinct andm1, . . . ,mr ≥ 1 are integers withm1+· · ·+mr = n. The
coefficient a ∈ C \ {0} is the constant polynomial that arises from the very last factorization
of pr, i.e., pr(z) = (z − zr)mra. This factorization is the fundamental theorem of algebra,
and a rigorous proof also needs induction.

But we will not do that. Instead, viewing analytic functions as “infinite degree polyno-
mials,” we will see just how much the behavior of zeros of analytic functions resembles the
results above for polynomials.

38.1 Theorem. Let D ⊆ C be open and suppose that f : D → C is analytic. Let z0 ∈ D
such that f(z0) = 0 and take r > 0 such that B(z0; r) ⊆ D. Then one, and only one, of the
following holds:

(i) f(z) = 0 for all z ∈ B(z0; r).

(ii) There is an analytic function g : B(z0; r)→ C and an integer m ≥ 1 such that f(z) =
(z − z0)mg(z) for z ∈ B(z0; r) and, additionally, g(z0) 6= 0. The integer m is the smallest
integer k such that f (k)(z0) 6= 0, and g(z0) = f (m)(z0).

Proof. Write f(z) =
∑∞

k=0ak(z − z0)k for z ∈ B(z0; r), where ak = f (k)(z0)/k!. We consider
the following two cases on the coefficients.

(i) ak = 0 for all k. Since f(z) =
∑∞

k=0ak(z−z0)k for all z ∈ B(z0; r), we then have f(z) = 0
for all z ∈ B(z0; r). This is (i).
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(ii) There is n ≥ 1 such that an 6= 0. Note that a0 = f(z0) = 0, so this is only possible for
some n ≥ 1. Now let m ≥ 1 be the smallest integer satisfying am 6= 0. (That such a smallest
integer exists is a consequence of the well-ordering property of the positive integers.) We
may then write

f(z) =
∞∑
k=0

ak(z−z0)k =
∞∑
k=m

ak(z−z0)k =
∞∑
j=0

aj+m(z−z0)j+m = (z−z0)m
∞∑
j=0

aj+m(z−z0)j.

(38.62)
These equalities are valid for z ∈ B(z0; r).

Then, for z ∈ B∗(z0; r), we have

∞∑
j=0

aj+m(z − z0)j =
f(z)

(z − z0)m
.

That is, the series on the left converges for z ∈ B∗(z0; r), and certainly the series converges
at z = z0. Thus the map

g : B(z0; r)→ C : z 7→
∞∑
j=0

aj+m(z − z0)j

is analytic. Moreover, we have the factorization f(z) = (z − z0)mg(z) from (38.62), and by
definition of g we compute g(z0) = am 6= 0. This is (ii). �

In case (ii) above, since g(z0) 6= 0, continuity allows us to choose ρ ≤ r such that g(z) 6= 0
on B(z0; ρ). We then give this case a special name.

38.2 Definition. Let D ⊆ C be open and let f : D → C be analytic. Let z0 ∈ D and let
m ≥ 1 be an integer. Then z0 is an zero of f of order (multiplicity) m if for
some r > 0 such that B(z0; r) ⊆ D, there is an analytic function g : B(z0; r)→ C such that
f(z) = (z − z0)mg(z) for z ∈ B(z0; r) with g(z) 6= 0 for z ∈ B(z0; r). In the case m = 1,
the zero is sometimes called simple.

38.3 Example. We find the zeros and their orders for several different functions.

(i) f1(z) = z2. Here f1(z) = 0 if and only if z = 0, and we can basically read off from the
definition of f1 that 0 has order 2. Indeed, with g(z) = 1 for all z, we have f1(z) = z2g(z),
and certainly g(0) 6= 0.

(ii) f2(z) = sin(z). Long ago we calculated that the roots of the sine are z = kπ for k ∈ Z.
Since f ′2(z) = cos(z) and cos(kπ) = (−1)k 6= 0 for all k, these roots are all simple, i.e., they
have multiplicity 1. We could factor sin(z) = (z − kπ)gk(z) for a certain analytic function
gk, but here we would need the Taylor series of the sine centered at kπ, as in the proof of
Theorem 38.1; constructing gk is not as transparent as in the case f(z) = z2.

(iii) f3(z) = e2z − 2ez + 1. Here we use the factorization w2 − 2w + 1 = (w − 1)2 to write
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f3(z) = (ez − 1)2. Then f3(z) = 0 if and only if ez = 1, so the zeros of f are the numbers
2πik for k ∈ Z. We calculate f ′3(z) = 2(ez − 1), so f ′3(2πik) = 0, and f ′′3 (z) = 2ez, so
f ′′3 (2πik) = 2 6= 0. Each zero therefore has order 2.

The zeros of the second and third functions in the example above had something in
common—not their order, and not whether they were real or purely imaginary. Rather, all
of these zeros were isolated from each other. We can see this just by plotting points: a blue
dot is a zero of f2(z) = sin(z) and a black dot is a zero of f3(z) = (ez − 1)2. Around each
dot we can draw a ball that does not include any other dot.

R

iR

1π−1π 2π−2π 3π−3π 4π−4π

(2π)2

(2π)3

−(2π)2

−(2π)3

38.4 Definition. Let D ⊆ C be open and let f : D → C be analytic. A point z0 ∈ D
is an isolated zero of f if there is r > 0 such that B(z0; r) ⊆ D and f(z) 6= 0 for
z ∈ B∗(z0; r).

That is, z0 is the only zero of f in the ball B(z0; r); outside the ball, f certainly may have
zeros. Additionally, for different isolated zeros of the same function, there are no guarantees
about the relative sizes of the balls surrounding them and excluding other zeros. In Example
38.3, the zeros of the second and third functions were a nice, uniform distance away from
each other. This does not always happen.

38.5 Example. Let D = C \ {0} and let f(z) = sin(π/z). Then f is analytic on D and
f(z) = 0 if and only if π/z = kπ for some integer k. That is, the zeros of f are the numbers
zk = 1/k. These numbers are definitely isolated; after a bit of algebra, we can find rk > 0
such that if |z − 1/k| < rk, then z 6= 1/j for any integer j 6= k. But note that zk → 0
as k → ∞, and in particular the distance between successive zeros zk and zk+1 shrinks as
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k →∞.

R

iR

zk−1zkzk+1

Although we cannot guarantee that the zeros of an analytic function are all a minimum
distance apart, we can be assured that they are isolated, at least for a function that is
not always zero. In other words, the only “interesting” zeros—those of a function that
is not identically zero—must be isolated. We will actually prove a sort of converse to this
statement and, in the process, demonstrate that only a small amount of data must be verified
to guarantee that a function is always zero. From this, we will quickly extract a test for
determining when two functions really are the same.

Day 39: Monday, April 17

Recommended reading

We proved an augmented version of Theorem 4.5.4, which we used to prove the identity
principle (Theorem 4.5.5). Example 4.5.6 offers some different applications of the identity
principle.

39.1 Theorem. Let D ⊆ C be a domain and let f : D → C be analytic. The following are
equivalent.

(i) f(z) = 0 for all z ∈ D.

(ii) There is z0 ∈ D such that f (k)(z0) = 0 for all k ≥ 0.

(iii) There is a sequence (zk) in D of distinct points (i.e., zk 6= zj for j 6= k) such that
f(zk) = 0 for all k and zk → z0 for some z0 ∈ D.

(iv) f has a zero that is not isolated in D.

Proof. (i) =⇒ (ii) This is essentially a direct calculation: if f(z) = 0 for all z ∈ D, then,
fixing z, we have

f ′(z) = lim
h→0

f(z + h)− f(z)

h
= lim

h→0

0

h
= 0.

Thus f ′(z) = 0 for all z ∈ D. Proceeding inductively, we find f (k)(z) = 0 for all z ∈ D and
all integers k ≥ 0. We can then take any point z0 ∈ D to satisfy the condition in part (ii).

(ii) =⇒ (iii) Fix r > 0 such that B(z0; r) ⊆ D. Then f(z) =
∑∞

k=0f
(k)(z0)(z − z0)k/k! = 0
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for all z ∈ B(z0; r). Now set zk := z0 + r/(k + 1). It is straightforward to check that zk 6= zj
for j 6= k, that zk ∈ B(z0; r) ⊆ D for each k, and that zk → z0 ∈ D.

(iii) =⇒ (iv) We claim that z0 is this zero that is not isolated, and we prove this by con-
tradiction. If z0 is isolated, then there is r > 0 such that B(z0; r) ⊆ D and f(z) 6= 0 for
z ∈ B∗(z0; r). Since zk → z0, for k sufficiently large we have zk ∈ B(z0; r). And since the
points zk are all distinct, we have zk = z0 for at most one k ≥ 1. Thus for k large, we really
have zk ∈ B∗(z0; r). But f(zk) = 0, which contradicts our prior conclusion that f(z) 6= 0 for
z ∈ B∗(z0; r).

(iv) =⇒ (i) Let z0 be the zero that is not isolated, so for some r > 0 with B(z0; r) ⊆ D, we
have f(z) = 0 for all z ∈ B(z0; r). If D = B(z0; r), then we are done. Otherwise, we need to
do more work, and it is here that we will use for the first time in the proof the hypothesis
that D is connected, not merely open.

We want to show that f(z) = 0 for all z ∈ D. We give two arguments. The first is
geometric and relies on an assertion about subsets of C that requires more technical tools
from analysis than we care to develop here. The second is more rigorous but also possibly
more opaque.

Argument #1. Let z ∈ D and let γ be a curve in D from z0 to z. It is possible to cover
the image of γ by a finite sequence of overlapping balls of the same radius ρ ≤ r centered
at points on the image of γ, starting with B(z0; ρ), such that the center of the kth ball is
contained in the (k − 1)st ball, and such that each ball is contained in D. For example, if
there are two balls, B(z0; ρ) and B(z1; ρ) for some z1 on the image of γ, then the situation
looks like this (in which we assume that γ is a line segment for simplicity).

z0 z1 z

We know that f(w) = 0 for all w ∈ B(z0; ρ) and that z1 ∈ B(z0; ρ). In particular,
f(w) = 0 for all w ∈ B(z1; s), where s > 0 is such that B(z1; s) ⊆ B(z0; ρ). Then f (k)(z1) = 0
for all k, and so f(w) =

∑∞
k=0f

(k)(z1)(w−z1)k/k! = 0 for all w ∈ B(z1; ρ). Here we are really
using the fact that part (ii) implies (i) when D is a ball centered at z0. In particular, then,
f(z) = 0. If there are more than two balls involved in the covering, then we can “piggyback”
this argument to show that f is zero on each successive ball, culminating with the ball that
contains (but need not be centered at) z.

The difficulty with this approach is the construction of this special “finite covering” of
the image of γ, which needs, among other things, the tools of compactness and uniform
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continuity. Below we present a less geometrically obvious (but still geometrically motivated)
proof that has the advantage of being logically self-contained to the tools that we already
possess.

Argument #2. Put

D1 :={z ∈ D | z is an isolated zero of f in D or f(z) 6= 0}

and
D2 :={z ∈ D | f(z) = 0 and z is not an isolated zero of f in D} .

Note that D2 is nonempty, that D1 ∪ D2 = D, and that D1 ∩ D2 = ∅. We claim that D1

and D2 are both open; if this is true, then Problem 39.2 below forces D1 = ∅ since D is a
domain. Then D = D2, in which case f(z) = 0 for all z ∈ D.

We first show that D1 is open. If z ∈ D1 is an isolated zero of f in D, let r > 0 be such
that B(z; r) ⊆ D with f(w) 6= 0 for w ∈ B∗(z0; r). Thus B∗(z; r) ⊆ D1, and since we know
z ∈ D1 already, we conclude B(z; r) ⊆ D. If z ∈ D1 satisfies f(z) 6= 0, then by continuity
there is r > 0 such that B(z; r) ⊆ D and f(w) 6= 0 for w ∈ B(z; r). This implies that
w ∈ D1 for all w ∈ B(z; r), and so B(z; r) ⊆ D1. Either way, we have found r > 0 such that
B(z; r) ⊆ D1.

Now we show that D2 is open. If z ∈ D2, then f(z) = 0 and z is not an isolated zero of f
in D. So, for some r > 0 such that B(z; r) ⊆ D, we have f(w) = 0 for all w ∈ B(z; r). That
is, each w ∈ B(z; r) is a zero of f ; now we show that each w is a zero that is not isolated,
which will imply w ∈ D2 and thus B(z; r) ⊆ D2. Given w ∈ B(z; r), take s > 0 such that
B(w; s) ⊆ B(z; r). It is still the case that f(ξ) = 0 for all ξ ∈ B(w; s), so w is a zero of f in
D that is not isolated, as desired. �

39.2 Problem. Let D ⊆ C be nonempty and connected.

(i) Suppose that D = D1 ∪D2, where both D1 and D2 are open and D1 ∩D2 = ∅. Argue
by contradiction as follows that if D2 6= ∅, then D1 = ∅.

Suppose instead that both D1 and D2 are nonempty. Explain why the function

f : D → C : z 7→

{
1, z ∈ D1

2, z ∈ D2

is defined, holomorphic, locally constant, and not constant. Conclude that D cannot be
connected.

(ii) Let D = C \ iR, D1 = {z ∈ C | Im(z) < 0}, and D2 = {z ∈ C | Im(z) > 0}. Then D1

and D2 are open, D = D1 ∪ D2, with D1 ∩ D2 = ∅ but D1 6= ∅ and D2 6= ∅. Draw a
picture of this situation. Then draw a curve with initial point in D1 and terminal point in
D2. Point out on your drawing how this curve shows that D is not connected.

39.3 Problem. In the proof that part (iv) of Theorem 39.1 implies part (i), perhaps a
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more natural decomposition would be

D1 :={z ∈ D | z is an isolated zero of f in D}

and
D2 :={z ∈ D | z is not an isolated zero of f in D} .

Explain why D1 is not open, so this decomposition does not work.

39.4 Problem. Give an example of an open set D and an analytic function f : D → C
such that f is not identically zero on but such that f has a zero in D that is not an isolated
zero. That is, f and D should satisfy the following two conditions.

(i) There exists z1 ∈ D such that f(z1) 6= 0.

(ii) There exist z2 ∈ D and r > 0 such that B(z2; r) ⊆ D and f(z) = 0 for all z ∈ B(z2; r).

Such an open set D cannot be connected—why?

39.5 Problem. Does the situation of Example 38.5 contradict the equivalence of parts (i)
and (iii) of Theorem 39.1?

Perhaps the most useful “test” to emerge from this theorem is part (iii): f need only be
zero on a sequence of distinct points in D that converges to a point in D in order for us to
conclude that f is always zero on D! For example, if f is zero on a line segment in D (a
one-dimensional subset of an open, and therefore two-dimensional, set), then f is zero on all
of D. This is only a very “little” amount of data!

39.6 Problem. Prove this ebullient claim. Specifically, let D ⊆ C be a domain with z1,
z2 ∈ D and z1 6= z2. Suppose that f1, f2 : D → C are analytic with f1(z) = f2(z) for all
z ∈ D. Prove that f1 = f2 on D.

While Theorem 39.1 is stated for the zeros of a function, this result carries over nicely to
comparing two functions: just study where their difference is zero.

39.7 Corollary (Identity principle). Let D ⊆ C be a domain and let f1, f2 : D → C be
analytic. Suppose that f1(zk) = f2(zk) for a sequence (zk) of distinct points in D such that
zk → z for some z ∈ D. Then f1 = f2 on D.

Proof. Put f = f1 − f2 and use the equivalence of parts (i) and (iii) of Theorem 39.1. �

39.8 Example. Many “functional identities” that are known on R remain true for functions
extended analytically to C. Often they can be proved brute-force (the best force) from the
definitions of these analytic continuations, but we can also use the identity principle.
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We know that ln(t1t2) = ln(t1) + ln(t2) for t1, t2 > 0. We would like to say that
Log(z1z2) = Log(z1) + Log(z2) for z1, z2 ∈ C \ {0}, but this probably is not true for the
entire plane. Fix t0 > 0 and define

f : (0,∞)→ R : t 7→ ln(tt0)−
[

ln(t) + ln(t0)
]
.

Then, really, f(t) = 0 for all t > 0, and so certainly f is real analytic. Next, note that if
t0 > 0 and z ∈ C \ (−∞, 0], then zt0 ∈ C \ (−∞, 0] as well. Thus the function

f̃ : C \ (−∞, 0]→ C : z 7→ Log(zt0)−
[

Log(z) + Log(t0)
]

is analytic, since the principal logarithm is analytic except on the branch cut (−∞, 0].
Furthermore, f̃(t) = f(t) = 0 for all t ∈ (0,∞). Thus f̃(z) = 0 for all z ∈ C \ (−∞, 0].
Changing our notation slightly, we conclude

Log(zt) = Log(z) + Log(t)

for all z ∈ C \ (−∞, 0] and t > 0.
Now let z, w ∈ C \ {0}. Then zw = |zw|ei[Arg(z)+Arg(w)]. Changing notation once more,

we know Log(ξt) = Log(ξ) + Log(t) when t > 0 and ξ ∈ C \ (−∞, 0]. Taking t = |zw| and
ξ = ei[Arg(z)+Arg(w)], we will have

Log(zw) = Log(|zw|) + Log(ei[Arg(z)+Arg(w)]) (39.63)

if ei[Arg(z)+Arg(w)] 6∈ (−∞, 0]. This requires Arg(z) + Arg(w) 6= ±π. From here, it is
an exercise in (hopefully more familiar) properties of the complex logarithm to show
Log(zw) = Log(z) + Log(w).

39.9 Problem. Let z, w ∈ C \ {0} such that Arg(z) + Arg(w) 6= ±π. Use (39.63) to show
that Log(zw) = Log(z) + Log(w).

Day 40: Wednesday, April 19

Recommended reading

We revisited the issue of analytic continuation of real analytic functions raised in Propo-
sition 4.3.5. Then we discussed removable singularities and poles. The book contains a
wealth of information on pp. 276–281. All of the examples are worth reading, and the the-
orems give several additional characterizations of removable singularities and poles. Figure
4.16 is particularly illustrative. The implications (v) =⇒ (vi) =⇒ (i) of Theorem 4.5.11
are sometimes called the Riemann removability theorem. You can omit on first reading
references to Laurent series, which we will study soon. Example 4.3.10 and Theorem 4.3.11
offer more examples of removable singularities, although that language isn’t used there.

Now we can answer a major question that has been driving us since we first extended



MATH 4391 (Section 51, Spring 2023) Daily Log 109

the exponential to the plane: is there only one way to extend a real analytic function into
C? Yes.

40.1 Theorem (Analytic continuation of real analytic functions). Let I ⊆ R be an
interval and let f : I → R be real analytic. Then there exists a domain D ⊆ C such that
I ⊆ D and that f has a unique analytic continuation on D.

Proof. The uniqueness result is the identity theorem; see Problem 40.3.
Now we show existence. First we have to construct the domain D. For each t ∈ I, there

is rt > 0 such that the Taylor series for f converges to f on (t − rt, t + rt) ∩ I. We may as
well make rt so small that (t− rt, t+ rt) ⊆ I. Then there is a sequence (ak,t) of real numbers
such that f(τ) =

∑∞
k=0ak,t(τ− t)k for all τ ∈ (t− rt, t+ rt). Specifically, ak,t = f (k)(t)/k!.

Now we set

D :=
⋃
t∈I

B(t; rt) ={z ∈ C | |z − t| < rt for some t ∈ I} .

R
t

z

s

w

We claim that D is open and connected. For openness, fix z ∈ D and take t ∈ I such
that z ∈ B(t; rt); since B(t; rt) is open, there is r > 0 such that B(z; r) ⊆ B(t; rt). For
connectedness, fix z, w ∈ D. Take z ∈ B(t; rt) and w ∈ B(s; rs) for some t, s ∈ I. Let
γ = [z, t]⊕ [t, s]⊕ [s, w]; then γ is a path in D with initial point z and terminal point w.

Next, we claim that, with the sequence (ak,t) and the radius rt > 0 defined above, the
series

∑∞
k=0ak,t(z − t)k converges for each z ∈ B(t; rt). This is because the power series∑∞

k=0ak,t(z − t)k has a radius of convergence Rt ≥ 0 and because we know already that the
power series converges for z ∈ R with |z− t| < rt. If the power series diverged at some point
in the ball B(t; rt), then it could not converge on all of the open interval (t− rt, t+ rt).

Finally, we define the analytic continuation. First, for t ∈ I, define

ft : B(t; rt)→ C : z 7→
∞∑
k=0

ak,t(z − t)k.

By the work above, ft is analytic on B(t; rt). Next, note that if B(t; rt) ∩ B(s; rs) 6= ∅ for
some t, s ∈ I, then by Problem 40.2 below, there is a sequence of distinct points (wk) in
B(t; rt) ∩ B(s; rs) such that wk → w for some w ∈ B(t; rt) ∩ B(s; rs). Since ft(wk) = fs(wk)
for each k, the identity principle implies that ft(z) = fs(z) for each z ∈ B(t; rt) ∩ B(s; rs).

Consequently, we may define

f̃ : D → C : z 7→ ft(z) if z ∈ B(t; rt).
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There is no ambiguity in this definition if z ∈ B(t; rt) ∩ B(s; rs) for two distinct t, s ∈ I, as
the work above shows ft(z) = fs(z). Finally, since each ft is analytic on B(t; rt), the function
f̃ is analytic on D. And clearly f̃(t) = f(t) for each t ∈ I. �

40.2 Problem. Let z1, z2 ∈ C and r1, r2 > 0 such that B(z1; r1)∩B(z2; r2) 6= ∅. Show that
there exists a sequence of distinct points (wk) in B(z1; r1)∩B(z2; r2) such that wk → w for
some w ∈ B(z1; r1) ∩ B(z2; r2). [Hint: as usual when working with balls, start by drawing a
picture.]

40.3 Problem.

(i) Let D ⊆ C be a domain and let I ⊆ R be a nonempty interval such that I ⊆ D.
Suppose that f1, f2 : D → C are analytic with f1(t) = f2(t) for all t ∈ I. Prove that
f1 = f2 on D. [Hint: use Problem 39.6.]

(ii) Prove that analytic continuations, whether of real analytic functions defined on a real
interval or not, are unique. That is, suppose that D0 ⊆ C is a domain and f : D0 → C is
analytic. Let D ⊆ C also be a domain with D0 ⊆ D. Suppose that f̃1, f̃2 : D → C are both
analytic continuations of D0. Then f̃1 = f̃2.

We now know a great deal about analytic functions, especially their power series expan-
sions and their zeros. What happens if a function fails to be analytic, or holomorphic, or
differentiable, on some proper subset of its domain? Depending on the geometry of that
region of failure, we may still be able to say quite a lot about the function. Studying such
failures is not just a natural evolution of our narrative—frequently applications demand
consideration of functions that are not analytic in certain controlled ways.

We begin with the simplest failure of analyticity: the isolated singularity.

40.4 Definition. Let z0 ∈ C and r > 0. A function f : B∗(z0; r) → C has an isolated
singularity at z0 if f is analytic on B∗(z0; r).

It may appear that there are lots of ways for a function to fail to be analytic at a
single point in a ball, and lots of possible behaviors on that punctured ball, but the power
of analyticity on the punctured ball is such that there are only really three situations to
consider. The following three canonical examples, all of which are functions defined and
analytic on C \ {0}, will illustrate those three behaviors:

f(z) =
sin(z)

z
, g(z) =

1

z
, and h(z) = e1/z.

The form of these functions illustrates a general truth: most isolated singularities arise in
practice via some kind of division by 0.

If f : B∗(z0; r) → C has an isolated singularity at z0, perhaps it is natural to ask about
the limit behavior of f at z0. Either the limit limz→z0 f(z) exists, or it does not. If the limit
does exist, our experience with removable discontinuities suggests that we can extend f to
z0 and retain continuity, perhaps analyticity.
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We can.

40.5 Theorem. Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r) → C is analytic and
L := limz→z0 f(z) exists. Then the function

f̃ : B(z0; r)→ C : z 7→

{
f(z), z 6= z0

L, z = z0

is analytic.

We will not prove this theorem but instead work with one of the canonical examples
above.

40.6 Example. The function f(z) = sin(z)/z, defined on C \ {0}, can be rewritten as
follows. First, 0 is a simple root of g(z) := sin(z), so for some r > 0 and z ∈ B(0; r), we
have sin(z) = zq(z), where q : B(0; r)→ C is analytic, q(z) 6= 0 for z ∈ B(0; r), and

q(0) = g′(0) = cos(0) = 1.

Thus, for z ∈ B∗(0; r), we have

f(z) =
sin(z)

z
=
zq(z)

z
= q(z) and so lim

z→0
f(z) = lim

z→0
q(z) = q(0) = 1.

We now name this first kind of isolated singularity.

40.7 Definition. Let z0 ∈ C and r > 0. An analytic function f : B∗(z0; r) → C has a
removable singularity at z0 if the limit limz→z0 f(z) exists.

Theorem 40.5 says that any analytic function f : B∗(z0; r)→ C with a removable singu-
larity at z0 has an analytic continuation to that singularity. Conversely, the existence of an
analytic continuation f̃ : B(z0; r)→ C of f implies that f has a removable singularity at z0,
since the limit limz→z0 f(z) = limz→z0 f̃(z) must exist by the continuity of f̃ and the equality
f(z) = f̃(z) on B∗(z0; r).

40.8 Problem. Let D ⊆ C be open and let f : D → C be analytic. Show that f has a
removable singularity at every point of D.

40.9 Problem. Let D ⊆ C be open, let f : D → C be analytic, and let z0 ∈ D. Define

φ : D → C : z 7→


f(z)− f(z0)

z − z0

, z 6= z0

f ′(z0), z = z0.
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(i) Show that φ is analytic on D.

(ii) What is the Taylor series of φ centered at z0?

(iii) Compare these results to the difference quotient lemma (Lemma 19.1).

Suppose next that f : B∗(z0; r)→ C is analytic but the limit limz→z0 f(z) does not exist.
As we know from calculus, there are different gradations of a limit not existing. An infinite
limit (a vertical asymptote) technically does not exist as a real number, but knowing that a
limit is infinite surely tells us more information than just saying that the limit does not exist.
We have not yet worked with infinite limits of complex-value functions, but the behavior of
the canonical example g(z) = 1/z suggests how we might proceed.

40.10 Definition. Let z0 ∈ C and r > 0. For a function f : B∗(z0; r) → C, we write
limz→z0 |f(z)| =∞ if for all M > 0, there is δ ∈ (0, r] such that if 0 < |z − z0| < δ, then
M < |f(z)|.

It is then definitely the case that limz→0 |z−1| =∞: given M > 0, just take δ =
1/M . More generally, suppose that f : B∗(z0; r) → C has an isolated singularity at z0 with
limz→z0 |f(z)| =∞. Take δ > 0 such that if z ∈ B∗(z0; δ), then 1 < |f(z)|, so in particular
f(z) 6= 0 for z ∈ B∗(z0; δ). Then the function

g : B∗(z0; δ)→ C : z 7→ 1

f(z)

is defined and analytic. Moreover, it is not too much work to check that limz→z0 g(z) = 0.

40.11 Problem. Check this.

Then g has a removable singularity at z0 and therefore an analytic continuation to B(z0; δ)
of the form

g̃ : B(z0; δ)→ C : z 7→

{
1/f(z), z 6= z0

0, z = z0.

Since 1/f(z) 6= 0 for all z ∈ B∗(z0; δ), we see that g̃(z) 6= 0 for z ∈ B∗(z0; δ), too. Then g̃
really has an isolated zero at z0, and so there is an integer m ≥ 1 and an analytic function
q : B(z0; ρ)→ C for some ρ ∈ (0, δ] such that for z ∈ B(z0; ρ),

g̃(z) = (z − z0)mq(z) and q(z) 6= 0.

Thus for z ∈ B∗(z0; ρ), we have

f(z) =
1

g̃(z)
=

1

(z − z0)mq(z)
=

1/q(z)

(z − z0)m
.

Put p(z) := 1/q(z) to conclude the following.
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40.12 Theorem. Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r) → C is analytic and
limz→z0 |f(z)| =∞. Then there exist ρ ∈ (0, r], an integer m ≥ 1, and an analytic function
p : B(z0; ρ)→ C such that p(z0) 6= 0 and

f(z) =
p(z)

(z − z0)m
for z ∈ B∗(z0; ρ).

This gives rise to another kind of named isolated singularity.

40.13 Definition. Let z0 ∈ C and r > 0. An analytic f : B∗(z0; r) → C has a pole
of order m at z0 if there exist ρ ∈ (0, r], an integer m ≥ 1, and an analytic function
p : B(z0; ρ)→ C such that p(z0) 6= 0 and

f(z) =
p(z)

(z − z0)m
for z ∈ B∗(z0; ρ).

Day 41: Friday, April 21

Recommended reading

We did an example of an isolated singularity that is a pole and paid attention to series
representations centered at the isolated singularity. Then we talked about essential singu-
larities and the Casorati–Weierstrass theorem. Read Examples 4.5.18 and 4.5.21, Theorem
4.5.19, and Remark 4.5.20.

41.1 Example. The function

f(z) =
ez−1 − 1

(z − 1)3

is analytic on C \ {1} and has an isolated singularity at 1. The form of f suggests that 1
might be a pole, so we try to rewrite f in the form f(z) = p(z)/(z − 1)m for some integer
m ≥ 1 and some analytic function p such that p(1) 6= 0. Note that the current numerator
of f will not work as p, since g(z) := ez−1 − 1 has a zero at 1. We check g′(z) = ez−1, so
g′(1) = 1, and therefore g has a simple root at 1. Then we can factor g(z) = (z − 1)p(z)
for z close to 1 with p(1) 6= 0, and so

f(z) =
(z − 1)p(z)

(z − 1)3
=

p(z)

(z − 1)2
.

Thus 1 is a pole of order 2.

41.2 Problem. Show that for z 6= 1, the function from Example 41.1 can be written in
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the form
ez−1 − 1

(z − 1)3
=

1

(z − 1)2
+

1

2(z − 1)
+
∞∑
k=0

(z − 1)k

(k + 3)!
.

We have now seen two kinds of behaviors at isolated singularities: either limz→z0 f(z)
exists, or it does not but limz→z0 |f(z)| =∞. The third possibility, simply, is that neither of
these behaviors holds.

41.3 Example. Let f(z) = e1/z. Put zk = 1/2πik to see that zk → 0 and f(zk) = e2πik = 1.
Thus f(zk)→ 1 as well, and so it cannot be the case that limz→z0 |f(z)| =∞.

Now put wk = 1/k to see that wk → 0 as well but f(wk) = ek → ∞. Then the limit
limz→z0 f(z) cannot exist.

We give this situation a name based on the only two characteristics that we see.

41.4 Definition. Let z0 ∈ C and r > 0. An analytic function f : B∗(z0; r) → C has an
essential singularity at z0 if z0 is neither a removable singularity nor a pole. That
is, the limit limz→z0 f(z) does not exist, but it is also not the case that limz→z0 |f(z)| =∞.

This is not the most helpful of definitions, as it requires us to check that two conditions do
not hold. However, the situation of Example 41.3 in fact characterizes essential singularities.
Along one “path of approach” to an essential singularity, a function blows up, but along a
different, suitably chosen path, the function can become arbitrarily close to any z ∈ C. In
Example 41.3, we just saw that with the case of z = 1.

41.5 Problem. Fix z ∈ C. Determine a sequence (zk) such that zk → 0 and e1/zk → z.

41.6 Theorem (Casorati–Weierstrass). Let z0 ∈ C and r > 0. Let f : B∗(z0; r) → C be
analytic. Then z0 is an essential singularity of f if and only if both of the following hold.

(i) There is a sequence (wk) in B∗(z0; r) such that wk → z0 and |f(wk)| → ∞.

(ii) For each z ∈ C, there is a sequence (zk) in B∗(z0; r) such that zk → z0 and f(zk)→ z.

We introduced removable singularities, poles, and essential singularities via the limit
behavior of the function at the singularity. Removable singularities lead to analytic continu-
ations, poles lead to a nice fractional representation, and essential singularities lead to very
nervous behaviors. It would, perhaps, be nice if there were one “unified” test that we could
apply to singularities to determine their. We will develop such a test by examining the series
behavior of functions near isolated singularities.

41.7 Remark. We will not study “non-isolated singularities.” We might call a point z0 ∈ C
a non-isolated singularity of a function f : B∗(z0; r)→ C if there is no ρ ∈ (0, r) such that f
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is analytic on B∗(z0; ρ). For example, Log(·) is not analytic on any punctured ball centered
at the origin.

Day 42: Monday, April 24

Recommended reading

We talked about the geometry of annuli. See p. 261 and the illustrative Figures 4.10, 4.11,
4.12, 4.13, 4.14, and 4.15. Then we stated a version of Theorem 4.4.1 and did part of
an example on finding Laurent decompositions of the same function in different annuli.
Examples 4.4.2, 4.4.3, 4.4.4, 4.4.5, 4.4.6, and 4.4.7 provide many illustrations of these
techniques. See the geometric series identity in (4.4.8) and also Exercise 30 in Section 4.3
for a very useful technique when handling rational functions.

Here is a summary of the examples of isolated singularities that we have studied and the
series behavior of functions at those singularities.

Function Singularity Type Series
sin(z)

z
0 Removable

∞∑
k=0

(−1)k

(2k + 1)!
z2k

1

z
0 Pole of order 1

1

z
ez−1 − 1

(z − 1)3
1 Pole of order 2

1

(z − 1)2
+

1

2(z − 1)
+
∞∑
k=0

1

(k + 3)!
zk

e1/z 0 Essential singularity
∞∑
k=0

(
1

k!

)
1

zk

The pattern that might emerge is that removable singularities at z0 lead to ordinary
power series at z0; poles lead to series with negative powers of z− z0, but only finitely many
such negative powers (up to and including the order of the pole); and essential singularities
have infinitely many negative powers of z−z0. This pattern is indeed true, but we can prove
it in a more general context than the isolated singularity, which requires the function to be
analytic on a punctured ball centered at z0. Punctured balls are not the only reasonable
domain for a function with an isolated singularity, especially if the function has more than
one singularity.

42.1 Example. The function

f(z) =
1

z(z − 1)(z − 3)

is analytic on C \ {0, 1, 3} with simple poles at the points 0, 1, and 3. Much of our prior
success hinged on working on open balls on which functions were analytic. Now we might
try the next best thing: what are the largest ball-like subsets of C on which f is analytic?
Such subsets would have to exclude the three poles.
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We might start with the largest punctured balls on which f is analytic. These are the
sets of points z ∈ C such that 0 < |z| < 1, 0 < |z − 1| < 1, and 0 < |z − 3| < 2.

R

iR

1 3
R

iR

1 3

R

iR

31

We might also consider regions “between” the singularities. One such region, which is
almost a ball, is the “ring” of points z such that 1 < |z| < 3. This is really the open ball
B(0; 3) with the closed ball B(0; 1) removed from its center.

R

iR

1 3

Another similar region is the set of z such that 3 < |z|, which is the whole plane with the
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ball B(0; 3) removed.

R

iR

1 3

We place under one name the different subsets of C that appeared in the preceding
example.

42.2 Definition. Let z0 ∈ C and 0 ≤ r < R ≤ ∞. The annulus centered at z0 of
inner radius r and outer radius R is

A(z0; r, R) :={z ∈ C | r < |z − z0| < R} .

42.3 Example. The function f from Example 42.1 is analytic on the annuli A(0; 0, 1),
A(0; 1, 3), A(0; 3,∞), A(1; 0, 1), and A(3; 0, 2).

42.4 Problem. Let z0 ∈ C. Prove the following set equalities for annuli.

(i) If 0 < R <∞, then A(z0; 0, R) = B∗(z0;R).

(ii) A(z0; 0,∞) = C \ {z0}.

(iii) If 0 < r <∞, then A(z0; r,∞) = C \ B(z0; r).

We can now state the principal result about the series behavior of an analytic function
on an annulus.

42.5 Theorem. Let z0 ∈ C and 0 ≤ r < R ≤ ∞. Suppose that f : A(z0; r, R) → C is
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analytic. Then there exist unique analytic functions

fR : B(0;R)→ C and fr : B(0; 1/r)→ C,

where we interpret B(0; 1/0) = B(0;∞) = C, such that fr(0) = 0 and

f(z) = fR(z − z0) + fr

(
1

z − z0

)
for each z ∈ A(z0; r, R). We may expand fR and fr as power series centered at 0 to find

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

a−k
(z − z0)k

=
∞∑

k=−∞

ak(z − z0)k, (42.64)

where for each k ∈ Z, the coefficient ak satisfies

ak =
1

2πi

∫
|z−z0|=s

f(z)

(z − z0)k+1
dz (42.65)

for any s ∈ (r, R).
The ordered pair (fR, fr) is the Laurent decomposition of f on A(z0; r, R); the

series (42.64) is the Laurent series of f on A(z0; r, R); and the coefficients (42.65) are
the Laurent coefficients of f on A(z0; r, R). The function fr is the principal
part of the Laurent decomposition; the mapping fr((· − z0)−1) may also be called the
principal part. The doubly infinite series on the right of (42.64) is defined to be the sum
of the two series on the left.

The formula (42.65) is useful for estimating the Laurent coefficients in terms of f , but
it rarely provides an expedient way of actually calculating the coefficients. As with Taylor
series, the strategy is to reduce a new Laurent expansion to an old one (or an old Taylor
series).

Laurent decompositions and series meld analysis and geometry. The same function f may
be defined on different annuli centered at a point z0, and it is likely that f will have different
Laurent decompositions and series on those different annuli. We saw this with Taylor series:
changing the center of the series changes the coefficients of the series. But now the center of
the annulus can stay the same, and if the radii change, so may the Laurent decomposition
and series.

42.6 Example. The function

f(z) =
1

z(z − 1)

is analytic on C \ {0, 1}. Consequently, f is analytic on the annuli A(0; 1, 1) = B∗(0; 1),
A(1; 0, 1) = B∗(1; 1), and A(0; 1,∞). We will find (different) Laurent series for f on each
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annulus. First, it will be helpful to have the partial fractions decomposition

f(z) = −1

z
+

1

z − 1
. (42.66)

(i) Decomposition on A(0; 1, 1). We want to write f as a series in the powers zk. The
term −1/z in (42.66) already has this form, so we rewrite

1

z − 1
= − 1

1− z
= −

∞∑
k=0

zk =
∞∑
k=0

(−1)zk.

Here we used the geometric series, since |z| < 1. Then

f(z) = −1

z
+
∞∑
k=1

(−1)zk, 0 < |z| < 1.

The principal part is the mapping z 7→ −1/z. This representation of f resembles our prior
results for poles: the order of the pole is 1, and the power z−1 appears in the sum, but
there are no negative powers zk with k ≤ −2.

(ii) Decomposition on A(0; 1,∞). Again we need a series expansion of the term 1/(z − 1)
in powers of z. We can exploit the geometric series again, if we remember that 1 < |z|,
and therefore 1/|z| < 1:

1

z − 1
=

1

z

(
1− 1

z

) =
1

z

 1

1− 1

z

 =
1

z

∞∑
k=0

(
1

z

)k
=
∞∑
k=0

1

zk+1
=
∞∑
j=1

1

zj
.

Then

f(z) = −1

z
+
∞∑
j=1

1

zj
=
∞∑
j=2

1

zj
.

Note that now there are infinitely many negative powers of z in the sum!

(iii) Decomposition on A(1; 1, 1). Now we need to write the term −1/z as a sum of powers
of z − 1. We can make z − 1 appear by adding zero in the denominator of 1/z and then
seeing the structure 1/(1− w) in 1/z for some w:

−1

z
= − 1

z − 1 + 1
= − 1

1− (−1)(z − 1)
= −

∞∑
k=0

[(−1)(z − 1)]k =
∞∑
k=0

(−1)k+1(z − 1)k.

Then

f(z) =
1

z − 1
+
∞∑
k=0

(−1)k+1(z − 1)k, 0 < |z − 1| < 1.

We note that f has a pole of order 1 at 1, and the only negative power of z−1 that appears
in the sum is (z − 1)−1.
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42.7 Problem. The following identities are often useful when computing the Laurent series
of a rational function with simple poles. Let z, w ∈ C with |z| 6= |w|. Show that

1

z − w
=



1

z
(

1− w

z

) =
∞∑
k=0

wk

zk+1
, |w| < |z|

− 1

w
(

1− z

w

) = −
∞∑
k=0

zk

wk+1
, |z| < |w|.

Day 43: Wednesday, April 26

Recommended reading

We discussed how Laurent coefficients help classify isolated singularities. This is the content
of Theorem 4.5.17, whose proof is contained in the proofs of Theorems 4.5.12 and 4.5.15.
Then we started integrating functions around closed curves in annuli and saw how one, and
only one, of the Laurent coefficients really determines the integral. That is the content of
Example 4.4.9. The key takeaway from that example is the last sentence on p. 271. See
also the first paragraph in Section 5.1 on pp. 293–294. Finally, we started talking about
the winding number. This is not discussed in the book, but it will give us a rigorous way of
measuring the orientation of a closed curve relative to a point, and of defining the interior
and exterior of a closed curve.

43.1 Example. The function

f(z) =
cos(z)

z2023

has a pole of order 2023 at 0, and

cos(z)

z3
=

1

z2023

∞∑
k=0

(−1)k

(2k)!
z2k =

∞∑
k=0

(−1)k

(2k!)
z2k−2023.

This is the Laurent series for f on A(0; 0,∞) = C \ {0}. Of course, we could rewrite the
series so that it is given strictly in terms of powers of z, and that series would have the
form

∑∞
k=−2023bkz

k for some coefficients bk with b−2023 6= 0.

The Taylor series for a function analytic on a ball contains all the essential “data” for
that function in its coefficients. If we know the countable sequence of coefficients in the
Taylor series—a somewhat less than one-dimensional set of data—then we know everything
about that function in two dimensions on that ball. What data is contained in the Laurent
coefficients of a function? Here we must remember that geometry, not just analysis, plays
a role. In the preceding example, we saw that a function could have two very different
Laurent series depending on the underlying annuli. If, in the case of an isolated singularity,
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we choose the annulus to be a punctured ball, we can glean a complete characterization of
the singularity from the behavior of the Laurent coefficients.

To ease our passage, we point out that if f : A(z0; r, R)→ C is analytic for some z0 ∈ C
and 0 ≤ r < R ≤ ∞, and if

f(z) =
∞∑
k=0

bk(z − z0)k +
∞∑
k=1

b−k
(z − z0)k

for z ∈ A(z0; r, R) and some coefficients bk ∈ C, then by uniqueness, the coefficients bk are
the Laurent coefficients of f . Specifically, we could define

gR : B(0;R)→ C : w 7→
∞∑
k=0

bkw
k and gr : B(0; 1/r)→ C : w 7→

∞∑
k=1

b−kw
k

to see that gR and gr are analytic and gr(0) = 0. Since f(z) = gR(z − z0) + gr((z − z0)−1)
on A(z0; r, R), the pair (gR, gr) is the Laurent decomposition of f on A(z0; r, R).

43.2 Theorem. Let z0 ∈ C and R > 0. Suppose that f : B∗(z0;R) → C is analytic and
let f(z) =

∑∞
k=−∞ak(z − z0)k be the Laurent expansion of f on the annulus A(z0; 0, R) =

B∗(z0;R). Then

(i) f has a removable singularity at z0 if and only if ak = 0 for k ≤ −1.

(ii) f has a pole of order m ≥ 1 at z0 if and only if a−m 6= 0 and ak = 0 for k ≤ −(m+1).

(iii) f has an essential singularity at z0 if and only if ak 6= 0 for infinitely many k ≤ −1.

Proof. (i) (=⇒) Suppose that f has a removable singularity at z0. Then f has an analytic
continuation f̃ to B(z0;R). Write f̃(z) =

∑∞
k=0bk(z − z0)k; then f(z) =

∑∞
k=0bk(z − z0)k for

all z ∈ B∗(z0;R). Consequently, this is the Laurent series for f on the annulus A(z0; 0, R) =
B∗(z0;R); by the uniqueness of the decomposition, we have ak = 0 for k ≤ −1.

(⇐=) If f(z) =
∑∞

k=0ak(z − z0)k for z ∈ B∗(z0;R), then an analytic continuation of f to
B(z0;R) is just this series. Consequently, limz→z0 f(z) = a0 exists, and so f has a removable
singularity at z0.

(ii) (=⇒) For some ρ ∈ (0, R], there is an analytic function p : B(z0; ρ)→ C such that

f(z) =
p(z)

(z − z0)m
, z ∈ B∗(z0; ρ).

Write p(z) =
∑∞

k=0bk(z − z0)k with b0 = p(z0) 6= 0. Then

f(z) =
∞∑
k=0

bk(z − z0)k−m =
∞∑

j=−m

bj+m(z − z0)j, z ∈ B∗(z0; ρ).

Consequently, this is the Laurent series for f on the annulus A(z0; 0, ρ) = B∗(z0; ρ), and so
by the uniqueness of the decomposition ak = 0 for k ≤ −(m+ 1) and a−m = b0 6= 0.
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(⇐=) Rewrite, for z ∈ A(z0; r, R),

f(z) =
∞∑

k=−m

ak(z − z0)k =
∞∑

k=−m

ak(z − z0)k+m(z − z0)−m =
1

(z − z0)m

∞∑
k=−m

ak(z − z0)k+m

=
1

(z − z0)m

∞∑
j=0

aj−m(z − z0)j.

Put p(z) :=
∑∞

j=0aj−m(z− z0)j. Above we factored f(z) = (z− z0)−mp(z), so the series p(z)
does converge for each z ∈ A(z0; r, R). That is, the series converges for r < |z − z0| < R,
and so by properties of power series it converges for all z ∈ B(z0;R). Thus p is analytic on
B(z0;R). Moreover, p(z0) = a−m 6= 0. We conclude f(z) = (z − z0)−mp(z) with p analytic
on a ball centered at z0 and p(z0) 6= 0; hence f has a pole of order m at z0.

(iii) (=⇒) Since z0 is an essential singularity of f , z0 is not a removable singularity, and so
it cannot be the case that ak = 0 for all k ≤ −1. But z0 is also not a pole, so it cannot be
the case that ak = 0 for all k ≤ −(m + 1) for some integer m ≥ 1. Thus, given any integer
m ≥ 1, there must be some integer k < −m such that ak 6= 0. We can therefore construct a
sequence of infinitely many distinct points (amk) such that mk+1 < mk < 0 and amk 6= 0 for
all k.

(⇐=) If ak 6= 0 for infinitely many k ≤ −1, then z0 cannot be a removable singularity nor a
pole, and so z0 must be an essential singularity. �

43.3 Problem (Riemann removability criterion). Let z0 ∈ C and R > 0. Suppose that
f : B∗(z0;R)→ C is analytic. Prove that f has a removable singularity at z0 if and only if
there exist ρ ∈ (0, R] and M > 0 such that |f(z)| ≤M on B∗(z0; ρ). In other words, f has
a removable singularity at z0 if and only if f is bounded on some ball centered at z0. [Hint:
first use the fact that if limz→z0 f(z) exists, then f is bounded near z0. For the converse,
let (ak) be the Laurent coefficients of f ; show that ak = 0 for k ≤ −1 by using the integral
definition (42.65) for s ∈ (0, ρ] and the ML-inequality. What happens in the limit of this
integral as s→ 0+?]

43.4 Problem. Let z0 ∈ C and R > 0. Suppose that f : B∗(z0;R)→ C is analytic. Prove
that the following are equivalent.

(i) f has a pole of order m ≥ 1 at z0.

(ii) lim
z→z0

(z − z0)mf(z) exists and is nonzero.

(iii) lim
z→z0

(z − z0)m+1f(z) = 0.

(iv) There exist ρ ∈ (0, R] and M > 0 such that

|f(z)| ≤ M

|z − z0|m
for z ∈ B∗(z0; ρ).
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43.5 Problem. Let z0 ∈ C and R > 0. Suppose that f : B∗(z0;R) → C is analytic.
Prove that f has a removable singularity at z0 if and only if limz→z0(z − z0)f(z) = 0.
In the context of Problem 43.4, explain why we might euphemistically call a removable
singularity a “pole of order 0.”

So very many of our labors have involved line integrals. We built and characterized
antiderivatives via line integrals, thereby completing one of the major stories of real-variable
calculus in the complex setting. Moreover, we learned that the integral is the tool for
extracting data about functions—specifically via the Cauchy integral formula and Taylor
coefficients. That story is more or less complete, and we will not typically succeed in finding
antiderivatives for analytic functions on annuli.

43.6 Problem. Explain why by evaluating the line integral∫
|z−z0|=s

dz

z − z0

.

By taking r < s < R, conclude that the annulus A(z0; r, R) is not an elementary domain.

Nonetheless, we might ask what we can learn about line integrals of analytic functions over
closed curves in annuli. Such integrals appeared so often in our former work that it is natural
to pursue them further. So, let z0 ∈ C and 0 ≤ r < R ≤ ∞, and let f : A(z0; r, R) → C be
analytic. Let (fR, fr) be the Laurent decomposition of f in A(z0; r, R), and let γ be a closed
curve in A(z0; r, R). Then∫

γ

f =

∫
γ

(
fR(z − z0) + fr((z − z0)−1)

)
dz =

∫
γ

fR(z − z0) dz +

∫
γ

fr((z − z0)−1) dz

=

∫
γ

fr((z − z0)−1) dz. (43.67)

43.7 Problem. Recall that fR : B(0;R)→ C is analytic. Use this and the hypothesis that
γ is a closed curve in A(z0; r, R) to show that∫

γ

fR(z − z0) dz = 0.

Recall that

fr((z − z0)−1 =
∞∑
k=1

a−k
(z − z0)k

.

Suppose that we can interchange the sum and integral to find∫
γ

fr((z − z0)−1) dz =

∫
γ

∞∑
k=1

a−k
ak

(z − z0)k
dz =

∞∑
k=1

a−k

∫
γ

dz

(z − z0)k
. (43.68)
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We will justify this interchange eventually. Then, for k ≤ −2,∫
γ

dz

(z − z0)k
= 0. (43.69)

43.8 Problem. Explain why (43.69) does not follow from any version of the Cauchy integral
theorem that we know but does follow from the fundamental theorem of calculus.

We combine (43.67), (43.68), and (43.69) to conclude∫
γ

f = a−1

∫
γ

dz

z − z0

. (43.70)

For the purposes of calculating
∫
γ
f , all of the other data from the Laurent series was

irrelevant; only the particular coefficient a−1 matters. Using the definition of a−1 from
(42.65), the formula (43.70) reads∫

γ

f =

(
1

2πi

∫
|z−z0|=s

f(z) dz

)(∫
γ

dz

z − z0

)
. (43.71)

The line integral of f over γ is therefore the product of two integrals—one an integral of f
over a (more or less) arbitrary circle, and one an integral of a “tame” rational function over
the given curve γ. In other words, the data of the line integral—the curve γ and the integrand
f—decouple into two integrals, one dependent on f (but not γ), and one dependent on γ
(but not f), and both dependent on the center z0 of the underlying annulus.

Both factors in (43.71) will reappear in our subsequent study of integrals in more general
domains. We name and examine the second factor, adjusted slightly, first.

43.9 Definition. Let γ be a closed curve in C and let z ∈ C be a point that is not in the
image of γ. Then the winding number of γ with respect to z is

χ(w; z) :=
1

2πi

∫
γ

dw

w − z
.

We can now rewrite (43.71) once again. Here is a summary of our work.

43.10 Theorem. Let z0 ∈ C and 0 ≤ r < R ≤ ∞. Let f : A(z0; r, R)→ C be analytic and
let γ be a closed curve in A(z0; r, R). Then∫

γ

f =

(∫
|z−z0|=s

f(z) dz

)
χ(γ; z0), r < s < R.

We will develop and generalize this formula to the highly useful situation in which f has
a finite number of isolated singularities within an elementary domain. First, however, we
focus on the geometry of the winding number.
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43.11 Example. Although it is not at all obvious at first glance, the winding number does
what it promises. For k ∈ Z \ {0}, r > 0, and z0 ∈ C, define

γ : [0, 2π]→ C : t 7→ z0 + reikt.

Intuitively, we should view γ as “tracing out” the circle of radius r centered at z0 a total
number of |k| times, with the circle oriented counterclockwise if k > 0 and clockwise if
k < 0.

Now let z ∈ C with |z − z0| 6= r. We can calculate∫
γ

dw

w − z
=

{
2πik, |z − z0| < r

0, |z − z0| > r,
(43.72)

and so

χ(γ; z) =

{
k, |z − z0| < r

0, |z − z0| > r.

In other words, χ(γ; z) “counts” the number of times that γ “winds around” z0: either k
times (with the sign of k indicating orientation) if z is “inside” the circle of radius r centered
at z0, or no times at all if z is “outside” this circle.

43.12 Problem. Obtain the first identity in (43.72) by justifying each of the following
equalities:

∫ 2π

0

rikeikt

z0 + reikt − z
dt =

∫ 2kπ

0

rieiτ

z0 + reiτ − z
dτ =

k∑
j=1

∫ 2jπ

2(j−1)π

rieiτ

z0 + reiτ − z
dτ

= k

∫ 2π

0

rieiτ

z0 + reiτ − z
dτ = k

∫
|w−z0|=r

dw

w − z
= 2πik.

For the second, use the Cauchy integral theorem. What is the appropriate star domain?

Day 44: Friday, April 28

Recommended reading

We discussed the residue theorem, which is stated and proved rather differently as Theorem
5.1.2. Residues are defined in Definition 5.1.1. Applications of the residue theorem are
staggering and manifold. The presentation in the textbook throughout Chapter 5 is excel-
lent and, like the rest of the book, abundant in examples and detail. I strongly encourage
you to keep this book for future reference.

The following situation often arises in practice. Let D ⊆ C be an elementary domain—so
D is open and connected, and if h : D → C is analytic and γ is a closed curve in D, then∫
γ
h = 0. Fix a finite number of distinct points z1, . . . , zn ∈ D, and let f : D \ {zk}nk=1 → C
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be analytic. Choose rk > 0 such that B(zk; rk) ⊆ D; then f is analytic on each B∗(zk; rk),
and consequently each zk is an isolated singularity of f . Let (frk , f∞k

) be the Laurent
decomposition of f on the annulus B∗(zk; rk). Then each principal part f∞k

is entire.

44.1 Problem. Why?

It turns out that if we “remove” all the principal parts from f , then we are left with a
rather nice function.

44.2 Lemma. Under the hypotheses and notation above, the function

g : D \ {zk}nk=1 → C : z 7→ f(z)−
n∑
k=1

f∞k

(
1

z − zk

)
(44.73)

has removable singularities at zk and consequently has an analytic continuation g̃ on D.

Proof. Fix an integer j satisfying 1 ≤ j ≤ n. For 1 ≤ k ≤ n with k 6= j, since f∞k
is entire,

we have
lim
z→zj

f∞k
((z − zk)−1) = f∞k

((zj − zk)−1).

Next, since

f(z) = frj(z − zj) + f∞j

(
1

z − zj

)
on B∗(zj; rj), and since frj is analytic on B(0; rj), we also have

lim
z→zj

(
f(z)− f∞j

((z − zj)−1)
)

= lim
z→zj

frj(z − zj) = frj(0).

Thus

lim
z→zj

g(z) = lim
z→zj

(
f(z)−

n∑
k=1

f∞k
((z − zk)−1)

)
= frj(0) +

n∑
k=1
k 6=j

f∞k
((zj − zk)−1).

Consequently, g has removable singularities at each zj and therefore has an analytic contin-
uation to each zj. Specifically, this analytic continuation is

g̃ : D → C : z 7→

{
g(z), z ∈ D \ {zk}nk=1

lim
z→zk

g(z), z = zk,

with the limits given above. �

Let g̃ be as in the preceding lemma and let γ be a closed curve in D. Since g̃ is analytic
and D is an elementary domain, we have ∫

γ

g̃ = 0.
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Now we add the additional hypothesis that none of the points zk belong to the image of γ.
Then g̃(z) = g(z) for all z in the image of γ, and so

0 =

∫
γ

g̃ =

∫
γ

g.

Using the definition of g in (44.73), we have

0 =

∫
γ

f(z) dz −
n∑
k=1

∫
γ

f∞k

(
1

z − zk

)
dz.

Expand f∞k
as the series

f∞k
(w) =

∞∑
j=1

ak,−jw
k, w ∈ C, ak,−j =

1

2πi

∫
|z−zk|=s

f(z)

(z − zk)−j+1
dz, 0 < s < r.

We claim that ∫
γ

f∞k

(
1

z − zk

)
dz = 2πiak,−1χ(γ; zk)

and thus

0 =

∫
γ

f − 2πi
n∑
k=1

ak,−1χ(γ; zk). (44.74)

This is essentially the same reasoning that gave us Theorem 43.10.
Now it is time to name the coefficients ak,−1.

44.3 Definition. Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r)→ C is analytic, and let
f(z) =

∑∞
k=−∞ak(z − z0)k be the Laurent series for f on B∗(z0; r). The residue of f

at z0 is the coefficient a−1, and we write

Res(f ; z0) = a−1 =
1

2πi

∫
|z−z0|=s

f(z) dz, 0 < s < r.

All of our work up to and including (44.74) can be summarized in one theorem, the
mightiest and proudest of the Cauchy theorems.

44.4 Theorem (Cauchy’s residue theorem). Let D ⊆ C be an elementary domain and
let z1, . . . , zn ∈ C be distinct points. Let f : D \ {zk}nk=1 → C be analytic, and let γ be a
closed curve in D. Then ∫

γ

f = 2πi
n∑
k=1

Res(f ; zk)χ(γ; zk).

As with Theorem 43.10, the residue theorem perfectly decouples the problem of comput-
ing a line integral into two distinct problems: the analytic problem of finding the residue
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(which involves the integrand and not the underlying curve) and the geometric problem of
computing the winding number (which involves the curve and not the function)—the two
problems are connected in that they both involve the isolated singularities of the integrand.

Here is how the residue theorem is often used “in practice,” and how the hypothetical
situation mentioned above often naturally occurs. Suppose that f is a function analytic on
all but finitely many points of D; call those points z1, . . . , zn. Suppose that µ is a curve in D
that does not contain these points z1, . . . , zn in its image. And suppose that for some reason
we want to compute

∫
µ
f . We are not assuming that µ is closed, and so we cannot use the

residue theorem. However, perhaps we can judiciously choose another path ν in D \ {zk}nk=1

such that the composition µ⊕ ν is defined and also closed.
If we are lucky, the line integral

∫
ν
f will be “easy” to evaluate—or at least easier than∫

µ
f . Then the residue theorem tells us∫

µ⊕ν
f = 2πi

n∑
k=1

Res(f ; zk)χ(µ⊕ ν; zk),

and so we find ∫
µ

f = 2πi
n∑
k=1

Res(f ; zk)χ(µ⊕ ν; zk)−
∫
ν

f.

Success with this sort of “residue calculus” then hinges on two tasks: calculating residues and
choosing the auxiliary curve µ. For the former, there are a host of techniques that enable
one to avoid the definition; the latter, for better or for worse, is often as much of an art as
it is a science.

44.5 Problem. Let D ⊆ C be an elementary domain and let f : D → C be analytic.

(i) Assume that the residue theorem is true but that we did not know at all the Cauchy
integral theorem. (This is absurd, since we used the Cauchy integral theorem in is proof,
but, for the nonce, assume it.) Show that the residue theorem implies the Cauchy integral
theorem:

∫
γ
f = 0 for any closed curve γ in D.

(ii) Show that the residue theorem implies the following more general version of the Cauchy
integral formula: if γ is a closed curve in D and z ∈ D, then

1

2πi

∫
γ

f(w)

w − z
dw = f(z)χ(γ; z). (44.75)

(iii) Show that (44.75) implies the version of the Cauchy integral formula in Theorem 33.1.
[Hint: use Example 43.11.]

(iv) Show that, in fact, (44.75) implies the Cauchy integral theorem as stated in (i).
[Hint: it is a fact that there is some z ∈ D such that z is not in the image of γ. Set
g(w) = (w − z)f(w) and apply (44.75) to g in lieu of f .]
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