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OVERVIEW OF NOTES

These are lecture notes for a first course in ordinary differential equations. The prerequisite
is Calculus II, not multivariable calculus. The notes largely follow Differential Equations
(Fourth Edition) by Blanchard, Devaney, and Hall, with some nontrivial departures, aug-
mentations, and alterations here and there.

The notes contain three classes of problems.

(!) Problems marked (!) are meant to be attempted immediately. They will directly address
or reinforce something that we covered in class. It will be to your great benefit to pause and
work (!)-problems as you encounter them.

(?) Problems marked (?) are intentionally more challenging and deeper than (!)-problems.
The (?)-problems will summarize and generalize ideas that we have discussed in class and
give you broader, possibly more abstract perspectives. You should attempt the (?)-problems
on a second rereading of the lecture notes, after you have completed the (!)-problems and
required problems from the textbook. As you prepare for an exam, you should definitely
attempt all (?)-problems in sections that will appear on that exam.

(+) Problems marked (+) are optional but encouraged. These will provide more background
and insight than we can cover in class (and, frankly, more than is absolutely necessary for
your success in the class). If you feel confident in your mastery of the material and have
completed the (!)- and (?)-problems, then you should attempt the (+)-problems. (It is
not necessary to do (+)-problems in preparation for an exam, but it may be helpful.) In
particular, if you feel that something is “missing” from the story that we are telling, perhaps
some “Deeper Magic” underlying the course, you should think about the (+)-problems.
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1. INTRODUCTION

1.1. Predicting the future.

The goal of this course is to learn how to predict the future. We will know the future if we
can answer the key question

“What are things like at a given moment in time?” (KQ)

Throughout the course, whatever we are doing, a good way to gain perspective is to ask
ourselves (KQ) in the context of the particular problem that we are studying.

One plausible answer to the vague question (KQ) is the following key statement:

“How things are depends on how things were and how things changed. (KS1)

Hopefully a moment’s thought and reflection on your own personal life experiences will
indicate the plausibility of (KS1).

This is a mathematics course, so we will pose our key question (KQ) and (first) key
statement (KS1) in mathematical language and notation, specifically in the language and
notation of calculus. First, by “things” we will mean the values of a function—maybe the
number of rabbits in a certain geographic region, the percentage of a population that has a
disease, the volume of a raindrop some time after its formation and before it hits the ground,
or the position of an object relative to some point of origin. (There are plenty of “things”
that are not so nicely described by a single quantity, and we will deal with them later.) Call
this function x and let t be its independent variable. Then “how things are” at time t is the
value x(t), and “how things were” is the value x(t0), where t0 < t.

Since we will work with functions every single day in this course, it might help to think
briefly about what they really are.

1.1.1 Undefinition. Let A and B be sets. A function from A to B is a rule that
pairs each element of A with exactly one element of B.

This is exactly what we have encountered every time we have worked with a function
in our lives, right? For example, if A is a set of real numbers, we have often worked with
the function x from A to the real numbers that pairs the number t with its square t2. Of
course, this is the familiar parabola, and we compress things via the notation x(t) = t2.
Nonetheless, as diligent learners journeying from mathematical innocence to experience, we
should question what the words “rule” and “pairs” actually mean.

1.1.2 Definition. Let A and B be sets. A function x from A to B is a set of ordered
pairs such that if t is an element of A, then there is a unique element τ of B such that the
pair (t, τ) belongs to the set x. In this case, we write τ = x(t).

For example, if A is a set of real numbers, then function x from A to the real numbers
that pairs the number t in A with its square t2 is really the set of all ordered pairs (t, t2),
where t is restricted to belong to A.
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1.1.3 Remark. (i) Definition 1.1.2 is the true definition of a function, and it is healthy
to think about it once, and then promptly forget it. Undefinition 1.1.1 is all that we need on
a daily basis in this course, but if we ever go down the rabbit hole of wondering what it is
that we are finding as solutions to our differential equations, the true answer is Definition
1.1.2.

(ii) Common to both the undefinition and the definition is the notion that functions have
domains, and merely stating a formula for a function without also discussing its domain
will never be adequate.

(iii) We should never conflate the symbol x(t), which denotes the value of the function x
at t, with the function x itself: x is a set of ordered pairs of numbers, while x(t) is a single
number. An exception to this is the case of constant functions; for example, if x(t) = 0 for
all t, then we will just say x = 0, and use the symbols x and 0 interchangeably.

Returning to our original key question and key statement, we have said that “how things
are” at time t is the value of some function x(t), and we know that “how things are” depends
on “how things were” and “how things changed.” “How things were” is just some value x(t0)
with t0 < t. As soon as we hear the word “change” in a mathematical context, we probably
should think of the derivative.

1.1.4 Definition. Let x be a function defined on an interval I, and let t be a point in I.
Then x is differentiable at t if the limit

lim
h→0

x(t+ h)− x(t)

h
(1.1.1)

exists, in which case we call this limit the derivative of x at t. If x is differentiable
at all t in I, then x is differentiable on I, and we denote by ẋ the function whose
value is the limit (1.1.1) at each t in I.

1.1.5 Remark. (i) It can be shown that the limit (1.1.1) exists if and only if the limit

lim
τ→t

x(τ)− x(t)

τ− t
(1.1.2)

exists, in which case both limits are equal. That is, if x is differentiable at t, then we may
calculate ẋ(t) using either (1.1.1) or (1.1.2). By the way, the symbol τ is the Greek letter
“tau,” and we will use it often when we want to write something that looks almost like t.

(ii) We will sometimes use the notation

d

dt

to indicate the “process” of taking the derivative symbolically. For example, if x is the
function defined by x(t) := t2, then we might express the calculation of the derivative of x
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as
ẋ(t) =

d

dt
[t2] = 2t.

Likewise, if x and y are differentiable functions, then we may express the calculation of the
derivative of their product as

d

dt
[xy] = ẋy + xẏ,

as the product rule teaches us. In other words, the notation d/dt is helpful bookkeeping for
signifying symbolic computations.

(iii) We will not, however, use the notation

dx

dt

for the derivative. We will almost never use the notation x′, except to distinguish variables;
for example, if x(t) = t2 and f(x) = cos(x), and if y(t) := f(x(t)), then the chain rule says

ẏ(t) =
d

dt
[f(x(t)] = f ′(x(t))ẋ(t) = − sin(t2)(2t) = −2t sin(t2).

Now we can put together “how things were” and “how things changed” to figure out “how
things are.” This will involve the derivative, but, unfortunately, not the derivative at any
one moment in the past. Namely, calculus tells us that the net change in “things” from time
t0 to time t is the integral ∫ t

t0

ẋ(τ) dτ.

And, in particular, the fundamental theorem of calculus tells us∫ t

t0

ẋ(τ) dτ = x(t)− x(t0).

Rearranging, we have

x(t) = x(t0) +

∫ t

t0

ẋ(τ) dτ. (FTC)

The statement (FTC) is the exact mathematical formulation of our first key statement (KS1).

x(t) = x(t0) +

∫ t

t0

ẋ(τ) dτhow things are

how things were

how things changed

And so it looks like our key question (KQ) is easy to resolve: figure out one value in the
past and all the values of the derivative between the past and the present, then integrate and
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add. All too easy! But how do we figure out that derivative? We have gone from needing
the value of x at one time t to needing the values of ẋ at all times τ between t0 and t. This
seems like a worse problem.

Perhaps it will help to think about a concrete situation. Consider the growth of a popu-
lation of rabbits. (We will be doing this a lot.) The growth rate probably depends on the
amount of food available to the rabbits, and that amount should vary over the course of the
year. So, the growth rate should depend on the time at which we are measuring the growth.
And if there are more rabbits, it is likely that there are more mating pairs available, and
thus even more rabbits to come. But if there are too many rabbits, maybe they will eat all
the food, and the population will decline, and then there will be fewer pairs to produce new
rabbits. So, the growth rate of the rabbit population should depend on both time and the
number of rabbits.

This suggests that “how things change” depends on two variables: the time at which we
are measuring the change and the state of things at that time. We formalize this as a second
key statement:

“How things change depends on the time of change and how things are then.” (KS2)

We write this symbolically as
ẋ(t) = f(t, x(t)). (ODE)

Here f is a function of the two variables t and x, and so we will often consider values of
the form f(t, x). Using x as both the dependent variable of a function that depends on t
and as the independent variable of a function that also depends on x can lead to no end of
confusion, but we will simply have to live with it.

We have now met the principal object of study in this course: the ordinary differen-
tial equation. More precisely, the equation (ODE) above is a first-order ordinary
differential equation (ODE), since only the first derivative ẋ of x appears in the
equation. We will spend most of the course solving equations like (ODE), as well as contem-
plating what “solving” actually means.

For now, here is why we still have a problem, and why we have a whole course left to
complete together. The equation (FTC) expresses the values of x in terms of one past value
x(t0) and the derivative ẋ. But (ODE) says that ẋ depends on x! If we combine (FTC) and
(ODE), then we get

x(t) = x(t0) +

∫ t

t0

f(τ, x(τ)) dτ. (IE)

The equation (IE) is an integral equation for x.
This seems to be useless. To know the value x(t), we have to be able to calculate that

integral over the interval [t0, t], and so we will need to know the value f(t, x(t)) — which
means we need to know x(t). But that is exactly what we are trying to find.

The goal of a course in ordinary differential equations is not only to predict the future
but also to resolve the tension among the statements (FTC), (ODE), and (IE). While the
study of integral equations like (IE) is a highly worthwhile and fruitful activity, it turns out
that the differential equation (ODE) will be more tractable to study. Specifically, we will
learn how to write a variety of worthwhile problems in the form (ODE), or a form more or
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less1 like that. Then we will learn techniques for solving (ODE), which will depend greatly
on what f is.

Setting up a differential equation to model a particular phenomenon is itself a nontrivial
task. Most of our models and phenomena will involve many simplifying assumptions; the goal
here is to get to the differential equations, not model the whole world. In fact, even when we
have reduced a phenomenon into a reasonable mathematical model, we will often consider
special, borderline silly, cases of that model as “toy problems” to illustrate mathematical
techniques without the burden of reality.

“Solving” an equation will involve three related approaches.

1. In the analytic approach, we find explicit formulas for solutions to problems; this is
probably what we think “solving” an equation means (and for good reason), but only very
special equations have explicit solution formulas.

2. In the the qualitative approach, we use certain features of problems to guarantee the
existence of solutions and then predict their behavior; often knowing how a solution behaves
over long times is more useful than knowing its precise formula.

3. In the numerical approach, we convert our “continuous” problems to “discrete” ones that a
computer can be taught to solve with results that a human brain can be taught to interpret.

We should not expect any one approach to work all the time, and even within one of
these three camps there may be different variations on the same theme that we might want
to consider. In particular, you, as the individual student, scientist, and human being that
you are, will sometimes need to decide which approach works best for you and your particular
problem—and that approach may be different from one a colleague selects. Additionally, we
should not view these three approaches as immutably separate and distinct; very often we
will tackle the same problem with more than one approach and learn different things in the
process.

In olden times, when we did not have the advantage of computers that we now do today,
the study of differential equations was largely restricted to the analytic approach, and a
course in differential equations was sometimes viewed as a “cookbook” class to learn “recipes”
for analytic approaches only. But no more. Now, this is not to disparage “formulaic” or
“symbolic” techniques, and indeed there are a handful (at least four, but probably no more
than seven) that you simply must know to be successful in this course and whatever requires
differential equations afterward. We will certainly strive to develop a robust understanding
of those analytic techniques. A computer with its symbolic toolbox can do most of those
techniques, but a computer probably cannot interpret the results of those techniques, or
even set up the problem for you in the first place so that it’s amenable to those techniques.
Furthermore, if you have to go to a computer for every little thing, like calculating

d

dt
[t2] = 2t or

∫
cos(3t) dt =

sin(3t)

3
+ C,

1 Since “force = mass × acceleration” involves the second derivative ẍ, not all interesting problems have quite
the form (ODE), but nonetheless (ODE) is the paradigm for most problems to come.
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then something has gone very wrong with your education. (Harsh but true.) On the other
hand, if you do not have a computer to help you with a problem that actually matters to
your life and the larger world, then you probably have much bigger problems!

We will therefore approach analytic techniques with something of a dual mindset. We will
celebrate them when we find them but neither limit our studies strictly to them nor despair
if we cannot find them. The following analyst’s creed thus summarizes our relationship
with formulas in this course:

“Having a formula for something is not the same as understanding that thing.” (AC)

We shall profess the creed frequently.

This is where we finished on Monday, August 18, 2023.

1.2. Exponential growth.

Our first model of population growth is exponential growth. This is a very simple model—
too simple, in the end, to be realistic. But the mathematical structure of this model, our
methods of solving it, and its similarities to and differences from physical reality all set the
tone for how we will proceed in the rest of the course. We begin by thinking a bit about
population models in general.

1.2.1. Population models.

First, a disclaimer: the value of these models in our course is that they offer fairly straight-
forward translations from “physical” principles into the language of ODE, and the resulting
ODE are all essential problems for you to understand. Our hypotheses may seem silly,
or restrictive; they almost surely are. A perennial challenge in mathematical modeling is
the balance between maintaining a physically realistic model and a mathematically tractable
problem.

Second, a calculus caveat: typically when we count populations, we do so with integers.
But calculus is inherently continuous, and taking the derivative of an integer-valued function
should make us uneasy. We’ll always assume that either the population is so large, or
our units of measurement are so skewed, that taking noninteger, fractional counts of this
population makes sense — like saying that 8.8 million people live in New York City right
now.

With the fine print out of the way, how do we get our hands on models? Frequently models
arise because of proportional relationships between quantities. Intuitively, two quantities are
proportional if one is always a multiple of another; for example, the circumference of every
circle is proportional to its radius (equivalently, its diameter). Here is a formalization of this
concept for future use.

1.2.1 Definition. Two time-dependent quantities A and B are proportional if there
exists a real number r such that

A(t) = rB(t)
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for all t at which A and B are defined.

For this definition to make sense, we probably should take r 6= 0. Otherwise, if r = 0,
then since 0 = 0 · B(t), any time-dependent quantity B could be seen as proportional to 0,
which is absurd.

In constructing population models, the time-dependent quantity A will be the rate of
change of the population. That is, if there are x(t) members of the population at time t,
then A(t) = ẋ(t). The choice of B will vary from model to model; indeed, the construction
of B is the heart of our modeling process.

1.2.2. The exponential growth model.

How fast a population is growing depends on many factors. As we noted earlier, a higher
population allows for more interactions among members and thus more mating opportunities
and thus more offspring; a lower population could do the opposite. One very simple model
of population growth, then, is to assume that a population’s rate of change is directly pro-
portional to the current population. Then we are assuming that x and ẋ are proportional;
in the notation of Definition 1.2.1, we have A(t) = ẋ(t) and B(t) = x(t), and so we are
assuming there is a constant r such that

ẋ(t) = rx(t) (1.2.1)

for all times t.
With r fixed, define a function f of the two real numbers t and x by

f(t, x) := rx.

Note that f is really independent of t, and so writing f as a function of both t and x is
redundant at best and artificial at worst. Then the equation (1.2.1) has the form

ẋ(t) = f(t, x(t)), (1.2.2)

which is the general form of the first-order ODE, as we saw in (ODE).
For simplicity, we often suppress some of the t-dependence in our notation. For example,

we write

ẋ = rx instead of ẋ(t) = rx(t) or ẋ = f(t, x) instead of ẋ(t) = f(t, x(t)).

Context will often make clear whether we are referring to x as the independent variable of
f or the dependent variable of t.

The number r is a parameter of the problem (1.2.1)—a number that is constant in
a given incarnation of the problem but whose value could change to allow the problem to
model different scenarios. Depending on the type of population that we are trying to model
with exponential growth, we will probably need different values of r.

We almost done with the set-up of our model, but we are missing one key piece of data.
Populations typically do not arise ex nihilo. Say that we are tracking the growth of this
population from time t = 0. (There will be plenty of circumstances when we want to track
growth starting at some time t0 6= 0, but starting with t0 = 0 is just simpler here.) Assume



1.2. Exponential growth 13

that we know the initial population: x(0) = x0 for some number x0. Then we want to solve
a more specific problem than (1.2.1): the pair of equations{

ẋ(t) = rx(t)

x(0) = x0.
(1.2.3)

This pair of equations is not merely an ordinary differential equation but rather an initial
value problem (IVP), since it asks for the solution x of the ODE ẋ = rx with the
“initial value” x(0) = x0.

1.2.3. The analytic solution for exponential growth.

The good news, but also the least important news, is that we already know how to solve
(1.2.3) analytically. Calculus teaches us the following.

1.2.2 Theorem. There is a function E defined on (−∞,∞) such that{
Ė(t) = E(t), −∞ < t <∞
E(0) = 1.

(1.2.4)

Specifically, E can be defined via the power series

E(t) =
∞∑
k=0

tk

k!
:= lim

n→∞

n∑
k=0

tk

k!
. (1.2.5)

That is, E solves the IVP (1.2.3) with r = 1 and x0 = 1. From this IVP, it is possible to
deduce a host of wonderful properties of E, including the following.

1.2.3 Corollary. The function E that solves (1.2.4) also enjoys the following properties.

(exp1) E(t) > 0 for all t.

(exp2) E(t+ τ) = E(t)E(τ) for all numbers t and τ.

(exp3) E is strictly increasing in the sense that if t1 < t2, then E(t1) < E(t2).

(exp4) lim
t→∞

E(t) =∞ and lim
t→−∞

E(t) = 0.

Of course, we usually do not write E for this function.

1.2.4 Definition. We define e := E(1) and define the symbol et by et := E(t). We also
write exp(t) = E(t).

Now, if we follow our calculus intuition and define

x(t) := x0e
rt,



1.2. Exponential growth 14

then we can check that x does solve (1.2.3). This situation will often arise throughout the
course: we have a differential equation and we have a function that we think solves it. Maybe
we we have a rigorous procedure for generating a formula for that function, or maybe we
have a dodgy, speculative, fly-by-the-seat-of-our-pants method2, or maybe we have neither,
and we have just made a very lucky guess. Regardless of how we got the putative solution,
we can always check whether or not it is a solution by the venerable method of plugging and
chugging.

Remember that our problem is

ẋ = rx and x(0) = x0.

The initial condition does not require calculus to check, so we do that first:

x(t) = x0e
rt =⇒ x(0) = x0e

r·0 = x0e
0 = x0 · 1 = x0.

So, the initial condition works.
Now we check the actual differential equation. It is best to do this working out each side

separately. The left side of the differential equation requires us to compute ẋ, and we do so
by the chain rule:

x(t) = x0e
rt =⇒ ẋ(t) =

d

dt
[x0e

rt] = x0
d

dt
[ert] = x0re

rt = r(x0e
rt). (1.2.6)

The right side of the differential equation is just multiplication (later in the course the right
side will be more complicated!):

x(t) = x0e
rt =⇒ rx(t) = r(x0e

rt). (1.2.7)

We compare (1.2.6) and (1.2.7) and see that

x(t) = x0e
rt =⇒ ẋ(t) = r(x0e

rt) = rx(t).

Thus x(t) = x0e
rt does indeed solve the IVP (1.2.3).

1.2.5 Remark. Here is the point: to check that a function solves an IVP, see if the initial
condition is true, and then see if the function solves the differential equation by computing
each side of the differential equation separately. We can check if a function solves a problem
even if we have no idea how to construct that function in the first place.

But this also illustrates the limits of the analytic approach. Say that we knew all about
derivatives but we never met an exponential before. (Such calculus classes do happen,
sometimes under the umbrella of “later transcendentals.”) We would know what the equation
ẋ = rx is asking, but we would have no idea of the correct formula for its solution.

Or say that we did know that the exponential was the solution, but we had no idea of the
limit behavior of the exponential at ±∞, or how to evaluate/approximate the exponential
2 Such a dodgy, speculative, or fly-by-the-seat-of-our-pants procedure is often called formal—in the sense
that we only care about the “form” of how things appear and nothing more rigorous.
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at particular finite moments in time. Then we would not be able to say anything about
what the solution is really doing, and so we would not be meeting the goal of the course and
predicting the future. This is our first invocation of the analyst’s creed (AC) in practice:
having a formula is not the same as understanding.

We will now take up a qualitative analysis of the exponential growth model (1.2.3) that
would enable us to predict the end behavior of the model assuming that we know calculus
but not that we know calculus of exponentials, or that exponentials are involved in the
solution to the IVP (1.2.3). If this seems silly now, bear in mind that shortly we will meet
a more complicated model of population growth for which our existing calculus background
will offer absolutely no help in constructing analytic solutions.

One last remark—we have found an analytic solution to the IVP (1.2.3). Is that it? Are
there any other solutions? This is the question of uniqueness of solutions—if we are going
to predict the future, we should be predicting at most one future. This is a bit tricky, and
it will require some subsequent cleverness and new tools to address.

1.2.6 Problem (!). Explain why just the ODE ẋ = rx, not the full IVP (1.2.3), definitely
does not have unique solutions. In general, to get uniqueness we need to impose an initial
condition.

1.2.4. Qualitative analysis of exponential growth.

We will study the exponential growth model

ẋ = rx and x(0) = x0

qualitatively in the following steps. Throughout, we will pretend that we do not know that
the solution is x(t) = x0e

rt, although we should be looking out for the similarities in our
results here to the exponential that will inevitably, naturally arise.

1. We have to start somewhere, so assume that r = 0. Then the differential equation ẋ = rx
just becomes

ẋ(t) = 0

for all t at which x is defined. This means that x is not changing, and so x is constant. Then
for all t at which x is defined,

x(t) = x(0) = x0

And since constant functions are defined at all real numbers, it looks like the solution is just
x(t) = x0 for all t.

2. Now suppose r > 0. It is reasonable to assume that for any “real” population, the initial
number of members is positive: x0 > 0. Then since r > 0 and x0 > 0, we have

ẋ(0) = rx(0) = rx0 > 0.

Thus x is increasing at time t = 0; equivalently, the slope of x at t = 0 is positive. So, if we
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look at the graph of x “close” to t = 0, it looks like this.

t

x(t)

We know more: since x is increasing at time t = 0, for a time t1 “close to” but greater
than t = 0, we should have x(0) < x(t1). In particular, x(t1) > 0. Thus

ẋ(t1) = rx(t1) > 0,

and so x is again increasing at time t = t1. Moreover, x is increasing faster at time t = t1
than at t = 0, since

ẋ(t1) = rx(t1) > rx(0) = ẋ(0).

Then if we sketch the slopes of x at both times t = 0 and t = t1, we get a picture like this.

t

x(t)

t1

In particular, since ẋ(t1) > ẋ(0), the slope of the tangent at time t = t1 should be steeper
than the tangent at time t = 0.

We can then iterate this analysis starting at time t = t1 to suggest that x is strictly
increasing on its domain. Moreover, we can study the concavity of x by calculating its
second derivative, ẍ. We have

ẍ(t) =
d

dt
[ẋ(t)] =

d

dt
[rx(t)] = rẋ(t) = r(rx(t)) = r2x(t). (1.2.8)

Thus ẍ(t) > 0 whenever x(t) > 0. Since x(0) > 0 and x is strictly increasing, we expect
x(t) > 0 for all times t at which x is defined. And so ẍ(t) > 0 for all t, which means that x
is concave up. Moreover, since ẍ(t) > 0 for all t, the derivative ẋ is strictly increasing, and
so the graph of x keeps getting steeper as time goes on. Here, then, is a candidate for the
graph of x.

t

x(t)
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In particular, because x is increasing and always getting steeper, we expect the values of x
to blow up to ∞ over long times. That is, if x is defined for all times t, we expect

lim
t→∞

x(t) =∞.

3. But this raises a question. Is the solution x really defined for all times t > 0, or all times
t in (−∞,∞)? Plenty of functions are not defined for all real numbers; maybe there is some
“end” time t = Tω at which x fails to be defined.

The assumptions and work above tell us that x is strictly increasing and concave up on
[0, Tω) with x(0) > 0, and so calculus tells us that

L := lim
t→T−

ω

x(t)

should exist, either as a finite (and positive) real number. If L <∞, then

lim
t→T−

ω

ẋ(t) = lim
t→T−

ω

rx(t) = rL.

Thus x would have finite slope at t = Tω, and so it looks like we could just continue drawing
the graph of x past t = Tω. But then x could be defined for values of t larger than Tω, which
goes against our assumption above that x is not defined past Tω.

t

x(t)

Tω
t

x(t)

Tω

So, we expect that if Tω <∞, then limt→T−
ω
x(t) =∞. Since x is concave up, we conclude

that the graph of x might have a vertical asymptote at t = Tω like the picture below.

t

x(t)

Tω

4. We did all the analysis above assuming r ≥ 0 and x0 > 0. If x0 = 0, then

ẋ(0) = rx(0) = rx0 = 0,

and so the graph of x has a horizontal tangent at t = 0. This does not tell us if x is increasing,
or decreasing, near t = 0.

However, if we stare at the differential equation ẋ = rx long enough (and it is always a
good idea to stare long and hard at differential equations), we might see that plugging in
x = 0 on both sides makes for a true equality. That is, suppose x(t) = 0 for all t. Then

ẋ(t) =
d

dt
[0] = 0 and rx(t) = r · 0 = 0.
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Thus taking x(t) = 0 for all t solves ẋ = rx, and consequently the initial value problem
with x0 = 0. In other words, a nonexistent population that grows exponentially. . .remains
nonexistent. In particular,

lim
t→∞

x(t) = 0,

a pretty sharp contrast to the case x0 > 0.

5. Suppose x0 < 0, but keep r > 0. From the modeling point of view, a negative population
is probably useless, but mathematically it merits examination. We redo the analysis above
more succinctly.

We have
ẋ(0) = rx0 < 0,

so x is decreasing at time t = 0. Then for times t close but greater than 0, we have

x(t) < x(0) < 0,

so x is decreasing and becoming “more negative.” Also, by (1.2.8), we have

ẍ(t) = r2x(t) < 0,

so x is concave down. Then the graph of x might be

t

x(t)

This suggests that, if x is defined for all times up to and not beyond some Tω, which may
be finite or infinite, then

lim
t→∞

x(t) = −∞.

This is a remarkable change in the end behavior of x from the cases x0 > 0 and x0 = 0!

6. We can summarize all of the work above by graphing three putative solutions (as functions
of time t) to ẋ = rx with r > 0 and different signs on x(0) = x0. We see that as soon as
the initial value x(0) “passes through” the constant solution x = 0, the end behavior changes



1.2. Exponential growth 19

radically. We also graph f(x) = rx as a function of x.

t

x(t)

x

f(x) = rx, r > 0

To be clear, in the left graph, the independent variable is t and the dependent variable is
x, while on the right x is independent and f is dependent. (Notation is a nightmare!) It is
no accident that the graphs of increasing solutions x have initial conditions x(0) = x0 where
f(x0) > 0, while the graphs of decreasing solutions have initial conditions x(0) = x0 with
f(x0) < 0. This suggests a strategy going forward: to gain intuition about the behavior of
solutions to a problem ẋ = f(x), study f .

1.2.7 Problem (?). Repeat all of the analysis and arguments above for the IVP

ẋ = rx and x(0) = x0

assuming r < 0. Where specifically does the condition r < 0 change the work above?

1.2.8 Problem (+). Parameters and initial conditions are ubiquitous and essential in
models: they allow us to “tune” the model to reflect different relevant physical scenarios.
However, from the point of view of analytically solving a problem, parameters and initial
conditions are often superfluous. One way to set them to convenient values (often 0 or 1)
is the broad technique of rescaling.

(i) Suppose that we want to solve analytically the exponential growth IVP{
ẋ = rx

x(0) = x0
with r 6= 0 and x0 6= 0, (1.2.9)

but we have no idea where to start. (We are assuming r 6= 0 and x0 6= 0 to prevent the
problem from being totally trivial.) The problem might simpler with r = 1 and x0 = 1.

Here is how we rescale to achieve this: let α and β be fixed real numbers and define

y(τ) := αx(βτ). (1.2.10)

Show that if x solves (1.2.9), then y solves{
ẏ = βry

y(0) = αx0
(1.2.11)
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(ii) Since r 6= 0 and x0 6= 0, the form of (1.2.11) suggests that we take α = 1/x0 and
β = 1/r. Then y solves {

ẏ = y

y(0) = 1.
(1.2.12)

This is, comparatively, simpler than (1.2.9). Suppose that y solves (1.2.12) and define, via
(1.2.10),

x(t) :=
1

α
y

(
t

β

)
= x0y(rt).

Using only this definition of x and the fact that y solves (1.2.12), show that x solves (1.2.9).
Do not use the fact that y(τ) = eτ, even though you know it. The point is to show that if
we can solve the simpler rescaled problem (1.2.12), then we can solve the original problem
(1.2.9). This allows us to focus our attention solely on the simpler rescaled problem.

Our qualitative analysis of exponential growth revealed a number of gaps in our under-
standing of the model. These gaps motivate the following four fundamental questions, which
we will later state more precisely. Answering these questions will be a central part of our
analysis of any differential equation.

1. Do solutions exist?

2. Are solutions unique?

3. Where are solutions defined?

4. What do solutions do over long times?

1.3. More complicated population models.

Exponential growth models, as the name indicates, allow for only two kinds of end behavior
for a population (assuming a positive initial condition): either the population explodes to
possess infinitely many members (x(t)→∞), or it dies off (x(t)→ 0). This is wholly unreal-
istic for many populations, which often exhibit neither kind of extreme behavior. But “real”
populations do not just grow in a manner dependent on the current population. Many other
factors affect (negatively) the rate of a population’s growth: internal conflict/interaction
within the population or with another population; limited food, space, or necessary re-
sources; the spread of a disease through the population; harvesting of the population by
some outside source; birth control. By diversifying the notion of proportionality that gave
us the exponential growth model, we can develop other population models whose end behav-
iors are more realistic. These models will help us motivate and test many of our forthcoming
techniques.

1.3.1. Growth with a time-dependent rate.

Recall that the exponential growth model reads ẋ = r0x, where r0 is a fixed real number
(we are writing r0 now, not r, so we can use r for another object soon), and we obtained
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this model by assuming that the growth rate of a population was directly proportional to
its current size. If we relax our definition of “proportional” (Definition 1.2.1), we can obtain
some more nuanced models.

Suppose that the “constant” of proportionality is time-dependent; instead of a real number
r0, use a function of time, so the model now reads

ẋ = r(t)x. (1.3.1)

This allows us to tune the growth rate to be more sensitive to the time at which we are
measuring growth. At any moment in time, the growth rate is still proportional to the
population at that time, but the rate of proportionality can vary. Specifically, this could
incorporate the periodic, nonconstant effects of seasons or fertility cycles on the population.

The ODE (1.3.1) generalizes exponential growth (take r(t) = r0 for all t) and will turn out
to be one of the most important equations that we solve analytically later. Right now, our
calculus knowledge probably does not help us conjure up solutions to (1.3.1) from scratch,
but we can always check a solution candidate.

1.3.1 Example. The ODE
ẋ = sin(t)x

takes the “constant” of proportionality to be periodic. In particular, since the sine oscillates
between 1 and −1, sometimes the growth rate is positive, and sometimes negative; thus
the population oscillates between increasing and decreasing.

We can check that x(t) := e− cos(t) is a solution for all t:

ẋ(t) =
d

dt
[e− cos(t)] = e− cos(t)(−1)(− sin(t)) = sin(t)e− cos(t) = sin(t)x(t).

This solution is itself periodic: x(t + 2π) = x(t). This might model a periodic, recurring
pattern of growth and death in a population.

1.3.2 Problem (?). While we do not yet know how to solve ẋ = r(t)x for a general function
r, we might be able to guess. We have seen solutions for exponential growth ẋ = r0x in the
form x(t) = Cer0t, where C is a constant, and the function R0(t) := r0t satisfies Ṙ0(t) = r0.
We might generalize this as follows. Check that x(t) = eR(t) solves ẋ = r(t)x, where R is
an antiderivative of R—that is, Ṙ(t) = r(t).

This is where we finished on Wednesday, August 16, 2023.

1.3.2. Logistic growth.

Here is another way of relaxing the definition of “proportional.” Suppose that the growth
rate of a population is proportional to its current population in the sense that the “constant”
of proportionality depends on the current population. Then the population model would
read

ẋ = r(x(t))x, (1.3.2)
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where r is a function not of time but of the population itself. Annoyingly, we will write x
both for the function determining the population and for the independent variable of the
function r.

This model (1.3.2) allows us to tune the growth rate to increase or decrease as the popu-
lation varies. Perhaps we want the growth rate to decrease if the population passes a certain
“sustainability” threshold: beyond this level of population, the population is too large to
continue to grow (perhaps due to competition among its members for resources like space
or food). That is, we might want there to be a population level N such that r(x) > 0 for
x < N but r(x) < 0 for x > N . Additionally, to keep the growth model as simple as possible
when the population is indeed growing—that is, to keep the growth at an exponential level
for suitably small populations—we might want r(x) ≈ r0 for x ≈ 0 and some constant r0.
There are many such functions r that do this; one of the simplest is

r(x) = r0

(
1− x

N

)
, r0, N > 0.

x

r0(1− x/N)

r0

N

Then (1.3.2) reads
ẋ = r0

(
1− x

N

)
x.

This ODE is called the logistic equation. Unlike exponential growth, it has two pa-
rameters, both r0 and N . And unlike exponential growth, it is nonlinear in the sense
that it reads

ẋ = f(x),

where
f(x) := r0

(
1− x

N

)
x = r0x−

r0x
2

N

is not a linear function of the state variable x (rather, it is quadratic).
It is possible to find analytic solutions to the logistic equation, but the calculus and

algebraic steps are much more burdensome than for exponential growth, and the final formula
is not very enlightening without further algebraic manipulation (here it helps to know what
you are looking for before you start looking for it). We will see how a combination of
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qualitative3, numerical, and theoretical techniques can yield a rich amount of information
about the logistic equation without having a formula for it—and then we will see how those
techniques leave unanswered one particular question for which a formula will be very much
appreciated.

1.3.3 Example. Previously we saw that the constant function x(t) = 0 solved the expo-
nential growth equation ẋ = r0x. More generally, for an ODE ẋ = f(x), we might find
numbers x such that f(x) = 0. Then since the derivative of a constant function is 0, any
such number will solve ẋ = f(x).

For the logistic equation ẋ = r0(1 − x/N)x, if we put f(x) = r0(1 − x/N)x, then the
roots of f are x = 0 and x = N . (This is assuming r0 6= 0; otherwise, f has many more
roots!). If we put, say, x(t) = N for all t, then

ẋ(t) =
d

dt
[N ] = 0 and r0

(
1− x(t)

N

)
x(t) = r0

(
1− N

N

)
N = 0,

thus x(t) = N solves the logistic equation. Such constant solutions to ODE are called
equilibrium solutions, and we should always look for them first; finding them is a
root-finding task, not a calculus one.

1.3.4 Problem (?). The logistic equation appears to build in the feature that the popu-
lation will start to decrease if it gets too large for its environment. (Whether or not the
population actually does this—whether or not the logistic equation actually has solutions,
and what their long-time behavior is—has yet to be established.) We can modify the logis-
tic equation further by demanding that the population decreases if it is too small—perhaps
if there are too few members to support a viable number of mating pairs. By studying
where the function

f(x) := r0(
x

M
− 1)

(
1− x

N

)
x

is positive or negative, check that the ODE

ẋ = r0(
x

M
− 1)

(
1− x

N

)
x

has these features. What are the roles of the parameters M and N in this model?

1.3.5 Problem (+). In Problem 1.2.8, we rescaled the exponential growth model to sim-
plify the parameter and initial condition. Like much of our treatment of exponential growth
in Section 1.2, that work was not really necessary, as we had very explicit solutions for
the model. Rather, the work illustrated what can be complicated techniques in a familiar

3 These qualitative techniques will be similar to, but more precise and nuanced than, our previous explorations
with exponential growth. We could repeat some of that qualitative analysis on the logistic equation using
just our background in calculus, but we would still have to contend with the same unanswered questions
that remained from exponential growth. Instead, we will use logistic growth as a regular “toy” problem
when meeting new techniques.
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setting.
Here is a less familiar setting. Suppose that x solves the logistic IVP{

ẋ = rx
(

1− x

N

)
x(0) = x0,

where r 6= 0 and N 6= 0. (1.3.3)

(i) Let α and β be fixed real numbers. Show that if

y(τ) = αx(βτ), (1.3.4)

where x solves (1.3.3), then y solves{
ẏ(τ) = (βr)y

(
1− y

αN

)
y(0) = αx0.

(ii) Conclude that if we choose α = 1/N , β = 1/r, and y0 = x0/N , then y solves the much
simpler IVP {

ẏ = y(1− y)

y(0) = y0.
(1.3.5)

Note that unlike in Problem 1.2.8, we do not have enough degrees of freedom to set y0 = 1
here.

(iii) Following (1.3.4), put

x(t) :=
1

α
y

(
t

β

)
= Ny(rt),

where y solves (1.3.5). Using only this definition of x and the fact that y solves (1.3.5),
conclude that x solves the original, more complicated logistic equation (1.3.3). Thus, if all
we care about are formulas for solutions, we just have to solve (1.3.5).

This is where we finished on Friday, August 18, 2023.

1.4. Fundamental terminology and guiding questions.

If we are going to talk sensibly and successfully about a mathematical concept, we better be
sure that we understand all the words involved in that concept. So, we will now formalize
the notion of ODE that we have used in the previous two sections. Finally, we will crystalize
some guiding questions for the future.

Here is our primary object of study for the foreseeable future.
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1.4.1 Definition. An first-oder ordinary differential equation (ODE) is
an equation of the form

ẋ = f(t, x), (1.4.1)

where f is a function defined for t in some interval (a, b) and x in some interval (c, d).
The values a = −∞, c = −∞, b =∞, and d =∞ are all allowed. We will sometimes call
t the time or temporal variable and x the state or phase variable.

A solution to the equation (1.4.1) is a differentiable function x defined on an interval
I such that

ẋ(t) = f(t, x(t)) (1.4.2)

for all x in I and that ẋ is continuous on I. For (1.4.2) to make sense, tacitly we require
I to be a subinterval of (a, b) and x(t) to belong to (c, d).

Why this definition? Definitions are not handed down to us from on high, even though it
often looks like that; definitions exist because, over time and after thought, people come to
realize that those definitions are the best way to capture a concept.

1. Hopefully the necessity of the “pointwise” condition (1.4.2) is obvious. After all, (1.4.1)
is really an equality of functions, and functions are equal when they are equal at every point
in their domains.

2. Next, why does a solution have to be defined on an interval? Remember that we should
be thinking of t as time. If our model only predicts the future from, say, 9 am to 12:19 pm,
and then again from 1:11 pm to 5 pm, that would be a pretty strange model—it just stops
working for one hour during the day. Requiring the solution to an ODE to be defined on an
interval helps keep the flow of time unbroken. Do not neglect consideration of the domain of
a solution to an ODE; often our solutions will end up defined for all time in (−∞,∞), but
not always. Whenever you find a formula for a solution to a differential equation, you must
be able to state its domain.

3. Third, why should the solution’s derivative be continuous? This is actually a pretty
natural condition to demand. Most of the time, things not only change continuously; their
rate of change evolves continuously. (Not always: flip a light switch.) Requiring ẋ to be
continuous affords our model extra control over reality.

Definition 1.4.1 is actually rather easy to check in practice, once you have a candidate
function for a solution. In general, when someone asks you to “check” that a certain function
solves an ODE, you do not have to come up with the solution from scratch and get what
they got. Rather, plug and chug.

1.4.2 Example. The ODE
ẋ = sin(t)x+ 2te− cos(t)

looks like nothing that we have seen before. Nonetheless, we can check that the function

x(t) := t2e− cos(t)
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solves it. We just compute

ẋ(t) =
d

dt
[t2e− cos(t)] = 2te− cos(t) + t2e− cos(t)(−1)(− sin(t)) = sin(t)t2e− cos(t) + 2te− cos(t).

Then we recognize that the first term on the right really contains x. That is,
sin(t)t2e− cos(t) = sin(t)x(t). And so we have shown

ẋ(t) = sin(t)x(t) + 2te− cos(t),

as desired.

1.4.3 Remark. We will sometimes overwork the letter x—for example, we might start out
by saying something like “Let x and y solve the ODE ẋ = f(t, x).” The first appearance
of x in that sentence is to serve as a particular function, while the second is to serve as
a placeholder variable. This sentence really means that x and y are both functions that
satisfy

ẋ(t) = f(t, x(t)) and ẏ(t) = f(t, y(t))

for all t in their domains.

As we saw in our population models, most of the time in a “physical” scenario we do not
meet just an ODE by itself, but rather one with an initial condition appended.

1.4.4 Definition. An first-order initial value problem (IVP) is a pair of
equations of the form {

ẋ = f(t, x)

x(t0) = x0,
(1.4.3)

where ẋ = f(t, x) is an ODE, and t0 and x0 are given real numbers with f defined at t = t0.
A solution to the IVP (1.4.3) is a function x that solves the ODE ẋ = f(t, x) in the
sense of Definition 1.4.1, that is defined at t = t0, and that satisfies x(t0) = x0.

1.4.5 Problem (!). (i) Check that if C is any real number, then the function

x(t) := Ce− cos(t) + t2e− cos(t)

solves the ODE from Example 1.4.2.

(ii) Select the right constant C to solve the IVP{
ẋ = sin(t)x+ e− cos(t)

x(0) = 2.

There are plenty of interesting and worthwhile problems that are not first-order. A
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second-order problem like
ẍ = ẋ+ x+ sin(t),

where ẍ denotes the second derivative of x, arises naturally in mechanical problems that are
derived from Newton’s second law. There are higher-order problems with derivatives
beyond the second, but they rather rarely show up in practice A first-order planar
system like {

ẋ = x+ xy

ẏ = −y + 2xy,

in which x and y are both unknown functions, arises naturally in modeling interacting pop-
ulations, such as predators and prey. Here planar refers to the presence of two, and only
two, unknown functions in the problem; we could think of the solution as an ordered pair
(x, y) of functions in the two-dimensional plane. Certainly there could be more than two
functions involved in a system of differential equations, but most of the key ideas for those
larger systems appear without much fuss in the planar setting.

It turns out that second-order ODE and first-order systems consisting of two ODE are
intimately related, and we can learn a lot about the one from the other. We will do so after
a thorough study of first-order problems, which encompass valuable models and yield both
useful techniques and useful insights for studying other kinds of problems.

Motivated by some of our evocative, but ultimately imprecise, calculus-based analysis of
population models, and spurred by our success with direct integration, here are the funda-
mental questions of our course. They are all deeper, more nuanced versions of our original
key question (KQ), now couched in the framework of ODE.

1. Do solutions to an ODE (IVP) exist? If so, how do we know that they exist? Our
profession of the analyst’s creed (AC) notwithstanding, is there a procedure for finding
formulas for those solutions? Most broadly, does this ODE (IVP) model allow us to predict
the future?

2. Are solutions to an ODE (IVP) unique? (Problems 1.2.6 and 1.4.5 illustrate that ap-
parently ODE by themselves need not have unique solutions, but maybe imposing an initial
condition does force uniqueness.) If we have found a solution, is it the only one? Most
broadly, does this ODE (IVP) model predict only one4 future?

3. If solutions exist to an ODE (IVP), where are they defined? What is their domain? Are
they defined for all real numbers5 in (−∞,∞) or strictly for a subinterval? Most broadly,
for how long does this ODE (IVP) model allow us to predict the future?

4. What do solutions to an ODE (IVP) do at the limit of their existence? For example, if
a solution x is defined for all time t ≥ 0, does the limit limt→∞ x(t) exist as a finite real
number, or as an extended real number (±∞)? If the solution does not have a limit at∞, is
it asymptotic to some more familiar function x∞ in the sense that limt→∞[x(t)− x∞(t)] = 0?
If a numerical or asymptotic limit exists, can we quantify “how fast” x approaches that limit?
4 Or will we commit crimes against the Sacred Timeline by getting multiple solutions and predicting multiple
futures?

5 For all time. Always.



1.5. Integration 28

And if a solution is only defined up to some finite time Tω, what happens as t gets close
to Tω? Is there some “breakdown” of the model at Tω? Most broadly, what happens in the
future?!

1.5. Integration.

Believe it or not, the key step in analytically solving many ODE boils down to a “direct
integration” or “antidifferentiation” problem of the form

ẋ = f(t). (1.5.1)

Here x is, as always, the unknown function, while f is some given function—in principle, we
know everything that we might want to know about f . In particular, f should be defined
and continuous on some interval I, and (1.5.1) says that

ẋ(t) = f(t)

for all t in I. That is, x is an antiderivative for f on I. Calculus then teaches us that
if F is another antiderivative for f on I, then there is a constant C such that

x(t) = F (t) + C (1.5.2)

for all t in I.
More precisely, here is a theorem that we will use, explicitly or implicitly, quite often.

1.5.1 Theorem. Let f be continuous on the interval I. Suppose that F is an antiderivative
of F on I (so Ḟ (t) = f(t) for all t in I) and that x solves ẋ = f(t) on I. Then there is a
constant C such that

x(t) = F (t) + C

for all t in I.

Proof. One approach is to invoke the celebrated mean value theorem. Put G(t) := x(t) −
F (t). Then

Ġ(t) = ẋ(t)− Ḟ (t) = f(t)− f(t) = 0

for all t in I. This implies that G is constant on I: there is a constant C such that G(t) = C
for all t in I, and therefore x(t) = F (t) + C for all t in I.

Why is G constant? This is the mean value theorem, which, for any distinct t1 and t2 in
I, lets us write

G(t2)−G(t1)

t2 − t1
= Ġ(τ) = 0

for some τ between t1 and t2, thus G(t1) = G(t2) for all t1 and t2 in I, thus G is constant on
I. �

And so, to solve (1.5.1), all that we have to do is find one antiderivative of f on I; then
all solutions to (1.5.1) are given by (1.5.2).
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1.5.2 Example. (i) To solve the ODE

ẋ = 2t,

we need to find an antiderivative of the function

f(t) := 2t.

One candidate is
F (t) := t2,

and so all solutions to this ODE are

x(t) = t2 + C

for some constant C. However, it would be equally correct to use the antiderivative

F1(t) := t2 + 1,

and then all solutions would have the form

x(t) = t2 + 1 + C.

(ii) To solve the ODE
ẋ = 2t(t2 + 1)2023,

we need to find an antiderivative of

f(t) := 2t(t2 + 1)2023.

If we put
u(t) = t2 + 1,

we recognize that f is really the product

f(t) = [u(t)]2023u̇(t),

and therein we might recognize the chain rule to see that f is the derivative of

F (t) :=
[u(t)]2024

2024
=

(t2 + 1)2024

2024
.

Thus all solutions are
x(t) =

(t2 + 1)2024

2024
+ C.

(iii) To solve the ODE
ẋ = et

2

,

we want to say that
x(t) = F (t) + C,

where F is an antiderivative of
f(t) := et

2

,

but experience in calculus might teach us that there is no “elementary” representation for
this antiderivative F . (We could use the Taylor series for the exponential, but that is not
quite “elementary.”)
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1.5.3 Problem (!). (i) Suppose that F (t) = t3 is an antiderivative of the function f and
that G is an antiderivative of the function g. Find all solutions to the ODE

ẋ = f(t) + g(t) + 1.

[Hint: your answer will involve G.]

(ii) Suppose we also know that the function G above satisfies G(0) = 0. Find all solutions
to the IVP {

ẋ = f(t) + g(t) + 1

x(0) = 3.

[Hint: there is only one solution.]

The last example above reminds us that we may not always be able to find a “nice”
formula for an antiderivative—but we know that, per the analyst’s creed (AC), having a
formula is not the same as understanding. Can we guarantee that antiderivatives always
exist for reasonably well-behaved (i.e., continuous) functions? We certainly can, thanks to
the tool of the definite integral.

A rigorous definition of the definite integral involves Riemann sums and limits of sequences—
two valuable tools rather removed from the tamer limits that define derivatives, like (1.1.1).
Adopting the perspective that “what things do defines what things are,” we will not spend
any length of time working with a general formula for the definite integral of a continuous
function; instead, we will define it via its most fundamental properties. Intuitively, the defi-
nite integral

∫ b
a
f(t) dt should encode the “net signed area” between the graph of f and the

t-axis, where the graph is considered between the points t = a and t = b.
Furthermore, we do not prove that any continuous function defined on an interval contain-

ing the points a and b has a definite integral
∫ b
a
f(t) dt. Instead, we only state the following

theorem which asserts its existence and details its most fundamental and useful properties.
For completeness, we do define the integral in (1.5.3) as a limit of right-endpoint Riemann
sums. It turns out that if one assumes that this limit exists, then it is possible to prove all
of the properties below except (

∫
3) directly from this limit definition. Perhaps the greatest

conceptual and technical challenge in working rigorously with the definite integral is that
there is not just one limit definition of it (unlike, essentially, the derivative); the definite
integral can be expressed as virtually infinitely many different kinds of limits of Riemann
sums. Far more important for us in differential equations than these limits are the properties
below, the fact that all properties correspond to an intuitive notion of area, and the fact
that these properties give us the fundamental theorem of calculus, which in turn gives us
antiderivatives.

1.5.4 Theorem. Let I be an interval. For each continuous function f defined on I and
all points a and b in I, the limit∫ b

a

f(t) dt := lim
n→∞

b− a
n

n∑
k=1

f

(
a+

k(b− a)

n

)
(1.5.3)
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exists. This number
∫ b
a
f(t) dt is called the definite integral of f from a to b,

and it has the following properties.

(
∫
1) [Linearity in the integrand] If f and g are continuous functions on I and if α is

a real number, then∫ b

a

(
f(t) + g(t)

)
dt =

∫ b

a

f(t) dt+

∫ b

a

g(t) dt and
∫ b

a

αf(t) dt = α

∫ b

a

f(t) dt.

(
∫
2) [Constants] If a and b are any points in I, then∫ b

a

1 dt = b− a.

(
∫
3) [Additivity of the domain] If f is continuous on I and a, b, and c are any points

in I, then ∫ c

a

f(t) dt+

∫ b

c

f(t) dt =

∫ b

a

f(t) dt.

(
∫
4) [Monotonicity] If f is continuous on I and if a and b are points in I with a ≤ b

and f(t) ≥ 0 for all t in [a, b], then ∫ b

a

f(t) dt > 0.

In the number
∫ b
a
f(t) dt, the number a is the lower limit of integration, the

number b is the upper limit of integration, and the function f is the integrand.
The properties above, except (

∫
4), do not require the lower limit to be less than or equal to

the upper limit. Property (
∫
1) covers the algebra of integrands; property (

∫
2) encodes what

we expect the area of a rectangle to be; property (
∫
3) encodes arithmetic on the limits of

integration; and property (
∫
4) reflects the notion that the graph of a nonnegative function

should lie above/overlapping the t-axis and therefore have a “nonnegative” area underneath
it. We also follow the convention that the definite integral is independent of the variable of
integration, thus ∫ b

a

f(t) dt =

∫ b

a

f(τ) dτ =

∫ b

a

f(s), (1.5.4)

and so on. However, we never allow the variable of integration to be the same symbol that
we use for a limit of integration, and so we would write∫ t

a

f(τ) dτ, not
∫ t

a

f(t) dt.

1.5.5 Problem (?). Suppose that f and g are continuous functions defined on the interval
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I = (1,∞). Suppose also that∫ 4

2

f(t) dt = 1,

∫ 3

2

f(t) dt = 2, and
∫ 4

3

g(t) dt = 3.

Compute ∫ 4

3

(
4f(t) + 5g(t)

)
dt.

Which properties from Theorem 1.5.4 did you use in this calculation?

1.5.6 Problem (?). Let f be continuous on the interval I.

(i) Let a be a point in I. Take b = a and c = a in part (
∫
3) of Theorem 1.5.4 to conclude

that
2

∫ a

a

f(t) dt =

∫ a

a

f(t) dt,

and therefore ∫ a

a

f(t) dt = 0.

Why can we paraphrase this as “the area under a point is zero”?

(ii) Let a and b be points in I. Use (
∫
3) of Theorem 1.5.4 and the work above to conclude

that ∫ b

a

f(t) dt+

∫ a

b

f(t) dt = 0,

and therefore ∫ a

b

f(t) dt = −
∫ b

a

f(t) dt.

Why can we paraphrase this as “flipping the limits of integration flips the sign of the
integral”?

This is where we finished on Monday, August 21, 2023.

Remarkably, the six properties of integrals in Theorem 1.5.4 are enough to give us the
fundamental theorem of calculus and from that, antiderivatives.

1.5.7 Theorem (FTC1). Let f be continuous on an interval I and let t0 be a point in I.
Then the function

F (t) :=

∫ t

t0

f(τ) dτ (1.5.5)

is an antiderivative of f , i.e., Ḟ (t) = f(t) for all t in I.
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1.5.8 Problem (+). Think about how you would want to prove this and explain why it
suffices to show

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0.

You do not have to explain why this limit is true, but instead use the definition of F in
(1.5.5), the definition of the derivative (1.1.1), and the properties of definite integrals from
Theorem 1.5.4 to explain why this limit is the key thing to prove. [Hint: show that for any
fixed t, we can write the number f(t) as f(t) =

(∫ t+h
t
f(t) dτ

)
/h. Be careful with notation:

τ is the variable of integration, while t is a fixed number.]

1.5.9 Example. We return to part (iii) of Example 1.5.2. The function f(t) = et
2

is
continuous on (−∞,∞), and so F (t) :=

∫ t
0
eτ

2
dτ is an antiderivative of f on (−∞,∞).

Then all solutions to ẋ = et
2

have the form

x(t) =

∫ t

0

eτ
2

dτ + C

for some constant C. There was no need to use 0 as the lower limit of integration in F ; any
point t0 in (−∞,∞) would do. While we cannot simplify

∫ t
0
eτ

2
dτ any further symbolically,

we could use numerical methods to approximate this definite integral for any choice of t.

1.5.10 Problem (!). All three functions below have the same derivative. Why? (And
what is that derivative?)

x1(t) :=

∫ t

0

cos(τ2) dτ, x2(t) := −
∫ 1

t

cos(τ2) dτ, x3(t) := −
∫ −t
2

cos(τ2) dτ.

We can evaluate definite integrals if we know an antiderivative of the integrand. If x is a
function defined at the points a and b, we frequently use the notation

x(t)
∣∣t=b
t=a

:= x(b)− x(a).

1.5.11 Theorem (FTC2). Let x be differentiable on the interval I, and suppose that ẋ is
continuous on I. Then ∫ b

a

ẋ(t) dt = x(t)
∣∣t=b
t=a

= x(b)− x(a).

for any points a and b in I.

1.5.12 Problem (+). Prove this theorem as follows. Define F (t) :=
∫ t
a
ẋ(τ) dτ. Then F

is an antiderivative of ẋ, and so there is a constant C such that x(t) = F (t) + C for all t.
Conclude x(t)

∣∣t=b
t=a

= F (b)− F (a), and use Problem 1.5.6 to find F (a) = 0.
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1.5.13 Example. Suppose that x is differentiable on [1, 2] with ẋ continuous on [1, 2]. If
x(1) = 2 and x(2) = 4, then∫ 2

1

ẋ(t)

2
dt =

1

2

∫ 2

1

ẋ(t) dt =
1

2
x(t)

∣∣t=2

t=1
=
x(2)− x(1)

2
=

4− 2

2
= 1.

1.5.14 Problem (+). Let I and J be intervals, and let a and b be points in I. Suppose
that x is a differentiable function from I to J and that ẋ is continuous on I. Let f be
continuous on J . Show that∫ b

a

f(x(t))ẋ(t) dt =

∫ x(b)

x(a)

f(u) du.

[Hint: define a function F on J by F (τ) :=
∫ τ

x(a)
f(u) du and define a function G on

J by G(τ) = F (x(τ)). Use FTC1 to calculate the derivative Ġ. Use FTC2 to compute∫ b
a
f(x(t))ẋ(t) dt = G(b)−G(a). What is G(a)?]

1.5.15 Problem (!). Suppose that x is a differentiable function on [1, 2] and ẋ is continuous
on [1, 2] with x(1) = π/2 and x(2) = π. What is∫ 2

1

sin(x(t))ẋ(t) dt?

[Hint: use the result of Problem 1.5.14.]

1.5.16 Problem (?). Suppose that f is a continuous function on [1, 4] and
∫ 2

1

tf(t) dt = 2.

What is ∫ 4

1

f(
√
t) dt?

[Hint: substitute u =
√
t and note that dt = 2u du.]

We can now establish an existence and uniqueness theorem for the direct integration IVP.
We will show first that a solution exists and second that this is the only possible solution.
Our proof uses both parts of the fundamental theorem of calculus.

1.5.17 Theorem (Direct integration). Let f be continuous on the interval I, let t0 be a
point in I, and let x0 be a real number. Then the only solution to the IVP{

ẋ = f(t)

x(t0) = x0
(1.5.6)
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is

x(t) = x0 +

∫ t

t0

f(τ) dτ. (1.5.7)

This function x is defined on all of I.

Proof. First, since f is continuous on I, the integral
∫ t
t0
f(τ) dτ is defined for all t in I, and

so this formula for x is actually defined. We need to do two things: (1) show that the formula
above yields a solution to the IVP and (2) show that this is the only possible solution. (1) is
a direct calculation, but (2) requires a little more work. Both (1) and (2) use different parts
of the FTC.

1. The function x as defined actually solves the IVP. We use FTC1 to calculate

ẋ(t) =
d

dt

[
x0 +

∫ t

t0

f(τ) dτ

]
= 0 +

d

dt

[∫ t

t0

f(τ) dτ

]
= f(t).

Thus x satisfies the ODE part of the IVP. Then we use properties of integrals to calculate

x(t0) = x0 +

∫ t0

t0

f(τ) dτ = x0 + 0 = x0.

Hence x satisfies the initial condition and so solves the IVP.

2. The function x above is the only possible solution to the IVP. Suppose that all we know
about the function x is that it satisfies both the ODE ẋ = f(t) and the initial condition
x(t0) = x0. The ODE means that x satisfies ẋ(t) = f(t) for all t in the domain of x.
Consequently, we may integrate both sides of this equality over the same interval:∫ t

t0

ẋ(τ) dτ =

∫ t

t0

f(τ) dτ. (1.5.8)

Since we are using t as the upper limit of integration, we have changed the variable of
integration to τ. We can evaluate the integral on the left using FTC2:∫ t

t0

ẋ(τ) dτ = x(t)− x(t0) = x(t)− x0, (1.5.9)

where the second equality uses the initial condition x(t0) = x0. We combine (1.5.8) and
(1.5.9) to conclude

x(t)− x0 =

∫ f

t0

f(τ) dτ,

and so

x(t) = x0 +

∫ t

t0

f(τ) dτ.

Thus the only possible solution to the IVP is given by (1.5.7). �
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1.5.18 Problem (?). Here is a different way to argue uniqueness. Suppose that x and y
are both solutions of the same direct integration IVP, i.e.,{

ẋ = f(t)

x(t0) = x0
and

{
ẏ = f(t)

y(t0) = x0.

We want x and y to be the same, so we want x(t) − y(t) = 0 for all t. Define z(t) :=
x(t)− y(t), and show that z solves the IVP{

ż = 0

z(t0) = 0.

Then use FTC2 to conclude that z(t) = 0 for all t, as desired.

1.5.19 Example. (i) The only solution to the IVP{
ẋ = 2t

x(1) = 2

is

x(t) = 2 +

∫ t

1

2τ dτ = 2 + τ2
∣∣τ=t
τ=1

= 2 + t2 − 1 = t2 + 1.

(ii) The only solution to the IVP {
ẋ = et

2

x(0) = 1

is

x(t) = 1 +

∫ t

0

eτ
2

dτ,

which we cannot simplify further.

Direct integration is a “complete success” story: we have a formulaic method for solving
any direct integration problem, and we know exactly which functions are solutions. We will
have relatively few “complete successes” in this course, so we should cherish them when we
find them.

1.5.20 Remark. (i) As in part (ii) of Remark 1.1.5, we will use the indefinite integral
notation ∫

f(t) dt

for bookkeeping and euphemistic purposes in the calculation of actual antiderivatives. For
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example, if f(t) = 2t, then we might say that any antiderivative F of f has the form

F (t) =

∫
2t dt = t2 + C (1.5.10)

for some constant C.

(ii) However, we will never write just F (t) =
∫

2t dt and leave it at that; we will always
work through the calculation (1.5.10). Pretending that the symbol

∫
f(t) dt is a function

suppresses and obscures the constant of integration. Doing so also conflates the independent
variable of an antiderivative F of f with the variable of integration t in the symbol

∫
f(t) dt;

previously, in (1.5.4), we agreed that the variable of integration is irrelevant, but with
indefinite integrals, saying F (t) =

∫
f(t) dt could lead to

F (t) =

∫
f(t) dt =

∫
f(τ) dτ = F (τ),

and then we might think that F is constant.

(iii) In conclusion, if you are overwhelmed by ambiguities when trying to use an indefinite
integral to solve a problem, a good idea is to give up and use a definite integral instead.

1.5.21 Example. We use indefinite integral notation to guide our symbolic computation
of an antiderivative of f(t) := 2t(t2 +1)2023, which we previously studied with a good guess
in part (ii) of Example 1.5.2. We substitute u = t2 + 1 and du = 2t dt to obtain∫

2t(t2 + 1)2023 dt =

∫
u2023 du =

u2024

2024
+ C =

(t2 + 1)2024

2024
+ C.

That is, for any constant C, the function F defined by

F (t) :=
(t2 + 1)2024

2024
+ C

is an antiderivative of f .

This is where we finished on Wednesday, August 23, 2023.
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2. FIRST-ORDER DIFFERENTIAL EQUATIONS

2.1. Separation of variables: a useful toy problem.

It turns out that the time and state dependence of many differential equations can be “sep-
arated” in the sense that the equations have the form

ẋ = g(t)h(x),

where g is a function of time t alone, and h is a function of the state x alone. Such equations,
unsurprisingly, are called separable. For example, exponential growth has the form ẋ =
rx, so g(t) = 1 and h(x) = rx; logistic growth has the form ẋ = rx(1 − x/N), so g(t) = 1,
again, and h(x) = rx(1− x/N); growth with a time-varying rate has the form ẋ = r(t)x, so
g(t) = r(t) and h(x) = x; and direct integration has the form ẋ = f(t), so g(t) = f(t) and
h(x) = 1.

We develop here, in increasing levels of generality, an analytic technique for solving separa-
ble ODE. The technique relies on first finding constant solutions (the “equilibrium” solutions
that we have previously discussed) and then “separating” the t- and x-dependencies in the
ODE into two distinct antidifferentiation problems. Our success will vary greatly from ODE
to ODE, and we will spend almost as much time criticizing this method as we will practicing
it.

For quite some time we will consider the “toy” problem

ẋ = x2. (2.1.1)

This has all the essential features of the harder problems (like logistic) that will want to
solve without the attendant notational, algebraic, and/or emotional baggage.

The goal is to solve for x. A natural, but bad, idea is direct integration: since ẋ = x2, if
F is any antiderivative of x, then

x(t) = F (t) + C (2.1.2)

for some constant C. Equivalently, for all t and t0 in its domain, the solution x to (2.1.1)
also satisfies the integral equation

x(t) = x(t0) +

∫ t

t0

ẋ(τ) dτ = x(t0) +

∫ t

t0

[x(τ)]2 dτ, (2.1.3)

as we saw in (IE). But both (2.1.2) and (2.1.3) define x in terms of an antiderivative of x2,
and we do not know what x is in the first place! We need to do something new.

2.1.1. Fooling around.

Here is that new thing. Math is complicated, so perhaps we should look for the simplest
possible solutions to ẋ = x2. And perhaps the simplest kind of function is the constant
function. What kind(s) of constant functions x(t) = c, for a fixed real number c, could solve
ẋ = x2? We compute

ẋ(t) =
d

dt
[c] = 0 and [x(t)]2 = c2,
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and so we want
0 = c2,

and therefore
c = 0.

This argument shows that if x is a constant solution to ẋ = x2, then x(t) = 0 for all t.
Conversely, if we put x(t) = 0 for all t, then

ẋ(t) =
d

dt
[0] = 0 = 02 = [x(t)]2,

so x = 0 is indeed a solution. As before, we call such a constant solution an equilibrium
solution, as it always maintains the same value and therefore stays “at equilibrium.”

Are there other, nonconstant, nonequilibrium solutions? We follow the tried-and-true
method of working backward. Assume that there is a solution x to ẋ = x2 that is not
constant; since the only constant solution is 0, this means that x(t0) 6= 0 for some time
t = t0. Then continuity implies that x(t) 6= 0 for t ≈ t0.

And now we do something new and, perhaps, unexpected: assuming x(t) 6= 0, we may
divide both sides of ẋ(t) = [x(t)]2 by [x(t)]2 to find

ẋ(t)

[x(t)]2
= 1. (2.1.4)

We have “separated” the problem by collecting all of the x-dependent factors on the left side.
Now we rewrite (2.1.4) as

[x(t)]−2ẋ(t) = 1. (2.1.5)

The left side is really a piece of calculus action that we have seen before. Perhaps it will
help to define a new function ` by `(x) := x−2, with x 6= 0. We write ` since this governs
what happens on the `eft side of (2.1.5); also, we are adopting the (unfortunately) dual
mindset that the letter x denotes both our unknown function (a dependent variable of the
independent variable t) and a single number that is the independent variable of `. Then
(2.1.5) is

`(x(t))ẋ(t) = 1. (2.1.6)

In words, (2.1.6) is the product of the composition of ` with x and the derivative ẋ of x.
This should sound a lot like the chain rule. All we are missing is some function L such that
L′(x) = `(x), and then we will have

`(x(t))ẋ(t) = L′(x(t))ẋ(t) =
d

dt
[L(x(t))]. (2.1.7)

Here we are writing L′, not L̇, to emphasize that L depends on x, not t.
So, we want an antiderivative L of the function `(x) = x−2. This is not too hard, since

we know the power rule. Just take

L(x) =

∫
x−2 dx =

x−2+1

−2 + 1
= −x−1. (2.1.8)
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We only want one antiderivative of `, so we are scandalously omitting the constant of inte-
gration. Then (2.1.7) is true for L(x) = −x−1, and so (2.1.6) becomes the direct integration
problem

ẏ(t) = f(t), where y(t) := L(x(t)) and f(t) := 1.

We certainly know how to solve this, thanks to our work in Section 1.5. There must be
a constant C such that

L(x(t)) = t+ C (2.1.9)

for all t. Since L(x) = x−1, (2.1.9) is really the algebraic problem

− [x(t)]−1 = t+ C. (2.1.10)

And now we solve for x, using the algebra that we have known for ages:

x(t) = −(t+ C)−1.

It looks like we have found a whole family of solutions to our ODE ẋ = x2; each constant C
gives us a different function.

Have we? We have been working backward and assuming that there existed a solution x
in the first place, and that this x was not always 0.

2.1.1 Problem (!). Let C be any real number and define x(t) := −(t+ C)−1.

(i) What are the largest intervals on which x is defined? [Hint: there are two possibilities.]
Of these intervals, which contain the interval (a,∞) for some real number a?

(ii) Check that x solves ẋ = x2 at all times at which x is defined.

And so we have two kinds of solutions to ẋ = x2: the equilibrium solution x(t) = 0 and
the family of nonequilibrium solutions x(t) = 1/(C − t), where each choice of C generates a
different member of the family.

2.1.2. Getting serious.

We can cut down on a lot of the chatter above by picking out the essential steps. To solve
ẋ = x2, first we look for constant (equilibrium) solutions. Constant solutions satisfy ẋ = 0,
and so we need x2 = 0, thus x = 0 is the only constant solution. For nonequilibrium, and
thus nonzero, solutions, we divided to find

ẋ

x2
= 1. (2.1.11)

We then viewed (2.1.11) as an antidifferentiation problem. Since ẋ/x2 and 1 are the same
function, any antiderivative of ẋ/x2 should equal any antiderivative of 1, up to an additive
constant. We can visualize this symbolically via the cartoon

ẋ

x2
= 1 =⇒

∫
ẋ(t)

[x(t)]2
dt =

∫
1 dt+ C.

(2.1.12)
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Here we are adopting the useful computational perspective that each indefinite integral
represents one particular antiderivative of the integrand (and so there are not two constants
of integration annoyingly floating around). And (2.1.12) is a cartoon because the previous
sentence has no rigorous meaning at all.

The indefinite integral on the left of the cartoon (2.1.12) should be easy:∫
1 dt = t.

For the integral on the right, we substitute u = x(t) and du = ẋ(t) dt to find∫
ẋ(t)

[x(t)]2
dt =

∫
du

u2
=

∫
u−2 du =

u−2+1

−2 + 1
= −u−1 = −[x(t)]−1.

And so we expect that for some constant C and all t in the domain of x, we should have

−[x(t)]−1 = t+ C.

This is exactly the implicit equation that we found for x before in (2.1.10), and, as before,
we solve it to get

x(t) = −(t+ C)−1. (2.1.13)

The upshot of the cartoon (2.1.12) is that it works really well if we neither overthink it nor
underthink it, and that if we get down to a candidate for a solution to an ODE, we can
always check if that candidate really is a solution by plugging and chugging. Shortly we will
see how to do all this with definite integrals, and that will make some things less sloppy, and
other things more annoying. Regardless, you should view this process as a formal procedure.

2.1.2 Undefinition. In mathematical language, the “term formal describes any plausible
result or procedure which may be unjustified or unjustifiable.” (Basic Partial Differential
Equations by David Bleecker & George Csordas, p. 249.)

Before proceeding with this toy problem, we make one change to the nonequilibrium
solution (2.1.13). Rewritten, this solution is

x(t) = − 1

t+ C
=

1

−t− C
.

Here C can be any real number, so −C can be any real number, too. (Proof: let K be any
real number. Take C = −K to see that −C = −(−K) = K.)

We will therefore write the family of nonequilibrium solutions (2.1.13) as

x(t) =
1

C − t
,

where C can be an arbitrary real number. This is a bit nicer notationally and algebraically.
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2.1.3. Incorporating initial conditions.

Suppose that we want to solve not just the toy problem but we also want to include an initial
condition, say, {

ẋ = x2

x(0) = 1.
(2.1.14)

We have two kinds of solutions to the ODE, the equilibrium solution x(t) = 0 and the family
of nonequilibrium solutions x(t) = 1/(C − t) for constants C. The equilibrium solution is
not going to be helpful here, because if x(t) = 0 for all t, then x(0) 6= 1. Can we choose C
correctly in a nonequilibrium solution to meet the initial condition?

We would want
1 = x(0) =

1

C − 0
=

1

C
,

and so C = 1. That is,

x(t) =
1

1− t
solves the IVP (2.1.14).

Now we think about the domain of our solution. Certainly the formula 1/(1−t) is defined
for t 6= 1, but we are working with a differential equation here. We know that the domain has
to be an interval I containing t = 0, and x(t) = 1/(1− t) has to be defined and differentiable
on I with ẋ continuous on I. Certainly x is not defined at t = 1 due to division by 0.
However, x is defined at all other t. So, candidates for the domain of x are the intervals
(−∞, 1) and (1,∞), as well as all other (smaller) subintervals of these two. But 0 is in
(−∞, 1) and not in (1,∞), so the domain of x should be (−∞, 1).

This is where we finished on Friday, August 25, 2023.

The goal of this course is to predict the future, and formulas are one approach to doing
that. So what happens? One of our guiding questions tasks us to study how x behaves as
time approaches the boundary of the domain of x. We have

lim
t→−∞

1

1− t
= 0 and lim

t→1−

1

1− t
=∞.

That is, there is a “blow-up” as t→ 1−.

2.1.3 Problem (!). Can a nonequilibrium solution to ẋ = x2 of the form x(t) = 1/(C− t)
solve the IVP {

ẋ = x2

x(0) = 0?

2.1.4. Using definite integrals.

Here is another way to solve the IVP {
ẋ = x2

x(0) = 1
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from (2.1.14). Imagine that we had not done the separation of variables analysis before to
get the family of nonequilbrium solutions x(t) = 1/(C − t). We could follow the spirit of
that analysis but use definite integrals instead.

First, since the initial condition is x(0) = 1 6= 0, the equilibrium solution x = 0 is not a
solution to this IVP. Instead, we work backwards: if the IVP (2.1.14) has a solution, then
since x(0) = 1 6= 0, for times t ≈ 0, we have x(t) 6= 0 by continuity, and so, once more,

ẋ(t)

[x(t)]2
= 1.

Now we integrate both sides of this equation from 0 to some time t:∫ t

0

ẋ(τ)

[x(τ)]2
dτ =

∫ t

0

1 dτ. (2.1.15)

We are using τ as the variable of integration since t is now the upper limit of integration.
Do not overwork the variables.

The integral on the right of (2.1.15) is∫ t

0

1 dτ = t.

The left of (2.1.15) Substitute u = x(τ) in the integral on the left of (2.1.15) and change
variables, using the initial condition x(0) = 1:∫ t

0

ẋ(τ)

[x(τ)]2
dτ =

∫ x(t)

x(0)

du

u2
=

∫ x(t)

1

du

u2
= −u−1

∣∣u=x(t)
u=1

= −
(
[x(t)]−1 − 1−1

]
= 1− [x(t)]−1.

Then
1− [x(t)]−1 = t,

and so we solve for x as, once again, x(t) = 1/(1− t).
The advantage of the definite integral is that it produces at once the solution to the IVP;

there is no intermediate step of finding a whole family of solutions.

2.1.4 Problem (!). Solve the IVP {
ẋ = x2

x(1) = 2

using definite integrals. Determine the domain of your solution and what happens as time
approaches the boundary of this domain.

2.1.5 Problem (?). Let t0 be an arbitrary real number and let x0 6= 0. Complete the
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following steps using definite integrals to solve{
ẋ = x2

x(t0) = x0.

This is an abstraction of all of our work on the toy problem for an arbitrary nonzero initial
condition.

(i) Suppose that x solves this IVP. Since x(t0) 6= 0, for all t close to t0, by continuity we
have x(t) 6= 0. Use this to obtain the generalization∫ t

t0

[x(τ)]−2ẋ(τ) dτ =

∫ t

t0

1 dτ

of (2.1.15).

(ii) Put u = x(τ) and remember x(t0) = x0 to obtain∫ x(t)

x0

u−2 du =

∫ t

t0

1 dτ.

(iii) Use the power rule for antiderivatives and the fundamental theorem of calculus to
obtain

x−10 − [x(t)]−1 = t− t0.

(iv) Solve for x(t) as

x(t) =
1

x−10 + t0 − t
.

(v) What is the largest interval of the form (a,∞) on which x is defined and which contains
the point t0?

2.2. Separation of variables: the full story.

Let us now put away our toys and generalize our work.

2.2.1. Separation of variables for autonomous ODE.

The exponential growth model ẋ = rx, the logistic growth model ẋ = rx(1− x/N), and the
toy problem ẋ = x2 all have an important feature in common: their right sides depend only
on the state variable x and not time t. Such ODE have a special name.

2.2.1 Definition. An ODE of the form

ẋ = f(x),

where f is a function of the single real variable x, is autonomous.
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To solve autonomous ODE via separation of variables, we should follow the procedure that
worked on our toy problem (2.1.1). First, find the constant solutions by solving f(x) = 0.
This is ultimately a root-finding problem.

2.2.2 Definition. An equilibrium solution to the autonomous ODE ẋ = f(x) is any
constant solution to this ODE.

2.2.3 Example. We find all equilibrium solutions to the logistic equation ẋ = x(1− x) by
solving x(1 − x) = 0 for constants x. This product is 0 if and only if at least one of its
factors is 0, so x(1− x) = 0 happens precisely when x = 0 or 1− x = 0. Thus x = 0 and
x = 1 are the only equilibrium solutions.

2.2.4 Problem (!). Find all equilibrium solutions to the logistic equation ẋ = rx(1−x/N),
where r, N > 0 are fixed parameters.

The next theorem assures us that, as we hopefully expect, the equilibrium solutions to
ẋ = f(x) are precisely the roots of f .

2.2.5 Theorem. Suppose that f is a function of the single real variable x.

(i) Let x∞ be a root of f , i.e., f(x∞) = 0. Then the constant function x(t) := x∞ for all
t solves the ODE ẋ = f(x).

(ii) Conversely, suppose that x solves ẋ = f(x) and that x is a constant function. Then
f(x(t)) = 0 for all t.

Proof. We prove the first part and leave the second for practice. We need to show that the
function x(t) = x∞ satisfies Definition 1.4.1.

First, we can take the domain of x to be the interval (−∞,∞), since constant functions
are defined at all real numbers. Second, since x is constant, x is differentiable, and ẋ(t) = 0
for all t. In particular, ẋ is a constant function and therefore continuous.

Third, f(x(t)) = f(x∞) = 0 for all t. Thus, fourth and finally,

ẋ(t) = 0 = f(x(t)).

for all t. We have therefore checked all the conditions of Definition 1.4.1 for x(t) = x∞ to be
a solution to ẋ = f(x). �

2.2.6 Problem (?). Prove part (ii) of Theorem 2.2.5.

We return to solving analytically the ODE ẋ = f(x). After finding the constant, equilib-
rium solutions, the toy problem teaches us how to find nonconstant, nonequilibrium solutions:
work backwards. Assume that we have a nonequilibrium solution x, so f(x(t)) 6= 0 for all t
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in the domain of x. Then divide to get

ẋ(t)

f(x(t))
= 1. (2.2.1)

The functions ẋ/f(x) and 1 are therefore the same, and so any antiderivative for ẋ/f(x)
should equal any antiderivative for 1, up to an additive constant. Thus we generalize the
cartoon from (2.1.12) into the following scheme:

ẋ = f(x) =⇒ ẋ

f(x)
= 1 =⇒

∫
ẋ(t)

f(x(t))
dt =

∫
1 dt =⇒

∫
dx

f(x)
= t+ C.

(2.2.2)

Here the cartoon is even more cartoonish because we have “substituted” u = x(t) after
the second =⇒ but we kept the variable of integration on the left as x. We work through the
mechanics in two examples and then outline an alternate treatment using definite integrals
that avoids all the ickiness of indefinite integrals at the cost of more symbols in play.

2.2.7 Example. We use separation of variables to study

ẋ = e−x.

(i) First, we check for equilibrium solutions by trying to solve e−x = 0 But this is impos-
sible, as e−x > 0 for all x. So, there are no equilibrium solutions.

(ii) Next, we separate variables to find

exẋ = 1.

We integrate both sides with respect to t:∫
ex(t)ẋ(t) dt =

∫
1 dt.

On the right, we just have ∫
1 dt = t+ C.

On the left, we have ∫
ex(t)ẋ(t) dt =

∫
ex dx = ex + C = ex + C.

We therefore have the implicit equation

ex = t+ C,

where, as always, we have combined the constants of integration. Now we take the natural
logarithm of both sides:

ln(ex) = ln(t+ C).

Then
x = ln(t+ C).
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(iii) What is the domain of x? Recall that ln(τ) is only defined for 0 < τ, and so we want
0 < t+ C, and thus

−C < t.

That is, the domain of our solution is (−C,∞).

(iv) What happens in the future? We have

lim
t→∞

x(t) = lim
t→∞

ln(t+ C) =∞.

All solutions that we found, then, blow up to∞ over very long times. The choice of C has
no effect on the end behavior of x.

(v) Finally, we solve the IVP {
ẋ = ex

x(0) = 0.

Separation of variables gives us the family of solutions x(t) = ln(t+C), defined on (−C,∞),
where C is an arbitrary real number. We try to choose C to meet the initial condition,
and so we want

0 = x(0) = ln(0 + C) = ln(C).

Either recalling properties of the natural logarithm or exponentiating, we find C = 1,
and so a solution to the IVP is

x(t) = ln(t+ 1).

The domain of this solution is (−1,∞).

2.2.8 Problem (?). We saw in Section 2.1.4 and in particular in Problem 2.1.5 how definite
integrals could avoid some of the ambiguities inherent to employing indefinite integrals.
Here is an outline of how to approach Example 2.2.7 with definite integrals.

(i) We want to solve the IVP {
ẋ = e−x

x(t0) = x0.

Separate variables and obtain ∫ t

t0

ex(τ)ẋ(τ) dτ =

∫ t

t0

1 dτ.

(ii) Change variables with u = x(t) on the left to obtain∫ x(t)

x0

eu du = t− t0.

(iii) Evaluate the integral on the left and obtain

ex(t) = ex0 − t0 + t.
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(iv) Solve for x(t) as
x(t) = ln(ex0 − t0 + t).

Compare this to the solution in Example 2.2.7. Where in this new solution do you see the
constant C from that example?

This is where we finished on Monday, August 28, 2023.

2.2.9 Example. The problem
ẋ = x3

has several differences from both the toy problem and Example 2.2.7.

(i) First, unlike Example 2.2.7 (but like the toy problem), it has equilibrium solutions: we
solve x3 = 0 to find that x = 0 is an equilibrium solution (and the only one).

(ii) Second, unlike both the toy problem and Example 2.2.7, a new algebraic complication
arises after separating variables. Proceeding as usual, we assume that x is a nonequilibrium
solution to ẋ = x3, divide to find

ẋ

x3
= 1,

and integrate to find ∫
x−3 dx = t+ C.

Here we are looking for only one antiderivative on the left, and so∫
x−3 dx = −x

−2

2

works. Then x satisfies the implicit equation

−x
−2

2
= t+ C,

and therefore
x2 = (−2t− 2C)−1

Our instinct should be to solve for x by taking square roots, but remember that if A
and B are real numbers with A2 = B and B > 0, then all we know is either A =

√
B or

A = −
√
B. So, we have two solution candidates

x(t) =
√

(−2t− 2C)−1 and x(t) = −
√

(−2t− 2C)−1

and we can easily check that these are actually solutions by plugging them into the ODE
ẋ = x3.

We simplify the notation slightly by observing that since C is an arbitrary constant, so
is 2C (proof: let K be an arbitrary real number and take C = K/2 to get 2C = K). We
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therefore replace 2C with just C, with the understanding that C is still arbitrary. Thus
there are really three kinds of solutions to this problem: the one equilibrium solution x = 0
and the two “branches” of nonequilibrium solutions above.

x(t) =
√

(−2t+ C)−1 and x(t) = −
√

(−2t+ C)−1 (2.2.3)

(iii) Since the nonequilibrium solutions involve a square root, we should check their do-
mains carefully. The number

√
(−2t+ C)−1 is only defined when 0 ≤ (−2t+ C)−1. Since

a number and its reciprocal have the same sign (i.e., A ≤ 0 if and only if A−1 ≤ 0), this
means we need 0 ≤ −2t + C, and so t ≤ C/2. But note also that (−2t + C)−1 is defined
only when −2t + C 6= 0, i.e., when t 6= C/2. So, for both the reciprocal and the square
root in the expression

√
(−2t+ C)−1 to be defined, we need t < C/2. Thus the domain of

either function in (2.2.3) must be (−∞, C/2).

(iv) What solution should we use? It depends, chiefly on what (if any) IVP we encounter.
To solve {

ẋ = x3

x(0) = 0,

we should use the equilibrium solution x(t) = 0. (See Problem 2.2.10 for how trying one
of the square root branches fails.) This certainly solves the ODE and meets the initial
condition x(0) = 0.

To solve something like {
ẋ = x3

x(0) = 1,

we cannot use the equilibrium solution, and we should not use the negative branch of
the square root in (2.2.3), as that branch cannot return a positive initial condition. (See
Problem 2.2.10 to work this out.) So, we try to find C so that x(t) =

√
(−2t+ C)−1 solves

this IVP. We want
1 = x(0) =

√
(0 + C)−1 =

√
C−1.

Squaring both sides, we find 1 = C−1 and so C = 1. Then the solution is

x(t) =
√

(−2t+ 1)−1.

2.2.10 Problem (!). (i) Explain why trying to use a function of the form x(t) =√
(−2t+ C)−1 will fail to solve the IVP{

ẋ = x3

x(0) = 0.

(ii) Explain why trying to use a function of the form x(t) = −
√

(−2t+ C)−1 will fail to
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solve the IVP {
ẋ = x3

x(0) = 1.

2.2.11 Problem (!). Solve the IVP {
ẋ = x3

x(0) = −1.

What has to change from the work above on the initial condition x(0) = 1?

2.2.12 Problem (+). In Example 2.2.9 we studied ẋ = x3, separated variables, and got
down to

[x(t)]2 = (C − 2t)−1. (2.2.4)

(Here we are writing C, not −2C.) We found two “branches” of solutions, x(t) =√
(C − 2t)−1 and x(t) = −

√
(C − 2t)−1. Is it possible to have yet another kind of so-

lution that somehow “unites” both branches? Could we have a solution x such that for
different times t1 and t2 (i.e., t1 6= t2), we have

x(t1) =
√

(C − 2t1)−1 and x(t2) = −
√

(C − 2t2)−1 (2.2.5)

Use (2.2.5), the continuity of x, and the intermediate value theorem to conclude that
x(t3) = 0 for some t3 between t1 and t2. How does this contradict (2.2.4)?

2.2.2. The analytic solution for exponential growth.

We use separation of variables to solve the exponential growth IVP{
ẋ = rx

x(0) = x0.
(2.2.6)

Of course, we should expect that the solution is x(t) = x0e
rt, but this is a good opportunity

to see more separation of variables, think carefully about the role of parameters and initial
conditions, and use definite integrals.

Case 1. r = 0. Then the problem really is{
ẋ = 0

x(0) = x0.

We can solve this by direct integration:

x(t) = x0 +

∫ t

0

ẋ(τ) dτ = x0 +

∫ t

0

0 dτ = x0 + 0 = x0.
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Case 2. r 6= 0. Now we consider cases on x0.

Subcase (i) x0 = 0. The only equilibrium solution to ẋ = rx is x = 0, as if rx = 0 with
r 6= 0, then x = 0. So, we can take x(t) = 0 for all t to meet this initial condition and solve
the ODE.

Subcase (ii) x0 > 0. Then if x solves (2.2.6), the continuity of x at 0 implies that

0 < x(t) for t ≈ 0.

We therefore divide to find
ẋ(t)

rx(t)
= 1 for t ≈ 0.

Then we integrate from t0 to t, still assuming that t is sufficiently close to t0, and find

1

r

∫ t

0

ẋ(τ)

rx(τ)
dτ =

∫ t

0

1 dτ. (2.2.7)

The integral on the right is just ∫ t

0

1 dτ = t. (2.2.8)

On the left, we substitute u = x(τ) with du = ẋ(τ) dτ and find∫ t

0

ẋ(τ)

rx(τ)
dτ =

1

r

∫ x(t)

x(0)

du

u
=

∫ x(t)

x0

du

u
= ln(|u|)

∣∣u=x(t)
u=x0

= ln(|x(t)|)− ln(|x0|).

Here it is important to remember that x0 > 0 and we are assuming x(t) > 0 for all t under
consideration. Thus∫ t

t0

ẋ(τ)

x(τ)
dτ = ln(|x(t)|)− ln(|x0|) = ln(x(t))− ln(x0). (2.2.9)

We then rewrite (2.2.7) using (2.2.8) and (2.2.9) to find

ln(x(t))− ln(x0) = rt.

Now we are in the happy “algebraic” situation of solving for x(t). We do this in two steps:

ln(x(t)) = ln(x0) + rt

and thus
x(t) = eln(x0)+rt = eln(x0)ert = x0e

rt,

as we expected and desired. Note that, remarkably, we can “fold in” the equilibrium solution
x(t) = 0 with the solution x(t) = x0e

rt just by taking x0 = 0. In other examples, the
equilibrium solutions usually “stick out” formulaically from the nonequilibrium.

Subcase (iii) x0 < 0. We leave this as a problem.
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2.2.13 Problem (?). Repeat the work in Subcase (ii) above for the case x0 < 0. How
does the condition x0 < 0 change a specific step in this work?

2.2.3. When things go wrong.

There are two steps at which separation of variables can break down. First, it may not be
possible to solve the implicit equation for x.

2.2.14 Example. Consider the ODE

ẋ =
1

x6 + 6
.

We check for equilibrium solutions and find none, since 1/(x6 + 6) 6= 0 for all x. Then we
separate variables to find

(x6 + 6)ẋ = 1

and integrate to find ∫
(x6 + 6) dx = t+ C.

The integral on the left is pretty easy:∫
(x6 + 6) dx =

x7

7
+ 6x+ C,

thus
x7

7
+ 6x = t+ C.

Good luck solving this explicitly for x!

This is where we finished on Wednesday, August 30, 2023.

The other problem with separation of variables is that it may not be possible to evaluate
an antiderivative explicitly in terms of elementary functions.

2.2.15 Example. Consider the ODE

ẋ = e−x
2

.

Once again, there are no equilibrium solutions, since e−x
2

> 0 for all x. Separating vari-
ables, we have

ex
2

ẋ = 1,

and integrating we have ∫
ex

2

dx = t+ C. (2.2.10)
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We cannot evaluate the x-integral in terms of elementary functions, and so it looks like we
are stuck. That is, there is no transparent way to write the implicit equation (2.2.10) that
x must satisfy—and without this equation phrased cleanly, we have no hope of trying to
solve for x (which, as in the preceding example, may be impossible).

2.2.16 Remark. Artificially introducing definite integrals could give us a slightly better
implicit equation in the previous example. Suppose that we want x to satisfy x(t0) = x0,
where t0 and x0 are given numbers. In other words, we are artificially creating an initial
value problem. Then we can integrate both sides of the equality

e[x(t)]
2

ẋ(t) = 1

from t0 to t to get

t− t0 =

∫ t

t0

1 dτ =

∫ t

t0

e[x(τ)]
2

ẋ(τ) dτ =

∫ x(t)

x(t0)

eu
2

du =

∫ x(t)

x0

eu
2

du.

Thus the solution x must satisfy the implicit equation∫ x(t)

x0

eu
2

du = t− t0. (2.2.11)

The equations (2.2.10) and (2.2.11) really say the same thing, but the latter is more explicit
and specifically illustrates where x “is”: in (2.2.11), the solution x “lives” in the upper limit
of integration. In other words, if we define F (x) :=

∫ x
x0
eu

2
du, then the solution x to the

IVP {
ẋ = e−x

2

x(t0) = x0

must satisfy the equation F (x(t)) = t − t0. Perhaps we could develop techniques to solve
an implicit equation like this!

2.2.4. Separation of variables for nonautonomous ODE.

Finally, we study the full separable problem, which is really not that much different from
our prior work.

2.2.17 Definition. An ODE ẋ = f(t, x) is separable if there are functions g and h
such that f(t, x) = g(t)h(x). That is, a separable ODE has the form ẋ = g(t)h(x).

2.2.18 Problem (!). Suppose that the separable ODE ẋ = g(t)h(x) is also autonomous.
What do you know about h?

Solving a separable ODE ẋ = g(t)h(x) is essentially “more of the same.” First we look for
equilibrium solutions by solving h(x) = 0.
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2.2.19 Problem (!). Suppose that g is a function defined on the interval I and h is a
function defined on the interval J . Let x∞ be a root of h in J , i.e., h(x∞) = 0. Define
x(t) := x∞ for all t in I. Show that x solves ẋ = g(t)h(x). [Hint: repeat the proof of
Theorem 2.2.5.]

Then we look for nonequilibrium solutions by separating variables to find that a nonequi-
librium solution x should6 satisfy

ẋ(t)

h(x(t))
= g(t)

for all t at which h(x(t)) 6= 0. Thus the functions ẋ/h(x) and g are the same, and so
any antiderivative of ẋ/h(x) equals any antiderivative of g, up to an additive constant. We
summarize our symbolic approach in the following ultimate version of the cartoons (2.1.12)
and (2.2.2):

ẋ = g(t)h(x) =⇒ ẋ(t)

h(x(t))
= g(t) =⇒

∫
ẋ(t)

h(x(t))
dt =

∫
g(t) dt+ C =⇒

∫
dx

h(x)
=

∫
g(t) dt+ C.

The only difference from the autonomous case is that the t-integral
∫
g(t) dt may be more

complicated to evaluate.

2.2.20 Example. Consider the ODE

ẋ = (x− 1)4(t− 1)

This ODE is separable with

g(t) = t− 1 and h(x) = (x− 4)4.

We solve h(x) = 0 to find (x − 1)4 = 0, so x − 1 = 0 and therefore x = 1 is the only
equilibrium solution.

For nonequilibrium solutions, we separate variables to find

ẋ

(x− 1)4
= t− 1,

and so we antidifferentiate to find∫
dx

(x− 1)4
=

∫
(t− 1) dt+ C.

On the right, we have ∫
(t− 1) dt =

t2

2
− t,

and on the left we substitute u = x− 1 and du = dx to find∫
dx

(x− 1)4
=

∫
du

u4
=

∫
u−3 du =

u−4+1

−4 + 1
= −u

−3

3
= −(x− 1)−3

3
.

6 Turning “should” into “must” will be a substantial result of our forthcoming existence and uniqueness theory.
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Thus the nonequilibrium solutions should satisfy

−(x− 1)−3

3
=
t2

2
− t+ C,

and now it is just a matter of solving for x. First, we rearrange the equation above to

(x− 1)−3 = −3t2

2
+ 3t− 3C.

(Of course, we could replace −3C by +C, since C is an arbitrary constant.) Then

x− 1 =

(
−3t2

2
+ 3t− 3C

)−1/3
,

and so

x(t) = 1 +

(
−3t2

2
+ 3t− 3C

)−1/3
.

We conclude that the functions

x(t) = 0 and x(t) = 1 +

(
−3t2

2
+ 3t− 3C

)−1/3
.

solve this ODE. Note that finding the domain of the latter solutions might be quite com-
plicated, since we would need −(3t2/2) + 3t− 3C 6= 0, and this would involve the roots of
a quadratic equation that depend on C.

Hopefully this example illustrates that solving the separable nonautonomous problem
ẋ = g(t)h(x) is not much more than a glorified version of solving the separable autonomous
problem; the symbolic computations just get a bit more involved.

2.2.21 Problem (?). Explain why the ODE ẋ = f(t) is separable and then solve it using
separation of variables. At what point did you realize that you were really just using direct
integration?

2.2.22 Problem (+). This problem studies the IVP{
ẋ = a(t)x

x(t0) = x0,
(2.2.12)

where a is continuous on the interval I and t0 is a point in I. This IVP will reappear in
several key places later in the course.

(i) In Section 2.2.2, we solved the problem in the constant case a(t) = r and found that
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the solution was x(t) = x0e
α(t), where α(t) = r(t− t0). Note that α solves the IVP{

α̇ = r

α(t0) = 0.

Motivated by this, we might guess that the solution to (2.2.12) is

x(t) = x0e
A(t), where

{
Ȧ = a(t)

A(t0) = 0.
(2.2.13)

Check that this is indeed the case; then solve the IVP above for A.

(ii) We can also obtain the solution (2.2.13) by separating variables. If x0 = 0, then the
solution should be x(t) = 0; assume, as before, that x0 > 0 and separate variables. Your
work should proceed as in the case a(t) = r in Section 2.2.2, except that the integral on
the right will be more complicated than (2.2.8). Specifically, after integrating, what is A?

2.2.23 Problem (+). This is the ultimate perspective on separation of variables. It shows
that all the nonequilibrium solutions to a separable ODE solve a related implicit equation
(involving, for better or for worse, definite integrals), and, conversely, every solution to
this implicit equation actually solves the separable ODE. We could possibly solve this
implicit equation with symbolic, numerical, or theoretical techniques beyond the scope of
our introductory differential equations course.

Let g be a continuous function on the interval I and h be a continuous function on the
interval J . Let t0 be a point in I and x0 be a point in J . Assume that h(x) 6= 0 for all x
in J . Let x be a differentiable function defined on I such that x(t) is in J for all t in I; in
particular, h(x(t)) 6= 0 for all t, and so x is not an equilibrium solution.

(i) Suppose that x solves the IVP {
ẋ = g(t)h(x)

x(t0) = x0.
(2.2.14)

Show that x also solves the implicit integral equation∫ x(t)

x0

du

h(u)
=

∫ t

t0

g(τ) dτ. (2.2.15)

This is the “algebraic” equation for x that we solve after integrating in separation of vari-
ables. [Hint: separate variables and integrate both sides from τ = t0 to τ = t. Then change
variables on the left with u = x(τ). This is the sort of manipulation that we did in Section
2.1.4 for the toy problem and Section 2.2.2 for exponential growth.]

(ii) Conversely, show that if x solves the integral equation (2.2.15), then x also solves
the IVP (2.2.14). [Hint: differentiate both integrals with respect to t; you will need to
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use the fundamental theorem of calculus. Use the chain rule to differentiate the integral
on the left and make ẋ appear. For the initial condition, we want x(t0) = x0; suppose
instead x(t0) 6= x0. Since h(x) 6= 0 for all x in J and h is continuous, the function h is
either strictly positive or strictly negative, and so likewise 1/h is either strictly positive or
strictly negative. Then

∫ x(t0)
x0

du/h(u) is nonzero. But this integral also equals
∫ t0
t0
g(τ) dτ.

A contradiction must ensue, and so we were wrong to assume x(t0) 6= x0).]

(iii) This step shows how we can solve the implicit equation (2.2.15). For x in J , define

F (x) :=

∫ x

x0

du

h(u)
.

As in the hint to part (ii) above, 1/h is either strictly positive or strictly negative on J .
Assume that 1/h is strictly positive; the argument when 1/h is strictly negative is the same.
Use property (

∫
4) of Theorem 1.5.4 to argue that if x0 < x1 < x2, then F (x1) < F (x2);

use that property and part (ii) of Problem 1.5.6 to argue that if x1 < x2 < x0, then
F (x1) < F (x2). Conclude that F is strictly increasing on J , and therefore F is invertible
on J , i.e., there exists a function F−1 such that F−1(F (x)) = x for all x in J . Moreover,
use FTC1 to check that F ′(x) 6= 0 for all x in J . The celebrated inverse function theorem
then implies that F has a differentiable inverse F−1, and (F−1)′(x) = 1/F ′(F−1(x)). In
particular, since F (x0) = 0, we have F−1(0) = x0.

Now put

x(t) := F−1
(∫ t

t0

g(τ) dτ

)
.

Use the results above to show that x solves the IVP (2.2.14).

2.2.5. Going forward.

Separation of variables allows us to treat analytically the broad class of separable ODE
ẋ = g(t)h(x), and in particular the rich class of autonomous ODE ẋ = f(x). However,
there are worthwhile ODE to study that are not separable, and we will meet some later and
develop new techniques for them.

Moreover, the method of separation of variables is far from perfect, as we may not be able
to evaluate one or more antiderivatives in terms of elementary functions, and/or we may fail
to solve explicitly for x. Even when it is possible to evaluate the antiderivatives and solve
for x, the calculus and algebra may be burdensome; for example, treating even the rescaled
logistic problem ẋ = x(1− x) requires antidifferentiating∫

dx

x(1− x)
,

which calls for the dreaded method of partial fractions, and then a ton of algebra.
Here is where the analyst’s creed (AC) should console us. It is possible to understand

quite well the solutions to an ODE without having formulas for them. Subsequent qualitative
and numerical approaches will give us palatable, useful alternatives to separation of variables
and, indeed, any analytic method.
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Finally, while separation of variables can address the question of existence of solutions to
ODE (in that it gives us a symbolic algorithm for generating some solutions), the technique
does not really address uniqueness rigorously. The technique unfolds under assumptions like
if a solution x to ẋ = g(t)h(x) exists, and if h(x(t)) 6= 0 for all t in some interval, then x
satisfies an implicit relationship obtained via antidifferentiation. But why should there be
only one solution to that relationship? We will need to build some more theory to assure
ourselves that the solutions that we have found to separable IVP are indeed the only ones.

2.3. Slope fields.

What is the derivative? Analytically, it is the limit of a difference quotient; geometrically,
it is the slope of a curve. Specifically, let x be a function. Then the slope of x at the point
(t, x(t)) in the tx-plane is ẋ(t). So if x solves an ODE ẋ = f(t, x), then the slope of x at
(t, x(t)) is just f(t, x(t)).

Here, then, is the key geometric insight: if we know that x solves the ODE ẋ = f(t, x),
and if we know that x passes through the point (t?, x?) in the tx-plane, then the slope of x at
that point is f(t?, x?). In other words, we can calculate the slopes of a solution to ẋ = f(t, x)
without having a formula for x! Next, remember the phenomenon of local linearity
from calculus: if x is differentiable at t, then “close to” t, the graph of x resembles the graph
of the tangent line to x at t. In other words, if we zoom in close enough, everything looks
like a line.

We will make these observations systematic by constructing slope fields. Given an
ODE ẋ = f(t, x), at the point (t, x) draw a small line segment with slope f(t, x). If we draw
enough of these segments and fill the tx-plane with a “field” of them, we will start to see a
“flow” of curves in the plane. Those curves are potential solutions to ẋ = f(t, x).

We begin with an example that does not really call for a slope field.

2.3.1 Example. All solutions to the ODE ẋ = t are the parabolas x(t) = t2/2 + C. With
this in mind, we draw the slope field for this ODE “by hand” to “get a feel” for the procedure.
Starting from each point (t, x) with integer coordinates for −3 ≤ t ≤ 3 and −3 ≤ x ≤ 3, we
will draw a short line segment with slope t. To keep the tx-plane relatively unclutteblue,
we will not label points on the axes.

t

x
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If we stare at these pictures for a little while, hopefully we start to see the parabolas
x(t) = t2/2 + C emerging, however crudely and inchoately.

This is where we finished on Friday, September 1, 2023.

The process above both taught us how to draw slope fields, and it reminded us of some
things that we should know about the “direct integration” problem ẋ = f(t). Namely, the
following statements all mean the same thing.

1. The function x solves the ODE ẋ = f(t).

2. The slope of the curve at a point depends on the t-coordinate of that point but not the
x-coordinate.

3. At two given points, the slopes are the same if the t-coordinates of both points are the
same.

4. The slopes are the same along any vertical line.

5. All solutions are just vertical translates of one fixed solution. (If F and G are antideriva-
tives of f , then there is a constant C such that G(t) = F (t) + C for all t.)

t

x

t

x

Next we study the logistic equation ẋ = x(1−x) via slope fields. We know the two constant
equilibrium solutions for this problem, but using separation of variables to find nonconstant
solutions was onerous. Nonetheless, calculus gave us an idea of how, qualitatively, solutions
corresponding to different initial conditions should behave, and so we will look for that
qualitative behavior in the slope field.



2.3. Slope fields 60

2.3.2 Example. Here is a slope field for the logistic equation ẋ = x(1− x).

t

x

−1

−3

1

3

3 6 9 12

Recall that the equilibrium solutions are x = 0 and x = 1. We draw them as solid blue
lines on the iteration of the slope field below.

t

x

−1

−3

1

3

3 6 9 12

The equilibrium solutions break up the tx-plane into three regions: below x = 0, between
x = 0 and x = 1, and above x = 1. The slopes in each region are different: they are
negative below x = 0, positive between x = 0 and x = 1, and negative above x = 1. This
corresponds, of course, to the sign of x(1−x) for these different values of x, as the following
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graph indicates.

x

x(1− x)

1

Now we try to “stitch” some of these slopes together into a continuous curve. We start
drawing at t = 0 and do so for different values of my initial condition x(0). We follow the
slope segment nearest to (0, x(0)) and try to “jump” to the next slope, and go on like that.
This is an art, not a science.

t

x

−1

−3

1

3

3 6 9 12

It should appear that the solution x that starts with x(0) < 0 ends up decreasing very
rapidly towards −∞. The solution x that starts with 0 < x(0) < 1 increases up to 1.
And the solution x that starts with x(0) > 1 decreases toward 1. In other words, where a
solution starts relative to the equilibrium solutions has a profound effect on the solution’s
end behavior—exactly as we predicted with calculus.

2.3.3 Example. We failed to solve ẋ = e−x
2

using separation of variables in Example
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2.2.15. Here is a slope field for this ODE.

t

x

−1

−3

1

3

3 6 9 12

It looks like solutions that start between −1 and 1 increase, possibly up to a horizontal
asymptote, while solutions that start below −1 or above 1 are constant. This is certainly
more information than we saw in our previous encounter with this ODE (in which we
learned precisely nothing), but is it correct?

First, the slope field only treats time in the interval 0 ≤ t ≤ 12. Perhaps solutions that
start between −1 and 1 really do reach a horizontal asymptote as t→∞ (if they are even
defined for that long), but maybe they just grow really, really slowly, like the natural log.
We need a bigger picture, and probably more work, to be sure about the asymptotics.

Second, constant solutions are equilibrium solutions: if x is a constant solution of ẋ =
e−x

2

, then ẋ(t) = 0 for all t, and thus e−[x(t)]
2

= 0 for all t. But e−[x(t)]
2

> 0 for all t. So, the
“constant” solutions that the slope field might predict are actually not there. Instead, we
might note that when x is “large,” e−x

2

is “very small,” and so a more precise graph might
reveal that the “horizontal” slopes at x = ±3 and thereabouts really are not horizontal.

Here is another observation from the preceding examples. There is a lot of repetition in
each slope field: many of those slope marks are the same. Specifically, they are repeated
horizontally (unlike vertically, as we saw with the direct integration problem). This suggests
that the following different statements all mean the same.

1. The function x solves the ODE ẋ = f(x).

2. The slope of the curve at a point depends on the x-coordinate of that point but not the
t-coordinate.

3. At two given points, the slopes are the same if the x-coordinates of both points are the
same.

4. The slopes are the same along any horizontal line.



2.3. Slope fields 63

t

x

5. If we translate the graph of one solution horizontally, then we get another solution.

The last insight here is probably something new. Recall that if x is a function, then the
graph of y(t) := x(t + t?) is just the graph of x shifted to the left (if t? > 0) or to the right
(if t? < 0).

t

t2

−2

t

(t+ 2)2

−2

We formalize this insight in a theorem.

2.3.4 Theorem. Suppose that x solves ẋ = f(x). Fix a number t? and define y(t) :=
x(t + t?). Then y also solves ẏ = f(y). In particular, if the domain of x is the interval
(a, b), then the domain of y is the “shifted” interval (a− t?, b− t?).

Proof. We need to show that ẏ(t) = f(y(t)) for all t. First,

ẏ(t) =
d

dt
[x(t+ t?)] = ẋ(t+ t?)

d

dt
[t+ t?] = ẋ(t+ t?)

by the chain rule. Since ẋ(τ) = f(x(τ)) for all τ, we can take τ = t+ t? to find

ẏ(t) = ẋ(t+ t?) = f(x(t+ t?)) = f(y(t)). �
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2.3.5 Problem (!). Suppose that x solves the IVP{
ẋ = f(x)

f(0) = 1,

and that the domain of x is (−1, 4). Use Theorem 2.3.4 to construct a solution y to the
IVP {

ẏ = f(y)

y(10) = 1

and state the domain of y. [Hint: your function y will, of course, involve x.]

2.3.6 Problem (?). Separation of variables suggested that all solutions to ẋ = x have the
form x(t) = Cert for some constant C. Show that if x1(t) = C1e

t for some constant C1 and
if we put x2(t) := x1(t + t?) for some fixed time t?, then x2(t) = C2e

rt for some constant
C2. What is C2? Conclude that horizontally translating solutions to ẋ = rx preserves the
analytic solution structure that we expect.

2.3.7 Problem (?). Horizontal translates of solutions to autonomous problems remain
solutions, but other geometric operations on solutions do not necessarily yield solutions.

(i) If x solves ẋ = x, does y(t) := x(t) + 1 solve ẏ = y?

(ii) If x solves ẋ = x2, does y(t) := 2x(t) solve ẏ = y2?

Slope fields are chiefly valuable for their versatility and universality. They do not require
any calculus to implement (unlike separation of variables), nor do they demand any special
structure of the underlying ODE (also unlike separation of variables). However, slope fields
are nightmarish to draw by hand, and interpreting slope fields can depend greatly on one’s
own point of view. Often to see the right pattern in a slope field, we need to know what
we are looking for before we see it. One rarely uses a slope field alone to study an ODE; in
particular, since we are likely using a computer to generate the slope field, we may as well
go further and program a numerical solver, so that we can get actual approximate graphs
and values for our solutions.

This is where we finished on Wednesday, September 6, 2023.

2.4. Euler’s method.

We now have two techniques for studying ODE. Separation of variables can give us a formula
from which we could compute exact values, but sometimes the integration trips us up—
and not all problems may have the special separable form, anyway. Slope fields help us
make qualitative predictions about the behavior of solutions to ODE, but these predictions
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are often crude—and slope fields do not tell us the exact values of solutions at particular
moments in time.

We now need a third tool beyond the analytic and qualitative methods: the numeric. A
broad array of numerical methods can approximate solutions to ODE; we will study just
one, called Euler’s method.

2.4.1. Derivation of Euler’s method.

As usual, we start by working backward. Suppose that we have a solution x to the IVP{
ẋ = f(t, x)

x(t0) = x0.
(2.4.1)

If we want to learn about x, and we know absolutely nothing specific about f , one good
way to make x appear is to integrate. This was the wrong idea at the start of the course
in Section 1.1, but now it is the right idea. The fundamental theorem of calculus gives, as
always,

x(t)− x(t0) =

∫ t

t0

ẋ(τ) dτ =

∫ t

t0

f(τ, x(τ)) dτ,

and so

x(t) = x(t0) +

∫ t

t0

f(τ, x(τ)) dτ = x0 +

∫ t

t0

f(τ, x(τ)) dτ. (2.4.2)

This is exactly what we obtained in (FTC) at the start of the course, and we complained
then, because this equation defines x in terms of x, which is not very helpful.

However, we can turn this into a good approximation for the value x(t) by recalling the
“left endpoint rule” for approximating integrals:∫ b

a

g(τ) dτ ≈ (b− a)g(a), (LHR)

at least if a and b are “close” (whatever that means). Thus∫ t

t0

f(τ, x(τ)) dτ ≈ (t− t0)f(t0, x(t0)) = (t− t0)f(t0, x0) (2.4.3)

when t is “close” to t0. The “=” on the right really is genuine; it is the initial condition
x(t0) = x0. And so if we combine (2.4.2) and (2.4.3), we get

x(t) ≈ x0 + (t− t0)f(t0, x0) for t ≈ t0. (2.4.4)

Now we make “close” a little more precise (but not a lot). Fix a small positive number h,
maybe with 0 < h < 1. Define t1 := t0 + h. Then (2.4.4) just says

x(t1) ≈ x0 + hf(t0, x0).

We abbreviate
x1 := x0 + hf(t0, x0).
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Then x(t1) ≈ x1. Note that we calculated x1 just using the given information of f and the
initial data t0 and x0. We did not do any calculus.

Now we jump a bit forward into the future. Put t2 := t1 + h = t0 + 2h, so t2 is not too
far away from t1. Then

x(t2) = x(t1) +

∫ t2

t1

ẋ(τ) dτ by the fundamental theorem of calculus

= x(t1) +

∫ t2

t1

f(τ, x(τ)) dτ since x solves ẋ = f(t, x)

≈ x1 +

∫ t2

t1

f(τ, x(τ)) dτ since x(t1) ≈ x1

≈ x1 + (t2 − t1)f(t1, x(t1)) by the left-hand approximation for integrals

= x1 + hf(t1, x1) since t2 = t1 + h.

We abbreviate
x2 := x1 + hf(t1, x1).

Then x(t2) ≈ x2, and we calculated x2 just by using the given information of f and the
previously calculated data t1 and x1. Again, we did not do any calculus. Note that there
were two uses of ≈ above: when we replaced x(t1) with x1 and when we approximated the
integral.

These two steps suggest a scheme for numerically approximating the solution to the IVP
(2.4.1). First, fix a small time step h > 0. For integers k ≥ 0, define

tk :=

{
t0, k = 0

tk−1 + h, k ≥ 1,
equivalently tk := t0 + kh, k ≥ 0

and

xk :=

{
x0, k = 0

xk−1 + hf(tk−1, xk−1), k ≥ 1.

Then we expect that the true solution x to the IVP (2.4.1) enjoys the approximation

x(tk) ≈ xk.

If we run this iteration some n ≥ 1 times, then we generate n+ 1 approximations to the
value of x on the interval [t0, t0 + nh]. These are

x(t0) = x0, x(t1) ≈ x1, . . . , x(tn) ≈ xn.

Conversely, to approximate a solution on the interval [t0, T ] for some T > t0, assuming that
the solution is defined on an interval of that length, choose the number of iterations n and
put h := (T − t0)/n.
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2.4.1 Problem. This problem is an “iterative justification” that the kth step in Euler’s
method is a good approximation; it is essentially an abstraction of the discussion above.
Suppose that we have run Euler’s method with time step h > 0 up to the (k − 1)st step.
Then we define

xk := xk−1 + hf(tk−1, xk−1).

Justify each equality or approximation in the chain below:

x(tk)
(1)
= x(tk−1) +

∫ tk

tk−1

ẋ(τ) dτ

(2)
= x(tk−1) +

∫ tk

tk−1

f(τ, x(τ)) dτ

(3)
≈ xk−1 +

∫ tk

tk−1

f(τ, x(τ)) dτ

(4)
≈ xk−1 + (tk − tk−1)f(tk−1, x(tk−1))

(5)
= xk−1 + hf(tk−1, x(tk−1))

(6)
≈ xk−1 + hf(tk−1, xk−1).

Another derivation of Euler’s method, which we do not discuss here, relies on tangent
lines as local linear approximations to functions. This is a perfectly valid way of proceeding,
but the approach above offers extra practice with the all-important FTC and later allows
for straightforward improvements by getting a better approximation to the definite integral.

2.4.2. Pseudocode and sample implementations.

Here is a summary of Euler’s method.

Define the function f.
Define the starting time t0.
Define the initial value x0.

Choose a time step h > 0.
Choose a number of iterations n ≥ 1.

For k = 1, . . . , n, iterate{
tk := t0 + kh

xk := xk−1 + hf(tk−1, xk−1).
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2.4.2 Example. We know that the solution to the IVP{
ẋ = t

x(0) = 0

is x(t) = t2/2, and all we needed to get it was direct integration. Nonetheless, we implement
Euler’s method for this problem with five iterations (n = 5) and time step h = 0.2 to see the
arithmetic in an “easy” context and to compare the numerical result to the exact analytic
solution. with five iterations (n = 5) and the time step h = 0.2. In the notation of our
pseudocode above, we are taking f(t, x) = t, t0 = 0, and x0 = 1.

We fill in the following table.

k tk xk f(tk, xk) xk+1 = xk + hf(tk, xk) = xk + htk

0 0 0 0 0 + (0.2 · 0) = 0
1 0.2 0 0.2 0 + (0.2 · 0.2) = 0.04
2 0.4 0.04 0.4 0.04 + (0.2 · 0.4) = 0.12
3 0.6 0.12 0.6 0.12 + (0.2 · 0.6) = 0.24
4 0.8 0.24 0.8 0.24 + (0.2 · 0.8) = 0.4
5 1 0.4 1 0.4 + (0.2 · 1) = 0.6

Now we compare the approximations to the exact value of the known solution x(t) = t2/2
at the values tk.

k tk xk x(tk) = t2k/2

0 0 0 0
1 0.2 0 0.02
2 0.4 0.04 0.08
3 0.6 0.12 0.18
4 0.8 0.24 0.32
5 1 0.4 0.5

It looks like our Euler’s method results consistently under-approximate the true solution,
but the values are definitely strictly increasing.

We can see this with plots. We graph the true solution x(t) = t2/2 in solid black and
plot the points (tk, xk) and connect them by dotted lines, both in blue.

t

x
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2.4.3 Example. We use Euler’s method to approximate solutions to the logistic IVP{
ẋ = x(1− x)

x(0) = x0

with initial values x0 = −.25, x0 = .25, and x0 = 2.25. Here are the results.

t

x(t)

−0.25

0.25

2.25

1

1 2 3 4 5

These results look quite similar to our sketches in Example 2.3.2, but much smoother
and more confident. We see the three kinds of end behavior predicted by that example: a
rapid decrease to −∞ for the initial condition x(0) < 0, an increase to 1 for the solution
with initial condition x(0) satisfying 0 < x(0) < 1, and a decrease to 1 for the solution
with initial condition x(0) > 1. The numerical results, therefore, bolster our qualitative
intuition from slope fields and, perhaps, are less prone to our subjective human error in
interpreting the slope fields. But the numerical results do require a nontrivial amount
of computing power, more so than, in principle, slope fields. Additionally, slope fields
indicate the behavior of multiple solutions simultaneously, whereas Euler’s method just
approximates the solution to one IVP.

2.4.4 Example. We use Euler’s method to approximate the solution to the logistic IVP{
ẋ = rx(1− x)

x(0) = 0.5

for the different growth rates r = 1, 5, 10. Here are the graphs.

r = 1

t

x(t)

0.5

1
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r = 5

t

x(t)

0.5

1

r = 10

t

x(t)

0.5

1

Over long times, all three graphs look the same: the solutions all increase to 1. However,
in the “short run,” things are different. The solution for r = 1 takes comparatively longer
to get “close” to 1 than the solutions for r = 5 and r = 10. The difference between the
r = 5 and the r = 10 solution is less dramatic but still present.

We might conjecture, then, that the parameter r controls the “rate” at which solutions
to ẋ = rx(1− x) converge to their end behavior. This gives us deeper insight into the role
of the parameters r and N in the general logistic problem ẋ = rx(1− x/N). It is easy to
see that x = N is an equilibrium solution, but it is not as easy to see, at first glance, what
role r plays. Nonetheless, if we think that r is a positive number, and if 0 < x < N , then
rx(1− x/N) will also be positive. Taking r to be an ever-larger positive number will just
make the quantity rx(1−x/N) larger. Remember that rx(1−x/N), in this context, really
is the value of a derivative. This suggests that taking r to be larger increases the slopes of
the solution to ẋ = rx(1 − x/N). That is exactly what we are seeing in the passage from
r = 1 to r = 10 in these solutions as the convergence to 1 gets “faster.”

We could confirm this with analytic techniques by finding a formula for the solution to
the logistic IVP.

This is where we finished on Friday, September 8, 2023.

2.4.3. Outlook on numerics.

Euler’s method is the only numerical method that we will study in this course, but we will
use it regularly (almost every graph of a solution to an ODE has been drawn with it), and
it even generalizes rather easily to systems. Nonetheless, it is far from the only numerical
method available for differential equations. One natural way to “improve” Euler’s method
is to consider how we derived it: by approximating a definite integral with the left-hand
rule. This is a fairly crude integral approximation; in calculus we learn plenty of others.
We could therefore return to the derivation of Euler’s method and use a different, better
integral approximation; this would no doubt change the pseudocode and implementation,
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but it might improve the results—ideally, we would get better approximations faster. Indeed,
there are a number of ways in which our numerical results may not be optimal, and we should
watch out for them. Here are some problems that lead to suboptimal numerical results.

1. Problems with the computer. Arithmetic and other calculations on a computer inherently
involve roundoff errors.

2. Problems with the method. Numerical methods inherently involve choices of how dis-
cretizations and approximations are made. Some of those choices (say, the left-hand rule for
approximating an integral) may be less ideal than others. Furthermore, numerical methods
may be unstable in the sense that small errors early in the method propagate and expand to
large errors later on.

3. Problems with the problem. Some ODE are simply badly behaved! Perhaps in the ODE
ẋ = f(t, x), the function f very rapidly increases or decreases in either t or x (or both), and
so any numerical method must contend with very large (or very small) values of f .

Remember, no one method in differential equations works all the time or gives all the
desired information. We would never use only a simple slope field to study an ODE, and we
will never be content with just what Euler’s method, or any numerical method, says about
solutions.

2.4.5 Problem (?). The following is the output produced when Euler’s method is run for
the IVP {

ẋ = −1/x

x(0) = 1

with h = 0.01 and n = 300.

t

x(t)

1/2

Around t = 1/2, the output should look very strange.
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(i) Note that when t ≈ 1/2, Euler’s method suggests that x(t) ≈ 0. Given that the ODE
reads ẋ = 1/x, why could this be a cause for concern?

(ii) Use separation of variables to solve this IVP. What insight does the resulting formula
give you into the behavior of Euler’s method around t = 1/2?

(iii) Do you want to trust the results of Euler’s method for t > 1/2?

2.5. Existence and uniqueness theory.

Our analytic, qualitative, and numerical work so far has not guaranteed that solutions always
exist to particular ODE (from Example 2.2.15, does ẋ = e−x

2

really have solutions?), nor
that they are unique. Indeed, we probably expect by now that when solutions to ODE do
exist, they are not unique—all of the solutions that we found from direct integration and
separation of variables (which really subsumes direct integration—recall Problem 2.2.21)
came with an arbitrary constant (usually C) somewhere in their formulas. For example, all
solutions to ẋ = 2t are x(t) = t2 + C.

Moreover, while we have a nice formulaic procedure for solving separable ODE, it easily
breaks (again, what is happening with ẋ = e−x

2

?) and leaves us clueless about the existence
of solutions. Slope fields and Euler’s method give us insight into the long(ish)-time behavior
of solutions to effectively arbitrary ODE (not just separable ones), but they do not assure
us that solutions exist in the first place. If we are going to spend time talking about the
properties of (if not formulas for) solutions to a problem, we should be sure that solutions
actually exist. Here we discuss the general existence and uniqueness of solutions to separable
problems.

We need a piece of technical terminology first.

2.5.1 Definition. A function h on an interval J is continuously differentiable
if h is differentiable on J and if h′ is continuous on J .

Most functions that we meet in practice in this course or in calculus are continuously
differentiable, and it takes some work to find a differentiable function that is not continuously
differentiable.

2.5.2 Theorem (Existence and uniqueness for separable ODE). Suppose that g is a
continuous function on the interval (a, b) and h is a continuous, differentiable function on
the interval (c, d) with h′ continuous on (c, d). The numbers a and c may be −∞ and the
numbers b and d may be ∞. Let

f(t, x) := g(t)h(x). (2.5.1)
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t

x

a b

c

d

(t0, x0)
domain of f

t0

x0

(i) [Existence] Let t0 be a point in (a, b) and x0 be a point in (c, d). There exist numbers
α > 0 and ω > 0 and a function x defined on (t0 − α, t0 + ω) such that x solves the IVP{

ẋ = f(t, x)

x(t0) = x0.

In particular, the values of x satisfy c < x(t) < d, while α and ω satisfy a < t0 − α and
t0 + ω < b. (recall Definition 1.4.1).

(ii) [Uniqueness] Suppose that y is another function on (t0 − α, t0 + ω) that solves the
IVP {

ẏ = f(t, y)

y(t0) = x0.

Then x(t) = y(t) for all t.

The existence result is just that: existence. It does not give us a procedure for finding
the solution x, nor does it tell us anything about ε. It does not tell us anything about the
behavior of x. So, we do not know for how long we can predict the future, nor do we really
know what happens in the future. All that existence tells us is that we can predict the
future. If we want to understand a specific problem better, we have lots more work to do.

However, the uniqueness result should be comforting. Not only can we predict the future,
if we impose initial data, then we can only predict one future. All hail the Sacred Timeline!

2.5.3 Remark. Do the results of Theorem 2.5.2 still feel underwhelming? First, we have
only stated the theorem for separable equations, and there are many equations that are not
separable. We will meet one such class, the linear ODE, in the near future, and for linear
ODE, remarkably, we can prove from scratch an existence and uniqueness theorem. There
are far more general statements of Theorem 2.5.2 for far more general classes of ODE, but
they demand, naturally, some more technical hypotheses.

One such hypothesis involves the partial derivative of f with respect to x, but that requires
knowledge of multivariable calculus. Perhaps a more accessible generalization demands that
f satisfies a Lipschitz estimate of the following form: there is a constant C > 0 such
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that for all t1, t2, x1, and x2 in the domain of f ,

|f(t1, x1)− f(t2, x2)| < C|t1 − t2|+ C|x1 − x2|.

If f satisfies such an estimate, then the conclusions of Theorem 2.5.2 remain true.
Since we will not really encounter first-order ODE in this course that are not separable

or linear, and since we are not presuming a multivariable calculus background, we will not
go on to state further existence and uniqueness hypotheses for more complicated problems.

2.5.4 Example. (i) The existence and uniqueness theorem implies that the IVP{
ẋ = e−x

2

x(t0) = x0,

which we failed to solve in Example 2.2.15, has a unique solution for any choice of t0
and x0. Here is why. Put g(t) = 1 and h(x) = e−x

2

. Then this ODE has the form
ẋ = g(t)h(x), and g is continuous on (−∞,∞), while h is continuously differentiable on
(−∞,∞). Consequently, we can select any starting time t0 and any initial condition x0
that we like, and the IVP will have a unique solution.

(ii) The same is true for the logistic IVP{
ẋ = x(1− x)

x(t0) = x0.
(2.5.2)

Here g(t) = 1 again but now h(x) = x(1− x), and so g is continuous on (−∞,∞), while h
is continuously differentiable on (−∞,∞).

(iii) The autonomous problem {
ẋ =
√
x

x(0) = 0
(2.5.3)

is not so nicely behaved. Solving
√
x = 0 gives the only equilibrium solution x(t) = 0, and

this certainly solves the IVP. But separating variables leads to (see Problem 2.5.5) another
solution of the IVP: x(t) = t2/4. The issue here is that h(x) =

√
x is not differentiable at

x = 0, and we have set the initial state to be x0 = 0. Thus the existence and uniqueness
theorem simply does not apply!

2.5.5 Problem (?). (i) Carry out the separation of variables to which part (iii) of Exam-
ple 2.5.4 refers to obtain the solution x(t) = t2/4 of the IVP (2.5.3).

(ii) Use the fact that
√
A2 = |A| for any real number A to show that if x(t) = t2/4, then

ẋ(t) 6=
√
x(t) for t < 0. Conclude that the domain of x(t) = t2/4 when considered as a

solution to the IVP (2.5.3) is only [0,∞), even though as a function this x is defined on
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(−∞,∞). Contrast this domain with what the existence and uniqueness theorem promises
under better circumstances.

(iii) Use the definition of the derivative to remind yourself that h(x) :=
√
x is not differ-

entiable at x = 0.

2.5.6 Problem (?). Let

g(t) :=

{
0, t < 0

1, t ≥ 0.

We will show that there cannot exist a solution to the IVP{
ẋ = g(t)

x(0) = 0

in the sense of Definitions 1.4.1 and 1.4.4.

(i) Show that if x solves the ODE
ẋ = g(t),

then x must have the form

x(t) =

{
C1, t < 0

t+ C2, t ≥ 0

for some constants C1 and C2.

(ii) Since the solution to an ODE should be continuous, we want

lim
t→0−

x(t) = lim
t→0+

x(t).

Use this to show that C1 = C2, and so x really has the form

x(t) =

{
C, t < 0

t+ C, t ≥ 0

for some constant C.

(iii) Choose C to meet the initial condition x(0) = 0.

(iv) What part of Definitions 1.4.1 or 1.4.4 is violated by this form of x?

(v) Why does this not violate the existence and uniqueness theorem?

2.5.7 Problem (?). This problem offers a different perspective on the exponential. Usually
one starts by assuming that et+τ = eteτ for all t and τ and from there it is possible to derive
familiar results like “the exponential is its own derivative.” Suppose instead that we know
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only that—assume that there is a differentiable function E defined on (−∞,∞) that solves
the IVP {

Ė = E

E(0) = 1.

We can show that E(t + τ) = E(t)E(τ) for all t and τ as follows. Fix τ and put x(t) :=
E(t+ τ)− E(t)E(τ). Check that x solves the IVP{

ẋ = x

x(0) = 0,

and use the existence and uniqueness theorem to conclude that x(t) = 0 for all t.

Here is a less technical but (hopefully) no less helpful way of thinking about the existence
and uniqueness theorem.

2.5.8 Example. We can paraphrase the uniqueness part of the existence and uniqueness
theorem as

“Two distinct solutions of an ODE can’t be in the same place at the same time.”

More positively, this could read

“If two solutions are in the same place at the same time, then they are the same.”

Here is why. Suppose that f satisfies the existence and uniqueness hypotheses and that
x and y both solve ẋ = f(t, x) and ẏ = f(t, y). Say that x(t∗) = y(t∗) for some t∗. Write
x(t∗) = x0. Then x and y solve the same IVP:{

ẋ = f(t, x)

x(t∗) = x0
and

{
ẏ = f(t, y)

y(t∗) = x0.

The existence and uniqueness theorem then says that x(t) = y(t) for all t that belong to
the domain of both x and y.

This is where we finished on Monday, September 11, 2023.

Some of the most transparent and helpful solutions to differential equations are equi-
librium solutions. The preceding paraphrase reminds us that if a solution intersects an
equilibrium solution only once, then that solution is an equilibrium solution.

2.5.9 Example. Suppose that x solves the logistic equation ẋ = x(1 − x) and x(0) < 0.
Qualitative (Example 2.3.2) and numerical (Example 2.4.3) evidence suggests that x(t) < 0
for all t. We can now prove this using the (paraphrase of) the existence and uniqueness
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theorem.
Suppose instead that x(t1) ≥ 0 for some t1 > 0. Let y(t) = 0 for all t; then y is an

equilibrium solution of the logistic equation, and certainly y(t1) = 0. If x(t1) = 0, then x
and y are two solutions of the same ODE that are in the same place at the same time, and
so x(t) = y(t) for all t. In particular, x(0) = y(0) = 0. But x(0) < 0, so we cannot have
x(0) = 0. Thus we were wrong to assume that x(t1) = 0.

How about x(t1) > 0? Then x(0) < 0 < x(t1), and x is continuous (being the solution
of an ODE), so by the intermediate value theorem there is t2 such that 0 < t2 < t1 and
x(t2) = 0. (See the picture below.) The same contradiction as in the case x(t1) = 0 then
results.

t

x(t)

x(0)
t1

x(t1)

t2

This example hints at a deeper value of equilibrium solutions than just being more solutions
to an ODE or helping to solve an IVP that the solutions from separation of variables do
not (recall Problem 2.2.10). The equilibrium solution y(t) = 0 “fences in” solutions x with
x(0) < 0. If a solution starts below 0, then it remains below 0 on all of its domain.

2.5.10 Problem (?). We know that two different solutions to the same ODE cannot be in
the same place at the same time. But can two solutions be in the same place at different
times? The answer, as is often the case in math, is “sort of.”

(i) Find two different solutions x1 and x2 to ẋ = x such that x1(1) = 1 and x2(2) = 1.
Explain why x1 and x2 are not the same function. Draw pictures.

(ii) Let f be continuously differentiable on (−∞,∞) and suppose that x1 and x2 are
solutions to ẋ = f(x) defined on (−∞,∞) with x1(t1) = x2(t2) for some times t1 and t2.
(Taking the domains of f , x1, and x2 all to be (−∞,∞) is not strictly necessary, but it
eliminates some notational complications that could otherwise obscure the point.) Define

y(t) := x1(t+ t1 − t2)

and check that y solves {
ẏ = f(y)

y(t2) = x2(t2).

Conclude that y = x2 and therefore x2(t) = x1(t + t1 − t2) for all t. That is, x2 is just a
horizontal translate of x1.

(iii) How is this result both similar to and different from Theorem 2.3.4?
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(iv) Any two solutions to the exponential growth problem ẋ = rx have the form x1(t) =
c1e

rt and x2(t) = c2e
rt for some constants c1 and c2. Suppose that x1(t1) = x2(t2) for some

t1 and t2. Obtain c2 = er(t1−t2) and use properties of exponentials to check explicitly that
x2(t) = x1(t+ t1 − t2) for all t.

One very useful consequence of the existence and uniqueness theorem, and a substantial
generalization of the situation in Example 2.5.9, is the following “comparison test.” Infor-
mally, it states that if two functions solve the same ODE, and if one function “starts below”
the other, then that function “stays below” the other forever.

2.5.11 Theorem (Comparison theorem). Suppose that f satisfies the hypotheses of the
existence and uniqueness theorem. Let x and y solve the IVP{

ẋ = f(t, x)

x(t0) = x0
and

{
ẏ = f(t, y)

y(t0) = y0.

If x0 < y0, then x(t) < y(t) for all t in the domain of both x and y.

Proof. What goes wrong if the inequality x(t) < y(t) does not hold for all t common to
the domain of x and y? Say that y(t∗) ≤ x(t∗) for some t∗. Then either y(t∗) = x(t∗) or
y(t∗) < x(t∗).

In the first case of y(t∗) = x(t∗), we see that two solutions to the same ODE are in the
same place at the same time. Then x(t) = y(t) for all t in their common domain. But then
x(t0) = y(t0), which cannot be true if x(t0) = x0 < y0 = y(t0).

In the second case, y(t∗) < x(t∗), we define an auxiliary function z(t) = x(t) − y(t).
Then z(t0) < 0 and z(t∗) > 0, so the intermediate value theorem gives a time t1 such that
z(t1) = 0. But then x(t1) = y(t1), and we are back in the case of two solutions being in the
same place at the same time. �

2.5.12 Problem (!). Draw a picture illustrating the statement of the comparison theorem
and another theorem illustrating its proof. Label everything clearly.

2.5.13 Problem (!). Reinterpret the results of Example 2.5.9 in light of the comparison
theorem. What does the comparison theorem say about a function x such that ẋ = x(1−x)
with 1 < x(0)?

2.5.14 Problem (!). How should Theorem 2.5.11 be adjusted in the case that y0 < x0?
Make the adjustment and then prove your new theorem.
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2.6. Phase line analysis for autonomous ODE.

Recall that, as we have said multiple times, an autonomous ODE has the form

ẋ = f(x),

where f is a function of a single real variable, and its equilibrium solutions are
the constant functions defined as the roots (zeros) if f (if any exist). It turns out that
the equilibrium solutions to an autonomous ODE control in a special way the long-time
behavior of its nonequilibrium solutions, and so we should always try to find the equilibrium
solutions first by solving f(x) = 0. After that, we can also try separating variables to find
nonequilibrium solutions, and we obtain

ẋ

f(x)
= 1.

However, there is no guarantee that we can evaluate the auxiliary antiderivative∫
dx

f(x)
,

or that we could, in the end, solve for x algebraically. We discussed separation of variables for
autonomous problems thoroughly in Section 2.2.1 and lamented some frustrations in Section
2.2.3.

However, we can say a lot about autonomous ODE qualitatively. By combining the
existence and uniqueness theorem and doing a bit of calculus, we will see how the choice of
initial condition alone affects what a solution to an autonomous ODE does at the extreme
boundaries of its domain.

2.6.1. Maximal existence for autonomous ODE.

We can first assure ourselves that solutions to autonomous ODE exist. The following is a
direct consequence of Theorem 2.5.2.

2.6.1 Theorem (Existence and uniqueness for autonomous ODE). Let f be continu-
ously differentiable on the interval (a, b). (The values a = −∞ and/or b =∞ are allowed.)
Let x0 be a point in (a, b). Then there are numbers α > 0 and ω > 0 such that the IVP{

ẋ = f(x)

x(0) = x0

has a unique solution x defined on (−α, ω).

2.6.2 Problem (!). Show that this really is a direct consequence of Theorem 2.5.2. [Hint:
take t0 = 0 and remember that in an autonomous ODE, g(t) = 1.]

The only difference with the IVP here compared to those in Theorem 2.5.2 is that we
have taken t0 = 0, purely for convenience. That is, when studying autonomous ODE, we will
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always place our initial time at t0 = 0. This really makes no difference other than simplifying
notation (and according with our gut instinct that time begins at 0). After all, the ODE
ẋ = f(x) is independent of time!

While this result is comforting, its use by itself is limited. The theorem tells us nothing
about the long-time properties of x, and nothing, in principle, about ε. For just how long in
time does x exist?

2.6.3 Example. Here are five different autonomous (and hence separable) IVP. All have
the form {

ẋ = f(x)

x(0) = 1,

and finding the formulas below is a good exercise. In each case, a domain (“Dom.”) for the
solution (“Soln.”) is given. This is not necessarily the largest interval on which the solution
is defined as a function but rather the largest open interval on which the solution is defined
and on which it solves the IVP; in particular, this interval must contain the point t = 0.
The limit (“Lim.”) as t approaches the right endpoint of the domain from the left is given.

(1) (2) (3) (4) (5)

ODE ẋ = x ẋ = x(1− x) ẋ = x2 ẋ = −1

x
ẋ =
√

5− x

IC x(0) = 1 x(0) = 1 x(0) = 1 x(0) = 1 x(0) = 1

Soln. x(t) = et x(t) = 1 x(t) =
1

1− t
x(t) =

√
1− 2t x(t) = 5− (t− 4)2

4

Dom. (−∞,∞) (−∞,∞) (−∞, 1)

(
−∞, 1

2

)
(−∞, 4]

Lim. ∞ 1 ∞ 0 5

The first two IVP are not very exciting anymore; they are exponential and logistic
growth, and so we know their solutions are defined for all time. In particular, the solution
for logistic growth here is the equilibrium solution x(t) = 1.

The other three IVP are more interesting. Each has the form ẋ = f(x) for a relatively
“tame” function f , and each can be solved with separation of variables. But the given
domains all have a finite right endpoint.

(3) We studied this IVP in Sections 2.1.3 and 2.1.4 and observed the “catastrophic” situ-
ation

lim
t→1−

x(t) = lim
t→1−

1

1− t
=∞.

That is, x “blows up in finite time.” There is no way for us to extend x beyond the time
t = 1 as a continuous function; x has a vertical asymptote at t = 1.
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(4) Now the solution x(t) =
√

1− 2t is defined and continuous at time t = 1/2, and yet
we exclude t = 1/2 from the domain in (4). Why? Here we need to think carefully about
the square root: the square root is defined and continuous at 0 but not differentiable at 0.
(See part (iii) of Problem 2.5.5.) Recall from Definitions 1.4.1 and 1.4.4 that a solution to
an ODE/IVP must not only be defined and continuous but also differentiable at all points
of its domain. Thus t = 1/2 cannot belong to the domain of x(t) =

√
1− 2t if we are

considering x not merely as a function but as a function that solves ẋ = −1/x.
It is also interesting to note in (4) that if we put f(x) = −1/x, then f is not defined at

x = 0. But the solution x(t) =
√

1− 2t tends to 0 as t approaches 1/2 from the left. Not
only is the solution not differentiable at t = 1/2, it approaches a value outside the domain
of f . How can we possibly plug this solution into ẋ = −1/x at time t = 1/2 and get a
numerical result that makes sense?

(5) As a function of t, ignoring the ODE/IVP context, the function x(t) = 5− (t− 4)2/4
is defined for all t. After all, it is just a quadratic polynomial. However, defining x in this
way gives

ẋ = 2− t

2
and

√
5− x =

∣∣∣∣2− t

2

∣∣∣∣ .
(Here we need the rule

√
A2 = |A| for any real number A.) And so to have ˙x(t) =√

5− x(t), we need

2− t

2
=

∣∣∣∣2− t

2

∣∣∣∣ ,
and thus 2 − t/2 ≥ 0, hence t ≤ 4. Last, taking f(x) =

√
5− x in (5), we note that f is

defined but not differentiable at x = 5, which is the limit of our solution as t approaches 4
from the left (and, for that matter, from the right).

2.6.4 Problem (!). Use separation of variables to solve the illustrative IVP{
ẋ = −1/x

x(0) = 1
and

{
ẋ =
√

5− x
x(0) = 1

that appeared in Example 2.6.3.

This is where we finished on Wednesday, September 13, 2023.

Here are the common patterns in the previous example. All of the solutions to the different
ODE ẋ = f(x) with were defined on (at least) an open interval of the form (T1, Tend) for
some numbers T1 < 0 < Tend. (Why 0? Because the initial time was t0 = 0.) If Tend = ∞,
then we could predict the future forever, and we saw that some solutions had infinite limits
as t→∞ and others finite limits.

Much more interesting were the cases when Tend < ∞. In some of those cases, we had
limt→T−

end
x(t) =∞, which we called a “blow-up in finite time.” From the modeling point of
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view, in which the ODE ẋ = f(x) represents some physical process, this is a catastrophic
failure; in only a finite amount of time, the values of the solution became arbitrarily large.
This either suggests that the model is wrong or that the underlying physical process is
extremely delicate and subtle.

In other cases of Tend < ∞, the limit L := limt→T−
end
x(t) existed as a finite real number.

But this L was no arbitrary real number: we saw that either the function f that “governed’
the ODE ẋ = f(x) was not defined at L, or that f was not differentiable at L. Since the
mode ẋ = f(x) only makes sense for those x at which f is defined, and since a solution to the
model is only guaranteed when the function f is continuously differentiable, the approach of
x to L as t→ T−end suggests that the solution is leaving the “domain of validity” of the model.
In other words, the solution is starting to exhibit behavior that the model is not designed
to predict, and so, once again, we should look more carefully at how good our model is.

Hopefully the following is becoming apparent: when a solution to ẋ = f(x) fails to be
defined for the entire interval [0,∞), something “interesting” happens at the finite time
beyond which the solution cannot be continued. Either the solution explodes to ±∞ at the
endpoint of its domain and has a vertical asymptote, or its values leave the domain on which
f is continuously differentiable. The moral is that solutions to ODE do not simply stop after
a finite time or “vanish” into thin air at a particular moment—something has to happen.

The following theorem is a precise statement of that moral. This statement is technical
and worth parsing slowly and carefully.

2.6.5 Theorem (Maximal existence). Let f be continuously differentiable on the interval
(a, b), and let x0 be a point in (a, b). There exist numbers T1 and Tend, with T1 < 0 < Tend,
and a unique solution x to the IVP {

ẋ = f(x)

x(0) = x0

such that x is defined on the interval (T1, Tend), and this interval (T1, Tend) is “maximal” in
the sense x cannot be defined outside this interval and remain a solution to the IVP. More
precisely, one, and only one, of the following three alternatives holds for Tend.

(Max1) Tend =∞.

(Max2) Tend <∞ and either limt→T−
end
x(t) =∞ or limt→T−

end
x(t) = −∞.

(Max3) Tend <∞ and either limt→T−
end
x(t) = a or limt→T−

end
x(t) = b.

Identical statements hold for T1 if we replace Tend = ∞ with T1 = −∞ in part (Max1)
and the left limit limt→T−

end
with the right limit limt→T+

1
in parts (Max2) and (Max3).

This is a demanding theorem, so we paraphrase its conclusions more informally.
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2.6.6 Remark. (i) The possibility Tend =∞ in part (Max1) of Theorem 2.6.5 is a sort of
“ideal” result. It says that we can predict the future forever in our given model. However,
it does not help us predict the behavior of our solution at ∞; we have no statement about
limt→∞ x(t) in part (Max1).

(ii) The possibilities limt→T−
end
x(t) = ±∞ in part (Max2) of Theorem 2.6.5 are a sort of

“catastrophic” result. Our solution simply explodes! This phenomenon is often called a
blow-up in finite time. This might represent a natural and expected result—say, the
unbounded growth of a species given certain ideal environmental conditions—or maybe a
flaw in our model.

(iii) The possibilities limt→T−
end
x(t) = a or limt→T−

end
x(t) = b in part (Max3) of Theorem

2.6.5 are, perhaps, the most subtle. Recall that the ODE under consideration is ẋ = f(x),
and f is guaranteed to be continuously differentiable only on the interval (a, b). Recall
also that such nice behavior of f is a hypothesis of the existence and uniqueness theorem
(Theorem 2.6.1). Saying that x(t) tends to a or b as t approaches Tend from the left means
that x(t) is leaving the domain of f . The domain of f is the value of “states” for which
the model is valid. Once the solution leaves this realm of validity, we can no longer make
predictions about its behavior from our original model. (By the way, if a = −∞ or b =∞,
then some of the limits in parts (Max2) and (Max3) are the same, and so there is some
intentional redundancy in the statement of the theorem.)

2.6.7 Problem (!). For each of the five solutions in Example 2.6.3, determine Tend and
the limit as t→ T−end. Which solutions experience a blow-up in finite time?

2.6.8 Problem (!). Check that the function x(t) := e−t solves the IVP{
ẋ = −|x|
x(0) = 1.

How would you interpret the fact that limt→∞ x(t) = 0 in light of Theorem 2.6.5? [Hint:
where does f(x) = |x| fail to be differentiable?]

Theorem 2.6.5 is powerful, because it finally answers our question of “What happens in
the future?” However, it does not give a definite answer: there are three possibilities, and
there is no “test” presented to determine which one happens for a given IVP. It is possible to
present such tests in fairly refined and excruciating detail via some demanding mathematical
rigor (including an analysis of certain delightful improper integrals). Instead, we will develop
a somewhat less excruciating tool to determine maximal domains and end behavior, with
somewhat less rigor.

2.6.9 Problem (?). The following results will be critical to our subsequent analysis. Let
f be continuously differentiable on the interval (a, b). Suppose that f(x∞) = 0 for some
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point x∞ in (a, b). Let x solve ẋ = f(x). Use Theorems 2.5.11 and 2.6.1 to establish the
following.

(i) If x(0) < x∞, then x(t) < x∞ for all t.

(ii) If x(0) = x∞, then x(t) = x∞ for all t.

(iii) If x∞ < x(0), then x∞ < x(t) for all t.

2.6.2. The phase line for the logistic equation.

We introduce the phase line by studying that most versatile model, the logistic equation.
This analysis will confirm the behavior that we first saw in the logistic equation’s slope
field in Example 2.3.2 and in our implementation of Euler’s method in Example 2.4.3. This
analysis also parallels our qualitative treatment of exponential growth in Section 1.2.4. What
is different is that we now have rigorous existence and uniqueness theory to back up our
intuitive claims and assure us that solutions really are there and do not cross. Throughout,
we consider the IVP {

ẋ = x(1− x)

x(0) = x0.
(2.6.1)

As in Examples 2.3.2 and 2.4.3, our choices of the initial condition x0 will make all the
difference. Put

f(x) := x(1− x)

and recall, as the following graph indicates, that
f(x) < 0, x < 0

f(x) > 0, 0 < x < 1

f(x) < 0, 1 < x.
x

x(1− x)

1

1. Suppose that x solves (2.6.1) with 0 < x0 < 1. The domain of x is some interval (T1, Tend),
with −∞ ≤ T1 < 0 < Tend ≤ ∞. We will chiefly be concerned with Tend. Since 0 and 1
are equilibrium solutions of the logistic equation, and since 0 < x(0) < 1, the comparison
theorem tells us 0 < x(t) < 1 for all t.

2. First we study the behavior of x at time t = 0:

ẋ(0) = f(x(0)) = f(x0) > 0,

so x is increasing at t = 0. We claim that x is increasing on all of its domain. Suppose
not, so instead ẋ(t) ≤ 0 for some t > 0. If ẋ(t) = 0, then f(x(t)) = ẋ(t) = 0, and so either
x(t) = 0 or x(t) = 1. But we saw in Step 1 that 0 < x(t) < 1 for all t.

If ẋ(t) < 0, then since ẋ(0) > 0, there is a time s in (0, t) such that ẋ(s) = 0. This s exists
by the intermediate value theorem applied to the continuous function ẋ (recall Definition
1.4.1!). Then we have the same contradiction as above from ẋ(s) = 0. And so ẋ(t) > 0 for
all t in the domain of x, and therefore x is strictly increasing on its domain.
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This is where we finished on Friday, September 15, 2023.

3. We have shown that x is increasing on (T1, Tend). Moreover, we know that x is bounded
above on this interval in the sense that x(t) < 1 for all t. A deep (but hopefully intuitive)
theorem from calculus then tells us that the limit

L := lim
t→T−

end

x(t)

exists. Moreover, since 0 < x(t) < 1, we have 0 ≤ L ≤ 1. (Limits do not necessarily preserve
strict inequalities.)

Specifically, here is that theorem.

2.6.10 Theorem. Suppose that x is strictly increasing on the interval (T1, Tend) in the
sense that x(t) < x(τ) if T1 < t < τ < Tend. Suppose also that x is bounded above on
(T1, Tend) in the sense that there is M > 0 such that x(t) ≤M for all t in (T1, Tend). Then
the limit

L := lim
t→T−

end

x(t)

exists and, moreover, L ≤M .

4. The existence of L as a finite real number rules out alternatives (Max2) from Theorem
2.6.5. It also rules out (Max3) from that theorem, as here (in the notation of that theorem)
we are working with f(x) = x(1 − x), a = −∞, and b = ∞. So, Tend cannot be finite, and
so Tend = ∞. We have thus ensured that the solution continues for all time, and so we can
predict the future forever!

5. We can say more about L. Since 0 < x(0), and since x is increasing, we really have
0 < L ≤ 1. Moreover, since Tend =∞, we also have

lim
t→∞

x(t) = L.

That is, x has the horizontal asymptote L as t → ∞. Next, since x solves ẋ = f(x), we
calculate

lim
t→∞

ẋ(t) = lim
t→∞

f(x(t)) = f
(

lim
t→∞

x(t)
)

= f(L). (2.6.2)

The third equality follows from the continuity of f .
Now, horizontal asymptotes should call to mind “flat” graphs, and we should expect that

the slope of x gets close to 0 as t→∞. In other words, we expect

lim
t→∞

ẋ(t) = 0. (2.6.3)

Assuming this to be true7, we combine (2.6.2) and (2.6.3) to obtain f(L) = 0, which means
that either L = 0 or L = 1. But we also know 0 < L ≤ 1. The only possibility left is L = 1.
7 This is surprisingly tricky. It turns out that a differentiable function may have a horizontal asymptote,
but its derivative may not limit to 0 at ∞. Put x(t) := cos(et)/t. Use the squeeze theorem to show
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6. We conclude that if x solves the logistic IVP (2.6.1) with 0 < x(0) < 1, then x is defined
for all time in [0,∞), x is strictly increasing, 0 < x(t) < 1 for all t, and limt→∞ x(t) = 1. We
can even figure out the concavity of x.

2.6.11 Problem (+). Suppose that x solves the logistic equation ẋ = x(1 − x). First
show that

ẍ = x(1− x)(1− 2x).

This tells us the value of the second derivative ẍ(t) in terms of the value x(t); note that
we are not saying ẍ(t) = t(1 − t)(1 − 2t). Nonetheless, we can eke out the concavity of x
from this formula.

(i) Show that if x(t) < 1/2, then x is concave up at time t.

(ii) Show that if 1/2 < x(t) < 1, then x is concave down at time t.

(iii) Show that if 1 < x(t), then x is concave up at time t.

This is a staggering amount of information about x, and we figured it all out without
having an explicit formula for x. Let us celebrate with a graph of x.

t

x

x0
1/2

1

7. Now suppose that x0 > 1 and let x solve the logistic IVP (2.6.1) with maximal domain
(T1, Tend). The comparison theorem then implies that x(t) > 1 for all t. Also, ẋ(0) =
f(x(0)) = f(x0) < 0, and so x is decreasing at time t = 0. Using exactly the same reasoning
as in Step 2, we can show that x is decreasing at all t.

2.6.12 Problem (?). Use exactly the same reasoning as in Step 2 to show this.

Moreover, since x(t) > 1 for all t, x is decreasing and bounded below. Another great
theorem of calculus implies that L := limt→T−

end
x(t) exists with 1 ≤ L. Specifically, this

theorem.

limt→∞ x(t) = 0. Then compute ẋ and show that if tk := ln((π + 4πk)/2), then limk→∞ ẋ(tk) = −∞. The
problem here is that x is oscillating too rapidly for its derivative to vanish at ∞.

Instead, it turns out that if limt→∞ x(t) and limt→∞ ẋ(t) both exist as finite real numbers, then
limt→∞ ẋ(t) = 0. That is the situation here with the logistic equation. First, we have argued that
limt→∞ x(t) exists because x is increasing and bounded above. Next, the calculations in (2.6.2) show
that limt→∞ ẋ(t) exist.
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2.6.13 Theorem. Suppose that x is strictly decreasing on the interval (T1, Tend) in the
sense that x(τ) < x(t) if T1 < t < τ < Tend. Suppose also that x is bounded below on
(T1, Tend) in the sense that there is m > 0 such that m ≤ x(t) for all t in (T1, Tend). Then
the limit

L := lim
t→T−

end

x(t)

exists and, moreover, m ≤ L.

As before, the only possibility from the maximal existence theorem is that Tend = ∞.
We then have the limits (2.6.2) and (2.6.3) exactly as before, and so L = 0 or L = 1; the
inequality 1 ≤ L forces L = 1.

t

x
x0

1

8. Finally, consider the (physically unrealistic but mathematically interesting) case x0 < 0.
Adapting the arguments above, we can show that x is decreasing on its domain. Conse-
quently, we either have limt→T−

end
x(t) = −∞ or, if the limit exists as a finite real number,

then the limit is negative.
However, we no longer have an equilibrium solution below 0, and so we cannot try to

argue as in the previous work that x is bounded below; in particular, the tools above do not
apply to tell us if Tend = ∞ or Tend < ∞. (It is possible to develop more robust tools to
determine the value of Tend; we will not do so here.) However, in either case we can say that
limt→T−

end
x(t) = −∞. First, if Tend < ∞, this follows from parts (Max2) or (Max3) of the

maximal existence theorem, using f(x) = x(1− x), a = −∞, and b =∞. Next, if Tend =∞
and limt→T−

end
x(t) is finite, then we can use the limits (2.6.2) and (2.6.3) to conclude that

f has a root below 0, which is false. So, whether Tend is finite or infinite, we must have
limt→T−

end
x(t) = −∞.

t

x

1
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9. We summarize our work by putting plots of solutions for all three cases of nonequilibrium
initial conditions on the same graph. The results are exactly what Example 2.3.2 predicted
for the logistic equation via slope fields and what Example 2.4.3 predicted via Euler’s method.
This is a nice harmony among numerical, qualitative, and theoretical methods!

t

x

1/2

1

There is an efficient, compact way of summarizing the behavior of solutions to the logistic
equation based on their initial conditions. Solutions that start at 0 or 1 stay there forever;
solutions that start below 0 decrease to −∞; solutions that start between 0 and 1 increase to
1; and solutions that start above 1 decrease to 1. We represent these behaviors on a vertical
line, called the phase line for the logistic equation, by marking the equilibrium solutions
with dots and placing arrows in the segments marked by those dots to indicate increasing (a
right-pointing arrow) or decreasing (a left-pointing arrow) behavior of solutions starting in
those segments.

0

1

Going forward, we will work in reverse order to our treatment of the logistic equation
here. First we will find the equilibrium solutions (this is how we start every autonomous
problem), then we will draw the phase line, and finally we will draw solutions and predict
the future based on the phase line. The moral is that we can predict the end behavior of
solutions to ẋ = f(x) based on where they start relative to the equilibrium solutions. The
equilibrium solutions control everything.
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2.6.14 Problem (+). Let f be continuously differentiable on (a, b). Prove that any
nonequilibrium solution to ẋ = f(x) is either strictly increasing or strictly decreasing
on all of its domain. We used this fact several times in developing the phase line for the
logistic equation. [Hint: suppose instead that x is increasing at time t1 and decreasing at
time t2. Adapt the argument of Step 2 above to conclude that ẋ(t3) = 0 for some time t0
between t1 and t2; conclude that x(t3) is an equilibrium solution. Why is this wrong?]

2.6.3. Constructing and interpreting phase lines.

We can distill the work of the previous section (in particular, the rather demanding calculus
ideas behind the analysis that boiled down to the phase line) into some fairly simple “tests” for
the behavior of solutions to autonomous ODE depending on initial conditions. Essentially,
the proof of this theorem involves taking our arguments for the specific function f(x) =
x(1− x) in the previous section and adapting them to the more general hypotheses below.

2.6.15 Theorem. Suppose that f is continuously differentiable on an interval I. Let x0
be a point in I and suppose that x solves the IVP{

ẋ = f(x)

x(0) = x0.

Then the relation of x0 to the other roots of f determines the long-time behavior of x in
the following cases.

(i) f(x0) = 0. Then x(t) = x0 is an equilibrium solution and is defined for all t.

(ii) f(x0) > 0. Then x strictly increases up to the next equilibrium solution above x0 and
is defined for all t ≥ 0; if there is no equilibrium solution above x0, then x increases to ∞
but may not be defined for all t ≥ 0.

(iii) f(x0) < 0. Then x strictly decreases down to the next equilibrium solution below x0
and is defined for all t ≥ 0; if there is no equilibrium solution below x0, then x decreases
to −∞ but may not be defined for all t ≥ 0.

2.6.16 Problem (!). (i) Paraphrase case (ii) of Theorem 2.6.15 more technically as fol-
lows. If f(x0) > 0 and there is x∞ > x0 such that f(x∞) = 0 but f(x) 6= 0 for x0 < x < x∞,
then x is defined on an interval of the form (T1,∞) with T1 < 0 and limt→∞ x(t) = x∞.

(ii) Paraphrase case (iii) of Theorem 2.6.15 more technically as follows. If f(x0) < 0 and
there is x∞ < x0 such that f(x∞) = 0 but f(x) 6= 0 for x∞ < x < x0, then x is defined on
an interval of the form (T1,∞) with T1 < 0 and limt→∞ x(t) = x∞.

This is where we finished on Monday, September 18, 2023.
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2.6.17 Example. We study the ODE

ẋ = x(x− 1)(2− x).

First, the equilibrium solutions are x = 0, x = 1, and x = 2. To draw the phase line, we
need to understand the behavior of f(x) := x(x− 1)(2− x) around these three roots. We
could figure out that behavior by evaluating f at values of x in the intervals (−∞, 0), (0, 1),
(1, 2), and (2,∞), as f is either strictly positive or strictly negative on those intervals, or
we could look at a graph of f (as sketched below). Either way, we determine the following
behavior of f and, consequently, the corresponding behavior of solutions.

x

f(x)

1 2 0

1

2

t

x(t)

1

2

Hopefully the consonance among the graph of f and its roots and positive/negative
behavior, the dots and arrows on the phase line, and the sketches of sample solutions
(equilibrium solutions indicated by dotted lines) is clear. Here is a description of how
solutions are behaving in words.

1. x < 0. Here f(x) > 0, so solutions that start below 0 increase to 0.

2. 0 < x < 1. Here f(x) < 0, so solutions that start between 0 and 1 decrease to 0.

3. 1 < x < 2. Here f(x) > 0, so solutions that start between 1 and 2 increase to 2.

4. 2 < x. Here f(x) < 0, so solutions that start above 2 decrease to 2.

All solutions are defined on (at least) the interval [0,∞) by Theorem 2.6.15.

2.6.18 Problem (!). Draw the phase line and sketch solutions for

ẋ = x(x− 1)(x− 2).

How does everything compare to the previous example? Use the fact that x(x−1)(x−2) =
−x(x− 1)(2− x) in your discussion.
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2.6.19 Example. We study
ẋ = (x− 1)(x− 2).

The equilibrium solutions are x = 1 and x = 2, and analysis of the sign of f(x) =
(x− 1)(x− 2) reveals the following phase line and sketches of solutions.

x

f(x)

1 2

1

2

t

x(t)

1

2

So, solutions that start below 1 are increasing and tend to 1 over long times; solutions
that start between 1 and 2 are decreasing and (also) tend to 1 over long times; and solutions
that start above 2 are increasing and tend to ∞ over long times. Solutions starting at or
below 2 are defined for all t ≥ 0, but maybe a solution starting above 2 is defined only up
to some time Tend <∞, and there could be a blow-up in finite time.

2.6.20 Problem (?). In the previous example, define a new function u by u(t) := x(t)−1.
Show that if x solves ẋ = (x− 1)(x− 2), then u solves u̇ = u(u− 1). Recognize this as the
“negative” of the logistic equation. How do the graphs of the solutions in Example 2.6.19
compare to those for the logistic equation in Section 2.6.2?

2.6.21 Problem (!). A phase line may have one or zero equilibrium points on it.

(i) Draw the phase line for ẋ = x. Compare your results to Step 6 from Section 1.2.4 long
ago.

(ii) Draw the phase line for ẋ = e−x
2

. How does the new information from phase lines
address the issues left unresolved by Example 2.3.3?

This is where we finished on Wednesday, September 20.
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2.6.4. Stability.

The moral of the phase line is that the equilibrium solutions to an autonomous ODE, far
from being “one more thing” that we have to find when solving separable ODE, actually
control the destiny of all solutions. In particular, we are (hopefully) seeing that equilibrium
solutions either “attract” or “repel” all other solutions that start “nearby.”

2.6.22 Definition. Let f be continuously differentiable on the interval (a, b) and let x∞ be
an equilibrium solution of ẋ = f(x), i.e., x∞ is a point in (a, b) such that f(x∞) = 0.

(i) The equilibrium solution x∞ for the ODE ẋ = f(x) is stable if solutions that start
near x∞ tend to x∞ over very long times. A stable equilibrium is also called a sink.

x∞

(ii) The equilibrium solution x∞ for the ODE ẋ = f(x) is unstable if solutions that
start near x∞ tend away from x∞ over very long times. An unstable equilibrium is also
called a source.

x∞

(iii) The equilibrium solution x∞ is semistable for the ODE ẋ = f(x) if it is neither a
source nor a sink. A semistable equilibrium is also called a node.

x∞ x∞

2.6.23 Example. We drew the phase line for ẋ = (x − 1)(x − 2) in Example 2.6.19 and
found that it had the following form.

1

2

We see that solutions that start near 1 tend to 1 over long times, while solutions that start
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near 2 tend away from 2 over long times. Specifically, solutions that start with 1 < x(0) < 2
tend to 1 over long times, while solutions that start with 2 < x(0) tend to ∞ over long
times. Thus 1 is a stable equilibrium or sink, while 2 is an unstable equilibrium or source.

2.6.24 Problem (!). Classify the equilibria of Example 2.6.17.

2.6.25 Problem (!). Explain why we could paraphrase the phenomenon of “stable equi-
librium” as “a small change in the initial conditions does not change the long-time behavior
of the solutions.”

2.6.26 Example. While the ODE in our course so far have arisen from concrete population
models (however tenuously), it is also a worthwhile skill to start with a mathematical, not
physical, phenomenon and distill it into a model. Since we have not yet seen an ODE with
a semistable equilibrium, we build one. Specifically, we look for an ODE ẋ = f(x) for
which 1 is an unstable equilibrium, 2 is stable, and 3 is semistable.

We therefore want solutions that start near 2 to tend to 2, while solutions that start
near 1 tend away from 1. The situation with 3 is less clear, so we leave it out for a first
pass at the phase line and obtain the following.

1

2

3

We see that solutions that start between 2 and 3 must tend toward 2, and therefore
away from 3. Since we want 3 to be semistable, solutions that start above 3 cannot also
tend away from 3; otherwise, 3 would be unstable. So, we want solutions that start above
3 to tend to 3, and therefore the complete phase line is the following.

1

2

3

We can use the phase line to find a function f that governs this ODE by recalling that
increasing solutions start where f is positive, and decreasing solutions start where f is
negative. So, f should be negative on (−∞, 1), positive on (1, 2), negative on (2, 3), and
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also negative on (3,∞). A graph of f , then, might be the following.

x

f(x)

2 31

There are many possible formulas for such an f ; one option (after some fooling around
with a graphing program) is

f(x) = −(x− 1)(x− 2)(x− 3)2.

2.6.27 Problem (!). On the same set of axes, draw the graphs of solutions to ẋ = −(x−
1)(x− 2)(x− 3)2 that satisfy x(0) = 0.5, x(0) = 1.5, x(0) = 2.5, and x(0) = 3.5.

2.6.28 Remark. We can make the terminology of Definition 2.6.22 more precise as follows.

(i) The equilibrium solution x∞ for the ODE ẋ = f(x) is stable if there is ε > 0 such that
if x∞ − ε < x0 < x∞ + ε, then the solution x to{

ẋ = f(x)

x(0) = x0

is defined on [0,∞) and limt→∞ x(t) = x∞.

(ii) The equilibrium solution x∞ for the ODE ẋ = f(x) is unstable if there is ε > 0 such
that if x∞ − ε < x0 < x∞ + ε, then for the solution x to{

ẋ = f(x)

x(0) = x0,

there are t+, δ > 0 such that if t > t+, then either x(t) < x∞ − δ or x∞ + δ < x(t).

2.6.5. Linearization.

So far, we have constructed phase lines and classified equilibria for ẋ = f(x) based on the
sign of f in the intervals between equilibrium solutions. It would be nice if we could classify
equilibria (and therefore draw the phase line) just from knowledge of how f is behaving at
the equilibrium solution. The results of Example 2.6.26 suggest one way to do this. Below
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is, again, the graph of f .

x

f(x)

2 31

We built f so that 1 would be an unstable equilibrium and 2 would be stable, and we
note from the graph that f ′(1) > 0 and f ′(2) < 0. This turns out to be enough to determine
whether an equilibrium is stable or unstable.

2.6.29 Theorem. Let f be continuously differentiable on the interval (a, b) and let x∞ be
a point in (a, b) with f(x∞) = 0.

(i) If f ′(x∞) < 0, then x∞ is stable.

(ii) If f ′(x∞) > 0, then x∞ is unstable.

Proof. We prove part (ii) and leave part (i) as an exercise. Since f ′(x∞) < 0, the function
f is decreasing near x∞. So, for x1 < x∞ < x2, with x1 and x2 sufficiently close to x∞, we
have

f(x1) < f(x∞) < f(x2).

And f(x∞) = 0, so we really have f(x1) < 0 < f(x2). Here is a visualization of this, in
which we use the fact that f(x∞) = 0 and f ′(x∞) > 0 to draw the local linear (i.e., the
tangent line) approximation f(x) ≈ f ′(x∞)x to the graph of f for x near x∞.

x

f(x) ≈ f ′(x∞)x

x∞x1 x2

Now we can apply Theorem 2.6.15. Solutions that start below but close to x∞, say with
initial value x1 decrease away from x∞, while solutions that start above but close to x∞, say
with initial value x2, must increase away from x∞. That is, a snippet of the phase line for
ẋ = f(x) looks like the following.

x∞

And so all solutions that start close to x∞ must tend away from x∞. �
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2.6.30 Problem (?). Adapt the proof of part (ii) of Theorem 2.6.29 above to explain why
part (i) is true.

2.6.31 Problem (!). Use Theorem 2.6.29 to check the stability of the equilibria in Exam-
ples 2.6.17 and 2.6.19 and compare your results to Example 2.6.23 and Problem 2.6.24.

2.6.32 Problem (?). Theorem 2.6.29 omits the case f ′(x∞) = 0, as here x∞ could be
stable, unstable, or semistable. For the following three ODE, classify the equilibrium at 0:

ẋ = x3, ẋ = −x3, and ẋ = x2.

2.6.33 Problem (+). Let f be continuously differentiable on the interval (a, b) and sup-
pose that f(x∞) = 0 for some x∞ in (a, b).

(i) Suppose that x∞ is a stable equilibrium for ẋ = f(x). Is x∞ always an unstable
equilibrium for ẋ = −f(x)?

(ii) Suppose that x∞ is an unstable equilibrium for ẋ = f(x). Is x∞ always a stable
equilibrium for ẋ = −f(x)?

2.6.6. Complaints.

Phase lines convey useful and concise information about predicting the future, chiefly the
range of solutions (are they bounded between equilibrium points or unbounded?) and their
long-time limits. However, phase lines by themselves also lack lots of information. Here are
some complaints.

1. The domain of a solution, in particular if a solution is defined on all times into the future
with domain containing [0,∞) or just up to a finite time with the domain not extending
beyond some Tend < ∞, may not be apparent from a phase line. See Theorem 2.6.15 for
situations in which we can guarantee that the domain is infinite.

2. The concavity of a solution is definitely not apparent from the phase line.

3. If a solution converges to a finite limit over long time, the rate of convergence may not
be apparent from a phase line. For example,

lim
t→∞

1

t+ 1
= 0, lim

t→∞
e−t = 0, and lim

t→∞
e−2t = 0, (2.6.4)

but the functions converge to 0 at different “rates,” which is obvious from the graphs below.
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t

x(t) 1/(t+ 1)

e−t

e−2t

4. The exact value of a solution at a particular moment in time is definitely not something
that a phase line can provide unless that solution is an equilibrium solution.

2.6.34 Problem (?). For each of the three functions in (2.6.4), find an autonomous ODE
that it solves. That is, if x is one of those three functions, come up with another function
f such that ẋ = f(x).

As we have often remarked, no one tool will tell us everything that we could possibly
want to know about an ODE and its solutions.

This is where we finished on Monday, September 25, 2023.

2.7. Linear ODE and variation of parameters.

All of our tools for studying differential equations have limitations. Slope fields (a quali-
tative tool) and Euler’s method (a numerical tool) apply to first-order ODE in their most
general form ẋ = f(t, x), but both are subject to misinterpretation. Separation of vari-
ables (an analytic tool) applies to ODE in the fairly specific form ẋ = g(t)h(x), but even
the most innocent-looking functions h can lead to nasty complications. Phase lines (an-
other qualitative tool) provide detailed information about the asymptotics of solutions to
autonomous problems ẋ = h(x) but little to no quantitative data, and phase lines do not
work for nonautonomous problems. As we have lamented, there is no one method that works
for all problems, and each method will, at times, have severe disadvantages.

Practically speaking, there is only one other kind of first-order ODE in addition to separa-
ble for which analytic techniques routinely work. In fact, for this class of problems, analytic
methods have, on average, better success than separation of variables does for separable
problems—the technique that we are going to develop always gives a formula for x. This
new class of problems also arises naturally in many modeling scenarios and is far more than
a mathematical curiosity.

2.7.1. Harvesting.

Life was good for our population models in prior examples. With the exception of a certain
bad regime in the modified logistic equation, either our populations always exploded to ∞,
or they happily leveled out around a carrying capacity. Either way, they survived, and
probably prospered.
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The good times are over! Famine, pestilence, and peril are on the horizon! Suppose that
we have a population that, in the absence of external malice, grows exponentially. (Why
exponential? First, it makes the math and the model “easy.” Second, it gives the right kind
of ODE for us to study—namely, the linear ODE. We could definitely study the harvesting of
a logistically growing population, but then the math would be harder, and the model would
not be linear.) With x(t) as the population at time t, we expect ẋ = rx. Now, however,
because this population is useful, annoying, and/or delicious, we decide to harvest (or hunt,
or, more antiseptically, remove) some members of the population. Specifically, suppose that
we harvest h(t) members of the population per unit time t.

We will turn these assumptions into an ODE using the following general principal. Sup-
pose that a certain quantity changes via both an “input” source and an “output” source.
In terms of population, “input” could be births and “output” could be deaths (due here to
harvesting). Then the rate of change of that quantity satisfies

Rate of change = Rate in− Rate out. (RI–RO)

Thus the population satisfies
ẋ = rx− h(t). (2.7.1)

If h is not constant, then this problem is not separable; in particular, it is not autonomous.
Of course, we could use slope fields and Euler’s method to analyze it, given a specific formula
for h, but eventually we will need some new tools to study (2.7.1) if we want to say anything
profound. Developing those tools will now be our top priority.

First, though, how might we choose h? There are lots of valid harvesting schemes, but we
will work with periodic harvesting—the harvesting rate can vary in a periodic fashion. After
all, this is probably how we harvest crops and hunt game on a seasonal or annual basis. So,
we want h to be a nonnegative periodic8 function.

There are many such functions, but maybe the most familiar nonconstant periodic func-
tion is the sine. However, the sine can be negative, and in (2.7.1) we are subtracting h; if we
subtract h(t) when h(t) < 0, then we are really adding members back into the population
instead of removing them. So, we want to modify the original sine to make our harvesting
term nonnegative. Since −1 ≤ sin(t) ≤ 1, we add 1 to get 0 ≤ 1 + sin(t) ≤ 2. If we take
h(t) = 1 + sin(t), then, yes, we get a nonconstant, nonnegative periodic function. But this
would only allow us to harvest with a rate ranging between 0 and 2.

If, as well, we multiply by a number h0 > 0, then taking h(t) = h0(1 + sin(t)) allows us
to remove anywhere between 0 and 2h0 members of the population per unit time. We refine
this further to h(t) = h0(1 + sin(t))/2 so that we are harvesting between 0 and h0 members
of the population per unit time. Finally, the sine is 2π-periodic, and we may not want to
harvest only with 2π-periodicity. To give us control over the frequency of harvesting, we
incorporate a “frequency” parameter p and define

h(t) =
h0
2

[
1 + sin

(
2πt

p

)]
. (2.7.2)

Here is a graph of h.
8 A function h is periodic if there is a number p 6= 0 such that h(t+ p) = h(t) for all t.
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t

h(t)

h0

h0/2

p

2.7.1 Problem (?). (i) Chase through the algebra and check that the function h defined
in (2.7.2) satisfies 0 ≤ h(t) ≤ h0 and h(t+ p) = h(t) for all t.

(ii) Recall that if a < b and h is continuous on [a, b], then the integral

1

b− a

∫ b

a

h(t) dt

gives a good measure of the “average value” of h on [a, b]. What is the average value of h
in (2.7.2) over [0, p]? Is this what you expected?

2.7.2 Problem (+). Graph the function h defined in (2.7.2) for several different values
of h0 and p. (Use a computer.) What happens to the graph as you change h0 and/or p?
How would you interpret those changes physically in the context of harvesting?

Assuming that at time t = 0 the initial population is x0, the IVP that governs our
exponentially growing population subject to harvesting is nowẋ = rx− h0

2

[
1 + sin

(
2πt

p

)]
x(0) = x0.

(2.7.3)

There are three parameters in this ODE—the positive numbers r, h0, and p—and we probably
also want to consider the effect of the initial condition x0.

We might wonder what effect tweaking the values of these three parameters has on the
solutions. Of course, we could go to slope fields and/or numerics and make observations.
But suppose we wanted to answer definitively the following question: are there values of the
parameters p, h0, and r that cause the population to go extinct? That is, can we harvest
in such a way that we kill off the population, and, if so, how “sensitive” is the population’s
behavior to the values of p, h0, and r? We might think that because the population is growing
exponentially in the absence of harvesting, and because exponentially growing populations
explode to ∞ over long times, we can harvest it however we want. Perhaps we are wrong.

When faced with an unfamiliar differential equation, a good strategy is always to turn to
numerics to gain some intuition. Here are the results of Euler’s method for the IVP (2.7.3)
with x0 = r = p = 1 and several values of h. We take these values to be 1 just for simplicity,
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which is wholly unrealistic, but it does make the computing time quick. (Picture one really
scared rabbit that can also duplicate itself.) That is, we are simulating the IVPẋ = x− h0

2

(
1 + sin(2πt)

)
x(0) = 1.

We also provide the slope fields to get a more general sense of how other solutions (i.e., other
scenarios with different initial populations) are behaving. By the way, note that these slope
fields are not identical as we proceed across any one of them horizontally; these are definitely
not slope fields for autonomous ODE.

t

x(t)

1

2

3

4

3 6

h0 = 0.5

t

x(t)

1
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3

4

3 6

h0 = 1

t

x(t)

1

2

3

4

3 6

h0 = 1.7

t

x(t)

1

2

3

4

3 6

h0 = 1.8

As we increase h0, it appears that the population growth slows (compare h0 = 1 and
h0 = 1.7), and eventually the population dies off when h0 is large enough (h0 = 1.8). The
slope field at points (t, x) with x < 2 becomes substantially more “wiggly” as h0 increases,
which suggests that populations with a variety of initial conditions (not just x0 = 1) will, at
best, fluctuate noticeably as the harvesting rate increases. It appears that even exponential
growth cannot survive under sufficiently greedy harvesting. These numerics, however, do
not indicate the relationship among x0, h0, p, and r—in particular, is there a “threshold” for
h0 below which the population will continue to grow despite harvesting and above which the
population will go extinct? This is exactly the sort of situation for which analytic techniques
can give precise, rigorous answers, and to those analytic techniques we now turn.
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2.7.3 Problem (!). Here is an indication that we cannot harvest an exponentially growing
population however we like without threat to the population’s survival. Suppose that a
population grows exponentially with rate r, so that, undisturbed by our harvesting, the
population satisfies ẋ = rx. Now suppose that we harvest the population at a rate of qx(t)
members per unit time t. Then the harvesting equation (2.6.1) is ẋ = rx−qx. Show that if
r < q, then limt→∞ x(t) = 0, and so the population goes extinct in the long run. In words,
we harvested faster than the population could grow.

2.7.4 Problem (+). Instead of our development in Section 1.3.2, we could construct
the logistic equation via the paradigm of (RI–RO). Assume that a population inherently
grows exponentially but that interactions within the population (violence, competition,
other happy things) cause the population to decrease. If there are x members of the
population, then each member can interact with x − 1 other members, and so there are
x(x − 1) interactions possible. However, because the “order” of interactions is irrelevant
(member A interacting with member B is the same as member B interacting with member
A), there are really x(x− 1)/2 distinct interactions possible. Thus the “rate in” should be
αx, where α is a constant of proportionality, and the “rate out” is βx(x− 1)/2, where β is
another constant of proportionality, and so the population should satisfy

ẋ = αx− βx(x− 1)

2
. (2.7.4)

Chase through the algebra to see that if

r :=
2α + β

2
and N :=

2α + β

β
,

then (2.7.4) is really the familiar logistic equation

ẋ = rx
(

1− x

N

)
.

2.7.2. The structure of linear ODE.

The harvesting ODE (2.7.3) has the following form.

2.7.5 Definition. An ODE ẋ = f(t, x) is linear if f has the special form

f(t, x) = a(t)x+ b(t)

for functions a and b. That is, a linear ODE is an equation of the form

ẋ = a(t)x+ b(t). (2.7.5)

The function a is the coefficient and the function b is the forcing or driving
term.
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We call a the coefficient because a multiplies x, and coefficients are supposed to multiply
things; calling b the forcing/driving term is a convention that stems from terminology for
second-order ODE, which naturally involve things being forced or driven by external influ-
ences. Note that for fixed t, the function f(t, x) = a(t)x+ b(t) is a linear function of x, thus
the name “ linear differential equation.”

2.7.6 Example. Our harvesting ODE (2.7.3) read

ẋ = rx−
h0
(
1 + sin(2πt/p

)
2

.

Here the coefficient function is a(t) := r; note that a is a constant function. We will say
quite a bit about “constant-coefficient” linear ODE in the future. The driving or forcing
term is b(t) := −h0(1 + sin(ωt))/2.

2.7.7 Problem (!). Although the only first-order ODE for which we will find analytic
solutions in this course are separable (Section 2.2) and linear (forthcoming!), there are
plenty of first-order ODE that are neither. Give an example of a first-order ODE that is
neither separable nor linear, and clearly explain why it fails to be either.

The two essential pieces of data in a linear ODE are, of course, the coefficient function and
the forcing function. If one of these is identically zero, then the problem becomes (somewhat)
simpler.

2.7.8 Problem (!). Let I be an interval. Suppose that a(t) = 0 for all t in I and that b
is a continuous function on I. Explain why solving the linear ODE ẋ = a(t)x+ b(t) is just
a direct integration problem.

2.7.3. Homogeneous linear ODE.

Rather more interesting (and ultimately more important) than the case of a = 0 in ẋ =
a(t)x+ b(t) is the case b = 0.

2.7.9 Definition. A linear ODE ẋ = a(t)x+ b(t) is homogeneous if b(t) = 0 for all t.
That is, a homogeneous ODE is an equation of the form

ẋ = a(t)x. (2.7.6)

A linear ODE ẋ = a(t)x+ b(t) is nonhomogeneous or inhomogeneous if it is not
homogeneous, i.e., if b(t) 6= 0 for at least one t.

2.7.10 Example. The ODE ẋ = sin(t)x is homogeneous, but ẋ = sin(t)x + e− cos(t) is
nonhomogeneous.
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2.7.11 Problem (?). It is always nice to be able to build new solutions to an ODE out of
existing ones. The structure of the homogeneous linear ODE

ẋ = a(t)x (2.7.7)

makes this very easy.

(i) Suppose that x solves (2.7.7). Show that the function y(t) := cx(t) also solves (2.7.7)
for any constant c.

(ii) Suppose that x1 and x2 both solve (2.7.7). Show that the function y(t) := x1(t)+x2(t)
also solves (2.7.7).

2.7.12 Problem (!). What more can you say about the ODE

ẋ = a(t)x+ b(t)

if you know one of the following?

(i) This ODE is autonomous.

(ii) This ODE is separable.

(iii) This ODE is both separable and autonomous.

2.7.13 Problem (?). Suppose that the linear ODE

ẋ = a(t)x+ b(t)

has an equilibrium solution. Show that this ODE is really separable. [Hint: if a constant
function x solves this ODE, then a and b are related via the equation a(t)x + b(t) = 0 for
all t. How does this help?]

The good news is that we already know how to solve homogeneous linear ODE. There
are several ways of proceeding. First, we guessed how to solve homogeneous linear ODE
all the way back in Problem 1.3.2. Since x(t) = ert solves ẋ = rx for any constant r, and
since y(t) = e− cos(t) solves ẏ = sin(t)y (recall Example 1.3.1), we can guess that if A is an
antiderivative of a (i.e., Ȧ = a), then

x(t) = eA(t)

will solve ẋ = a(t)x. And this is easy to check:

ẋ(t) =
d

dt
[eA(t)] = eA(t)Ȧ(t) = eA(t)a(t) = a(t)x(t).

We also worked this out using separation of variables in Problem 2.2.22; the resulting implicit
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equation for x involves a tricky absolute value (since we have to contend with
∫
x−1 dx), and

it is perhaps easier to avoid that absolute value by working with initial value problems.
However we get there, the following is true.

2.7.14 Theorem. Let a be continuous on the interval I. Then every solution x to the
linear homogeneous ODE ẋ = a(t)x on I has the form

x(t) = CeA(t) (2.7.8)

for some real number C and some antiderivative A of a on I. This solution x is defined
on all of I.

2.7.15 Problem (+). Prove this theorem. There are two things to do.

(i) First, check that functions of the form (2.7.8) really do solve the problem. That is, if
x(t) = CeA(t), then ẋ(t) = a(t)x(t) for all t. This involves the chain rule and the assumption
Ȧ = a.

(ii) Next, explain why all solutions x to ẋ = a(t)x have the form (2.7.8). This requires
uniqueness theory. Start with any solution to ẋ = a(t)x, pick any t0 in I, and let y(t) =

x(t0)e
∫ t
t0
a(τ) dτ. Show that x and y solve the same IVP (what is that IVP?). How does this

help?

2.7.16 Problem (!). Do the results of Theorem 2.7.14 agree with the results of Problem
2.7.11? For example, if x1 and x2 both solve ẋ = a(t)x, then, per that problem, so should
y := x1 + x2. By Theorem 2.7.14, we can write x1(t) = C1e

A(t) and x2(t) = C2e
A(t) for

some constants C1 and C2. Does x1 + x2 have the form predicted by the theorem? How
about cx1 for some constant c?

2.7.17 Example. (i) Since A(t) = t2 is an antiderivative of a(t) = 2t+ 1, all solutions to
ẋ = t2x have the form

x(t) = Cet
2

for some constant C.

(ii) We can solve {
ẋ = t2x

x(0) = 2

by first noting that the solution has to be of the form x(t) = Cet2 for some constant C,
and then applying the initial condition to find

2 = x(0) = Ce0 = C

Thus C = 2, and the solution is x(t) = 2et
2

.
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2.7.4. Nonhomogeneous linear ODE: variation of parameters.

Let I be an interval and let a and b be continuous functions on I. We have seen that all
solutions to the homogeneous linear ODE

ẋ = a(t)x

have the form
x(t) = CeA(t) (2.7.9)

for some constant C and some antiderivative A of a. What about the nonhomogeneous ODE
ẋ = a(t)x + b(t)? There are many ways to approach this problem, and all of them rely on
some kind of unexpected insight that has been passed down to us through the centuries. It
is completely normal if this insight feels strange, unnatural, or unexpected—what matters is
that you reread and rework the following enough until it feels normal, natural, and expected.
(And then reread and rework it a few more times for good measure.)

The key idea is the following. Take C = 1 in (2.7.9) to the associated homogeneous
problem ẋ = a(t)x are constant multiples of the function

φ(t) := eA(t),

where A is an antiderivative of a. That is, solutions to ẋ = a(t)x have the form

x(t) = Cφ(t) = CeA(t)

for some number C, where Ȧ(t) = a(t). What if we look for solutions to the full nonho-
mogeneous problem that are variable-coefficient multiples of φ? That is, we will guess that
solutions x have the form

x(t) = u(t)φ(t) = u(t)eA(t),

where Ȧ(t) = a(t). In other words, we have replaced the constant C with the (possibly
nonconstant!) function u. What is u?

We will figure it out.

This is where we finished on Wednesday, September 27, 2023.

2.7.18 Example. We met the ODE

ẋ = sin(t)x+ 2te− cos(t)

back in Example 1.4.2, where all we could do was check that a given function solved it.
Now we actually find all solutions.

1. The associated homogeneous equation is

ẋ = sin(t)x,

and we now know that all its solutions are x(t) = Ce− cos(t) for some constant C. In
the notation of the paragraph preceding this example, φ(t) = e− cos(t). Now we look for
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solutions that are variable-coefficient multiples of φ. That is, we guess that the solution to
ẋ = sin(t)x+ 2te− cos(t) has the form x(t) = u(t)e− cos(t) for some function u. We will figure
out what u is.

2. What u does determines what u is. This is a course in differential equations, so what
things do typically is solve differential equations. How do we get a differential equation
involving u? As the old saying goes, “If it moves, differentiate it,” and so we compute (with
the product rule)

ẋ(t) =
d

dt
[u(t)e− cos(t)] = u̇(t)e− cos(t) + u(t)

d

dt
[e− cos(t)] = u̇(t)e− cos(t) + u(t)e− cos(t) sin(t).

3. We want x to satisfy ẋ(t) = sin(t)x(t) + 2te− cos(t) for all t, so we replace ẋ(t) with the
expression calculated above and x(t) with the assumption x(t) = u(t)e− cos(t) to find

u̇(t)e− cos(t) + u(t)e− cos(t) sin(t) = sin(t)u(t)e− cos(t) + 2te− cos(t).

The same term u(t)e− cos(t) sin(t) appears on both sides, so we can cancel it to find

u̇(t)e− cos(t) = 2te− cos(t).

4. This is almost a differential equation for u, except for the exponential factor on the left.
Since exponentials are never 0, we can divide both sides by e− cos(t) to conclude

u̇(t) = 2t.

This is a direct integration ODE for u, which we solve to find

u(t) = t2 + C

for some constant C. Then we have

x(t) = u(t)e− cos(t) = (t2 + C)e− cos(t) = t2e− cos(t) + Ce− cos(t).

5. Of course, we can always check our work by differentiating this formula for x and seeing
if it satisfies ẋ(t) = sin(t)x(t) + e− cos(t) for all t. (It does!)

6. Moreover, our solution strategy really produced all solutions to this ODE. To recap, if
x solves this ODE, then we can write

x(t) = x(t) · 1 = x(t)ecos(t)e− cos(t) = u(t)e− cos(t), u(t) := x(t)ecos(t).

The work above showed that if x(t) = u(t)e− cos(t) solved ẋ = sin(t)x + e− cos(t), then u
had to have the form u(t) = t2 + C for some constant C. Thus x had to have the form
x(t) = (t2 + C)e− cos(t).

7. If we want to, we can use this formula for x in general to solve IVP, say,{
ẋ = sin(t)x+ e− cos(t)

x(0) = 2.
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We know that all solutions to this ODE have the form

x(t) = t2e− cos(t) + Ce− cos(t)

for some constant C. We apply the initial condition to see that C needs to satisfy

2 = x(0) = Ce− cos(0) + (02 · e− cos(t)) = Ce−1,

and so C = 2e. That is, the solution to the IVP is

x(t) = 2e(e− cos(t)) + t2e− cos(t) = (2e+ t2)e− cos(t).

8. And if we look hard, we should see something special in the structure of solutions to
this ODE. Again, all solutions have the form

x(t) = t2e− cos(t) + Ce− cos(t).

If we take C = 0, we get a (comparatively) simple solution

x?(t) := t2e− cos(t).

That is, x? solves the nonhomogeneous problem ẋ? = sin(t)x? + e− cos(t). Remember also
that φ(t) = e− cos(t) solves the homogeneous problem φ̇ = sin(t)φ. Now we say the same
thing in three different ways.

• Every solution x to the nonhomogeneous problem is the sum of x? and a constant multiple
of φ.

• Every solution x to the nonhomogeneous problem has the form x(t) = x?(t) + Cφ(t).

• Every solution to the nonhomogeneous problem is the sum of one “particular” solution
to the nonhomogeneous problem and a constant multiple of one (nonzero!) solution to the
homogeneous problem.

This one example teaches us a lot, and everything above completely generalizes to the
arbitrary nonhomogeneous problem. Say that x solves

ẋ = a(t)x+ b(t),

and let φ solve the associated homogeneous problem φ̇ = a(t)φ. Specifically, we take φ(t) =
eA(t), where A is any antiderivative of a. We might ask—and this is the strange, unnatural,
and unexpected insight—how φ could “show up” in the solution to the nonhomogeneous
problem. Since φ is an exponential and therefore is never 0, we can multiply and divide by
φ to find

x(t) = φ(t)

(
x(t)

φ(t)

)
= φ(t)u(t), where u(t) :=

x(t)

φ(t)
. (2.7.10)

And since we already know what φ is, if we just figure out what u is, then we will know x.
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The product rule tells us

ẋ =
d

dt
[φu] = φ̇u+ φu̇ = a(t)φu+ φu̇. (2.7.11)

And the identity ẋ = a(t)x+ b(t) tells us

ẋ = a(t)φu+ b(t). (2.7.12)

Then (2.7.11) and (2.7.12) are the same, so we have

a(t)φu+ φu̇ = a(t)φu+ b(t).

Both sides have the same term a(t)φu, so we cancel that and are left with

φu̇ = b(t).

Once again, φ is never 0, so we may divide and solve for u̇:

u̇ =
b(t)

φ(t)
. (2.7.13)

This is a direct integration problem for u.
Are we sure that we can solve it? If we assume that a and b are both continuous on some

interval I, then a has a (necessarily continuous) antiderivative A on I, so φ is continuous
on I, and then b/φ is continuous on I. Consequently, u has an antiderivative on I, and the
whole thing works. In particular, we conclude that if a and b are continuous on I, then the
ODE ẋ = a(t)x + b(t) has solutions on all of I. (This is a much more explicit result about
the domain of a solution than we ever got with separation of variables.)

This procedure is often called variation of parameters or variation of con-
stants, since we went from having x(t) = Cφ(t) in the homogeneous solution, with C
constant, to x(t) = u(t)φ(t) in the nonhomogeneous case, with u not necessarily constant.

2.7.19 Example. The ODE

ẋ = −2

t
x+ t− 1

is linear and nonhomogeneous, with a(t) = −2/t and b(t) = t − 1. The role of t = 0 will
probably be ticklish in the solution.

The associated homogeneous equation is

ẋ = −2

t
x,

and all solutions to this ODE have the form

x(t) = Ce
∫
(−2/t) dt = Ce−2 ln(|t|).

We can simplify this further by using properties of logarithms and absolute value to calcu-
late

−2 ln(|t|) = ln(|t|−2) = ln(t−2),
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and therefore all solutions to the homogeneous problem are

x(t) = Celn(t
−2) = Ct−2.

Note that the exponential has vanished from this formula, since the logarithm canceled it.
Now we look for solutions to the nonhomogeneous equation of the form

x(t) = u(t)t−2.

This is where we finished on Friday, September 29, 2023.

We compute
ẋ(t) = u̇(t)t−2 + u(t)(−2)t−3,

and so we want
u̇(t)t−2 + u(t)(−2)t−3 = −2

t
x+ t− 1.

That is, u needs to satisfy

u̇(t)t−2 + u(t)(−2)t−3 = −2

t
u(t)t−2 + t− 1.

This simplifies to
u̇(t)t−2 + u(t)(−2)t−3 = −2u(t)t−3 + t− 1,

and therefore
u̇(t)t−2 = t− 1,

and thus
u̇(t) = t2(t− 1).

At last we arrive at the direct integration problem

u̇(t) = t3 − t2

for u, and we solve this to get

u(t) =
t4

4
− t3

3
+ C.

We conclude that the solution x to our original ODE is

x(t) = u(t)t−2 =

(
t4

4
− t3

3
+ C

)
t−2 =

t2

4
− t

3
+ Ct−2.

We must exclude t = 0 from the domain of x, and so the largest domains possible are
(−∞, 0) or (0,∞). Note that these intervals are the largest domains on which the coefficient
function a(t) = −2/t is defined (whereas the driving term b(t) = t− 1 is defined at all t).

Once again, we see that the solution has a special structure. Put

x?(t) :=
t2

4
− t

3
and φ(t) := t−2,
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so x? solves the nonhomogeneous problem ẋ = (−2/t)x+t+1, and φ solves the homogeneous
problem ẋ = (−2/t)x. Our work shows that every solution x to the nonhomogeneous
problem has the form

x(t) = x?(t) + Cφ(t).

That is, every solution to the nonhomogeneous problem is the sum of one particular so-
lution to the nonhomogeneous problem and a constant multiple of one solution to the
homogeneous problem.

We can generalize these observations about the structure of solutions to linear ODE.

2.7.20 Theorem (Linearity principle). Let a and b be functions and suppose that x?
solves the nonhomogeneous problem ẋ? = a(t)x? + b(t). Then every other solution x to the
nonhomogeneous problem ẋ = a(t)x+ b(t) has the form

x(t) = x?(t) + Cφ(t),

where C is a constant and φ solves the homogeneous problem φ̇ = a(t)φ.

Proof. We are assuming that x and x? are functions such that

ẋ(t) = a(t)x(t) + b(t) and ẋ?(t) = a(t)x?(t) + b(t).

To measure how alike x and x? are, we subtract them: put

y(t) := x(t)− x?(t).

Then we study y by differentiating it:

ẏ(t) = ẋ(t)− ẋ?(t)
= a(t)x(t) + b(t)−

(
a(t)x?(t) + b(t)

)
= a(t)x(t) + b(t)− a(t)x?(t)− b(t)
= a(t)x(t)− a(t)x?(t)

= a(t)
(
x(t)− x?(t)

)
= a(t)y(t).

So, y solves the homogeneous ODE ẏ = a(t)y, and therefore y(t) = CeA(t) for some an-
tiderivative A of a. Put φ(t) = eA(t), so y(t) = Cφ(t). Then

x(t) = x?(t) + y(t) = x?(t) + Cφ(t). �

The point of this theorem is that if we know one particular solution to the nonhomoge-
neous linear ODE (which sometimes takes a bit of work to find), then all we have to do is
add a constant multiple of the solution to the associated homogeneous problem (which we
find by antidifferentiating and exponentiating) to get all solutions to the nonhomogeneous
problem. This affords us a tremendous amount of control over solutions to linear ODE!
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2.7.21 Remark. Do not confuse the linearity principle with the linearization theorem for
classifying equilibria (Theorem 2.6.29). The linearity of limits, and thus of derivatives, is
the foundation of the linearity principle, while local linear approximations are the founda-
tion of the linearization theorem. Linearity is everything!

2.7.22 Problem (!). Variation of parameters hinges on evaluating two antiderivatives:
the one that produces φ to solve the associated homogeneous problem, and the one that
produces u. Either antiderivative may be difficult or impossible to evaluate in terms of
elementary functions. This was a problem that we encountered in separation of variables
(although there we had the added algebraic complication of solving for x after antidiffer-
entiating).

(i) Consider the ODE
ẋ = −2x+ t2.

Variation of parameters suggests that since the homogeneous problem ẋ = −2x has solu-
tions x(t) = Ce−2t, we guess that x(t) = u(t)e−2t for the nonhomogeneous problem. Make
this guess and determine a direct integration problem for u. What annoys you about this
direct integration problem?

(ii) Consider the ODE
ẋ = −2x+ e−2t sin(t2).

Again, guess x(t) = u(t)e−2t. What do you find challenging (maybe impossible) about the
direct integration problem for u now?

2.7.5. Existence and uniqueness theory for linear IVP.

Problem 2.7.22 suggests that variation of parameters can fail, or at least be stymied, by a
challenging antiderivative in one or two places: in constructing the solution to the homoge-
neous problem, or in solving the direct integration problem for u. As always, one way to
get around antidifferentiation difficulties is to represent things with definite integrals. The
theorem below does just that for a linear IVP.

2.7.23 Theorem (Existence and uniqueness for linear IVP). Let a be a continuous
function on the interval I and let t0 be a point in I. Let x0 be any real number. Then the
only solution to the IVP {

ẋ = a(t)x+ b(t)

x(t0) = x0
(2.7.14)

is the function
x(t) = x0φ(t) + x?(t), (2.7.15)

where φ and x? solve the two IVP{
φ̇ = a(t)φ

φ(t0) = 1
and

{
ẋ? = a(t)x? + b(t)

x?(t0) = 0.
(2.7.16)
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Specifically,

φ(t) = e
∫ t
t0
a(τ) dτ and x?(t) = φ(t)

∫ t

t0

b(τ)

φ(τ)
dτ. (2.7.17)

More informally, we might say that the linear IVP (2.7.14) “splits” into a “linear combi-
nation” of the two “simpler” IVP in (2.7.16). Here is a cartoon of that “splitting.”{

ẋ = a(t)x+ b(t)

x(t0) = x0
=

(
x0 ·

{
ẋ = a(t)x

x(t0) = 1

)
+

{
ẋ = a(t)x+ b(t)

x(t0) = 0.

2.7.24 Problem (!). Does the result of Theorem 2.7.23 agree with the result of Theorem
2.7.20? (It better!)

2.7.25 Problem (+). This problem outlines the proof of Theorem 2.7.23, which is really
just variation of parameters with definite integrals in two places.

(i) It is possible to check that x as defined in (2.7.15) solves the IVP (2.7.14); this is just a
matter of the definitions of φ and x? in (2.7.17) and the fundamental theorem of calculus.
Go ahead and check that x does solve the IVP.

(ii) It is more enlightening to derive the formula (2.7.15) by assuming that x solves (2.7.14)
and, after some work, concluding that this is the right form for x. Along the way, we will
learn that only x as defined in (2.7.15) can solve the IVP. This proves a uniqueness result
for linear IVP that our version of the existence and uniqueness theorem in Theorem 2.5.2
cannot deliver.

To begin, suppose that x solves (2.7.14). Explain why we can write x in the form

x(t) = u(t)φ(t)

for some function u. [Hint: u = x/φ.]

(iii) Show that if x(t) = u(t)φ(t) solves (2.7.14), then u solves the IVP{
u̇ = b(t)/φ(t)

u(t0) = x0.

(iv) Solve this IVP for u by direct integration.

(v) Conclude that x has the form given by (2.7.15).

2.7.26 Remark. If we take b(t) = 0 for all t, then Theorem 2.7.23 proves that the homoge-
neous linear IVP has a unique solution. This gives another proof of Theorem 2.7.14 without
invoking the general existence and uniqueness theorem. To avoid a circular argument, note
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that we did not use the general existence and uniqueness theory at all in this section; in
particular, we used the fact that φ solves the linear homogeneous IVP in (2.7.16) but did
not make any claims about the uniqueness of solutions to this IVP.

2.7.27 Problem (!). Part (ii) of Problem 2.7.22 studied the ODE ẋ = −2x+ e−2t sin(t2)
and should have lead to frustration with an intractable indefinite integral. Now, however,
we can just get from Theorem 2.7.23. Since the forcing term is defined on all of (−∞,∞),
for simplicity we take t0 = 0. Suppose that the initial condition is x(0) = x0. Show that

x(t) = x0e
−2t + e−2t

∫ t

0

sin(τ2) dτ.

2.7.28 Problem (+). In the preceding problem, use the triangle inequality
∣∣∫ b

a
f(t) dt

∣∣ ≤∫ b
a
|f(t)| dt for integrals and a familiar bound on the sine to justify the estimate∣∣∣∣∫ t

0

sin(τ2) dτ

∣∣∣∣ ≤ |t|.
Then use L’Hospital’s rule and the squeeze theorem to explain why all solutions to ẋ =
−2x+ e−2t sin(t2) satisfy limt→∞ x(t) = 0.

2.7.29 Problem. The definite integral is the ideal tool for solving the harvesting ODE
(2.7.3), which motivated our study of linear ODE. Recall that this ODE wasẋ = rx− h0

2

[
1 + sin

(
2πt

p

)]
x(0) = x0.

The parameter r > 0 controls the growth rate of the population in the absence of harvesting;
the parameter h0 > 0 controls the maximum rate of harvesting; the parameter p controls
the frequency of harvesting; and x0 > 0 is the initial population.

(i) Use Theorem 2.7.23 to show that the solution to this IVP is

x(t) = x0e
rt − h0e

rt

2

∫ t

0

e−rτ
[
1 + sin

(
2πτ

p

)]
dτ. (2.7.18)

(ii) What part of evaluating the definite integral here do you expect to be challenging,
but not impossible?

2.7.30 Example. We continue the study of the harvesting problem from Section 2.7.1
using the result of Problem 2.7.29. We will proceed imagining that r and x0 are fixed and
given to us (since they are data about the original population), but we get to choose h
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and p (since we are the ones doing the harvesting). Instead fighting through it by hand, a
good idea is to go to a computer algebra system (which is particularly helpful since we are
keeping all of the parameters abstract right now).

After a lot of work on the computer, it turns out that

x(t) =

(
x0 − h0

[
1

2r
+

πp

(pr)2 + (2π)2

])
ert + ψ(t), (2.7.19)

where

ψ(t) :=
ph0

2
√

(pr)2 + (2π)2

sin

(
2πt

p
+ arctan

(
2π

pr

))
+

√
1 +

(
2π

pr

)2
 .

What does all of this mean, and what impact do these analytic results have on our original
question? Is it possible to choose the harvesting rate h0 and the harvesting frequency p so
that we overharvest the population into extinction?

We analyze our results and answer these questions in the following steps (and two
subsequent problems).

1. First, the function ψ is p-periodic and bounded. This is because −1 ≤ sin(τ) ≤ 1 for
all τ, but

√
1 + (2π/pr)2 > 1. Thus there are positive numbers m and M (which, by the

way, depend on p and r) such that

0 < m < ψ(t) < M

for all t. The long-time dynamics of our population, therefore, will not be affected by ψ,
which does not blow up to +∞ nor down to −∞ as t → ∞. (In fact, ψ has no limit as
t→∞.)

2. Instead, and unsurprisingly, the exponential term in x dominates the long-time behavior.
Since r > 0, if

0 < x0 − h0
[

1

2r
+

πp

(pr)2 + (2π)2

]
, (2.7.20)

then
lim
t→∞

(
x0 − h0

[
1

2r
+

πp

(pr)2 + (2π)2

])
ert =∞,

and so limt→∞ x(t) =∞, too. We rearrange (2.7.20) to see that if

h0 <
x0

1

2r
+

πp

(pr)2 + (2π)2

=
2rx0

[
(pr)2 + (2π)2

]
(pr)2 + (2π)2 + 2πpr

=: Ω(p, r, x0). (2.7.21)

then the population survives and continues to grow even with harvesting. This is because
our harvesting rate is suitably “small” in terms of the initial population and its growth
rate, and also in terms of the frequency with which we are harvesting.
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3. However, if we take Ω(p, r, x0) < h0, then (2.7.20) implies that we will have

lim
t→∞

(
x0 − h0

[
1

2r
+

πp

(pr)2 + (2π)2

])
ert = −∞,

and so limt→∞ x(t) = −∞, too. Realistically, this means that at some time t > 0 we have
x(t) = 0, and so the population will go extinct from overharvesting.

The analytic solution to this model has given us precise quantitative criteria under
which overharvesting can occur. While the numerics earlier predicted that extinction would
result from overharvesting at a certain extreme, those graphs did not give us these precise
quantitative criteria. We are now able to “tune” our harvesting parameters h0 and p so
that we can take as much as possible without risking extinction.

2.7.31 Problem (!). Pick your favorite (positive) values of x0, r, and p and use a computer
to graph the harvesting solution x defined in (2.7.19) for different values of h0 greater than
and less than Ω(p, r, x0), as defined in (2.7.21). Describe in words how the graph changes
for these different values of h0. What does this mean for the population being harvested?

2.7.32 Problem (?). In the harvesting model above, what happens over long times if we
take h0 = Ω(p, r, x0) as defined in (2.7.21)? With the concern of overharvesting in mind,
is this a good idea?

2.7.33 Problem (+). We might ask what changing the harvesting period p does to our
conclusions in the harvesting model above.

(i) Check that Ω(p, r, x0) < 2rx0 for all p > 0.

(ii) Check that limp→∞Ω(p, r, x0) = 2rx0; in taking the limit, r and x0 are fixed positive
numbers (as they always are in the harvesting problem).

(iii) Conclude that as p→∞, the interval of permissible h0 gets larger. Explain why the
following is true: we can increase the maximum amount that we are harvesting per unit
time if we decrease the frequency with which those harvesting extremes occur.

2.7.34 Problem (+). In general, it is difficult to predict the asymptotic behavior as
t → ∞ of solutions to ẋ = a(t)x + b(t), assuming that a and b are defined on [0,∞) or
some other infinite interval; after all, the formula (2.7.15) is rather complicated. However,
there are some situations in which if we assume some more information about a and b,
then the asymptotics become clearer. Here is one of those situations; see Problem 2.8.5 for
another.

Let a and b be continuous functions on [0,∞). For given real numbers x0 and y0, let x
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and y solve the IVP{
ẋ = a(t)x+ b(t)

x(0) = x0
and

{
ẏ = a(t)y + b(t)

y(0) = y0.

Show that if ∫ ∞
0

a(τ) dτ := lim
t→∞

∫ t

0

a(τ) dτ = −∞, (2.7.22)

then
lim
t→∞

(
x(t)− y(t)

)
= 0.

Conclude that as t→∞, any two solutions have exactly the same behavior. [Hint: Theorem
2.7.23 tells us how to solve each of these IVP. With φ as defined in that theorem, what
does the improper integral condition (2.7.22) say about limt→∞ φ(t)?]

This is where we finished on Monday, October 2, 2023.

2.8. Constant-coefficient linear ODE.

Variation of parameters is a complete success—possibly the only complete success in this
course. We have established the existence and uniqueness of solutions to linear IVP, and
we even have an explicit formula for those solutions. There are, however, at least two
downsides to variation of parameters. First, it requires integration, and the underlying
antidifferentiation can range from hard to impossible (recall Problem 2.7.22). Second, the
formula produced by variation of parameters does not always yield insight. For example,
consider the ODE

ẋ = 2x+ 3 cos(4t). (2.8.1)

This could, with some imagination and elbow grease, model a population that is subject
to periodic influx and removal (not quite harvesting, since the forcing term is not strictly
negative); the numbers 2, 3, and 4 here are just chosen because they are simple. We can
solve this ODE with variation of parameters, but along the way we would need to evaluate
the indefinite integral ∫

e−2t cos(4t) dt, (2.8.2)

which requires integration by parts and an algebraic trick.

2.8.1 Problem (!). Work through enough of variation of parameters for the ODE (2.8.1)
to convince yourself that the integral (2.8.2) eventually shows up.

By itself, the indefinite integral (2.8.2) is just an annoying integral, which was the first
downside. But here is how the second downside also appears in (2.8.1). The population
in question is subject to periodic influx and removal via the forcing term 3 cos(4t). How
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does this forcing term manifest itself in the solution? Should a periodic forcing term induce
periodicity in the solution? One manifestation of the periodic forcing term is the indefinite
integral (2.8.2), but how much insight does that integral alone give?

It turns out that for certain classes of linear ODE we can avoid variation of parameters
entirely and effectively reduce the calculations from antidifferentiation to algebra and gain
insight into how the forcing term manifests itself in the solution—at least if the forcing term
has the right form. Such ODE look like the following.

2.8.2 Definition. A constant-coefficient first-order linear ODE is an
ODE of the form

ẋ = ax+ b(t),

where a is a real number and b is a function.

2.8.3 Example. The ODE ẋ = 2x + et and ẋ = et are constant-coefficient, but ẋ =
sin(t)x + 2 is not constant-coefficient. As the name implies, only the coefficient has to be
constant; the forcing term can certainly be nonconstant.

We can certainly use variation of parameters to solve any constant-coefficient linear ODE,
but the integration involved will require antidifferentiating the product of an exponential
and some other function (specifically, the forcing term). Frequently, when that function is
polynomial or trigonometric, it is necessary to integrate by parts. This can be wearisome,
and distracting.

2.8.4 Problem (?). Here is that solution via variation of parameters. Let a be a real
number and let b be continuous on (−∞,∞). Use Theorem 2.7.23 to show that the only
solution to the IVP {

ẋ = ax+ b(t)

x(0) = x0

is the function

x(t) = x0φ(t) +

∫ t

0

φ(t− τ)b(τ) dτ, where

{
φ̇ = aφ

φ(0) = 1.

2.8.5 Problem (+). In Problem 2.7.34, we discussed some hypotheses on a linear ODE
that allow us to control the long-time behavior of its solutions. Here is another situation
that gives us such control. Suppose that a > 0 and b is a continuous function on [0,∞).
Let x? solve ẋ? = −ax? + b(t), and let x solve{

ẋ = −ax+ b(t)

x(0) = x0.
(2.8.3)
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Use variation of parameters to compute

|x(t)− x?(t)| = |x0|e−at

and conclude from the squeeze theorem that

lim
t→∞
|x(t)− x?(t)| = 0.

Conclude that all solutions to (2.8.3) have the same long-time behavior.

Instead of relying solely on variation of parameters, we will develop a technique for certain
special classes of forcing functions which will replace antiderivatives (which can be annoying)
with algebra (which will be annoying in a different way). Along the way, we will gain insight
into how specific forcing functions “manifest” themselves in natural ways in the solution. Our
new method is called “undetermined coefficients,” and (caveat lector!) it is most frequently
taught in the context of second-order differential equations, not first-order. But it works just
as well here, and much of the algebra is simpler, too.

In the following we will make more use of the linearity theorem than we did with variation
of parameters. Specifically, we will find one particular solution x? to the nonhomogeneous
problem ẋ = ax + b(t). Then we will have to remember to add a constant multiple of the
solution x(t) = eat to the homogeneous problem ẋ = ax.

2.8.1. Exponential forcing.

Here we study constant-coefficient ODE forced by an exponential, i.e., problems of the form

ẋ = ax+ bert

for some constants a, b, and r. What function x differentiates into a sum of a multiple of
itself and an exponential? Quite possibly another exponential! Equivalently, if the ODE is
forced by an exponential, a good guess is that a similar-looking exponential appears in the
solution.

2.8.6 Example. Consider the ODE

ẋ = x+ 2e3t.

To what extend can the exponential e3t “manifest itself” in the solution x? Perhaps the
simplest such manifestation is that x has the form x(t) = αe3t for some constant α. If so,
then

ẋ(t) = 3αe3t.

We plug this and the guess x(t) = αe3t into the ODE ẋ(t) = x(t) + 2e3t to find

3αe3t = αe3t + 2e3t.

We can cancel the factor e3t from each term, and so we find

3α = α + 2.
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This is really an algebraic problem for α. It rearranges to

2α = 2,

and thus
α = 1.

Consequently, one solution to this ODE is

x?(t) := e3t.

Since all solutions to the associated homogeneous problem ẋ = x are x(t) = Cet for some
constant C, the linearity theorem implies that all solutions to the nonhomogeneous ODE
are

x(t) = e3t + Cet.

2.8.7 Problem (!). Solve ẋ = x+ 2e3t using variation of parameters. Do you prefer that
or the method of the previous example?

2.8.8 Remark. Here is the moral of the previous example: to solve ẋ = ax + b(t), a
worthwhile guess is that x should be a constant multiple of b. This guess will sometimes be
wrong.

2.8.9 Example. Motivated by the previous example, we guess that a solution to

ẋ = 3x+ 2e3t

is x(t) = αe3t, which means ẋ(t) = 3αe3t. Then we need

3αe3t = 3αe3t + 2e3t,

and so
2e3t = 0.

This is impossible (for many reasons), and so our guess was wrong.
Of course, we could always use variation of parameters and guess that, in general, the

solution has the form x(t) = u(t)e3t. Then we would find u(t) = 2t + C. (Go ahead and
check it.) So, the solution is

x(t) = (2t+ C)e3t = 2te3t + Ce3t.

Taking C = 0, we see that one particular solution to the problem is x(t) = 2te3t.
What if, instead of guessing x(t) = αe3t, we guessed x(t) = αte3t? Then we would have

ẋ(t) = αe3t + 3αte3t,

and so we would find
αe3t + 3αte3t = 3αte3t + 2e3t.
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Then
αe3t = 2e3t,

and so α = 2. That is, a particular solution is x?(t) = 2te3t, and then all solutions are
x(t) = 2te3t + Ce3t. This agrees with variation of parameters.

2.8.10 Remark. Here is the moral of the previous example: if a guess for the solution of
an ODE fails, see if multiplying that guess by t helps.

2.8.11 Problem. This problem is the general approach to undetermined coefficients for
linear ODE forced by an exponential. Let a, b, and r be real numbers.

(i) Suppose that a 6= r. Guess that x(t) = αert solves ẋ = ax + bert and determine the
value of α (in terms of a, b, and/or r). Where specifically in your work did you use the
assumption that a 6= r?

(ii) Suppose that a = r. Guess now that x(t) = αtert solves ẋ = ax+ bert and determine
the value of α (in terms of a, b, and/or r).

(iii) What goes wrong if you guess that x(t) = αert solves ẋ = rx+ bert?

(iv) Solve ẋ = ax + bert using variation of parameters and make sure you get the same
result as in parts (i) and (ii). How does your work have to change when a = r compared
to when a 6= r?

2.8.2. Sinusoidal forcing.

Here we study constant-coefficient ODE forced by a sinusoid, i.e., problems of the form

ẋ = ax+ b sin(ωt) or ẋ = ax+ b cos(ωt)

for some constants a, b, and ω. What function x differentiates into a sum of a multiple
of itself and a sinusoid? Quite possibly another sinusoid. . .or maybe a sum of sinusoids,
as we shall see. Equivalently, if the ODE is forced by a sinusoid, a good guess is that a
similar-looking (linear combination of) sinusoid(s) appears in the solution.

2.8.12 Example. We study the ODE

ẋ = −x+ 2 cos(3t).

Based on Remark 2.8.8, we first guess

x(t) = α cos(3t).

Then
ẋ = −3α sin(3t),

and so we need
−3α sin(3t) = −α cos(3t) + 2 cos(3t).
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We combine everything into

(2− α) cos(3t)− 3α sin(3t) = 0.

This equation has to be true for all t, and so the result of Problem 2.8.13 tells us

2− α = 0 and 3α = 0.

But then α = 2 and α = 0, which is impossible.
Instead, a better guess, which takes into account the presence of the sine when differ-

entiating the cosine, is
x(t) = α cos(3t) + β sin(3t).

Then
ẋ(t) = −3α sin(3t) + 3β cos(3t),

and so we want

−3α sin(3t) + 3β cos(3t) = −α cos(3t)− β sin(3t) + 2 cos(3t).

This rearranges to
(3β + α− 2) cos(3t) + (β − 3α) sin(3t) = 0,

and Problem 2.8.13 tells us {
3β + α− 2 = 0

β − 3α = 0.

This is a linear system of equations for α and β, and there are many ways to solve it. For
example, we have β = 3α, and then

9α + α− 2 = 0,

from which we find α = 1/5 and so β = 3/5.
Then a particular solution to the nonhomogeneous ODE is

x?(t) =
cos(3t)

5
+

3 sin(3t)

5
,

and therefore all solutions are

x(t) =
cos(3t)

5
+

3 sin(3t)

5
+ Ce−t.

As time goes on, regardless of the value of C, the term Ce−t becomes very small and
contributes very little to the solution, so the dominant terms in the solution (for large t)
are the sinusoidal ones. That is, all solutions settle down into the same oscillatory state
(something of the reverse of the harvesting problem—or if we ran the harvesting problem
“backwards in time”). This is exactly what Problem 2.8.5 is saying.
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2.8.13 Problem (?). Let ω be a real number. Suppose that A and B are real numbers
such that

A cos(ωt) +B sin(ωt) = 0

for all t. Show that A = 0 and B = 0. [Hint: what happens at t = π/ω? Then pick some
other t such that cos(ωt) = 0 and sin(ωt) 6= 0.]

2.8.14 Problem (?). This problem is the general approach to undetermined coefficients
for linear ODE forced by a sinusoid. Let a, b1, b2, and ω be real numbers.

(i) Find real numbers α and β such that the function

x(t) = α cos(ωt) + β sin(ωt)

solves
ẋ = ax+ b1 cos(ωt) + b2 sin(ωt).

(ii) What goes wrong in the work above if you guess only x(t) = α cos(ωt) or x(t) =
β sin(ωt)?

2.8.3. Polynomial forcing.

Here we study linear constant-coefficient ODE forced by a polynomial, i.e., problems of the
form

ẋ = ax+ b(t), b(t) :=
n∑
k=0

ckt
k,

where a and ck are real numbers. A good idea, naturally, is to guess that a is some polynomial
of the same degree as b.

2.8.15 Example. We study the ODE

ẋ = −2x+ t2,

which appeared, to our annoyance, in part (i) of Problem 2.7.22. The forcing term b(t) = t2

is a degree-2 polynomial (i.e., quadratic), and so we guess

x(t) = α2t
2 + α1t+ α0

for some constants α2, α1, and α0.
Then

ẋ(t) = 2α2t+ α1,

and so we need
2α2t+ α1 = −2α2t

2 − 2α1t− 2α0 + t2.

This rearranges into

(2α2 − 1)t2 + 2(α2 + α1) + (α1 + 2α0) = 0.
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It is a fact (which we will not prove) that a polynomial is identically zero if and only if
all of its coefficients are 0. That is,

n∑
k=0

αkt
k = 0 for all t ⇐⇒ α0 = 0, . . . , αn = 0.

So, we get the linear system of equations
2α2 − 1 = 0

α2 + α1 = 0

α1 + 2α0 = 0.

One way to solve this is to note that α2 = 1/2, so

1

2
+ α1 = 0,

and therefore α1 = −1/2. Then

−1

2
+ 2α0 = 0,

and so α0 = 1/4.
Thus a particular solution to the nonhomogeneous ODE is

x?(t) =
t2

2
− t

2
+

1

4
,

and therefore all solutions to this ODE are

x(t) =
t2

2
− t

2
+

1

4
+ Ce−t.

2.8.4. Other kinds of forcing.

The methods above generalize vastly to more complicated forcing terms at the cost of vastly
more algebra. In particular, if the forcing term is the sum of more tractable terms, we can
use another consequence of linearity to handle things “term by term.”

2.8.16 Problem (?). (i) Suppose that x1 solves ẋ1 = ax1 + b1(t) and x2 solves ẋ2 =
ax2 + b2(t). That is, the coefficient is the same in each ODE, but the forcing terms are
different. Put x(t) := x1(t) + x2(t) and show that x solves

ẋ = ax+ b1(t) + b2(t).

This result is sometimes called the superposition principle, because “superposition”
is a synonym for “adding,” and “adding principle” sounds less cool.
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(ii) Find all solutions to the ODE

ẋ = −2x+ cos(t) + et.

More generally, one can use the ideas of undetermined coefficients to solve

ẋ = ax+ b(t),

where b is the product of an exponential, a sinusoid, and a polynomial by guessing that x is a
product of an exponential with the same “rate,” a sum of sinusoids with the same frequency,
and a polynomial of the same degree with unknown coefficients. Thus if

b(t) = ert
(
b1 cos(ωt) + b2 sin(ωt))

n∑
k=0

ckt
k, (2.8.4)

then one should guess

x(t) = ert cos(ωt)
n∑
k=0

αkt
k + ert sin(ωt)

n∑
k=0

βkt
k

if a 6= r and otherwise guess t times this guess if a = r. Then solve for the coefficients αk
and βk, making sure to pause once in a while and rediscover the will to live.

2.8.17 Example. A good guess for one particular solution to the ODE

ẋ = 5t+ e4t cos(3t)t2

is
x(t) = e4t cos(3t)

(
α2t

2 + α1t+ α0

)
+ e4t sin(3t)

(
β2t

2 + β1t+ β0
)
,

while a good guess for one particular solution to the ODE

ẋ = 4t+ e4t cos(3t)t2

is
x(t) = te4t cos(3t)

(
α2t

2 + α1t+ α0

)
+ te4t sin(3t)

(
β2t

2 + β1t+ β0
)
.

Both guesses require a lot of differentiation and a lot of algebra.

Just because we can do something does not mean we should, and problems with the kind
of forcing term like (2.8.4) are what give the first course in ODE the bad reputation of being
a “cookbook” class for learning formulas. If the way of proceeding involves a large amount
of algebra for finding coefficients, it is probably more expedient just to use a computer to do
the symbolic integration for variation of parameters.

This is where we finished on Wednesday, October 4, 2023.
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3. FIRST-ORDER SYSTEMS

Our models so far have studied the evolution of a single quantity (in all cases, a population)
over time. While the quantity may experience an external influence (such as harvesting), the
quantity has not interacted with any other evolving quantity. This is not wholly physically
realistic: a single population does not grow in a vacuum but likely interacts with other pop-
ulations that are growing alongside it. A population of rabbits, for example, may experience
harvesting due to a population of foxes hunting them, but the fox population will grow or
decline in part based on the availability of its rabbity food source; additionally, a given rabbit
population (say, Warren #1) may compete9 with another rabbit population (Warren #2) for
food and territory, even if the rabbits are not eating each other. The joint evolution of two or
more time-dependent quantities can often be modeled by a system of differential equations,
the study of which we now take up. The adjective “joint” is key: we will be interested not
merely in how the related quantities evolve separately but how they evolve together.

While population models will continue to propel our studies, there is another kind of
model that, at the level of systems, leads to arguably more tractable and ubiquitous models.
Various incarnations of Newton’s second law govern the behavior of moving objects. One
quantity important to the study of a moving object is its position relative to some origin or
destination point, or, equivalently, its displacement from a fixed reference point. But that is
not the only quantity important when studying motion—for example, when we are driving
somewhere, we certainly care about our “position” in the sense of “distance to destination,”
but we also care very much about our speed. Naturally, displacement and velocity are related
(among other things, the latter is the derivative of the former). Coupling displacement and
velocity together turns out to yield very important systems of differential equations that are
also enjoy very fruitful analytic solution techniques.

3.1. Predator-prey models.

As motivation for some terminology and concepts of systems, we construct a simple model
of one species eating another. Let x(t) be the population at time t of a species that will be
our “prey”—say, the familiar rabbits. Suppose that, in the absence of predators, the prey
population grows at a rate proportional to its current state; thus in a predator-free world, x
satisfies

ẋ = ax

for some a > 0. Now, however, suppose that a population of “predators”—say, foxes—is
eating the delicious, nutritious rabbits. At time t there are y(t) predators in the environment.
We may imagine that the number of prey eaten per unit time is proportional to the number
of interactions between the predators and the prey. If there are x(t) prey at time t and y(t)
predators at time t, then there are x(t)y(t)/2 total number of interactions possible. Following
the compartmental rule (RI–RO) that “Rate of change = rate in minus rate out,” the rate
of change of the prey population in the presence of predators is

ẋ = ax− bxy
9 This, plus the foxes, is 90% of the plot of the excellent novel Watership Down.
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for some b > 0.

3.1.1 Problem (!). Does this remind you of how we (re)derived the logistic equation in
Problem 2.7.4?

Suppose next that the predators are badly dependent on this single prey species (unlikely,
but not impossible), and in the total absence of prey the predator population decreases at a
rate proportional to its current state; thus in a prey-free world, y satisfies

ẏ = −cy

for some c > 0. (These are some pretty antisocial foxes.) However, interactions between the
predator and prey population feed the former and cause it to grow, so with prey present we
may assume

ẏ = −cy + dxy

for some constant d > 0. Thus our predator-prey model is{
ẋ = ax− bxy
ẏ = −cy + dxy.

(3.1.1)

Unsurprisingly, we should also incorporate initial conditions, say,

x(0) = x0 and y(0) = y0 (3.1.2)

for the initial populations. A solution to this system is a pair of differentiable functions
x and y both defined on the same interval I such that{

ẋ(t) = ax(t)− bx(t)y(t)

ẏ(t) = −cy(t) + dx(t)y(t)

for all t in I and also the initial conditions (3.1.2) are met.

3.1.2 Problem (!). In the absence of predators (y = 0), what does the model (3.1.1)
predict will happen over long times to the prey? What happens if, instead, there are no
prey (x = 0)? Remember, a > 0 and c > 0.

Algebraically, this is a pretty simple model; surely we have seen “worse” functions appear
in studying linear ODE. Analytically, this is a pretty tough model! There are no general
analytic techniques that will work on a problem of the form (3.1.1). (This is a negative
statement and, in principle, rather hard to prove: we would have to show conclusively that
we could not come up with formulas for all solutions to (3.1.1).) Nonetheless, we can use
some old ideas to get a few solutions, at least.

3.1.3 Example. For concreteness, put a = 1, b = 2, c = 3, and d = 4, and consider the
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system {
ẋ = x− 2xy

ẏ = −3y + 4xy.

We can find equilibrium solutions to this system by looking for constant functions x and y
that solve it. (Such a procedure worked often in the past, so we may as well try to adapt it
here.) Then ẋ = ẏ = 0, so x and y are constants satisfying the pair of nonlinear equations{

x− 2xy = 0

−3y + 4xy = 0.

This is really a factoring problem, and we rewrite the system as{
x(1− 2y) = 0

y(−3 + 4x) = 0.

Taking x = 0 and y = 0 then certainly produces a solution, but also requiring

1− 2y = 0 and − 3 + 4x = 0

gives a solution. In this latter case, we see that another equilibrium solution is

x =
3

4
and y =

1

2
.

Physically, we can interpret these equilibrium solutions as situations in which the popu-
lations modeled by this predator-prey system are in perfect balance. In the case x = y = 0,
there are no predators and no prey, and nothing interesting ever happens. In the case
x = 3/4 and y = 1/2, there are exactly as many prey as needed to sustain the predator
population without allowing the predator population to grow or starve, and there are ex-
actly as many predators needed to keep the prey from ever growing or decreasing. (Here
we probably should assume that there are some meaningful units underlying the problem,
so we avoid having 0.75 rabbits or half a fox.)

3.1.4 Problem (?). Suppose that a, b, c, and d are nonzero numbers. Find all equilibrium
solutions to the system {

ẋ = ax+ bxy

ẏ = cy + dxy.

3.1.5 Problem (?). (i) By factoring, show that if we know the predator population y,
then the prey equation in (3.1.1)

ẋ = ax− bxy

is really a homogeneous linear ODE in x. In principle, then, if we know everything about
the predators, we know everything about the prey; the same is true if we know everything
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about the prey.

(ii) Can the predators ever eat the prey into extinction?

3.1.6 Problem (?). (i) How would the predator-prey model (3.1.1) change if we assumed
that the prey grew logistically, not exponentially, in the absence of predators? [Hint: what
is the new “rate in” in the “rate in minus rate out” paradigm?]

(ii) Suppose the predators and the prey broker a truce and decide to cooperate. (The foxes
become vegetarians and in particular do not eat the plants that the rabbits eat.) How would
the predator-prey model change if we assumed that interaction among populations helped
each population grow?

3.2. First-order planar systems.

We will study systems of differential equations that involve two, and only two, unknowns. It
is possible to generalize this to problems involving an arbitrary, finite number of unknowns,
but the notation gets messier, while the concepts stay more or less the same. Sticking with
two unknowns is therefore the least challenging (relatively speaking) way to meet nontrivial
systems. Motivated by the structure of the predator-prey model, we introduce some ba-
sic terminology and then quickly proceed to numerical and qualitative methods (since the
analytic approach will not be very fruitful here).

3.2.1 Definition. (i) A first-order (planar) system of differential equations is
a pair of equations of the form {

ẋ = f(t, x, y)

ẏ = g(t, x, y),
(3.2.1)

where f and g are functions of three variables that are defined for t in some interval (a, b),
x in some interval (c1, d1), and y in some interval (c2, d2).

(ii) A solution to the system (3.2.1) is a pair of differentiable functions x and y defined
on the same interval I such that{

ẋ(t) = f(t, x(t), y(t))

ẏ(t) = g(t, x(t), y(t))

for all t in I and that ẋ and ẏ are continuous on I. We may augment the system (3.2.1)
to an initial value problem by demanding that

x(t0) = x0 and y(t0) = y0

for some t0 in (a, b) and some points x0 in (c1, d1) and y0 in (c2, d2).

(iii) The system (3.2.1) is autonomous if f and g are independent of time, that is, if
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the system has the form {
ẋ = f(x, y)

ẏ = g(x, y)
(3.2.2)

for functions f and g of only two variables.

For contrast, we will often call a first-order ODE ẋ = f(t, x) a scalar ODE to empha-
size that it involves a single equation and is not a system.

3.2.2 Example. The predator-prey model{
ẋ = x− 2xy

ẏ = −3y + 4xy

is a system with

f(t, x, y) = x− 2xy and g(t, x, y) = −3y + 4xy.

This is an autonomous problem.

3.2.3 Example. We can modify the predator-prey system with harvesting in one or both
components For example, the rabbits (prey) could be hunted by humans for food, but
the foxes (predators) could also be hunted by humans for sport (because humans are the
worst). The system {

ẋ = x− 2xy − 2(1 + sin(t))

ẋ = −3y + 4xy − (1 + sin(t))

is a simple example of including harvesting in each component. Note that the rabbits are
harvested at a greater rate than foxes because of the factor of 2 on the sinusoidal term in
the first equation. This is not an autonomous system, as with

f(t, x, y) := x− 2xy − 2(1 + sin(t)) and g(t, x, y) := −3y + 4xy − (1 + sin(t))

the functions f and g depend explicitly on time.

3.2.4 Problem (?). Explain why the predator-prey with harvesting model from the pre-
vious example has no equilibrium solutions. [Hint: if there are numbers x∞ and y∞ such
that f(t, x∞, y∞) = 0 for all t, then the sine is constant. Can that happen?] Explain why
physically this means that the predator and prey populations are never in perfect balance.
Given the nontrivial influence of an external force (whoever is doing the harvesting), is this
what you expected?

3.2.5 Problem (!). Suppose that f and g are functions of the two variables x and y and
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that x∞ and y∞ are numbers with

f(x∞, y∞) = g(x∞, y∞) = 0.

Prove that the functions x(t) := x∞ and y(t) := y∞ solve the autonomous system (3.2.2).
These functions are equilibrium solutions of the system (just as in Definition 2.2.2
for scalar problems).

This is where we finished on Friday, October 6, 2023.

3.3. Phase portraits and direction fields.

To say anything concrete about the scalar ODE ẋ = f(t, x), we had to be pretty explicit with
what f was, and in the end we only worked with two kinds of f , separable (f(t, x) = g(t)h(x))
and linear (f(t, x) = a(t)x+ b(t)). The same is true for systems of equations. There are no
universal techniques that work for all systems. It is possible to develop a broad existence and
uniqueness theory, but that requires more specialized properties of f and g that deploy the
language of multivariable calculus; we will not study such theories (although we will prove
an existence and uniqueness result for one very special kind of system). It is also possible
to adapt Euler’s method (and other numerical methods for scalar problems) to systems.
Essentially, one works componentwise and treats each component as a scalar ODE to which
the original Euler’s method applies.

3.3.1 Problem (+). Suppose that x and y solve{
ẋ = f(t, x, y)

ẏ = g(t, x, y),

{
x(t0) = x0

y(t0) = y0.
(3.3.1)

(i) Argue that for any t in the domain of x, we have

x(t) = x(t0) +

∫ t

t0

ẋ(τ) dτ = x0 +

∫ t

t0

f(τ, x(τ), y(τ)) dτ ≈ x0 + (t− t0)f(t0, x(t0), y(t0))

= x0 + (t− t0)f(t0, x0, y0).

If we take t1 = t0 + h for some small h > 0, we should then have x(t1) ≈ x1, where

x1 := x0 + hf(t0, x0, y0).

(ii) From this kind of integral approximation and the dim memory of the development
of Euler’s method in Section 2.4 (encoded somewhere in your reptilian hindbrain), argue
that the following pseudocode should produce a meaningful numerical approximation to
the system (3.3.1).
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We will not dwell on programming numerical methods for systems; instead, we assume
that we have a numerical solver for systems and proceed to study its output. We will mostly
work with the one predator-prey model{

ẋ = 3x− 2xy

ẏ = −2y + 3xy

with a variety of initial conditions. While we will not pursue an existence and uniqueness
theory for this model, we do mention that for any choice of initial conditions on x(0) and
y(0), the model has a unique solution.

3.3.2 Example. Consider the predator-prey system{
ẋ = 3x− 2xy

ẏ = −2y + 3xy
with x(0) = 1 and y(0) = 1.

The coefficients and initial values here are chosen not to be physically realistic but to give
easy-to-read numerical results. While we could find equilibrium solutions (as in Example
3.1.3), there are no analytic methods for producing solutions in general. Instead, we graph
below the functions x (in blue) and y (in red) as approximated by Euler’s method for
systems.

t

x(t), y(t) x(t)
y(t)

1

2

1 2 3 4 5 6 7

The behaviors of both predators and prey appear to be periodic. For a very short time
after time r = 0, both the predator and prey populations increase, but then the predator
population keeps increasing, while the prey population starts to decrease. (Does this feel
realistic?) The predators reach their maximum population around time t = 1, while the
prey reach their minimum around time t = 1.5. That is, the minimum prey population
occurs shortly after the maximum predator population. (Does this feel realistic?) Then the
predator population reaches its minimum a little after time t = 2, and the prey population
reaches its maximum around time t = 3, with the predator population still well below its
maximum. (Does this feel realistic?) The cycle appears to continue.

In studying a system of ODE we are often interested in the joint evolution of its com-
ponent unknowns. That is, how are x and y changing simultaneously? One way to see this
is to plot x and y against time t as above, but this is not the only way. We could think of
the ordered pairs (x(t), y(t)) as defining a parametric curve in the two-dimensional plane.
We plot this curve below, using the data from Euler’s method presented above. Note that
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the axes are now x and y and time t is suppressed; however, we mark the initial point (1, 1)
and put an arrow on the curve to indicate its “trajectory” as time increases from t = 0.

x

y

0.5 1 1.5 2

0.5

1

1.5

2

2.5

Starting from the initial condition (1, 1), the solution curve (x, y) briefly “bulges out” to
the right—this is the simultaneous increase of predators and prey—and then moves upwards
and to the left. This is the increase in predators and the decrease in prey. After reaching its
highest point, the solution curve drops down almost vertically—the simultaneous decrease
in predators and prey—and then moves upwards and to the right—another simultaneous
increase.

Whether the first graph with x and y plotted separately as functions of time or the
second graph with (x, y) plotted parametrically is easier to read is largely a matter of
taste. Both graphs reveal different kinds of information about the solution, which may or
may not be useful.

Previously we saw that the phase line was an effective way of representing qualitative in-
formation about solutions to scalar autonomous ODE ẋ = f(x); in particular, the phase line
encoded equilibrium solutions and the long-time behavior (monotonicity and asymptotes)
of solutions that did not start at an equilibrium value. Moreover, we constructed phase
lines using only algebraic and calculus knowledge of f—no formulas for x, no numerics. We
might try to draw a “phase plane” or “phase portrait” of a homogeneous planar system in a
similar way: mark the equilibrium solutions in the plane and then draw enough trajectories
of solutions (x, y) that we have an idea of how solutions behave relative to those equilibrium
points.

We will typically need a computer/numerical solver to do this, and there is nothing
wrong with us for that—it is highly unlikely that you will ever solve a meaningful ODE
without a computer, except maybe on an in-class exam, but remember that computers
cannot interpret their output for you (not yet, anyway). In general, with systems, while
finding equilibrium solutions is still a matter with algebra (solving often nonlinear systems
of equations), predicting the long-time behavior of nonequilibrium solutions can be very
difficult. We do not have facile notions of monotonicity in the joint evolution of two functions
f and g of two variables! Nonetheless, the value of the phase plane is that it captures the
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general behavior of solutions relative to equilibrium points and allows us to see the behavior
of multiple solutions simultaneously.

3.3.3 Example. Here is the phase plane (in Quadrant I) for the system{
ẋ = 3x− 2xy

ẏ = −2y + 3xy.

We plotted four solutions with initial conditions at (.4, .4), (1, 1), (1, 1.5), and (1, 1.6).
The rationale behind these initial conditions was just to get a representative sample of
solutions whose trajectories were nicely spaced out from each other for visibility purposes.
We also plotted (in red) the equilibrium solution at (2/3, 3/2), which can be found from
the results of Problem 3.1.4. These four solutions are enough to suggest that solutions
that start with x(0) > 0 and y(0) > 0 will remain positive-valued in both components (in
particular, avoiding the other equilibrium point at (0, 0)) and spiral periodically around
the equilibrium point at (2/3, 3/2). The solutions can get close to the axes, but they
never touch the axes; doing so implies that either x or y is 0, and then at least one of the
populations has gone extinct. The models do not permit extinction (recall Problem 3.1.5).
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When studying scalar ODE, we discussed slope fields before numerics, and separation
of variables before slope fields. For systems, our analytic options are so limited that we
went right to the numerics. It is also possible to develop an analogue of slope fields. Recall
that the chief virtue of the slope field for the scalar problem ẋ = f(t, x) is that the slope
field indicates the behavior of solutions without requiring any calculus or intense numerical
computation. In short, the slope field worked “on the cheap.” We can exploit the structure
of a system in a similar way.

To do this, we need some other ideas from calculus. It is a fact that if the functions x
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and y determine a parametric curve (x, y) in the two-dimensional plane, then the slope of
the tangent line to this curve at all times t such that ẋ(t) 6= 0 is

ẏ(t)

ẋ(t)
.

And if ẋ(t) = 0, then the tangent line is vertical. So, if x and y satisfy the system{
ẋ = f(x, y)

ẏ = g(x, y),

then the slope of the tangent line to the curve (x, y) at time t is, assuming ẋ(t) 6= 0,

ẏ(t)

ẋ(t)
=
g(x(t), y(t))

f(x(t), y(t))
.

And so if the parametric solution curve (x, y) passes through the point (x?, y?), and if
f(x?, y?) 6= 0, then the slope of the tangent line to the curve through (x?, y?) is

g(x?, y?)

f(x?, y?)
.

We can therefore approximate the shape of parametric solution curves (x, y) to the system
?? by filling the two-dimensional plane with small line segments of slope g(x?, y?)/f(x?, y?)
through points (x?, y?) at which f(x?, y?) 6= 0 and otherwise drawing vertical line segments
through points (x?, y?) at which f(x?, y?) = 0. As with drawing slope fields, this is a task
best left to a computer; our job is to interpret and critique the outputs.

3.3.4 Example. Consider the predator-prey model{
ẋ = 3x− 2xy

ẏ = −2y + 3xy

from Example 3.3.2. Through each point (x?, y?) in the two-dimensional plane, we draw a
line segment of slope

−3y? + 2x?y?
3x? − 2x?y?

if 3x? − 2x?y? 6= 0, and otherwise we draw a vertical line segment. The result is a sort of
slope field that approximates the trajectory in Example 3.3.2, along with plenty of others.
Note that the line segment through the point (1, 1) has slope

−2(1) + 3(1)(1)

3(1)− 2(1)(1)
=

1

1
= 1,

while the line segments through points on the y-axis are vertical, since there the points
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have the form (0, y), and 3(0)− 2(0)(0) = 0.

x

y

We are missing, however, one piece of information that the slope field for a scalar ODE
inherently provides and that the parametric curve in Example 3.3.2 demonstrates. Recall
that slope fields for scalar ODE are drawn with time t as the horizontal axis; thus there
is always a notion of “direction” or “trajectory” for the solution approximated by a slope
field—moving to the right indicates increasing time. In the parametric setting for systems,
time is suppressed, which is why we drew the arrow on the curve in Example 3.3.2.

The way to incorporate “direction” into the slope field—and thereby augment it to a “di-
rection field”—is to think about what the signs of ẋ and ẏ tell us jointly about the trajectory
of the parametric curve (x, y). For example, if ẋ(t) > 0 and ẏ(t) > 0, then both x and y are
increasing at time t. We therefore should expect the parametric curve (x, y) to be moving
“up and to the right” at this time t. Thus if f(x?, y?) > 0 and g(x?, y?) > 0, we expect that
if the parametric curve (x, y) passes through the point (x?, y?), then the curve is moving “up
and to the right” at this point. And so we would augment the positively sloped line segment
through (x?, y?) with an arrow pointing up and to the right.

Similarly, if ẋ(t) > 0 and ẏ(t) < 0, then x is increasing but y is decreasing at time t.
Then (x, y) should move “down and to the right” at time t. More generally, we can consider
eight (!) possible cases on the signs of ẋ and ẏ that control the direction of the parametric
curve (x, y). We detail these signs in the table below and upgrade the former slope field into
a direction field with appropriately oriented arrows.

ẋ ẏ x-behavior y-behavior (x, y)-behavior

+ +

+ −

− −

− +
+ 0
− 0
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0 +

0 −

3.3.5 Example. Here is the direction field for the system{
ẋ = 3x− 2xy

ẏ = −2y + 3xy.

x

y

The key upgrade, compared to the output in Example 3.3.4 is the inclusion of the arrows
at the end of the line segments indicating direction. Now we can see exactly the sort of
“counterclockwise” orientation that we saw in Example 3.3.2 for the specific initial condi-
tion x(0) = y(0) = 1. The difference here is that we can see multiple trajectories (i.e.,
solutions with different initial conditions) at once; this was also the advantage of a slope
field (breadth) over Euler’s method (depth) for scalar problems.

3.3.6 Problem (?). Below are four direction fields which correspond to the four systems{
ẋ = x

ẏ = y,

{
ẋ = −x
ẏ = −y,

{
ẋ = x

ẏ = −y,
and

{
ẋ = −x
ẏ = y.

Based on what you know about exponential growth, determine which direction field corre-
sponds to which system. For each system, describe the long-time behavior of the x- and y-
components separately, and then describe the “joint” behavior of the pair (x, y) over long
times.
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This is where we finished on Monday, October 9, 2023.

3.4. The SIR model.

We study a model of disease propagation within a population as an illustration of the various
concepts and tools introduced for systems so far (and because it is a valuable and painfully
relevant model in and of itself). There are many, many ways to model the spread of disease,
and this is just one; we will discuss some of its virtues, flaws, and augmentations along the
way.

We will humanize the situation and refer to members of the population as “people,” rather
than just “members.” We divide the population into three categories.

1. People who have the disease. These people are infected. In this model, “infected” is
synonymous with “infectious” or “contagious” but maybe not “symptomatic” (as is unfortu-
nately the case in real life).

2. People who have had the disease but no longer have it (possibly because they have died
from the disease). These people are recovered. We assume that no one has recovered
at the starting time t = 0 of our modeling of this population, since we want to model the
disease right from its very entrance into the population.
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3. Everyone else. We assume that the entire population can get the disease, but that a
person cannot get the disease twice. So, we call people this third category susceptible,
since they are neither currently infected nor recovered (and therefore they are “susceptible”
to getting the disease). We emphasize that a person that is neither infected nor recovered
must be susceptible. (There are no vaccines or natural immunities in this model.)

We also assume that the population is constant in the sense that no new people enter
the population and no one leaves the population. Even if a person dies from the disease,
we just consider them recovered and do not remove them from the total population count;
rather, they have just changed categories within the population. (This probably requires us
to consider the disease over short enough a timeframe that the population is not changing
noticeably due to births, moving in/away, or deaths.) Say that the population, then, is
always N . Let x(t) be the number of susceptible people in the population at time t, y(t) the
number of infected, and z(t) the number of recovered. Then

x(t) + y(t) + z(t) = N (3.4.1)

for all t. Also, we assume
y(0) 6= 0 and z(0) = 0, (3.4.2)

as if no one is sick at the start, there is no disease to spread, and also no one has recovered
from the disease at the start of our modeling process.

Susceptible people can become infected, and infected people can become recovered, but
recovered cannot become susceptible or infected again. We therefore expect that the number
of susceptible people can only decrease, never increase, and the number of recovered people
can only increase. There are many ways that a disease might spread and thereby convert
susceptibles into infecteds, and the simplest is through direct interaction. If there are x(t)
susceptibles and y(t) infecteds, then there are

x(t)y(t)

2

distinct ways for the two groups to interact. We assume that a certain proportion of those
interactions lead to infection, and so we take

ẋ = −axy
2

for some constant a > 0. That is, the rate of change of susceptible decay is directly propor-
tional to the number of susceptible-infected interactions. This is reminiscent of our alternate
derivation of the logistic equation in Problem 2.7.4 and also of the “rate of change = rate in
minus rate out” principle (RI–RO) from which we derived the harvesting model in Section
2.7.1. Here, however, there is no influx of susceptibles, so the “rate in” is 0.

Since this “rate out” of susceptibles yields infecteds, it is the “rate in” for infecteds, and
so we would expect

ẏ =
axy

2
.

However, people do not stay infected forever but become recovered, and so the “rate out” for
infecteds should be the “rate in” for recovereds. What should this rate be?
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Probably the simplest growth or decay rate is exponential, so we might say that the “rate
out” for infecteds is −by for some b > 0. Then we expect

ẏ =
axy

2
− by and ż = by.

However, is it realistic to assume that the rate of recovery is directly proportional to the
current number of infecteds? Recent painful experience might suggest that when more
people are infected, it is harder for them to recover because of stress on healthcare services.
It turns out that if a population decays exponentially with rate r, i.e., the population u
satisfies u̇ = −ru for some r > 0, then 1/r can be interpreted as the “average lifespan” of
a member in this population; see Problem 3.4.9 (which we defer to the end of this section
to avoid interrupting our flow here); conversely, if a population is decreasing, and if the
average lifespan of a member in that population is 1/r, then the model u̇ = −ru is a decent
representation of that population’s decrease. With this in mind, we can say that 1/b is the
average length of time that a person is sick; then the “rate out” of infecteds is reasonably by.

With this (quite possibly debatable) justification out of the way, we will adopt
ẋ = −axy/2
ẏ = axy/2− by
ż = by

as the model for our spread of disease, but we make one change. While it is possible that the
precise number of people in each category is important (Spring 2020 COVID cases, number
of students in a class of 36 who have the flu), it may be more meaningful and manageable
to consider the fraction of the total population in each category. With N as the total
population, we put

S :=
x

N
, I :=

y

N
, and R :=

z

N
(3.4.3)

and define
α :=

aN

2
and β := b.

Then we obtain the SIR model 
Ṡ = −αSI
İ = αSI − βI
Ṙ = βI.

(3.4.4)

3.4.1 Problem (!). Check this. Also, use (3.4.1) to show

S(t) + I(t) +R(t) = 1

for all t, and use (3.4.2) to show

I(0) 6= 0 and S(0) + I(0) = 1. (3.4.5)
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We call α the infection coefficient and β the recovery coefficient. A good
exercise is to conjecture how varying α or β (or both simultaneously) affects the behavior of
solutions to this model.

The symbol R0 will later denote an important constant related to the SIR model that is
not the initial value R(0), so we will not write S0, I0, or R0 for initial conditions. Instead, we
note that since R(0) = 0 and S(0)+ I(0)+R(0) = 1, we have S(0) = 1− I(0): everyone who
is not infected at the start is susceptible. As with the predator-prey model, we assume, but
do not prove, that the SIR model has a unique solution for any choice of the initial condition
(S(0), I(0), R(0)).

We want to predict epidemics with this model. What precisely counts as an “epidemic”
is somewhat subjective, but for the purposes of this model we will equate “epidemic” with
“the disease is spreading.” That is, an epidemic happens if I is increasing.

3.4.2 Example. If I is constant, then I will not be increasing, and so we may suspect that
equilibrium solutions to the SIR model will not be very interesting. Suppose that

SI = 0

(αS − β)I = 0

I = 0.

So, taking I = 0 and S and R to be any constants always works. However, we assume
R(0) = 0 for the purpose of disease modeling (which is more specific than just solving
equations), and since we saw S(0) = 1 − I(0) above in that case, we really have S(t) =
S(0) = 1 − I(0) = 1. Thus the only meaningful equilibrium solution is S(t) = N and
I(t) = R(t) = 0. In that happy case, no one is infected ever, and there is no spread of
disease; everyone remains susceptible but never becomes infected. Would that we lived in
such a world.

The third equation in (3.4.4) is really a direct integration problem once we know I with

R(t) = R(0) +

∫ t

0

Ṙ(τ) dτ = β

∫ t

0

I(τ) dτ, (3.4.6)

since R(0) = 0, and so we can pare down the model to just two equations:{
Ṡ = −αSI
İ = αSI − βI.

(3.4.7)

3.4.3 Problem (!). How does (3.4.7) resemble the predator-prey models in Section 3.1,
and how is it different?

3.4.4 Example. To determine the behavior of nonequilibrium solutions to the SIR model,
we look at some qualitative and numerical data.
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(i) We first study the problem {
Ṡ = −0.25SI

İ = 0.25SI − 0.2I.

We begin with the direction field.

S

I

.25

.25

.5

.5

.75

.75

1

1

It looks like all parametric solution plots (S, I) move “down and to the left.” More
precisely, if a parametric solution starts with roughly S(0) < 0.75, then it seems that
both the S- and I-values are always decreasing. In particular, the I-values always tend
to 0, although the S-values appear to tend to some positive number as time goes on. (If
S(0) = 0, then it appears that S(t) = 0 for all t, and I just decreases down to 0.) If
a solution starts with S(0) > 0.75, then it appears that the parametric solution moves
upwards until the S-values hit 0.75.

These geometric observations suggest the following about the model.

• Assume that solutions are defined on [0,∞); this can be proved, but we will not do it.
Then

lim
t→∞

I(t) = 0 and lim
t→∞

S(t) =: S∞,

with S∞ > 0 unless S(0) = 0. Thus the fraction of infecteds is eventually reduced to 0,
and no one stays infected forever. The fraction of susceptibles does not tend to 0, and so
some portion of the population always remains susceptible and never gets the disease.

• The susceptible function S is always strictly decreasing. This is expected, since infecteds
only become recovereds, and recovereds do not become susceptible again.

• Once the susceptible fraction decreases below a certain threshold (maybe 0.75?), the
infected function strictly decreases. Thus if there are too few susceptibles to infect, the
disease cannot spread further.

Now we look at the initial value problem{
Ṡ = −0.25SI

İ = 0.25SI − 0.1I,

{
S(0) = 0.9

I(0) = 0.1.
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It is probably fair to say that “most” people are susceptible here, not infected, at the start.
First we plot the parametric solution (S, I).
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This seems to bear out our prediction from the direction field. There is a steady decrease
in S and a minute increase in I at the start, but then a steady decrease once S dips below
0.75 (or thereabouts). The I-coordinate decreases to 0, while the S-coordinate limits to a
value around 0.5.

Now we look at the numerical results from the individual components. Hopefully this
just further confirms our observations above with a greater emphasis on the separate be-
havior of S and I.

t

S(t), I(t)

25 50 75 100

.25

.5

.75

1
S(t)
I(t)

(ii) There are really four numbers that we can vary in the set-up of the SIR model: the
infection coefficient α, the recovery coefficient β, the initial fraction of susceptibles S(0),
and the initial fraction of infecteds I(0). Here we double the infection coefficient to 0.5
and leave the other three values the same as above. That is, we look at the system{

Ṡ = −0.5SI

İ = 0.5SI − 0.2I.
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Here is the direction field.

S
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The major difference from the case α = 0.25 before is that more solutions appear to be
increasing in the I-component. Specifically, solutions that start with S(0) > 0.5 definitely
have increasing I-components, and it is only when the S-values decrease to somewhere
between 0.5 and 0.25 that the I-values start to decrease. In particular, the disease can
keep spreading even when there is a smaller fraction of susceptibles than before. Moreover,
the S-values seem to decrease to limiting values much closer to 0 than in the previous case.
Thus many more people get infected in this model (although the I-values also decrease to
0, and so eventually all infecteds recover). This is unsurprising (though unpleasant): the
infection coefficient is higher, so the same number of interactions as before have a higher
chance of yielding infection than before.

Now we look at data for the IVP{
Ṡ = −0.5SI

İ = 0.5SI − 0.2I,

{
S(0) = 0.9

I(0) = 0.1.

We present the parametric solution curve and then the individual components.
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t

S(t), I(t)

25 50 75 100

.25

.5

.75

1
S(t)
I(t)

As we expected from the direction field, the infected fraction reaches a larger maximum
and the susceptible fraction decreases to a smaller limit.
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3.4.5 Problem (!). One direction field below corresponds to the SIR model{
Ṡ = −0.1SI

İ = 0.1SI − βI

with β = 0.1 and the other to the model with β = 0.2. Which is which (and why)?
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3.4.6 Example. We can generalize and justify many of the observations in Example 3.4.4
using the structure of the SIR system and calculus.

1. S is always decreasing. We have Ṡ = −αSI. Since α > 0 and since populations must
be nonnegative, if we assume that S(t) 6= 0 and I(t) 6= 0 for all t, then Ṡ(t) < 0 for all t,
and so S is always decreasing.

2. S(t) > 0 for all t. First, Ṡ = −αSI is a homogeneous problem for S (assuming that we
know I), and so

S(t) = S(0) exp

(
−α
∫ t

0

I(τ) dτ

)
.

Thus S(t) = 0 if and only if S(0) = 0. In that case, since S(0) + I(0) + R(0) = 1 and
R(0) = 0, we would have I(0) = 1, and the population would be completely infected at
the start. If everyone is sick from the beginning, there is nothing really to model about
the spread of the disease. So, we should assume S(0) 6= 0, in which case S(t) is always
positive.

3. I(t) > 0 for all t. Likewise, we have İ = (αS − β)I. This is now a linear homogeneous
problem for I, and its solution is

I(t) = I(0) exp

(∫ t

0

(
αS(τ)− β

)
dτ

)
.

It is not immediately clear whether I is always increasing or decreasing, but, unless I(0) =
0, we can see that I is always positive. Indeed, we are assuming I(0) > 0, so I is always
positive. This is boring: there was never anyone infected to spread pestilence in the first
place.
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4. R is always increasing. We could either use the equation Ṙ = βI to see that Ṙ is positive
and thus R is increasing, or we could use the formula (3.4.6) for R, the positivity of I, and
the monotonicity of integrals (since I(τ) > 0 for 0 ≤ τ ≤ t, we also have

∫ t
0
I(τ) dτ > 0) to

see that R is always increasing.

This is where we finished on Wednesday, October 11, 2023.

5. If S(t?) < β/α for some t? ≥ 0, then I is decreasing for t ≥ t?. Since İ = (αS − β)I,
we know that İ(t) < 0 whenever αS(t)− β < 0, equivalently, whenever S(t) < β/α. Since
S is decreasing, if S(t?) < β/α for some t?, then S(t) < S(t?) < β/α whenever t > t?. And
so İ(t) < 0 for t ≥ t?.

With this in mind, we revisit the two SIR models from Example 3.4.4 and draw in
dotted red the vertical line S = β/α. We can clearly see how arrows through points (S, I)
with S < β/α point down and to the left, indicating that I is decreasing at those points.
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α = 0.25, β = 0.2, β/α = 0.8
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1

α = 0.5, β = 0.2, β/α = 0.4

In particular, if S(0) < β/α, then S(t) < β/α for all t, so I is always decreasing,
and the disease never spreads. In other words, if the initial fraction of susceptibles is too
small relative to the parameters of the disease, there is no epidemic! (We are not saying
anything about the initial fraction of infecteds because of (3.4.5): if we know S(0), then
since R(0) = 0, we have I(0) = 1 − S(0) .) Equivalently, if R0 := αS(0)/β < 1, then the
disease never spreads. This result is a precise quantitative statement relating the initial
conditions and the parameters of the model to the long-term behavior of its solutions—what
more could we ask from differential equations?

3.4.7 Problem (+). Suppose that S, I, and R solve the SIR model for a given initial
condition (S(0), I(0), R(0)) with 0 < S(0) < 1, 0 < I(0) < 1, and R(0) = 0. Suppose
that all three functions are defined on [0,∞). We know that S is strictly decreasing on
[0,∞) and 0 ≤ S(t) for all t; Theorem 2.6.13 implies that S∞ := limt→∞ S(t) exists, and
we have 0 ≤ S∞ ≤ 1. Likewise, since R is strictly increasing on [0,∞) and R(t) ≤ 1 for all
t, Theorem 2.6.10 implies that R∞ := limt→∞R(t) exists, and we have 0 ≤ R∞ ≤ 1.
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(i) Use the fact that S(t) + I(t) + R(t) = 1 for all t to conclude that I∞ := limt→∞ I(t)
exists.

(ii) Suppose that I∞ 6= 0. Estimate

R(t) = R(0) + β

∫ t0

0

I(τ) dτ + β

∫ t

t0

I(τ) dτ ≥ R(0) + β

∫ t0

0

I(τ) dτ +
βI∞(t− t0)

2

and deduce that limt→∞R(t) =∞. [Hint: remember that if f(τ) ≤ g(τ) on [t, t0], then∫ t
t0
f(τ) dτ ≤

∫ t
t0
g(τ) dτ.] This is impossible because R∞ ≤ 1, and so we must have

I∞ = 0.

3.4.8 Problem (?). Suppose that S and I solve the system (3.4.7). Show that the function

J(t) :=
β

α
ln(S(t))− S(t)− I(t)

is constant. [Hint: what is J̇(t)?] Broadly speaking, if a function constructed out of
solutions to a (system of) differential equation(s) is constant, then that function is a first
integral for the problem. First integrals encode quantities related to the problem that
do not change or are “conserved.”

3.4.9 Problem (+). Suppose that x models a decreasing population: at time t, there are
x(t) members in this population, and if 0 ≤ s < t, then x(t) < x(s). Moreover, suppose
that limt→∞ x(t) = 0. At some point in time, then, every member of the population will
be removed from it (e.g., via death or transition to a different population). Each member
of the population, therefore, has a finite “lifespan.” What is the average lifespan of the
population? Since there were, at the start, x(0) members of the population, if we knew the
lifespan of each and every member—say, `k for the kth member of the population, then
this average would be

total number of time units lived by the whole population
the whole population

=
1

x(0)

x(0)∑
k=1

`k.

It is unlikely, however, that we would know all this data.
Here is what we do instead. At time s ≥ 0, there are x(s) members of the population,

and at time t > s, there are x(t) members, so x(s) − x(t) members are removed between
times s and t. (Recall that x is strictly decreasing, so x(s) − s(t) > 0.) Observe that by
the mean value theorem,

x(s)− x(t) =

(
x(t)− x(s)

t− s

)
(s− t) = ẋ(τ)(s− t) = |ẋ(τ)|(t− s)

for some τ in (s, t). We have also used the fact that since x is decreasing, ẋ(τ) < 0. If t
and s are close, then t ≈ τ, and so we can say

x(s)− x(t) ≈ |ẋ(t)|(t− s).
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Moreover, if t and s are close, then living s time units is roughly the same as living t time
units (although we would probably prefer to live t units than s < t units) and so the total
number of time units lived by the members who were removed between times s and t is
appproximately

t|ẋ(t)|(t− s).

Now let R > 0 be a large number. Divide the interval [0, R] into n small subintervals
[tk−1, tk]. Then the total number of time units lived by the members who were removed
between times tk−1 and tk is approximately

tk|ẋ(tk)|(tk − tk−1),

and so the total number of time units lived by members who were removed between times
0 and R is approximately

n∑
k=1

tk|ẋ(tk)|(tk − tk−1).

This is a Riemann sum approximation for the integral
∫ R

0
t|ẋ(t)| dt. If we take R → ∞,

then the improper integral
∫∞

0
t|ẋ(t)| dt should capture the total number of time units lived

across the population, and so the average lifespan should be

1

x(0)

∫ ∞
0

t|ẋ(t)| dt.

With this definition of average lifespan, show that if a population decays exponentially
at rate r > 0 (i.e., ẋ = −rx) then its average lifespan is 1/r.

3.5. The harmonic oscillator.

We now discuss possibly the most important model in the course. It induces not a first-
order system of ODE but rather a single second-order linear ODE and so serves as a bridge
between systems and second-order linear equations, which appear frequently in applications.
This model will be one of our few “complete success stories” in the sense that we can always
solve it analytically. The actual solution formulas will be relatively easy and rely ultimately
more on algebra (the quadratic formula) than calculus. However, the ideas underlying them
are deep and versatile.

Consider the following physical situation. Place an object of uniform mass m > 0 along
a horizontal surface. Connect the object to a wall on the left by a spring. At rest the object
is ` units from the wall. This is a harmonic oscillator.
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m

surface

wall rest

`

Pull the oscillator some x0 units to the right (or push to the left; we will interpret “right”
as x0 > 0 and “left” as x0 < 0) and let it go, maybe with a little extra oomph, maybe not.
What happens? How does the oscillator move?

m

x0

t = 0

`

We make the fundamental assumption that the oscillator can only move to the left or
the right along the surface, i.e., its motion is effectively one-dimensional. This allows us
to introduce a coordinate system: denote the oscillator’s displacement from its equilibrium
position at time t by x(t).

m

x(t)

t > 0

For example, since at the very start we pulled the oscillator a distance x0 from equilibrium,
we have x(0) = x0. Assume that the displacement is positive if the oscillator is to the right
of its equilibrium position, negative if the oscillator is to the left of its equilibrium position,
and zero if the oscillator is exactly at its equilibrium position. (This is unlike our population
models: now x(t) < 0 makes physical sense.)

m

x(t) > 0

m

x(t) < 0
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Newton’s law will give us an ODE governing the behavior of the oscillator. Here mass is
m and acceleration at time t is ẍ(t). Suppose that we can measure all the forces acting on
the oscillator at time t by F(t), where F is some function. Then

mẍ(t) = F(t).

The precise choice of F will determine the precise ODE governing the oscillator (and also
our course of study for the foreseeable future). One force that will always be present arises
from the spring. Experience10 teaches that the further we pull a spring, the more force we
have to exert. If we stretch a spring a distance x, the spring pulls back with the force Fspr(x).
Experience probably also teaches us that we want Fspr(x) to (1) be proportional to x and (2)
act in the opposite direction to x. So, we define

Fspr(x) := −κx (3.5.1)

for some κ > 0. The definition (3.5.1) is Hooke’s law.

3.5.1. The undamped harmonic oscillator.

Assume, for the moment, and wholly unrealistically, that the only force experienced by the
oscillator is the spring force—no friction against the surface, no air resistance, no cats coming
by to play. Such an oscillator is called undamped. Then F = Fspr, and so Newton’s law
says

mẍ(t) = Fspr(x(t)) = −κx(t),

which we more typically write11 as

mẍ+ κx = 0. (3.5.2)

This is, of course, a second-order ODE, as ẍ appears in the equation, but no higher
derivatives of x are there.

So, what happens? Since there is no friction, we might expect the oscillator, once put in
motion, to move forever. Nothing is there to slow it down, or speed it up. In particular, it
definitely should not settle down to stay motionless at some fixed distance from equilibrium,
and so we expect that limt→∞ x(t) does not exist; this presumes that (3.5.2) even has a
solution x (of course it does), but we will come to that presently.

We might make a more precise conjecture in one particular physical situation. Suppose
that we do not move the oscillator at all from equilibrium: x(0) = x0 = 0. Suppose that
we do not even touch the oscillator, so that at time t = 0, it is motionless: ẋ(0) = 0. Then
the oscillator should never move and thus stay at equilibrium for all time, i.e., we expect
x(t) = 0 for all t. More formally, we expect that

mẍ+ κx = 0

x(0) = 0

ẋ(0) = 0

=⇒ x = 0.

10 In the lab, with Slinkies. . .
11 While we usually wrote first-order problems in the form ẋ = f(t, x), we usually do not isolate the highest

derivative in second-order problems or beyond.
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Our inclusion of ẋ(0) in the set-up here hints at what will be a significant difference in our
study of the harmonic oscillator from population models. Knowledge of position (x) alone
will ultimately be insufficient. We will also need to consider velocity (ẋ) to have a sufficient
amount of data to predict the oscillator’s motion. This will ultimately lead to a system in
which the two unknowns are x and ẋ. But first we need to augment the oscillator model
further.

This is where we finished on Friday, October 13, 2023.

3.5.2. The damped harmonic oscillator.

Suppose now that the oscillator experiences friction or air resistance in addition to the spring
force—but otherwise there are no other forces (no cats coming by to play, not yet. . .). We
now say that the oscillator is damped.

Experience suggests that friction is proportional to velocity; say that if the oscillator is
moving with velocity ẋ, then the frictional force that it experiences at time t is Ffr(t) = −bẋ(t)
for some b > 0. Then the total force that the oscillator experiences is the sum of the spring
force and the friction force: F = Fspr + Ffr, and so Newton’s law now reads

mẍ = −κx− bẋ,

or, as we will more often write it,

mẍ+ bẋ+ κx = 0. (3.5.3)

In the absence of other forces, then, we expect that friction will slow down the oscillator
over long times and cause it to return to its rest position. Thus we expect the long time
behavior

mẍ+ bẋ+ κx with b, κ > 0 =⇒ lim
t→∞

x(t) = 0.

3.5.3. The driven harmonic oscillator.

The oscillators considered so far, whether undamped or damped, have experience no “exter-
nal” forces. That is, to set up the oscillator, there is always a spring connecting the oscillator
to a wall and a surface over which the oscillator moves. The spring always contributes a
spring force (what else would we call it?), and the surface sometimes contributes a damp-
ing force (and sometimes the surface is magical and does not). These two kinds of forces
are “internal” or “inherent” to the oscillator. But maybe a force “external” to the oscillator
influences its motion—an earthquake, shaking the wall to which the oscillator is attached;
a microlocalized black hole pulling the oscillator in one direction; a cat walking by and
whacking the oscillator with her beefy paw.

If there is an external force, then the total force experienced by the oscillator at time t
has the form F(t) = Fspr(t) + Ffr(t) + f(t), where Fspr is the spring force, Ffr is the friction
force (we now allow Ffr = 0, so b = 0, to incorporate the undamped oscillator), and f is a
catch-all term for “all the other forces.” The displacement of the oscillator then is

mẍ+ bẋ+ κx = f(t).
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An oscillator experiencing an external force is called driven12 or (unsurprisingly) forced;
an oscillator without an external force is free.

3.5.4. Guiding questions.

Here is a summary of our work on the ODE governing the displacement of a harmonic
oscillator and its attendant terminology.

mẍ+ bẋ+ κx = f(t)
Damped: b > 0 Undamped: b = 0
Free: f(t) = 0 Driven: f(t) 6= 0

We will refer to the ODE
mẍ+ bẋ+ κx = f(t) (3.5.4)

as the equation of motion for the harmonic oscillator with mass m > 0, damping
coefficient b ≥ 0, spring constant κ > 0, and driving term f (which may be 0).

Here are some questions that will guide our work. The first three are reiterations of ones
that we previously asked.

1. If friction is present and b > 0, do we have limt→∞ x(t) = 0?

2. If friction is not present and b = 0, how can we quantify the idea that “the oscillator
keeps moving forever and does not slow down”?

3. What are the roles of initial displacement x(0) and velocity ẋ(0) in the long-term behavior
of the oscillator? In particular, if x(0) = ẋ(0) = 0, do we have x(t) = 0 for all t?

4. How might changing the parameters m, b, and κ affect the solution? We might expect
that a “heavier” mass moves “more slowly” than a “lighter” one. We might expect that if we
“turn up” the friction, the oscillator returns to equilibrium “more quickly.” We might expect
that a “stiffer” spring pulls back “more quickly” than a “looser” spring. Overall, how can we
quantify these questions in terms of the parameters m, b, and κ, and how can we see their
effects in the solution?

5. How might a particular driving term f (say, a regular, periodic whacking of the oscilla-
tor by our jerk of a cat) manifest itself in the solution x? How can we see explicitly the
dependence of a solution on f?

Finally, here are some harder questions, which we will not pursue in this course, but which
can nonetheless be addressed with enough work.

6. What if the oscillator and its environment “change” over time? Maybe the mass leaks,
the surface (over which the oscillator moves) gets rougher, or the spring stiffens. In these
cases, we would want the “material” data m, b, and κ to depend on time, and so we would
need to solve problems of the form

m(t)ẍ+ b(t)ẋ+ κ(t)x = f(t).

12 Look back at Definition 2.7.5 right now. This is why we used the terms “forcing” and “driving” in that
definition.
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This turns out to be quite hard!

7. What if the spring is stretched over “long” distances? Hooke’s law (3.5.1) is really only
valid when the spring is stretched a “short” length from equilibrium. Otherwise, we might
need to incorporate a nonlinear term

More precisely, if Fspr is the spring force, we might expand Fspr in a Taylor series; we
expect Fspr(0) = 0, since stretching the spring 0 units from its equilibrium length requires no
work, and no force. Taking Fspr(x) ≈ −κx is just using the first term of that Taylor series,
and that is only a decent approximation to Fspr when x ≈ 0. Perhaps we might now include
another term in the Taylor approximation and use a nonlinear force Fspr(x) = −κx − βx2.
Here the spring force has a quadratic term; it could be even more complicated. Then the
equation of motion for the oscillator is

mẍ+ bẋ+ κx+ βx2 = f(t).

This too is quite hard!

While we know by now that there is more to life than formulas—pause and recite the
Analyst’s Creed (AC)—a good initial attempt at answering these questions might be finding
some formulas and playing with them. Specifically, we want to solve the IVP

mẍ+ bẋ+ κx = f(t)

x(0) = x0

ẋ(0) = y0

(3.5.5)

for given numbers m, b, κ, x0, and y0 and a given function f . We now proceed to do just
that.

3.5.5. The harmonic oscillator as a system.

Except we do not solve exactly (3.5.5) right away. While starting with this IVP is a valid
life decision, we can make a clever change of variables that converts (3.5.5) into a special
kind of system.

As with so many substitutions, the following is a trick, which you need not have antici-
pated. First, since we assume m > 0, we may divide to find

mẍ+ bẋ+ κx = f(t) ⇐⇒ ẍ+
bẋ

m
+
κx

m
=
f(t)

m
⇐⇒ ẍ = −bẋ

m
− κx

m
+
f(t)

m
.

Now we define
y := ẋ

and compute

ẏ = ẍ = −bẋ
m
− κx

m
+
f(t)

m
= −by

m
− κx

m
+
f(t)

m
.

And so the second-order IVP (3.5.5) is equivalent to the first-order system{
ẋ = y

ẏ = −by/m− κx/m+ f(t)/m,

{
x(0) = x0

y(0) = y0.
(3.5.6)
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3.5.1 Example. Here are qualitative and numerical results for three undriven harmonic
oscillators. The mass in each oscillator is m = 1, and the spring constant is κ = 1. We
vary the damping coefficient from b = 0 (undamped) to b = 1 and b = 2 to see the effects
of increased damping.

(i) First we take b = 0. We present the direction field and then plot parametric and
componentwise solutions for the IVP with x(0) = 1 and ẋ(0) = 1 (i.e., y(0) = 1).

x

y

m = 1, b = 0, κ = 1

x

y

m = 1, b = 0, κ = 1

t

x, y

m = 1, b = 0, κ = 1

The vectors in the direction field seem to spiral around the origin. This is reminiscent
of the predator-prey direction field in Example 3.3.5, and that should call to mind periodic
(or oscillatory?) behavior. It looks like the x and y values just repeat in some periodic
fashion. Indeed, this is what the parametric and componentwise plots for the specific IVP
shown. Note that whenever x(t) = 0, the oscillator is at its equilibrium position. So, the
undamped oscillator would move back and forth around its equilibrium position eternally
without coming arbitrarily closer to it forever (displacement x is periodic), and its velocity
would never This is probably what we expect to happen in the (fictional!) case that there
is no damping force to slow the oscillator down.

(ii) Here are results for the damped case with b = 1.

x

y

m = 1, b = 1, κ = 1

x

y

m = 1, b = 1, κ = 1

t

x, y

m = 1, b = 1, κ = 1

The vectors in the direction field seem instead to spiral into the origin. (We might want
to zoom in a bit closer to the origin to be sure that the vectors are not just spiraling tightly
around the origin in a variation on the first direction field.) This suggests that x and y both
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go to 0 over long times, and so the oscillator both slows down (velocity ẋ = y goes to 0) and
approaches its equilibrium position closely (x goes to 0). This is what we expect damping
to do: over long times motion slows down and effectively stops. More precisely, from the
parametric and componentwise plots for the solution to the IVP, both displacement and
velocity approach 0, but displacement x is 0 at least once, possibly more than once (if we
continued the plots for more time). This means that as the oscillator slows down, it passes
through its equilibrium position at least once. In particular, since x(0) = 1, the oscillator
starts out to the right of equilibrium and then (since the graph of x becomes negative)
passes to the left of equilibrium.

(iii) Finally, we double the damping to b = 2.

x

y

m = 1, b = 2, κ = 1

x

y

m = 1, b = 1, κ = 1

t

x, y

m = 1, b = 2, κ = 1

The situation in this direction field is quite similar to the one for b = 1 in that the vectors
seem to spiral or twist into the origin. However, the vectors are now slightly steeper than in
the second field, which suggests that x and y are approaching 0 more quickly. That is, the
oscillator slows down more quickly and approaches its equilibrium position more quickly;
after all, the damping is more powerful. Moreover, the x-coordinate in the parametric plot
and in the componentwise plot is never 0; indeed, x appears to stay strictly positive (y = ẋ
definitely does not), and so the oscillator does not appear to ever reach its equilibrium
position. Instead, it stays to the right forever.

This direction field has one other curious feature: it looks as though some vectors fall
precisely on the line y = −x. This suggests that a solution pair (x, y) to this system satisfies
y(x) = −x(t) for all t. Such a solution is really a “one-dimensional object” since it only
involves the one function x. We will exploit such “straight-line solutions” tremendously in
the near future.

As with the predator-prey and SIR models, numerical and qualitative results for the
harmonic oscillator help us make conjectures about this model’s behavior. However, we
ultimately need calculus to verify those conjectures, and maybe a few other tools.

It turns out that we can find exact analytic formulas for all solutions to the harmonic
oscillator model, to a degree impossible for the predator-prey and SIR models. The most
fruitful way to think about this system for the harmonic oscillator involves the language of
linear algebra: matrices and vectors. To that we now turn.
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4. LINEAR SYSTEMS

4.1. Vectors, matrices, and linear systems.

Our goal is to develop an efficient notation for encoding problems like the system (3.5.6) for
the harmonic oscillator.

4.1.1. Vectors.

4.1.1 Definition. A vector is an ordered pair of two real numbers. If x and y are real
numbers, then we may write either x := (x, y) or

x =

(
x
y

)
.

Both ways of writing x mean the same, and at times one may be easier to read than the
other.

The word “vector,” of course, generalizes vastly beyond ordered pairs—any n-tuple of
numbers is a vector and, through the right lens, functions themselves are vectors. In this
course vectors will be strictly ordered pairs (since we will only discuss systems with two
components).

We perform arithmetic on vectors componentwise.

4.1.2 Definition. (i) Let x1 = (x1, y1) and x2 = (x2, y2). Then

x1 + x2 = (x1, y1) + (x2, y2) =

(
x1
y1

)
+

(
x2
y2

)
:=

(
x1 + x2
y1 + y2

)
= (x1 + x2, y1 + y2).

(ii) If x = (x, y) and if c is any real number, then

cx = c(x, y) = c

(
x
y

)
=

(
cx
cy

)
.

4.1.3 Example. We have(
1
2

)
+

(
3
4

)
=

(
4
6

)
and 3

(
1
2

)
=

(
3 · 1
3 · 2

)
=

(
3
6

)
.

4.1.4 Problem (!). The zero vector is the vector

0 :=

(
0
0

)
.

Check that x + 0 = x for any vector x.
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4.1.5 Remark. We do not multiply two vectors (at least, not in this course). When mul-
tiplying a vector by a real number, we always write the real number first: cx, never xc.

We do perform calculus on vectors componentwise.

4.1.6 Definition. (i) Let x and y be differentiable functions on the interval [a, b] and let
x(t) := (x(t), y(t)). We define

ẋ(t) :=

(
ẋ(t)
ẏ(t)

)
(ii) Let x and y be continuous functions on the interval I and let x(t) := (x(t), y(t)). We
define ∫ b

a

x(t) dt :=

(∫ b
a
x(t) dt∫ b
a
y(t) dt

)
.

4.1.7 Example. If

x(t) =

(
t2

cos(πt)

)
,

then
ẋ(t) =

(
2t

−π sin(πt)

)
and ∫ 1

0

x(t) dt =

( ∫ 1

0
t2 dt∫ 1

0
cos(πt) dt

)
=

(
(t3/3)

∣∣t=1

t=0

(sin(πt)/π)
∣∣t=1

t=0

)
=

(
1/3
0

)
.

4.1.2. Matrices.

A matrix (at least in this course—like vectors, there are matrices of many sizes beyond the
following) is a square array of four numbers; this is a terrible definition, so terrible that we
do not even package it as an “undefinition.” Here is an example:

A =

[
1 2
3 4

]
.

We do not attempt to define “square array,” but we do note that if we put

a1 :=

(
1
3

)
and a2 :=

(
2
4

)
,

then we should think of a1 and a2 as the “columns” of A.
Perhaps, then, we could consider A as an ordered pair of vectors. Like ordered pairs, what

matters is that everything in a matrix is determined entrywise or componentwise; whatever
the symbol

A =

[
a11 a12
a21 a22

]
(4.1.1)



4.1. Vectors, matrices, and linear systems 157

means, we should have

A = B, where B =

[
b11 b12
b21 b22

]
,

if and only if the corresponding entries or components are equal:

A = B ⇐⇒ a11 = b11, a12 = b12, a21 = b21, and a22 = b22.

Also, with A from (4.1.1), we will sometimes put

a1 :=

(
a11
a21

)
and a2 :=

(
a12
a22

)
and abbreviate

A :=
[
a1 a2

]
.

This is where we finished on Monday, October 16, 2023.

We are so very close to encoding the system version (3.5.6) of the harmonic oscillator in
matrix-vector notation. We just need one more bit of arithmetic—possibly the strangest, at
first glance, in all of mathematics.

4.1.8 Definition. Let a1 and a2 be vectors,

A =
[
a1 a2

]
, and x =

(
x
y

)
.

Then the matrix-vector product Ax is the vector

Ax :=
[
a1 a2

](x
y

)
= xa1 + ya2.

4.1.9 Example. We compute[
1 2
3 4

](
5
6

)
= 5

(
1
3

)
+ 6

(
2
4

)
=

(
5
15

)
+

(
12
24

)
=

(
17
39

)
.

4.1.10 Remark. When multiplying a matrix and a vector, we always write the matrix first:
Ax, never xA.

4.1.11 Example. Let

A =

[
0 1
−2 −3

]
, x =

(
4
5

)
, c = 6, and y =

(
7
8

)
.
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Then

Ax =

[
0 1
−2 −3

](
4
5

)
= 4

(
0
−2

)
+ 5

(
1
−3

)
=

(
0
−8

)
+

(
5

−15

)
=

(
5

−23

)
and

cy = 6

(
7
8

)
=

(
42
48

)
,

so
Ax + cy =

(
5

−23

)
+

(
42
48

)
=

(
47
23

)
.

4.1.12 Problem (!). Let

A =

[
a11 a12
a21 a22

]
and x =

(
x1
x2

)
.

Check that
Ax =

(
a11x1 + a12x2
a21x1 + a22x2

)
and conclude that if y1 and y2 are numbers, then the linear system{

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

means the same as the matrix-vector equation

Ax = b, b :=

(
b1
b2

)
.

4.1.13 Problem (?). Let a1 and a2 be vectors, and define e1 := (1, 0) and e2 := (0, 1).
Show that if A =

[
a1 a2

]
, then

Ae1 = a1 and Ae2 = a2.

In other words, multiplying A against e1 or e2 “selects” the columns of A.

Matrix-vector multiplication interacts with vector arithmetic in a crucially important
manner.

4.1.14 Theorem (Linearity of matrix-vector multiplication). Let A be a matrix.

(i) A(x1 + x2) = Ax1 + Ax2 for any vectors x1 and x2.

(ii) A(cx) = cAx for any real number c and vector x.
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4.1.15 Problem (+). Prove this theorem. [Hint: give names to the components of A and
the vectors and grind it all out from the definitions.]

Here is a particularly useful matrix.

4.1.16 Definition. The identity matrix is

I :=

[
1 0
0 1

]
.

Context will always make clear whether we are using I for the identity matrix or for an
interval.

4.1.17 Problem (!). Here is why the identity matrix is the identity matrix: Ix = x for
any vector x. Check this.

4.1.18 Problem (?). We can do calculus on matrices as we do calculus on vectors: com-
ponentwise (or entrywise). Or columnwise—say that a1 and a2 are functions and

A(t) :=
[
a1(t) a2(t)

]
.

Then we define
Ȧ(t) :=

[
ȧ1(t) ȧ2(t)

]
,

with ȧ1 and ȧ2 defined as in Definition 4.1.6.

(i) If a1(t) = (t, cos(t)) and a2(t) = (et, t2), and if A(t) =
[
a1(t) a2(t)

]
, what is Ȧ?

(ii) Prove the following product rule for matrix-vector multiplication: if
A is a matrix with differentiable entries and if x is a vector with differentiable entries, then
the function f(t) := A(t)x(t) satisfies

ḟ(t) = Ȧ(t)x(t) + A(t)ẋ(t).

[Hint: This is a thankless, componentwise, brute-force calculation. Brute force is the best
force!]

4.1.3. Linear systems.

Here is the virtue of this (possibly bizarre) definition of matrix-vector multiplication. Recall
that the harmonic oscillator IVP

mẍ+ bẋ+ κx = f(t)

x(0) = x0

ẋ(0) = y0
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is, on putting y := ẋ, equivalent to the system{
ẋ = y

ẏ = −by/m− κx/m+ f(t)/m,

{
x(0) = x0

y(0) = y0.
(4.1.2)

Now we vectorize. Put
x :=

(
x
y

)
and x0 :=

(
x0
y0

)
.

Note that x is a function, but x0 is a constant vector. Then we compute

ẋ =

(
ẋ
ẏ

)

=

(
y

−by/m− κx/m+ f(t)/m

)

=

(
0

−κx/m

)
+

(
y

−by/m

)
+

(
0

f(t)/m

)

= x

(
0

−κ/m

)
+ y

(
1

−b/m

)
+

(
0

f(t)/m

)

=

[
0 1

−κ/m −b/m

](
x
y

)
+

(
0

f(t)/m

)

=

[
0 1

−κ/m −b/m

]
x +

(
0

f(t)/m

)
.

Thus with
A :=

[
0 1

−κ/m −b/m

]
and b(t) :=

(
0

f(t)/m

)
,

the system (4.1.2) is equivalent to the problem{
ẋ = Ax + b(t)

x(0) = x0.

This problem will be our central object of study for some time to come, and it should
optimistically remind us of constant-coefficient linear ODE (Section 2.8).

4.1.19 Definition. Suppose that A is a matrix and b1 and b2 are functions. The linear
system with coefficient matrix A and forcing or driving term b = (b1, b2) is
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the problem
ẋ = Ax + b(t). (4.1.3)

Its solution is a vector x = (x, y) of differentiable functions defined on some interval I
such that

ẋ(t) = Ax(t) + b(t)

for all t in I. The system (4.1.3) is homogeneous if b(t) = 0 for all t and otherwise
nonhomogeneous.

Our optimism is well-founded: like the scalar linear ODE (recall Theorem 2.7.23), solu-
tions to linear systems exist and are unique.

4.1.20 Theorem. Let b1 and b2 be continuous on an interval I containing the point t0, let
A be a matrix, and let x0 be a vector. Then the IVP{

ẋ = Ax + b(t)

x(t0) = x0

has a unique solution defined on all of I.

We will eventually prove this theorem, but that will take some time, and quite some
machinery. Developing that machinery, and understanding that eventual proof, will be
among our most important accomplishments in this course.

4.1.21 Problem (!). Find functions f and g of the variables t, x, and y such that the
linear system (4.1.3) has the form {

ẋ = f(t, x, y)

ẏ = g(t, x, y).

4.1.22 Problem (!). Let A be a matrix. Use the linearity of matrix-vector multiplication
to prove that the linearity principle that if x1 and x2 solve ẋ = Ax and if c1 and c2
are constants, then x(t) := c1x1(t) + c2x2(t) also solves ẋ = Ax.

4.1.23 Example. It is often convenient to assume that a harmonic oscillator has mass 1,
damping coefficient q ≥ 0, and spring coefficient p > 0. Suppose that the oscillator is free.
Then the equation of motion (3.5.4) for this oscillator then reads

ẍ+ pẋ+ qx = 0,

and consequently the linear system for this oscillator is

ẋ =

[
0 1
−q −p

]
x.
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We will spend a great deal of time understanding linear systems with this especially nice
matrix.

4.1.24 Problem (!). Suppose that every entry of A is 0. Find all solutions to the linear
system ẋ = Ax + b(t).

4.2. Equilibrium solutions to autonomous linear systems.

The linear system ẋ = Ax+b(t) is particularly simple when the function b is constant (and
it is especially simple when b = 0). Here we can find equilibrium (constant) solutions to
ẋ = Ax + b using only some simple ideas from linear algebra and a tool that will reappear
in many places to come.

4.2.1. Equilibrium solutions for homogeneous systems.

First we work with the homogeneous problem ẋ = Ax. An equilibrium solution is a constant
solution, so if x is an equilibrium solution, then ẋ = 0, and so Ax = 0. This is just a
compressed system of two linear equations. If

A =

[
a b
c d

]
,

then (by Problem 4.1.12), with x = (x, y), Ax = 0 if and only if{
ax+ by = 0

cx+ dy = 0.

There are many, many ways to solve a problem like this—which is why linear algebra exists.
However, we do not need fancy tools to find at least one solution.

4.2.1 Problem (!). Check that the trivial solution x(t) := 0 always solves the linear
homogeneous problem ẋ = Ax.

4.2.2 Example. (i) Put

A =

[
1 2
1 1

]
.

We find equilibrium solutions to ẋ = Ax by solving{
x+ 2y = 0

x+ y = 0.

There are many ways to do this; one is to use the second equation to rewrite x = −y and
plug that into the first to get −y + 2y = 0, thus y = 0. And then x = 0. So, the only
equilibrium solution here is the trivial solution x(t) = 0.
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(ii) Put

A =

[
1 2
2 4

]
.

We find equilibrium solutions to ẋ = Ax by solving{
x+ 2y = 0

2x+ 4y = 0.

If we factor 2 out of the second equation, it becomes x+ 2y = 0, which is the same as the
first. Thus this problem is really redundant: there is one equation present, not two. And
if x+ 2y = 0, then x = −2y.

This says that if we select y, then we know what x has to be to get a solution. In
particular, all equilibrium solutions x = (x, y) must have form

x =

(
−2y
y

)
= y

(
−2

1

)
.

So, each choice of y gives a new equilibrium solution, and there are infinitely many of them.

This is where we finished on Wednesday, October 18, 2023.

There is a particularly easy way to determine if the trivial solution x(t) = 0 is the only
equilibrium solution to a homogeneous linear system of ODE, or if the system has infinitely
many nontrivial equilibrium solutions.

4.2.3 Definition. The determinant of the matrix

A =

[
a b
c d

]
is the number

det(A) = det

([
a b
c d

])
:= ad− bc.

4.2.4 Example. The determinants of the matrices in Example 4.2.2 are

det

([
1 2
1 1

])
= (1 · 1)− (2 · 1) = 1− 2 = −1

and
det

([
1 2
2 4

])
= (1 · 4)− (2 · 2) = 4− 4 = 0.

Here is the utility of the determinant. First we state a result about linear systems, and
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then we paraphrase it for differential equations.

4.2.5 Theorem. Let A be a matrix.

(i) If det(A) 6= 0, then the only solution to Ax = 0 is the “trivial” solution x = 0.

(ii) If the only solution to Ax = 0 is the “trivial” solution x = 0, then det(A) 6= 0.

(iii) If det(A) = 0, then Ax = 0 has infinitely many “nontrivial” solutions. In particular,
if A has at least one nonzero entry, there is a vector x∞ such that every solution to Ax = 0
has the form x = cx∞ for some constant c. Otherwise, if all entries of A are 0, then any
vector x solves Ax = 0.

(iv) If Ax = 0 has a “nontrivial” solution x 6= 0, then det(A) = 0.

The proof of this theorem would not teach us anything new about differential equations,
so we do not give it here. Instead, here is the useful paraphrase.

4.2.6 Corollary. Let A be a matrix.

(i) If det(A) 6= 0, then the only equilibrium solution to ẋ = Ax is the “trivial” solution
x(t) = 0.

(ii) If det(A) = 0, then ẋ = Ax has infinitely many “nontrivial” equilibrium solutions.
In particular, if A has at least one nonzero entry, there is a vector x∞ such that every
equilibrium solution to ẋ = Ax has the form x(t) = cx∞ for some constant c. Otherwise,
if all entries of A are 0, then all vectors are equilibrium solutions.

4.2.7 Problem (!). Use Theorem 4.2.5 to prove Corollary 4.2.6.

The two possibilities det(A) = 0 and det(A) 6= 0, and the two separate conclusions, are
exactly the results of Example 4.2.2.

4.2.8 Example. Consider a free harmonic oscillator with mass 1, damping coefficient p ≥ 0,
and spring constant q > 0. By Example 4.1.23, its equation of motion is ẍ+ pẋ+ qx = 0,
and its linear system is

ẋ =

[
0 1
−q −p

]
x,

where x = (x, ẋ). We compute

det

([
0 1
−q −p

])
= (0 · (−p))− (1 · (−q)) = q > 0,

so this system has no nontrivial equilibrium solution.
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In turn, this means that the problem ẍ + pẋ + qx = 0 has no constant solution other
than x(t) = 0. We did not need matrix methods to see this: if x solves this ODE and is
constant, then ẋ = 0 and ẍ = 0, so we would have qx = 0 and therefore x = 0. Physically,
this means that the only way for a free harmonic oscillator to have constant displacement
from equilibrium is for it to have zero displacement from equilibrium and thus to stay at
equilibrium for all time.

4.2.2. Equilibrium solutions for nonhomogeneous systems.

To find equilibrium solutions for the nonhomogeneous problem ẋ = Ax+b, we need to solve
Ax + b = 0, equivalently,

Ax = −b.
This is a nonhomogeneous system of linear equations. Mechanically, trying to solve this is
quite similar to the previous homogeneous systems.

4.2.9 Example. (i) We look for equilibrium solutions to

ẋ =

[
1 2
1 1

]
x +

(
1
0

)
.

This demands that we solve [
1 2
1 1

]
x +

(
1
0

)
= 0,

equivalently, {
x+ 2y + 1 = 0

x+ y = 0.

The second equation tells us x = −y, so the first becomes

−y + 2y + 1 = 0,

thus y + 1 = 0, and so y = −1. Then x = 1, and the only equilibrium solution is

x =

(
1
−1

)
.

(ii) We look for equilibrium solutions to

ẋ =

[
1 2
2 4

]
x +

(
3
6

)
.

We need [
1 2
2 4

]
x +

(
3
6

)
= 0,

and thus {
x+ 2y + 3 = 0

2x+ 4y + 6 = 0.
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The second equation here is twice the first, so we just need to solve x + 2y + 3 = 0. We
can do this by taking x = −2y − 3, and so all equilibrium solutions x = (x, y) are

x =

(
−2y − 3

y

)
= y

(
−2

1

)
+

(
−3

0

)
.

There are infinitely many equilibrium solutions, which, not incidentally, was exactly the
situation with the same matrix in part (ii) of Example 4.2.2.

(iii) We look for equilibrium solutions to

ẋ =

[
1 2
2 4

]
x +

(
3
5

)
.

As before, this leads to a linear system:{
x+ 2y + 3 = 0

2x+ 4y + 5 = 0.

Now the second equation is not a multiple of the first, and the problem looks harder to
solve. We could try to use one of the equations to write x in terms of y, or y in terms of
x, but a faster way to fail is to subtract 2 times the first equation from the second:

2x+ 4y + 5− 2(x+ 2y + 3) = 0,

and thus we need
5− 6 = 0,

which is impossible. Thus the problem has no solutions.

The situations in the preceding example are characteristic of what happens when we look
for equilibrium solutions to nonhomogeneous linear systems: either there is exactly one,
or infinitely many, or none. We discuss without proof when the first situation happens in
general.

4.2.10 Theorem. Let
A =

[
a b
c d

]
.

Suppose that det(A) 6= 0 and let y be a vector. Then the only solution x to Ax = y is
x = A−1y, where

A−1 :=
1

det(A)

[
d −b
−c a.

]
The matrix A−1 is the inverse of A. In particular, A−1 satisfies

A(A−1y) = y and A−1(Ay) = y

for any vector y.
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4.2.11 Remark. A mnemonic for remembering the structure of A−1 is “interchange the
diagonals, negate the off-diagonals, and divide by the determinant.”

The following is an immediate corollary of the preceding theorem.

4.2.12 Corollary. If det(A) 6= 0, then the only equilibrium solution to ẋ = Ax + b is
x(t) = −A−1b.

Proof. In Theorem 4.2.10, take y = −b. �

4.2.13 Example. We revisit part (i) of Example 4.2.9 by first computing[
1 2
1 1

]−1
=

1

(1 · 1)− (2 · 1)

[
1 −2
−1 1

]
=

1

−1

[
1 −2
−1 1

]
=

[
−1 2

1 −1

]
and then

−
[
1 2
1 1

]−1(
1
0

)
= −

[
−1 2

1 −1

](
1
0

)
= −

(
(−1 · 1) + (2 · 0)
(1 · 1) + (−1 · 0)

)
= −

(
−1

1

)
=

(
1
−1

)
.

Corollary 4.2.12 says that this is the only equilibrium solution to

ẋ =

[
1 2
1 1

]
x +

(
1
0

)
,

which is exactly what we found in part (i) of Example 4.2.9.

4.2.14 Problem (+). If det(A) = 0 and b 6= 0, then the problem ẋ = Ax+b may or may
not have equilibrium solutions. In particular, if det(A) = 0 and one equilibrium solution is
known to exist, there are, as we said above, infinitely many. Here is why. Suppose that x?
is a vector with Ax? = −b and x∞ is a vector with Ax∞ = 0. Show that x(t) := cx∞+x?
is an equilibrium solution to ẋ = Ax + b for any constant c.

This is where we finished on Friday, October 20, 2023.

4.2.3. Linear independence.

We have used the determinant to test if we can solve a linear system. We can also cast
things in the language of vectors, not matrices and linear systems, and that will be useful in
the near future.

From time to time we will be given vectors v1, v2, and y, and we will want to find numbers
c1 and c2 such that

c1v1 + c2v2 = y. (4.2.1)
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It will be advantageous if we can find these numbers uniquely, too. That is, we want there
to be only one choice of the constant c1 and only one choice of the constant c2 that makes
the vector equation (4.2.1) true.

By definition of matrix-vector multiplication, solving (4.2.1) is equivalent to solving

[
v1 v2

](c1
c2

)
= y.

And, by Theorem 4.2.10, we can do that uniquely when the determinant of the matrix is
nonzero. Such a matrix is invertible, and its columns also have a special name.

4.2.15 Definition. The vectors v1 and v2 are linearly independent if

det
( [

v1 v2

] )
6= 0.

The following theorem is an immediate consequence of this definition, the reasoning pre-
ceding this definition, and Theorems 4.2.5 and 4.2.10.

4.2.16 Theorem. Let v1 and v2 be vectors.

(i) Suppose that v1 and v2 are linearly independent. For any vector y, there are unique
numbers c1 and c2 such that

c1v1 + c2v2 = y. (4.2.2)

In particular, the only c1 and c2 that solve c1v1 + c2v2 = 0 are c1 = 0 and c2 = 0.

(ii) Suppose that for any vector y, there is a unique choice of c1 and c2 that solves (4.2.2).
Then v1 and v2 are linearly independent.

(iii) Suppose that the only c1 and c2 that solve

c1v1 + c2v2 = 0

are c1 = 0 and c2 = 0. Then v1 and v2 are linearly independent.

4.2.17 Problem (+). Prove this theorem using Theorems 4.2.5 and 4.2.10.

4.2.18 Example. The vectors

v1 =

(
1
0

)
and v2 =

(
0
1

)
are linearly independent, because

det
( [

v1 v2

] )
= det

([
1 0
0 1

])
= (1 · 1)− (0 · 0) = 1,
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but the vectors
w1 =

(
1
0

)
and w2 =

(
2
0

)
are linearly dependent, because

det
( [

w1 w2

] )
= det

([
1 0
2 0

])
= (1 · 0)− (0 · 2) = 0.

4.2.19 Problem (!). Suppose that λ1 and λ2 are numbers with λ1 6= λ2. Show that the
vectors

v1 :=

(
1
λ1

)
and v2 :=

(
1
λ2

)
are linearly independent.

4.3. The lessons of totally and partially decoupled systems.

We now know how to find equilibrium solutions to autonomous linear systems; it boiled down
to a problem of linear algebra. What about nonautonomous systems and nonequilibrium
solutions? How can we find all solutions, and what do they do?

We start by studying two special kinds of homogeneous linear systems ẋ = Ax that will
teach us a great deal about all linear systems. (Unfortunately, neither of these systems can
represent a harmonic oscillator, and so we still have work to do.)

4.3.1 Example. It is hardly fair to call the linear system{
ẋ = 2x

ẏ = −y
(4.3.1)

a “system,” since the equation with the x derivative does not involve y, and the equation
with the y derivative does not involve x. Such a system is totally decoupled. We
solve it and discuss some enlightening aspects of the solution.

1. The problem (4.3.1) consists of just two exponential growth equations placed together,
and we know how to solve them:

x(t) = c1e
2t and y(t) = c2e

−t,

where c1 and c2 are arbitrary constants. Note that we do not say

x(t) = ce2t and y(t) = ce−t

with the same constant c appearing in both functions; there is no reason that the constant
for x should be the same as the constant for y. Indeed, if c1 = c2 = c, then x(0) = y(0) = c,
and nothing in the original problem (4.3.1) specifies that constraint.
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2. This form of the solution makes it easy to solve an IVP like{
ẋ = 2x

ẏ = −y,

{
x(0) = 1

y(0) = 2.

We want to choose c1 and c2 so that

1 = x(0) = c1e
2·0 = c1 and 2 = y(0) = c2e

−0 = c2.

The solution to the IVP is therefore

x(t) = e2t and y(t) = 2e−t.

More generally, we could use our knowledge of scalar IVP to argue that the problem{
ẋ = 2x

ẏ = −y,

{
x(0) = x0

y(0) = y0

has a unique solution for any choice of initial conditions x0 and y0. In particular, we do
not need Theorem 4.1.20 to come to this conclusion.

3. None of the work above needed the notation of vectors and matrices, but this language
does streamline some things and make some other things more obvious. Put

A :=

[
2 0
0 −1

]
.

The work above shows that every solution x to ẋ = Ax has the form

x(t) =

(
c1e

2t

c2e
−t

)
for some constants c1 and c2.

There is another way to write this solution x that, while not necessarily obvious, exposes
the arbitrary constants c1 and c2 in a useful way. Namely, we have

x(t) =

(
c1e

2t

c2e
−t

)
=

(
c1e

2t

0

)
+

(
0

c2e
−t

)
= c1e

2t

(
1
0

)
c2e
−t
(

0
1

)
.

Put
x1(t) := e2t

(
1
0

)
and x2(t) := e−t

(
0
1

)
.

Then every solution to ẋ = Ax has the form

x(t) = c1x1(t) + c2x2(t) (4.3.2)

for some constants c1 and c2. Take c2 = 0 in (4.3.2) to see that x1 is a solution to ẋ = Ax,
and take c1 = 0 in (4.3.2) to see that x2 is also a solution to ẋ = Ax.
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4. Now suppose that we want to solve the more general IVP{
ẋ = Ax

x(0) = x0,
x0 =

(
x0
y0

)
. (4.3.3)

Since all solutions to ẋ = Ax have the form x(t) = c1x1(t) + c2x2(t) for some c1 and c2, we
just have to choose c1 and c2 so that

c1x1(0) + c2x2(0) = x0. (4.3.4)

That is, we need to solve the matrix-vector equation

[
x1(0) x2(0)

](c1
c2

)
= x0

for c1 and c2. This is always possible, since

det
( [

x1(0) x2(0)
] )

= det

([
1 0
0 1

])
= 1 6= 0.

That is, x1(0) and x2(0) are linearly independent, so Theorem 4.2.16 applies, and we can
always find unique c1 and c2 that make (4.3.4) true.

In this case, the form of x1(0) and x2(0) makes computing c1 and c2 in terms of x0 and
y0 a snap, but the deeper property in play is the fact that x1(0) and x2(0) are linearly
independent.

4.3.2 Problem (!). Let a and d be real numbers. Find all solutions to the totally decoupled
system {

ẋ = ax

ẏ = dy.

Then solve the IVP with initial conditions

x(0) = x0 and y(0) = y0.

If we write this problem in the form ẋ = Ax, what is A?

Example 4.3.1 has two major lessons for us. Here is the first: we want to look for solutions
to ẋ = Ax that do something special.

4.3.3 Definition. Let A be a matrix. A fundamental solution set for the system
ẋ = Ax is a pair of functions x1 and x2 defined on (−∞,∞) with the following properties.

(i) Both x1 and x2 solve ẋ = Ax.

(ii) The vectors x1(0) and x2(0) are linearly independent.
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If we have a fundamental solution set for a homogeneous linear system (constructing that
set is another matter, which we will take up presently), then, quite simply, we win.

4.3.4 Theorem. Let A be a matrix and suppose that x1 and x2 solve ẋ = Ax. Suppose
also that x1(0) and x2(0) are linearly independent. Then for any vector x0, the unique
solution of the IVP {

ẋ = Ax

x(0) = x0

(4.3.5)

has the form
x(t) := c1x1(t) + c2x2(t) (4.3.6)

for some constants c1 and c2. In particular, there is only one way to choose c1 and c2 so
that x as defined in (4.3.6) solves (4.3.5).

4.3.5 Problem (!). Prove this. [Hint: Theorem 4.1.20 says that this IVP has a unique
solution. Problem 4.1.22 says that x as defined in (4.3.6) solves (4.3.5). And linear inde-
pendence says that there are unique c1 and c2 such that c1x1(0) + c2x2(0) = x0.]

So, how do we find fundamental solution sets? Do they always exist? And how will
understanding the homogeneous problem ẋ = Ax help us with our goal of understanding
the nonhomogeneous problem ẋ = Ax + b(t)? We have some work to do.

4.3.6 Problem (!). Explain why the equilibrium solution x(t) = 0 can never be part of a
fundamental solution set for a linear system ẋ = Ax.

4.3.7 Problem (+). Let φ1 = (φ11, φ21) and φ2 = (φ12, φ22) form a fundamental solution
set for the linear system ẋ = Ax. Prove that the vectors φ1(t) and φ2(t) are linearly
independent for all t as follows.

(i) Put
W (t) := det

( [
φ1(t) φ2(t)

] )
.

Explain why we want W (t) 6= 0 for all t.

(ii) If

A =

[
a b
c d

]
,

show that
φ̇11 = aφ11 + bφ12.

Find similar expressions for the derivatives of the other three components of φ1 and φ2.

(iii) Use those expressions to calculate

Ẇ (t) = (a+ d)W (t).



4.3. The lessons of totally and partially decoupled systems 173

(iv) Conclude that
W (t) = W (0)e(a+d)t,

and deduce from this that W (t) 6= 0 for all t.

We said that Example 4.3.1 taught us two lessons about solving ẋ = Ax. One of them
was the role of fundamental solution sets in solving IVP. The other lesson involves the form
of the fundamental solution set. It will be clearer after another, slightly more complicated
example.

4.3.8 Example. The system {
ẋ = 2x+ y

ẏ = −y

is not totally decoupled, since the equation involving the x derivative also involves y; rather,
it is partially decoupled. Nonetheless, it is still fairly easy to solve. First, the second
equation just yields

y(t) = c2e
−t,

where c2 is an arbitrary constant. Then the first equation becomes the first-order linear
ODE

ẋ = 2x+ c2e
−t. (4.3.7)

We can solve this with variation of parameters or, better, undetermined coefficients (see
Problem 4.3.9) to find

x(t) = c1e
2t − c2e

−t

3
, (4.3.8)

where c1 is another arbitrary constant.
So, if we put

A :=

[
2 1
0 −1

]
,

then all solutions to ẋ = Ax are

x(t) =

(
c1e

2t − c2e−t/3
c2e
−t

)
= c1e

2t

(
1
0

)
+ c2e

−t
(
−1/3

1

)
.

Taking, successively, c1 = 0 and c2 = 0 shows that the functions

x1(t) := e2t
(

1
0

)
and x2(t) := e−t

(
−1/3

1

)
both solve ẋ = Ax. We compute

det
( [

x1(0) x2(0)
] )

= det

([
1 −1/3
0 1

])
= 1 6= 0

to conclude that x1 and x2 form a fundamental solution set for ẋ = Ax.
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4.3.9 Problem (!). Let c2 be an arbitrary real number. Use undetermined coefficients to
obtain the solution (4.3.8) for the ODE (4.3.7).

4.3.10 Problem (?). Let a, b, and d be real numbers with a 6= d.

(i) Find a fundamental solution set for the general partially decoupled problem{
ẋ = ax+ by

ẏ = dy.

Where explicitly in your solution are you using the assumption a 6= d? (We will think
about the case a = d later.)

(ii) Explain why you basically have to do no new work to solve the partially decoupled
problem {

ẋ = ax

ẏ = cx+ dy,

where now c is any real number, and still a 6= d. [Hint: does the order in which you write
a pair of equations really matter?]

This is where we finished on Monday, October 23, 2023.

Here now is the second lesson of Example 4.3.1, bolstered by the results of Example 4.3.8:
functions in the fundamental solution sets so far have had the form x(t) = eλtv for a real
number λ and a vector v. The first lesson teaches us what solutions should do: be linearly
independent at time t = 0. The second lesson teaches us what solutions should look like:
exponentials. Hopefully the second lesson is unsurprising because of the role of exponentials
in solving scalar linear ODE.

Here endeth the lessons. How do we exploit them to solve systems of the form ẋ = Ax
that are not totally or partially decoupled? This is essential for understanding the harmonic
oscillator as a system.

4.3.11 Problem (!). Explain why the system for the harmonic oscillator cannot be written
as a totally or partially decoupled system.

4.4. Eigenvalues and eigenvectors.

The functions in the fundamental solution sets that we have so far seen have had the form

x(t) = eλtv, (4.4.1)

where λ is constant and v is a vector. Here we develop a procedure for constructing such
solutions for general systems ẋ = Ax that are not necessarily totally or partially decoupled.
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The right idea to find such solutions is, like so many things, not obvious at first glance:
we guess that the system ẋ = Ax has a solution essentially of the form (4.4.1). Specifically,
we guess that

x(t) = eλtv (4.4.2)

solves ẋ = Ax. Here λ is a real number and v is a vector, and figure out what λ and v have
to be (or do). One thing that we can say from the start is that v 6= 0. Otherwise, the result
is all too easy: x then is just

x(t) = eλt0 = 0.

And the zero vector cannot be part of a fundamental solution set (go back and do Problem
4.3.6).

So, we assume that x is defined by (4.4.2) with v 6= 0, and we compute

ẋ(t) = λeλtv, (4.4.3)

and so to have ẋ(t) = Ax(t), we want

λeλtv = A(eλtv). (4.4.4)

We use the linearity of matrix-vector multiplication to rewrite A(eλtv) = eλtv, so that (4.4.4)
becomes

λeλtv = eλtAv. (4.4.5)

Since eλt 6= 0 regardless of λ or t, we divide to find that λ and v must satisfy

Av = λv. (4.4.6)

Conversely, if λ and v satisfy (4.4.6), then we can just multiply both sides by eλt for any
number t to recover (4.4.5), turn that into (4.4.4), and recognize from that (4.4.3) with x
defined by (4.4.2).

In short, if we want solutions to ẋ = Ax of the form x(t) = eλtv, then λ and v together
just need to satisfy Av = λv. This relationship among A, λ, and v is quite special.

4.4.1 Definition. Let A be a matrix, λ be a real number, and v be a vector with v 6= 0.
Then λ is an eigenvalue of A, and v is an eigenvector of A corresponding
to λ, if

Av = λv. (4.4.7)

4.4.2 Problem (!). (i) Check that λ1 = 2 and λ2 = −1 are the eigenvalues of the matrix

A =

[
2 0
0 −1

]
with corresponding eigenvectors

v1 =

(
1
0

)
and v2 =

(
0
1

)
.

Then look back at the results of Example 4.3.1.
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(ii) Check that λ1 = 2 and λ2 = −1 are (also) the eigenvalues of the matrix

A =

[
2 1
0 −1

]
with corresponding eigenvectors

v1 =

(
1
0

)
and v2 =

(
−1/3

1

)
.

Then reread Example 4.3.8.

4.4.3 Problem (?). Let A be a matrix and let λ be an eigenvalue of A. Explain why an
eigenvector v corresponding to λ is an equilibrium solution for the system ẋ = (A− λI)x.

Much of mathematics hinges on the fact that every matrix has eigenvalues and eigenvec-
tors. The condition (4.4.7) is equivalent to

Av − λv = 0,

and if I is the identity matrix (Definition 4.1.16), this reduces further to

(A− λI)v = 0.

Since we require v 6= 0, Theorem 4.2.5 implies that this precisely when

det(A− λI) = 0.

Write
A =

[
a b
c d

]
,

so
A− λI =

[
a− λ b
c d− λ

]
,

and therefore

det(A− λI) = (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc).

Thus det(A− λI) = 0 if and only if

λ2 − (a+ d)λ+ (ad− bc) = 0. (4.4.8)

This is a quadratic equation in λ, and it always has solutions—in particular, every matrix
has eigenvalues! Specifically, it may have two distinct real solutions, one “repeated” real
solution, or one “complex conjugate pair” of solutions. We will examine each of these cases,
and their ramifications for the dynamics of the system ẋ = Ax, in detail.

The characteristic equation (4.4.8) tells us how to find eigenvalues, but it does
not tell us how to find eigenvectors. However, this is not too difficult. Once we know an
eigenvalue λ, we just have to solve the matrix-vector equation (A− λI)v = 0 for v.
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4.4.4 Example. Let

A =

[
0 1
−3 −4

]
.

To find the eigenvalues of A, we need to find the numbers λ such that

det(A− λI) = 0.

We first compute

A− λI =

[
0 1
−3 −4

]
− λ

[
1 0
0 1

]
=

[
0 1
−3 −4

]
−
[
λ 0
0 λ

]
=

[
−λ 1
−3 −4− λ

]
.

Now we compute the determinant

det(A− λI) = det

([
−λ 1
−3 −4− λ

])
= −λ(−4− λ)− (−3) = 4λ+ λ2 + 3.

So, we want to solve the quadratic equation

λ2 + 4λ+ 3 = 0,

which we can do either with the quadratic formula or by factoring

λ2 + 4λ+ 3 = (λ+ 1)(λ+ 3).

Either way, the solutions are λ = −1 and λ = −3, and so these are the eigenvalues of A.
Now we need eigenvectors. To find an eigenvector corresponding to −1, we need to solve

Av = −v,

equivalently, with v = (v1, v2), [
0 1
−3 −4

](
v1
v2

)
= −

(
v1
v2

)
.

This turns into the system of equations{
v2 = −v1
−3v1 − 4v2 = −v2.

The second equation is redundant, as it is equivalent to −3v1 = 3v2 and thus v2 = −v1,
which is the first equation. So, all eigenvectors v = (v1, v2) corresponding to −1 are

v =

(
v1
v2

)
=

(
v1
−v1

)
= v1

(
1
−1

)
,

provided that v1 6= 0 (since 0 cannot be an eigenvector). In particular, for simplicity, we
may want to take

v1 :=

(
1
−1

)
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as an eigenvector.
Exactly the same kind of work shows that all eigenvectors corresponding to −3 have the

form
v = v1

(
1
−3

)
for some nonzero constant v1. For simplicity, we might use

v2 :=

(
1
−3

)
as the eigenvector corresponding to −3.

More precisely, we want to solve Av = −3v, which is[
0 1
−3 −4

](
v1
v2

)
= −3

(
v1
v2

)
,

and thus {
v2 = −3v1

−3v1 − 4v2 = −3v2.

Again, the second equation is redundant, as it is equivalent to −3v1 = v2, which is the first
equation. So, we want v = (v1, v2) = (v1,−3v1), as claimed above.

4.4.5 Problem (!). The structure of the eigenvectors from the previous example was no
accident. Suppose that λ is an eigenvalue of the matrix[

0 1
c d

]
,

where c and d are any numbers. Show that the vector

v :=

(
1
λ

)
is a corresponding eigenvector. [Hint: you do not need to calculate the eigenvector from
scratch; it is given here, and you just need to check that it satisfies the definition.]

4.4.6 Problem (!). Consider a free harmonic oscillator with mass 1, damping coefficient
p ≥ 0, and spring coefficient q > 0.

(i) Referring to Example 4.1.23 as needed, show that the characteristic equation for this
oscillator’s linear system is λ2 + pλ + q = 0. Conclude that we can just read off the
characteristic equation from the oscillator’s equation of motion without computing any
determinants!

(ii) Show that 0 is never an eigenvalue for this linear system. [Hint: q > 0.]
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4.4.7 Problem (?). Here is an easy way to calculate the characteristic equation of a matrix
A without computing det(A− λI). Let

A =

The trace of A is
tr(A) := a+ d,

i.e., the trace is the sum of the diagonal entries of A. Show that any eigenvalue of A
satisfies

λ2 − tr(A)λ+ det(A) = 0.

Conclude from the quadratic formula that eigenvalues are functions of trace and determi-
nant:

λ =
tr(A)±

√
tr(A)2 − 4 det(A)

2
.

4.4.8 Problem (?). Let a, b, c, and d be real numbers. Show that the eigenvalues of the
three matrices below are always a and d:[

a 0
0 d

]
,

[
a b
0 d

]
, and

[
a 0
c d

]
.

[Hint: the formula in Problem 4.4.7 might be faster than the definition.]

This is where we finished on Wednesday, October 25, 2023.

Remember that our underlying goal has been to produce fundamental solution sets (Def-
inition 4.3.3) for the system ẋ = Ax. If A has distinct eigenvalues, then we are done.

4.4.9 Theorem. Let A be a matrix and suppose that λ1 and λ2 are eigenvalues of A with
λ1 6= λ2. If v1 is an eigenvector of A corresponding to λ1 and v2 is an eigenvector of A
corresponding to λ2, then v1 and v2 are linearly independent.

We will not prove this theorem here. Instead, we will use its corollary often.

4.4.10 Corollary. Suppose that the matrix A has distinct eigenvalues λ1 6= λ2 with corre-
sponding eigenvectors v1 and v2. Then the functions

x1(t) := eλ1tv1 and x2(t) := eλ2tv2

form a fundamental solution set for the linear system ẋ = Ax.

Proof. The discussion preceding Definition 4.4.1 (or the definition of eigenvalue and eigen-
vector and brute-force calculus) shows that x1 and x2 solve ẋ = Ax. We calculate x1(0) = v1



4.4. Eigenvalues and eigenvectors 180

and x2(0) = v2 and use Theorem 4.4.9 to see that x1(0) and x2(0) are linearly independent.
Consequently, x1 and x2 satisfy the definition of fundamental solution set. �

4.4.11 Example. (i) In Example 4.4.4, we computed that the eigenvalues and (one choice
of) eigenvectors for the matrix

A =

[
0 1
−3 −4

]
were

λ1 = −1 and v1 =

(
1
−1

)
and

λ2 = −3 and v2 =

(
1
−3

)
.

Consequently, a fundamental solution set for the system ẋ = Ax is

x1(t) := e−t
(

1
−1

)
and x2(t) := e−3t

(
1
−3

)
.

All solutions to ẋ = Ax, then, have the form

x(t) = c1x1(t) + c2x2(t) = c1e
−t
(

1
−1

)
+ c2e

−3t
(

1
−3

)
for some constants c1 and c2.

(ii) Consider the free harmonic oscillator with mass m = 1, damping coefficient b = 4, and
spring constant κ = 3. Then its displacement satisfies

ẍ+ 4ẋ+ 3x = 0,

and so its linear system is ẋ = Ax. In particular, all solutions to the original equation
of motion for the harmonic oscillator under consideration are the first component of the
general solution to this system That is, all solutions to ẍ+ 4ẋ+ 3x = 0 are

x(t) = c1e
−t + c2e

−3t

for some constants c1 and c2.
Observe that

lim
t→∞

x(t) = 0

for any choice of c1 and c2 and, likewise,

lim
t→∞

ẋ(t) = lim
t→∞

(
− c1e−t − 3c2e

−3t) = 0.

This is in line with our earlier conjectures that the displacement and velocity of damped
harmonic oscillators should go to 0 over very long times.
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Finally, recall from Example 4.4.4 that the characteristic equation of A is

λ2 + 4λ+ 3 = 0.

The coefficients on the left are exactly those in the ODE ẍ+ 4ẋ+ 3x = 0. We will see that
we can read off the characteristic equation for the system version of a second-order linear
ODE just from that ODE. If all we want is formulas, we can bypass systems entirely!

But we want more than formulas.

The problem with Corollary 4.4.10 is fourfold. First, not every matrix has distinct eigen-
values. The characteristic equation is a quadratic equation, which can have repeated real
roots. Then there is only one eigenvalue, and Corollary 4.4.10 simply does not apply. Sec-
ond, if the characteristic equation has the complex, nonreal root λ, what does eλt mean?
(For that matter, what does eλt really mean when λ is real?) Third, we have not professed
the Analyst’s Creed (AC) in a while: having a formula for something is not the same as
understanding that thing. Corollary 4.4.10 gives us formulas for solutions to ẋ = Ax, but
it does not exactly tell us what x and its components are doing, together or separately. In
particular, fourth (and finally), what is the harmonic oscillator doing?

4.5. Fundamental solution sets and phase portraits.

4.5.1. Straight-line solutions.

We know that if the matrix A has distinct eigenvalues λ1 6= λ2 with corresponding eigenvec-
tors v1 and v2, then the functions x1(t) := eλ1tv1 and x2(t) := eλ2tv2 form a fundamental
solution set for the system ẋ = Ax. Such solutions might be called “straight-line solutions,”
because if we were to plot them parametrically, they would lie on a straight line through the
origin.

Remember that a line through the origin is either a set of points of the form (0, y) or
(x,mx) for some number m 6= 0. The set with points of the form (0, y) is just the y-axis,
while the set with points of the form (x,mx) is the line through the origin with slope m (i.e.,
the line y = mx).

4.5.1 Example. (i) Let

x(t) = e−3t
(

1
−3

)
.

This was one of the functions in the fundamental solution set in Example 4.4.11. If we
write x(t) = (x(t), y(t)), then

x(t) = e−3t and y(t) = −3e−3t.

We see that x(t) > 0 and y(t) < 0, so all points x(t) lie in Quadrant IV. Moreover, we
have y(t) = −3x(t), so all points lie on the line y = −3x in Quadrant IV. Finally, we
have limt→∞ x(t) = 0 and limt→∞ y(t) = 0. We can therefore describe the behavior of this
function x as t → ∞ as “all points x(t) lie on the line y = −3x in Quadrant IV and tend
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to 0 as t→∞.

x

y

c > 0

(ii) Let c be any nonzero number and let

x(t) = ce−3t
(

1
−3

)
.

If c > 0, then we are in the same situation as above: with x = (x, y), the component x is
always positive and the component y is always negative. Again, “all points x(t) lie on the
line y = −3x in Quadrant IV and tend to 0 as t→∞. If c < 0, however, then x < 0 and
y > 0, so “all points x(t) lie on the line y = −3x in Quadrant II and tend to 0 as t→∞.
And if c = 0, then x(t) = 0 for all t, and nothing interesting happens.

Then every point x(t) lies on the line y = x with x > 0. Below we plot x(t) in the
xy-plane; we plot x(t) for t > 0 in blue and for t < 0 in red. Note that x(t) 6= 0 for all t.
Moreover, as t→ 0, both components of x(t) go to 0, but as t→∞, both components of
x(t) go to ∞. In the latter case of t → ∞, we can be more descriptive and say that x(t)
goes to ∞ “along the line y = x.”

x

y

c < 0

c > 0
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More generally, we will want to plot functions x of the form

x(t) = f(t)v,

where f is a real-valued function and v = (v1, v2) is a vector. Put x(t) = f(t)v1 and
y(t) = f(t)v2, so x(t) = (x(t), y(t)). If v1 6= 0, then

y(t) = f(t)v2 =

(
v2
v1

)
f(t)v1 =

(
v2
v1

)
x(t),

and so each point x(t) lies on the line y = (v2/v1)x. If v1 = 0, then x(t) = (0, f(t)v2), and
all points of this form lie on the y-axis.

4.5.2 Problem (!). Suppose x(t) = (x(t), y(t)) is a straight-line solution to ẋ = Ax in
the sense that there is a constant m with y(t) = mx(t) for all t. Equivalently, x(t) = x(t)v,
where v = (1,m). Show that x(t) = Ceλt for some constants C and λ. [Hint: plug
x(t) = x(t)v into the system ẋ = Ax. What do you learn about x?]

This is where we finished on Monday, October 30, 2023.

4.5.2. The eigenvalues are real, negative, and distinct.

If the matrix A has the distinct real eigenvalues λ1 and λ2 (so λ1 6= λ2), and if v1 is an
eigenvector for λ1 and v2 is an eigenvector for λ2, then all solutions to ẋ = Ax are

x(t) = c1e
λ1tv1 + c2e

λ2tv2.

Analytically, this is easy (“easy”). Qualitatively, what is happening? How do the components
x and y of this solution x = (x, y) behave, separately and together? The answer depends on
the signs of the eigenvalues, and also the structure of the eigenvectors, and we encapsulate
it in the phase plane. Previously, we had to rely on numerical results to draw phase planes
and gain intuition on the long-time behavior of solutions to systems; now, however, we
can do almost everything by hand using eigenvalues, eigenvectors, and some common sense.
(Going forward, we will not present eigenvalue/eigenvector calculations in any detail but
merely state the data.) The results need not be as precise as numerics—indeed, they will be
essentially cartoons, but hopefully evocative ones.

First we consider the case in which both eigenvalues are negative.

4.5.3 Example. Let

A =

[
−1 0

0 −3

]
.

Its eigenvalues are λ1 = −1 and λ2 = −3, and corresponding eigenvectors are v1 = (1, 0)
and v2 = (0, 1).
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1. All solutions to ẋ = Ax are

x(t) = c1e
−t
(

1
0

)
+ c2e

−3t
(

0
1

)
=

(
c1e
−t

c2e
−3t

)
.

2. If x = (x, y) is any solution, then

lim
t→∞

x(t) = lim
t→∞

y(t) = 0.

But how are x and y behaving jointly as t→∞? Certainly

lim
t→∞

x(t) = 0,

but how do the points x(t) approach 0? The two-dimensional plane is very large, and there
are many paths of approach.

3. To keep matters simple, first suppose c2 = 0. Then x(t) = (c1e
−t, 0) lies entirely on the

x-axis. If c1 = 0, then x(t) = (0, c2e
−3t) lies entirely on the y-axis. Then the “straight-line

solutions” to ẋ = Ax have this parametric plot.

x

y

4. What if neither c1 nor c2 is 0? Then x(t) = (c1e
−t, c2e

−3t). With x(t) = c1e
−t and

y(t) = c2e
−3t, some algebraic sleight-of-hand shows

y(t) = c2e
−3t =

c2c
3
1e
−3t

c31
=
c2(c1e

−t)3

c31
=
c2
c31

[x(t)]3.

So, all solutions lie on cubics of the form y = cx3 for some constant c. The signs of c1 and
c2 determine the quadrant in which the cubic lies, e.g., if c1 > 0 and c2 > 0, then the cubic
is in Quadrant I (because both coordinates of (c1e

−t, c2e
−3t) are positive), but if c1 > 0 and

c2 < 0, then the cubic is in Quadrant II (because the first coordinate of (c1e
−t, c2e

−3t) is
positive but the second is negative). Thus the full behavior of the phase plane for ẋ = Ax
is the following picture.

x

y
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5. Here is another way to see how solutions that do not lie on one of the axes behave as
t → ∞. Say that x = (x, y) is one such solution. Then x(t) = c1e

−t and y(t) = c2e
−3t for

some nonzero c1 and c2. Consider the ratio

y(t)

x(t)
=
c2e
−3t

c1e−t
=
c2e
−2t

c1
.

Then
lim
t→∞

y(t)

x(t)
= lim

t→∞

c2e
−2t

c1
= 0,

and so over long times the ratio y/x approaches 0. That is, y ≈ 0 · x, and so not only do
the points x(t) approach 0 as t→∞, they do so along the line y = 0, i.e., along the x-axis.
This is the behavior that we are seeing in the phase plane cubics as t→∞.

6. Here is a third perspective on how solutions approach 0. For t large, the number e−3t is
much smaller than the number e−t (which is still small!). So, we should expect that the term
c2e
−3tv2 is much smaller than the term c1e

−tv1 in the function x(t) = c1e
−tv1 + c2e

−3tv2,
at least if c1 6= 0. (If c1 = 0, then only the term with e−3t is present, so comparing two
terms makes no sense.) Thus for large t, if c1 6= 0, then we expect x(t) ≈ c1e

−tv1, and so
as t→∞, the points x(t) approach 0 in the direction of v1.

4.5.4 Problem (!). Repeat all the work in the previous example for the matrix

A =

[
−3 0

0 −1

]
.

What changes, and how does the phase portrait compare to the one that we drew above?
[Hint: interchange the role of the x- and y-axes in the previous example.]

In general, if the matrix A has two negative distinct eigenvalues λ2 < λ1 < 0 with
corresponding eigenvectors v1 and v2, then all solutions to ẋ = Ax have the form

x(t) = c1e
λ1tv1 + c2e

λ2tv2, (4.5.1)

and so limt→∞ x(t) = 0. The nuances are in how a solution x may approach 0 over long
times. If one of the coefficients c1 or c2 is 0, then the solution is a “straight-line solution”
that stays on a line through the origin with slope given by the vector v1 or v2 as in Section
4.5.1.

Otherwise, suppose c1 and c2 are nonzero. Since λ2 < λ1, then the components of c2eλ2tv2

will be smaller (for large t) than the components of c1eλ1tv1, and so c1eλ1tv1 “dominates.”
That is, when c1 6= 0, we expect

x(t) ≈ c1e
λ1tv1 (4.5.2)

for t large, and so x approaches 0 in the direction of the eigenvector v1.
More precisely, if v1 = (v11, v12) and v2 = (v21, v22), and if x = (x, y), then from (4.5.1)
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we have
y(t)

x(t)
=
c1v12 + c2e

(λ2−λ1)tv22
c1v11 + c2e(λ2−λ1)tv21

. (4.5.3)

If v11 6= 0, this shows that

lim
t→∞

y(t)

x(t)
=
v12
v11

, (4.5.4)

and so over long times we have y(t) ≈ (v12/v11)x(t). That is, over long times solutions with
c1 6= 0 lie roughly on the line y = (v12/v11)x.

4.5.5 Problem (?). (i) Use (4.5.1) to compute the quotient (4.5.3). [Hint: factor eλ1t

from the numerator and denominator.]

(ii) Use (4.5.3) to prove the limit (4.5.4), assuming v11 6= 0. [Hint: λ2 − λ1 < 0.]

(iii) With y(t)/x(t) defined by (4.5.3), what is limt→∞ y(t)/x(t) when v11 = 0? Is this
what you expect from the approximation (4.5.2)?

If the matrix A has two distinct negative eigenvalues, then all solutions to ẋ = Ax tend
to the origin over long times, and they do so tangent to the eigenvector corresponding to the
larger eigenvalue. In this case, we give the equilibrium solution x(t) = 0 a name reminiscent
of the “attractive” behavior of certain solutions to autonomous scalar ODE.

4.5.6 Definition. Suppose that the matrix A has two distinct negative eigenvalues. Then
the equilibrium solution x(t) = 0 for ẋ = Ax is a sink or stable.

The eigenvectors in Example 4.5.3 were special because multiples of them just lie on the
x- and y-axes. In general, the situation for a matrix with two negative distinct eigenvalues
is just a “rotation” of the situations in Example 4.5.3 and Problem 4.5.4.

4.5.7 Example. Consider the system

ẋ =

[
0 1
−3 −4

]
x,

which we studied in Examples 4.4.4 and 4.4.11. Its eigenvalues are λ1 = −1 and λ2 = −3
with corresponding eigenvectors v1 = (1,−1) and v2 = (1,−3). All solutions are x(t) =
c1e
−tv1 + c2e

−3tv2. If c1 = 0, then the points x(t) = c2e
−3tv2 approach the origin along the

line y = −3x; if c2 = 0, then the points x(t) = c1e
−tv1 approach the origin along the line

y = −x. And if c1 6= 0, then the term c1e
−tv1 dominates, and so the points x(t) for c1 6= 0
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approach the origin tangent to the line y = −x.

x

yy = −x

4.5.3. The eigenvalues are real, positive, and distinct.

If A has two distinct positive eigenvalues, then the phase portrait for ẋ = Ax is completely
the reverse of the above. Say that the eigenvalues are λ1 and λ2 with 0 < λ1 < λ2 and that
eigenvectors are v1 and v2. Then all solutions are x(t) = c1e

λ1tv1 + c2e
λ2tv2. We expect that

when t is large, the components of x(t) move away from 0 and are either large positive or
large negative numbers—but how exactly do they move away? Between the vectors c1eλ1tv1

and c2eλ2tv2, there are four components, each of which could go to +∞, −∞, or maybe stay
at 0 for large t.

To get a more meaningful sense of the phase portrait, we can run time in reverse and take
t→ −∞ (something that we usually do not do in this course!). Then limt→−∞ x(t) = 0, and
when t is a negative number with |t| large, the term c1e

λ1tv1 is larger than the term c2e
λ2tv2.

So, over long negative times, we have x(t) ≈ c1e
λ1tv1. (Equivalently, draw the phase portrait

assuming the eigenvectors are the same but flip λ1 to −λ1 and λ2 to −λ2.) Then over long
positive times, we just run the picture in reverse.

A few examples should make this clearer.

4.5.8 Example. Let

A =

[
1 0
0 3

]
,

so the eigenvalues are λ1 = 1 and λ2 = 3 with eigenvectors v1 = (1, 0) and v2 = (0, 1).
This is the negative of the matrix, and also the negative of the eigenvalues, from Example
4.5.3.

All solutions to ẋ = Ax are

x(t) = c1e
tv1 + c2e

3tv2 =

(
c1e

t

c2e
3t

)
.

When c1 = 0, solutions x(t) = (0, c2e
3t) lie on the y-axis; if c2 > 0, then such solutions lie

on the positive y-axis and tend “up” the y-axis, away from the origin, as t → ∞, while if
c2 < 0, such solutions lie on the negative y-axis and tend “down” the y-axis, away from the
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origin, as t→∞. Similarly, if c2 = 0, solutions x(t) = (c1e
t, 0) lie on the x-axis; if c1 > 0,

then such solutions lie on the positive x-axis and tend “right” along the x-axis, away from
the origin, as t → ∞, while if c1 < 0, such solutions lie on the negative x-axis and tend
“left” along the x-axis, away from the origin, as t → ∞. Finally, if c1 6= 0, then, exactly
as in Example 4.5.3, solutions lie on cubics y = Cx3, but they tend away from the origin
along those cubics. The signs of c1 and c2 again determine the quadrant in which that
cubic lies.

Here, then, is the phase portrait, and we note that it is essentially the phase portrait
from Example 4.5.3 run in reverse.

x

y

4.5.9 Problem (!). Repeat all the work in the previous example for the matrix

A =

[
3 0
0 1

]
.

What changes, and how does the phase portrait compare to the one that we drew above?
Compare the results to Problem 4.5.4. [Hint: interchange the role of the x- and y-axes in
the previous example.]

4.5.10 Example. The eigenvalues of the matrix

A =

[
0 1
−3 4

]
are λ1 = 1 and λ2 = 3, and corresponding eigenvectors are v1 = (1, 1) and v2 = (1, 3). All
solutions are x(t) = c1e

tv1 + c2e
3tv2. If c1 = 0, then the points x(t) = c2e

3tv2 lie on the
line y = 3x and move away from the origin. If c2 = 0, then the points x(t) = c1e

tv1 lie
on the line y = x and move away from the origin. Otherwise, if c1 6= 0, we run time in
reverse and see that if t < 0 with |t| large, then x(t) ≈ c1e

tv1, and so in reverse time the
points x(t) with c1 6= 0 approach the origin tangent to the line y = x. This gives the phase
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portrait below.

x

y y = x

If the matrix A has two distinct positive eigenvalues, then all solutions to ẋ = Ax tend
away from the origin over long times, and so we name the equilibrium solution x(t) = 0 as
we did solutions to scalar autonomous problems that “repelled” other nearby solutions.

4.5.11 Definition. Suppose that the matrix A has two distinct positive eigenvalues. Then
the equilibrium solution x(t) = 0 for ẋ = Ax is a source or unstable.

This is where we finished on Wednesday, November 1, 2023.

4.5.4. One eigenvalue is positive and one is negative.

As usual, we begin with an example that superficially looks much like our previous starting
ones.

4.5.12 Example. The eigenvalues of

A =

[
−1 0

0 3

]
are λ1 = −1 and λ2 = 3, and corresponding eigenvectors are v1 = (1, 0) and v2 = (0, 1).
All solutions to ẋ = Ax are therefore x(t) = c1e

−tv1 + c2e
3tv2.

If c1 = 0, then x(t) = c2e
3tv2, and these solutions lie on the y-axis. They move away

from the origin as t→∞ depending on the sign of c2: if c2 > 0, then these solutions move
to +∞ up the y-axis, and if c2 < 0, then they move to −∞ down the y-axis.

However, if c2 = 0, then x(t) = c1e
−tv1, and these solutions lie on the x-axis. All

such solutions approach the origin as t → ∞. Thus we have two different behaviors of
solutions! Some are attracted to the origin, and some are repelled from it. We have never
seen anything like this with systems or with scalar phase lines before.

In general, for large positive times, the term c1e
−tv1 is very small, so the term c2e

3tv2

dominates. That is, for t > 0 large, x(t) ≈ c2e
3tv2, and so over long times solutions that

are not on the x-axis move away from the origin and approach the y-axis.
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We put all of these observations together into the following phase portrait.

x

y

Due to the simple structure of the eigenvectors, we can say a little more about the
trajectories in the phase portrait here. Put x(t) = (x(t), y(t)), so x(t) = c1e

−t and y(t) =
c2e

3t. If c1 6= 0, then

y(t) = c2e
3t =

c2
e−3t

=
c2c

3
1

c31e
−3t =

c2c
3
1

(c1e−t)3
=

c2c
3
1

[x(t)]3
.

Thus all trajectories not on the y-axis lie on the curves y = Cx−3, which have the form
sketched in our cartoon above.

4.5.13 Problem (!). Repeat all the work in the previous example for the matrix[
3 0
0 −1

]
.

What changes, and how does the phase portrait compare to the one that we drew above?
[Hint: interchange the role of the x- and y-axes in the previous example.]

In general, if a matrix A has a positive eigenvalue λ2 > 0 and a negative eigenvalue λ1 < 0
(with corresponding eigenvectors v1 and v2) then solutions to ẋ = Ax exhibit something of
a dichotomy. Straight-line solutions x(t) = c1e

λ1tv1 approach the origin as t → ∞, but as
t→∞, all other solutions x(t) = c1e

λ1tv1+c2e
λ2tv2 with c2 6= 0 are dominated by the second

term (since λ1 < 0 but λ2 > 0) so x(t) ≈ c2e
λ2tv2. Such solutions with c2 6= 0 therefore move

away from the origin tangent to v2 as t→∞.
To get a fuller picture, it is helpful to run time in reverse. Since λ1 < 0, the first

term c1e
λ1tv1 dominates as t → −∞, and so for t < 0 with |t| large, if c1 6= 0, we have

x(t) ≈ c1e
λ1tv1. Thus solutions with c1 6= 0 move away from the origin tangent to v1 as

t→ −∞.
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4.5.14 Example. The matrix

A =

[
0 1
3 2

]
has eigenvalues λ1 = −1 and λ2 = 3 and corresponding eigenvectors v1 = (1,−1) and v2 =
(1, 3). All solutions are x(t) = c1e

−tv1 + c2e
3tv2. If c1 = 0, then solutions x(t) = c2e

3tv2

lie on the line y = 3x and move away from the origin as t → ∞; if c2 = 0, then solutions
x(t) = c1e

−tv1 lie on the line y = −x and move toward the origin as t → ∞. All other
solutions with c2 6= 0 (i.e., all solutions not on the line y = −x) move away from the origin
tangent to v2 as t→∞, i.e., they move away from the origin approaching the line y = 3x.

In reverse time, the term c1e
−tv1 dominates if c1 6= 0, and so for t < 0 with |t| large, we

have x(t) ≈ c1e
−tv1. Thus as t→ −∞, all solutions with c1 6= 0 (i.e., all solutions not on

the line y = 3x) move away from the origin tangent to v1, i.e., they move away from the
origin approaching the line y = −x.

Here, then, is the phase portrait.

y = −x

x

y

4.5.15 Problem (+). Make the remarks preceding this example precise as follows. Sup-
pose that the matrix A has the eigenvalues λ1 < 0 and λ2 > 0 with corresponding eigenvec-
tors v1 = (v11, v12) and v2 = (v21, v22). Any solution x to ẋ = Ax has the form x = (x, y)
with x(t) = c1e

λ1tv11 + c2e
λ2tv21 and y(t) = c1e

λ1tv12 + c2e
λ2tv22. Similar to the limit

(4.5.4) and, more generally, the strategy of Problem 4.5.5, determine limt→∞ y(t)/x(t) and
limt→−∞ y(t)/x(t).

When the matrix A has one positive and one negative eigenvalue, the equilibrium solution
x(t) = 0 for ẋ = Ax has a peculiar name.

4.5.16 Definition. Suppose that the matrix A has one positive and one negative eigenvalue,
Then the equilibrium solution x(t) = 0 for ẋ = Ax is a saddle, and we also label it as
unstable.

The unique feature of a saddle is that one straight-line solution approaches the origin as
t → ∞ but all other solutions move away in the direction of the eigenvector corresponding
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to the positive eigenvalue.

4.5.5. One eigenvalue is zero and the other is nonzero.

If the matrix A has one eigenvalue equal to zero and the other is λ2 6= 0, then if v1 and v2

are corresponding eigenvectors, all solutions x to ẋ = Ax still have the form

x(t) = c1e
0·tv1 + c2e

λ2tv2 = c1v1 + c2e
λ2tv2.

The difference is that now one term above is constant.

4.5.17 Example. The matrix

A =

[
0 1
0 −1

]
has eigenvalues 0 and −1 and eigenvectors v1 = (1, 0) and v2 = (1,−1). Then all solutions
x to ẋ = Ax are x(t) = c1v1 + c2e

−tv2. If c1 = 0, then x(t) = c2e
−tv2 lies on the line

y = −x and approaches the origin as t → ∞. If c2 = 0, then x(t) = c1v1 for all t, and so
x is constant—that is, x is an equilibrium solution. But since c1 can be arbitrary, there
are infinitely many equilibrium solutions! In particular, since v1 = (1, 0), each equilibrium
solution lies on the x-axis, and every point on the x-axis is an equilibrium solution.

We have never seen anything like this. First, in all of our examples before with nonzero
eigenvalues, the origin was the only equilibrium solution to ẋ = Ax. Now, with a zero
eigenvalue, we have a line of equilibrium solutions. Second, the origin is not an “isolated”
equilibrium solution; by choosing c1 appropriately, we can construct a nonzero equilibrium
solution x(t) = c1v1 that is as close as we like to the origin. In all of our examples with
phase lines (for scalar ODE ẋ = f(x)), the equilibrium solutions were always “isolated” in
the sense that each was a certain minimum distance from the others. (Go back and look.)
These phenomena are surprising consequences of working in two dimensions and having a
zero eigenvalue!

Now we draw the phase portrait. There are straight-line solutions on y = −x that
approach the origin, which we draw as usual, and we mark the equilibrium solutions on
the x-axis with dots. For the other solutions, note that

x(t) = c1v1 + c2e
−tv2 =

(
c1 + c2e

−t

−c2e−t
)
.

If we take x = (x, y), then x(t) = c1 + c2e
−t and y(t) = −c2e−t, thus y(t) = −x(t) + c1.
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That is, all other solutions lie on lines of the form y = −x+ c for some constant c.

x

y

4.5.18 Problem (!). Repeat the work of the previous example for the matrices[
0 1
0 1

]
,

[
−1 0

1 0

]
, and

[
1 0
−1 0

]
What is different? [Hint: the eigenvalues will change, and also the line of equilibrium
solutions—where is it in each case?]

4.5.19 Problem (?). (i) Suppose that 0 is an eigenvalue of the matrix A. Show that
ẋ = Ax has infinitely many equilibrium solutions.

(ii) Suppose that ẋ = Ax has an equilibrium solution x(t) = x0 with x0 6= 0. Show that
0 is an eigenvalue of A.

(iii) Reread Corollary 4.2.6. How did that corollary predict these results?

This is where we finished on Friday, November 3, 2023.

4.5.6. The eigenvalues are the same.

Our success in constructing fundamental solution sets so far has hinged on the fact that
the matrix has had two distinct eigenvalues; the precise relations of their signs determined
the trajectories on the phase portrait, but, formulaically, the only thing that mattered was
that the eigenvalues were real and distinct. It is possible that the matrix A has only one
(necessarily real) eigenvalue. Recall that if

A =

[
a b
c d

]
,

then the eigenvalues solve the characteristic equation

λ2 − (a+ d)λ+ (ad− bc) = 0.
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The solutions to this quadratic equation are

λ =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

If (a+ d)− 4(ad− bc) = 0, then the only solution is

λ =
a+ d

2
.

In this case, we know at least one solution to ẋ = Ax. Let v1 be an eigenvector for A
corresponding to λ and put x1(t) = eλtv1. Then x1 solves ẋ = Ax. The problem is that x1

is only one function, and we need two functions for a fundamental solution set. How can we
find another?

First, it is possible that λ has another eigenvector v2 such that v1 and v2 are linearly
independent. In this case, the functions

x1(t) = eλtv1 and x2(t) = eλtv2 (4.5.5)

form a fundamental solution set for ẋ = Ax.

4.5.20 Problem (!). Why?

4.5.21 Example. Let

A =

[
−1 0

0 −1

]
.

The only eigenvalue of A is λ = −1, which can be seen from Problem 4.4.8, or directly,
from the characteristic equation λ2 + 2λ + 1 = 0. The latter factors into (λ + 1)2 = 0, so
its only root is λ = −1.

To find eigenvectors corresponding to −1, we solve Av = −v for v = (v1, v2), which
becomes the system {

−v1 = −v1
−v2 = −v2.

In the past, we would try to write v1 in terms of v2 or v2 in terms of v1. Here that is not
possible, and both equations above collapse to 0 = 0, which is a true statement. What this
means is that any choice of v1 and v2 will yield an eigenvector! That is, every vector is an
eigenvector for −1. To see this, just compute

Av =

[
−1 0

0 −1

](
v1
v2

)
=

(
−v1
−v2

)
= −v.

Then to solve ẋ = Ax, we could take the eigenvectors v1 and v2 to be any linearly
independent vectors that we like, say, v1 = (1, 0) and v2 = (0, 1). Then all solutions x are

x(t) = c1e
−t
(

1
0

)
+ c2e

−t
(

0
1

)
= e−t

(
c1
c2

)
.
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Of course, since the problem ẋ = Ax is totally decoupled, we did not need any fancy linear
algebra to see this.

Moreover, the form of the solution above tells us about the phase portrait. Any solution
x to ẋ = Ax has the form x(t) = e−tc for some vector c, and every vector c generates a
solution of this form. Thus all solutions lie on straight lines through the origin; every solu-
tion is a straight-line solution; and every straight line through the origin is the trajectory
of some solution. And, of course, all solutions go to 0 over long times. Thus the phase
portrait looks like the following—note that we have never seen more than two distinct
straight-line trajectories in the previous arrangements of eigenvalues.

x

y

4.5.22 Problem (!). Explain how we could have predicted the structure of the phase
portrait in Example 4.5.21 from the fundamental solution set (4.5.5). [Hint: all solutions
to ẋ = Ax here are x(t) = eλt(c1v1 + c2v2), and this is a straight-line solution. How does
the linear independence of v1 and v2 allow us to capture all straight lines through the origin
with this formula?]

It turns out that a matrix with only one eigenvalue but two linearly independent eigen-
vectors has a very special form.

4.5.23 Problem (+). This problem shows that if the matrix A has the repeated real
eigenvalue λ, and if λ has two linearly independent eigenvectors v1 and v2, then A is really
the diagonal matrix

A =

[
λ 0
0 λ

]
.

(i) Let v be any vector. Explain why there are constants c1 and c2 such that v = c1v1 +
c2v2. Use this to show that Av = λv.

(ii) Write A =
[
a1 a2

]
. Let v = (1, 0). Use the result above and Problem 4.1.13 to show

that a1 = λv. With a difference choice of v, obtain a2 = (0, λ).

More interesting, ultimately, is the case in which A has one repeated real eigenvalue and
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only one linearly independent eigenvector. The following example will teach us a great deal
about what to expect in this situation.

4.5.24 Example. The matrix

A =

[
−1 1

0 −1

]
has one eigenvalue, λ = −1, and all eigenvectors corresponding to −1 have the form
v = (v, 0) for some constant 0. No two of these vectors can be linearly independent, since

det

([
v1 v2
0 0

])
= (v1 · 0)− (v2 · 0) = 0,

no matter how v1 and v2 are chosen. Thus one solution to ẋ = Ax is

x1(t) = e−t
(

1
0

)
,

where we are taking the eigenvector to be v1 = (1, 0), but it is not immediately clear what
the second function should be to form a complete fundamental solution set.

However, this is a partially decoupled system, and we can solve it componentwise. First,
it reads {

ẋ = −x+ y

ẏ = −y,

so y(t) = c2e
−t, and therefore x must solve

ẋ = −x+ c2e
−t.

We can solve this with variation of parameters or undetermined coefficients; for the latter,
since the coefficient on x is −1, and since that is the same coefficient in the exponent, we
should guess x(t) = αte−t. Doing so yields α = c2, and so adding a constant multiple of
the homogeneous solution yields

x(t) = c1e
−t + c2te

−t.

Then all solutions x to ẋ = Ax are

x(t) =

(
c1e
−t + c2te

−t

c2e
−t

)
. (4.5.6)

We might wonder how the solution x1 shows up in this formula. In particular, what is the
role of the eigenvector (1, 0)? To suss this out, we expand(
c1e
−t + c2te

−t

c2e
−t

)
=

(
c1e
−t

0

)
+

(
c2te

−t

0

)
+

(
0

c2e
−t

)
= c1e

−t
(

1
0

)
+c2te

−t
(

1
0

)
+c2e

−t
(

0
1

)
.

Now we see more clearly where (1, 0) appears. The first term here is c1x1 with x1 defined
above. Define

x2(t) = te−t
(

1
0

)
+ e−t

(
0
1

)
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to see that all solutions have the form

x(t) = c1x1(t) + c2x2(t).

Taking c1 = 0 and c2 = 1 shows that x2 is a solution, and since

x1(0) =

(
1
0

)
and x2(0) =

(
0
1

)
,

which are linearly independent (why?), we see that x1 and x2 form a fundamental solution
set.

The deeper question is the role of this vector (0, 1) in x2. How does it relate to A,
the eigenvalue −1, and the eigenvector (1, 0)? How could we have expected (0, 1) to
show up without having calculated so explicitly the formula for all solutions to ẋ = Ax?
Understanding (0, 1) is our next task. We will return to this example later and draw the
phase portrait, too.

4.5.25 Problem (!). With A as in the previous example, show that all solutions to the
IVP {

ẋ = Ax

x(0) = x0

have the form
x(t) = e−tx0 + te−tv,

where v is some eigenvector of A. [Hint: go back to the formula (4.5.6). What role do the
constants c1 and c2 play in calculating x(0)?]

This is where we finished on Monday, November 6, 2023.

Example 4.5.24 considered a linear system ẋ = Ax where A had one repeated eigenvalue
λ with one linearly independent eigenvector v. (That is, if u is another eigenvector, then
u = cv for some constant c. Since u is an eigenvector, u 6= 0, and so c 6= 0. But then
(−c)v + u = 0, so v and u are linearly dependent.) The example then showed that a
fundamental solution set for ẋ = Ax had the form

x1(t) = eλtv and x2(t) = teλtv + eλtw (4.5.7)

for some other vector w. We surely expected the function x1 to show up in the fundamental
solution set, but the function x2 was a surprise.

Can we generalize this work to all systems ẋ = Ax in which A has a repeated eigenvalue λ
with only one linearly independent eigenvector v? For this to succeed, we need the function
x2 as defined above to solve ẋ = Ax, and we need x1(0) and x2(0) to be linearly independent.
That is, we need v and w to be linearly independent. For x2 to be a solution, we calculate

ẋ2(t) = eλtv + teλtλv + eλtλw
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and
Ax2(t) = A

(
teλtv + eλtw

)
= teλtAv + eλtAw = teλtλv + eλtAw.

The first equality in the calculation of Ax2(t) is the linearity of matrix-vector arithmetic
(Theorem 4.1.14), and the second is the identity Av = λv, since λ is an eigenvalue of A with
eigenvector v.

So, to have ẋ2(t) = Ax2(t), we want

eλtv + teλtλv + eλtλw = teλtλv + eλtAw.

We immediately subtract the term teλtλv from both sides to get

eλtv + eλtλw = eλtAw,

and then we divide both sides by eλt to find

v + λw = Aw,

or
Aw − λw = v,

or, most compactly,
(A− λI)w = v. (4.5.8)

So, w must solve the linear system (4.5.8) with data given by A, λ, and v. (Recall that I
is the identity matrix from Definition 4.1.16.) Conversely, if w solves (4.5.8), then reversing
all of the work above leads to ẋ2 = Ax2.

4.5.26 Problem (!). Go back to Example 4.5.24 and check that with

A =

[
−1 1

0 −1

]
, λ = −1, v =

(
1
0

)
, and w =

(
0
1

)
,

it is the case that (A− λI)w = v.

There is just one catch—actually, two. First, why should it be possible to solve (4.5.8)?
Second, if w solves (4.5.8), will v and w be linearly independent?

Here are the answers.

4.5.27 Theorem. Suppose that the matrix A has one repeated real eigenvalue λ, and sup-
pose that λ has only one linearly independent eigenvector v. Then there exists a vector w
that solves (A− λI)w = v. Moreover, v and w are linearly independent. The vector w is
called a generalized eigenvector corresponding to λ.

While not terribly difficult, the proof of this theorem relies on more linear algebra than is
appropriate for this point in the course, so we will omit it. Instead, we can now conclude that
if A has one repeated real eigenvalue λ, and suppose that λ has only one linearly independent
eigenvector v, then the functions x1 and x2 defined in (4.5.7) with w solving (A−λI)w = v
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do indeed form a fundamental solution set for ẋ = Ax. Then all solutions to ẋ = Ax have
the form

x(t) = c1e
λtv + c2(te

λtv + eλtw). (4.5.9)

4.5.28 Problem (?). Here is a different way to view the general solution (4.5.9).

(i) Suppose that A has one repeated real eigenvalue λ, and suppose that λ has only one
linearly independent eigenvector. Show that we can also write any solution x to ẋ = Ax
in the form

x(t) = eλtx(0) + teλtu, (4.5.10)

where u = (A − λI)x(0). Moreover, show that either u = 0 or u is an eigenvector of
A. [Hint: with x given by (4.5.9), what is x(0) in terms of c1, c2, v, and w? Then use
the facts that (A − λI)v = 0 (why?) and (A − λI)w = v to compute (A − λI)x(0) and
recognize that as u. Finally, note that c2v is also an eigenvector for c2 6= 0.]

(ii) Use (4.5.10) to solve ẋ = Ax, where A is as in Example 4.5.24. Compare your solution
here to (4.5.6).

The behavior of the solutions (4.5.9) depends on the sign of λ. First suppose λ < 0; then
each term in this solution goes to 0 as t → ∞. (This requires the limit limt→∞ te

λt = 0,
which is proved by L’Hospital’s rule—“exponentials dominate polynomials at ∞.”) And
when t is large, the dominant term in (4.5.9) is c2teλtv, if c2 6= 0. That is, if c2 6= 0, then
x(t) ≈ c2te

λtv, and so over long times solutions that do not start on the straight-line solution
x(t) = c1e

λ1tv approach the origin tangent to v.
We have seen this behavior before, and, naively, we might think that it results in a phase

portrait like the ones in Examples 4.5.3 and 4.5.7. This will not quite be the case; here, the
trajectories will stay only on certain “sides” of the eigenvector v.

4.5.29 Example. The overworked Example 4.5.24 taught us that all solutions to ẋ = Ax,
where

A =

[
−1 1

0 −1

]
,

are
x(t) =

(
c1e
−t + c2te

−t

c2e
−t

)
.

For t large, then, the term c2te
−t dominates the first component, and so we have

x(t) ≈
(
c2te

−t

c2e
−t

)
.

(This is slightly different from our saying x(t) ≈ teλtv above.) Since te−t and e−t are
both positive, the components of this approximation have the same sign: they are positive
for c2 > 0 and negative for c2 < 0. So, all solutions not on the x-axis (the case c2 = 0,
which we did not consider just now) eventually lie in Quadrant I (both components are
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positive) or Quadrant III (both components are negative). In particular, solutions that
start in Quadrant II or Quadrant IV eventually move out of those quadrants; a solution
starting in Quadrant II has c2 > 0 and so moves into Quadrant I, while a solution starting
in Quadrant IV has c2 < 0 and so moves into Quadrant III. This is unlike the situation
in Example 4.5.3, where the eigenvalues were negative and distinct, and trajectories could
approach the origin and remain within any quadrant for all time.

Here, then, is the phase portrait; note the slight “spiral” of trajectories toward the origin.

x

y

This can be confirmed by doing numerical simulations for solutions starting in each of
the four quadrants. More generally, this example illustrates how our analytic, qualitative,
and numerical methods work in concert, and how each can fill in a gap left by the other:
our initial qualitative guess that the phase portrait would look like a sink was wrong, and
we had to go to the analytic solution (or maybe some representative numerics) to see the
“twisting” behavior.

4.5.30 Problem (!). Revisit Example 4.5.24 and use the formula (4.5.6) to show that all
solutions in this example not on the x-axis (i.e., with c2 6= 0) lie on curves of the form

x =
c1y

c2
− y ln

(
y

c2

)
.

[Hint: −t = ln(y/c2).] Plot some of these curves using graphing technology. Do you see
the “twists” of the phase portrait emerging?

4.5.31 Problem (?). Below are phase portraits for the system ẋ = Ax, where A is one of
the following matrices, each of which has the repeated real eigenvalue −1 (which in turn
has only one linearly independent eigenvector):[

−1 −1
0 −1

]
,

[
−1 0
−1 −1

]
,

[
−1 0

1 −1

]
Which phase portrait corresponds to which system? [Hint: first find an eigenvector for
each A; that will determine the straight-line solution. To determine the quadrants in which
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solutions eventually end up (“twist up”), you could find all solutions analytically and then
repeat the analysis of Example 4.5.24. Here is a faster way: pick a point y = (y1, y2) not
on the straight line solution (maybe on an axis?) and compute u = Ay. Say that u has
the components u = (u1, u2). Based on these components, use the ideas discussed after
Example 3.3.4 to determine what the direction field for ẋ = Ax looks like at this point
(y1, y2). Which phase portrait points in that direction?]

x

y

I

x

II

y

x

y

III

4.5.32 Problem (?). How should the systems in Problem 4.5.31 be modified so that all
trajectories move away from the origin over long times (i.e., so that the arrows on the phase
portraits are all reversed)? [Hint: the repeated eigenvalue should be λ = 1.]

4.5.33 Problem (+). Suppose that 0 is a repeated eigenvalue of the matrix A.

(i) Explain why the characteristic equation of A must be λ2 = 0 and then use Problem
4.4.7 to conclude that A has the very special form

A =

[
a b
c −a

]
where a2 = −bc.

(ii) If 0 has two linearly independent eigenvectors, use Problem 4.5.23 to show that A is
the zero matrix whose entries are all 0; conclude that every vector is an equilibrium
solution for ẋ = Ax here.

(iii) If 0 has only one linearly independent eigenvector, use Problem 4.5.28 to show that
every solution to ẋ = Ax lies on a line (not necessarily through the origin) with the same
slope. What is that slope?

4.5.7. The eigenvalues are complex, nonreal numbers.

The final case on the eigenvalues for us to consider is when they are complex and nonreal.

4.5.34 Undefinition. Let a and b be real numbers. An expression of the form a+bi, where
i2 = −1, is a complex number. The real part of a+ bi is Re(a+ bi) := a and the
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imaginary part of a+ bi is Im(a+ bi) := b.
We perform arithmetic with complex numbers exactly as we would with real numbers,

except we allow i2 = −1. Two complex numbers are equal precisely when if their corre-
sponding real and imaginary parts are equal: z = w is true when both Re(z) = Re(w) and
Im(z) = Im(w).

Every real number is a complex number (let a be real and write a = a + 0 · i), so the
interesting case here is when the eigenvalues are complex with nonzero imaginary part. To
see how to find a fundamental solution set in this case, we work through one long example,
with some lucky guesses and observations along the way, and then we make things systematic.

4.5.35 Example. Consider the undriven, undamped harmonic oscillator with mass and
spring constant both 1. Since there are no friction and no external forces, we expect
that this oscillator will oscillate forever and never permanently approach its equilibrium
position. The equation of motion is then ẍ+ x = 0. Hopefully solutions will be periodic.

1. The equation of motion ẍ + x = 0 is, with y = ẋ and x = (x, y), equivalent to the
system

ẋ =

[
0 1
−1 0

]
x.

The characteristic equation here is

λ2 − (0 + 0)λ+ (0 · 0− 1 · (−1)) = 0,

which simplifies to
λ2 + 1 = 0.

The roots here are λ = ±i, and so the eigenvalues are the distinct numbers λ1 = i and
λ2 = −i. The eigenvalues are then (recall Problem 4.4.5, which did not require that λ be
real) v1 = (1, i) and v2 = (1,−i). Consequently, we expect (from Corollary 4.4.10) that a
fundamental solution set is

x1(t) = eit
(

1
i

)
and x2(t) = e−it

(
1
−i

)
.

2. Huh? We should quibble with this expectation for a number of reasons. First, what
does eit mean? The exponent it is complex and nonreal. For that matter, what does eτ

mean for a real number τ? We discussed this all the way back in Theorem 1.2.2: the
exponential is a power series. If we use that power series definition from (1.2.5), and if
we recall the power series definitions of the sine and cosine, and if we do some algebra,
eventually we come to the slightly more transparent expectation

eit = cos(t) + i sin(t).

This is Euler’s formula for the complex exponential, and we will henceforth
adopt it as the definition of the symbol eit.
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So, we are now expecting that

x1(t) =
(

cos(t) + i sin(t)
)(1

i

)
and x2(t) =

(
cos(t)− i sin(t)

)( 1
−i

)
are a fundamental solution set for our system above. (Here we used e−it = cos(−t) +
i sin(−t) = cos(t)− i sin(t).)

3. This is still not ideal. First, what does it mean to differentiate something that contains
i? For example, do we have

ẋ1(t) =
(
− sin(t) + i cos(t)

)(1
i

)
?

Second, our problem was posed entirely using real data. The harmonic oscillator’s mass,
spring constant, and friction constant were real numbers, and the matrix governing the
system above contains only real entries. What physically does a solution formula with
complex, nonreal entries mean in the context of a problem posed only using real data?

4. Answer: not much. It would be preferable if we could extract real-valued solutions from
the complex-valued symbol-pushing above. Here is a clever trick: rewrite x1 as

x1(t) =
(

cos(t) + i sin(t)
) [(1

0

)
+ i

(
0
1

)]
and then foil it out to find

x1(t) = cos(t)

(
1
0

)
+ i cos(t)

(
0
1

)
+ i sin(t)

(
1
0

)
+ i2 sin(t)

(
0
1

)
.

Now use the identity i2 = −1 and factor out the remaining two appearances of i to find

x1(t) =

[
cos(t)

(
1
0

)
− sin(t)

(
0
1

)]
+ i

[
cos(t)

(
0
1

)
+ sin(t)

(
1
0

)]
.

Put
xr(t) := cos(t)

(
1
0

)
− sin(t)

(
0
1

)
=

(
cos(t)
− sin(t)

)
and

xi(t) := cos(t)

(
0
1

)
+ sin(t)

(
1
0

)
=

(
sin(t)
cos(t)

)
,

so all of the calculations above just boil down to saying

x1(t) = xr(t) + ixi(t).

We can think of xr and xi as the real and imaginary parts of the vector-valued function x.
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5. We are expecting that ẋ1 = Ax1, and we know the derivative distributes over sums, so
we should also expect

ẋ = ẋr + iẋi.

And we know that matrix-vector multiplication distributes over sums, so we should further
expect

Ax1 = Axr + iAxi.

So, if all goes well, we should have

ẋr + iẋi = Axr + iAxi.

Since two complex numbers are equal precisely when their real and imaginary parts are
equal, we might expect that this identity implies

ẋr = Axr and ẋi = Axi. (4.5.11)

6. Remember the great thing about differential equations: we can always check our work.
We have concrete formulas for xr, xi, and A. So, we can calculate directly that (4.5.11) is
true. (Do it.) And so we have two solutions to the problem ẋ = Ax. Even better, we can
compute (do this, too)

xr(0) =

(
1
0

)
and xi(0) =

(
0
1

)
,

which are linearly independent. And so xr and xi form a fundamental solution set for
ẋ = Ax.

7. Thus all solutions to ẋ = Ax have the form

x(t) = c1

(
cos(t)
− sin(t)

)
+ c2

(
sin(t)
cos(t)

)
.

We will figure out the phase portrait later. (We never saw sines and cosines for distinct or
repeated real eigenvalues!) In particular, for the harmonic oscillator governed by ẍ+x = 0,
all solutions can be extracted from the first component above: they are

x(t) = c1 cos(t) + c2 sin(t).

This is exactly the oscillatory behavior of the undriven, undamped harmonic oscillator that
we anticipated above.

This example had a lot of useful (if unanticipated) ideas. Our next task is to generalize
those ideas to systems with complex eigenvalues of more or less arbitrary form and then to
distill the phase portraits of such systems out of the eigenvalues.

This is where we finished on Wednesday, November 8, 2023.
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Here is that generalization. Suppose that A has the complex eigenvalues α ± iβ with
β 6= 0. Let v be an eigenvector for the eigenvalue α + iβ and write v = vr + ivi, where vr

and vi are vectors with real components. In Example 4.5.35, we had

A =

[
0 1
−1 0

]
, α = 0, β = 1, v =

(
1
i

)
, vr =

(
1
0

)
, and vi =

(
0
1

)
.

Then we expect, formally, that a solution to ẋ = Ax is

x(t) = e(α+iβ)t(vr + ivi).

The first thing to manipulate is the exponential. Since addition in the exponent should be
multiplication “outside,” we expect

e(α+iβ)t = eαt+iβt = eαteiβt,

and then Euler’s formula eiy = cos(y) + i sin(y) gives

e(α+iβ)t = eαteiβt = eαt
(

cos(βt) + i sin(βt)
)
.

Then we expect

x(t) = e(α+iβ)t(vr + ivi) = eαt
(

cos(βt) + i sin(βt)
)
(vr + ivi).

When we foil out the product on the right, we obtain

x(t) = eαt
(

cos(βt)vr − sin(βt)vi

)
+ ieαt

(
sin(βt)vr + cos(βt)vi

)
.

4.5.36 Problem (!). Foil that out.

In Example 4.5.35, defining

xr(t) = eαt
(

cos(βt)vr − sin(βt)vi

)
and xi(t) = eαt

(
sin(βt)vr + cos(βt)vi

)
(4.5.12)

gave a fundamental solution set for ẋ = Ax. We can check that here directly from the
definitions of xr and xi; we do not need any calculus involving i. Problem 4.5.37 shows how
to check that ẋr = Axr and ẋi = Axi. Next,

xr(0) = vr and xi(0) = vi,

and Problem 4.5.37 shows how to check that vr and vi are linearly independent.

4.5.37 Problem (+). Suppose that the matrix A has the eigenvalue α + iβ with β 6= 0.

(i) Show that α − iβ is also an eigenvalue for A, and so the eigenvalues, when complex
and nonreal, must come in “complex conjugate pairs.” [Hint: suppose that if λ = α + iβ
solves the quadratic equation λ2 + pλ + q = 0, where p and q are real numbers. Calculate
(α− iβ)2 + p(α− iβ) + q and show that this number is 0.]
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(ii) With v = vr + ivi as an eigenvector for A corresponding to α + iβ, and with the
components of vr and vi as real numbers, show that vi 6= 0. [Hint: suppose instead that
vi = 0. Then v = vr is an eigenvector for A corresponding to α+ iβ, so Avr = (α+ iβ)vr.
Since two complex numbers are equal precisely when their real and imaginary parts are
equal, argue that βvr = 0. Since v = vr is an eigenvector, argue that vr 6= 0; conclude
that β = 0, a contradiction.]

(iii) Show that vr and vi are linearly independent. [Hint: assume that c1vr + c2vi = 0 for
some real numbers c1 and c2; by Theorem 4.2.16, it suffices to show c1 = 0 and c2 = 0. If
c1 = 0, then c2vi = 0, and since vi = 0, this means c2 = 0. So, assume c1 6= 0 and rewrite
vr = cvi, where c = −c2/c1. Conclude that v = (c+ i)vi and so, since v is an eigenvector
for A with eigenvalue α + iβ, this means Avi = (α + iβ)vi. How does this contradict the
preceding part?]

(iv) Since A(vi + ivi) = (α + iβ)(vr + ivi), show that

Avr + iAvi = (αvr − βvi) + i(βvr + αvi).

Since two complex numbers are equal precisely when their real and imaginary parts are
equal, argue that

Avr = αvr − βvi and Avi = βvr + αvi. (4.5.13)

Use the definition of xr in (4.5.12) to show

ẋr(t) = eαt cos(βt)(αvr − βvi)− eαt(βvr + αvi).

Finally, use this calculation along with the identities in (4.5.13) and the definition of xr to
show that ẋr(t) = Axr(t). Do the same for xi.

4.5.38 Example. Consider a free, damped harmonic oscillator with mass 1, friction con-
stant 4, and spring constant 13. Its displacement x satisfies

ẍ+ 4ẋ+ 13x = 0,

and since this oscillator is damped, we expect limt→∞ x(t) = 0.
The corresponding linear system is

ẋ =

(
0 1

−13 −4

)
x,

and its eigenvalues are −2± 3i. An eigenvector for −2 + 3i is

v =

(
1

−2 + 3i

)
=

(
1
−2

)
+ i

(
0
3

)
.

So, here we have

α = −2, β = 3, vr =

(
1
−2

)
, and vi =

(
0
3

)
.
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A fundamental solution set for this system is therefore

xr(t) = e−2t
[
cos(3t)

(
1
−2

)
− sin(3t)

(
0
3

)]
and

xi(t) = e−2t
[
sin(3t)

(
1
−2

)
+ cos(3t)

(
0
3

)]
.

All solutions x then have the form

x(t) = c1xr(t) + c2xi(t)

=

(
c1e
−2t cos(3t) + c2e

−2t sin(3t)
−2c1e

−2t cos(3t)− 3c1e
−2t sin(3t)− 2c2e

−2t sin(3t) + 3c2e
−2t cos(3t)

)
. (4.5.14)

In particular, all solutions to the original ODE ẍ+ 4ẋ+ 13x = 0 are

x(t) = c1e
−2t cos(3t) + c2e

−2t sin(3t).

Since
lim
t→∞

e−2t cos(3t) = lim
t→∞

e−2t sin(3t)

by the squeeze theorem, we see that limt→∞ x(t) = 0 for any solution to this ODE. This is
exactly what we expect in a damped harmonic oscillator.

Our next task is to draw phase portraits for systems with complex eigenvalues. In par-
ticular, if solutions go to 0 over long times, exactly how do they approach the origin?

This is where we finished on Friday, November 10, 2023.

4.5.39 Example. The work in Example 4.5.35 tells us that all solutions to

ẋ =

[
0 1
−1 0

]
x

have the form
x(t) =

(
c1 cos(t) + c2 sin(t)
−c1 sin(t) + c2 cos(t)

)
for some constants c1 and c2. If, for simplicity, we take c1 = 1 and c2 = 0, then we get
the solution x(t) = (cos(t),− sin(t)). The form of this solution should remind us of the
unit circle but parametrized in the “clockwise direction,” not the usual “counterclockwise”
direction.

Indeed, if x(t) = cos(t) and y(t) = sin(t), then (x(t))2 + (y(t))2 = 1, and so this solution
does lie on the unit circle. More generally, for arbitrary c1 and c2, we have (after some
algebra)(
c1 cos(t) + c2 sin(t)

)2
+
(
− c1 sin(t) + c2 cos(t)

)2
= (c21 + c22)(cos2(t) + sin2(t)) = c21 + c22.



4.5. Fundamental solution sets and phase portraits 208

So, all solutions lie on circles centered at the origin.
Furthermore, we can determine their orientation by thinking about the underlying di-

rection field. Any circle centered at the origin must pass through a point (r, 0) where
r > 0. (Here r, of course, is the radius of that circle.) We can determine the structure of
the direction field at that point by computing[

0 1
−1 0

](
r
0

)
=

(
0
−r

)
.

Since x > 0, the ideas in the table after Example 3.3.4 tell us that the arrow in the direction
field passing through (r, 0) points straight down.

x

y

r

This indicates that all circular trajectories evolve clockwise, as we observed above with
c1 = 1 and c2 = 0. So, the following cartoon describes the phase portrait.

x

y

More generally, if the eigenvalues of A have zero real part, i.e., if they are λ = ±βi for
some β 6= 0, then all solutions to ẋ = Ax lie on ellipses centered at the origin. Recall that
an ellipse centered at the origin is the set of all points (x, y) such that

x2

r21
+
y2

r22
= 1

for some r1, r2 > 0. To see this, observe from (4.5.12) that when α = 0, each component of
a solution c1xr + c2xi can be written in the form

A cos(βt) +B sin(βt)
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for some constants A and B. Now write A and B in polar coordinates:

A = r cos(θ) and B = r sin(θ), where r =
√
A2 +B2 and tan(θ) =

A

B
.

Then

A cos(βt) +B sin(βt) = r
[

cos(θ) cos(βt) + sin(θ) sin(βt)
]

= r cos(βt− θ),

where the last equality is a trig addition formula. The first component of c1xr + c2xi can
then be written as

x(t) = r1 cos(βt+ θ1),

where θ1 is just the negative of the θ from above; the second component can be written as

y(t) = r2 sin(βt+ θ2),

where here we have added π/2 to the phase shift from above to convert cosine into sine
(recall sin(τ + π/2) = cos(τ)).

All together, solutions to ẋ = Ax have the form

x(t) =

(
r1 cos(βt+ θ1)
r2 sin(βt+ θ2)

)
when A has the complex, purely imaginary eigenvalues λ = ±βi. With x = (x, y), such
solutions satisfy

x2

r21
+
y2

r22
= 1 (4.5.15)

and therefore lie on ellipses centered at the origin.
We can determine the direction of rotation by computing Av where v = (c, 0) with c > 0

arbitrary. If the y-component of Av is positive, then the trajectory passing through (c, 0)
is increasing in the y-direction, and therefore the rotation is counterclockwise. If the y-
component is negative, then the trajectory is decreasing in the y-direction, and therefore the
rotation is clockwise.

When A has purely imaginary eigenvalues, we call the origin a center for the system
ẋ = Ax. Here are some common phase portraits of centers.

x

y

x

y

x

y

x

y
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4.5.40 Problem (?). Suppose that q > 0. Sketch the phase portrait for the linear system

ẋ =

[
0 1
−q 0

]
x.

What does this say about the free undamped harmonic oscillator?

If A has complex eigenvalues with nonzero real part, i.e., the eigenvalues are λ = α ± iβ
with both α 6= 0 and β 6= 0, then the elliptical trajectories of the previous center case become
distorted into “spirals.” Specifically, using the fundamental solution set from (4.5.12), now
retaining the factor of eαt, we can do the same work with polar coordinates and trig addition
formulas as before to conclude that all solutions x to ẋ = Ax have the form

x(t) = eαt
(
r1 cos(βt+ θ1)
r2 sin(βt+ θ2)

)
.

The vector by itself still lies on the ellipse (4.5.15) as before, but now the factor of eαt either
expands this ellipse (in the case α > 0) out to ∞ or shrinks it down to the origin (in the
case α < 0).

When α < 0, we call the origin a spiral sink for ẋ = Ax: all solutions tend to the
origin along “spirals” like the two below.

x

y

x

y

When α > 0, we call the origin a spiral source for ẋ = Ax: all solutions tend away from
the origin along “spirals” like the two below.

x

y

x

y

As with centers, we can determine the orientation of the spiral (clockwise or counterclock-
wise) by calculating Av for some v = (r, 0), r > 0, and observing the sign of the y-component
of Av.
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4.5.41 Example. (i) In Example 4.5.38, we saw that the eigenvalues of

A =

[
0 1

−13 −4

]
are λ = −2 ± 3i. Here α = −2 < 0, so the origin is a spiral sink. We can determine the
orientation of the spiral by calculating[

0 1
−13 −4

](
r
0

)
=

(
0

−13r

)
with r > 0. Then −13r < 0, so the spiral is clockwise, and the phase portrait for ẋ = Ax
is the one below.

x

y

(ii) This linear system governs the harmonic oscillator whose equation of motion is
ẍ + 4ẋ + 13x = 0. This is a damped oscillator, so we expect that limt→∞ x(t) = 0 and
limt→∞ ẋ(t) = 0. And this is exactly what the phase portrait is saying: both x and y = ẋ
go to 0 over long times, because the portrait spirals into the origin.

We have seen many phase portraits go to the origin, but we never saw spirals until now.
Here is what the spiral means for the harmonic oscillator: each time the spiral crosses the
y-axis, the x-coordinate of the solution x = (x, y) must be 0. So, each crossing of the
y-axis corresponds to a zero of the function x, and physically that means the oscillator
is passing through its equilibrium position. Since the phase portrait spirals around the
origin infinitely many times (although we cannot show that in a realistic drawing), the
oscillator passes through equilibrium infinitely many times. Furthermore, as the portrait
spirals into the origin, the x-values become uniformly smaller (so do the y-values). This
means that after each pass through equilibrium, the oscillator still moves to the left or
right of equilibrium, but just to smaller and smaller displacements.

The result is that the graph of any (nonzero) solution x to ẍ + 4ẋ + 13x = 0 should
have the “decaying oscillatory” behavior below: the graph oscillates (like a sinusoid) but
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also decays (like an exponential).

t

x(t)

Of course, we could also see this from the formula for x in (4.5.14) from Example 4.5.38,
the first component of which gave us

x(t) = e−2t
(
c1 cos(3t) + c2 sin(3t)

)
.

This shows explicitly the exponential decay from e−2t hitting the oscillatory behavior of
the sinusoidal c1 cos(3t) + c2 sin(3t).

4.6. Variation of parameters for linear systems.

We have developed a remarkable amount of information about the homogeneous linear system
ẋ = Ax. This information will enable us to solve the nonhomogeneous problem ẋ = Ax+b(t)
and prove the existence and uniqueness result for linear system IVP in Theorem 4.1.20.

Here is what we have explicitly developed.

4.6.1 Theorem. Let A be a matrix. Then the linear system ẋ = Ax always has a funda-
mental solution set: there exist differentiable functions x1 and x2 on (−∞,∞) that solve
ẋ = Ax, and the vectors x1(0) and x2(0) are linearly independent.

4.6.2 Problem (!). To refresh your memory, explain how to construct x1 and x2 in all
of the different cases on the eigenvalues (and eigenvectors) of A. [Hint: there are a lot of
cases.]

We did not say in Theorem 4.6.1 that all solutions to ẋ = Ax have the form x =
c1x1 + c2x2, as we did in Theorem 4.3.4. Now the point is to prove the uniqueness result.

Our first step is to get a better fundamental solution set.
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4.6.3 Lemma. There exist differentiable functions φ1 and φ2 on (−∞,∞) that solve ẋ =
Ax and that satisfy

φ1(0) =

(
1
0

)
and φ2(0) =

(
0
1

)
.

4.6.4 Problem (!). Use Theorem 4.6.1 to prove this lemma.

It will be convenient to put these functions φ1 and φ2 into a matrix.

4.6.5 Lemma. With φ1 and φ2 from Lemma 4.6.3, define

Φ(t) :=
[
φ1(t) φ2(t)

]
. (4.6.1)

Then Φ(t) is invertible for all t. Moreover, with Φ̇(t) defined componentwise (or column-
wise) as in Problem 4.1.18, we have

Φ̇(t)v = A(Φ(t)v)

for any vector v.

4.6.6 Problem (!). Use Problem 4.3.7, the definition of linear independence, Theorem
4.2.10, and Problem 4.1.18 to prove this lemma.

With these tools in hand, we will mimic our work on variation of parameters for scalar
linear ODE in Section 2.7. There, we studied nonhomogeneous linear ODE like

ẋ = ax+ b(t) (4.6.2)

and easily solved the homogeneous problem

ẋ = ax (4.6.3)

in the form
x(t) = ceat (4.6.4)

for some constant c. (In Section 2.7, we also allowed a to depend on t; here, for simplicity,
and for analogy with the linear system ẋ = Ax+b(t), we keep a constant.) Then we guessed
that the nonhomogeneous problem (4.6.2) had a solution of the form

x(t) = u(t)eat (4.6.5)

and we evaluated the nonhomogeneous ODE (4.6.2) at this guess to develop a direct inte-
gration problem for u. A key step in the calculations was that eat 6= 0, so we could always
solve for u̇.

With systems, we are expecting that all solutions to the homogeneous system ẋ = Ax
should have the form

x(t) = c1x1(t) + c2x2(t)
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for some constants c1 and c2. This is analogous to the solution form (4.6.4) for the scalar
homogeneous problem (4.6.3). Strictly speaking, this is just an expectation, since we have
not proved any uniqueness result for linear systems. (The same thing happened even for
exponential growth: we never proved uniqueness of solutions for something as simple as
ẋ = ax until we did variation of parameters.)

Then, by analogy with the guess (4.6.5), we might expect that solutions to the nonhomo-
geneous system ẋ = Ax + b(t) should have the form

x(t) = u1(t)φ1(t) + u2(t)φ2(t) (4.6.6)

for some functions u1 and u2. Since we usually work with vectors, we could put

u(t) =

(
u1(t)
u2(t)

)
to rewrite the guess (4.6.6) in the form

x(t) = Φ(t)u(t), (4.6.7)

where Φ was defined in (4.6.1).

4.6.7 Problem (!). Show that u(0) = x(0). [Hint: Φ(0) = I, the identity matrix.]

With x in the form (4.6.6) or (4.6.7) we can calculate that if x solves ẋ = Ax+b(t), then

Φ(t)u̇(t) = b(t). (4.6.8)

4.6.8 Problem (!). Calculate this. [Hint: the product rule for matrix-vector multiplication
in Problem 4.1.18 may be helpful when x is in the form (4.6.7), or you could use the product
rule directly on (4.6.6) and then look for the matrix-vector product Φ(t)u̇(t) when the dust
settles.]

Since Φ(t) is invertible for all t, we can obtain from (4.6.8) the direct integration problem

u̇(t) = Φ(t)−1b(t)

for u. Recall that Φ(t)−1 was defined in Theorem 4.2.10. We solve this direct integration
problem as

u(t) = u(0) +

∫ t

0

Φ(τ)−1b(τ) dτ = x(0) +

∫ t

0

Φ(τ)−1b(τ) dτ.

Then from the form of x in (4.6.7) and the linearity of matrix-vector multiplication (note
that

∫ t
0
Φ(τ)−1b(τ) dτ is, in the end, just a vector), we have

x(t) = Φ(t)

(
x(0) +

∫ t

0

Φ(τ)−1b(τ) dτ

)
= Φ(t)x(0) + Φ(t)

∫ t

0

Φ(τ)−1b(τ) dτ.
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We have therefore shown that if x solves{
ẋ = Ax + b(t)

x(0) = x0,
(4.6.9)

then x has the form

x(t) = Φ(t)x0 + Φ(t)

∫ t

0

Φ(τ)−1b(τ) dτ. (4.6.10)

(Have we really? Yes: rewrite x(t) = Φ(t)u(t) where u(t) = Φ(t)−1x(t); then solve for u
as above.) Conversely, we could differentiate (4.6.10) and use the product rule for matrix-
vector multiplication (Problem 4.1.18) and Lemma 4.6.5 to conclude that defining x by
(4.6.10) gives a solution to (4.6.9).

This result would be nicer if we knew that Φ was unique, but, unfortunately, Lemma 4.6.3
could not give that to us.

4.6.9 Problem (?). Suppose that x1 and x2 both solve (4.6.9). Put y(t) := x1(t)− x2(t)
and show that y solves {

ẏ = Ay

y(0) = 0.

Conclude from the formula (4.6.10) with x0 = 0 and b(t) = 0 that

y(t) = Φ(t)0 + Φ(t)

∫ t

0

Φ(τ)−10 dτ = 0

and therefore x1 = x2. This means that solutions to (4.6.9) are indeed unique.

It turns out that we can simplify (4.6.10) even further to avoid some matrix multiplication
and, in particular, the matrix inverse. First, for a given t, the matrix Φ(t) is constant with
respect to the variable of integration τ in the integral

∫ t
0
Φ(τ)−1b(τ) dτ, and so if we use

the componentwise definition of the integral in Definition 4.1.6 and the definition of matrix-
vector multiplication (again, for each t, the integral

∫ t
0
Φ(τ)−1b(τ) dτ is a vector), we obtain

Φ(t)

∫ t

0

Φ(τ)−1b(τ) dτ =

∫ t

0

Φ(t)
(
Φ(τ)−1b(τ)

)
dτ.

Next, it turns out that
Φ(t)

(
Φ(τ)−1v

)
= Φ(t− τ)v (4.6.11)

for any vector v and any numbers t and τ.

4.6.10 Problem (+). Prove this. Specifically, fix τ and define

ψ1(t) := Φ(t+ τ)
(
Φ(τ)−1v

)
and ψ2(t) := Φ(t)v.
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Show that ψ1 and ψ2 both solve {
ψ̇ = Aψ

ψ(0) = v

and therefore ψ1(t) = ψ2(t) for all t by the uniqueness result for (4.6.9). In particular,
ψ1(t− τ) = ψ2(t− τ), which is (4.6.11). [Hint: use Lemma 4.6.5 to differentiate Φ.]

Here is our hard-won conclusion.

4.6.11 Theorem. Let b be continuous on an interval I containing 0. Then the unique
solution to the IVP {

ẋ = Ax + b(t)

x(0) = x0

(4.6.12)

is

x(t) = Φ(t)x0 +

∫ t

0

Φ(t− τ)b(τ) dτ,

where

Φ(t) =
[
φ1(t) φ2(t)

]
,

{
φ̇1 = Aφ1

φ1(0) = (1, 0),
and

{
φ̇2 = Aφ2

φ2(0) = (0, 1).

4.6.12 Problem (!). How does this result remind you of Problem 2.8.4?

Theorem 4.6.11 is a very precise result that completely answers the question of existence
and uniqueness of solutions for linear system IVP and that gives an exact formula to boot.
The problem is that the formula is a monstrosity: one has to construct the matrix Φ(t)
by solving two linear homogeneous system IVP, then multiply the matrix and b, and then
integrate. All of the antidifferentiation problems that haunted scalar variation of parameters
can reappear here, and now there are two components. In practice, one rarely cares about
the precise formula for solutions to (4.6.12) in terms of elementary functions; instead, the
integral representation is typically sufficient (and preferred) for deeper analysis of the system.

4.6.13 Problem (+). Theorem 4.1.20 put the initial condition at t0, not 0. Apply Theo-
rem 4.1.20 to the IVP {

ẏ = Ay + b(t+ t0)

y(0) = x0

and then change variables in the integral to prove Theorem 4.1.20.

This is where we finished on Monday, November 13, 2023.
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5. SECOND-ORDER LINEAR EQUATIONS

We started down the long dark path of linear systems by considering first the harmonic
oscillator, which is governed by a second-order linear IVP of the form

mẍ+ bẋ+ κx = f(t)

x(0) = x0

ẋ(0) = y0.

(5.0.1)

Physically, for the oscillator, we demanded m > 0, b ≥ 0, and κ > 0, but as a mathematical
problem (not considering any underlying model), this IVP makes sense for any values of m,
b, and κ. To keep things interesting, we should suppose m 6= 0, as otherwise the problem
reduces to a first-order linear IVP (with an extra constraint on ẋ, which possibly makes the
problem unsolvable!).

We converted this single second-order problem to a system of two first-order equations
by first rescaling and then introducing a new variable:

mẍ+ bẋ+ κx = f(t)

ẍ+ pẋ+ qx = g(t)

ẋ = Ax + b(t)

p =
b

m
, q =

κ

m
, g(t) =

f(t)

m

y = ẋ, x =

(
x
y

)
, A =

[
0 1
−q −p

]
, b(t) =

(
0
g(t)

)

We have now completely solved the driven linear system ẋ = Ax + b(t), first in the
homogeneous case b(t) = 0 (with lots of subcases based on the eigenvalues of A and, some-
times, their eigenvectors) and then in the nonhomogeneous case via the great and terrible
variation of parameters formula for systems. In theory, then, we could solve the IVP (5.0.1)
by converting it to a system and applying systems methods.

In theory. In practice, we can extract some shortcuts from our diligent systems work
based largely on the very special structure of A here. Note that the first row of A consists
of the numbers 0 and 1. This is very special indeed. Then we will be able to analyze some
aspects of the structure of solutions to (5.0.1) quite quickly.

5.0.1 Problem (+). It is also possible to do all of this in reverse. That is, suppose that
we know everything there is to know about solving (??), and now we want to solve a linear
system{

ẋ = Ax + f(t)

x(0) = x0,
A =

[
a b
c d

]
, x0 =

(
x0
y0

)
, f(t) =

(
f1(t)
f2(t)

)
. (5.0.2)



5.1. The homogeneous problem 218

Suppose that f1 is differentiable. Then ẋ(t) = ax(t) + by(t) +f1(t), and since x and y solve
the system and are therefore differentiable, ẋ is the sum of three differentiable functions
and is therefore differentiable itself. Compute

ẍ = aẋ+ bẏ + ḟ1(t)

and substitute
ẏ = cx+ dy and by = ẋ− ax

to obtain
ẍ = (a+ d)ẋ− (ad− bc)x+ bḟ1(t) + f2(t).

Conclude that the problem (5.0.2) is equivalent to
ẍ− tr(A)ẋ+ det(A)x = bḟ1(t) + f2(t)

x(0) = x0

ẋ(0) = ax0 + by0

and

{
ẏ = dy + cx

y(0) = y0.

Note that if f1 = f2 = 0 (i.e., if the linear system is homogeneous), then the coefficients in
ẍ− tr(A)ẋ+ det(A)x = 0 are the same as in the characteristic equation for A.

We will learn how to solve the first IVP above from scratch shortly. Then we can view
the second IVP as a first-order linear ODE in y driven by cx, and we will know x from the
first IVP.

5.1. The homogeneous problem.

First we study the homogeneous problems

mẍ+ bẋ+ κx = 0 and ẍ+ pẋ+ qx = 0, (5.1.1)

which lead to homogeneous systems of the form ẋ = Ax; throughout this section, we will
use A to mean the matrix

A =

[
0 1
−q −p

]
. (5.1.2)

The characteristic equation for such A reads

mλ2 + bλ+ κ = 0 ⇐⇒ λ2 + pλ+ q = 0,

and so its solutions (the eigenvalues of A) are

λ =
−b±

√
b2 − 4mκ

2m
=
−p±

√
p2 − 4q

2
.

Everything that follows depends on the sign of the discriminant b4 − 4mκ = p2 − 4q: is
it positive, negative, or zero? Going forward, we will abuse terminology and refer to the
characteristic equation for A as the characteristic equation for the ODE (5.1.1);
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also, we will call the eigenvalues of A (i.e., the roots of the characteristic equation) the
eigenvalues for the ODE (5.1.1).

We will present qualitative results only for the harmonic oscillator; that is, when con-
sidering the long-time behaviors of solutions, we will assume m > 0, b ≥ 0, and κ > 0,
equivalently, p ≥ 0 and q > 0. When we do not put such sign conditions on the ODE in
(5.1.1), the phase portraits for ẋ = Ax can have any of the behaviors that we previously
observed, except one.

5.1.1 Problem (+). Suppose that λ is a repeated eigenvalue for a matrix A in the form
(5.1.2). Explain why there cannot be two linearly independent eigenvectors for λ. [Hint:
use the result of Problem 4.5.23.]

5.1.1. There are two real, distinct eigenvalues.

Here we assume
b2 − 4mκ > 0 ⇐⇒ p2 − 4q > 0,

and so the eigenvalues are

λ1 :=
−b+

√
b2 − 4mκ

2m
=
−p−

√
p2 − 4q

2
and λ2 :=

−b−
√
b2 − 4mκ

2m
=
−p−

√
p2 − 4q

2
.

Note that λ1 > λ2 here.
Then eigenvectors for A corresponding to λ1 and λ2 are, respectively,(

1
λ1

)
and

(
1
λ2

)
(5.1.3)

by Problem 4.4.5, and all solutions to ẋ = Ax are

x(t) = c1e
λ1t

(
1
λ1

)
+ c2e

λ2

(
1
λ2

)
.

Now we can extract the solution x to the ODE (5.1.1) just from the first component of x
above:

x(t) = c1e
λ1t + c2e

λ2t.

5.1.2 Example. The characteristic equation for the ODE

ẍ+ 4ẋ+ 3x = 0

is
λ2 + 4λ+ 3 = 0,

equivalently,
(λ+ 1)(λ+ 3) = 0.

Thus its roots are λ = −1, −3, and so all solutions to this ODE are

x(t) = c1e
−t + c2e

−3t.
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In the case of the harmonic oscillator, both eigenvalues λ1 and λ2 are negative.

5.1.3 Problem (?). Prove this. [Hint: for the harmonic oscillator, p ≥ 0, so −p ≤ 0. If
p = 0, then we have complex, nonreal roots, so assume p > 0. Then it is definitely the case
that λ2 < 0. (Why?) We have λ1 < 0 if and only if

√
p2 − 4q < p. Square both sides of

this inequality and use the fact that q > 0.]

So, for the harmonic oscillator, we are in the case of two distinct, negative eigenvalues,
and therefore the origin is a sink for ẋ = Ax. We call this oscillator overdamped,
chiefly in contrast to the “underdamped” case when the eigenvalues are complex and nonreal
(see below). Moreover, due to the structure of the eigenvectors in (5.1.3), all straight-line
solutions to ẋ = Ax lie on the lines y = λ1x and y = λ2x, which have negative slope. The
phase portrait for the harmonic oscillator might then look like the following.

x

yy = λ1x

y = λ2x

Here are some possible graphs for displacement x. In general, solutions when there are
two distinct negative eigenvalues will either monotonically decrease (or increase) to 0 or have
one local maximum (minimum) and then decrease (increase) monotonically to 0 after that
extreme value.

t

x(t)

t

x(t)

t

x(t)

5.1.2. There is one repeated real eigenvalue.

Here we assume
b2 − 4mκ = 0 ⇐⇒ p2 − 4q = 0.
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Note that since m 6= 0, we can solve for κ as κ = b2/4m, and likewise for q as q = p2/4. For
the oscillator, this implies a precise quantitative relationship among the mass, the damping
constant, and the spring constant; more generally, this case creates a specific relationship
among the coefficients of the ODE (5.1.1).

The only eigenvalue is then

λ = − b

4m
= −p

2
,

and an eigenvector is

v =

(
1
λ

)
.

All solutions to ẋ therefore have the form

x(t) = c1e
λt

(
1
λ

)
+ c2

[
teλt

(
1
λ

)
+ eλtw

]
,

where w needs to satisfy
(A− λI)w = v.

Remarkably, here we can take

w =

(
0
1

)
.

This is due to the very special structure of A.

5.1.4 Problem (?). Check this in two ways. First, with w = (0, 1) and λ = −p/2, directly
calculate (A− λI)w and show that this equals v = (1, λ). Second, find all solutions w to
the system (A− λI)w = v with λ = −p/2 and v = (1, λ); show that one such solution is
w = (0, 1).

Thus all solutions to ẋ = Ax here are

x(t) = c1e
λt

(
1
λ

)
+ c2

[
teλt

(
1
λ

)
+ eλt

(
0
1

)]
.

Extracting the first component, all solutions to the ODE are

x(t) = c1e
λt + c2te

λt.

Note that the vector w contributes nothing to the first component!

5.1.5 Example. The characteristic equation for the ODE

ẍ+ 2ẋ+ x = 0

is
λ2 + 2λ+ 1 = 0,

which factors into
(λ+ 1)2 = 0.
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Thus the only root is λ = −1, so all solutions to the ODE are

x(t) = c1e
−t + c2te

−t.

In the case of the harmonic oscillator, we have λ = −p/2 < 0, as p ≥ 0, and if p = 0,
then we have complex, nonreal eigenvalues. We call this harmonic oscillator critically
damped—the value p is “critical” in the sense that if it is made slightly larger, then we
have two distinct real eigenvalues, and if it is made slightly smaller, then we have complex,
nonreal eigenvalues. All straight-line solutions lie on the line y = λx, which has negative
slope. All other solutions “twist” into the origin according to one of the two phase portraits
below.

x

yy = λx

x

yy = λx

One possible graph for displacement x is the following; there are other variations, de-
pending on how the arbitrary constants c1 and c2 are selected, but all variations are similar
to the overdamped oscillator.

5.1.3. There are two complex conjugate eigenvalues.

Here we assume
b2 − 4mκ < 0 ⇐⇒ p2 − 4q < 0.

The eigenvalues are then λ = α± βi, where

α = − b

2m
= −p

q
and β =

√
4mκ− b2

2m
=

√
4q − p2

2
.

Note that since b2− 4mκ < 0, we have 4mκ− b2 > 0, and likewise 4q− p2 > 0, so the square
root does indeed produce a positive real number. In particular, while α may be positive,
negative, or 0, we always have β > 0.

An eigenvector for A corresponding to α + βi is

v =

(
1

α + βi

)
= vr + ivi where vr =

(
1
α

)
and vi =

(
1
β

)
.

From the demanding structure of the fundamental solution set in (4.5.12), we conclude that
all solutions to ẋ = Ax are

x(t) = eαt
(

c1 cos(βt) + c2 sin(βt)
−c1β sin(βt) + c2β cos(βt)

)
. (5.1.4)
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5.1.6 Problem (!). Chase through the algebra and check this.

From the first component of (5.1.4), all solutions to the ODE are then

x(t) = eαt
(
c1 cos(βt) + c2 sin(βt)

)
. (5.1.5)

This factorization emphasizes the separate roles of α and β. The parameter β, which is always
positive, induces oscillations from the sine and cosine terms. The parameter α induces decay
if α < 0 or blow-up if α > 0, whereas when α = 0 the solutions are purely sinusoidal and
thus oscillatory.

5.1.7 Example. (i) The characteristic equation for the ODE

ẍ+ 4x = 0

is
λ2 + 4 = 0,

and hopefully we see immediately that its roots are

λ = ±2i.

Here α = 0 and β = 2, so all solutions to the ODE are

x(t) = c1 cos(2t) + c2 sin(2t).

The solutions are purely oscillatory, and there is no exponential growth or decay.

(ii) The characteristic equation for the ODE

ẍ+ 4ẋ+ 13 = 0

is
λ2 + 4λ+ 13 = 0,

and (after going to the quadratic formula and doing some arithmetic), its roots are

λ = −2± 3i.

Here α = −2 and β = 3, and so all solutions to the ODE are

x(t) = e−2t
(
c1 cos(3t) + c2 sin(3t)

)
.

In the case of the harmonic oscillator, we have α = −p/2 ≤ 0. If α = p = 0, then solutions
are purely sinusoidal, and the oscillator is (as we have said many times before) undamped.
In the phase portrait, solutions to ẋ = Ax lie on ellipses centered at the origin, which is a
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center for this system. Specifically, these elliptical trajectories move clockwise.

x

y

x

y

5.1.8 Problem (?). Explain why. [Hint: in the direction field for ẋ = Ax, in what
direction does the arrow through (r, 0) point when r > 0? See the table after Example 3.3.4
to determine the direction of the arrow from the signs of ẋ and ẏ; remember that here ẋ = y
and ẏ = −px− qy.]

However, if α < 0 (i.e., p > 0), then solutions decay exponentially, and the oscillator is
underdamped. Nonetheless, even if α < 0, we always have β > 0, and so the sinusoidal
terms in (5.1.5) will contribute small (but decaying) oscillations to the graph of x. In the
phase portrait, solutions to ẋ = Ax lie on spirals that move into the origin, and so the origin
is a spiral sink for this system. Each intersection of the spiral with the y-axis represents
a root of the component x; there are infinitely many roots, but the extreme values of x
between successive roots decay to 0 due to the negative exponential factor. The spirals move
clockwise, like the ellipses in the center case.

x

y

5.1.9 Problem (?). Use the hint for Problem 5.1.8 to explain why.

Because of the presence of these oscillations, solutions for the harmonic oscillator with
α < 0 do not monotonically decay to 0 over long times; they keep oscillating between
(successively smaller!) positive and negative values. For this reason, in contrast with the
case of two distinct, negative real eigenvalues, the oscillator with α < 0 is underdamped—
the damping force is not strong enough to keep the oscillator strictly to the right or left of
equilibrium. See the graph in Example 4.5.41.

This is where we finished on Wednesday, November 15, 2023.
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5.2. The nonhomogeneous problem.

Now we study the nonhomogeneous problem

ẍ+ pẋ+ qx = g(t). (5.2.1)

For convenience, we are assuming that the coefficient on ẍ is 1. When p ≥ 0 and q > 0, we
view (5.2.1) as modeling a harmonic oscillator driven by some external force (i.e., some force
in addition to the ever-present spring force and the possibly present damping force), and so
we will call g the forcing or driving term.

We can first say quite a bit about the structure of solutions to this ODE. Suppose that
we have found one particular solution x? to (5.2.1) and that x is any other solution. Then

x(t) = φ(t) + x?(t),

where φ is some solution to the homogeneous problem

ẍ+ pẋ+ qx = 0.

Specifically, φ will have the form

φ(t) =


c1e

λ1t + c2e
λ2t, if λ1 and λ2 are the distinct real eigenvalues

c1e
λt + c2te

λt, if λ is the only repeated real eigenvalue
eαt
(
c1 cos(βt) + c2 sin(βt)

)
, if α± βi(β 6= 0) are complex conjugate eigenvalues.

In other words, any solution to the nonhomogeneous problem is the sum of one particular
solution to the nonhomogeneous problem and some solution to the homogeneous problem.

5.2.1 Problem (!). Prove this. Specifically, given two solutions x and x? to (5.2.1), put
φ(t) := x(t) − x?(t). Show that φ̈ + pφ̇ + qφ = 0. How does this resemble the linearity
principle for first-order linear ODE (Theorem 2.7.20)?

We can always solve the nonhomogeneous problem (5.2.1), at the cost of having to work
with a complicated integral.

5.2.2 Theorem. Let g be continuous on an interval I containing 0 and let φ10 and φ01

solve the homogeneous IVP
φ̈10 + pφ̇10 + qφ10 = 0

φ10(0) = 1

φ̇10(0) = 0

and


φ̈01 + pφ̇01 + qφ01 = 0

φ01(0) = 0

φ̇01(0) = 1.

Then the function

x?(t) :=

∫ t

0

φ01(t− τ)g(τ) dτ
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satisfies 
ẍ? + pẋ? + qx? = g(t)

x?(0) = 0

ẋ?(0) = 0,

and the only solution to 
ẍ+ pẋ+ qx = g(t)

x(0) = x0

y(0) = y0

is
x(t) := x0φ10(t) + y0φ01(t) + x?(t).

5.2.3 Problem (+). (i) Use Theorem 4.6.11 to prove Theorem 5.2.2. [Hint: in Theorem
4.6.11, take b(t) = (0, g(t)) and x0 = 0. Due to the structure of the underlying A here,
it will be the case that the homogeneous solutions φ1 and φ2 in Theorem 4.6.11 will have
the form φ1 = (φ10, φ̇10) and φ2 = (φ01, φ̇01). Here the subscripts are meant to reflect the
initial conditions that φ1 and φ2 meet.]

(ii) How does this result resemble Theorem 2.7.23?

Unfortunately, the integral in this theorem is at best opaque, at worst impossible to
evaluate in terms of elementary functions. However, we can adapt the method of undeter-
mined coefficients from first-order problems to (5.2.1) when the forcing term g has one of
several special forms. Fortunately, these forms are common in applications. Specifically, the
following g are both mathematically tractable and physically relevant.

1. Constant forcing: g(t) = A for some real number A. Such a g could represent a constant
force applied continuously to an oscillator.

2. Exponential forcing: g(t) = Aert for some real numbers A and r. Such a g could represent
a force that increases (r > 0) or decreases (r < 0) exponentially in strength over time.

3. Sinusoidal forcing: g(t) = A cos(ωt) or g(t) = B sin(ωt) for some real numbers A, B, and
ω. Such a g could represent a force that varies periodically and continuously between two
extremes; the parameters A and B are the extreme values of this force, and the parameter ω
controls the period of the force, equivalently, the frequency at which the force varies between
its extreme values.

We will study some of these forcing types in isolation, but combining them is easy.

5.2.4 Problem (!). Suppose that x1 and x2 are solutions to

ẍ1 + pẋ1 + qx1 = g1(t) and ẍ2 + pẋ2 + qx2 = g2(t).
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Show that the function y(t) := Ax1(t) +Bx2(t) solves

ÿ + pẏ + qy = Ag1(t) +Bg2(t)..

5.2.1. Sinusoidal forcing.

Here we study the problem
ẍ+ pẋ+ qx = A cos(ωt).

5.2.5 Example. Consider the ODE

ẍ+ 4x = cos(3t).

This represents an undamped harmonic oscillator with a sinusoidal external force.

1. First we look at the homogeneous problem

ẍ+ 4x = 0.

The characteristic equation is
λ2 + 4 = 0,

which, as we know well, has the complex conjugate roots λ = ±2i, and so all homogeneous
solutions are

φ(t) = c1 cos(2t) + c2 sin(2t).

Then all solutions to the original nonhomogeneous problem have the form

x(t) = c1 cos(2t) + c2 sin(2t) + x?(t)

for one particular solution x? to the nonhomogeneous problem.

2. Based on our work with sinusoidal forcing for first-order ODE (Section 2.8.2), we should
be inclined to guess that one particular solution to this ODE should have the form

x(t) = α cos(3t) + β sin(3t)

for some constants α and β. After all, what sort of function x, on taking two derivatives
and being added to itself, yields cos(3t)? Surely only an x involving cos(3t) and maybe
sin(3t); our first-order experience suggests that including the sin(3t) term at the start is
necessary.

3. Under this guess, we have

ẋ(t) = −3α sin(3t) + 3β cos(3t) and ẍ = −9α cos(3t)− 9β sin(3t).

Substituting this guess for x and this expression for ẍ into the ODE, we obtain(
− 9α cos(3t)− 9β sin(3t)

)
+ 4
(
α cos(3t) + β sin(3t)

)
= cos(3t).
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This simplifies to
−5α cos(3t)− 5β sin(3t) = cos(3t),

and then
(−5α− 1) cos(3t)− 5β sin(3t) = 0.

4. Since we want this to be true for all t, Problem 2.8.13 tells us that we need

−5α− 1 = 0 and − 5β = 0.

The second equation gives us β = 0 and the first α = −1/5.

5. So, our guess has yielded the particular solution

x?(t) = −cos(3t)

5

for the ODE. Thus all solutions to the ODE are

x(t) = φ(t) + x?(t) = c1 cos(2t) + c2 sin(2t)− cos(3t)

5
.

In particular, all solutions are periodic and bounded.

5.2.6 Problem (?). Adapt the work of the preceding example to find all solutions to

ẍ+ ω2
0x = A cos(ωt)

when ω0 > 0 and ω0 6= ω and A is any real number. Where explicitly in your work are you
using the condition ω0 6= ω?

5.2.2. Resonance.

A remarkable result can occur if we force an undamped harmonic oscillator by a sinusoidal
force with just the right frequency.

5.2.7 Example. We solved ẍ + 4x = cos(3t) in Example 5.2.5 and saw that all solutions
are periodic and bounded. Suppose we change the frequency of the forcing function and
consider instead the ODE

ẍ+ 4x = cos(2t).

1. As in Example 5.2.5, the homogeneous problem is ẍ + 4x = 0, and so its solutions are
φ(t) = c1 cos(2t) + c2 sin(2t). Again, and as always, we just need one particular solution to
ẍ+ 4x = cos(2t).

2. A natural first step is to try the same guess as before: x(t) = α cos(2t)+β sin(2t). Then

ẋ(t) = −2α sin(2t) + 2β cos(2t) and ẍ(t) = −4α cos(2t)− 4β sin(2t).
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Substituting this into the ODE ẍ+ 4x = cos(2t), we obtain(
− 4α cos(2t)− 4β sin(2t)

)
+ 4
(
α cos(2t) + β sin(2t)

)
= cos(2t),

and thus
cos(2t) = 0,

which is impossible.

3. The problem with our first guess is that the functions x1(t) = cos(2t) and x2(t) = sin(2t)
both solve the homogeneous problem ẍ+ 4x = 0. Substituting them into ẍ+ 4x = cos(2t)
has absolutely no effect and does not afford us any control over α and β.

4. Something similar happened in Example 2.8.9, and we saw there that a good idea was
to multiply the original guess by t. We try this again and guess

x(t) = t
(
α cos(2t) + β sin(2t)

)
.

Then
ẋ(t) = α cos(2t) + β sin(2t) + t

(
− 2α sin(2t) + 2β cos(2t)

)
and

ẍ(t) = −2α sin(2t)+2β cos(2t)+
(
−2α sin(2t)+2β cos(2t)

)
+t
(
−4α cos(2t)−4β sin(2t)

)
= −4α sin(2t) + 4β cos(2t) + t

(
− 4α cos(2t)− 4β sin(2t)

)
.

5. Substituting these calculations into the ODE, we find that we need

−4α sin(2t) + 4β cos(2t) + t
(
−4α cos(2t)−4β sin(2t)

)
+ 4t

(
α cos(2t) +β sin(2t)

)
= cos(2t).

The terms with a factor of t on the left cancel each other out perfectly, and so this reduces
to

−4α sin(2t) + 4β cos(2t) = cos(2t),

and thus
−4α sin(2t) + (4β − 1) cos(2t) = 0.

Then we need
−4α = 0 and 4β − 1 = 0,

so α = 1 and β = 1/4. Thus one particular solution to the ODE is

x?(t) =
t sin(2t)

4
,

and so all solutions are

x(t) = φ(t) + x?(t) = c1 cos(2t) + c2 sin(2t) +
t sin(2t)

4
.
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6. The key difference between solutions to this ODE ẍ + 4x = cos(2t) and our previous
example ẍ+4x = cos(3t) is the structure of the particular solution. Here, x?(t) = t sin(2t)/4
is neither periodic nor bounded due to the fact of t. (Consequently, no solution to ẍ+4x =
cos(2t) is periodic or bounded!) In fact, x? oscillates between progressively larger values as
t → ∞ (which is not to say that limt→∞ x?(t) = ±∞; in fact, x? has no limit as t → ∞).
Here is a graph of x?.

t

t sin(2t)/4

5 10 15

2

−2

4

−4

Note that the oscillations of x? keep growing as t gets larger; these are the dotted lines
that “envelop” the graph. We can see this analytically by taking t = (2k + 1)π/4, where k
is an integer, and computing

x?(tk) =
(2k + 1)π

16
sin

(
(2k + 1)π

2

)
=

(2k + 1)π

16
(−1)k + 1.

As k →∞, we have x?(t2k)→ −∞ and x?(t2k+1)→∞.

7. The key difference between the structure of this ODE ẍ+4x = cos(2t) and the previous
example ẍ+4x = cos(3t) is that the frequency of the periodic forcing term here is the same
as the frequency of solutions to the homogeneous problem ẍ + 4x = 0: both frequencies
are 2. We can think of the homogeneous problem ẍ+ 4x = 0 as representing material data
inherent to the oscillator; here, its mass is always 1, its spring constant is always 4, and
there is no friction. Given such an oscillator, we can choose to apply different forces, like
g(t) = cos(3t) as before or g(t) = cos(2t) as we did now. Choosing the force to interact
in a very special way with the material data of the oscillator (the number 2) led to the
extreme behavior of x?.

The phenomenon of the previous example is called resonance and broadly refers to
forcing an (inherently undamped) oscillator by the same “natural” frequency at which solu-
tions to the homogeneous problem oscillate.

5.2.8 Problem (?). (i) Generalize the work of the preceding example to find all solutions
to

ẍ+ ω2x = A cos(ωt),



5.2. The nonhomogeneous problem 231

where A and ω are any numbers with ω 6= 0. Contrast your result with that of Problem
5.2.6.

(ii) How does your work here remind you of a certain part of Problem 2.8.11?

(iii) Why did we never see resonance in the first-order problem

ẋ = ax+ b cos(ωt)?

[Hint: reread Problem 2.8.14.]

This is where we finished on Friday, November 17, 2023.
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6. The Laplace Transform

There will be no further updates to the lecture notes, as we will follow the textbook more
or less verbatim. See the daily reading log.
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