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OVERVIEW OF NOTES

These are lecture notes for a course in complex analysis. The prerequisite is multivariable
calculus, not real analysis.

The notes contain three classes of problems.

(!) Problems marked (!) are meant to be attempted immediately. They will directly address
or reinforce something that we covered in class. It will be to your great benefit to pause and
work (!)-problems as you encounter them.

(?) Problems marked (?) are intentionally more challenging and deeper than (!)-problems.
The (?)-problems will summarize and generalize ideas that we have discussed in class and
give you broader, possibly more abstract perspectives. You should attempt the (?)-problems
on a second rereading of the lecture notes, after you have completed the (!)-problems and
required problems from the textbook. As you prepare for an exam, you should definitely
attempt all (?)-problems in sections that will appear on that exam.

(+) Problems marked (+) are candidates for the portfolio project. These are meant to be
more challenging than the (!)- and (?)-problems and will take you deeper into calculations
and proofs and make connections to concepts across and beyond the course. Some (+)-
problems do presume knowledge of other classes (e.g., linear algebra, differential equations,
real analysis, topology), but the majority do not. It is not necessary to do all (+)-problems in
preparation for an exam; instead, you should look out for (+)-problems that you find inter-
esting and exciting, as that will make the portfolio project more meaningful (and palatable)
for you.
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INTRODUCTION

The fundamental object of our study in this course is the complex number: an expression
of the form x + iy, where x and y are real numbers and the symbol i satisfies i2 = −1. We
denote by R the set of all real numbers and by C the set of all complex numbers, so

C =
{
x+ iy

∣∣ x, y ∈ R, i2 = −1
}
.

There are at least three algebraic and set-theoretic problems with this attempt at defining
complex numbers.

Problem 1. What exactly does “expression” mean? This is (probably) not a formally de-
fined mathematical term.

Problem 2. Why should there exist an “object” (for lack of a better word right now) i such
that i2 = −1? Certainly i cannot be a real number, as x2 ≥ 0 for any x ∈ R.

Problem 3. If y ∈ R and i satisfies i2 = −1 (whatever i is. . .), what does the “multiplica-
tion” iy mean? How is this operation defined? Likewise, how do we add x and iy if the only
addition that we know works only on real numbers?

We defer any rigorous treatment of these questions (and there are several such approaches)
to Appendix B.2. For now, we address a more immediate question: who cares?

We fundamentally care about complex numbers because they inherently arise in problems
that ostensibly contain only real numbers. Perhaps the canonical example of such a problem
is the quadratic equation.

Example. (i) The quadratic equation that most directly gives rise to complex numbers is
surely

x2 + 1 = 0.

Symbol-pushing of the follow-one’s-nose sort yields the following:

x2 + 1 = 0 =⇒ x2 = −1 =⇒ x = ±
√
−1 =⇒ x = ±i.

However, our experience with real numbers tells us that only nonnegative real numbers
have square roots, so

√
−1 is something new. Moreover, the complaint that we raised

above appears here: if x ∈ R, then x2 ≥ 0, so no real x can satisfy x2 = −1.

(ii) More generally, any quadratic equation of the form

ax2 + bx+ c = 0

will have complex, nonreal roots if b2 − 4ac < 0.

(iii) Quadratic equations with complex roots play a central role in two related applications.
First, the characteristic equation of the ordinary differential equation

my′′ + by′ + κy = 0
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is the quadratic equation
mλ2 + bλ+ κ = 0.

The existence of complex, nonreal roots for this quadratic equation generates oscillatory
(sinusoidal) solutions for the ODE above. Note that physically m, b, and κ are often
taken as nonnegative parameters (with m and κ usually positive), and so the “data” of this
differential equation is very much real.

(iv) Second, the characteristic equation (same name as above, different setting)
of the matrix [

a b
c d

]
.

is the quadratic equation
λ2 − (a+ d)λ+ (ad− bc) = 0.

The roots of this quadratic equation are the “eigenvalues” of the matrix above, and the
minimal data of eigenvalues control a wide variety of useful properties of this matrix.

Complex numbers also enter ostensibly real-valued problems via external instruments
(which, at first glance, might appear a bit artificial). Fourier analysis offers a bevy of such
instruments.

Example. Suppose that for y ∈ R, we define the complex exponential eiy to be

eiy := cos(y) + i sin(y).

There are many good, natural reasons for doing this, which we will discuss later—starting
from the very definition of what an exponential is, or should do.

(i) For a “suitably nice” function f : R → R, we can represent f as an integral via the
Fourier inversion identity:

f(x) =

∫ ∞
−∞

F[f ](k)eikx dk, F[f ](k) :=
1√
2π

∫ ∞
−∞

f(t)e−ikt dt,

with F[f ] as the Fourier transform of f . These improper integrals may look much
worse than just f , but they turn out to be valuable means of encoding actions on and
properties of f , in particular how f behaves in differential equations and certain measures
of “size” of f . For example, if we assume that we can “differentiate under the integral”
(which, like “suitably nice,” can be made rigorous), then

f ′(x) =
d

dx

∫ ∞
−∞

F[f ](k)eikx dk =

∫ ∞
−∞

∂

∂x
[F[f ](k)eikx] dk =

∫ ∞
−∞

ikF[f ](k)eikx dk,

and so “on the Fourier side,” differentiating (an analytic process involving limits) corre-
sponds to multiplying F[f ](k) by ik (an algebraic process that hopefully is simpler than
taking limits).
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(ii) For a “suitably nice” 2π-periodic function f : [−π, π] → R, we can expand f as a
Fourier series:

f(x) =
∞∑

k=−∞

f̂(k)eikx := lim
n→∞

n∑
k=−n

f̂(k)eikx, f̂(k) :=
1√
2π

∫ π

−π
f(t)e−ikt dt,

with f̂(k) as the kth Fourier coefficient of f for integers k. This morally has much
in common with Fourier inversion and transforms of functions on R, but one advantage
here is that essentially all important properties of f can be recovered from the countable
collection of Fourier coefficients f̂(k), which is much less data than having to manage every
single value of f on the uncountable set [−π, π]. Another advantage is that, term-by-term,
complex exponentials are extremely easy to manipulate algebraically and analytically.

Any control over either Fourier transforms or series must rest on a firm understanding
of the complex exponential.

Internally, problems that are posed with real numbers can sometimes be “extended” to
involve complex numbers. Such extensions often elicit features of these problems that are
“invisible” when considered only from the real point of view.

Example. (i) The function

f : R→ R : x 7→ 1

1 + x2

is infinitely differentiable in the sense that its kth derivative f (k) exists for any
integer k ≥ 0. Moreover, f is real analytic on the interval (−1, 1) in the sense that
its Taylor series centered at 0, which is

S(x) =
∞∑
k=0

f (k)(0)

k!
xk =

∞∑
j=0

(−1)jx2j,

converges to f(x) for any |x| < 1, i.e., f(x) = S(x) on (−1, 1). However, this Taylor series
diverges for |x| ≥ 1. In light of the apparently good behavior of f on R, this should seem
surprising. What deeper property of or mechanism within f , beyond routine applications
of series convergence tests from calculus, restricts the convergence of this Taylor series to
just (−1, 1)?

“Extending” f to C, or as much of C as possible, suggests an answer. Define

f̃ : C \ {±i} → C : z 7→ 1

1 + z2

We have f̃(x) = f(x) for all x ∈ R, and so f̃ “extends” f ; we also expect that S̃ is the
Taylor series of f̃ centered at 0. (Strictly speaking, we have not yet discussed how to
divide complex numbers, so this is a bit premature; likewise, we have not discussed what
the convergence of a series of complex numbers should mean.)
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We will eventually show that if S(r) converges for some real number r > 0, then f̃ must
be differentiable on the “ball”

{
x+ iy

∣∣ x2 + y2 < r2
}
, whatever “differentiable” means for

a function of a complex variable. But surely there is no way to make f̃ differentiable at
±i due to the division by 0 there, and so S(r) must diverge for r > 1. This shows that
the radius of convergence of S is 1 without using any convergence tests but by using deeper
properties of f itself.

The faults of f̃ lie not in its behavior at ±1, or, indeed, anywhere on R, or even on any
“strip” of the form {x+ iy | x ∈ R, |y| < b} for 0 < b < 1. Rather, the problems—really,
the “poles”—appear at ±i, which are, of course, invisible from a real perspective. When z
is “close” to these poles, the values f(z) “blow up” in a way that we will later make precise
and that destroys differentiability there.

R

f̃ is well-behaved on this “strip”

iR

1−1

i

−i

R

The Taylor series converges only on this “ball.”

iR

1−1

i

−i

(ii) In somewhat the opposite direction from the previous situation, the function

g : R→ R : x 7→

{
e−1/x2 , x 6= 0

0, x = 0

is infinitely differentiable, but one can, with some effort, calculate that g(k)(0) = 0 for all
k. Thus the Taylor series for g converges on R (always to 0) but only to g(x) at x = 0.

When we extend g to C as

g̃ : C→ C : z 7→

{
e−1/z2 , z 6= 0

0, z = 0,

it is possible to “approach” 0 from multiple directions in the two-dimensional complex
plane and along the way observe much more “nervous” and “erratic” behavior in g̃ than the
superbly tame graph of g just on R below suggests.

x

g(x)
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(iii) The much-touted Fourier transform from the previous example requires computing
improper integrals like∫ ∞

−∞
f(x)e−ikx dx =

∫ ∞
−∞

f(x) cos(kx) dx+ i

∫ ∞
−∞

f(x) sin(kx) dx.

Quite frequently, integrands of this form have no antiderivatives in terms of elementary
functions, and so we cannot use the fundamental theorem of calculus and the definition of
the improper integral to evaluate them. For example, to calculate the Fourier transform of
the function f(x) = 1/(1 + x2) that we just discussed, we would need to evaluate∫ ∞

−∞

cos(kx)

1 + x2
dx,

since the integral involving the sine vanishes due to the oddness of the integrand. Nothing
from calculus prepares us to calculate this improper integral (at least for k 6= 0).

It turns out that we can relate the one-dimensional improper integral above to a two-
dimensional “line integral” over a “curve” lying in a “strip” of width less than 1 centered
on the real line (i.e., like the strip drawn above, just narrower). Then methods of complex
analysis allow us to evaluate this line integral and extract the original improper integral
from that.

(iv) The integrals that appear in the Fourier transform are oscillatory integrals:
the integrands involve the product of a given function against a complex exponential. It
may be desirable to estimate those integrals if we cannot evaluate them precisely (and often
even if we can—estimates are usually better than inequalities in analysis). If f : R→ R and
its first n derivatives “vanish at infinity” in the sense that limx→±∞ f

(k)(x) = 0 “sufficiently
fast” for 0 ≤ k ≤ n, and if ε, ω > 0, then one can integrate by parts and prove an estimate
like ∣∣∣∣∫ ∞

−∞
f(x)eiωx/ε dx

∣∣∣∣ ≤ Cn

( ε
ω

)n
.

This says that the oscillatory integral on the left is quite small in the parameter ε.
However, if we can extend f to a strip like {x+ iy | x, y ∈ R, |y| < b} for some b > 0,

and if the extension of f is “particularly nice” on this strip, then some further line integral
techniques enable us to eke out a vastly better estimate of the form∣∣∣∣∫ ∞

−∞
f(x)eiωx/ε dx

∣∣∣∣ ≤ Ce−ωb/ε.

(Try graphing e−1/ε and εn for different integers n. Which gets smaller faster?)

This is where we finished on Monday, January 8, 2024.

While we will touch on some of these applications of complex numbers in this course (in
particular, solving certain polynomial equations and developing some specialized properties
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of transform theory), our primary goal will be to learn how calculus works when the functions
involved are defined for complex inputs and allowed to have complex outputs. In short, it
works very well. To do this, we will proceed (at a somewhat accelerated pace) through the
same journey that we took learning real-variable calculus. We will begin with the precalculus
of arithmetic, geometry, and algebra and build a small bestiary of functions; then we will treat
the differential calculus, touching on limits and continuity as needed; and finally, gloriously
we will study the integral calculus, perhaps to a depth that we never plumbed in real-variable
calculus. After that, a multiverse of possibilities opens, but throughout we will return to the
three complex leitmotifs of algebra, geometry, and analysis:

1. Algebra: the complex numbers C contain an element i such that i2 = −1. In equally
technical language, the additive inverse, −1, of the multiplicative identity, 1, has a square
root. This is simply not true in R.

2. Geometry: the complex numbers are inherently two-dimensional, and while all real
numbers are complex numbers, the best and most versatile results in the course will come
when we work with subsets of C that contain nonreal elements and possess certain nice
geometric properties (all of which can be stated in excruciatingly precise set-theoretic detail
but drawn using kindergarten-accessible shapes).

3. Analysis: it is possible to define and compute limits of functions that are defined on
subsets of C just as we did for functions defined on subsets of R. Limits give us everything
in calculus—continuity, derivatives, integrals, and much more. Many symbolic results are
the same (and often the proofs are the same—just replace x with z) until they are not:
frequently, the two-dimensional geometry of C introduces something surprising.
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1. PRECALCULUS

1.1. Arithmetic and geometry.

1.1.1. The (un)definition of complex numbers.

The logically correct way to discuss complex numbers would be to prove that they exist—if
an object does not exist, how can we do math with it? However, such a proof probably would
not convince us of anything that we do not already believe. So, we just spell out here the
fundamental assumptions and conventions that we will use in everyday life in this course,
and we defer to Appendix B.2 a more rigorous construction of the complex numbers (which
itself hinges on some further fundamental assumptions and conventions about real numbers
that we do not prove).

1.1.1 Undefinition. (i) A complex number is an expression of the form z = x+ iy,
where x, y ∈ R and i satisfies i2 = −1.

(ii) We denote the set of all complex numbers by C.

(iii) The real part of z is Re(z) = Re(x+ iy) := x and the imaginary part of z is
Im(z) = Im(x+ iy) := y.

(iv) If z ∈ C with Im(z) = 0, then we may say that z is purely imaginary, and we
write

iR :={iy ∈ C | y ∈ R} .

If z ∈ C with Im(z) 6= 0, then we may say that z is nonreal.

(v) Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if and only if x1 = x2

and y1 = y2. That is, z1 = z2 if and only if Re(z1) = Re(z2) and Im(z1) = Im(z2).

Previously we identified several problems with this kind of definition—the uncertainty
surrounding the existence of an “object” i such that i2 = −1 and the ambiguities of what
the operations of addition and multiplication in the symbol x + iy mean, if all we know is
arithmetic in R. However, more positively, there are at least three successful aspects of this
definition.

Success 1. Every real number is a complex number, since any x ∈ R can be written as

x = x+ 0 = x+ (i · 0),

if, again we interpret arithmetic as we expect.

Success 2. The object i itself is a complex number, if we interpret arithmetic once more in
the natural way, since

i = 0 + i = 0 + (i · 1).

Success 3. Every object that we have met in our prior lives that has purported itself to be
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a complex number is a complex number, per this definition, since those numbers probably
looked like 42, or 3i, or 1 + 2i.

Here are some concrete, and hopefully wholly unsurprising, calculations that deploy the
preceding notation.

1.1.2 Example. (i) Re(1 + 2i) = 1 and Im(1 + 2i) = 2.

(ii) Re(1) = 1 and Im(1) = 0.

(iii) Re(2i) = 0 and Im(2i) = 2.

Going forward, we will reserve letters like z and w for complex numbers (which may be
real numbers); the letters x, y, u, and v will typically appear in conjunction with the real or
imaginary parts of a complex number.

1.1.2. Addition and multiplication.

We should view the following calculations as purely formal, “follow our noses” exercises that
operate under a fundamental assumption.

1.1.3 Hypothesis. All arithmetic works exactly as it should if all quantities were real
numbers, with the exception that the symbol i always satisfies i2 = −1. (More precisely,
arithmetic in C satisfies the field axioms (R1).)

1.1.4 Example. Let z = 1 + 2i and w = 3 + 4i. Then the following computations should
be valid.

(i) We group like terms to find

z + w = (1 + 2i) + (3 + 4i) = (1 + 3) + (2i+ 4i) = 4 + 6i.

Note that Re(z + w) = Re(z) + Re(w) and Im(z + w) = Im(z) + Im(w).

(ii) We distribute multiplication over addition to find

zw = (1 + 2i)(3 + 4i) = (1 + 2i)3 + (1 + 2i)4i = 3 + 6i+ 4i+ 8i2 = 3 + 10i− 8 = −5 + 10i.

Note that Re(zw) 6= Re(z) Re(w) and Im(zw) 6= Im(z) Im(w).

(iii) We distribute division (= multiplication by the reciprocal) over addition to find

z

5
=

1 + 2i

5
=

1

5
+

2i

5
=

1

5
+

(
2

5

)
i.
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1.1.5 Problem (?). Let z, w ∈ C and a ∈ R. Extract from the preceding example the
following general rules and formulas.

(i) Re(z + w) = Re(z) + Re(w) and Im(z + w) = Im(z) + Im(w).

(ii) Re(az) = aRe(z) and Im(az) = a Im(z).

(iii) Express Re(iaz) and Im(iaz) in terms of Re(z) and Im(z).

(iv) Express Re(zw) and Im(zw) in terms of the real and imaginary parts of z and w.

The work above shows that if z = x+ iy ∈ C and a ∈ R \ {0}, then we expect

z

a
=
x

a
+ i
(y
a

)
.

What, however, does should the symbol z/w mean for w ∈ C \ {0}? This is a situation that
Hypothesis 1.1.3 does not fully cover.

For example, what meaning should we give to the expression

1 + 2i

3 + 4i
?

Certainly this should be the same as

(1 + 2i)

(
1

3 + 4i

)
.

So, what does
1

3 + 4i

mean? It should satisfy (
1

3 + 4i

)
(3 + 4i) = 1.

That is, if w ∈ C\{0}, then the symbol 1/w should denote the complex number satisfying(
1

w

)
w = 1,

just as it does when w ∈ R \ {0}. Since complex numbers are uniquely determined by their
real and imaginary parts, can we compute the real and imaginary parts of 1/w directly from
the real and imaginary parts of w?

1.1.6 Problem (+). Yes. Here is the brute-force approach. (Brute force is the best force.)
Let w ∈ C \ {0} and write w = w1 + iw2 and 1/w = m1 + im2 for w1, w2, m1, m2 ∈ R.
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Show that (m1 + im2)(w1 + iw2) = 1 if and only if{
w1m1 − w2m2 = 1

w2m1 +m2w1 = 0.

With w1 and w2 given, this is a system of linear equations for m1 and m2. Solve this
system.

Computing 1/w in terms of w will be more efficient with a new tool. To develop that
tool, we will change our focus from arithmetic to geometry.

1.1.3. The modulus.

We started by (un)defining complex numbers as expressions of the form x+ iy for x, y ∈ R.
This suggests identifying complex numbers with ordered pairs (x, y) ∈ R2. Set-theoretically,
this leads to a number of messes, but it works out spectacularly for visualizations. Here is
the key picture.

R

iR

x

y (x, y) = x+ iy

We will draw such pictures frequently and always call the horizontal axis the real axis
and the vertical axis the imaginary axis. Such a picture suggests that we can impute
a notion of “size” or “length” to a complex number by thinking about the length of the line
segment from the origin (0, 0) to the ordered pair (x, y), which is, of course,

√
x2 + y2.

1.1.7 Definition. Let z = x+ iy ∈ C. The modulus of z is

|z| = |x+ iy| :=
√
x2 + y2.

1.1.8 Example. (i) |1 + 2i| =
√

12 + 22 =
√

1 + 4 =
√

5.

(ii) |2i| = |0 + 2i| =
√

02 + 22 =
√

4 = 2.

1.1.9 Remark. (i) Throughout this course, we will assume that all nonnegative real num-
bers have unique square roots. That is, given t ∈ R with t ≥ 0, there is a unique nonnegative
number s ≥ 0 such that t = s2. We write s =

√
t. We will not write s = t1/2; we will later

show how, if the square root is taken for granted, we can construct nth roots of all nonzero
complex numbers for any integer n.
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(ii) Recall that the absolute value of t ∈ R is the real number

|t| :=

{
t, t ≥ 0

−t, t < 0.

It may appear that we are overworking our notation in using the absolute value symbol for
the modulus. We are not, for the modulus of a real number t = t+ (i · 0) is

|t| = |t+ (i · 0)| =
√
t2 + 02 =

√
t2.

As stated just above,
√
t2 is the unique nonnegative number s such that s2 = t2. Certainly

if t ≥ 0, then s = t works; if t < 0, then s = −t works. In either case, we have
√
t2 = |t|,

where now by |t| we mean the absolute value. Thus the absolute value and the modulus of
a real number are the same.

1.1.10 Problem (?). (i) Show that the modulus is “multiplicative” in the sense that

|zw| = |z||w|

for all z, w ∈ C. [Hint: compute the squares of both sides.]

(ii) Show that |Re(z)| ≤ |z| and | Im(z)| ≤ |z| for all z ∈ C. [Hint: use the fact that the
square root function is increasing on [0,∞).] Draw a picture and interpret these inequalities
geometrically; use the words “triangle” and “hypotenuse” in your interpretation.

The modulus |z| of z ∈ C captures the distance from a point z to the origin 0; in particular,
|z| = |z − 0|. More generally, since

|z − w| =
√

[Re(z)− Re(w)]2 + [Im(z)− Im(w)]2,

the difference |z − w| captures the distance between points z, w ∈ C.
We claim that for z0 ∈ C and r > 0, the set

{z ∈ C | |z − z0| = r}

is the circle centered at z0 of radius r; by the preceding discussion, this is the set of all points
that lie at a distance r > 0 from z0. Recall that in our prior lives, we probably wrote the
equation of the circle centered at (a, b) of radius r as

(x− a)2 + (y − b)2 = r2.

Here, we have
r2 = |z − z0|2 = [Re(z)− Re(z0)]2 + [Im(z)− Im(z0)]2,

which is our prior equation for a circle.
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R

iR

r

z0

We can also consider the “interior” or “inside” of the circle centered at z0 ∈ C of radius
r > 0. Since points on this circle lie at a distance r from z0, points inside this circle should
lie at a distance less than r from z0. We define this precisely and introduce some convenient
notation.

1.1.11 Definition. (i) The open ball of radius r > 0 centered at z0 ∈ C is

B(z0; r) :={z ∈ C | |z − z0| < r} .

R

iR

z0

r

(ii) The circle of radius r > 0 centered at z0 ∈ C is

∂B(z0; r) :={z ∈ C | |z − z0| = r} .

R

iR

z0

The notational choice of ∂B(z0; r) is meant to reflect the more general topological concepts
of boundary, which we will not discuss in this course.
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1.1.12 Example. Let z0 = −1 + i, so |z0| =
√

2. We draw B(−1 + i; | − 1 + i|) and
∂B(−1 + i; | − 1 + i|) below.

R

iR

R

iR

Since | − 1 + i| > 1 = Im(−1 + i), the circle and the open ball extend into Quadrant
III; likewise, since | − 1 + i| > 1 = |Re(−1 + i)|, the circle and the ball extend into
Quadrant I. However, neither extends into Quadrant IV. Indeed, for the circle, suppose
that |z − (−1 + i)| = | − 1 + i| with z = x+ iy, x > 0, and y < 0. Then

√
2 = |(x+ iy)− (−1 + i)| = |(x+ 1) + i(y − 1)| =

√
(x+ 1)2 + (y − 1)2

=
√

(x+ 1)2 + (|y|+ 1)2 >
√

1 + 1 =
√

2.

The second inequality holds because x > 0 and |y| > 0, and so we have a contradiction.
This analytically justifies the dotted line in our sketches: the closest point on the circle to
Quadrant IV is the origin.

One of the most important tasks that we will undertake repeatedly in this course will be
to show that two quantities are the same, with the hope being that one expression is either
simpler or more informative than the other. That is, we will have two complex numbers z1

and z2, and we will want to show that z1 = z2. By Undefinition 1.1.1, this is the same as
showing Re(z1) = Re(z2) and Im(z1) = Im(z2), but this is not always efficient. Here is a
better way.

1.1.13 Problem (?). Let z1, z2 ∈ C. Show that z1 = z2 (as undefined in Undefinition
1.1.1 if and only if |z1 − z2| = 0. [Hint: explain why |w| = 0 if and only if w = 0.]

1.1.4. The conjugate (and the modulus, continued).

Symmetries and “reflections” are key tools throughout mathematics. For example, we can
view multiplying a complex number by −1 as “reflecting across the origin.”

1.1.14 Problem (!). Explain this. Draw pictures.

It turns out that “reflecting across the real axis” is a very useful tool, too. If z = x + iy,
then its reflection across the real axis should be the number x− iy. This number has a name.
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1.1.15 Definition. The complex conjugate of z = x+ iy is

z = x+ iy := x− iy.

1.1.16 Example. (i) 1 + 2i = 1− 2i.

(ii) 2i = 0 + 2i = 0− 2i = −2i.

1.1.17 Problem (!). Let z, w ∈ C. Show that

z + w = z + w and zw = zw.

1.1.18 Problem (!). Draw a picture with the following elements. Plot some z = x+ iy in
the plane with x > 0 and y > 0. Then plot −z and z and check that these points are the
reflections that are claimed above. Finally, develop a formula for the reflection of a point
across the imaginary axis and plot that, too.

1.1.19 Problem (+). (i) Check that

Re(z) =
z + z

2
and Im(z) =

z − z
2i

for all z ∈ C.

(ii) (Presumes knowledge of linear algebra.) Show that

1

2

[
1 1
−i i

](
z
z

)
=

(
Re(z)
Im(z)

)
.

Invert this matrix and use that inverse to solve for z and z in terms of Re(z) and Im(z).
Do you get what you expected?

Our first significant use of the conjugate will be to give a new formula for the modulus.

1.1.20 Theorem. Let z ∈ C. Then

|z|2 = zz and |z| =
√
zz.

Proof. Write z = x+ iy, so |z| =
√
x2 + y2 and |z|2 = x2 + y2. We compute directly

zz = (x+ iy)
(
x+ iy

)
= (x+ iy)(x− iy) = (x+ iy)x+(x+ iy)(−iy) = x2 + iyx− ixy− i2y2

= x2 − (−1)y2 = x2 + y2 = |z|2.

Since |z| ≥ 0, this shows that zz is real and nonnegative, so we may take its square root and
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find |z| =
√
zz. �

1.1.21 Problem (?). Use Theorem 1.1.20 to give a quick proof that |zw| = |z||w| for all
z, w ∈ C. This proof should not use the real and imaginary parts of z and w.

1.1.22 Problem (!). Now use the definition of the conjugate and the modulus to give a
(probably) longer proof that

z + w = z + w and |z| = |z|

for all z, w ∈ C. This proof will probably need to use the real and imaginary parts of z
and w.

Much of analysis hinges on carefully estimating quantities “from above” or “from below.”
When performing estimates in this course, we will almost always use one of the following
two inequalities.

1.1.23 Theorem (Triangle inequality). Let z, w ∈ C. Then

|z + w| ≤ |z|+ |w| and
∣∣|z| − |w|∣∣ ≤ |z − w|.

The first inequality above is usually called the triangle inequality, while the second
inequality is the reverse triangle inequality.

1.1.24 Problem (?). Let z = 1 + 2i and w = 3 + 4i. Check that the triangle inequality
holds by computing |z+w|, |z|, and |w|. Plot z, w, and z+w and see if you can visualize the
triangle inequality. Where does a “triangle” enter the picture? [Hint: consider the triangles
whose vertices are first the origin, z, and z + w and next the origin, w, and z + w.]

1.1.25 Problem (+). Prove Theorem 1.1.23 as follows.

(i) Explain why it suffices to show

|z + w|2 ≤
(
|z|+ |w|

)2
.

(ii) Compute
|z + w|2 = |z|2 + |w|2 + wz + zw

and explain why it now suffices just to show

wz + zw ≤ 2|z||w|. (1.1.1)

(iii) For A, B ∈ R, prove the auxiliary inequality

2AB ≤ A2 +B2. (1.1.2)

[Hint: what is A2 − 2AB +B2?]
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(iv) Suppose z = x+ iy and w = a+ ib with x, y, a, b ∈ R. Compute

wz + zw = 2(ax+ by).

Since ax+ by ≤ |a||x|+ |b||y|, explain why to obtain (1.1.1), it now suffices to show just

|a||x|+ |b||y| ≤ |z||w|. (1.1.3)

(v) Prove (1.1.3). [Hint: square both sides of the inequality.]

(vi) To prove the reverse triangle inequality, first argue that it is equivalent to

− |z − w| ≤ |z| − |w| ≤ |z − w|. (1.1.4)

To prove the second inequality in (1.1.4), “add zero” by writing

|z| = |z + 0| = |z − w + w|

and then use the ordinary triangle inequality to conclude

|z| − |w| ≤ |z − w|. (1.1.5)

(vii) Explain why (1.1.5) implies

|w| − |z| ≤ |w − z| = |z − w|, (1.1.6)

and from (1.1.6) conclude the first inequality in (1.1.4).

1.1.5. Division.

The union of the conjugate and the modulus is the tool that we need to develop an effective
notion of division of complex numbers. Recall that if z ∈ C \ {0}, then the reciprocal of
z should be the complex number 1/z such that(

1

z

)
z = 1.

And recall that we have the identity |z|2 = zz. Formally manipulating the symbols, we
arrive at

1

z
=

(
1

|z|2

)
z =

Re(z)

|z|2
+ i

(
−Im(z)

|z|2

)
. (1.1.7)

Note that on the right we have division by real numbers, i.e., multiplication by the reciprocals
of real numbers.

Now we check that (1.1.7) really gives the reciprocal of z:[(
1

|z|2

)
z

]
z =

1

|z|2
(
zz
)

=
1

|z|2
|z|2 = 1.
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The first equality above was the associativity of multiplication (which we are assuming is
true for complex numbers by Hypothesis 1.1.3) and the second was Theorem 1.1.20.

This is where we finished on Wednesday, January 10, 2024.

1.1.26 Example. We return to our prior problem of computing z = (1 + 2i)/(3 + 4i). To
be clear, by “computing” we mean that we want to give simple expressions for Re(z) and
Im(z).

First, we have
1

3 + 4i
=

3 + 4i

|3 + 4i|2
=

3− 4i

9 + 16
=

3− 4i

25
.

Then

1 + 2i

3 + 4i
= (1 + 2i)

(
1

3 + 4i

)
= (1 + 2i)

(
3− 4i

25

)
=

(1 + 2i)(3− 4i)

25
=

3− 4i+ 6i− 8i2

25

=
11 + 2i

25
.

From this, we can plainly see that Re(z) = 11/25 and Im(z) = 2/25, which probably was
not at all obvious from the starting expression of z = (1 + 2i)/(3 + 4i).

Of course, in practice when computing Now that we have an adequate notion of division
of complex numbers, we can define integer powers.

1.1.27 Definition. Let z ∈ C.

(i) We define z0 := 1.

(ii) Let k ≥ 1 be an integer. We define zk recursively by

zk :=

{
z, k = 1

zk−1z, k ≥ 2.

(iii) Suppose z 6= 0. Then we define

z−1 :=
1

z
=

z

|z|2
.

If k ≤ −2, we define
zk := (z|k|)−1.

From this definition, one can show that the usual rules

zm+n = zmzn and (zm)n = zmn
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hold for m, n ∈ Z. We will not attempt to define fractional or rational (let alone irrational)
powers of complex numbers for quite some time; indeed, they behave rather strangely.

1.1.28 Example. We have

i0 = 1, i1 = i, i2 = −1, i3 = i2i = −i, and i4 = i2i2 = (−1)2 = 1.

Also,

i−1 =
1

i
=

i

i2
=

i

−1
= −i.

Indeed,
(−i)i = −i2 = −(−1) = 1,

so −i is the multiplicative inverse of i.

1.1.29 Problem (!). (i) Let k ∈ Z. Explain how the values of ik are “4-periodic” in k,
i.e., ik = ik+4 for all k ∈ Z.

(ii) Compute i1977, i1980, and i1983.

1.2. Functions.

This course is really about functions, so much so that complex analysis classes are sometimes
(archaically) titled “Functions of a Complex Variable,” and the whole subject is sometimes
called (again, archaically) “function theory.” What is a function? Our instinct might be to
equate “function” with “formula”—surely the object f(z) = 2z is a function. This string of
symbols pairs each z ∈ C with its double 2z. But there are plenty of other “pairings” of
numbers that do not have such transparent formulas—for z ∈ C, let g(z) be the smallest
integer that is greater than or equal to Re(z). For example, g(1/2) = 1 and g(2i) = 0, but
we do not really have an “algebraic” formula for the value of g(z) in general.

The right definition of function hinges on pairings, not formulas. And not just any
pairing: we know that each element in the domain of a function must be paired with exactly
one output. We cannot omit elements of the domain from the pairings, and we cannot pair
the same element of the domain with two outputs. So, here is a first stab at a definition of
function.

1.2.1 Undefinition. Let A and B be sets. A function from A to B is a rule that
pairs each element of A with exactly one element of B.

This morally resembles our first effort at defining complex numbers in Undefinition 1.1.1.
It is exactly the right idea, and the one that everyone uses on a day-to-day basis, but it lacks
clarity. What is a “rule”? What do we mean by “pairing”? As with complex numbers, we
can clean things up by introducing the language of ordered pairs.
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1.2.2 Definition. Let A and B be sets. A function f from A to B is a set of ordered
pairs with the following properties.

(i) If (z, w) ∈ f , then z ∈ A and w ∈ B.

(ii) For each z ∈ A, there is a unique w ∈ B such that (z, w) ∈ f .

We often use the notation f : A→ B to mean that f is a function from A to B; strictly
speaking, we may want to think of a function from A to B as an ordered triple (f, A,B),
where f satisfies the two properties above.

If (z, w) ∈ f , then we write w = f(z). The set A is the domain of f , and the set B
is the codomain of f . The image or range of f is the set

f(A) :={f(z) | z ∈ A} .

More generally, if E ⊆ A, then the image of E under f is

f(E) :={f(z) | z ∈ E} .

1.2.3 Example. Let f := {(1, i), (2,−1), (3,−i), (4, i)}.

(i) Then f is a function from A = {1, 2, 3, 4} to B = {i,−i, 1,−1}, and the range of f is
B.

(ii) But f is also a function from A to C; this indicates that while the range of a function
is always fixed, the codomain can change depending on our desired point of view.

(iii) However, f is not a function from A to R, since i 6∈ R.

(iv) Likewise, f is not a function from {1, 2, 3, 4, 5} to B, since there is no w ∈ B such
that (5, w) ∈ f .

(v) And f is not a function from {1, 2, 3} to B, since (4, 1) ∈ f , but 4 6∈ {1, 2, 3}.

1.2.4 Problem (?). Suppose that f , g : A → B are functions. Show that f = g if and
only if f(z) = g(z) for all z ∈ A. [Hint: the equality f = g means that f and g are equal
as sets of ordered pairs.]

We do not need formulas to define functions. Example 1.2.3 is a good initial illustration
of this, as it gives us a perfectly good function just defined as a set of ordered pairs. Our
transcendence of formulas will eventually reach its zenith when we define functions by inte-
grals without evaluating those integrals as we eventually always did in calculus. We might
summarize our attitude toward formulas in the following profession.
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1.2.5 Hypothesis (Analyst’s creed). Having a formula for something is not the same as
understanding that thing.

Nonetheless, we will enjoy certainly enjoy formulas when we have them. The function
in Example 1.2.3 is really raising i to integer powers. When we have such a transparent
formula, we might write our functions in the following way:

f : {1, 2, 3, 4} → C : k 7→ ik. (1.2.1)

We should view the string of symbols in (1.2.1) as another way of writing the function
{(1, i), (2,−1), (3,−i), (4, 1)}.

We cannot really graph functions from subsets of C to subsets of C as we would real-
valued functions of a real variable; such graphs would need to exist in four dimensions! What
we sometimes do is graph the domain and range separately on two pairs of two-dimensional
axes.

1.2.6 Example. Define f : C→ C : z 7→ z2. We claim that f(iR) = (−∞, 0]. Here is how
we might illustrate the action of f on iR.

R

iR
z 7→ z2

R

iR

Now we prove the claim. First, if z = iy, then z2 = (iy)2 = −y2 ≤ 0, so f(z) ∈ (−∞, 0].
Conversely, let x < 0, so x = −|x| = i2(

√
|x|)2 = f(i

√
|x|). Note that f(−i

√
|x|) = x,

too, and so f is not “one-to-one.”

R

iR

i
√
|x|

−i
√
|x|

x
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1.2.7 Problem (?). Let D ⊆ C be such that if z ∈ D, then −z ∈ D. (We might call such a
set D “symmetric about the origin.”) A function g : D → C is even if g(−z) = g(z) for all
z ∈ D, while h : D → C is odd if h(−z) = −h(z) for all z ∈ D. The parity of a function
(the function’s state of being even, odd, or neither) often encodes useful symmetries in
mathematical problems.

Let f : D → C be a function and define

fe(z) :=
f(z) + f(−z)

2
and fo(z) :=

f(z)− f(−z)

2
.

Show that fe is even, fo is odd, and f = fe + fo. That is, any function whose domain
is symmetric about the origin can be written as the sum of an even function and an odd
function. Does this remind you of Problem 1.1.19?

Two of the friendliest kinds of functions are polynomials (sums of nonnegative integer
powers) and rational functions (quotients of polynomials). To discuss them conveniently, we
first introduce sigma notation. Let z0, . . . , zn ∈ C, where n ≥ 0 is an integer, and put

n∑
k=0

zk :=


z0, k = 0

zn +
n−1∑
k=0

zk, n ≥ 1.
(1.2.2)

More generally, if for each k ∈ Z we have zk ∈ C, and if m, n ∈ Z, we could define

n∑
k=m

zk :=


0, m > n

zm, m = n

zn +
n−1∑
k=m

zk, n ≥ m+ 1.

If m > n, then we define the “empty sum”
∑n

k=mzk to be 0; for example,

1∑
k=5

zk = 0,

regardless of what these zk are individually.

1.2.8 Example.
3∑

k=1

k =
2∑

k=1

k + 3 =
1∑

k=1

k + 2 + 3 = 1 + 2 + 3 = 6.

1.2.9 Definition. (i) Let n ≥ 0 be an integer and a0, . . . , an ∈ C. A polynomial is a
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function

p : C→ C : z 7→
n∑
k=0

akz
k.

If n ≥ 1 and an 6= 0, then we say that p is a polynomial of degree n.

(ii) A rational function is a function of the form

r : D → C : z 7→ p(z)

q(z)
,

where p and q be polynomials and D ={z ∈ C | q(z) 6= 0}.

This is where we finished on Friday, January 12, 2024.

1.2.10 Example. The functions f(z) = 1 and g(z) = z2 + 1 are polynomials, while

h(z) =
2

z2 + 1

is a rational function. Implicitly, the domains of f and g are C, while the domain of h is
C \ {i,−i}.

In the previous example, the domains given for f , g, and h were the largest subsets of C
on which those functions could be defined via the given formulas. Sometimes we may want
to consider a smaller domain; this certainly arises if we start with a function defined on (a
subset of) R and want to extend it to (a subset of) C.

1.2.11 Example. The functions

f : R→ R : t 7→ t2 and g : C→ C : z 7→ z2

certainly “do the same thing”: they take a number and square it. But f works only with
real numbers, while g includes nonreal numbers.

We can make this more precise set-theoretically:

f =
{

(t, t2)
∣∣ t ∈ R

}
and g =

{
(z, z2)

∣∣ z ∈ C
}
,

so f ⊆ g, but f 6= g, since, for example, (i,−1) ∈ g but (i,−1) 6∈ f .

The following definition makes precise the relationship between f and g in the preceding
example.
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1.2.12 Definition. Let f : A → B and g : C → D be functions. Suppose that A ⊆ C and
f(z) = g(z) for all z ∈ A. Then f is the restriction of g to A, and we write f = g

∣∣
A
.

Conversely, g is an extension of f to C.

To a considerable degree, much of our work in this course involves extending functions
defined on (subsets of) R to (subsets of) C, determining what properties the extensions
inherit from the original functions of a real variable, and divining how new knowledge of the
extensions enlightens us about the original functions.

1.2.13 Example. Define f : [−1, 1]→ R : t 7→ t2.

(i) The function g : [−2, 2] → R : t 7→ t2 is an extension of f . Note that the graph of
g (which we draw on a pair of real axes, unlike the drawings in Example 1.2.6) literally
“extends” the graph of f from [−1, 1] to [−2, 2], or, equivalently, the graph of f is the graph
of g “restricted to” the interval [−1, 1].

t

f(t)

−1 1

t

g(t)

−1 1−2 2

(ii) The function

h : [−2, 2]→ R : t 7→


−1, −2 ≤ t < −1

t2, −1 ≤ t ≤ 1

1, t > 1

is also an extension of f to [−2, 2]. In general, extensions need not be unique.

t

h(t)

−1 1−2 2

1.2.14 Problem (!). Let f = {(1, i), (2,−1), (3,−i), (4, 1)}, as in Example 1.2.3.

(i) What is f
∣∣
{1,3}?
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(ii) Give an example of an extension f̃ of f to C := {1, 2, 3, 4, 5, 6} such that f̃(C) =
f({1, 2, 3, 4}).

These are all the essential tools of functions that we will need for now. We give some
further details on composition of functions in Appendix A.2.

The functions that we have encountered so far have been fairly pedestrian—polynomials
and rationals—or just toy examples of sets of ordered pairs. Before we can really take up
the calculus—which involves at every step the study of classes of functions united by deeper
properties than their formulas—we must build a better bestiary of functions. A major task
for our course will be extending “familiar” functions from R to (subsets of) C. Can we, for
example, assign meaning to ez for any z ∈ C? Or sin(z)? And, in doing so, can we preserve
the famous properties of these functions on R? Will we have ez+w = ezew? And is there only
one way to extend a function from R to C? That is, are extensions unique?

1.3. Sequences.

Intuitively, a sequence should connote an “ordered list.” First something, then something
else, then something else, and so on. Mathematically, we want to develop sequences as
indexed lists of numbers.

We will find sequences to be very useful tools for at least two reasons. First, sequences
will help us, in a variety of diverse contexts, to turn “continuous” problems into “discrete”
ones and in the process provide valuable “tests.” Which is better: trying to think about
the behavior of a function f at all numbers close to a given point z0, or just what f does
to a countable family zk for k ∈ N? Second, sequences help us define series, and all good
functions in complex analysis are ultimately series.

1.3.1 Definition. A sequence in C is a function f : N ∪ {0} → C. If zk := f(k) for
k ≥ 0, then we write (zk) := f . That is, (zk) ={(k, zk) | k ∈ N ∪ {0}}. The number zk is
the kth term of (zk).

Some sources denote what we call the sequence (zk) by {zk} or {zk}∞k=0. This is perilous,
as the latter notations more universally suggest sets of complex numbers, not functions (and
functions are ordered pairs of complex numbers).

1.3.2 Example. Abbreviate N0 := N ∪ {0} and define f : N0 → C : k 7→ ik. Then

f =
{

(k, ik)
∣∣ k ∈ N0

}
and also f = (ik).

The range of the sequence (ik) is the set
{
ik
∣∣ k ∈ N0

}
= {i,−1,−i, 1}.

The starting index of a sequence is typically irrelevant; only the “end behavior” of a
sequence usually matters. As a generalization of the definition above, we could say that
a sequence is a function f : [m,∞) ∩ Z → C for some m ∈ Z; in this case, if f(k) = zk,
then we might want to write f = (zk)k≥m to indicate where the domain starts. However,
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we will not usually do this and instead interpret the domain of a sequence to be the largest
set of nonnegative integers on which it is defined; for example, we would, unless otherwise
instructed, take the domain of (ik/k) to be N, not N0.

1.3.1. Analytic and geometric notions of sequential convergence.

The most common property of a sequence that we will study is its convergence to a given
complex number. If (zk) is a sequence and L ∈ C, then we want to say that the limit of
(zk) as k →∞ equals L if we can make the terms zk arbitrarily close to L by taking k to be
sufficiently large.

First, two complex numbers are “close” if the “distance” between them is “small.” We can
measure distance by subtracting and taking the modulus. Thus zk and L will be “close” if
the nonnegative number |zk − L| is small, and we can safely conclude that k is “large” if
k ≥ N for some known integer N ∈ N. Let ε > 0; this will be the threshold for measuring
how small |zk − L| is. We want to force |zk − L| < ε by taking k ≥ N for N large enough,
and with N allowed to be dependent on ε.

We can distill these ideas into a definition.

1.3.3 Definition. Let (zk) be a sequence in C and let L ∈ C. Then the limit of (zk)
as k → ∞ equals L if for all ε > 0, there is an integer N ∈ N such that if k ≥ N , then
|zk − L| < ε. In this case, we write limk→∞ zk = L or zk → L. We also say that the
sequence (zk) converges to L. If there is no L ∈ C such that (zk) converges to L, then
we say that (zk) diverges.

The definite article in “the limit of a sequence” needs justification.

1.3.4 Theorem. Limits are unique in the sense that if (zk) is a sequence and L1, L2 ∈ C
both satisfy the condition in Definition 1.3.3 to be the limit of (zk), then L1 = L2. More
precisely, if (zk) is a sequence and L1, L2 ∈ C satisfy

∀ε > 0 ∃N ∈ N : k ≥ N =⇒ |zk−L1| < ε and ∀ε > 0 ∃N ∈ N : k ≥ N =⇒ |zk−L2| < ε,

then L1 = L2.

Proof. We have L1 = L2 if and only if |L1 − L2| = 0, and, by Problem B.1.5, we will have
|L1 − L2| = 0 if and only if |L1 − L2| < ε for all ε > 0. This is what we now prove. Fix
ε > 0. Definition 1.3.3 allows us to relate L1 and L2 to ε by approximating L1 and L2 with
elements of the sequence (zk). Specifically, we may choose integers N1, N2 ∈ N such that if
k ≥ N1, then |zk − L1| < ε/2, and if k ≥ N2, then |zk − L2| < ε/2. Let N = max{N1, N2}.

|L1 − L2| = |L1 − zN + zN − L2| ≤ |L1 − zN |+ |zN − L2| <
ε

2
+
ε

2
= ε. �

1.3.5 Example. For k ≥ 1, let

zk =
ik

k
.
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The presence of k in the denominator might suggest that zk → 0 as k →∞, and so we try
to check this according to the definition. First, we calculate

|zk − 0| =
∣∣∣∣ikk − 0

∣∣∣∣ =

∣∣∣∣ikk
∣∣∣∣ =
|ik|
|k|

=
|i|k

k
=

1k

k
=

1

k
.

Now, given ε > 0, it suffices to find N ∈ N such that if k ≥ N , then 1/k < ε. But this
inequality is equivalent to 1/ε < k.

The remarks above are the preparatory “scratchwork” of a convergence proof. Here is
the slick, rigorous proof (which involves no algebraic hemming and hawing, and also no
insight).

Given ε > 0, take N ∈ N to satisfy 1/ε < N . Then if k ≥ N , we have k > 1/ε, and so

|zk − 0| = 1

k
< ε.

1.3.6 Example. The sequence (ik) diverges. This should be intuitively obvious, as the
terms of the sequence alternate around four different values and take those values infinitely
many times without approaching any one exclusively, but we can give a rigorous proof
of divergence using the definition. The idea is to look at the behavior of “subsequences”:
consider the sequence (i4k) = (1) and (i4k+1) = (i). If the whole sequence (ik) converges,
then those subsequences should converge to the same number, which would force 1 = i.

However, to avoid developing a theory of subsequences (an otherwise worthwhile task),
here is a slightly different argument (which is really a subsequence argument anyway).
Suppose that (ik) converges to some L ∈ C. Let ε > 0 and take N ∈ N such that if k ≥ N ,
then |ik − L| < ε/2. Since 4N ≥ N and 4N + 1 ≥ N , we have

|1− L| = |i4N − L| < ε

2
and |1− i| = |i4N+1 − L| < ε

2
.

Then the triangle inequality gives

|1− i| = |(1− L) + (L− i)| ≤ |1− L|+ |L− i| < ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary, Problem B.1.5 implies 1 = i.

This is where we finished on Wednesday, January 17, 2023.

We have defined sequential convergence analytically, i.e., through (in)equalities, but there
is also an equivalent, and very helpful, geometric perspective on sequential convergence.
Recall from Definition 1.1.11 that the open ball centered at z ∈ C of radius ε > 0 is the set

B(z; ε) ={w ∈ C | |w − z| < ε} .

The primary utility of balls is that they give an efficient geometric mechanism for describing
sequential convergence (and, later, functional limits). Because a sequence (zk) converges to
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z ∈ C if and only if for all ε > 0, there is N ∈ N such that if k ≥ N , then |zk − z| < ε, we
can rephrase the definition of zk → z using balls as follows. We can phrase the conclusion of
this if-then statement with balls: |wk − w| < ε if and only if wk ∈ B(w; ε). This proves the
following theorem.

1.3.7 Theorem. Let (zk) be a sequence in C and z ∈ C. Then zk → z if and only if for
all ε > 0, there is N ∈ N such that if k ≥ N , then zk ∈ B(z; ε).

In other words, if zk → z, then no matter how small a ball around z we draw, “eventually”
the terms of (zk) must lie in this ball

1.3.8 Example. (i) Below we draw the ball B(0; 1/2) and plot the first five terms of the
sequence (ik/k), which converges to 0 by Example 1.3.5. The first term i does not belong
to this ball; the second term i/2 belongs to the circle of radius 1/2 (and therefore not to
the ball); but the terms starting with k = 3 do belong to the ball (and they start to bunch
up together quite quickly).

R

iR
z1

z2

z3

z4
z5

(ii) All terms of the sequence (ik), which diverges by Example 1.3.6, are one of the four
numbers 1, −1, i, or −i, and all of these numbers lie on the unit circle. Consequently,
given L ∈ C, we should be able to find ε > 0 sufficiently small so that there is no N ∈ N
such that if k ≥ N , then ik ∈ B(L; ε). The “bad” ε might depend on L.

R

iR

L

R

iR

L

These pictures are illustrations of the negation of the definition of the limit. With a few
more quantifiers than in Definition 1.3.3, the sequence (zk) converges if

∃L ∈ C ∀ε > 0 ∃N ∈ N ∀k ≥ N : |zk − L| < ε,
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and the negation of this statement is

∀L ∈ C ∃ε > 0 ∀N ∈ N ∃k ≥ N : |zk − L| ≥ ε.

1.3.2. Properties of convergent sequences.

First, we can often ignore a finite (but possibly quite large) amount of data in a sequence.
Specifically, we can change finitely many terms of a sequence without affecting its conver-
gence.

1.3.9 Problem (!). Suppose that (zk) and (wk) are sequences in C such that
limk→∞ zk = L for some L ∈ C. If there is N ∈ N such that zk = wk for k ≥ N , show that
limk→∞wk = L as well.

Fortunately, we do not often need to use the analytic (or geoemtric) definition of sequential
convergence, as all of the algebraic properties of convergence that we expect to be true are
true. A few that we perhaps did not anticipate are also true.

1.3.10 Theorem (Algebra of sequences). Let (zk) and (wk) be sequences in C such that

zk → L1 and wk → L2

for some z, w ∈ C. Then the following hold.

(i) (zk + wk)→ L1 + L2.

(ii) αzk → αL1 for any α ∈ C.

(iii) zkwk → L1L2.

(iv) If L2 6= 0, then
zk
wk
→ L1

L2

.

(v) zk → L1.

(vi) |zk| → |L1|.

Proof. We prove only part (v), as the proofs of the other parts are virtually identical to
those in real-variable calculus (in general, replace x with z). Here we are assuming zk → L1

and we want to show zk → L1. That is, for all ε > 0, we know there is N ∈ N such that
if k ≥ N , then |zk − L1| < ε. We want to show that for all ε > 0, there is M ∈ N (here
we are writing M , not N , so as not to overwork our notation) such that if k ≥ M , then
|zk − L1| < ε. Here we need two fundamental properties of the conjugate (from Problem
1.1.22): that

z + w = z + w and |z| = z
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for all z, w ∈ C. Then
|zk − L1| = |zk − L1| = |zk − L1|.

So, given ε > 0, we take N ∈ N such that if k ≥ N , then |zk − L1| < ε. The calculation
above therefore shows that if k ≥ N , then

|zk − L1| = |zk − L1| < ε.

In other words, we took M = N in the sentence beginning “We want to show” above. �

It is also possible to deduce convergence of a sequence of complex numbers just from the
behavior of its real and imaginary parts. This is not a phenomenon in real single-variable
calculus (although it is morally the same as deducing the behavior of a vector from that of
its components), so we discuss part of its proof.

1.3.11 Theorem. Let (zk) be a sequence in C and L ∈ C. Then zk → L if and only if
both Re(zk)→ Re(L) and Im(zk)→ Im(L).

Proof. We prove the forward implication as an illustration of some further complex me-
chanics. Suppose that zk → L; we want to show that Re(zk) → Re(L). The proof for the
imaginary part is the same, so we omit it.

We know that for all ε > 0, there is N ∈ N such that if k ≥ N , then |zk−L| < ε. We want
to show that for all ε > 0, there is M ∈ N such that if k ≥ M , then |Re(zk) − Re(L)| < ε.
Here we need two auxiliary facts: that

Re(z) + Re(w) = Re(z + w) and |Re(z)| ≤ |z| (1.3.1)

for all z ∈ C. We use these facts to compute

|Re(zk)− Re(L)| = |Re(zk − L)| ≤ |zk − L|.

Therefore, given ε > 0, we take N ∈ N such that if k ≥ N , then |zk − L| < ε. Then if
k ≥ N , we have

|Re(zk)− Re(L)| ≤ |zk − L| < ε,

and so Re(zk)→ Re(L). Again, we have taken M = N in the sentence beginning “We want
to show.” �

1.3.12 Problem (!). Prove those auxiliary facts (1.3.1).

Unfortunately, while knowledge of a sequence (zk) translates to knowledge about the
“modulated” sequence (|zk|)—see part (vi) of Theorem 1.3.10, the reverse is not true.

1.3.13 Example. Let zk = ik. We saw in Example 1.3.6 that (zk) diverges. However,
|zk| = |ik| = 1 for all k, and so |zk| → 1.

Nonetheless, there is a useful situation in which knowledge of the original sequence and
the “modulated” sequence lead to the same conclusion.
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1.3.14 Theorem. Let (zk) be a sequence. Then zk → 0 if and only if |zk| → 0.

Proof. (=⇒) Suppose that zk → 0 and let ε > 0. Choose N ∈ N such that if k ≥ N , then
|zk| = |zk − 0| < ε. Consequently,

∣∣|zk| − 0
∣∣ = |zk| < ε for k ≥ N , and so |zk| → 0.

(⇐=) Suppose that |zk| → 0 and let ε > 0. Then there is N ∈ N such that if k ≥ N , then∣∣|zk| − 0
∣∣ < ε. But

∣∣|zk| − 0
∣∣ = |zk| as above, and so |zk − 0| = |zk| < ε for k ≥ N . Thus

zk → 0. �

We will use results of this flavor constantly: to see that a certain quantity is small, pop
a modulus on it and estimate away.

1.3.15 Example. Example 1.3.5 had us study the sequence (ik/k), but what really mat-
tered was the behavior of the sequence (1/k). Let zk = ik/k. Then |zk| = 1/k; if we have
already shown that 1/k → 0, then Theorem 1.3.14 tells us more quickly than Example
1.3.5 that zk → 0.

1.3.16 Problem (?). Suppose that (zk) is a sequence and L ∈ C with zk → L. Justify
each identity and inequality below to prove that for some integer N ≥ 0, if k ≥ N , then
|zk| ≥ |L|/2. In particular, conclude that if zk → L with L 6= 0, then |zk| > 0 for all k ≥ N .

|zk| = |L− (L− zk)| ≥ |L| − |L− zk| ≥ |L| −
|L|
2

=
|L|
2
.

When working with sequences of real numbers, we have the order structure of R to help
us, and there we enjoyed the following.

1.3.17 Theorem (Squeeze theorem for sequences in R). Let (ak), (bk), and (ck) be
sequences of real numbers with ak ≤ bk ≤ ck and ak → L and ck → L for some L ∈ R.
Then bk → L.

A variation on Theorem 1.3.14 is the only version of the squeeze theorem that we can
obtain for complex sequences.

1.3.18 Theorem (Squeeze theorem for sequences in C). Let (zk) and (wk) be sequences
with the following properties.

(i) There is C > 0 such that |zk| ≤ C|wk| for all k,

(ii) wk → 0.

Then zk → 0.

Proof. While we could give a direct proof using the definition of zk → 0, we use the squeeze
theorem for real sequences and Theorem 1.3.14. We have 0 ≤ |zkl ≤ C|wk|. With ak = 0,
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bk = |zk|, and ck = C|wk|, we have ak → 0 and ck → 0, so the real squeeze theorem implies
bk → 0. Then Theorem 1.3.14 implies zk → 0. �

1.3.19 Example. Let

zk =
1 + ik

k + 1
.

We could rewrite ak as the sum

zk =
1

k + 1
+

ik

k + 1

with
1

k + 1
→ 0 and

ik

k + 1
→ 0,

but it may be faster to use the triangle inequality and the squeeze theorem.
We estimate

|zk| =
∣∣∣∣1 + ik

k + 1

∣∣∣∣ =
|1 + ik|
k + 1

≤ |1|+ |i
k|

k + 1
=

2

k + 1
.

This is true for all k ≥ 0. In the notation of the squeeze theorem, we are using C = 2 and
wk = 1/(k + 1), or C = 1 and wk = 2/(k + 1).

As we build our bestiary of complex functions and develop sequences whose terms are
not so easily algebraically manipulated as in the example above, the squeeze theorem and
its descendants will become even more valuable.

1.4. Series.

The tool of series formalizes the notion of “adding infinitely many numbers together.” It
turns out that many familiar functions are best defined by series, after a fashion, and that
some of the nicest functions are inherently series.

1.4.1 Definition. Let (zk)k≥0 be a sequence in C.

(i) The series
∑∞

k=0zk is the sequence of nth partial sums, which are
∑n

k=0zk. That
is,

∞∑
k=0

zk :=

(
n∑
k=0

zk

)
,

and so
∑∞

k=0zk is the function∑∞
k=0zk : N0 → C : n 7→

∑n
k=0 zk.

(ii) Additionally, if the sequence of nth partial sums converges, then
∑∞

k=0zk also denotes
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that limit and is called the sum of the series. That is, if limn→∞
∑n

k=0zk exists, then

∞∑
k=0

zk := lim
n→∞

n∑
k=0

zk.

If this limit exists, we say that the series converges, and otherwise the series di-
verges. The numbers zk are the terms of the series

∑∞
k=0zk.

Thus the symbol
∑∞

k=0zk may have two very different meanings; it is always a sequence,
and it may be the limit of that sequence, if that limit exists. Context will make clear the
intended meaning of

∑∞
k=0zk. Also, we certainly do not have to start the series at k = 0; if

(zk)k≥m is a sequence in C with m ∈ Z, then
∞∑
k=m

zk =

(
n∑

k=m

zk

)
n≥m

and
∞∑
k=m

zk = lim
n→∞

n∑
k=m

zk if this limit exists.

Here the partial sum
∑n

k=mzk can be defined recursively as in (1.2.2). For convenience, we
will typically assume that m = 0, and this will not affect the proofs of any results that we
state. Finally, we can change finitely many terms of a series without affecting its convergence.

1.4.2 Problem (!). As in Problem 1.3.9, rephrase this last sentence more precisely and
prove it.

1.4.3 Remark. We might say something like “Let (zk) be a sequence in C and suppose∑∞
k=0zk converges with S =

∑∞
k=0zk.” The first occurrence of the symbol

∑∞
k=0zk in the

previous sentence represents the sequence
(∑n

k=0zk
)
, while the second represents the limit

limn→∞
∑n

k=0zk.” Thus we might paraphrase the first sentence as “Let (zk) be a sequence
in C and suppose that the sequence

(∑n
k=0zk

)
converges with S = limn→∞

∑n
k=0zk.”

Series behave algebraically much the way we (should) expect. The first three results below
can be deduced from the corresponding results for sequences in Theorem 1.3.10.

1.4.4 Theorem (Algebra of series). Let (zk) and (wk) be sequences in C.

(i) If
∑∞

k=0zk and
∑∞

k=0wk converge, then
∑∞

k=0(zk + wk) also converges, and

∞∑
k=0

(zk + wk) =
∞∑
k=0

zk +
∞∑
k=0

wk.

(ii) If α ∈ C and
∑∞

k=0zk converges, then
∑∞

k=0αzk also converges, and

∞∑
k=0

αzk = α

∞∑
k=0

zk.



1.4. Series 38

(iii) If
∑∞

k=0zk converges, then
∞∑
k=0

zk =
∞∑
k=0

zk.

(iv) The series
∑∞

k=0zk converges if and only if the series
∑∞

k=mzk converges for any m ≥ 1
as well, and

∞∑
k=0

zk =
m−1∑
k=0

zk +
∞∑
k=m

zk.

That is, the limit limn→∞
∑n

k=0zk exists if and only if the limit limn→∞
∑n

k=mzk exists for
all m ≥ 1, in which case

lim
n→∞

n∑
k=0

zk =
m−1∑
k=0

zk + lim
n→∞

n∑
k=m

zk.

Moreover, the reindexing identity

∞∑
k=m

zk =
∞∑
j=0

zj+m

holds.

1.4.5 Problem (!). In part (i) of Theorem 1.4.4, the symbol
∑

appears six times. In three
of those instances, this symbol represents a series that should be interpreted as a sequence
of partial sums. In the other three, it represents a series that should be interpreted as a
limit (i.e., a complex number). Which is which?

1.4.6 Problem (?). Prove part (iv) of Theorem 1.4.4.

We will now state a number of useful results about series. We will not, however, prove
most of them; the proofs are excellent applications of techniques in analysis (estimates,
convergence arguments) that probably would not teach us much specifically about complex
analysis. (In general, such proofs follow by replacing x from real analysis with z.)

1.4.7 Theorem (Test for divergence). Let (zk) be a sequence in C.

(i) If
∑∞

k=0zk converges, then limk→∞ zk = 0.

(ii) If limk→∞ zk 6= 0, or if limk→∞ zk does not exist, then
∑∞

k=0zk diverges.

1.4.8 Example. (i) We have seen (Example 1.3.6) that the sequence (ik) diverges, and so
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the series
∞∑
k=0

ik

diverges by the test for divergence. Here the only meaning that we can assign to the symbol∑∞
k=0i

k is that it is the sequence of partial sums

∞∑
k=0

ik =

(
n∑
k=0

ik

)
.

This is where we finished on Friday, January 19, 2024.

(ii) Since 2k →∞, the series
∞∑
k=0

2k

diverges. Here we have
∑∞

k=02k =
(∑n

k=02k
)
, although we could also reasonably say∑∞

k=02k =∞.

1.4.9 Problem (?). Prove the first part of the test for divergence by assuming that S =∑∞
k=0zk for some S ∈ C, writing

|zk| =

∣∣∣∣∣
(

k∑
j=0

zj − S

)
+

(
S −

k−1∑
j=0

zj

)∣∣∣∣∣ ,
and using the triangle inequality. Prove the second part by contrapositive.

Many series tests in calculus require nonnegative or positive terms. Since complex num-
bers are, in general, neither positive nor negative, it may seem impossible to import those
tests to the complex plane. Happily, this is not so, thanks to the following concept and
result.

1.4.10 Definition. Let (zk) be a sequence in C. The series
∑∞

k=0zk converges abso-
lutely if

∑∞
k=0|zk| converges.

1.4.11 Theorem. Let (zk) be a sequence in C. If
∑∞

k=0zk converges absolutely, then∑∞
k=0zk converges, and the triangle inequality for series holds:∣∣∣∣∣

∞∑
k=0

zk

∣∣∣∣∣ ≤
∞∑
k=0

|zk|. (1.4.1)
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Our strategy going forward when given a series
∑∞

k=0zk will frequently be to study the
“modulated” series

∑∞
k=0|zk|. To do that, we will need more tests from calculus, and to use

those tests, it will be helpful to know some series that actually converge.
One of the two most important series in the course, and possibly in all of mathematics,

is the geometric series. It is one of the few series whose sum is always explicitly known and,
in the final analysis, not terribly difficult to prove.

1.4.12 Theorem (Geometric series). Let z ∈ C. Then the geometric series

∞∑
k=0

zk

converges absolutely if |z| < 1 and diverges if |z| > 1. In particular, for |z| < 1,

∞∑
k=0

zk =
1

1− z
.

Proof. First we show divergence for |z| ≥ 1. If |z| = 1, then |zk| = |z|k = 1 as well, and
so limk→∞ |zk| = 1. But then limk→∞ z

k 6= 0 by Theorem 1.3.14, so the test for divergence
implies that

∑∞
k=0z

k diverges. Similarly, if |z| > 1, then limk→∞ |zk| = limk→∞ |z|k =∞,
and so limk→∞ z

k 6= 0 once again.
Now suppose |z| < 1. We claim that

n∑
k=0

wk =
1− wn+1

1− w
(1.4.2)

for any n ≥ 0 and any w ∈ C \ {1}.
Assuming the claim and taking w = |z| < 1 in (1.4.2) gives

lim
n→∞

n∑
k=0

|z|k = lim
n→∞

1− |z|n+1

1− |z|
=

1

1− |z|
,

and so
∑∞

k=0|z|k converges. Therefore
∑∞

k=0z
k converges absolutely. Moreover, taking w = z

in (1.4.2) implies the sum formula (1.4.2).
We conclude by proving the claim (1.4.2). If n = 0, then the result is immediate, as both

sides of (1.4.2) equal 1 in this case. Otherwise, for n ≥ 1, the identity (1.4.2) is equivalent
to

(1− z)
n∑
k=0

zk = 1− zn+1.

We compute on the left

(1− z)
n∑
k=0

zk =
n∑
k=0

zk −
n∑
k=0

zk+1 =
n∑
k=0

zk −
n+1∑
k=1

zk = 1 +
n∑
k=1

zk −
n∑
k=1

zk − zn+1 = 1− zn+1,

and this proves (1.4.2). �
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1.4.13 Problem (!). Let m ≥ 0 be an integer and z ∈ C with |z| < 1. Show that

∞∑
k=m

zk =
zm

1− z

Most of the familiar series tests from real-variable calculus require the terms in the series
to be nonnegative. Since most complex numbers are neither negative nor positive, we may
think that those tests will no longer be helpful. This is not the case, as we can usually invoke
those tests by first passing to a “comparison” of series.

1.4.14 Theorem (Comparison test). Let (zk) and (wk) be sequences such that |zk| ≤ |wk|
for all k and

∑∞
k=0|wk| converges. Then

∑∞
k=0zk converges absolutely, and

∞∑
k=0

|zk| ≤
∞∑
k=0

|wk|. (1.4.3)

By absolute convergence, the comparison test thus reduces testing the convergence of
the series

∑∞
k=0zk to that of the “comparator” series

∑∞
k=0|wk|, and for the latter we need

other tests. We also obtain a bound on the modulus of the sum
∑∞

k=0zk by combining the
estimates (1.4.1) and (1.4.3).

1.4.15 Example. It is not likely that we could find a formula for the sum of the series

∞∑
k=0

ik Re(ik+1)

2k
,

if it converges. But we can determine its convergence by estimating∣∣∣∣ik Re(ik+1)

2k

∣∣∣∣ =
|i|k|Re(ik+1)|

2k
≤ 1

2k

and using the comparison test in conjunction with geometric series. The inequality holds
because |i|k = 1 while |Re(ik+1)| ≤ |ik+1| = 1. This inequality can be strict, such as when
k = 2 and Re(i3) = Re(−i) = 0.

1.4.16 Problem (!). Use (1.4.1), (1.4.3), and the formula for the sum of a geometric series
to estimate ∣∣∣∣∣

∞∑
k=0

ik Re(ik+1)

2k

∣∣∣∣∣ ≤ 2.
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1.4.17 Problem (?). Show that the series

∞∑
k=0

1

k + i

diverges. [Hint: by considering real and imaginary parts, show that it suffices for the series∑∞
k=0k(k2 + 1)−1 to diverge. Find C > 0 such that k−1 ≤ Ck(k2 + 1)−1 and use the

divergence of the harmonic series to conclude the divergence of
∑∞

k=0k(k2 + 1)−1. Another
option would be to use the integral test.]

The preceding example is a prototype of how we often prove convergence of a series of
complex numbers: first compare the given series to a series of nonnegative terms, and then
use a test from real-variable calculus on that second series.

1.4.18 Theorem (Ratio test). Let (zk) be a sequence in C \ {0} and suppose that the
limit

L := lim
k→∞

|zk+1|
|zk|

(1.4.4)

exists (as a possibly extended-nonnegative number in [0,∞]). Then the series
∑∞

k=0zk
converges absolutely if L < 1 and diverges if L > 1.

The ratio test gives no information when L = 1, and there are both convergent and
divergent series for which the limit (1.4.4) exists and equals 1. Likewise, the failure of the
limit (1.4.4) to exist says nothing about the convergence or divergence of the series.

1.4.19 Problem (?). (i) Give an example of a convergent series
∑∞

k=0zk and a divergent
series

∑∞
k=0wk such that the ratio limit (1.4.4) for both series is 1; this illustrates that

further analysis beyond the ratio test is sometimes necessary. [Hint: try p-series.]

(ii) Use the comparison test to show that the series
∑∞

k=0zk with

zk :=

{
1/2k+1, k odd
1/2k, k even

converges but the ratio limit (1.4.4) does not exist.

(iii) Give an example of a divergent series
∑∞

k=0zk such that the ratio limit (1.4.4) does
not exist. [Hint: such a series can be constructed by allowing zk to take only two different
values.]

1.4.20 Problem (?). Use the ratio test to discuss the convergence of the geometric series∑∞
k=0z

k. Recover the results of Theorem 1.4.12 except for divergence when |z| = 1.

Some of the most interesting series in complex analysis depend on a complex number z
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as an auxiliary parameter. The convergence of such series often hinges on the values of z,
and these series are really functions of z. The geometric series

∑∞
k=0z

k is one such series;
here is another.

1.4.21 Example. Let z ∈ C and consider the series

∞∑
k=0

zk

k!
.

Of course, this series should define the exponential. For z = 0, all of the terms for k ≥ 1
are 0, so

∞∑
k=0

0k

k!
=

00

0!
= 0.

For z 6= 0, we establish convergence via the ratio test:

|zk+1|
(k + 1)!

(
k!

|zk|

)
=

|z|kzk!

(k + 1)k!|z|k
=
|z|
k + 1

→ 0 as k →∞.

This convergence is true regardless of what z ∈ C \ {0} that we use, and so the ratio test
proves the (absolute) convergence of the series.

This is where we finished on Monday, January 22, 2024.

1.5. The exponential and trigonometric functions.

We showed in Example 1.4.21 that the series
∑∞

k=0z
k/k! converges absolutely for all z ∈ C,

and this series, of course, defines the exponential; along with the geometric series, is the most
important series that we will study. We first develop some properties of the exponential by
itself, but it turns out that a trigonometric viewpoint will be even more enriching, and so
we will take up trigonometric in short order, too.

1.5.1. The exponential.

The exponential is the primordial transcendental function, and all good things come from it.

1.5.1 Definition. Let z ∈ C. The exponential of z is the series

exp(z) :=
∞∑
k=0

zk

k!
.

Of course, we will eventually write exp(z) = ez with e := exp(1), but for now we prefer
to keep the notation exp to emphasize that the exponential is really a function on C. The
exponential has all of the properties that we expect (and a few that we probably do not);
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remarkably, we can develop all of them from just a handful of fundamentals, and most of
those fundamentals are very easy to prove from the series definition of the exponential. Here
are those fundamentals.

1.5.2 Theorem. Let z, w ∈ C.

(exp1) [Functional equation] exp(z + w) = exp(z) exp(w).

(exp2) exp(z) = exp(z).

(exp3) exp(0) = 1.

(exp4) exp(t1) < exp(t2) if t1, t2 ∈ R with 0 ≤ t1 < t2.

(exp5) For each s ∈ R with s > 0, there exists t ≥ 0 such that exp(t) = s.

Properties (exp2), (exp3), and (exp4) are easy to prove from the definition of the expo-
nential and properties of series.

1.5.3 Problem (!). Prove them.

The functional equation (exp1) has a more involved proof involving multiplication of
series, which we will not give here. Likewise, property (exp5) is also more involved and
requires some calculus; since we have not taken up calculus yet, and since the calculus that
leads to property (exp5) would not teach us much about complex numbers, we will not prove
this property, either. Instead, we can use the five properties of the exponential in Theorem
1.5.2 to obtain all other familiar and necessary features that the exponential enjoys. In
doing so, as much as possible we no longer use explicitly the definition of the exponential as
a series; rather, it is a function on C that satisfies these five properties. In fact, we will see
that if f : C → C is a function that satisfies the functional equation f(z + w) = f(z)f(w)
and the initial condition f(0) = 1, then f must be the exponential!

1.5.4 Theorem. The exponential has the following additional properties.

(i) exp(z) 6= 0 for all z ∈ C.

(ii) exp(−z) = 1/ exp(z) for all z ∈ C.

(iii) If t ∈ R, then exp(t) > 0.

(iv) If t1, t2 ∈ R with t1 < t2, then exp(t1) < exp(t2).

(v) If t ∈ R, then | exp(it)| = 1.

Proof. (i) For any z ∈ C, we use the functional equation and property (exp3) to compute

1 = exp(0) = exp(z − z) = exp(z) exp(−z). (1.5.1)
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If exp(z) = 0, then 1 = 0, so exp(z) 6= 0.

(ii) The calculation (1.5.1) tells us exp(z) exp(−z) = 1, and so by definition of reciprocal
we have exp(−z) = 1/ exp(z).

(iii) Property (exp4) tells us exp(t) > 0 when t > 0, and property (exp3) extends that to
t = 0. Now let t < 0, so t = −|t|. Then part (ii) implies

exp(t) = exp(−|t|) =
1

exp(|t|)
> 0.

(iv) This is true when 0 ≤ t1 < t2 by property (exp4). We therefore need to consider the
cases t1 < t2 < 0 and t1 < 0 < t2. In the first case, we have 0 < −t2 < −t1, so property
(exp4) gives 0 < exp(−t2) < exp(−t1). Then 1/ exp(−t1) < 1/ exp(−t2), and so we can use
part (ii) to obtain exp(t1) < exp(t2).

Second, if t1 < 0 < t2, we know 1 = exp(0) < exp(t2), so we just need to show exp(t1) < 1.
We have 0 < −t1, and so 1 = exp(0) < exp(−t1), thus 1/ exp(−t1) < 1/ exp(0) = 1, and
therefore, by part (ii) again, we have exp(t1) < 1, as desired.

(v) We use properties (exp2) and (exp3) and the functional equation to compute

| exp(it)|2 = exp(it) exp(−it) = exp(it− it) = exp(0) = 1. �

1.5.5 Problem (!). Show that | exp(z)| = exp(Re(z)) for all z ∈ C.

1.5.6 Problem (?). (Requires induction, probably.) Let k ∈ Z and z ∈ C. Prove that
exp(kz) = [exp(z)]k, where the latter is defined via Definition 1.1.27.

1.5.2. The sine and the cosine.

To get anywhere much further with the exponential in particular (and complex analysis
in general), we need to introduce the trigonometric functions. While there are many such
functions, they all arise from the exponential.

1.5.7 Definition. Let z ∈ C. The cosine of z is

cos(z) :=
exp(iz) + exp(−iz)

2

and the sine of z is

sin(z) :=
exp(iz)− exp(−iz)

2i
.

1.5.8 Remark. Here is our rationale for introducing the sine and cosine as above. This is
largely a matter of personal taste. First, we might ask what are the sine and cosine of a real
number t. Any rigorous answer will boil down to either a statement about the solutions to
certain second-order initial value problems (which requires a decent knowledge of differential



1.5. The exponential and trigonometric functions 46

equations, or a willingness to accept certain facts about differential equations—and we have
come nowhere close to discussing the derivative in this course on complex analysis), or
power series. Specifically, we might define

cos(t) =
∞∑
k=0

(−1)k
t2k

(2k)!
and sin(t) =

∞∑
k=0

(−1)k
t2k+1

(2k + 1)!
.

If we manipulate the exponentials in Definition 1.5.7, this is exactly the power series ex-
pansions that we obtain for the sine and cosine of complex numbers.

1.5.9 Problem (?). (i) Show that if t ∈ R, then

cos(t) = Re[exp(it)] and sin(t) = Im[exp(it)].

In particular, the sine and cosine are real-valued on R. Conclude for all t ∈ R the familiar
estimate

| cos(t)| ≤ 1 and | sin(t)| ≤ 1.

(ii) Conclude Euler’s formula for t ∈ R:

exp(it) = cos(t) + i sin(t).

For z = x+ iy ∈ C, generalize Euler’s formula to

exp(x+ iy) = exp(x)
[

cos(y) + i sin(y)
]
.

(iii) Prove the Pythagorean identity for all z ∈ C:

[sin(z)]2 + [cos(z)]2 = 1.

(iv) Write exp(z) in terms of sin(iz) and cos(iz). That is, if the values of sin(iz) and cos(iz)
are known, how can the value of exp(z) be recovered? Casting this as the matrix-vector
problem

1

2

[
1 1
−i i

](
exp(z)

exp(−z)

)
=

(
cos(iz)
sin(iz)

)
may be helpful (but is not, strictly speaking, necessary).

(v) Show that the cosine is even and the sine is odd. (Recall from Problem 1.2.7 that a
function f : C → C is even if f(−z) = f(z) for all z, while a function g : C → C is odd
if g(−z) = −g(z) for all z ∈ C.)

Any deeper discussion of trigonometry must mention that most marvelous number π. As
with properties (exp1) and (exp5) of the exponential, we will take the following for granted
and build up all the other necessary properties of π out of the subsequent few.
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1.5.10 Theorem. There exists a real number π > 0 such that the following hold.

(π1) cos(π/2) = 0.

(π2) 0 < cos(t2) < cos(t1) < 1 for 0 < t1 < t2 < π/2.

(π3) sin(π/2) = 1.

(π4) If z ∈ C with |z| = 1, then there is t ∈ (−π, π] such that exp(it) = z.

1.5.11 Problem (!). Show that if p ∈ R satisfies cos(p/2) = 0, then sin2(p/2) = 1.
Consequently, property (π3) is really just a specification of the sign of a sine. [Hint: what
is | exp(ip/2)|2?]

Property (π4) of π is just a formalization of our intuition that the coordinates (cos(t), sin(t))
parametrize the unit circle when t ranges from −π to π. We can strengthen this property to
say that this t ∈ (−π, π] is unique; see Problem 1.5.17. This property is the foundation of
polar coordinates in R2, and thus in C, a highly useful representation of ordered pairs and
complex numbers that we will frequently exploit (and confuse) in the future. Of course, in
the past we usually took the parametrization to be over the interval [0, 2π], but later we will
see some distinct advantages to working on the interval (−π, π].

The definitions of cosine and sine, their properties (π1), (π2), and (π3), and a few more
properties that we will soon develop allow us to sketch their graphs, albeit crudely, as real-
valued functions on the interval [−π, π]. These graphs are of course exactly what we know
from trigonometry. The point here is that cosine and sine take the expected values at
certain multiples of π and, more generally, that they are positive and negative on the usual
subintervals of [−π, π].

We develop this in the following. First we prove the expected periodicity of cosine and
sine via the perhaps unexpected periodicity of the exponential.

1.5.12 Theorem. The exponential is 2πi-periodic:

exp(z + 2πi) = exp(z).

for all z ∈ C. In particular,

exp

(
πi

2

)
= i, exp(πi) = −1, exp

(
3πi

2

)
= −i, and exp(2πi) = 1.

Proof. We build this up from repeated applications of the functional equation. First, Euler’s
formula tells us

exp

(
πi

2

)
= cos

(π
2

)
+ i sin

(π
2

)
= i.
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The second equality just above follows from properties (π1) and (π3). Next,

exp(πi) = exp

(
πi

2
+
πi

2

)
= exp

(
πi

2

)
exp

(
πi

2

)
= i2 = −1.

Then
exp(2πi) = exp(πi+ πi) = exp(πi) exp(πi) = (−1)2 = 1.

At last, we have
exp(z + 2πi) = exp(z) exp(2πi) = exp(z).

The formula for exp(3πi/2) follows from a similar application of the functional equation. �

1.5.13 Problem (!). Perform that similar application of the functional equation to show
exp(3πi/2) = −i. [Hint: exp(2πi) = 1 and exp(πi/2) = i.] Also, using only the definition
of the sine and cosine, and maybe results from Problem 1.5.9 and Theorem 1.5.12, show
that

sin(0) = sin(π) = 0, cos(0) = 1, and cos(π) = −1.

1.5.14 Problem (!). Show that the sine and cosine are also 2πi-periodic. Conclude that

sin(kπ) = 0 and cos

(
(2k + 1)π

2

)
= 0

for all k ∈ Z. These are the familiar roots of the sine and cosine.

1.5.15 Problem (!). Show that the cosine is “odd about π/2” in the sense that

cos
(π

2
+ t
)

= − cos
(π

2
− t
)

for any t ∈ R. [Hint: use the definition and exp(iπ/2) = −1.]

1.5.16 Problem (?). Here is how we establish the identities

sin
(π

4

)
= cos

(π
4

)
=

1√
2
.

(i) Use the definition of the cosine to prove the half-angle identity[
cos
(z

2

)]2

=
1 + cos(z)

2
, z ∈ C.

(ii) Use the half-angle identity to compute cos(π/4) and recall that cos(t) > 0 for 0 < t <
π/2.

(iii) Use the definitions of sine and cosine to show that

sin(z) = cos
(
z − π

2

)
, z ∈ C. (1.5.2)
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(iv) Compute sin(π/4).

Now we can graph the cosine and sine and check that the parametrization certain arcs
of the unit circle corresponds to the usual subintervals of [−π, π]. We develop the graph of
cosine first and refer to the essential prior results that help us sketch it.

(I)

t

cos(0) = 1, cos(π) = −1 [Problem 1.5.13]

cos(t)

1

−1
π/2 π

(II)

t

cos(π/2) = 0 [Property (π1)]

cos(t)

1

−1
π/2 π

(III)

t

0 < cos(t2) < cos(t1) < 1 [Property (π2)]

cos(t)

1

−1
π/2 π

(IV)

t

cos(π/2 + t) = − cos(π/2− t) [Problem 1.5.15]

cos(t)

1

−1
π/2 π

(V)

t

cos(t) = cos(−t) [Problem 1.5.9]

cos(t)

1

−1
π/2 π−π/2−π

(VI)

t

sin(t) = cos(t− π/2) [Problem 1.5.16]

sin(t)

1

−1
π/2 π−π/2−π

These familiar graphs of cosine and sine, combined with Euler’s formula exp(it) = cos(t)+
i sin(t), show that the arcs of the unit circle in Quadrants I through IV correspond to the
expected subintervals of [−π, π]. For example, if z ∈ C with |z| = 1, Re(z) > 0 and
Im(z) > 0, i.e., z lies on the portion of the unit circle in Quadrant I, then Euler’s formula
shows that with z = exp(it), −π < t ≤ π, we need cos(t) > 0 and sin(t) > 0, and then the
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graphs above show 0 < t < π/2, as expected.

R

iR

0 < t < π/2

−π/2 < t < π

π/2 < t < π

−π < t < π

1

i

−1

−i

1.5.17 Problem (?). (i) Let t1, t2 ∈ (−π, π]. Show that if exp(it1) = exp(it2), then
exp(i(t1 − t2)) = 1. Conclude that, to show exp(it1) 6= exp(it2) for all distinct t1, t2 ∈
(−π, π], it suffices to show exp(it) 6= 1 for all t ∈ (−π, π] with t 6= 0.

(ii) Explain why if cos(t) 6= 1 for t ∈ (−π, π] with t 6= 0, then exp(it) 6= 1. [Hint: that
cos(t) 6= 1 for t ∈ (−π, π] is suggested by the graph of cos that we have developed above.
Refresh your memory of this process by using the referenced results in graphs (III), (IV),
and (V) to give a rigorous, step-by-step proof that cos(t) 6= 1 for t ∈ (−π, π] with t 6= 0.]

1.5.18 Problem (+). A deeper result than Problem 1.5.14 is to establish that extending
the sine and cosine to C introduces no new roots or periods beyond what we know from the
real case. We will show that if p ∈ C with sin(z + p) = sin(z) for all z ∈ C, then p = 2πik
for some k ∈ Z, and likewise for the cosine. Also, we will show that sin(z) = 0 if and only
if z = kπ for some k ∈ Z, and likewise that cos(z) = 0 if and only if z = (2k + 1)π/2 for
some k ∈ Z. Finally, we will show that exp(z + p) = exp(z) for all z ∈ C if and only if
p = 2πik for some k ∈ Z. We do so in the following steps.

(i) [Roots of the cosine] Suppose that cos(z) = 0 for some z ∈ C. Use the definition
of the cosine to obtain exp(2iz) = −1. Take the modulus and conclude exp(Re(2iz)) = 1.
Since the exponential is strictly increasing on R, conclude Re(2iz) = 0 and therefore
Im(z) = 0. Write z = x for x ∈ R, so cos(x) = 0; we may assume x = x̂ + 2kπ for some
k ∈ Z and x̂ ∈ (−π, π). Establish the identity cos(z + π/2) = − cos(π/2 − z), valid for
all z ∈ C. If x̂ > 0, explain why write x̂ = π/2 + θ for some θ ∈ [0, π/2) and conclude
− cos(π/2−θ) = 0. Why does this force θ = 0? If x̂ < 0, study −x̂ and conclude x̂ = −π/2.
Thus all roots of the cosine have the form ±π/2 + 2πk for some k ∈ Z; show that these
are precisely the numbers of the form (2j + 1)π/2 for some j ∈ Z.

(ii) [Periodicity of the cosine] Suppose that p ∈ C satisfies cos(z + p) = cos(z) for all
z ∈ C. Take z = π/2 and conclude that p = kπ for some k ∈ Z. To see that k must be
even, show that cos(2kπ) = cos(kπ) and consider what goes wrong if k is odd.
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(iii) [Periodicity and roots of the sine] Use the identity sin(z) = cos(z − π/2) to
deduce the desired results about the periodicity and roots of the sine.

(iv) [Periodicity of the exponential] Suppose that p ∈ C satisfies exp(z+ p) = exp(z)
for all z ∈ C. Show that cos(z + p/i) = cos(z) for all z ∈ C and conclude p/i = 2πk for
some k ∈ Z.

(v) [Nonreality of the exponential] To confirm what we should already be expecting
from the unit circle, show that exp(it) 6∈ R for t ∈ (−π, π] with t 6= 0, π.

1.5.19 Example. The results of Problem 1.5.18 may lull us into a false sense of security:
yes, the exponential is periodic and not one-to-one on C, but at least the periodicity and
root structure of the sine and cosine do not change on the plane. However, the sine and
cosine are not bounded on C, unlike on R. That is, there does not exist M > 0 such that
| sin(z)| ≤M or | cos(z)| ≤M for all z ∈ C.

Consider the cosine at purely imaginary values:

cos(iy) =
exp(i(iy) + exp(−i(iy)|

2
=

exp(−y) + exp(y)

2
.

Our intuition says that exp(−y) → 0 as y → ∞ and exp(y) → ∞ as y → ∞, thus
| cos(iy)| → ∞ as y → ∞. Since we have not yet introduced limit structures, we should
temper our intuition and instead, given integers k ≥ 1, summon up yk ∈ R such that
exp(yk) = k, which part (exp5) of Theorem 1.5.2 permits. Then cos(iyk) = (k + 1/k)/2;
given M > 0, we can choose k > 2M , and we will then have | cos(iyk)| > M .

1.5.20 Problem (!). Use the strategy of the preceding example to prove that the sine is
unbounded on C.

The following result will be very helpful in the future, and it is a nice opportunity to use
a variety of techniques for the exponential simultaneously.

1.5.21 Theorem. exp(z) = 1 if and only if z = 2πik for some k ∈ Z.

Proof. (⇐=) This direction is slightly easier, so we do it first. It is really a direct calculation:
since exp is 2πi-periodic, we expect

exp(2πik) = exp(2πi(k − 1) + 2πi) = exp(2πi(k − 1)) = exp(2πi(k − 2) + 2πi)

= exp(2πi(k − 2)) = · · · = exp(2πi) = 1.

As with most proofs involving “· · · ,” we could make this more rigorous by induction. Indeed,
another, quicker proof of this direction uses Problem 1.5.6 (whose proof probably needs
induction anyway):

exp(2πik) = [exp(2πi)]k = 1k = 1.

(=⇒) There are multiple ways of proceeding; here is one. If exp(z) = 1, then for all w ∈ C,
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the functional equation tells us that

exp(w + z) = exp(w) exp(w) = exp(w) · 1 = exp(w),

and so z is a period of the exponential. Consequently (and this needs to be checked), iz
is a period of the sine. Problem 1.5.18 assures us that iz = 2πk for some k ∈ Z, and so
z = −2πik = 2πi(−k). �

The product 2πi is quite special in complex analysis, and we will see its happy roles in
many places in the future.

1.5.22 Problem (+). (i) Show that the exponential is one-to-one on strips of width 2π.
That is, if q ∈ R and

Σq :={z ∈ C | q < Im(z) ≤ q + 2π} ,

then if exp(z1) = exp(z2) for some z1, z2 ∈ Σq, it must be the case that z1 = z2.

(ii) With Σq as defined above, show that the cosine is bounded on Σq. That is, findM > 0
such that | cos(z)| ≤M for all z ∈ Σq.

This is where we finished on Wednesday, January 24, 2024.

1.6. Geometry revisited: polar coordinates.

Part (π4) of Theorem 1.5.10 and part (ii) of Problem 1.5.17 tell us that for each z ∈ C with
|z| = 1, there is a unique t ∈ (−π, π] such that exp(it) = z. Given z ∈ C \ {0}, we then have∣∣∣∣ z|z|

∣∣∣∣ = 1,

and we may therefore write
z

|z|
= exp(it)

for some unique t ∈ (−π, π], thus
z = |z| exp(it).

1.6.1 Definition. Let z ∈ C \ {0}.

(i) The principal argument of z is the unique number t ∈ (−π, π] such that z =
|z| exp(it). We denote it by t = Arg(z).

(ii) An argument of z is any θ ∈ R such that z = |z| exp(iθ). We denote the set of all
arguments of z by arg(z). That is,

arg(z) ={θ ∈ R | z = |z| exp(iθ)} .
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(iii) A ray is a set of the form {z ∈ C | Arg(z) = θ} for some given θ ∈ (−π, π].

Whenever we have written a complex number z in the form z = |z| exp(iθ) for some
θ ∈ R, we will refer to this representation as polar coordinates for z.

Polar coordinates z = |z| exp(iθ) allow us to decouple the behavior of the complex number
z into the “modular” component |z| and the “oscillatory” component exp(iθ). Experience will
show the utility, and frustration, of this decomposition. The following cartoon encapsulates
the previous definition.

R

iR

r−r

ir

−ir

θ

all points on this ray
have argument θall points on this circle

have modulus r

1.6.2 Example. (i) Let−π < t ≤ π and put z = exp(it). Then |z| = 1, so z = 1·exp(it) =
|z| exp(it). Since t ∈ (−π, π], by definition we have t = Arg(z). That is, Arg(exp(it)) = t
when −π < t ≤ π.

(ii) More generally, if r > 0 and −π < t ≤ π, then Arg(r exp(it)) = t. This, too, follows
from the definition of Arg, since putting z = r exp(it) gives |z| = r, thus z = |z| exp(it).

(iii) In particular, if x > 0, then x = |x| = |x| exp(i · 0), and so Arg(x) = 0. But if x < 0,
then x = −|x| = |x| exp(iπ), and so Arg(x) = π.

1.6.3 Problem (!). (i) Let z ∈ C \ {0}. Show that

arg(z) ={Arg(z) + 2πk | k ∈ Z} .

(ii) Show that any ray R can be written in the form

R ={r exp(iφ) | r > 0}

for some φ ∈ R.

(iii) Let z ∈ C. Show that Im(z) ∈ arg(exp(z)), but give an example to show that we
need not always have Arg(exp(z)) = Im(z).
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1.6.4 Problem (!). Let z ∈ C \ {0} and θ ∈ arg(z). Show that

|z| = |Re(exp(−iθ)z)|.

[Hint: use the polar coordinates of z and explain why exp(−iθ)z ∈ R.]

Polar coordinates are the cause of and solution to most of life’s problems in complex
analysis. Their chief advantage is that they represent complex numbers in a geometrically
transparent way that also lends itself to facile algebraic manipulations. Their chief disad-
vantage is ambiguity: arguments are 2π-periodic.

There are very few arguments that we can calculate explicitly, and there are even fewer
that we will need.

1.6.5 Problem (!). Use familiar data from the unit circle (which you do not have to
prove—but see Theorems 1.5.10 and 1.5.12 and Problems 1.5.13 and 1.5.16) to compute
principal argument of each kind of point labeled in the plane below. These are the kinds
of arguments that we will use most often.

R

iR

1

2

3

4

5

6

7

8

1 Re(z) > 0, Im(z) = 0
2 Re(z) = Im(z) > 0
3 Re(z) = 0, Im(z) > 0
4 Re(z) = − Im(z), Im(z) > 0
5 Re(z) < 0, Im(z) = 0
6 Im(z) = Re(z), Re(z) < 0
7 Re(z) = 0, Im(z) < 0
8 Im(z) = −Re(z), Re(z) > 0

1.6.6 Problem (!). Translate the sentence “Complex numbers are multiplied by multiply-
ing their moduli as real numbers and adding their arguments” into precise mathematical
notation. Then explain why this sentence is true.

The choice of the range (−π, π] for the principal argument may seem strange, especially
given that our prior experience is likely to parameterize the unit circle over [0, 2π]. This
choice of range is largely a matter of convention; once fixed in an interval of the form
(α, α + 2π] for some α ∈ R, all resulting theory would flow just as well as for α = −π. One
(possibly superficial) advantage of the interval (−π, π] over [0, 2π] or [0, 2π) is that (−π, π]
is symmetric about the origin. A deeper advantage has to do with continuity.
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1.6.7 Example. While we have yet to define continuity rigorously for functions of a com-
plex variable, our intuition with the unit circle and our calculus background should suggest
to us that the following picture is true.

R

iR

Arg(z)→ π along this path

Arg(z)→ −π along this path

It looks like the values of Arg tend to both π and −π as we approach the negative real
axis, and so Arg should be discontinuous on (−∞, 0). Indeed, Arg will be continuous on
C \ (−∞, 0] and in particular continuous on (0,∞); this, in turn, will imply that a certain
extension of the natural logarithm is continuous on (0,∞), just like the natural logarithm.
In short, there is some payoff at the calculus level for this definition of Arg.

There will also be times when it will be worthwhile to move the (putative) discontinuity
of the argument to a ray of our choosing that is not necessarily the negative real axis.

1.6.8 Lemma. Let α ∈ R. Then for each z ∈ C \ {0}, there is a unique t ∈
(α, α + 2π] such that z = |z| exp(it), and we write t = argα(z). The resulting func-
tion argα : C \ {0} → (α, α + 2π] is the αth branch of the argument. The ray
{z ∈ C \ {0} | argα(z) = α + 2π} is the branch cut for argα.

A good proof of the lemma hopefully uses the idea that we can start with Arg(z) and
then add/subtract an integer multiple of 2π to Arg(z) and eventually arrive at argα(z).

1.6.9 Problem (+). Give a good proof of this lemma. [Hint: to make it “good,” use the
fact that, for α ∈ R fixed, we can write R as the disjoint union of intervals of the form
(α + 2πk, α + 2π(k + 1)] for k ∈ Z.]

1.6.10 Problem (!). Let α ∈ R. Explain why {z ∈ C \ {0} | argα(z) = α} = ∅.

1.6.11 Problem (!). For what α ∈ R do we have Arg = argα?

The following characterization of the αth branch of the argument will be fundamental in
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many future calculations.

1.6.12 Theorem. Let α ∈ R, r > 0, and α < t ≤ α + 2π. Then

argα(r exp(it)) = t.

1.6.13 Problem (!). Prove this theorem. [Hint: reread and adapt Example 1.6.2.]

1.6.14 Example. We study the function argπ/2.

(i) We compute argπ/2(1). With t = argπ/2(1), we want exp(it) = 1 and π/2 < t ≤ 5π/2.
We know that t needs to be an integer multiple of 2π, and we cannot use Arg(1) = 0. But
π/2 < 2π < 5π/2, so argπ/2(1) = 2π.

(ii) We compute argπ/2(−1). With t = argπ/2(−1), we want exp(it) = −1 and π/2 < t ≤
5π/2. We know that exp(iπ) = −1, and we also have π/2 < π < 5π/2, so argπ/2(−1) =
π = Arg(−1). In this case, the argument did not change with the branch.

(iii) We compute argπ/2(i). With t = argπ/2(i), we want exp(it) = i and π/2 < t ≤ 5π/2.
We know exp(iπ/2) = i, and we know exp(iπ/2 + 2πi) = i. And π/2 + 2π = 5π/2. Thus
argπ/2(i) = 5π/2.

(iv) The (purportedly) bad continuity behavior of Arg on the negative real axis gets
“rotated” to the positive imaginary axis for argπ/2. Fix z with Re(z) > 0 and Im(z) > 0 (so
z is in “Quadrant I”). Then we expect 0 < Arg(z) < π/2, and so 2π < Arg(z) + 2π < 5π/2.
Since z = |z| exp(i(Arg(z)+2π)), we have argπ/2(z) = Arg(z)+2π. Thus 2π < argπ/2(z) <
5π/2 for z with Re(z) > 0 and Im(z) > 0, and so we expect argπ/2(z) → 5π/2 as z
approaches the positive imaginary axis but remains with Re(z) > 0 and Im(z) > 0.

Similarly, for z with Re(z) < 0 and Im(z) > 0 (i.e., z is in “Quadrant II”), we have
π/2 < Arg(z) < π. This is within the range of argπ/2, so we have π/2 < argπ/2(z) < π for
z with Re(z) < 0 and Im(z) > 0. Thus we expect argπ/2(z) → π/2 as z approaches the
positive imaginary axis but remains with Re(z) < 0 and Im(z) > 0.

R
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argπ/2(z)→ π/2 argπ/2(z)→ 5π/2

The reasoning of the preceding paragraph also suggests that argπ/2(z) → π as z ap-
proaches the negative real axis regardless of whether this approach is in Quadrant II or III.
(This is not what happened with Arg in Example 1.6.7.) Indeed, if we approach the nega-
tive real axis in Quadrant II, i.e., with Re(z) < 0 and Im(z) > 0, then since such z satisfy
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π/2 < Arg(z) < π, we have Arg(z) = argπ/2(z). We therefore expect that argπ/2(z) → π
as z approaches the negative real axis from within Quadrant II. And if z approaches the
negative real axis from within Quadrant III, i.e., with Re(z) < 0 and Im(z) < 0, then
−π < Arg(z) < −π/2, so π < Arg(z) + 2π < 3π/2, and so argπ/2(z) = Arg(z) + 2π. We
therefore expect that since Arg(z) + 2π → −π + 2π = π as z approaches the negative real
axis from within Quadrant III, we should have argπ/2(z)→ π there, as well.

R

iR

argπ/2(z)→ π

argπ/2(z)→ π

Our expectation, then, is that argπ/2 has a discontinuity along its branch cut{
z ∈ C

∣∣ argπ/2(z) = 2π + π/2
}

= {z ∈ C | Arg(z) = π/2}, i.e., the positive imaginary
axis, but, unlike Arg, it should be the case that argπ/2 is continuous on the negative
real axis. This is our prior claim: that the (purportedly) bad continuity behavior of Arg
on the negative real axis gets “rotated” to the positive imaginary axis for argπ/2.

1.6.15 Problem (!). Redo Example 1.6.14 for argπ/4. That is, calculate argπ/4(z) for
z = 1, −1, and i, and argue informally that argπ/4 should be discontinuous on its branch
cut but continuous on the negative real axis.

1.6.16 Problem (?). Most calculations with argα can be accomplished by thinking about
Arg and adding enough multiples of 2π to get to α. For this reason, it is worthwhile to
develop some relationships between Arg and an arbitrary branch argα.

(i) For which α ∈ R do we have Arg(z) = argα(z) for all z ∈ C \ {0}?

(ii) Fix z ∈ C \ {0}. For which α ∈ R do we have Arg(z) = argα(z)? (This is not the
same as part (i)—your answer here will depend on the given z.)

(iii) Let α ∈ R and z ∈ C \ {0}. What relationship is there between argα(z) and
argα+2π(z)?
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1.6.17 Problem (?). A sector is a set of the form

{z ∈ C | α ≤ Arg(z) ≤ β or z = 0}

for some α, β ∈ R satisfying −π < α < β ≤ π.

(i) Sketch the sector

{z ∈ C | π/4 ≤ Arg(z) ≤ 3π/4 or z = 0} .

(ii) Let 0 < ω1 < ω2 < π. How do the sectors

{z ∈ C | |Arg(z)| ≤ ω1 or z = 0} and {z ∈ C | |Arg(z)| ≤ ω2 or z = 0}

compare to each other?

(iii) Find α, β ∈ R such that the sector below is the set{
z ∈ C

∣∣ α ≤ arg−π/2(z) ≤ β or z = 0
}
.

R

iR

−1 + i

−1− i

This is where we finished on Friday, January 26, 2024.

1.7. Logarithms and powers.

We now have the tools we need to invert the exponential; of course we will call its inverse the
logarithm. But we will quickly see that the article “the” in “the logarithm” is too optimistic—
we will find many logarithms! They will serve as valuable (and annoying) examples and tools
in our subsequent development of the calculus. One immediate application of logarithms will
be the rigorous construction of noninteger powers of complex numbers.
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1.7.1. The natural logarithm.

First, we recall the original logarithm, the natural logarithm. The function exp
∣∣
R : R →

(0,∞) is one-to-one and onto: for each s ∈ (0,∞), there is a unique t ∈ R such that
exp(t) = s. The existence of t is property (exp5) of the exponential from Theorem 1.5.2; the
uniqueness follows from part (iv) of Theorem 1.5.4. Consequently, by Theorem A.2.4, there
is a unique function ln : (0,∞)→ R such that

ln(exp
∣∣
R(t)) = t for all t ∈ R and exp

∣∣
R(ln(s)) = s for all s ∈ (0,∞). (1.7.1)

We call this function ln the natural logarithm.
Unfortunately, this development does not provide us with an explicit formula for the

natural log (like the power series definition of the exponential) except when evaluating very
special numbers in (0,∞). We will eventually use calculus to get several very transparent
formulas for the natural log, but we can get a lot just from (1.7.1).

1.7.1 Problem. Use only (1.7.1) and previously proved properties of exp to establish the
following properties of ln.

(i) ln(1) = 0.

(ii) ln(s) < 0 for 0 < s < 1 and ln(s) > 0 for 1 < s.

(iii) If s1, s2 ∈ (0,∞), then ln(s1s2) = ln(s1) + ln(s2). [Hint: what is exp(·) evaluated at
each side of the desired equality?]

1.7.2. Complex logarithms.

Equipped with the natural logarithm, we can (try to) invert the exponential by solving
exp(w) = z for w given z ∈ C \ {0}. Experience probably teaches us that it is easiest to
solve exponential equations when there are exponentials on both sides of the equation. So,
we write z in polar coordinates (which we may do, since z 6= 0): suppose

z = |z| exp(iθ) with θ = Arg(z).

To obtain more control over w, write it as w = x + iy for x, y ∈ R. (Note that we are not
going to write w in polar coordinates here, since there is already an exponential on the left
side of exp(w) = z.) Then we have

exp(x) exp(iy) = |z| exp(iθ) (1.7.2)

This is only one equation, but we have two unknowns (x and y)—not a recipe for success,
usually.

We can eliminate one of the variables in (1.7.2) by taking the modulus of both sides.
Since exp(x) > 0 and since | exp(iy)| = | exp(iθ)| = 1, we obtain

exp(x) = |z|.

And since |w| > 0, we have x = ln(|z|).
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If we substitute x = ln(|z|) back into (1.7.2), we can divide |z| from both sides to find

exp(iy) = exp(iθ),

and therefore
exp(i(y − θ)) = 1.

Example 1.5.21 tells us that i(y − θ) = 2πik for some k ∈ Z, and so

y = θ + 2πk.

We have therefore proved the following theorem.

1.7.2 Theorem. Let w ∈ C and z ∈ C \ {0}. Then exp(w) = z if and only if

w = ln(|z|) + iArg(z) + 2πik

for some k ∈ Z.

This result motivates the following definition.

1.7.3 Definition. (i) The logarithm of z ∈ C \ {0} is the set

log(z) :={ln(|z|) + iArg(z) + 2πik | k ∈ Z} ={ln(|z|) + iθ | θ ∈ arg(z)} .

(ii) The principal logarithm is the function

Log : C \ {0} → C : z 7→ ln(|z|) + iArg(z).

1.7.4 Problem (!). Show that exp(C) = C \ {0}.

1.7.5 Problem (!). Let t ∈ R with t > 0. Show that Log(t) = ln(t). That is,

Log
∣∣
(0,∞)

= ln .

We will later see that defining Log via Arg, and in turn requiring Arg to take values in
(−π, π], preserves some of the best “calculus” properties of ln in Log.

1.7.6 Example. (i) We do what we have probably wanted to do since high school and
take the logarithm of a negative number. Specifically, we have

log(−1) ={ln(| − 1|) + iArg(−1) + 2πik | k ∈ Z} .

Since ln(| − 1|) = ln(1) = 0 and Arg(−1) = π, we find

log(−1) ={iπ + 2πik | k ∈ Z} ={(2k + 1)πi | k ∈ Z} .
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In particular,
Log(−1) = ln(| − 1|) + iArg(−1) = 0 + iπ = iπ.

This is exactly what we expect, since

exp((2k + 1)πi) = exp(2kπi+ πi) = exp(2kπi) exp(πi) = exp(πi) = −1.

(ii) Now we go purely imaginary and compute

log(i) ={ln(|i|) + iArg(i) + 2πik | k ∈ Z} =

{
iπ

2
+ 2πik

∣∣∣∣ k ∈ Z
}

and
Log(i) = ln(|i|) + iArg(i) =

iπ

2
.

This is exactly what we expect, since

exp

(
iπ

2
+ 2πik

)
= exp

(
iπ

2

)
exp(2πik) = exp

(
iπ

2

)
= i.

1.7.7 Remark. The object log(z) as we have defined it in Definition 1.7.3 is sometimes
called a “set-valued” or “multi-valued” function. Of course, log cannot be a function from
C \ {0} to C. The infinite number of values that log(z) can take is ultimately an artifact
of the 2πi-periodicity of the exponential.

In practice, we frequently dispense with the set-builder notation and just write something
like

log(z) = ln(|z|) + iArg(z) + 2πik,

where we understand the sum on the right above really to be an element of a set indexed by
k ∈ Z.

1.7.8 Problem (?). Let z ∈ C. Show that Log(exp(z)) = exp(z) if and only if −π <
Im(z) ≤ π. [Hint: exp(z) = exp(Re(z)) exp(i Im(z)).]

We have already intuited that the principal argument will suffer a discontinuity on the
negative real axis, and the principal logarithm will likely inherit that behavior. It will be
worthwhile to have a tool that (1) inverts the exponential (otherwise known as a logarithm)
and (2) will be discontinuous on a ray of our choosing. This is possible by our modification
of the principal argument into its branches, which takes care of property (2).

1.7.9 Definition. Let α ∈ R. The αth branch of the logarithm is the function

logα : C \ {0} → C : z 7→ ln(|z|) + i argα(z).

The ray {z ∈ C \ {0} | argα(z) = α + 2π} is the branch cut for logα.
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1.7.10 Example. Recall from Example 1.6.14 that argπ/2(1) = 2π. Thus

logπ/2(1) = ln(|1|) + i argπ/2(1) = 2π.

This contrasts with the familiar result Log(1) = ln(1) = 0 but agrees with exp(2πi) = 1.

1.7.11 Problem (!). Let z ∈ C \ {0}.

(i) Prove that log(z) ={logα(z) | α ∈ R}.

(ii) Suppose that Log(z) = logα(z) for some α ∈ R and z ∈ C \ {0}. How are α and z
related?

1.7.12 Problem (?). This problem examines the precise relationship between exp and the
different species of log that we have developed.

(i) Show that exp(logα(z)) = z for all α ∈ R and all z ∈ C \ {0}.

(ii) Let z ∈ C. Describe all elements of the set log(exp(z)). More generally, describe all
elements of the set logα(exp(z)).

(iii) For what z ∈ C do we have Log(exp(z)) = z? More generally, for what z ∈ C do we
have logα(exp(z)) = z?

1.7.3. Powers.

Let z, a ∈ C. What should the symbol za mean? Better, what should the symbol za do?
At some point in life, we probably learned that

ln(xa) = a ln(x)

when a, x > 0. If this is true, then we can exponentiate both sides to find

xa = exp(ln(xa)) = exp(a ln(x)). (1.7.3)

Note that we already know what exp is (and we even have an explicit formula for it as a
power series), and we know what ln is at an existential level (it inverts exp). And so the
identity (1.7.3) really defines xa.

In turn, this motivates the following definition.

1.7.13 Definition. Let a ∈ C and z ∈ C \ {0}. Then

za :={exp(aw) | w ∈ log(z)} =
{

exp
(
a[ln(|z|) + iArg(z) + 2πik]

) ∣∣ k ∈ Z
}
.

This is where we finished on Monday, January 29, 2024.
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1.7.14 Example. We have

1i ={exp(iw) | w ∈ log(1)}
=
{

exp
(
i(ln(|1|) + iArg(1) + 2πik)

) ∣∣ k ∈ Z
}

=
{

exp(2πi2k)
∣∣ k ∈ Z

}
={exp(−2πk) | k ∈ Z}
={exp(2πk) | k ∈ Z} .

From real-variable calculus, we expect that 1x = 1 for any real number x; this is no longer
the case with our new interpretation of powers, but (taking k = 0 above), it is at least the
case that 1 ∈ 1i.

1.7.15 Example. We have previously used the symbol za when a was an integer; see
Definition 1.1.27. It would be unfortunate if Definition 1.7.13 gave a different output for
zk when k ∈ Z. To check this, we take w ∈ log(z) and write w = ln(|z|) + iArg(z) + 2πij
for some j ∈ Z. Then

exp(kw) = exp
(
k(ln(|z|) + iArg(z) + 2πij)

)
= exp

(
k(ln(|z|) + iArg(z))

)
exp(2πijk).

Since jk ∈ Z, we have exp(2πijk) = 1. Now we use Problem 1.5.6 to compute

exp
(
k(ln(|z|) + iArg(z))

)
=
[

exp(ln(|z|+ iArg(z)
]k

= zk.

Thus exp(kw) = zk, and so
{exp(kw) | k ∈ Z} = {zk}.

Up to the fact that Definition 1.7.13 returns a set (not a complex number), we see that zk

is unambiguously defined for integers k.

Unfortunately, one of our other favorite powers is not so unambiguously defined. Until
now, we have always, and intentionally, written the exponential as exp(z) and not ez. In
fact, we never defined the number e.

1.7.16 Definition. e := exp(1).

However, if we use Definition 1.7.13 to evaluate ez, we will typically obtain an infinite set.

1.7.17 Problem (+). For which z ∈ C is ez infinite (where ez is interpreted according to
Definition 1.7.13)? Finite? If the set ez is finite, how many elements can it have?

For this reason, and to spare ourselves the burden of writing exp(z) all the time, we will
agree that

ez := exp(z).
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In particular, we have the functional equation

ez+w = ezew,

the useful property
ez = 1 ⇐⇒ z = 2πik, k ∈ Z,

and the logarithmic identity
elogα(z) = z

for all z ∈ C \ {0}.
As with the logarithm, in practice we often dispense with the set-builder notation sur-

rounding za and just write

za = ea(ln(|z|)+iArg(z)+2πik), k ∈ Z.

We can certainly fix a branch of the logarithm and decide that the symbol za will have the
value za = exp(a logα(z)). However, the symbol za does not lend itself easily to incorporating
dependence on α, and so if we want to specify a branch of the logarithm when working with
powers, we will need to do so “in words” beforehand.

1.7.18 Problem (+). Let a, b ∈ C and z ∈ C \ {0}. What possible meaning(s) could you
give to the symbol (za)b, and why is that meaning probably not the same as the meaning
of zab?

1.7.19 Problem (?). Lars Ahlfors claims, in his magisterial Complex Analysis, that “there
is essentially only one elementary transcendental function” (p. 48). Recall that a tran-
scendental function is not algebraic, i.e., it does not satisfy an algebraic (polyno-
mial) equation. Based on our constructions of the trigonometric, logarithmic, and power
functions, justify Ahlfors’s claim and discuss the role of that “one” transcendental function
in developing all the others. Then discuss the key differences that have appeared when
extending the transcendental functions from (subsets of) R to (subsets of) C.

1.8. Algebra: solving zn = w.

Our first exposure to complex numbers was probably through the failure of real numbers
to solve polynomial equations like t2 + 1 = 0. As an illustration of the power of complex
numbers and polar coordinates, here we solve the problem zn = w, where n is a positive
integer, w ∈ C is given, and z is the unknown. We will take w 6= 0, as otherwise the only
solution is z = 0.

Our instinct is probably to say that if zn = w, then z = w1/n, except we know that the
symbol w1/n should be a set of, probably, multiple elements. Instead, we might want to say
that zn = w if and only if z ∈ w1/n, where w1/n is defined as in Definition 1.7.13. Given
z ∈ w1/n as defined there, we could compute directly that zn = w.

1.8.1 Problem (!). Compute this directly.
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In the following, we check that if zn = w, then z ∈ w1/n, and we give a simpler formula
for the elements of w1/n than Definition 1.7.13.

We start by writing z and w in polar coordinates as z = |z|eiθ and w = |w|eiφ. We view
|z| and θ as our two unknowns and |w| and φ as given numbers. (This is morally similar to
how we solved exp(z) = w and constructed the logarithm, except now we are using polar
coordinates to represent both z and w.) Then we want

|z|neinθ = |w|eiφ. (1.8.1)

This is one equation, and there are two unknowns; as with constructing the logarithm, we
can eliminate one unknown temporarily by taking the modulus of both sides of (1.8.1):

|z|n = |w|. (1.8.2)

What is important here is that both the known quantity |w| and the unknown |z| are positive
real numbers, and so we expect that (1.8.2) has a unique solution, i.e., that |w| has a unique
nth root. Previously (Remark 1.1.9) we assumed that any positive real number has a unique
square root, but we did not discuss nth roots.

1.8.2 Theorem. Let n ≥ 1 be an integer and define

n
√
· : [0,∞)→ R : t 7→

{
0, t = 0

eln(t)/n, t > 0.

This principal nth root function satisfies the following.

(i)
(
n
√
t
)n

= t for all t ≥ 0.

(ii) If t ≥ 0, then the unique nonnegative solution to sn = t is s =
n
√
t.

1.8.3 Problem (!). Prove this theorem. [Hint: use Problem 1.5.6 for the first part and
the fact that f : [0,∞)→ [0,∞) : s 7→ sn is strictly increasing for the second part.]

Thus if (1.8.2) holds, then
|z| = n

√
|w|.

We evaluate (1.8.1) with this value for |z|, divide both sides by |w|, and conclude that θ
must satisfy

einθ = eiφ.

That is,
ei(nθ−φ) = 1,

and so
nθ − φ = 2πk

for some k ∈ Z. We rearrange and find

θ =
φ+ 2πk

n
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for some k ∈ Z.
We arrive, more or less, at the following theorem.

1.8.4 Theorem. Let w ∈ C \ {0} and let φ ∈ arg(w). Let n ≥ 1 be an integer. Then
zn = w if and only if

z = n
√
|w|e(φ+2πik)/n, 1 ≤ k ≤ n.

In particular, the equation zn = w has exactly n distinct solutions.

1.8.5 Problem (?). Here is the “more or less” aspect of our arrival. The work preceding
the statement of this theorem shows that if zn = w, then z = n

√
|w|e(φ+2πik)/n for some

k ∈ Z.

(i) Check that
[
n
√
|w|e(φ+2πik)/n

]n
= w, assuming φ ∈ arg(w).

(ii) Show that for any k ∈ Z, there is a positive integer j satisfying 1 ≤ j ≤ n and

e(φ+2πik)/n = e(φ+2πij)/n.

(iii) Show that if 1 ≤ j < k ≤ n, then

e(φ+2πik)/n 6= e(φ+2πij)/n.

This justifies the statement in the theorem that zn = w has n distinct solutions.

1.8.6 Remark. The fundamental theorem of algebra says that if p is a polyno-
mial of degree n with complex coefficients, i.e., p(z) =

∑n
k=0akz

k with ak ∈ C and an 6= 0,
then p has n roots in C, “counting multiplicities.” We will prove a version of this theorem
later (and define rather precisely “multiplicities”), but for now we can interpret Theorem
1.8.4 as a fundamental theorem of algebra for the special polynomial p(z) = zn − w with
w ∈ C fixed. In particular, we get n distinct roots, not just n roots “counting multiplicities.”

1.8.7 Example. We solve z4 = 1. We expect that z = 1 is a solution (and it is, of course),
but there should be three others. Since Arg(1) = 0, we know that the four solutions to
z4 = 1 are

z1 := e2πi/4 = eπi/2 = i

z2 := e4πi/4 = eπi = −1

z3 := e6πi/4 = e3πi/2 = −i
z4 := e8πi/4 = e2πi = 1.
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It is instructive to see how these four solutions fall out on the unit circle.

R

iR

1

i

−1

−i

The four solutions to z4 = 1 are all spaced π/2 radians apart on the unit circle; in particular,
we can plot them by first plotting 1 and then marking points on the unit circle in increments
of π/2 radians from 1.

1.8.8 Definition. A complex number z such that zn = 1 for some integer n ≥ 1 is an nth
root of unity.

1.8.9 Problem (!). Generalize the observations in Example 1.8.7 about the positioning
of the solutions of z4 = 1 on the unit circle to the positioning of the solutions of zn = 1 on
the unit circle.

1.8.10 Example. We expect that the only two complex numbers to satisfy z2 = −1 are
z = ±i. Theorem 1.8.4 validates this rigorously, as it tells us that the only solutions to
z2 = −1 are

z1 := e(π+2πi)/2 = e3πi2 = −i and z2 := e(π+4πi)/2 = eπi/2+2πi = i.
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2. DIFFERENTIAL CALCULUS

2.1. Functions (briefly revisited).

We now have a rich bestiary of functions to manipulate and study. So far, as is typical in
precalculus, we have considered classes of functions largely separately from each other—yes,
the exponential is the source of most interesting functions, but we have been considering
the properties of exponentials, trig functions, logs, and powers in turn and not necessarily
seeing what they have in common (beyond, of course, the exponential). This changes with
calculus, which considers the deeper properties that functions share beyond their cosmetic
(formulaic) differences.

Recall that the notation f : D ⊆ C → C means that f is a complex-valued function
with domain D; the range of f is f(D) = {f(z) | z ∈ D}. The notation allows D ⊆ R and
f(D) ⊆ R, too, and we will see that such real restrictions on the domain and/or range lead
to distinct conclusions about the properties of f . Unsurprisingly, much of calculus hinges on
algebraic operations on functions.

2.1.1 Definition. Let D ⊆ C and let f , g : D → C be functions. We define

f + g : D → C : z 7→ f(z) + g(z) and fg : D → C : z 7→ f(z)g(z).

Additionally, we put

|f | : D → C : z 7→ |f(z)| and f : D → C : z 7→ f(z).

2.1.2 Remark. The symbol + in the preceding definition has two meanings. First, there is
the addition of the complex numbers f(z) and g(z), denoted by f(z) + g(z). Second, there
is the new function from D to C whose range consists of these sums f(z) + g(z); we call
this function f + g. We should remember that f(z) + g(z) is, given z, a single complex
number, while f+g is a function, i.e., a set of ordered pairs of complex numbers. Likewise,
the juxtaposition f(z)g(z) is the product of the two complex numbers f(z) and g(z), while
fg is the function whose range consists of these products f(z)g(z).

Any complex number z ∈ C is determined by its real and imaginary parts Re(z), Im(z) ∈
R, and knowledge of the real and imaginary parts separately usually amounts to full knowl-
edge of z via the identity z = Re(z)+i Im(z); recall, for example, Theorem 1.3.11 on divining
the convergence of a sequence via the convergence of its real and imaginary parts. We can,
of course, consider the real and imaginary parts of a function f ; for f : D ⊆ C→ C, define

Re[f ] : D → R : z 7→ Re[f(z)] and Im[f ] : D → R : z 7→ Im[f(z)]. (2.1.1)

Then since
f(z) = Re[f(z)] + i Im[f(z)], (2.1.2)

we have
f = Re[f ] + i Im[f ]. (2.1.3)



2.2. Limits 69

In the spirit of Remark 2.1.2, the identity (2.1.2) is an equality of complex numbers, whereas
(2.1.3) is an equality of functions; given z ∈ C, Re[f(z)] is a single complex number but
Re[f ] is a function from a subset of C to R.

It is frequently helpful to see how the real and imaginary parts of f depend explicitly on
the real and imaginary parts of the independent variable of f . If we put z = x+ iy with x,
y ∈ R, then we can set

u(x, y) := Re[f(x+ iy)] = Re[f ](x+ iy) and v(x, y) := Im[f(x+ iy)] = Im[f ](x+ iy)

to find
f(x+ iy) = u(x, y) + iv(x, y).

Here, if the domain of f is the set D of complex numbers, then u and v are functions of
the ordered pair of real variables (x, y) in the set D̃ :=

{
(x, y) ∈ R2

∣∣ x+ iy ∈ D
}
. (Re-

call, strictly speaking, in this course that a complex number is not an ordered pair of real
numbers—see Appendix B.2.)

2.1.3 Example. Define f : C→ C : z 7→ z2. Then

f(x+ iy) = (x+ iy)2 = x2 + 2iy + i2y2 = (x2 − y2) + i(2xy).

So, if we set
u(x, y) := x2 − y2 and v(x, y) := 2xy,

then we have

u(x, y) = Re[f(x+ iy)], v(x, y) = Im[f(x+ iy)], and f(x+ iy) = u(x, y)+ iv(x, y).

Going forward, one of our major questions will be how the “calculus properties” of the
real and imaginary parts of f (usually in the sense of familiar multivariable calculus on R2)
affect the “calculus properties” of f itself as a function of a complex variable.

This is where we finished on Wednesday, January 31, 2024.

2.2. Limits.

Limits describe how the of outputs functions behave as their inputs approach certain values.
Let D ⊆ C, f : D → C, and a, L ∈ C. We want to say that the limit of f as z approaches
a equals L, written limz→a f(z) = L, if we can make f(z) and L arbitrarily close by taking
z ∈ D and a to be sufficiently close. The symbol limz→a f(z) = L is an abbreviation for the
previous sentence in italics.

2.2.1 Example. (i) Define

f : C→ C : z 7→

{
1, z 6= 0

i, z = 0.
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Since f stays at 1 for all but a single point in its domain, we probably want to say

lim
z→0

f(z) = 1,

even though f(0) 6= 1.

(ii) Define
g : C \ {0} → C : z 7→ 1.

Again, we probably want to say
lim
z→0

g(z) = 1,

even though g is not defined at 0. (Note, by the way, that g = f
∣∣
C\{0}.)

2.2.1. The (correct) definition of limit.

Let f : D ⊆ C → C and let a, L ∈ C. The statement limz→a f(z) = L needs to capture
the idea that we can make f(z) as close to L as we want by taking z sufficiently close to a.
Example 2.2.1 reminds us that we do not want to require that a belong to the domain of f ,
nor that f(a) = L even if a is in the domain of f . There are several ways of defining limits
rigorously; our approach here is to exploit our prior hard work with sequences so we can “get
to the good stuff” of calculus quickly. Earlier we said that sequences have two chief virtues
in calculus: they help us define series (which in turn give many interesting functions), and
they help us “test” or “measure” concepts that are inherently continuous in a conveniently
discrete way. A limit is a continuous concept, as it involves the behavior of a function at
all values approaching a certain point. A sequence, however, is discrete, as it takes only
countably many values.

With this in mind, we define limits of functions via limits of sequences. We want the
values of f(z) to become close to L when z is close to a. One way to test “close” is with
convergent sequences. Suppose that (zk) is a sequence in D with zk → a. Then the values
of (zk) are certainly becoming very close to a! If the values of f(z) are becoming very close
to L when z is close to a, we should hope, then, that f(zk)→ L.

We want a certain arbitrariness with the inputs to f in the definition of the limit: no
matter what z ∈ D we choose, as long as z is close to a, we will have f(z) close to L. So,
we expand our test of “closeness” from one sequence (zk) in D with zk → a to all sequences
(zk) in D with zk → a. Our first stab at a definition of limit is then

lim
z→a

f(z) = L ⇐⇒
[
(zk) is a sequence in D and zk → a =⇒ f(zk)→ L

]
. (2.2.1)

There are two problems with this definition. One is easily fixed. Recall that we do not
want to say anything about whether or not a ∈ D, nor about the value f(a) if, indeed,
a ∈ D. So, when testing “closeness” via sequences, we do not want to risk a being among
the terms of the sequence and confusing our measurements. We therefore amend (2.2.1) to

lim
z→a

f(z) = L ⇐⇒
[
(zk) is a sequence in D \ {a} and zk → a =⇒ f(zk)→ L

]
. (2.2.2)

The remaining problem with (2.2.2) is subtler. The right side of the ⇐⇒ presumes that
there is a sequence (zk) in D \ {a} such that zk → a. If there is no such sequence, then
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the if-then statement on the right has a false hypothesis and therefore is vacuously true. It
would therefore be the case that limz→a f(z) = L for any L ∈ C, and surely this violates the
intuitive notion that limits are unique. This situation with a can easily occur.

2.2.2 Example. Let

D ={z ∈ C | |z| < 1 or z = 2} and f : D → C : z 7→

{
z, |z| < 1

2i, z = 2.
(2.2.3)

R

R

2

The sketch above should make it clear that there is no sequence (zk) in D \ {2} such
that zk → 2. Indeed, such a sequence would need to satisfy |zk| < 1, and then we would
have

2 = lim
k→∞
|zk| < 1,

which is impossible. Trying to compute limz→2 f(z) is therefore pointless: there is no
sensible way to measure the behavior of f as z becomes “close” to (but not equal to) 2.

For this reason, we only want to consider limits at points a that can be “reached” by
sequences in D not consisting of a. Here is the behavior of a that we need.

2.2.3 Definition. Let D ⊆ C. A point a ∈ C is a accumulation point or limit
point of D if there is a sequence of distinct points (zk) in D \ {a} such that zk → a.

The key restriction in the definition of accumulation point is that the terms of the sequence
(zk) cannot be a. This ensures that other elements of D “approach” or “cluster around” a
sufficiently. An accumulation point of D need not be an element of D but will belong to the
“boundary” of D (in a way that we could make topologically precise but will not).

2.2.4 Example. Let D be defined as in (2.2.3).

(i) The point 0 is an accumulation point of D. Take zk := 1/(k + 1) for k ≥ 1, so zk 6= 0,
|zk| < 1 (and thus zk ∈ D \ {1}), and zk → 0. Thus zk ∈ D \ {1}.

(ii) The point 2 is not an accumulation point of D. We prove this by contradiction: if
(zk) is a sequence in D \{2} with zk → 2, then by definition of D, it must be the case that
|zk| < 1. And so

1 = lim
k→∞
|zk| < 2,
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which is impossible. This is exemplifies the slogan “Membership in D says nothing about
being an accumulation point of D.”

2.2.5 Problem (!). Show that 0 is an accumulation point of D := {z ∈ C | Re(z) > 0}
but −1 is not.

2.2.6 Problem (?). Let I ⊆ R be an interval. Show that every a ∈ I is an accumulation
point of I. [Hint: since I is an interval, if t1, t2 ∈ I with t1 < t2, and if t1 < t < t2, then
t ∈ I.]

Embiggened with the concept of accumulation point, we can finally define limits.

2.2.7 Definition. Let D ⊆ C and f : D → C. Let L ∈ C and let a ∈ C be an accumulation
point of D. Then the limit of f as z approaches a equals L, written limz→a f(z) = L, if for
any sequence (zk) in D \ {a} with zk → a, we also have f(zk)→ L.

Before proceeding, we should check that limits as defined above really are unique, so that
we can speak of “the” limit.

2.2.8 Theorem. Let f : D ⊆ C → C with a ∈ C an accumulation point of D. Let L1,
L2 ∈ C with limz→a f(z) = L1 and limz→a f(z) = L2. Then L1 = L2.

Proof. Since a is an accumulation point of D, there is a sequence (zk) in D \ {a} such that
zk → a. Since limz→a f(z) = L1, we have f(zk) → L1, and since limz→a f(z) = L2, we have
f(zk) → L2. That is, the sequence (f(zk)) converges to both L1 and L2, so, by uniqueness
of limits of sequences, we have L1 = L2. �

2.2.9 Problem (!). Use only Definition 2.2.7 to prove that limz→a f(z) = L if and only if
limz→a(f(z)− L) = 0.

2.2.2. Algebraic properties of limits.

Our work with sequences, specifically Theorem 1.3.10, helps us prove all of algebraic prop-
erties of limits that we expect from calculus.

2.2.10 Theorem (Algebra of limits). Let D ⊆ C, let a ∈ C be an accumulation point of
D, and let f , g : D → C with

lim
z→a

f(z) = L1 and lim
z→a

g(z) = L2

for some L1, L2 ∈ C. Then the following hold.

(i) lim
z→a

(
f(z) + g(z)

)
= L1 + L2.
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(ii) lim
z→a

αf(z) = αL1 for any α ∈ C.

(iii) lim
z→a

f(z)g(z) = L1L2

(iv) If L2 6= 0, then

lim
z→a

f(z)

g(z)
=
L1

L2

.

(v) lim
z→a

f(z) = L1.

(vi) lim
z→a
|f(z)| = |L1|

Frequently showing a zero limit is easier than showing any other limit, and so we are
fortunate to have the equivalence

lim
z→a

f(z) = L ⇐⇒ lim
z→a

(
f(z)− L

)
= 0. (2.2.4)

To prove this, just take g(z) = L and use the algebra of limits.

2.2.11 Example. We can iterate the algebraic rules for limits (or, more precisely, induct)
to show that polynomials and rational functions are well-behaved under limits:

lim
z→a

n∑
k=0

ckz
k =

n∑
k=0

cka
k

for all a ∈ C, integers n ≥ 0, and c0, . . . , cn ∈ C. Consequently, if p and q are polynomials
and q(a) 6= 0, we also have

lim
z→a

p(z)

q(z)
=
p(a)

q(a)
.

As in Theorem 1.3.11, a function’s limiting behavior is equivalent to the simultaneous
limits of its real and imaginary parts.

2.2.12 Theorem. Let D ⊆ C, let a ∈ C be an accumulation point of D, let L ∈ C, and
let f : D → C. Then limz→a f(z) = L if and only if both limz→a Re[f(z)] = Re(L) and
limz→a Im[f(z)] = Im(L).

And as in Theorem 1.3.14, there is a close relationship between the zero limit of a function
and the zero limit of its modulus.

2.2.13 Problem (!). Show that limz→a f(z) = 0 if and only if limz→a |f(z)| = 0. [Hint:
use the definition of limit and Theorem 1.3.14.] If limz→a |f(z)| exists, does that imply
anything about limz→a f(z)? [Hint: a counterexample would be nice.]

The squeeze theorem also has a highly useful counterpart for functions. However, the
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phrasing of this squeeze theorem in complex analysis is more restrictive than its (hopefully)
familiar phrasing in real-valued calculus, as we cannot compare outputs of complex, nonreal-
valued functions using inequalities.

2.2.14 Theorem (Squeeze theorem for functions). Suppose that f , g : D → C and
a ∈ C is an accumulation point of D. Suppose also that |f(z)| ≤ |g(z)| for all z ∈ D \ {a}
and limz→a g(z) = 0. Then limz→a f(z) = 0 as well.

2.2.15 Problem (!). Use the squeeze theorem for sequences to prove the squeeze theorem
for functions.

2.2.16 Example. The exponential is well-behaved under limits: limz→a e
z = ea for all

a ∈ C. (This is really a statement about the continuity of the exponential, of course.) By
(2.2.4), this is equivalent to

lim
z→a

(ez − ea) = 0.

Most of our good results for the exponential come from the functional equation, so the
trick here is to use the functional equation to expose the difference z − a lurking within
ez − ea. Specifically, we rewrite

ez − ea = ez+a−a − ea = ez−aea − ea = ea
(
ez−a − 1

)
. (2.2.5)

We claim the existence of C > 0 such that if |w| ≤ 1, then

|ew − 1| ≤ C|w|. (2.2.6)

Thus
|ez − ea| = |ea||ez−a − 1| ≤ Cea|z − a|.

Since limz→a(z − a) = 0, the squeeze theorem implies limz→a |ez − ea| = 0, thus
limz→a(e

z − ea) = 0, and so limz→a e
z = ea.

Specifically, to invoke the squeeze theorem, we might put D = B(a; 1), f(z) = ez − ea,
and g(z) = C(z − a). Then if z ∈ D, we have |z − a| < 1, so with w = z − a, the estimate
(2.2.6) gives |f(z)| ≤ |g(z)|.

2.2.17 Problem (+). Prove the estimate (2.2.6). [Hint: use the power series definition
of the exponential to rewrite

ew − 1 = w
∞∑
j=0

wj

(j + 1)!
.

Then use the comparison test (and maybe the ratio test) to show that the series on the right
is uniformly bounded by some C > 0 when w| ≤ 1.]
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2.2.3. Limits and geometry.

So far, we have used various calculus techniques to ensure that limits exist and to compute
them. A standard way to “break” limits is to approach a point from two different directions
and show that the limits “along those directions” exist but are not equal. In other words,
when approaching a point from one direction, the function tends to a certain value, but
along a different approach the function has different behavior. There are only two directions
of approach (left and right) for functions on R, but in C there are infinitely many, thanks
to the two-dimensional geometry of C. As in multivariable calculus, this makes it harder for
limits to exist in C and, conversely, adds some “strength” to limits when they do exist.

2.2.18 Example. Define

f : C \ {0} → C : z 7→ z

z
.

Then 0 is an accumulation point of C \ {0}, and f is not defined at 0. We show that
limz→0 f(z) does not exist by approaching 0 along the real and imaginary axes.

Put
zk :=

1

k
and wk :=

i

k

for k ≥ 1, so both zk → 0 and wk → 0 with zk ∈ R and wk ∈ iR. Then

f(zk) =
zk
zk

=
zk
zk

= 1,

since zk is real, and so f(zk)→ 1. But

f(wk) =
wk
wk

=
i/k

i/k
= −i/k

i/k
= −1,

and so f(wk)→ −1. Consequently, limz→0 f(z) cannot exist by the definition of limit.
Here is a picture of how we approached 0 in different directions and got different behav-

iors of f .

R

R

zk → 0, f(zk)→ 1

w
k
→

0,
f

(w
k
)
→
−

1

2.2.19 Example. The reasoning in Example 1.6.7 suggests that limz→−1 Arg(z) does not
exist (or, more broadly, that the limit as z → −x with x > 0 does not exist). We can
formalize this using the sequential characterization of limits, but all the key ideas come
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from the expectations of the picture in that example, which we redraw here.

R

iR

Arg(z)→ π along this path

Arg(z)→ −π along this path

We want to find two sequences (zk) and (wk) such that zk → −1 and wk → −1, but
Arg(zk)→ π and Arg(wk)→ −π. One way to do this is to put

zk := ei(π−1/k) and wk := ei(−π+1/k)

for k ≥ 1. Then 0 < π−1/k ≤ π, and so Arg(ei(π−1/k)) = π−1/k. And −π < −π+1/k < 0,
and so Arg(ei(−π+1/k)) = −π + 1/k. Thus zk and wk have the desired behavior. (By the
way, wk = −zk.)

2.2.20 Problem (!). Adapt the reasoning of Example 2.2.19 to show that limz→−x Arg(z)
does not exist for any x > 0.

This is where we finished on Friday, February 2, 2024.

2.2.21 Example. We revisit Example 1.6.14, in which we intuited that limz→i argπ/2(z)
would not exist. The idea in that example was that approaching i from Quadrant I versus
Quadrant II would lead to different behaviors of argπ/2. Specifically, we saw that if z is
in Quadrant I (Re(z) > 0 and Im(z) > 0), then 2π < argπ/2(z) < π/2 + 2π, but if z is in
Quadrant II (Re(z) < 0 and Im(z) > 0), then π/2 < argπ/2(z) < π. So, if z is in Quadrant
I, then argπ/2(z) is at least 2π, but if z is in Quadrant II, then argπ/2(z) is at most π. How,
then, can argπ/2 approach a fixed value as z becomes arbitrarily close to i? (It cannot.)

All of the important reasoning to show that limz→i argπ/2(z) does not exist is contained
in the previous paragraph and discussed (and drawn) in more detail in Example 1.6.14. All
that we do now is check that the formal definition of the limit does not hold. Our strategy
is to construct two sequences (zk) and (wk) in C \ {i, 0} (note that the domain of argπ/2
is C \ {0}) such that zk → i, wk → i, but limk→∞ argπ/2(zk) 6= limk→∞ argπ/2(wk). The
easiest choice is to note that i = eiπ/2 and then “perturb” from π/2 to send the points of
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the sequences into either Quadrant I or II. So, put

zk := ei(π/2−1/k) and wk := ei(π/2+1/k),

so zk is in Quadrant I and wk is in Quadrant II. Now, recall that argπ/2 is characterized by
the properties that

t = argπ/2(z) ⇐⇒ z = |z|eit and π

2
< t <

π

2
+ 2π.

For k ∈ N, we have π/2 − 1/k < π/2, so argπ/2(zk) 6= π/2 − 1/k. But, instead,
zk = ei(π/2−1/k+2π) and π/2 < π/2−1/k+2π < π/2+2π, so argπ/2(zk) = π/2−1/k+2π →
π/2 + 2π. However, π/2 < π/2 + 1/k < π/2 + 2π, so argπ/2(wk) = π/2 + 1/k → π/2. This
allows us to conclude that limz→i argπ/2(z) does not exist.

2.2.22 Problem (!). Revisit the reasoning of Problem 1.6.15 and show that
limz→1+i argπ/4(z) does not exist.

2.2.23 Problem (+). Let α ∈ R. Adapt the reasoning of the previous example and
problem to show that limz→z? argα(z) does not exist for any z? ∈ C with argα(z?) = α+2π.
To what extent does the branch cut for an argument remind you of the International Date
Line?

2.2.24 Problem (?). As the examples above indicate, we often show that a limit fails to
exist by approaching the point in question along two different directions, and often those
directions are the real and imaginary axes or two arcs of a circle. Here is a situation where
we should approach the point along a line that is not an axis.

Let f(z) := (z/z)2. Let w ∈ C \ {0} and define a sequence (zk) by zk = w/k. What are
limk→∞ zk and limk→∞ f(zk)? How can you choose w to show that limz→0 f(z) does not
exist? Would approaching 0 along just the real and imaginary axes help here, or do you
have to consider a third direction of approach?

2.2.4. Limits in R.

For a complex-valued function of a real variable, we can say both more and less about the
geometry of its limits. Less, because its independent variable is real, and we can approach a
point in R from (at most) two directions: left and right. More, because we can only approach
from the left and right, not from the many possibilities of two-dimensional space.

Here is one special case. Let a, b ∈ R with a < b, and consider a function f : (a, b]→ C.
If limt→a f(t) = L for some L ∈ C, then Definition 2.2.7 (with D = (a, b]) says that for all
sequences (tk) in (a, b] such that tk → a, we have f(tk) → L. (Here we are following the
usual custom in this course of denoting real numbers by t, not z.) Since (tk) is a sequence
in (a, b], we must have a < tk ≤ b for all k. That is, we approach a only “from the right.”

We generalize this situation into one-sided limits for functions defined on closed, bounded
intervals (which are, primarily, the only situations for limits of functions of a real variable
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that we will consider in any detail).

2.2.25 Definition. Let a, b, c ∈ R with a ≤ c ≤ b and let f : [a, b] \ {c} → C. Let L ∈ C.

(i) We say that limt→c+ f(t) = L if whenever (tk) is a sequence in (c, b] with tk → c, then
f(tk)→ L.

(ii) Let t ∈ (a, b]. We say that limt→c− f(t) = L if whenever (tk) is a sequence in [a, c)
with tk → c, then f(tk)→ L.

2.2.26 Problem (!). Assume the hypotheses of Definition 2.2.25 and show that

lim
t→c+

f(t) = L ⇐⇒ lim
t→c

f
∣∣
(c,b]

(t) = L and lim
t→c−

f(t) = L ⇐⇒ lim
t→c

f
∣∣
[a,c)

(t) = L.

This is mostly an exercise in reading that definition and in thinking about restrictions and
Definition 2.2.7. Note that some statements are vacuously true if c = a or c = b.

Of course, limits from the left and the right would be useless if they did not talk to each
other correctly.

2.2.27 Theorem. Let a, b, c ∈ R with a ≤ c ≤ b and let f : [a, b] \ {c} → C. Let L ∈ C.

(i) If c = a, then limt→a f(t) = L if and only if limt→a+ f(t) = L.

(ii) If c = b, then limt→b f(t) = L if and only if limt→b− f(t) = L.

(iii) If c ∈ (a, b), then limt→c f(t) = L if and only if both limt→c− f(t) = L and
limt→c+ f(t) = L.

Proof. (i) Here it is important to remember the definition of limit: for f : [a, b] \ {a} ⊆
C→ C, we have limt→a f(t) = L if and only if whenever (tk) is a sequence in [a, b]\{a} with
tk → t, we also have f(tk)→ L. Since [a, b] \ {a} = (a, b], the definitions of limt→a f(t) and
limt→a+ f(t) are equivalent.

(ii) This is the same as the above, except now we use [a, b] \ {b} = [a, b).

(iii) That limt→t f(t) = L implies both limt→t− f(t) = L and limt→t+ f(t) = L is a direct
consequence of the definitions. The converse requires more work.

Let (tk) be a sequence in [a, b] \ {t} such that tk → c. First suppose tk < c for all but
finitely many k. Then we can delete those tk from the sequence and obtain (a not-relabeled)
sequence (tk) in [a, c) such that tk → c. Since limt→t− f(t) = L, we have f(tk) → L. The
same can be done if tk > t for all but finitely many k.

So, it remains to consider the case in which tk < t for infinitely many k and also tk > t
for infinitely many k. Let (`j) be the sequence of integers such that t`j < c and let (mj)
be the sequence of integers such that tmj > c. Since tk 6= c for all k, we have {tk}∞k=1 =
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{t`j}∞j=1 ∪ {tmj}∞j=1. It follows that t`j → c and tmj → c, so by the existence of the left and
right limits f(t`j)→ L and f(tmj)→ L. And from this it follows that f(tk)→ L. �

2.2.28 Problem (+). Justify more carefully the last two sentences of the preceding proof
(the ones using the weaselly phrase “it follows”). Your justification should involve the
definition of the limit of a sequence and the letter ε.

2.2.29 Problem (!). We know that limz→−1 Arg(z) does not exist, but how about
limt→−1 Arg

∣∣
(−∞,0)

(t)? This is a good opportunity to reflect on how the domain D of
a function f : D → C plays a critical, but sometimes understated, role in the limit prop-
erties of that function. Here we restate the symbolic definition (2.3.1) of a limit with the
appearance of D highlighted more prominently:

lim
z→a

f(z) = L ⇐⇒
(
∀ε > 0 ∃δ > 0 : 0 < |z − a| < δ and z ∈ D =⇒ |f(z)− L| < ε

)
.

The different limit behaviors of the function Arg, with domain C \ {0}, and Arg
∣∣
(−∞,0)

,
with domain (−∞, 0), illustrate how changing the domain of a function can change the
limit behavior of that function! (Of course, if we change the domain of a function, then we
get a new function, as the baroque “ordered triple” remarks in Definition 1.2.2 emphasize.)

2.3. Limits and topology.

While we have used geometry to help us compute limits (or, rather, disprove their existence),
our definition of limit has been strictly algebraic—if one sequence converges, so does another.
There is a more geometric, dynamic perspective on limits that we now present. To describe
this perspective, we need an extremely useful species of subset of C that will accompany
us for the rest of the course. We already met the first and last members of this species in
Definition 1.1.11.

2.3.1 Definition. (i) The open ball of radius r > 0 centered at z0 ∈ C is

B(z0; r) :={z ∈ C | |z − z0| < r} .

R

iR

z0

r
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(ii) The closed ball of radius r > 0 centered at z0 ∈ C is

B(z0; r) :={z ∈ C | |z − z0| ≤ r} .

R

iR

z0

(iii) The punctured (open) ball of radius r > 0 centered at z0 ∈ C is

B∗(z0; r) :={z ∈ C | 0 < |z − z0| < r} .

R

iR

z0

(iv) The circle of radius r > 0 centered at z0 ∈ C is

∂B(z0; r) :={z ∈ C | |z − z0| = r} .

R

iR

z0

Like ∂B(z0; r), the notational choice of B(z0; r) is meant to reflect the more general topo-
logical concept of closure, which we will not discuss in this course.
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2.3.2 Example. The drawings above should indicate that we can construct the open ball
of radius r centered at z0 by removing the circle of radius r centered at z0 from the closed
ball of radius r centered at z0. That is, we expect

B(z0; r) = B(z0; r) \ ∂B(z0; r).

This is indeed the case, as we now show. We have z ∈ B(z0; r) if and only if |z − z0| < r.
The inequality |z − z0| < r is true if and only if |z − z0| ≤ r and |z − z0| 6= r. In turn,
|z − z0| ≤ r if and only if z ∈ B(z0; r), while |z − z0| 6= r if and only if z 6∈ ∂B(z0; r). So,
we have

z ∈ B(z0; r) ⇐⇒ z ∈ B(z0; r) \ ∂B(z0; r),

and this establishes the desired set equality.

The following problems offer lots of practice with ball notation and mechanics, and we
will call upon many of these results in future technical steps.

2.3.3 Problem (!). Let z0 ∈ C and r > 0. Prove the following using only Definition 2.3.1.

(i) B(z0; r) = B(z0; r) ∪ ∂B(z0; r).

(ii) B∗(z0; r) = B(z0; r) \ {z0}.

(iii) B(z0; r) ⊆ B(z0; r).

(iv) B(z0; r) ⊆ B(z0;R) if r ≤ R. Draw a picture illustrating this phenomenon when
r < R.

2.3.4 Problem (?). It will sometimes be helpful to take a “polar” perspective on balls and
circles. Let z0 ∈ C and r > 0.

(i) Prove that B(z0; r) =
{
z0 + ρeiθ

∣∣ 0 ≤ ρ < r, 0 ≤ θ ≤ 2π
}
.

(ii) Give similar “polar” descriptions of B(z0; r) and B∗(z0; r).

2.3.5 Problem (?). Let z0 ∈ C and r > 0. Prove that a ∈ C is an accumulation point of
B(z0; r) if and only if a ∈ B(z0; r). [Hint: (=⇒) If zn → a, then |a− z0| = limn→∞ |zn − z0|.
If |zn−z0| < r, what does this imply about |a−z0|? (⇐=) Write a = z0 + reiθ and consider
zn = z0 + ρne

iθ with ρn suitably chosen.]

2.3.6 Problem (?). Let x0, y0, x1, y1 ∈ R with x0 < x1 and y0 < y1. Let r > 0.
Suppose that x1 + iy1 ∈ B(x0 + iy0; r). Prove that if x ∈ [x0, x1] and y ∈ [y0, y1], then
x+ iy ∈ B(x0 + iy0; r). Draw a picture, too.

Now we use balls to develop a useful geometric counterpart to Theorem 1.3.7 for functional
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limits that does not involve sequences. For a function f : D ⊆ C→ C, an accumulation point
a ∈ C of D, and a point L ∈ C, the intuitive meaning of the sentence limz→a f(z) = L is
that we can make f(z) and L arbitrarily close by taking z and a sufficiently close (but not
necessarily equal). We quantify “arbitrarily close” by desiring that |f(z) − L| < ε for some
ε > 0. Then we quantify “sufficiently close” by hoping that taking z ∈ D with 0 < |z−a| < δ
for some δ > 0 will force |f(z)− L| < ε. The lower bound 0 < |z − a| is necessary to ensure
that we are not assuming z = a. In symbols, we are hoping

lim
z→a

f(z) = L ⇐⇒
(
∀ε > 0 ∃δ > 0 : z ∈ D and 0 < |z−a| < δ =⇒ |f(z)−L| < ε

)
. (2.3.1)

Now we translate these inequalities into balls. We have 0 < |z − a| < δ if z ∈ B∗(a; δ),
and so we have z ∈ D with 0 < |z − a| < δ if z ∈ D ∩B∗(a; δ). Next, we have |f(z)−L| < ε
if f(z) ∈ B(L; ε). And so the symbolic counterpart to (2.3.1) in terms of balls is

lim
z→a

f(z) = L ⇐⇒
(
∀ε > 0 ∃δ > 0 : z ∈ D ∩ B∗(a; δ) =⇒ f(z) ∈ B(L; ε)

)
. (2.3.2)

Here is a cartoon of the if-then statement on the right of the if-and-only-if statement above
(assuming, for convenience, D = C).

R

iR

a
z

δ

R

iR

L
f(z)

ε

f

Of course, both (2.3.1) and (2.3.2) turn out to be true, and, indeed, we could have started
with either of them as the definition of limit instead of Definition 2.2.7 with sequences.
We took the approach of defining limits via sequences because sequences are so helpful in
breaking limits geometrically in complex analysis, but this is far from the only approach.
Here is the formal conclusion from the work above.

2.3.7 Theorem. Let D ⊆ C and f : D → C. Let L ∈ C and let a ∈ C be an accumulation
point of D. Then limz→a f(z) = L if and only if for any ε > 0, there is δ > 0 such that if
z ∈ D and 0 < |z − a| < δ, then |f(z)− L| < ε.

2.3.8 Problem (+). Prove this theorem. [Hint: for the reverse direction, show that if
zk → a, then f(zk) → L. How do ε, δ, and k all talk to each other? For the forward
direction, prove the contrapositive: let P be the statement “limz→a f(z) = L” and let Q be
the statement “∀ε > 0 ∃δ > 0 : z ∈ D and 0 < |z − a| < δ =⇒ |f(z) − L| < ε.” Assume
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that the negation of Q is true and prove the negation of P . This involves negating many
quantifiers; note that P contains various quantifiers, per Definitions 2.2.7 and 1.3.3. How
do all of these quantifiers interact, and, again, how do ε and δ interact with the index k of
the sequence in play?]

Going further, we can use the language of functional images to say

lim
z→a

f(z) = L ⇐⇒
(
∀ε > 0 ∃δ > 0 : f

(
B∗(a; δ) ∩ D

)
⊆ B(L; ε)

)
. (2.3.3)

2.3.9 Problem (!). Go further and verify (2.3.3).

2.3.10 Example. In Example 2.2.19, we saw that limz→−1 Arg(z) does not exist for any
x > 0. That is, the principal argument does not have a limit at any point on the negative
real axis. However, consider the ameliorating effect of taking the modulus. As z approaches
−1, we expect that Arg(z) will become close to either π or −π, but depending on the
direction of the approach, Arg(z) does not have to approach π or −π exclusively. But if
we take the modulus, we should find that |Arg(z)| gets close to just π. That is, we expect

lim
z→−1

|Arg(z)| = π.

Here is one way to show this more rigorously. Given ε > 0, we can draw a small ball
around −1 that is “wedged” between the rays Arg(z) = π − ε and Arg(z) = −π + ε. The
radius of this ball will be the δ that we use in Theorem 2.3.7.

R

iR

Arg(z) = −π + ε

Arg(z) = π − ε

−1

Then every point z in this ball (indeed, in this wedge) will satisfy either

π − ε < Arg(z) ≤ π if Im(z) ≥ 0 or − π ≤ Arg(z) < −π + ε if Im(z) ≤ 0.

In either case, we can manipulate the inequalities above to show
∣∣|Arg(z)| − π

∣∣ ≤ ε. That
is, given ε > 0, with δ as the radius of the ball above, we have

∣∣|Arg(z)| − π
∣∣ ≤ ε, and so

Theorem 2.3.7 implies that limz→−1 |Arg(z)| = π.
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2.3.11 Problem (?). (i) In the previous example, find a formula for δ in terms of ε.

(ii) Prove that if π − ε < Arg(z) ≤ π if Im(z) ≥ 0 or −π ≤ Arg(z) < −π + ε, then∣∣|Arg(z)| − π
∣∣ ≤ ε.

2.3.12 Problem (+). We have seen (Theorem 2.2.12) that the limit behavior of a function
reduces to the real-valued limit behavior of its real and imaginary parts. How does the limit
behavior of the real and imaginary parts of that function’s independent variable interact
with the limit behavior of that function?

(i) Suppose that f : D → C with a ∈ C an accumulation point of D and L ∈ C satisfies
limz→a f(z) = D. Let I := {t ∈ R \ {0} | t+ i Im(a) ∈ D}. First show that Re(a) is an
accumulation point of I. Then define

f̃ : I → C : t 7→ f(t+ i Im(a)).

Show that limt→Re(a) f̃(t) = L. The same can be done replacing Re(a) with Im(a) through-
out. Thus the existence of the limit in the independent variable z implies the existence of
the “limit in the real and imaginary parts of the independent variable.”

(ii) Take D = C\{0}, a = 0, and f(z) = z/z. Let I = R\{0} and define f̃1(t) := f(t) and
f̃2(t) := f(it) for t ∈ I. Show that limt→0 f̃1(t) and limt→0 f̃2(t) both exist but limz→0 f(z)
does not (all limits were done in an earlier example). Thus the existence of the “limits in
the real and imaginary parts of the independent variable” does not imply the existence of
the limit in the independent variable z.

2.4. Continuity.

Now that we have a robust knowledge of limits, our treatment of continuity can proceed
mostly as it did in calculus.

2.4.1. The definition of continuity and examples.

First, we define continuity exactly as we (probably) met it in calculus.

2.4.1 Definition. Let D ⊆ C. A function f : D → C is continuous at a ∈ D if a is
an accumulation point of D and if limz→a f(z) = f(a). If f is not continuous at a ∈ D, or
if a ∈ C \ D, then f is discontinuous at a.

It is worthwhile (over)emphasizing that f can fail to be continuous at a ∈ C for three
reasons.

1. The point a is not in the domain of f , or a is in the domain of f but is not an accumulation
point of the domain. (In either of these situations, it is worthwhile pondering if it is even
fair to ask if f is continuous at a, since we are basically setting ourselves up for failure.)
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2. The limit limz→a f(z) does not exist, whether or not a belongs to the domain of f .

3. The point a is in the domain of f and limz→a f(z) exists but does not equal f(a).

2.4.2 Problem (!). Let D ⊆ C and a ∈ D be an accumulation point of D. Prove that
f : D → C is continuous at a if

∀ε > 0 ∃δ > 0 : z ∈ B(a; δ) =⇒ f(z) ∈ B(f(a); ε).

All of the algebraic rules for continuity that we expect to be true are true. Specifically,
the limits in Theorem 2.2.10 carry over to continuity rules. Composition also interacts well
with continuity.

2.4.3 Theorem. (i) Let D ⊆ C and let a ∈ D be an accumulation point of D. Let f ,
g : D → C be continuous at a. Then f + g and fg are continuous at a; so is f/g if
g(a) 6= 0, and so is αf for any α ∈ C. Likewise, f and |f | are continuous at a.

(ii) Let D1, D2 ⊆ C and let f : D1 → C and g : D2 → C with f(D1) ⊆ D2. If a ∈ D1 is an
accumulation point of D1 and f(a) is an accumulation point of D2, and if f is continuous
at a and g is continuous at f(a), then g ◦ f is continuous at a.

This is where we finished on Monday, February 5, 2024.

Additionally, Theorem 2.2.12 allows us to characterize continuity of a function in terms
of the continuity of its real and imaginary parts. This is a straightforward, but important,
part of our quest to see how the calculus properties of the real-valued real and imaginary
parts of a function interact with the calculus properties of the whole function.

2.4.4 Theorem. Let f : D ⊆ C→ C and let a ∈ D be an accumulation point of D. Then
f is continuous at a if and only if both Re[f ] and Im[f ] are continuous at a.

2.4.5 Example. (i) Example 2.2.16 shows that the exponential is continuous on C, and
Example 2.2.11 shows that polynomials are continuous on C and rational functions are
continuous except at the roots of their denominators.

(ii) Example 2.2.19 shows that limz→−x Arg(z) does not exist for any x > 0, so Arg
is discontinuous at each point in (−∞, 0). Since Arg is not defined at 0, Arg is also
discontinuous there.

The techniques that prove the existence of the principal argument in (π4) of Theorem
1.5.10, which we did not present, could also show that Arg is continuous on C\(−∞, 0]. We
will not make such a formal argument, but hopefully a picture should make the continuity
of Arg reasonable.

Fix z ∈ C \ (−∞, 0] and ε > 0 and draw a small ball of radius δ around z, as we did in
Example 2.3.10. If we take δ to be small enough, then every point in this ball should have
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principal argument within ±ε of Arg(z).

R

iR

δ

ε
ε

z

(iii) In Example ??, we showed that limz→a argπ/4(z) does not exist for any a ∈ C with
Arg(a) = π/4, i.e., for any a on the branch cut of argπ/4. Consequently, argπ/4 is discon-
tinuous on its branch cut.

(iv) For z ∈ C \ {0}, we have Log(z) = ln(|z|) + iArg(z). We know that Arg is con-
tinuous on C \ (−∞, 0]. Algebraic rules for limits tell us that the mapping z 7→ |z| is
continuous. Finally, it is possible to prove, using deeper techniques of analysis, that the
map ln : (0,∞) → R satisfying eln(t) = t for all t > 0 is continuous. (This is an “inverse
function theorem” sort of argument.) Since Re[Log(z)] = ln(|z|) and Im[Log(z)] = Arg(z),
and since these real and imaginary parts are continuous on C \ (−∞, 0], we conclude that
Log is continuous on C\(−∞, 0], too. And since Arg is discontinuous on (−∞, 0], we know
that Log is discontinuous on (−∞, 0], too.

2.4.6 Remark. At this point, it is a perfectly natural, normal thing to feel wholly unsatisfied
with our development of logarithms and arguments. We have made some major assumptions
about their existence, and all subsequent proofs rely strongly on those unproven assumptions.
However, it is possible to develop more or less from scratch their existence and fundamental
properties. Specifically, we will use integrals and calculus to develop a map L : C\{0} → C
such that eL(z) = z for all z ∈ C and L(et) = t for all t ∈ R; then we will develop a map
A : C \ {0} → (−π, π] such that z = |z|eiA(z) for all z ∈ C \ {0}. Along the way, we will
prove the continuity (and differentiability) of L and A on C \ (−∞, 0].

2.4.7 Problem (!). (i) Explain why the function Arg : C \ {0} → R is discontinuous at
each point in (−∞, 0), but the restriction Arg

∣∣
(−∞,0)

: (−∞, 0) → R is continuous. [Hint:
think carefully about the role of D in Definition 2.4.1.]

(ii) Use Example 2.3.10 to argue that the function f : C \ {0} → R : z 7→ |Arg(z)| is
continuous at each point in (−∞, 0).

2.4.8 Problem (?). Let a, b ∈ R with a ≤ b and let f : [a, b]→ C. Prove the following.
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(i) f is continuous at a if and only if limτ→a+ f(τ) = f(a).

(ii) f is continuous at b if and only if limτ→b− f(τ) = f(b).

(iii) f is continuous at t ∈ (a, b) if and only if

lim
τ→t−

f(τ) = f(t) and lim
τ→t+

f(τ) = f(t).

2.4.9 Problem (!). Reread Example 1.6.14. Then, for any α ∈ R, make a conjecture
about where argα is discontinuous. Do not try to prove your conjecture but instead discuss
the process of how you made it.

2.4.10 Problem (+). This problem outlines a proof that no “argument function” can be
continuous on all of C \ {0}.

(i) Let I ⊆ R be an interval. Show that if f : I → Z is continuous, then f is constant.
[Hint: suppose that f is not constant and use the intermediate value theorem to derive a
contradiction.]

(ii) Suppose that Θ: C \ {0} → R satisfies z = |z|eiΘ(z) for all z ∈ C \ {0}. If Θ is
continuous, deduce the existence of k0 ∈ Z such that t = Θ(eit) + 2πk0 for all t ∈ R.
Obtain from this a contradiction.

2.4.2. Removable discontinuities.

Sometimes a function fails to be continuous at a point (possibly because the function is not
defined there), but the failure of continuity is “tame” enough that the discontinuity can be
“removed.”

2.4.11 Example. Consider the functions that we studied in Example 2.2.1.

(i) The piecewise function

f : C→ C : z 7→

{
1, z 6= 0

i, z = 0

is certainly not continuous at 0, because

lim
z→0

f(z) = 1 6= i = f(0).

However, we could put
f̃ : C→ C : z 7→ 1,

so that f̃ is continuous on C and f̃(z) = f(z) for all z 6= 0. We have “removed” the
discontinuity of f at 0 with our new definition of f̃ .
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(ii) The function
g : C \ {0} → C : z 7→ 1

is not continuous at 0 since g is not defined there. However, we could put

g̃ : C→ C : z 7→ 1,

so that g̃ is continuous on C and g̃(z) = g(z) for all z 6= 0. Again, we have “removed”
the discontinuity of g at 0 by extending g in an appropriate way. Indeed, this is the only
extension of g that is continuous on C, for if h : C→ C satisfies h

∣∣
C\{0} = g, then we expect

h(0) = lim
z→0

h(z) = lim
z→0

h
∣∣
C\{0}(z) = lim

z→0
g(z) = 1.

This example suggests that if limz→a f(z) exists but does not equal f(a), or if the limit
exists but f is not defined at a, we can probably redefine f to be continuous at a. However,
if the limit fails to exist, there is probably no hope of redefining f to be continuous at a.

2.4.12 Definition. Let D ⊆ C and let a ∈ C be an accumulation point of D. Suppose
that f : D → C is a function that is discontinuous at a. If limz→a f(z) exists, then f
has a removable discontinuity at a. If limz→a f(z) does not exist, then f has a
nonremovable discontinuity at a.

Note that this definition allows for a 6∈ D, and so f may be discontinuous at a because it
is undefined at a.

Now we generalize Example 2.4.11. First, we formalize the (hopefully expected) notion
that two functions have the same limit if both functions agree at all points near but not
equal to the point of approach.

2.4.13 Lemma. Let D ⊆ C and let a ∈ C be an accumulation point of D. For a function
f : D → C, the limit limz→a f(z) exists if and only if limz→a f

∣∣
D\{a}(z) exists, in which case

the limits are equal.

2.4.14 Problem (?). Prove this. [Hint: when all else fails, give up and go back to the
definition—here, Definition 2.2.7.]

2.4.15 Theorem. Let D ⊆ C and let a ∈ C be an accumulation point of D. Suppose that
the function f : D → C has a removable discontinuity at a ∈ C with L := limz→a f(z) and
define

f̃ : D ∪ {a} → C : z 7→:=

{
f(z), z ∈ D \ {a}
L, z = a.

Then f̃ is continuous at a.
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Proof. First, note that we do not specify whether a ∈ D or not, and so maybe D∪{a} = D,
or not, and maybe D\{a} = D, or not. We are trying to be as general as possible here with
how a relates to D.

In any case, we have f̃(z) = f(z) for z ∈ D \ {a}. That is, f̃ = f
∣∣
D\{a}, and since

limz→a f(z) exists, the limit limz→a f̃(z) also exists and equals limz→a f(z), by Lemma 2.4.13.
That is,

lim
z→a

f̃(z) = lim
z→a

f(z) = L = f̃(a),

and so f̃ is continuous at a. �

We emphasize that this theorem does not even presume that f is defined at a in the first
place, since we were not assuming a ∈ D.

2.4.16 Example. (i) No discontinuity of Arg is removable. First, we know that Arg is
discontinuous on (−∞, 0) because limz→−x Arg(z) does not exist for any x > 0. This
means that every point in (−∞, 0) is a nonremovable discontinuity of Arg. Second, Arg
is discontinuous at 0 because Arg is not defined at 0. However, it is also the case that
limz→0 Arg(z) does not exist; this can be seen by approaching 0 along the coordinate axes.

(ii) Define
f : C \ {0} → C : z 7→ zArg(z)

Part (ii) of Example 2.4.5 tells us that f is continuous. However, since limz→0 Arg(z) does
not exist, we cannot compute limz→0 f(z) using algebraic properties of limits; we might be
tempted to say

lim
z→0

f(z) =
(

lim
z→0

z
)(

lim
z→0

Arg(z)
)

= 0 · lim
z→0

Arg(z) = 0,

but this is meaningless, since the second limit in the product does not exist.
Nonetheless, we know that −π < Arg(z) ≤ π, and so |Arg(z)| ≤ π, thus |f(z)| ≤ π|z|.

Then the squeeze theorem says that limz→0 f(z) = 0, and so f has a removable discontinuity
at 0. We can therefore extend f to C by setting

f̃ : C→ C : z 7→

{
zArg(z), z 6= 0

0, z = 0.

This function f̃ is continuous on C, and f̃
∣∣∣
C\{0}

= f .

2.4.17 Problem (!). Show that limz→0 Arg(z) does not exist. [Hint: consider any two of
the four sequences (1/k), (−1/k), (i/k), or (−i/k).]

2.4.18 Example. We have shown that limz→−1 Arg(z) does not exist. Can we redefine Arg
at −1 to force continuity there? Suppose that we could define a function f : C \ {0} → C
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such that f(z) = Arg(z) for z 6= −1 and limz→−1 f(z) exists. Then (by Lemma 2.4.13),
since f(z) = Arg(z) except at −1, the limit limz→−1 Arg(z) would also exist. This is
impossible.

2.4.3. The extreme value theorem.

Recall that if a, b ∈ R with a < b and f : [a, b] ⊆ R→ R is continuous, then f has extreme
values on [a, b]. Specifically, f has an absolute maximum and an absolute minimum on [a, b]:
there are tm, tM ∈ [a, b] such that

f(tm) ≤ f(t) ≤ f(tM)

for all t ∈ [a, b]. Of course, we should not expect such a result to be true for complex-valued
functions, because inequalities do not make sense for complex, nonreal numbers. However, if
we incorporate the modulus, we do get an extreme value theorem over the complex plane’s
analogue of a closed, bounded interval.

2.4.19 Theorem (Extreme value). Let z0 ∈ C and r > 0, and suppose that f : B(z0; r)→
C is continuous. Then there are zmin, zmax ∈ B(z0; r) such that

|f(zmin)| ≤ |f(z)| ≤ |f(zmax)| for all z ∈ B(z0; r).

We will not prove this theorem, as it relies on some deeper topological machinery than
we care to develop. We mention that it holds for a much broader class of subsets of C than
just closed balls, but we will never need a richer version than this.

2.4.20 Example. Fix z0 ∈ C and r > 0. By continuity, there is zmax ∈ B(z0; r) such that
|ez| ≤ |ezmax| for all z ∈ B(z0; r). However, we can be more precise than this existential
result. First, |ez| = eRe(z). So, what point in B(z0; r) has the largest real part? If we draw
a picture, hopefully we see that this point is z0 + r; this could be verified more precisely,
of course. Thus the maximum of f on B(z0; r) is eRe(z0)+r.

2.4.21 Problem (!). Prove the claim in the previous example: if z ∈ B(z0; r), then
Re(z) ≤ Re(z0) + r.

This is where we finished on Wednesday, February 7, 2024.

2.5. Differentiation.

Most of the rest of this course will really study differentiable functions. Our immediate goal
will be to see how differentiability on C superficially resembles differentiability on R in the
sense that the formulas for the definition of the derivative and differentiation rules (e.g.,
product, quotient, chain) are exactly the same but the true nature of differentiable functions
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on C is vastly distinct from that of differentiable functions on R. Later (and it will take some
time to reach this), we will use the twin pillars of complex algebra (the fact that i2 = −1)
and complex geometry (the fact that limits move in a two-dimensional world) to see just
how different complex derivatives are from what we have seen in the real-variable case.

2.5.1. The definition of the derivative.

We begin with the good news: we are not changing the definition of the derivative.

2.5.1 Definition. Let D ⊆ C. A function f : D → C is differentiable at a ∈ D if a
is an accumulation point of D and if the limit

lim
z→a

f(z)− f(a)

z − a
(2.5.1)

exists. If so, we call this limit the derivative of f at a and denote it by f ′(a). We say
that f is differentiable on D if f is differentiable at each a ∈ D. A differentiable
function f : C→ C is called entire.

Of course, there is another limit formula for the derivative that we will use interchangeably
with the original definition.

2.5.2 Theorem. Let D ⊆ C and f : D → C. Suppose that a ∈ D is an accumulation point
of D. Then f is differentiable at a if and only if the limit

lim
h→0

f(a+ h)− f(a)

h
(2.5.2)

exists. If this limit exists, then it equals f ′(a) as defined by (2.5.1).

2.5.3 Problem (+). Why do you think this theorem is true? [Hint: what symbolic sim-
ilarities do you see between (2.5.1) and (2.5.2)?] Prove that it is true, using the formal
definition (Definition 2.2.7) of the limit.

2.5.4 Remark. We have seen that the existence of limits depends greatly on the domain of
the function under consideration. The derivative limits in (2.5.1) and (2.5.2) are not limits
of f but rather of a “difference quotient” function constructed from f . What values of z
and h are allowed in those limits? In the following, assume that f : D → C is differentiable
at a ∈ C.

(i) Define

φ : D \ {a} → C : z 7→ f(z)− f(a)

z − a
.

Then f is differentiable at a if and only if limz→a φ(z) exists, in which case f ′(a) =
limz→a φ(z), of course. So, in the limit (2.5.1), we must allow z to be any element of
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D \ {a}.

(ii) Let
Za :={h ∈ C \ {0} | a+ h ∈ D} . (2.5.3)

We claim that 0 is an accumulation point of Za; see Problem 2.5.5. Put

ϕ : Za → C : h 7→ f(a+ h)− f(a)

h
.

Since 0 is an accumulation point of Za, it makes sense to discuss limh→0 ϕ(h), and f is
differentiable at a if and only if this limit exists, in which case f ′(a) = limh→0 ϕ(h). So, in
the limit (2.5.2), we must allow h to be any element of Za.

2.5.5 Problem (!). With Za defined in (2.5.3), show that 0 is an accumulation point of
Za. [Hint: since a is an accumulation point of D, there is a sequence (zk) in D \ {a} such
that zk → a. What do you know about the sequence (zk − a)?]

2.5.6 Example. We show that exp is differentiable and exp′ = exp; once again, the func-
tional equation comes to the rescue. We want to manipulate the difference quotient

exp(a+ h)− exp(a)

h
= exp(a)

(
exp(h)− exp(1)

h

)
.

We claim that
lim
h→0

exp(h)− 1

h
= 1. (2.5.4)

Assuming this to be true, we have

lim
h→0

exp(a+ h)− exp(a)

h
= lim

h→0
exp(a)

(
exp(h)− exp(1)

h

)
= exp(a) lim

h→0

exp(h)− 1

h

= exp(a).

Consequently, exp is differentiable, and exp′(a) = exp(a).

2.5.7 Problem (+). Show that the limit (2.5.4) is true. [Hint: use the definition of the
exponential as a power series to compute, for h ∈ C \ {0},

exp(h)− 1

h
= 1 + h

∞∑
j=0

hj

(j + 2)!
.

Resist the urge to say

lim
h→0

∞∑
j=0

hj

(j + 2)!
=
∞∑
j=0

lim
h→0

hj

(h+ 2)!
= 1.
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While this turns out to be true, interchanging the limit in h and the series (which is really
a limit as j →∞) requires justification. Instead, show the existence of C > 0 such that if
|h| ≤ 1, then ∣∣∣∣∣

∞∑
j=0

hj

(j + 2)!

∣∣∣∣∣ ≤ C.

Then use the squeeze theorem to conclude (2.5.4).]

2.5.8 Example. We claim that f : C → C : z 7→ z is nowhere differentiable. Again we
manipulate the difference quotient:

f(z + h)− f(z)

h
=
z + h− z

h
=
z + h− z

h
=
h

h
.

Long ago in Example 2.2.18, we saw that limh→0 h/h does not exist, and so f cannot be
differentiable at any point in C. We will see other proofs of this fact later.

2.5.2. Local linearity.

A function is linear if it is a first-degree polynomial, i.e., f is linear if f(z) = az + b for
some a, b ∈ C. (Strictly speaking, such a function might better be called affine, as this
is not linear in the sense of linear algebra’s linear transformations unless b = 0.) Linear
functions are among the most transparent to handle algebraically and analytically.

Perhaps the next best thing to linearity is the local linearity of differentiable functions.
A differentiable function is locally linear in the sense that if f is differentiable at z0,
then we can expose the leading-order linear terms “in” f via the expansion

f(z) = f(z0) + f ′(z0)(z − z0) + ρ(z), (2.5.5)

where we implicitly define

ρ(z) = f(z)− [f(z0) + f ′(z0)(z − z0)].

This “remainder” term vanishes very quickly as z → z0 in the sense that

lim
z→z0

ρ(z)

z − z0

= 0. (2.5.6)

Since limz→z0(z − z0) = 0, when z is close to z0, the numerator ρ(z) in (2.5.6) must be
very small—even smaller than the denominator—for the quotient in (2.5.6) to have a zero
limit as z → z0. We could then rewrite the expansion (2.5.5) as

f(z) = f(z0) + f ′(z0)(z − z0)︸ ︷︷ ︸
“small”

+ ρ̃(z)(z − z0)︸ ︷︷ ︸
“smaller”

,

where

ρ̃(z) :=


ρ(z)

z − z0

, z 6= z0

0, z = z0

and therefore lim
z→z0

ρ̃(z) = 0
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to isolate the leading-order behavior of f near z0 precisely.

2.5.9 Problem (!). Use the definition of the derivative to prove (2.5.6).

A local linear approximation to f at z0 should just be a linear function that
takes the value f(z0) at z0, i.e., a function of the form `a(z) := f(z0) + a(z − z0) for some
a ∈ C. A function’s derivative is its best local linear approximation in the sense that `f ′(z0)

will always “beat” any other `a as an approximation to f for z sufficiently close to z0 (where
“sufficiently close” depends on a).

2.5.10 Theorem. Suppose that f : D → C is differentiable at z0 ∈ D and let a ∈ C. Then
there is δ > 0 such that

|f(z)− [f(z0) + f ′(z0)(z − z0)]| < |f(z)− [f(z0) + A(z − z0)]| (2.5.7)

whenever |z − z0| < δ.

Proof. Certainly this is true if f ′(z0) = A, so suppose f ′(z0) 6= A. We compute

f(z)−[f(z0)+f ′(z0)(z−z0)] = ρ(z) and f(z)−[f(z0)+A(z−z0)] = (f ′(z0)−A)(z−z0)+ρ(z).

Then we have (2.5.7) if and only if

|ρ(z)| < |(f ′(z0)− A)(z − z0) + ρ(z)|. (2.5.8)

By the reverse triangle inequality,

|(f ′(z0)− A)(z − z0) + ρ(z)| > |f ′(z0)− A||z − z0| − |ρ(z)|,

and so (2.5.8) will follow if we show

|ρ(z)| < |f ′(z0)− A||z − z0| − |ρ(z)|.

This is equivalent to

|ρ(z)| < |f
′(z0)− A|

2
. (2.5.9)

By (2.5.6), we may choose δ > 0 such that if |z − z0| < δ, then (2.5.9) holds. �

2.5.3. Fundamental properties of derivatives.

The recent good news was that the definition of the derivative, at the formulaic level, does
not change for functions of a complex variable. The new good news is that neither do the
“differentiation rules,” mostly. Here is a familiar result.

2.5.11 Theorem (Differentiability implies continuity). Suppose that f : D ⊆ C→ C is
differentiable at a ∈ D. Then f is also continuous at a.
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Proof. This proof does not use anything special about complex numbers, but it is a good
opportunity to revisit some definitions and properties of sequences. The goal is to show that
limz→a f(z) = f(a), so we take any sequence (zk) in D \ {a} with zk → a, and we want to
show f(zk)→ f(a). This is equivalent to showing (f(zk)− f(a))→ 0.

Now, the difference f(zk)− f(a) looks like the numerator of the difference quotient in the
definition of f ′(a), and, since

lim
z→a

f(z)− f(a)

z − a
= f ′(a),

and since zk → a with zk 6= a for all k, we have

lim
k→∞

f(zk)− f(a)

zk − a
= f ′(a).

We can make the difference that we care about (f(zk)−f(a)) look like the difference quotient
that we understand by introducing zk − a. So, we multiply by 1 and find

f(zk)− f(a) = [f(zk)− f(a)] · 1 = [f(zk)− f(a)] · zk − a
zk − a

=

(
f(zk)− f(a)

zk − a

)
(zk − a).

Since
lim
k→∞

f(zk)− f(a)

zk − a
= f ′(a) and lim

k→∞
(zk − a) = 0,

we have

lim
k→∞

(
f(zk)−f(a)

)
= lim

k→∞

(
f(zk)− f(a)

zk − a

)
(zk−a) =

(
lim
k→∞

f(zk)− f(a)

zk − a

)(
lim
k→∞

(zk − a)
)

= f ′(a) · 0 = 0. �

Conversely, if f is not continuous at a, then f cannot be differentiable at a.
Algebraic properties of derivatives likewise carry over from the real world to the complex.

While we cannot import proofs from corresponding results for sequences as with our prior
proofs of limits, since there are no differentiation results for sequences, nonetheless the proofs
of the following theorems are more or less identical to the real-variable case.

2.5.12 Theorem (Algebraic properties of derivatives). Let f , g : D → C be differen-
tiable at a ∈ D.

(i) [Linearity of derivatives] f +g is differentiable at a, and (f +g)′(a) = f ′(a) +g′(a).

(ii) [Linearity of derivatives] αf is differentiable at a, and (αf)′(a) = αf ′(a).

(iii) [Product rule] fg is differentiable at a, and (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

2.5.13 Theorem (Chain rule). Let D1, D2 ⊆ C and let f : D1 → C be differentiable at
a ∈ D1. Suppose also that f(z) ∈ D2 for all z ∈ D1. If g : D2 → C is differentiable at f(a),
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then g ◦ f : D1 → C is differentiable at a, and (g ◦ f)′(a) = g′(f(a))f ′(a).

2.5.14 Example. Since exp′ = exp, and since the rules for derivatives work as they should,
we obtain the familiar derivatives for the trigonometric functions. We consider cos(z) =
(exp(iz) + exp(−iz))/2.

First, here is why cos is entire. Use the definition of the derivative to show that z 7→ z
is differentiable. Next, use algebraic properties of the derivative to show that z 7→ ±iz
is differentiable. Third, use the chain rule and the differentiability of exp to show that
z 7→ exp(±iz) is differentiable. Last, use more algebraic properties of the derivative to
show that z 7→ (exp(iz) + exp(−iz))/2 is differentiable. Thus cos is differentiable.

Now we actually compute the derivative:

cos′(z) =
i exp(iz)− i exp(−iz)

2
= i

(
exp(iz)− exp(−iz)

2

)
= i2

(
exp(iz)− exp(−iz)

2i

)
= −

(
exp(iz)− exp(−iz)

2i

)
= − sin(z).

2.5.15 Problem (!). Check that sin′(z) = cos(z) for all z ∈ C.

2.5.4. The reverse chain rule.

How can we differentiate something for which we have less pleasant a formula than alge-
braic or exponential or trigonometric functions—something like a logarithm? We know that
exp(Log(z)) = z for all z ∈ C \ {0}, so if Log is differentiable, then the chain rule leads us
to expect that

1 = exp′(Log(z)) Log′(z) = exp(Log(z)) Log′(z) = z Log′(z), (2.5.10)

and therefore Log′(z) = 1/z, as usual. But why should Log be differentiable in the first place?
The answer lies in a deeper examination of the composition properties of the logarithm.

We begin with a lemma about difference quotients that will serve us well both here and
in various future appearances.

2.5.16 Lemma (Difference quotient). Let f : D → C be differentiable. Fix a ∈ D and
define

φ : D → C : z 7→


f(z)− f(a)

z − a
, z ∈ D \ {a}

f ′(a), z = a.

Then φ is differentiable on D \ {a} and continuous on D.

Proof. Continuity on D \ {a} will follow from differentiability on D \ {a}. Continuity at a
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follows from the calculation

lim
z→a

φ(z) = lim
z→a

f(z)− f(a)

z − a
= f ′(a) = φ(a).

Now for the differentiability on D \ {a}: this is essentially the quotient rule. The map
z 7→ f(z) − f(a) is differentiable on D as f is differentiable on D and f(a) is constant;
the map z 7→ z − a is differentiable on C, so the quotient z 7→

(
f(z) − f(a)

)
/(z − a) is

differentiable as long as the denominator is not zero, i.e., on D \ {a}. �

Now we prove a theorem that is a kind of “reverse” of the chain rule. Nothing in this
theorem requires the independent variable to be complex or real, and this proof could have
been done just as well in a real analysis class. But we think it is a good illustration of how
the difference quotient behaves, and we will use difference quotients in several key places in
the future.

2.5.17 Theorem (Reverse chain rule). Let D1, D2 ⊆ C with D1 ⊆ D2. Let f : D1 → D2

be continuous and let g : D2 → C be differentiable. Suppose that g(f(z)) = z for all z ∈ D1

and g′(f(z)) 6= 0 for all z ∈ D1. Then f is differentiable on D1 and

f ′(z) =
1

g′(f(z))
.

Proof. First, if we also know that f is differentiable, then the formula for f ′ follows from
the chain rule as usual. Indeed, since g(f(z)) = z, we differentiate both sides to find
g′(f(z))f ′(z) = 1, and then we solve for f ′(z). But here we do not know that f is differen-
tiable, so we have work to do.

Fix a ∈ D1. We need to show that

lim
z→a

f(z)− f(a)

z − a
=

1

g′(f(z))
.

The hypothesis g(f(z)) = z for all z lets us rewrite the difference quotient as

f(z)− f(a)

z − a
=

f(z)− f(a)

g(f(z))− g(f(a))
, z 6= a. (2.5.11)

Observe that f(z)− f(a) 6= 0 for all z ∈ D1 \ {a}. Indeed, if f(z) = f(a), then

z = g(f(z)) = g(f(a)) = a. (2.5.12)

So, we can use (2.5.11) to say

f(z)− f(a)

z − a
=

1

g(f(z))− g(f(a))

f(z)− f(a)

. (2.5.13)
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The denominator now has the form of the difference quotient function from Lemma 2.5.16.
Specifically, if we put

φ : D2 → C : w 7→


g(w)− g(f(a))

w − f(a)
, w ∈ D2 \ {f(a)}

g′(f(a)), w = f(a),

then (2.5.13) becomes
f(z)− f(a)

z − a
=

1

φ(f(z))
.

The reasoning in (2.5.12) ensures that φ(f(z)) 6= 0 for all z 6= a. Continuity of the difference
quotient function and φ then implies

lim
z→a

f(z)− f(a)

z − a
= lim

z→a

1

φ(f(z))
= lim

w→f(a)

1

φ(w)
=

1

φ(f(a))
=

1

g′(f(a))
. �

Now we can differentiate, among other things, the logarithm and in particular justify the
formal calculations in (2.5.10).

2.5.18 Example. Define

f : C \ {0} → C : z 7→ Log(z) and g : C→ C : z 7→ exp(z).

Then g(f(z)) = z for all z ∈ C \ {0}, f is continuous, and g is differentiable. Moreover,

g′(f(z)) = exp′(Log(z)) = exp(Log(z)) = z 6= 0 for z ∈ C \ {0}.

The reverse chain rule therefore grants our desire:

Log′(z) = f ′(z) =
1

g′(f(z))
=

1

z
.

2.5.19 Problem (!). Where is logα differentiable and what is log′α?

2.5.20 Problem (?). Let n ≥ 1 be a positive integer and let D ⊆ C \ {0}. A branch
of the nth root in D is a function f : D → C such that [f(z)]n = z for all z ∈ D.
(For example, if we recall the definition z1/2 = e(1/2) log(z), it follows that f(z) = eLog(z)/2 is
a branch of the square root—“second root” just sounds wrong—in D = C \ (−∞, 0].) Use
the “reverse chain rule” to show that if f : D → C is a continuous branch of the nth root
in D ⊆ C \ {0}, then f is differentiable on D with

f ′(z) =
f(z)

nz

for all z ∈ D. Is this what you expected from the power rule in real-variable calculus?
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2.5.5. The derivative of a function of a real variable.

The derivative is fundamentally a limit, and we know that limits interact well with real
and imaginary parts. What does this tell us in the context of derivatives? Not much,
unfortunately.

Suppose that f : D → C is differentiable at a ∈ D. Are ??f ] and Im[f ] differentiable at
a? And can we recover their derivatives at a from the value f ′(a)?

We think just about the real part here. Recall from (2.1.1) that Re[f ] is the function

Re[f ] : D → R : z 7→ Re[f(z)].

If Re[f ] is differentiable at a, then the limit

Re[f ]′(a) = lim
h→0

Re[f ](a+ h)− Re[f ](a)

h
(2.5.14)

must exist, and we would probably like this limit to equal Re[f ′(a)]. If so, then we would have
Re[f ]′(a) = Re[f ′(a)]. Of course, by definition of Re[f ], this is equivalent to the existence of
the limit

Re[f ]′(a) = lim
h→0

Re[f(a+ h)− f(a)]

h
(2.5.15)

So, does (2.5.14), equivalently, (2.5.15), exist? We know that the limit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

exists, and we know that real parts and limits commute:

Re[f ′(a)] = Re

[
lim
h→0

f(a+ h)− f(a)

h

]
= lim

h→0
Re

[
f(a+ h)− f(a)

h

]
. (2.5.16)

If
Re

[
f(a+ h)− f(a)

h

]
=

Re[f(a+ h)− f(a)]

h
(2.5.17)

then the limit in (2.5.15) exists, and we can equate (2.5.15) and (2.5.16) to conclude Re[f ]′(a) =
Re[f ′(a)]. But there is no reason to expect that (2.5.17) is true when h is complex and non-
real, and if the domain D of f contains complex, nonreal numbers, then we can expect
(Remark 2.5.4) that we must consider complex, nonreal h in (??).

In that case, the definition of complex division will certainly cause an interaction between
h and the numerator that will alter the real parts of everything. We will soon see that there
is a powerful connection between the differentiability of a function of a complex variable and
the partial derivatives of its real and imaginary parts, when they are viewed as functions of
two real variables. For now, here is a much tamer result when the independent variable is
real.

2.5.21 Theorem. Let I ⊆ R be an interval and let a ∈ I. Let f : I → C be a function and
put u := Re[f ] and v := Im[f ]. Then f is differentiable at a if and only if both u and v
are differentiable at a in the sense of Definition 2.5.1 (and consequently also in the sense
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of Theorem 2.5.2). That is, f is differentiable at a if and only if both the limits

u′(a) = lim
t→a

u(t)− u(a)

t− a
and v′(a) = lim

t→a

v(t)− v(a)

t− a

exist (with the limits taken as one-sided as in Definition 2.2.25 if a is an endpoint of I).
In this case,

f ′(a) = u′(a) + iv′(a).

2.5.22 Problem (?). Here is the proof of this theorem. Let a, b ∈ R with a ≤ b and
let f : [a, b] → C. Using only Definition 2.5.1 and results from Section 2.2.4, prove the
following.

(i) f is differentiable at a if and only if the limit

L+ := lim
τ→a+

f(τ)− f(a)

τ− a

exists, in which case L+ = f ′(a).

(ii) f is differentiable at b if and only if the limit

L− := lim
τ→b−

f(τ)− f(b)

τ− b

exists, in which case L− = f ′(b).

(iii) f is differentiable at t ∈ (a, b) if and only if the limits

L+ := lim
τ→t+

f(τ)− f(t)

τ− t
and L− := lim

τ→t−

f(τ)− f(t)

τ− t

exist and are equal, in which case f ′(t) = L+ = L−.

This is where we finished on Friday, February 9, 2024.

2.5.23 Example. The function f : R→ C : t 7→ eit is differentiable, and by the chain rule
f ′(t) = ieit. We also have f(t) = u(t) + iv(t) with u(t) = cos(t) and v(t) = sin(t). Since
u′(t) = − sin(t) and v′(t) = cos(t), we have

u′(t) + iv(t) = − sin(t) + i cos(t) = i2 sin(t) + i cos(t) = i
(

cos(t) + i sin(t)
)

= ieit = f ′(t),

as expected.
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2.6. The Cauchy–Riemann equations.

Now we take answer the question left dangling at the start of Section 2.5.5: what is the
relationship between a function’s derivative and the (partial?) derivatives of its real and
imaginary parts?

2.6.1. Some formal analysis.

The situation is the same as at the start of Section 2.5.5: we have a function f : D → C that
is differentiable at a ∈ D, and we want to learn about Re[f ]. The whole problem there was
that, typically,

Re

[
f(a+ h)− f(a)

h

]
6= Re[f(a+ h)− f(a)]

h

for h complex and nonreal (and nonzero, of course).
But what if we just took h to be real? More precisely, we know that

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

and so
f ′(a) = lim

k→∞

f(a+ hk)− f(a)

hk
(2.6.1)

for any sequence (hk) such that a+ hk ∈ D and hk 6= 0. Suppose that we take each hk to be
real. Then, repeating our work from the start of Section 2.5.5, we find

Re[f ′(a)] = lim
k→∞

Re[f(a+ hk)− f(a)]

hk
.

What does this limit mean?
Rewrite

f(x+ iy) = u(x, y) + iv(x, y), u(x, y) := Re[f(x+ iy)] and v(x, y) := Im[f(x+ iy)].

Here we are thinking of u and v as real-valued functions on the set D̃ :=
{

(x, y) ∈ R2
∣∣ x+ iy ∈ D

}
.

Also, suppose a = x0 + iy0. Then for hk real, we have

f(a+hk) = f((x0+hk)+iy0) = u(x0+hk, y0)+iv(x0+hk, y0) and f(a) = u(x0, y0)+iv(x0, y0),

so
Re[f(a+ hk)− f(a)]

hk
=
u(x0 + hk, y0)− u(x0, y0)

hk
.

Thus for any real sequence (hk) such that hk → 0 with hk 6= 0 and (x0 + hk) + iy0 ∈ D,
we have

Re[f ′(a)] = lim
k→∞

u(x0 + hk, y0)− u(x0, y0)

hk
.

That is, the limit

lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
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exists, where here h is understood to be real. This limit is the definition of the partial
derivative ux(x0, y0). We conclude

Re[f ′(x0 + iy0)] = ux(x0, y0).

This tells us about the differentiability of u in relation to the differentiability of f—exactly
the information that we were seeking, if not the information that we were expecting. In
particular, we have not said anything about whether the limit

lim
h→0

Re[f(a+ h)− f(a)]

h

exists with h allowed to be complex and nonreal, and so we cannot say anything about
whether Re[f ] is differentiable.

If we replace Re with Im in all of the calculations above, we can obtain

Im[f ′(x0 + iy0)] = vx(x0, y0).

2.6.1 Problem (!). Do that.

We conclude
f ′(x0 + iy0) = ux(x0, y0) + ivx(x0, y0). (2.6.2)

This is a relationship between the differentiability of f and the differentiability of its real
and imaginary parts—not Re[f ] and Im[f ] as functions of the complex variable z but u and
v as functions of the real variables x and y.

All of the work above was analytic in the sense that we worked with definitions, formulas,
and sequences. Here is the geometric perspective: we approached x0 + iy0 “in the real
direction” by adding small real numbers hk.

R

iR

a
iy0

x0

hk < 0

a+ hk

hk > 0

a+ hk

In the process of approaching x0 + iy0 “in the real direction,” we learned about the x-
partials of u and v. Since the y-“slot” of u and v corresponds to the imaginary component
of the input to f , we might also try approaching x0 + iy0 “in the imaginary direction.” We
still take (hk) to be a sequence of real numbers with hk 6= 0 and hk → 0, but now we assume
that a+ ihk ∈ D. Then

f ′(a) = lim
k→∞

f(a+ ihk)− f(a)

ihk
. (2.6.3)
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Here is the picture.

R

iR

aiy0

x0

a+ hk, hk < 0

a+ hk, hk > 0

Taking real parts, we have

Re[f ′(a)] = lim
k→∞

Re

[
f(a+ ihk)− f(a)

ihk

]
. (2.6.4)

The simplification of the real part is a little more complicated now, but only a little, since,
for w ∈ C and h ∈ R \ {0}, we have

Re
(w
ih

)
=

Im(w)

h
and Im

(w
ih

)
= −Re(w)

h
.

2.6.2 Problem (!). Check this.

Thus
Re

[
f(a+ ihk)− f(a)

ihk

]
=
v(x0, y0 + hk)− v(x0, y0)

hk
,

so we conclude
Re[f ′(a)] = lim

k→∞

v(x0, y0 + hk)− v(x0, y0)

hk
.

This limit holds for any real sequence (hk) such that hk → 0 with hk 6= 0 and x0+i(y0+hk) ∈
D, and so the limit

lim
h→0

v(x0, y0 + h)− v(x0, y0)

h

exists. This limit is the definition of the partial derivative vy(x0, y0). We conclude

Re[f ′(x0 + iy0)] = vy(x0, y0).

Previously we calculated this and found Re[f ′(x0 + iy0)] = vy(x0, y0). This gives even
more information than we had before: a relationship between ux and vy. Namely, if f(x, y) =
u(x, y) + iv(x, y) is differentiable at x0 + iy0, it appears that

ux(x0, y0) = vy(x0, y0). (2.6.5)
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2.6.3 Problem (!). Starting with the limit (2.6.4) in the work above, swap the roles of
Re and Im to conclude

uy(x0, y0) = −vx(x0, y0) (2.6.6)

and also
f ′(x0 + iy0) = vy(x0, y0)− iuy(x0, y0). (2.6.7)

Together, the partial differential equations (2.6.5) and (2.6.6)—which together we call
the Cauchy–Riemann equations—and the identities (2.6.2) and (2.6.7) relate the
derivative behavior of f to the derivative behavior of its real and imaginary parts. This is
what we failed to achieve at the start of Section 2.5.5, where we had to restrict the function’s
domain to be real. (Note that here D cannot consist solely of real numbers if we want to
approach x0 + iy0 “in the imaginary direction.”)

Here is what we seem to have proved.

2.6.4 Theorem (Cauchy–Riemann, wrong version). Let f : D → C be differentiable at
x0 + iy0 ∈ D. Write u(x, y) = Re[f(x+ iy)] and v(x, y) = Im[f(x+ iy)]. Then the partial
derivatives ux(x0, y0), uy(x0, y0), vx(x0, y0), and vy(x0, y0) all exist and satisfy{

ux(x0, y0) = vy(x0, y0)

uy(x0, y0) = −vx(x0, y0).

Moreover,

f ′(x0 + iy0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

But here is what is wrong about this: everything hinged on being able to approach x0+iy0

“in the real and imaginary directions” while remaining in D. That is, we assumed that we
could write f ′(a) in the special forms (2.6.1) and (2.6.3), and this hinged on having real
sequences (hk) with hk → 0, hk 6= 0, and a + hk, a + ihk ∈ D. Why should such sequences
exist? For example, if D is the sector below and a = 0, then no such sequences exist, because
the real and imaginary axes do not intersect this sector except at 0.

R

iR

The lesson is that for Theorem 2.6.4 to be true, we need some stronger geometry on D.
We now develop that.
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2.6.2. Open sets.

The existence of a limit at a point hinges on the consistent behavior of a function at that
point, regardless of the direction of approach. The existence of a limit also presumes that
some direction of approach to that point is possible from elsewhere in the function’s domain.
Frequently we have used the possibility of multiple directions of approach to break a limit;
conversely, restricting the directions of approach by restricting the function to a subset of
its domain may artificially show that the restricted function has a limit on its restricted
domain—see Problem 2.4.7 for the strange observation that limt→−1 Arg

∣∣
(−∞,0)

(t) exists,
although we know well that limz→−1 Arg(z) does not.

Limits are at their strongest when we can approach the point in question not from one
or two directions, not just from the left or the right, but from every possible direction. If
the function has consistent behavior on every avenue of approach to the point, then the
function’s behavior near that point is very, very well-behaved indeed. This presumes that
the function under consideration is defined on a ball centered at the point in question, and
this suggests that we work with functions defined not on arbitrary subsets of C but on the
following special kind.

2.6.5 Definition. A set D ⊆ C is open if for each z ∈ D, there is r > 0 such that
B(z; r) ⊆ D.

This is where we finished on Monday, February 12, 2024.

2.6.6 Example. (i) The whole complex plane is open. Indeed, given z ∈ C, take r > 0 to
be any positive number—say, r = 1. Then, certainly, B(z; 1) ⊆ C.

(ii) Open balls are open—it would be a horrible misnomer if they were not. To see this, fix
z0 ∈ C and r > 0. Take z ∈ B(z0; r). We want to find s > 0 such that B(z; s) ⊆ B(z0; r).
We want s to satisfy

w ∈ B(z; s) =⇒ w ∈ B(z0; r),

equivalently,
|w − z| < s =⇒ |w − z0| < r.
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Here is a picture of several balls B(z; s) drawn for different values of s.

z0

z

The picture suggests that if we take the radius of the red ball—which is s—to be no
larger than the distance between z and the boundary of the blue ball—which is r−|z−z0|,
and which is positive since |z − z0| < r—then everything will work. However, if we take
the radius any larger, then the red ball would go outside the blue ball. So, we take
s = r − |z − z0|.

Suppose that w ∈ B(z; s). Here is another picture.

z0

w

z

We know that |w− z| < s = r−|z− z0|, and we want to show |w− z0| < r. We know more
about the distances |w − z| and |z − z0| than we do about |w − z0|, so we make those two
distances show up by adding zero and using the triangle inequality:

|w − z0| = |w − z + z − z0| ≤ |w − z|+ |z − z0| < s+ |z − z0| = r − |z − z0|+ |z − z0| = r.

2.6.7 Problem (!). Prove that punctured balls are open. [Hint: drawing a picture may
help you “avoid” the punctured center.]
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2.6.8 Problem (+). (i) Generalize Problem 2.6.7 to show that if D ⊆ C is open and
z ∈ D, then D \ {z} is still open.

(ii) Show that if D1, D2 ⊆ C are open, then so is D1 ∪ D2.

2.6.9 Problem (?). Show that C \ iR is open.

2.6.10 Example. Closed balls, as the name should suggest, are not open. Fix z0 ∈ C and
r > 0. The closed ball B(z0; r) is open if and only if for all z ∈ B(z0; r), there is s > 0 such
that B(z; s) ⊆ B(z0; r). So, the closed ball B(z0; r) is not open if and only if there exists
z ∈ B(z0; r) such that for all s > 0 it is the case that B(z; s) 6⊆ B(z0; r). That is, we need
to find some z ∈ B(z0; r) such that for all s > 0 there is w ∈ B(z; s) with w 6∈ B(z0; r).
(Got all that?)

Drawing a picture helps: a point “inside” the ball, i.e., in B(z0; r) is not problematic.
Indeed, if z1 ∈ B(z0; r), then since open balls are open, there is s > 0 such that B(z1; s) ⊆
B(z0; r) ⊆ B(z0; r). So, we need to work with points z ∈ B(z0; r)\B(z0; r) = ∂B(z0; r). For
simplicity, try z = z0 + r. Then the picture below leads us to expect that B(z0 + r; s) 6⊆
B(z0; r) for any s > 0.

z0

z1
z ?

zs

Figuring out a precise ws ∈ B(z0 + r; s) \ B(z0; r) for each s > 0 is a good exercise.

2.6.11 Problem (!). Figure that out.

2.6.12 Problem (!). Let I ⊆ R be nonempty. Prove that I is not open. Conclude that
open intervals in R are not open in the sense of Definition 2.6.5.

This is where we finished on Wednesday, February 14, 2024.

2.6.13 Example. Here is how open sets permit the “freedom of approach” that we so
desperately need for our “proof” of the Cauchy–Riemann equations in Section 2.6.1 to
work out. Let D ⊆ C be open and z0 ∈ D. We want to show that if (hk) is a sequence in
R with hk → 0, then for k sufficiently large we have z0 + hk ∈ D and z0 + ihk ∈ D.

Here is the key idea: since hk → 0, we have z0+hk → z0 and z0+ihk → z0. Theorem 1.3.7
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tells us that for any r > 0, if k is sufficiently large, we will have z0 +hk, z0 + ihk ∈ B(z0; r).
So, we just take r > 0 such that B(z0; r) ⊆ D. Then there is N ∈ N such that if k ≥ N ,
we have z0 + hk, z0 + ihk ∈ B(z0; r) and thus z0 + hk, z0 + ihk ∈ D.

To see this in action, contrast how the real and imaginary sequences (drawn as dots)
approach the origin in both pictures below; the set on the left is not open, and so those
sequences never belong to it, unlike the set on the right.

R

iR

R

iR

2.6.3. The Cauchy–Riemann equations, done correctly.

We can correct Theorem 2.6.4 by adding the hypothesis that the domain of the function
under consideration is open. Once we do that, all of our work in Section 2.6.1 becomes valid,
and we actually get a little bit more.

2.6.14 Theorem (Cauchy–Riemann equations, correct version). Suppose that D ⊆ C
is open and let f : D → C be a function. Write f(x+iy) = u(x, y)+iv(x, y), where we think
of u and v as being defined on the set D̃ :=

{
(x, y) ∈ R2

∣∣ x+ iy ∈ D
}
. In the following

we write ux, uy, vx, and vy for the partial derivatives of u and v with respect to x and y.

(i) Suppose that f is differentiable at a point z = x+ iy ∈ D. Then the partial derivatives
ux, uy, vx, and vy exist at (x, y) and satisfy the Cauchy–Riemann equations{

ux(x, y) = vy(x, y)

uy(x, y) = −vx(x, y).
(2.6.8)

Moreover,
f ′(x+ iy) = ux(x, y) + ivx(x, y) = vy(x, y)− iuy(x, y). (2.6.9)

(ii) Let x + iy ∈ D and let r > 0 be such that B(x + iy; r) ⊆ D. Suppose that the four
partial derivatives ux, uy, vx, and vy exist and are continuous on B(x + iy; r). Moreover,
suppose that the partials satisfy the Cauchy–Riemann equations (2.6.8) at x+ iy. Then f
is differentiable at x+ iy and (2.6.9) holds.

The proof of (ii) is cloistered in Appendix C.1, as it involves a technical estimate best
justified with integrals and the fundamental theorem of calculus.
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2.6.15 Problem (!). Use the formal work in Section 2.6.1 and Example 2.6.13 to prove
part (i). [Hint: there is very little new work to be done here. The goal is to show that the
limits

lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
, lim

h→0

v(x0 + h, y0)− v(x0, y0)

h
,

lim
h→0

u(x0, y0 + h)− u(x0, y0)

h
, and lim

h→0

v(x0, y0 + h)− v(x0, y0)

h

exist, where h is assumed to be real in each limit, and that the equalities of (2.6.8) hold.
To prove the existence of the limits, work with sequences. To show that x0 + iy0 + hk
and x0 + iy0 + ihk belong to D for k large, when (hk) is a sequence in R with hk → 0,
use Example 2.6.13. Then copy and paste from Section 2.6.1. Once you know that the
sequential limits work out for an arbitrary real sequence (hk) with hk → 0, you know that
the partial derivatives exist, right?]

2.6.16 Remark. A good mnemonic for remembering the Cauchy–Riemann equations is to
look at the Jacobian matrix for f(x+ iy) = u(x, y) + iv(x, y), which is[

ux vx
uy vy

]
.

The diagonal entries are equal and the off-diagonal entries are negatives of each other.

2.6.17 Example. (i) Previously, in Example 2.5.8, we saw that the function f : C →
C : z 7→ z was not differentiable at any point in C. To show that, we had to use the
definition of the derivative. Now we can use the Cauchy–Riemann equations. Write

f(x+ iy) = x+ iy = x− iy,

so with
u(x, y) := x and v(x, y) := −y,

we have
f(x+ iy) = u(x, y) + iv(x, y).

Now we differentiate:

ux = 1, uy = 0, vx = 0, and vy = −1.

We clearly have ux 6= vy, and so the Cauchy–Riemann equations do not hold. It is the
case, though, that uy = −vx.

(ii) Euler’s formula gives

exp(x+ iy) = ex
(

cos(y) + i sin(y)
)

= ex cos(y) + iex sin(y),
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and so with
u(x, y) := ex cos(y) and v(x, y) := ex sin(y),

we have
exp(x+ iy) = u(x, y) + iv(x, y).

We compute

ux = ex cos(y), uy = −ex sin(y), vx = ex sin(y), and vy = ex cos(y)

to see that ux = vy and uy = −vx. So, the Cauchy–Riemann equations hold for exp on C,
and therefore exp is entire. Moreover,

exp′(x+ iy) = ux(x, y) + ivx(x, y) = ex cos(y) + iex sin(y) = exp(x+ iy),

with the last equality being Euler’s formula again.
This shows that if we only know calculus for real-valued exponentials, sines, and cosines

on R, then we get the expected results for the exponential on C.

2.6.18 Problem (+). (Requires some linear algebra.) Let D ⊆ C and put D̃ :={
(x, y) ∈ R2

∣∣ x+ iy ∈ D
}
. Let f : D → C and write f(x+ iy) = u(x, y) + iv(x, y), where

u(x, y) := Re[f(x+ iy)] and v(x, y) := Im[f(x+ iy)]. Then we obtain a function

f : D̃ → R2 : (x, y) 7→
(
u(x, y), v(x, y)

)
. (2.6.10)

We can relate the differentiability of the complex-valued f (as a function of a complex
variable) to the differentiability of the vector-valued f (as a function of two real variables)
by defining an adequate notion of derivative for a function from (a subset of) R2 to R2.

Here is that notion. For x = (x, y) ∈ R2, put ‖x‖ :=
√
x2 + y2. For g : D̃ ⊆ R2 → R,

say that limh→0 g(h) = 0 if for all ε > 0, there exists δ > 0 such that if 0 < ‖h‖ < δ, then
‖g(h)‖ < ε. Then a function f : D̃ ⊆ R2 → R2 is differentiable at x ∈ D̃ if there
exists a matrix A ∈ R2×2 such that

lim
h→0

‖f(x + h)− f(x)− Ah‖
‖h‖

= 0.

We call A the derivative of f at x, and we write Df(x) := A.
Show that with f defined in (2.6.10), f is differentiable at z = x+ iy ∈ D (per Definition

2.5.1) if and only if f is differentiable at x = (x, y) and if A has the form

A =

[
α β
−β α

]
.

If f is differentiable, what are α and β? (Optional part: how does this remind you of
Problem B.2.13?)

The best results that we will find in this course are for differentiable functions defined on
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open sets. The Cauchy–Riemann equations are one such example. Because of the primacy of
open sets for domains, we give differentiable functions defined on open sets a special name.

2.6.19 Definition. A function f : D → C is holomorphic if D is open and if f is
differentiable on D.

2.6.4. The differential equation f ′ = 0.

The Cauchy–Riemann equations appear to reduce knowledge of a holomorphic function’s
derivative to knowledge of the partial derivatives of its real and imaginary parts—in other
words, reducing a problem in complex analysis to a problem in real multivariable calculus.
A function is particularly simple if either its real or imaginary part is identically zero, that
is, if the function is strictly real-valued or strictly imaginary-valued.

Say that f : D → C is holomorphic and strictly real-valued, so Im[f(z)] = 0 for all z ∈ D.
Then if we write f(x + iy) = u(x, y) + iv(x, y), we have v(x, y) = 0, and so immediately
vx(x, y) = 0. Moreover, the Cauchy–Riemann equations give

ux(x, y) = vy(x, y) = 0,

too, and so
f ′(x+ iy) = ux(x, y) + ivx(x, y) = 0.

2.6.20 Problem (!). Show that if f : D → C is holomorphic and Im[f(z)] = 0 for all
z ∈ D, then f ′(z) = 0 for all z ∈ D.

Our intuition with calculus probably leads us to believe that a function whose derivative
is identically zero must be constant. That is, if f ′(z) = 0 for all z ∈ D, there must be c ∈ C
such that f(z) = c for all z ∈ D. This intuition is wrong.

2.6.21 Example. Define

f : C \ iR→ C : z 7→

{
−1, Re(z) < 0

1, Re(z) > 0.

Here we could use the definition of the derivative to see that f is differentiable on C \ iR
and f ′(z) = 0 for all z ∈ C \ iR, and yet clearly f is not constant. Last, by Problem 2.6.9,
the set C \ iR is open, and so f is holomorphic.

The problem with the preceding example is that the domain of the function in question
has a “gap” in it, namely, the imaginary axis. Our real-variable calculus intuition that if
f ′ = 0, then f is constant hinges on having an interval for the domain—and intervals have
no “gaps” in them. We can prove this easily if we accept the mean value theorem.

2.6.22 Theorem (Mean value). Let a, b ∈ R with a < b and let f : [a, b] → R be
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continuous with f differentiable on (a, b). Then there is τ ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(τ).

2.6.23 Corollary. Let I ⊆ R be an interval. Suppose that f : I → R is differentiable with
f ′(t) = 0 for all t ∈ I. Then f is constant on I.

Proof. Fix t0 ∈ I; we will show that f(t) = f(t0) for all t ∈ I. First assume t ∈ I and
t < t0. Since I is an interval, [t, t0] ⊆ I; then f is continuous on [t, t0] and differentiable on
(t, t0). The mean value theorem then implies

f(t0)− f(t)

t0 − t
= f ′(τ) = 0

for some τ ∈ (t, t0). Thus f(t0) = f(t). The proof when t0 < t is identical. �

The key step in this proof was using the fact that I was an interval and thus [t, t0] ⊆ I
when t, t0 ∈ I with t ≤ t0. Removing the assumption that I is an interval breaks the
corollary; for example, if I = R \ {0}, then the restriction g := f

∣∣
I
with f given by Example

2.6.21 is differentiable on I with g′ = 0 and yet g is not constant.
The following problem indicates that the mean value theorem is not, in general, true for

real-variable functions that are complex-and-non-real-valued—even when those functions are
defined on real intervals.

2.6.24 Problem (?). Define

f : [0, 2π] ⊆ R→ C : t 7→ eit.

Why are the results of the mean value theorem false for f?

Based on this problem, we might give up hope of generalizing Corollary 2.6.23 to the
complex world. This would be premature.

2.6.25 Problem (!). Suppose that I ⊆ R is an interval and f : I → C is differentiable with
f ′(t) = 0 for all t ∈ I. Prove that f is constant on I. [Hint: since there is no mean value
theorem for complex-valued functions, we cannot quite cite Corollary 2.6.23 directly—but
we can apply it to Re[f ] and Im[f ].]

Returning to complex-valued functions on (open) subsets of C, it turns out that holomor-
phic functions with identically zero derivatives are not so terribly far from being constant.

2.6.26 Definition. Let D ⊆ C be open. A function f : D → C is locally constant if
for each z ∈ D and r > 0 such that B(z; r) ⊆ D, the restriction f

∣∣
B(z;r)

is constant: there
is c ∈ C such that f(w) = c for all w ∈ B(z; r).
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2.6.27 Theorem. Suppose that f : D → C is holomorphic with f ′(z) = 0 for all z ∈ D.
Then f is locally constant on D.

This is where we finished on Monday, February 19, 2024.

Proof. Fix z0 = x0 + iy0 ∈ D and r > 0 such that B(z0; r) ⊆ D. We want to show that
f(z0) = f(z) for all z ∈ B(z0; r).

Write f(x+ iy) = u(x, y) + iv(x, y). Since f is holomorphic, the Cauchy–Riemann equa-
tions tell us that the partial derivatives ux, uy, vx, and vy exist on D. (Strictly speaking,
those four partials are defined on D̃ =

{
(x, y) ∈ R2

∣∣ x+ iy ∈ D
}
, but this is excessive no-

tation.) Moreover, since f ′(x + iy) = 0 for all x + iy ∈ D, the identities (2.6.9) imply
ux = uy = vx = vy = 0 on D. It therefore suffices to show that u and v are constant on
B(z0; r), i.e., for x1 + iy1 ∈ B(z0; r), we have u(x1, y1) = u(x0, y0) and v(x1, y1) = v(x0, y0).
(Again, strictly speaking, u and v are not defined on B(z0; r) but rather on the isomorphic
set B̃(z0; r) :=

{
(x, y) ∈ R2

∣∣ x+ iy ∈ B(z0; r)
}
. But this is also too excessive to bring up in

polite company.) We will only do this for u, as the proof for v is analogous. Additionally,
we will assume x0 < x1 and y0 < y1. There are many other arrangements of the inequalities,
but their proofs are all similar.

R

iR

x0 x1x

iy0

iy1

iy

Since x0 + iy0, x1 + iy1 ∈ B(z0; r), Problem 2.3.6 tells us that x + iy ∈ B(z0; r) for all
x ∈ [x0, x1] and all y ∈ [y0, y1]. The picture above also suggests a proof strategy. Since
ux = 0, the function u is constant in the “x-direction,” and so the function u(·, y0) is going
to be constant on [x0, x1]. So u(x0, y0) = u(x1, y1). And since uy = 0, u is also constant in
the “y-direction,” and so u(x1, ·) is constant on [y0, y1]. So u(x1, y0) = u(x1, y1).

Now we make this precise by defining

g : [x0, x1]→ R : x 7→ u(x, y0) and h : [y0, y1]→ R : y 7→ u(x1, y).

Then
g′(x) = ux(x, y0) = 0 and h′(y) = uy(x1, y) = 0



2.6. The Cauchy–Riemann equations 114

for all x and y, and so both g and h are constant. Consequently,

u(x0, y0) = g(x0) = g(x1) = u(x1, y0) = h(y0) = h(y1) = u(x1, y1).

This proves that u is constant on B(x0 + iy0; r), as desired. �

2.6.28 Problem (?). Suppose that f : C→ C is entire with f ′(z) = 0 for all z ∈ C. Prove
that f is constant on C (not just locally constant).

2.6.29 Problem (+). Previously we saw that the differentiability of exp(·) was largely a
consequence of the functional equation exp(z + w) = exp(z) exp(w). However, we could
start with the derivative properties of the exponential and obtain the functional equation.
Along the way, we rely on the fact that if the derivative of an entire function is identically
zero, then that function is constant. Suppose that f : C → C is entire and satisfies the
initial value problem {

f ′(z) = f(z), z ∈ C
f(0) = 1.

(2.6.11)

(i) Show that f satisfies the functional equation f(z + w) = f(z)f(w) for all z, w ∈ C.
[Hint: fix z, w ∈ C and define g(ξ) := f(z + w − ξ)f(ξ). Show that g′(ξ) = 0 for all ξ.]

(ii) Show that the only solution to the IVP (2.6.11) is f(z) = exp(z). [Hint: certainly
exp is a solution, but why is it the only solution? Obtain from (2.6.11) the equation
f ′(z) exp(−z)+f(z)[− exp(−z)] = 0 and recognize the product rule. This is the integrating
factor method from differential equations.]

Now we revisit the situation at the start of this section.

2.6.30 Example. Suppose that f : D → C is holomorphic and strictly real-valued, so
Im[f(z)] = 0 for all z ∈ D. Write f(x+ iy) = u(x, y)+ iv(x, y), with u(x, y) = Re[f(x+ iy)]
and v(x, y) = Im[f(x + iy)]. Then v = 0, and so, since f is holomorphic, the Cauchy–
Riemann equations imply ux(x, y) = vx(x, y) = 0 for all x + iy ∈ D. Then f ′(x + iy) =
ux(x, y) + ivx(x, y) = 0 for all x + iy ∈ D. We conclude that f is locally constant on D
(but maybe not constant).

2.6.31 Problem (?). Generalize this example as follows. Suppose f : D → C is holomor-
phic with either Re[f ] or Im[f ] locally constant on D. Then f itself is locally constant on
D.

2.6.32 Problem (+). Find all holomorphic functions f : D → C such that f is also
holomorphic on D.

This suggests that the values of a holomorphic function defined on an open subset of C
must exhibit a certain “diversity.” It is no problem for a function f : [a, b] ⊆ R → R to be
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differentiable, strictly real-valued, and not locally constant; this is daily life in real-valued
calculus, of course. But as soon as we expand the domain of f to be an open subset of C
(and no nonempty subset of R is open), then f cannot take just real (or just imaginary)
values without being very “dull.”

Can we improve these results? Are there any situations in which an identically zero
derivative guarantees a genuinely constant function, not just a locally constant one? The
answer is yes, but it requires more hypotheses on the domain D and some further topological
machinery. We will now turn toward constructing that machinery, as it will play a key role
in our development of the integral.
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3. INTEGRAL CALCULUS

The integral is fundamentally a tool for representing functions and extracting and measuring
data about functions. We have already met one integral representation of a function in
real-variable calculus via the fundamental theorem:

f(t) = f(t0) +

∫ t

t0

f ′(τ) dτ

when f is differentiable on an interval I, f ′ is continuous on I, and t0, t ∈ I. We will
redevelop the fundamental theorem (more or less) from scratch here and see other, possibly
deeper (and possibly better) representations of functions via integrals. A typical calculus
course emphasizes less the “data extraction” aspect of the integral, so that will be largely
new here, but we probably saw an argument that the number

1

b− a

∫ b

a

f(t) dt

is a good measure of the “average value” of f on the interval [a, b]. This is one data point
about a function that integrals extract and measure. A course in partial differential equations
might develop integral norms like(∫ b

a

|f(t)|p dt
)1/p

, 1 ≤ p <∞,

as good measures of the “size” of f on [a, b] from different perspectives. There will be yet
other points of data extracted and measured by integrals.

We will develop an integral for complex-valued functions of a complex variable that is suffi-
ciently robust both to represent functions adequately and to extract and measure meaningful
data about those functions. We will build this integral out of two tools—the familiar (. . .one
hopes. . .) definite integral from real-variable calculus and the notion of a parametrized “path”
or “curve” in the two-dimensional plane (which, in principle, we also met in calculus). Since
our results on the “complex” integral will have many parallels with properties of the “real”
integral, we postpone a review of the “real” integral and start by developing paths first. This
will also draw directly on the differential calculus that we just completed and answer an
unresolved question about the differential equation f ′ = 0 to boot.

3.1. Paths, curves, contours.

3.1.1. Smooth paths.

Here we study functions γ : [a, b] ⊆ R → C, with a, b ∈ R and a ≤ b. We will need the
notions of “one-sided” continuity and differentiability at a and b from Problems 2.4.8 and
2.5.22.

3.1.1 Definition. (i) A function f : [a, b] ⊆ R → C is continuously differen-
tiable if γ is differentiable and if γ′ is continuous.
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(ii) A smooth path in D ⊆ C is a continuously differentiable function γ : [a, b] ⊆ R→
D for some a, b ∈ R with a ≤ b.

(iii) The image of a smooth path γ : [a, b] ⊆ R→ C is its range, i.e., the set

γ([a, b]) ={γ(t) | t ∈ [a, b]} .

Common synonyms for “path” are curve and contour. We plot the image of a path
parametrically in the complex plane as we do a parametric curve in R2.

R

iR

γ(a)

γ(b)γ(t)

3.1.2 Example. The map γ : [0, 2π]→ C : t 7→ eit is a smooth path, and the image of this
path is the unit circle. That is,{

eit
∣∣ 0 ≤ t ≤ 2π

}
={z ∈ C | |z| = 1} .

R

iR

1

i

The image of this path has an inherent orientation or trajectory: it starts at 1 and “moves
counterclockwise” to i, then to −1, then to −i and, last, back to 1. That is, γ(0) = γ(1),
and so we might think that γ is “closed.” We mark the orientation with euphemistic arrows
on the parametric curve.

3.1.3 Problem (!). Let z0 ∈ C and r > 0. Explain why the map

γ : [0, 2π]→ C : t 7→ z0 + reit

is a smooth path and show that its image is the circle ∂B(z0; r). The “orientation” of this
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image is what we expect from years with the unit circle: a “counterclockwise” trajectory.

r

z0

γ(t) = z0 + reit, 0 ≤ t ≤ 2π

In addition to circles, line segments are also among the most important paths that we
will study. One motivation for the following definition is the recollection from multivariable
calculus that the line segment between vectors x1, x2 ∈ R2 is the set of all points of the form
(1− t)x1 + tx2 for 0 ≤ t ≤ 1, which can be experimentally verified by graphing.

3.1.4 Definition. Let z1, z2 ∈ C. The line segment from z1 to z2 is the path

γ : [0, 1]→ C : t 7→ (1− t)z1 + tz2.

R

iR

z0

z1

Sometimes we will abuse terminology and refer to the image of this line segment as the
line segment itself. That is, we will also call the set

[z1, z2] :={(1− t)z1 + tz2 | 0 ≤ t ≤ 1}

the line segment from z1 to z2. And sometimes we will denote the function γ in Definition
3.1.4 by [z1, z2] as well.

3.1.5 Example. The line segment from 0 to 1 is the path

γ : [0, 1]→ C : t 7→ [(1− t) · 0] + (1 · t) = t,

and so the image of γ is

{γ(t) | 0 ≤ t ≤ 1} ={t | 0 ≤ t ≤ 1} = [0, 1].
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R

iR

1

3.1.6 Problem (?). (i) Sometimes it is convenient to represent the same line segment in
multiple ways. Let z1, z2 ∈ C. Show that

{(1− t)z1 + tz2 | 0 ≤ t ≤ 1} ={τz1 + (1− τ)z2 | 0 ≤ τ ≤ 1}
={tz1 + τz2 | 0 ≤ t, τ ≤ 1 and t+ τ = 1}

(ii) If a, b ∈ R with a ≤ b, then of course we want to think of the line segment from a to
b as the interval [a, b]. Show that this is still the case per Definition 3.1.4. That is, show

{x ∈ R | a ≤ x ≤ b} ={(1− t)a+ tb | 0 ≤ t ≤ 1} .

3.1.7 Problem (?). Let a ∈ C and r > 0. Show that if z1, z2 ∈ B(a; r), then [z1, z2] ⊆
B(a; r). [Hint: as always, start by drawing a picture. Then think carefully about the
definitions of the sets [z1, z2] and B(a; r).]

Many meaningful “paths” in C are not really smooth; they fail to be differentiable at a
select number of points, but they fail in a tame way. We now show how to construct such
paths out of genuinely smooth paths.

3.1.2. Composition of paths and nonsmooth paths.

Let γ1 be the line segment from 0 to 1, and let γ2 be the line segment from 1 to 1 + i. That
is,

γ1 : [0, 1]→ C : t 7→ t and γ2 : [0, 1]→ C : t 7→ (1− t) + t(1 + i). (3.1.1)

The images of these paths are sketched below.

R

iR

1

1 + i

It looks like the line segment from 0 to 1 just continues into the line segment from 1 to
1 + i, and so we might ask if there is a “natural” way to combine these two paths into one
function. That is, is there a map γ : [a, b]→ C whose image is γ1([0, 1])∪ γ2([0, 1]), and does
γ somehow restrict “naturally” into γ1 and γ2? There is, although this map will not quite be
a smooth path.

Here is how we can construct such a γ. It takes from “time” 0 to 1 for γ1 to get from 0
to 1, and then from “time” 0 to 1 for γ2 to get from 1 to 1 + i. Maybe it should take from
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“time” 0 to 2 for γ to get from 0 to 1 + i; from “time” 0 to 1, γ should act like γ1, and from
“time” 1 to 2, γ should act like γ2. So, we put

γ : [0, 2]→ C : t 7→

{
γ1(t), 0 ≤ t ≤ 1

γ2(t− 1), 1 ≤ t ≤ 2.
(3.1.2)

3.1.8 Problem (!). Suppose γ1 : [a1, b1]→ C and γ2 : [a2, b2]→ C are smooth paths with
γ1(b1) = γ2(a2). Abbreviate γ := γ1 ⊕ γ2 and I := [a1, b1 + (b2 − a2)].

(i) Show that γ(0) = 0 and γ(2) = 1 + i.

(ii) Show that γ([0, 2]) = γ1([0, 1]) ∪ γ2([0, 1]).

(iii) Show that γ is continuous on [0, 2].

(iv) Show that γ is differentiable on [0, 1) ∪ (1, 2] and that γ′ is continuous.

(v) Show that the limits limt→1− γ
′(t) and limt→1+ γ

′(t) exist.

Here is the abstraction of this situation.

3.1.9 Definition. Suppose γ1 : [a1, b1] → C and γ2 : [a2, b2] → C are smooth paths with
γ1(b1) = γ2(a2). Then the composition of γ1 and γ2 is the map

γ1 ⊕ γ2 : [a1, b1 + (b2 − a2)]→ C : t 7→

{
γ1(t), a1 ≤ t ≤ b1

γ2(t+ a2 − b1), b1 ≤ t ≤ b1 + (b2 − a2).

Sometimes this path is denoted by γ1 + γ2 or [γ1, γ2] instead.

3.1.10 Problem (!). Check that if b1 ≤ t ≤ b1 + b2 − a2, then a2 ≤ t− b1 + a2 ≤ b2, and
so γ2(t− b1 + a2) is defined if γ2 is defined on [b2, a2].

Here is a visualization of composition.

γ1

R

iR

R
a b

R

iR

γ1(a)

γ1(b) = γ2(c)
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γ2

R

iR

R
c d

R

iR

γ1(b) = γ2(c)

γ2(d)

γ1 ⊕ γ2

R

iR

R
a b b+ (d− c)

R

iR

γ1(a)

γ2(d)

Like γ1 and γ2, γ1⊕γ2 is a map from a closed, bounded subinterval of R into C. It is con-
tinuous on its domain, but it may not be differentiable (let alone continuously differentiable)
at the “connecting” point b1.

3.1.11 Problem (?). This problem generalizes Problem 3.1.8. Suppose γ1 : [a1, b1] → C
and γ2 : [a2, b2] → C are smooth paths with γ1(b1) = γ2(a2). Abbreviate γ := γ1 ⊕ γ2 and
I := [a1, b1 + (b2 − a2)].

(i) Show that γ(a1) = γ1(a1) and γ(b1 + (b2 − a2)) = γ2(b2).

(ii) Show that γ(I) = γ1([a1, b1]) ∪ γ2([a2, b2]).

(iii) Show that γ is continuous on I.

(iv) Show that γ is differentiable on I \ {b1} and that γ′ : I \ {b1} → C is continuous.

(v) Show that the limits limt→b−1
γ′(t) and limt→b+1

γ′(t) exist.

(vi) What more must we assume to guarantee that γ1 ⊕ γ2 is differentiable?

This is where we finished on Wednesday, February 21, 2024.
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3.1.12 Problem (!). Here is a generalization of the preceding example. Let z1, z2, z3 ∈ C.
Show that the line segment from z1 to z2 is parametrized by

γ1 : [0, 1]→ C : t 7→ (1− t)z1 + tz2

and the line segment from z2 to z3 is parametrized by

γ2 : [0, 1]→ C : t 7→ (1− t)z2 + tz3.

Since γ1(1) = z1 = γ2(0), we can compose γ1 and γ2. Show that

(
γ1 ⊕ γ2)(t) =

{
(1− t)z1 + tz2, 0 ≤ t ≤ 1

tz2 + (t− 1)z3, 1 ≤ t ≤ 2.

Use this to show that the map γ in (3.1.2) is in fact the composition γ1 ⊕ γ2 of the paths
from (3.1.1).

3.1.13 Remark. We will compose various paths with line segments often enough that it is
worth having a special notation for that. Let z1, z2 ∈ C and let γ be the line segment from
z1 to z2. If µ is a path with terminal point z1, then we will write

µ⊕ [z1, z2] instead of µ⊕ γ.

Likewise, if ν is a path with initial point z2, then we will write

[z1, z2]⊕ ν instead of γ ⊕ ν.

3.1.14 Definition. Suppose that γk : [ak, bk] → C, 1 ≤ k ≤ n, are smooth paths with
γk(bk) = γk+1(ak+1) for k = 1, . . . , n − 1. We define their composition ⊕nk=1γk recursively
via

⊕nk=1 γk :=


γ1 ⊕ γ2, n = 2

(
⊕n−1
k=1 γk

)
⊕ γn, n ≥ 2.

(3.1.3)

Sometimes this composition is denoted by γ1 ⊕ · · · ⊕ γn, γ1 + · · ·+ γn, or [γ1, . . . , γn].

3.1.15 Problem (?). Suppose that γk : [ak, bk] → C, 1 ≤ k ≤ n, are paths with γk(bk) =
γk+1(ak+1) for k = 1, . . . , n− 1.

(i) Define

τk :=


a1, k = 0

b1, k = 1,

τk−1 + bk − ak, k ≥ 2.



3.1. Paths, curves, contours 123

Show that the domain of ⊕nk=1γk is [a1, b1 +
∑n

k=2(bk − ak)].

(ii) Define

1[τk−1,τk](t) :=

{
1, τk−1 ≤ t ≤ τk

0, t < τk−1 or t > τk.

Show that (
⊕nk=1 γk

)
(t) =

n∑
k=1

1[τk−1,τk](t)µk(t+ ak − τk−1).

[Hint: a full proof requires induction on n. To get a feel for how the τk work as they do and
the structure of the sum above with the “indicator” functions 1[τk−1,τk], just use Definition
3.1.14 recursively for n = 4, which will be large enough to be illustrative but not large
enough to be overly annoying.]

Nonetheless, when we consider a “large” composition like ⊕nk=1γk in (3.1.3) above, we will
rarely need to know what the domain of ⊕nk=1γk actually is; it usually suffices to keep track
of the individual domains of the components.

3.1.16 Example. Let 0 < r < R. We will find four paths γ1, γ2, γ3, γ4 such that the
image of ⊕4

k=1γk is the path below.

R

iR

−R −r r R

ir

iR

The line segment from z = r to z = R is parametrized by

γ1(t) := (1− t)r + tR = (R− r)t+ r, 0 ≤ t ≤ 1.

The upper half of the circle of radius R with “counterclockwise” orientation is parametrized
by

γ2(t) := Reit, 0 ≤ t ≤ π.

The line segment from z = −R to z = −r is parametrized by

γ3(t) := (1− t)(−R) + t(−r) = (t− 1)R− rt = (R− r)t−R, 0 ≤ t ≤ 1.

And (if we think hard about it) the upper half of the circle of radius r with “clockwise”
orientation is parametrized by

γ4(t) := rei(π−t), 0 ≤ t ≤ π.
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The idea here is that γ4 starts at reiπ = −r at t = 0, passes through rei(π−π/2) = reiπ/2 = ir
at t = π/2, and ends at rei(π−π) = r at t = π. So, γ4 needs to “reverse” the path t 7→ reit

on [0, π], a notion that we will make precise shortly.

In the preceding example, we could write a piecewise formula for⊕4
k=1γk over some domain

[0, b] for some b > 0. However, we will actually never use such a formula when we work with
compositions of paths later, and such a formula would only obscure the four individual
domains above.

3.1.17 Problem (!). Find formulas for four paths γk, k = 1, 2, 3, 4, such that the image
of ⊕4

k=1γk is the unit square sketched below.

R

iR

1

1 + ii

You do not need to find a “common domain” for the composition but instead can just
give formulas for the four paths as in Example 3.1.16. Note that the curve as drawn
is oriented roughly “counterclockwise” in the sense that as you traverse the curve in the
direction indicated the “inside” square stays on your left. This is the same phenomenon
that happens when we orient a circle counterclockwise.

3.1.18 Problem (?). Let 0 < r < R and 0 < θ < π/2. Parametrize the “keyhole contour”
below by finding formulas for four paths γ1, γ2, γ3, and γ4 such that the image of ⊕4

k=1γk is
the “keyhole contour” below. The angle of the “opening” is 2θ radians. Again, you do not
need to find a “common domain” for the composition but instead can just give formulas
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for the four paths as in Example 3.1.16.

R

iR

−R −r

ir

iR

θ

−θ

Do you see a “counterclockwise” orientation to this curve?

Now, finally, we relax the smoothness requirement of paths ever so slightly to obtain a
more practically useful version.

3.1.19 Definition. (i) A path in D ⊆ C is a map γ : [a, b]→ D of the form γ = ⊕nk=1γk,
where each γk is a smooth path in D.

(ii) The image of the path γ : [a, b]→ C is, again, its range:

γ([a, b]) ={γ(t) | t ∈ [a, b]} .

(iii) The initial point of the path γ : [a, b]→ C is γ(a), and its terminal point is
γ(b).

(iv) A path γ : [a, b] → C is closed if γ(a) = γ(b), i.e., if it has the same initial and
terminal points.

3.1.20 Example. The map
γ : [−1, 1]→ C : t 7→ |t|

is a path in C because we can write it as γ = γ1 ⊕ γ2, where

γ1 : [−1, 0]→ C : t 7→ −t and γ2 : [0, 1]→ C : t 7→ t,

both of which are smooth paths. However, γ itself is not a smooth path, as it is not
differentiable at 0:

lim
τ→0−

γ(τ)− γ(0)

τ− 0
= −1 6= 1 = lim

τ→0+

γ(τ)− γ(0)

τ− 0
.
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The image of γ is the set

{γ(t) | t ∈ [−1, 1]} ={|t| | t ∈ [−1, 1]} = [0, 1].

Plotting this image parametrically in C yields what to our real-variable-calculus-trained
eyes is a smooth graph.

R

iR

1

We should be careful not to make assumptions about the smoothness of a path from the
appearance of its image. Also, note that γ(−1) = 1 = γ(1), so this path is closed—it
“turns around” at t = 0 and “doubles back” over itself. For this reason, we did not put any
euphemistic arrows on the plot above.

If γ1 and γ2 are paths such that the terminal point of γ1 is the initial point of γ2, then
we can compose γ1 and γ2 exactly as in Definition 3.1.9 and obtain a new path (which need
not be a smooth path, since neither γ1 nor γ2 is assumed to be smooth here). Likewise, we
can compose an arbitrary number of paths and get a new path, just like Definition 3.1.14.

3.1.21 Problem (!). What is the image of the path

γ : [−1, 1]→ C : t 7→ 0?

Is it the same as the image in the previous example?

3.1.22 Problem (!). When is a line segment a closed path?

3.1.23 Problem (?). Show that the paths

γ1 : [−1, 1]→ C : t 7→ t+ i|t|

and
γ2 : [−1, 1]→ C : t 7→ t3 + i|t|3

have the same images. Which path is smooth? Here is the lesson: the image of a path may
look like the graph of a function from (a subset of) R to R, and yet the smoothness of that
graph may have nothing to do with the smoothness of that path. (Compare this to Example
3.1.20.)

3.1.24 Problem (+). Show that a map γ : [a, b] → C is a path if and only if there
exists a subset {tk}nk=0 ⊆ [a, b] such that t0 = a, tn = b, and tk−1 < tk for 1 ≤ k ≤ n,
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and γ
∣∣
[tk−1,tk]

is continuously differentiable. For this reason, paths are sometimes called
piecewise continuously differentiable functions. (Again, the notions of “one-
sided” continuity and differentiability at a and b from Problems 2.4.8 and 2.5.22 will be
helpful.) Compare this to Problem 3.1.11. Then show that every path is in fact continuous.

3.1.25 Problem (+). Fill in the details of the following argument to prove that the image
of a path is never open. Suppose that γ : [a, b]→ C is a path and let Γ = γ([a, b]).

(i) Explain why the extreme value theorem provides t∗ ∈ [a, b] such that
|γ(t∗)| = maxa≤t≤b |γ(t)|.

(ii) If Γ is open, there is r > 0 such that B(γ(t∗); r) ⊆ Γ. Show that if Re[γ(t∗)] ≥ 0, then
|γ(t∗) + r/2| > |γ(t∗)|, and if Re[γ(t∗)] ≤ 0, then |γ(t∗)− r/2| > |γ(t∗)|.

(iii) Why is this a contradiction? As usual, drawing pictures will help.

3.1.26 Problem (+). (i) Let γ : [a, b] → C be a curve and let z0 ∈ C \ γ([a, b]). Show
that there exists a point on the image of γ that is “closest” to z0 in the sense that

min
a≤t≤b

|γ(t)− z0| = |γ(t0)− z0|

for some t0 ∈ [a, b]. [Hint: use the extreme value theorem on the function d(t) := |γ(t)−z0|.]

(ii) Draw a picture illustrating this phenomenon for γ(t) = eit on [0, 2π] and z0 = 2.

3.1.3. Reversing paths.

3.1.27 Example. Let z1, z2 ∈ C be distinct points. Consider the paths

γ1(t) : [0, 1]→ C : t 7→ (1− t)z1 + tz2 and γ2(t) : [0, 1]→ C : t 7→ (1− t)z2 + tz1.

The path γ1 parametrizes [z1, z2], while the path γ2 parametrizes [z2, z1]. The images of
these paths are the same, since as sets [z1, z2] = [z2, z1]. However, γ1(0) = z1 6= z2 = γ2(0),
so γ1 and γ2 are distinct functions. (In fact, one can check that γ1(t) = γ2(t) if and only if
t = 1/2, so these functions certainly are not equal.) This calculation also tells us that the
initial point of γ1 is the terminal point of γ2, and vice-versa. It appears, then, that γ1 and
γ2 both “trace out” the same image but in the “reverse direction.”

R

iR

z0

z1

R

iR
z1

z0
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In fact, a little algebra shows

γ1(t) = γ2(1− t), 0 ≤ t ≤ 1. (3.1.4)

We formally define this notion of “reverse.”

3.1.28 Definition. Suppose that γ : [a, b]→ C is a path. The reverse of γ is the path

γ−(t) := γ(a+ b− t), a ≤ t ≤ b.

Some sources denote this path by −γ or γ∗ instead.

3.1.29 Example. We encountered a version of the path

γ : [0, π]→ C : t 7→ eit

in Example 3.1.16). The image of this path is the upper half of the unit circle with the
usual “counterclockwise” trajectory. The reverse of this path is

γ− : [0, π]→ C : t 7→ γ(0 + π − t) = ei(π−t),

and this is exactly what we used in that example.

3.1.30 Problem (!). Let γ : [a, b]→ C be a path.

(i) Check that γ−(a) = γ(b) and γ−(b) = γ(a), so γ− does indeed “reverse” the initial and
terminal points of γ.

(ii) Check that if a ≤ t ≤ b, then a ≤ a+ b− t ≤ b, and so γ(a+ b− t) is indeed defined
if γ is defined on [a, b].

(iii) Check that γ and γ− have the same image.

3.1.31 Problem (?). Let γ : [a, b]→ C be a path.

(i) Show that if φ := γ−, then φ− = γ. That is, show (γ−)− = γ.

(ii) Let µ : [c, d]→ C also be a path such that the initial point of µ is the terminal point
of γ. By considering the domains of (γ ⊕ µ)− and µ− ⊕ γ−, explain why we should not
expect (γ ⊕ µ)− = µ− ⊕ γ− in general. However, if a = c = 0 and b = d = 1, show that
the equality (γ⊕µ)− = µ−⊕ γ− is true. (In practice, we will shortly see that could always
reparametrize γ and µ so that both are defined on [0, 1], and any question that we have
about (γ ⊕ µ)− and µ− ⊕ γ− would likely be invariant under this parametrization.)
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3.1.4. Reparametrizing paths.

Note carefully that a path is a function, while the image of a path is a set. A given set
in C may be the image of many paths; for example, the unit circle is also the image of
γk : [0, 2π]→ C : t 7→ eikt for any k ∈ Z.

3.1.32 Problem (!). Prove this. That is, show that if k ∈ Z, then

{z ∈ C | |z| = 1} =
{
eikt

∣∣ 0 ≤ t ≤ 2π
}
.

We should distinguish precisely among “set,” “path,” and “image.”

3.1.33 Definition. A set Γ ⊆ C is parametrized by the path γ : [a, b]→ C if the image
of γ is Γ, i.e., if Γ = γ([a, b]). In this case we say that γ is a parametrization of Γ.

3.1.34 Example. Here are four different parametrizations of the the unit circle, which is
the set {z ∈ C | |z| = 1}:

γ1 : [0, 2π]→ C : t 7→ eit

γ2 : [0, 2π]→ C : t 7→ e−it

γ3 : [0, π]→ C : t 7→ e2it

γ4 : [0, 2π]→ C : t 7→ e4it.

The path γ1 is probably what we think of as the “usual” parametrization, which “traces
out” the unit circle “counterclockwise.” (Hopefully the overabundance of quotation marks
emphasizes that none of these words or phrases has been given a rigorous mathematical
definition yet.) The path γ2 traces out the unit circle clockwise, e.g., γ2(π/2) = −i, whereas
γ2(π/2) = i. The path γ3 traces out the unit circle in “half the time” as γ1 and γ2, e.g.,
γ3(π/4) = i. And the path γ4 traces out the unit circle a whopping four times, e.g.,
γ4(t) = 1 for k = 0, π/2, π, 3π/2, and 2π.

It turns out that the paths γ1, γ2, and γ3 are closely related and can be “obtained”
from each other in ways that we now make precise. First, γ2 = γ−1 , as we readily calculate
γ−1 (t) = γ1(0 + 2π − t) = e−it = γ2(t). However, γ3 is something new.

Observe that γ3(t) = γ1(2t), and the map ϕ13 : [0, π] → [0, 2π] : t 7→ 2t is continuously
differentiable with ϕ′13(t) = 2 > 0 for all t. Observe also that γ1(t) = γ3(t/2), and the map
ϕ31 : [0, 2π] → [0, π] : t 7→ t/2 is continuously differentiable with ϕ′31(t) = 1/2 > 0 for all
t. This dual way of viewing γ3 as the composition γ3 = γ1 ◦ ϕ13 and of viewing γ1 as the
composition γ1 = γ3 ◦ ϕ31 is an illustration of a more general phenomenon.

3.1.35 Definition. Let γ1 : [a, b] → C and γ2 : [c, d] → C be paths. Then γ1 and γ2 are
equivalent if there is a continuously differentiable map ϕ : [c, d]→ [a, b] such that

(i) ϕ′(t) > 0 for all t ∈ [c, d].
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(ii) ϕ(c) = a and ϕ(d) = b.

(iii) γ2(t) = γ1(ϕ(t)) for all t ∈ [c, d].

We say that γ1 and γ2 are reparametrizations of each other.

R

R

c d

a b
ϕ

R
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γ1

γ2 = γ1 ◦ ϕ

γ1(a) = γ2(c)

γ1(b) = γ2(d)

The condition that ϕ′(t) > 0 in this definition ensures that ϕ is strictly increasing on
[a, b] and therefore one-to-one. (If ϕ′ is ever negative, then ϕ would be decreasing, and so
γ1 ◦ϕ could “double back” on itself and not have the same “trajectory” as γ1.) This, morally,
encodes the idea that γ2 = γ1 ◦ ϕ “traces out the same image” as γ1 does in the “same
orientation.”

Additionally, the hypotheses on ϕ imply that ϕ is invertible and that its derivative is
continuously differentiable. That is, if we assume parts (i) and (ii) of Definition 3.1.35,
then there is a continuously differentiable map ψ : [a, b] → [c, d] such that ϕ(ψ(τ)) = τ

for all τ ∈ [c, d], ψ(ϕ(t)) = t for all t ∈ [c, d], and ψ′(t) > 0 for all t. Then we have
γ1(τ) = γ1(ϕ(ψ(τ))) = γ2(ψ(τ)) for all τ ∈ [a, b]. Moreover, ψ(a) = ψ(ϕ(c)) = c and
ψ(b) = ψ(ϕ(d)) = d. In other words, it is irrelevant in part (iii) whether γ2 is written as a
composition of γ1 and some function, or whether γ1 is written as a composition of γ2 and
some function. (More generally, the equivalence of paths is indeed an equivalence relation
on the set of all paths.)

3.1.36 Problem (!). It is sometimes convenient to assume that the domain of a path is
the interval [0, 1]. Show that it is always possible to reparametrize a path γ : [a, b]→ C by
finding a continuously differentiable map ψ : [a, b] → [0, 1] that satisfies the conditions of
Definition 3.1.35.

3.1.37 Problem (?). Show that if the path γ1 is a reparametrization of the path γ2, then
γ1 and γ2 have the same image.
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3.1.38 Problem (?). Is the reverse of a path ever a reparametrization of that path?

This is where we finished on Friday, February 23, 2024.

3.1.5. Connectedness.

We conclude with an application of paths that strengthens our prior results about functions
with identically zero derivatives. First, we need to augment the geometry of our underlying
domains.

3.1.39 Definition. A set D ⊆ C is connected if for any z, w ∈ D, there is a path
γ : [a, b] → D such that γ(a) = z and γ(b) = w. Sometimes such a set is called path-
connected, not just connected.

Informally, any points z, w ∈ D can be “connected” by a path that lies entirely in D.

z
w

3.1.40 Example. (i) Any open ball B(z0; r) is connected. Given z, w ∈ B(z0; r), it is
intuitively plausible that we could connect them by the line segment from z to z0 and then
from z0 to w, or just by the line segment from z to w. This turns out to be true and is
mostly a matter of working through definitions: if z, w ∈ B(z0; r), why is any point on the
line segment from z to w also in B(z0; r)?

(ii) The set C\ iR (which we encountered in Example 2.6.21) is not connected. Intuitively,
any curve connecting a point z with Re(z) < 0 to a point w with Re(w) > 0 must pass
through the imaginary axis. Proving this requires some thought, possibly involving the
intermediate value theorem to establish this “pass through” claim.

3.1.41 Problem (?). Prove both of the claims in the previous example.

3.1.42 Theorem. Suppose that D ⊆ C is open and connected. If f : D → C is differen-
tiable with f ′(z) = 0 for all z ∈ D, then f is constant on D: there is c ∈ C such that
f(z) = c for all z ∈ D.

Proof. Fix z, w ∈ D; we will show that f(z) = f(w). Since D is path-connected, there is a
path γ : [a, b]→ D such that γ(a) = z and γ(b) = w.

First suppose that γ is smooth. Set g(t) := f(γ(t)), so g is also differentiable on [a, b] by
the chain rule, and g′(t) = f ′(γ(t))γ′(t) = 0. By the mean value theorem, Re[g] and Im[g]
are constant, so g is constant. Thus f(z) = g(a) = g(b) = f(w).
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Now suppose that γ = ⊕nk=1γk for some smooth paths γk. For simplicity, take n = 2
and use Problem 3.1.24 to find t1 ∈ (a, b) such that γ

∣∣
[a,t1]

and γ
∣∣
[t1,b]

are continuously
differentiable. Define

g1 : [a, t1]→ D : t 7→ f(γ
∣∣
[a,t1]

(t)) and g2 : [t1, b]→ D : f(γ
∣∣
[t1,b]

(t)).

Of course, g1(t) = f(γ(t)) for t ∈ [a, t1] and g2(t) = f(γ(t)) for t ∈ [t1, b], but the domains of
g1 and g2 are different intervals, so g1 and g2 are different functions. However, the utility of
taking different domains is that g1 and g2 are now differentiable, with g′1 = 0 and g′2 = 0, so
g1 is constant on [a, t1] and g2 is constant on [t1, b]. Then

f(z) = g1(a) = g1(t1) = f(γ(t1)) = g2(t1) = g2(b) = f(w).

We can generalize this argument to include an arbitrary n ≥ 2 functions gk := f ◦γ
∣∣
[tk−1,tk]

,
and we obtain gk(tk−1) = gk(tk) = f(γ(tk)) = gk+1(tk) = gk+1(tk+1) = f(γ(tk+1)) for k =
1, . . . , n− 1. �

3.1.43 Problem (!). Reread the proof of Theorem 2.6.27. Recall that we fixed z0 ∈ D
and took r0 > 0 such that B(z0; r0) ⊆ D. By Problem 3.1.41, the ball B(z0; r0) is open and
connected, and so f is constant on B(z0; r0). Where in the proof of Theorem 2.6.27 did we
use the connectedness of B(z0; r0)?

3.1.44 Problem (?). Let α1, α2 ∈ R with α1 6= α2. What do Problem 2.5.19 and Theorem
3.1.42 say about how logα1

and logα2
are related?

3.1.45 Problem (+). Let D ⊆ C be nonempty and connected.

(i) Suppose that D = D1 ∪D2, where both D1 and D2 are open and D1 ∩D2 = ∅. Argue
by contradiction as follows that if D2 6= ∅, then D1 = ∅.

Suppose instead that both D1 and D2 are nonempty. Explain why the function

f : D → C : z 7→

{
1, z ∈ D1

2, z ∈ D2

is defined, holomorphic, locally constant, and not constant. Conclude that D cannot be
connected.

(ii) Let D = C \ R, D1 = {z ∈ C | Im(z) < 0}, and D2 = {z ∈ C | Im(z) > 0}. Then D1

and D2 are open, D = D1 ∪ D2, with D1 ∩ D2 = ∅ but D1 6= ∅ and D2 6= ∅. Draw a
picture of this situation. Then draw a curve with initial point in D1 and terminal point in
D2. Point out on your drawing how this curve shows that D is not connected.
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3.2. Definite integrals.

We have said that the integral is a key tool for both representing functions and for extracting
and measuring meaningful data about functions. Here we primarily take up the question of
representing functions via integrals—specifically, representing antiderivatives via integrals.

3.2.1 Definition. Let D ⊆ C. A holomorphic function F : D → C is an antiderivative
of f : D → C if F ′(z) = f(z) for all z ∈ D.

3.2.2 Example. (i) The function F (z) = z is an antiderivative of the function f(z) = 1
on D = C.

(ii) By the chain rule, the function F (t) = −ieit satisfies F ′(t) = −i2eit = eit on D = R,
and so F is an antiderivative of f(t) = e−it.

(iii) The function Log is differentiable on D = C \ (−∞, 0] and satisfies

Log′(z) =
1

z

there. The function log2π is differentiable on D = C \ [0,∞) and satisfies

log′2π(z) =
1

z

there. So, the function f : C \ {0} → C : t 7→ 1/z has antiderivatives on two different
subsets of C \ {0}, but neither Log nor log2π is an antiderivative on all of C \ {0}. We will
see that f cannot have an antiderivative on all of C \ {0}.

When D = [a, b] ⊆ R is a real interval, it turns out that there is not much new about antid-
ifferentiation onD; one simply antidifferentiates the real and imaginary parts of f : [a, b]→ C.
But when D ⊆ R is open and therefore genuinely two-dimensional, the antiderivative prob-
lem becomes much more surprising, rather like the question of differentiating. (Recall that
derivatives of a function defined on an open set D ⊆ C are much more interesting than those
of functions defined on an interval [a, b] ⊆ R.) We need two tools to resolve the antiderivative
problem. We have already mastered the first: paths will play a key role, as we will “integrate
over” paths, not just intervals in R. That is, we will study line integrals, first for their role as
antiderivatives and subsequently for their tremendous value as instruments that reveal key
features of functions.

But to construct these line integrals, we need a second tool: a definite integral for functions
defined on a closed bounded interval [a, b] ⊆ R but now taking values in C. We will build
this integral out of the ordinary (Riemann) integral.

3.2.1. Properties of “good” integrals.

What is an integral? We will separate the question of what an integral is from the question
of what an integral does. The former can be quite technical to define precisely, but the latter
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is actually quite simple. Here are four fundamental “behaviors” that a “good” integral should
exhibit.

(
∫
1) First, the integral of a function f : [a, b] ⊆ R → R should somehow measure the net

area of the region between the graph of f and the interval [a, b]. Since the most fundamental
area is the area of a rectangle, we should expect∫ b

a

1 dt = b− a.

t

f(t)

a b

1

(
∫
2) If f is nonnegative, the net area of the region between the graph of f and the interval

[a, b] should be the genuine area of the region between the graph of f and the interval [a, b],
and this should be a positive quantity. So, we expect that if 0 ≤ f(t) on [a, b], then

0 ≤
∫ b

a

f(t) dt.

(
∫
3) If we divide the region between the graph of f and the interval [a, b] into multiple

components, measure the net area of those components, and add those net areas together,
we should get the total net area of the region between the graph of f and the interval
[a, b]. There are many such ways to accomplish this division, but perhaps one of the most
straightforward is to split [a, b] up into two or more subintervals and consider the net areas of
the regions between the graph of f and those subintervals. So, we expect that if a ≤ c ≤ b,
then ∫ c

a

f(t) dt+

∫ b

c

f(t) dt =

∫ b

a

f(t) dt.

t

f(t)

a c b

(
∫
4) Adding two functions f , g : [a, b] ⊆ R→ R should “stack” the graphs of f and g on top

of each other. Then the region between the graph of f and the interval [a, b] gets “stacked”
on top of region between the graph of g and the interval [a, b]. Consequently, the net area of
the region between the graph of f + g and the interval [a, b] should just be the sum of these
two areas: ∫ b

a

f(t) dt+

∫ b

a

g(t) dt =

∫ b

a

[
f(t) + g(t)

]
dt.
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t

f(t)

a b

+

t

g(t)

a b

=

t

f(t) + g(t)

a b

Next, multiplying a function f : [a, b] ⊆ R → R by a constant α ∈ R should somehow
“scale” the net area of the region between the graph of f and the interval [a, b] by that factor
α. For example, the area under the graph of 2f over [a, b] should be double the area under
the graph. Consequently, the net area of the region between the graph of αf and the interval
[a, b] should be the product ∫ b

a

αf(t) dt = α

∫ b

a

f(t) dt.

2 ·
t

f(t)

a b

=
t

2f(t)

a b

These four properties are exactly the properties of a “good” integral that we will need—no
more, no less. Below, we will assert that we can always integrate continuous functions in
a manner consistent with the properties above. Before that, we give in to temptation and
drop one aspect of integral notation.

3.2.3 Remark. Contrary to everything that we are taught in calculus, we will typically not
write a variable of integration unless we actually need one for clarification (say, to write
out the formula for the integrand explicitly, or when changing variables). That is, we write∫ b

a

f, not
∫ b

a

f(t) dt or
∫ b

a

f(τ) dτ.

However, when we do include the variable of integration, we follow the custom that any
variable may be used, thus∫ b

a

f =

∫ b

a

f(t) dt =

∫ b

a

f(τ) dτ =

∫ b

a

f(s) ds = · · · .
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Also, we will use the words “integral” and “definite integral” more or less interchange-
ably. (Eventually we will meet a “line integral,” and we will sometimes call that just an
“integral”—we will add the adjectives “definite” or “line” as needed for emphasis.) But we
will never use the words “indefinite integral.”

Our view of the definite integral will be “dynamic”: the integral is characterized by what
it does. And integrals act on both integrands and limits of integration.

3.2.4 Theorem. Let I ⊆ R be an interval and denote by C(I) the set of all continuous
functions from I to R. There exists a map∫

: {(f, a, b) | f ∈ C(I), a, b ∈ I} → R : (f, a, b) 7→
∫ b

a

f

with the following properties.

(
∫
1) [Constants] If a, b ∈ I, then ∫ b

a

1 = b− a.

(
∫
2) [Monotonicity] If f ∈ C(I) and a, b ∈ I with a ≤ b and 0 ≤ f(t) for all t ∈ [a, b],

then

0 ≤
∫ b

a

f.

If in particular 0 < f(t) for all t ∈ [a, b], then

0 <

∫ b

a

f.

(
∫
3) [Additivity of the domain] If f ∈ C(I) and a, b, c ∈ I, then∫ c

a

f +

∫ b

c

f =

∫ b

a

f.

(
∫
4) [Linearity in the integrand] If f , g ∈ C(I), a, b ∈ I, and α ∈ R, then∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g and
∫ b

a

αf = α

∫ b

a

f.

The number
∫ b
a
f is the definite integral of f from a to b. Specifically,∫ b

a

f = lim
n→∞

b− a
n

n∑
k=1

f

(
a+

k(b− a)

n

)
. (3.2.1)
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Properties (
∫
4) encodes the linearity of the integral as an operator on the integrand with

the limits of integration fixed, while property (
∫
3) is its additivity over subintervals with

the integrand fixed. Property (
∫
2) encodes the idea that a nonnegative function should have

a nonnegative integral, while property (
∫
1) defines the one value of the integral that it most

certainly should have from the point of view of area.
The terms of the sequence on the right of (3.2.1) are the right-endpoint Riemann sums

for f over [a, b]. Taking this limit as the definition of the integral—and tacitly assuming
that the sequence of Riemann sums converges if f is continuous—we can prove properties
(
∫
1), (

∫
2), and (

∫
4) quite easily. Property (

∫
3) is not so obvious from (3.2.1), and in fact

this property hinges on expressing
∫ b
a
f as a “limit” of several kinds of Riemann sums, not

just the right-endpoint sum. And then there is still the challenge of ensuring that limits of
all sorts of “well-behaved” Riemann sums for f (including, but not limited to, left and right
endpoint and midpoint sums) all converge to the same number. Moreover, it is plausible
that one might want to integrate functions that are not continuous.

These deeper questions of integration, while tremendously worthwhile, will have no bear-
ing on our further study of complex analysis. We will only need to integrate continuous
functions, and we will only need properties (

∫
1), (

∫
2), (

∫
3), and (

∫
4).

3.2.2. The definite integral of a complex-valued function.

So, equipped with the integral for real-valued functions, we turn to the complex-valued case.

3.2.5 Definition. Let f : I ⊆ R→ C be continuous and let a, b ∈ I. The integral of f
from a to b is ∫ b

a

f :=

∫ b

a

Re(f) + i

∫ b

a

Im(f). (3.2.2)

3.2.6 Remark. The terms (b − a)n−1
∑n

k=1f(a + k(b − a)/n) in the Riemann sum limit
(3.2.1) are perfectly well-defined for a function f : I ⊆ R → C, if a, b ∈ I. Thus one
could in principle prove Theorem 3.2.4 not assuming that f is only real-valued. There are,
however, certain advantages to assuming that f is indeed real-valued—namely, the ability
to manipulate inequalities involving Riemann sums.

The complex-valued integral inherits many properties from the real-valued version.

3.2.7 Problem (?). Let I ⊆ R be an interval and f , g : I → C be continuous. Let a, b,
c ∈ I and α ∈ C. Using only Definition 3.2.5 and Theorem 3.2.4, prove the following.

(i) Re

(∫ b

a

f

)
=

∫ b

a

Re(f) and Im

(∫ b

a

f

)
=

∫ b

a

Im(f)

(ii)
∫ b

a

f =

∫ b

a

f , where f(t) := f(t)
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(iii) [Generalization of (
∫
1)]

∫ b

a

α = α(b− a)

(iv) [Generalization of (
∫
3)]

∫ c

a

f +

∫ b

c

f =

∫ b

a

f

(v) [Generalization of (
∫
4)]

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g and
∫ b

a

αf = α

∫ b

a

f

(vi)
∫ a

a

f = 0

(vii)
∫ b

a

f = −
∫ a

b

f

3.2.8 Problem (?). Use induction to generalize additivity as follows. Let I ⊆ R be an
interval and f : I → C be continuous. If t0, . . . , tn ∈ I, then∫ tn

t0

f =
n∑
k=1

∫ tk

tk−1

f.

Note that Problem 3.2.7 does not discuss the monotonicity of the integral, as inequalities
do not make sense for functions that are complex-and-not-real-valued. If we return to real-
valued functions, then we can extend monotonicity in a useful way.

3.2.9 Problem (?). Let I ⊆ R be an interval.

(i) Suppose that f , g : I → R are continuous and a, b ∈ R with a ≤ b. If f(t) ≤ g(t) for
all t ∈ [a, b], show that ∫ b

a

f ≤
∫ b

a

g. (3.2.3)

(ii) Suppose that f : I → R is continuous and there arem,M ∈ R such thatm ≤ f(t) ≤M
for all t ∈ [a, b]. Show that

m(b− a) ≤
∫ b

a

f ≤M(b− a). (3.2.4)

A double application of (3.2.3) yields one of the most important estimates on integrals
possible.

3.2.10 Theorem (Real triangle inequality). Let I ⊆ R be an interval, let f : I → R be
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continuous, and let a, b ∈ I with a ≤ b. Then∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |. (3.2.5)

Proof. Use the inequalities −|f(t)| ≤ f(t) ≤ |f(t)| and (3.2.3) to find∫ b

a

−|f | ≤
∫ b

a

f ≤
∫ b

a

|f |.

By linearity, this is

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |,

and by properties of absolute value, this is equivalent to (3.2.5). �

The triangle inequality is also true in the complex-valued setting, but it needs a new
proof, since the proof of Theorem 3.2.10 used monotonicity.

3.2.11 Theorem (Complex triangle inequality). Let I ⊆ R be an interval, let f : I → C
be continuous, and let a, b ∈ I with a ≤ b. Then∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

3.2.12 Problem (?). Prove this theorem as follows.

(i) First explain why the inequality is immediately true if
∫ b
a
f = 0.

(ii) Suppose, then, in the following that
∫ b
a
f 6= 0. Use Problem 1.6.4 to obtain the

inequality ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∣∣∣∣Re

(
e−iθ

∫ b

a

f

)∣∣∣∣ . (3.2.6)

(iii) Justify each of the following with a reference to some result about integrals from this
section:

e−iθ
∫ b

a

f =

∫ b

a

e−iθf, (3.2.7)

Re

(∫ b

a

e−iθf

)
=

∫ b

a

Re(e−iθf), (3.2.8)

and ∣∣∣∣∫ b

a

Re(e−iθf)

∣∣∣∣ ≤ ∫ b

a

|Re(e−iθf)|. (3.2.9)
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(iv) Explain why |Re(e−iθf(t))| ≤ |f(t)| and conclude∫ b

a

|Re(e−iθf)| ≤
∫ b

a

|f |. (3.2.10)

(v) Put it all together to get the complex triangle inequality.

3.2.13 Problem (!). (i) Show that if we remove the hypothesis a ≤ b, then the triangle
inequality becomes ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

|f |
∣∣∣∣ .

Why is the extra modulus on the right necessary here?

(ii) Suppose that f : I → R is continuous and a, b ∈ I. Show that∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ |b− a| max
0≤t≤1

|f((1− t)a+ tb)|. (3.2.11)

[Hint: the annoying part about this problem is that we are not specifying a ≤ b. Prove the
two cases a ≤ b and b ≤ a separately. Use the fact that if J :={(1− t)a+ tb | 0 ≤ t ≤ 1},
then J = [a, b] if a ≤ b, and J = [b, a] if b ≤ a.]

3.2.3. The fundamental theorem of calculus.

We now have only a handful of results about the definite integral, and yet they are enough
to prove the fundamental theorem of calculus. (Conversely, by themselves, they do not help
us evaluate integrals more complicated than

∫ b
a
α for α ∈ C!) This is our first rigorous

verification that an integral gives a meaningful representation of a function. Specifically,
integrals represent antiderivatives.

3.2.14 Theorem (FTC1). Let f : I → C be continuous and fix a ∈ I. Define

F : I → C : t 7→
∫ t

a

f

Then F is an antiderivative of f on I.

This is where we finished on Monday, February 26, 2024.

Proof. Fix t ∈ I. We need to show that F is differentiable at t with F ′(t) = f(t). That is,
we want

lim
h→0

F (t+ h)− F (t)

h
= f(t),
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equivalently,

lim
h→0

F (t+ h)− F (t)− hf(t)

h
= 0.

We first compute

F (t+ h)− F (t) =

∫ t+h

a

f(τ) dτ−
∫ t

a

f(τ) dτ

=

∫ t+h

a

f(τ) dτ +

∫ a

t

f(τ) dτ

=

∫ t+h

t

f(τ) dτ.

Next,

hf(t) = f(t)[(t+ h)− t] = f(t)

∫ t+h

t

1 dτ =

∫ t+h

t

f(t) dτ.

We then have

F (t+ h)− F (t)− hf(t) =

∫ t+h

t

f(τ) dτ−
∫ t+h

t

f(t) dτ =

∫ t+h

t

[
f(τ)− f(t)

]
dτ.

Note that this is one instance in which using the variable of integration τ clarifies the fact
that t is constant here. It therefore suffices to show that

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0, (3.2.12)

and we do that in the following lemma. �

Before stating and proving the lemma, we discuss why we should expect (3.2.13) to be
true. We are sending h → 0 and dividing by h, so the factor 1/h will be “large.” Thus the
integral

∫ t+h
t

[
f(τ)−f(t)

]
dτ needs to be “small” as h→ 0 to counterbalance this division by

a “large” number; in fact, this integral needs to be “very small,” since we want the limit to be
0, not just a finite number. However, this integral is indeed “very small” because it is “small”
in two places. First, taking h→ 0 means that the limits of integration t and t+h are “close,”
and so the interval of integration is “small.” Second, because these limits of integration are
close, each τ ∈ [t, t + h] is “close” to t, and thus, by continuity, f(τ) and f(t) are “close,”
thus the integrand is “small.”

3.2.15 Lemma. Let I ⊆ R be an interval and let f : I → C be continuous. Then

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0

for any t ∈ I.
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Proof. We use the squeeze theorem. Problem 3.2.13 gives us the estimate∣∣∣∣1h
∫ t+h

t

[
f(τ)− f(t)

]
dτ

∣∣∣∣ ≤ 1

|h|
|t+h−h| max

0≤s≤1
|f((1−s)t+s(t+h))−f(t)| = max

0≤s≤1
|f(t+sh)−f(t)|.

We now need to show that

lim
h→0

max
0≤s≤1

|f(t+ sh)− f(t)| = 0.

This will involve the definition of continuity.
Let ε > 0, so our goal is to find δ > 0 such that if 0 < |h| < δ, then

max
0≤s≤1

|f(t+ sh)− f(t)| < ε. (3.2.13)

Since f is continuous at t, there is δ > 0 such that if |t − τ| < δ, then |f(τ) − f(t)| < ε.
Suppose 0 < |h| < δ. Then if 0 ≤ s ≤ 1, we have

|(t+ sh)− t| = |sh| ≤ |h| < δ,

thus (3.2.13) holds. �

3.2.16 Problem (!). Prove that the left limit in (3.2.13) holds. What specific changes are
needed when h < 0?

With FTC1, we can prove a second version that facilitates the computation of integrals
via antiderivatives.

3.2.17 Corollary (FTC2). Let I ⊆ R be an interval and let f : I → C be continuous. If
F is any antiderivative of f on I, then∫ b

a

f = F (b)− F (a)

for all a, b ∈ I.

Proof. Let F?(t) =
∫ t
a
f , so F? is also an antiderivative of f . Put h = F?−F , so h′ = 0 on I.

Problem 2.6.25 implies that h is constant, say, h(t) = h(a) for all t. Then F?(t) = F (t)+h(a)
for all t, so∫ b

a

f = F?(b) = h(b) + F (b) = h(a) + F (b) = F?(a)− F (a) + F (b) = F (b)− F (a)

since F?(a) = 0. �

3.2.18 Example. Let k ∈ Z \ {0}. Since F (t) = eit/ik is an antiderivative of f(t) = eikt,
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we have ∫ 2π

0

eikt dt =
eikt

ik

∣∣∣∣t=2π

t=0

=
e2πik − e0·k

i
=

1− 1

i
= 0.

3.2.19 Problem (+). We can use the definite integral to give an explicit definition of the
natural logarithm. Recall that we originally defined ln : (0,∞) → R as the unique map
satisfying exp(ln(t)) = t for all t ∈ R. Such a map exists since exp is one-to-one on R.
However, we did not have an explicit formula for ln in the same way that we did for the
exponential as a power series. Now we can develop a formula for the natural logarithm
using our tried-and-true philosophy that mathematical objects are defined by what they
do.

(i) We expect (from Example 2.5.18) that ln satisfies{
ln′(t) = 1/t

ln(1) = 0.

Use FTC2 to conclude that we should have

ln(t) =

∫ t

1

dτ

τ
.

(ii) We can start from this integral representation of the natural logarithm and obtain an
inverse for the exponential. Put

L : (0,∞)→ R : t 7→
∫ t

1

dτ

τ
.

Our goal is to show that eL(t) = t for all t > 0. One way to do this is to show that
e−L(t)t = 1 for all t, and one way to show that is to define f(t) := e−L(t)t and to show that
f solves the initial value problem {

f ′(t) = 0

f(1) = 1

and then use FTC2. Do just that.

We will eventually develop a similar integral representation for the principal logarithm
and, in the process, obtain an explicit formula for the principal argument that does not
rely on classical trigonometry. But first we will need a notion of integral for functions of a
complex variable.

3.2.4. Consequences of the fundamental theorem of calculus.

The fundamental theorems of calculus are, of course, the keys to both substitution and
integration by parts, two of the most general techniques for evaluating integrals in terms of
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simpler functions.

3.2.20 Theorem (Substitution). Let I, J ⊆ R be intervals with a, b ∈ J . Let ϕ : J → I
be continuously differentiable and let f : I → C be continuous. Then∫ b

a

(f ◦ ϕ)ϕ′ =

∫ ϕ(b)

ϕ(a)

f.

Proof. Put

F (t) :=

∫ t

ϕ(a)

f,

so F ′(t) = f(t) for all t ∈ I by FTC1. Next, put

G(t) := F (ϕ(t)),

so
G′(t) = F ′(ϕ(t))ϕ′(t) = f(ϕ(t))ϕ′(t).

That is, G is an antiderivative of (f ◦ ϕ)ϕ′, and so∫ b

a

(f ◦ ϕ)ϕ′ = G(b)−G(a)

by FTC2. But

G(b)−G(a) = F (ϕ(b))− F (ϕ(a)) =

∫ ϕ(b)

ϕ(a)

f −
∫ ϕ(a)

ϕ(a)

f =

∫ ϕ(b)

ϕ(a)

f. �

3.2.21 Example. We revisit the integral of Example 3.2.18. Let k ∈ Z \ {0} and put
ϕ(τ) = kτ. Then∫ 2π

0

eikτ dτ =
1

k

∫ 2π

0

eikτk dτ =
1

k

∫ 2π

0

eiϕ(τ)ϕ′(τ) dτ =
1

k

∫ ϕ(2π)

ϕ(0)

eit dt =
1

k

∫ 2kπ

0

eit dt

=
1

ik
eit
∣∣∣∣t=2π

t=0

=
e2πi − e0

ik
=

1− 1

ik
= 0.

Note that taking ϕ(τ) = ikτ does not work, as then ϕ is not real-valued, which is essential
in the substitution theorem.

3.2.22 Problem (?). Suppose that f : R → C is continuous and p-periodic for some
p ∈ R, in the sense that f(t + p) = f(t) for all t ∈ R. Then the integral of f over any
interval of length p is the same: ∫ a+p

a

f =

∫ p

0

f

for all a ∈ R. Give two proofs of this identity as follows.
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(i) Define

F (a) :=

∫ a+p

a

f

and use FTC1 and the p-periodicity of f to show that F ′(a) = 0 for all a. Then F is
constant by Problem 2.6.25, so F (a) = F (0) for all a.

(ii) First explain why ∫ a+p

a

f =

∫ p

0

f +

(∫ a+p

p

f −
∫ a

0

f

)
.

Then substitute u = t− p to show∫ a+p

p

f =

∫ a

0

f(t− p) dt

and use the p-periodicity of f .

3.2.23 Problem (+). We can use integrals to prove the familiar limit

e = lim
t→∞

(
1 +

1

t

)t
.

Here we interpret the power as the principal power.

(i) Use properties of the logarithm and exponential to conclude that the desired limit holds
if

lim
t→∞

t

∫ t+1

t

dτ

τ
= 1.

(ii) Change variables to show that∫ t+1

t

dτ

τ
=

∫ 1

0

dτ

t+ τ
.

(iii) Rewrite ∣∣∣∣t∫ t+1

t

dτ

τ
− 1

∣∣∣∣ =

∣∣∣∣∫ 1

0

τ

t+ τ
dτ

∣∣∣∣ ,
estimate the integral on the right, and use the squeeze theorem to obtain

lim
t→∞

∣∣∣∣∫ 1

0

τ

t+ τ
dτ

∣∣∣∣ = 0.

This is where we finished on Wednesday, February 28, 2024.
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A recurring theme of our subsequent applications of integrals will be that we are trying
to estimate or control some kind of difference (this is roughly 90% of analysis), and it turns
out to be possible to rewrite that difference in a tractable way by introducing an integral.
It may be possible to manipulate further terms under consideration by rewriting them as
integrals, too. The fundamental identity that we will use in the future is (3.2.14) below.

3.2.24 Example. FTC2 allows us to rewrite a functional difference as an integral. When
we incorporate substitution, we can get a very simple formula for that difference. Suppose
that I ⊆ R is an interval, f : I → C is continuously differentiable, and t, t+ h ∈ I. Then

f(t+ h)− f(t) =

∫ t+h

t

f ′.

We will reverse engineer substitution and make the limits of integration simpler and the
integrand more complicated. (This turns out to be a good idea.) Specifically, we are
integrating over the interval [t, t+ h], and we recall its parametrization as a path: put

ϕ : [0, 1]→ R : τ 7→= (1− τ)t+ τ(t+ h) = t+ hτ.

Then ϕ′(τ) = h, ϕ(0) = t, and ϕ(1) = t+ h, so substitution implies∫ t+h

t

f ′ =

∫ 1

0

f ′(t+ hτ)h dτ.

Thus if f is differentiable and f ′ continuous on an interval containing t and t+ h, then

f(t+ h)− f(t) = h

∫ 1

0

f ′(t+ hτ) dτ. (3.2.14)

This equality allows us to control the distance between f(t+h) and f(t) using the explicit
factor of h on the right above and the triangle inequality on the integral with the constant
limits of 0 and 1. In particular, knowing the size of f ′ controls the difference. We could
obtain a similar result from the mean value theorem (at least, if f is real-valued), but the
explicit formula (3.2.14) eliminates a possibly vague “existential” result from the MVT.

This identity can be generalized to partial derivatives, e.g., if f = f(t, s) is differentiable
with respect to t and ft is continuous, then

f(t+ h, s)− f(t, s) = h

∫ 1

0

ft(t+ τh, s) dτ.

3.2.25 Problem (!). Prove the following variant of Example 3.2.24: if I ⊆ R is an interval,
f : I → C is continuously differentiable, and a, b ∈ I, then

f(b)− f(a) = (b− a)

∫ 1

0

f ′(a+ t(b− a)) dt.

Dividing by b − a, this gives us a variant of the mean value theorem for complex-valued



3.2. Definite integrals 147

functions, as the “ordinary” mean value theorem need not hold for complex, nonreal-valued
functions (recall Problem 2.6.24).

Integration by parts works nicely for complex-valued functions of a real variable, because
the product rule, the FTC, and antiderivatives work as we think they should in this setting.

3.2.26 Theorem (Integration by parts). Suppose that f , g : [a, b]→ C are differentiable
with f ′, g′ continuous. Then∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g. (3.2.15)

Proof. Put H(t) = f(t)g(t), so the product rule (for complex-valued functions of a real
variable) gives

H ′(t) = f ′(t)g(t) + f(t)g′(t).

Then FTC2 gives ∫ b

a

H ′ = H(b)−H(a) = f(b)g(b)− f(a)g(a). (3.2.16)

But by linearity ∫ b

a

H ′ =

∫ b

a

f ′g −
∫ b

a

fg′, (3.2.17)

and so (3.2.15) follows by equating (3.2.16) and (3.2.17). �

3.2.5. Arc length.

We have said that integrals are tools for representing functions and extracting data about
functions. So far, we have seen two related representations of functions as integrals: rep-
resenting an antiderivative of f as the integral F (t) =

∫ t
a
f , and representing the difference

f(t+h)−f(t) as the convenient expression h
∫ 1

0
f ′(t+hτ) dτ. Now we perform an elementary

data extraction with integrals.
In calculus we learned that if f : [a, b] → R is continuously differentiable, then, by a

limiting argument with Riemann sums, the integral∫ b

a

|f ′(t)| dt

captures the natural notion of the “length” of the graph of f . We import this concept to
paths.

3.2.27 Definition. The arc length of a smooth path γ : [a, b] ⊆ R→ C is

`(γ) :=

∫ b

a

|γ′(t)| dt.
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3.2.28 Example. The smooth path γ : [0, 2π] → C : t 7→ eit parametrizes the unit circle,
and of course we expect its arc length to be 2π. We check this:

`(γ) =

∫ 2π

0

|γ′(t)| dt =

∫ 2π

0

|ieit| dt =

∫ 2π

0

1 dt = 2π,

as expected.

If we represent a path γ as the composition of smooth paths γ = ⊕nk=1γk, then we should
expect that the sum

∑n
k=1`(γk) gives a meaningful measurement of the arc length of γ.

However, what if we have another representation of γ as γ = ⊕mj=1µj, where each µj is
also a smooth path? Do we have

∑n
k=1`(γk) =

∑m
j=1`(µj)? This is a question of the “well-

definedness” of arc length for (nonsmooth) paths, and it is the sort of problem that arises
whenever we define a quantity in terms of a chosen “representation” of an object. Is the
quantity independent of the chosen representation? Of course, yes.

We prove the following theorem in Appendix C.2.

3.2.29 Theorem. Arc length is well-defined in the sense that if a path γ can be expressed
as compositions of smooth paths via

γ = ⊕nk=1γk and γ = ⊕mj=1µj,

then
n∑
k=1

`(γk) =
m∑
j=1

`(µj).

3.2.30 Problem (!). (i) Let k ∈ Z and define γk : [0, 2π] ⊆ R → C : t 7→ eikt. What is
`(γk)? Is this what you expected?

(ii) What is the arc length of a line segment? Is it what you expected?

(iii) Suppose that γ1 and γ2 are equivalent paths; for simplicity, assume that both are con-
tinuously differentiable. Show that `(γ1) = `(γ2). Does the positivity of ϕ′ from Definition
3.1.35 matter here? How does this compare to part (iv) of Problem 3.3.9?

3.3. Line integrals.

We extend the definite integral to functions of a complex variable as a line integral. While
there is some reasonable motivation for the following definition as a “limit” of certain Riemann
sums, we do not consider that. Instead, we take the position that the line integral is the most
natural generalization of the definite integral that is also the best instrument for extracting
critical information about functions, although its full utility will not be apparent for some
time.
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3.3.1. Definition and properties of line integrals.

3.3.1 Definition. Let D ⊆ C and let f : D → C be continuous. Let γ : [a, b] ⊆ R → D be
a smooth path. Then the line integral of f over γ is∫

γ

f =

∫
γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

(f ◦ γ)γ′. (3.3.1)

3.3.2 Remark. The integrand in (3.3.1) is the product (f ◦ γ)γ′. This is a continuous
function since γ is continuously differentiable. Thus Definition 3.2.5 applies.

As with definite integrals, we will often omit the variable of integration in line integrals
and include it for clarity when necessary. When we do include it, we continue the custom
that we can change the symbol at will:∫

γ

f =

∫
γ

f(z) dz =

∫
γ

f(w) dw =

∫
γ

f(ξ) dξ = · · · .

We will frequently integrate over lines and circles, and so the following two examples
contain extremely important calculations.

3.3.3 Example. Parametrize the line segment [0, i] by

γ : [0, 1] ⊆ R→ C : t 7→ (1− t)0 + ti = it.

Then γ′(t) = i for all t. The function f(z) := z is continuous on C, and so we may compute∫
γ

z dz =

∫ 1

0

γ(t)γ′(t) dt =

∫ 1

0

it(i) dt =

∫ 1

0

−it(i) dt =

∫ 1

0

t dt =
1

2
.

3.3.4 Example. Let z0 ∈ C, r > 0, and n ∈ Z and parametrize the circle of radius r
centered at z0 by γ(t) := z0 + reit for t ∈ [0, 2π]. Then γ′(t) = ireit, and so∫
γ

(z−z0)n dz =

∫ 2π

0

(
(z0+reit)−z0

)n
(ireit) dt = ir

∫ 2π

0

(reit)neit dt = irn+1

∫ 2π

0

ei(n+1)t dt.

If n = −1, then ∫
γ

dz

z − z0

= i

∫ 2π

0

1 dt = 2πi.

If n 6= −1, then since F (t) := ei(n+1)t/(i(n + 1)) is an antiderivative of f(t) := ei(n+1)t, we
have ∫

γ

(z − z0)n dz = irn+1 e
i(n+1)t

i(n+ 1)

∣∣∣∣t=2π

t=0

= irn+1

(
1− 1

i(n+ 1)

)
= 0.

Here it is essential that n ∈ Z for the expression (z − z0)n to be unambiguously defined
when z 6= z0, and for the antiderivatives to work out correctly.
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3.3.5 Remark. Since we will integrate over line segments and circles so often, we will
use a special, suggestive notation for their line integrals that will relieve us from writing
out their parameterizations each time. Assume below that f is continuous at least on the
path(s) over which the integration takes place.

(i) For z1, z2 ∈ C, define∫
[z1,z2]

f(z) dz := (z2 − z1)

∫ 1

0

f((1− t)z1 + tz2) dt.

This line integral is oriented “from z1 to z2.”

(ii) For z0 ∈ C and r > 0, define∫
|z−z0|=r

f(z) dz := ir

∫ 2π

0

f(z0 + reit)eit dt.

This line integral is oriented with the circle traversed “counterclockwise.” (As needed, we
may change the variable z in |z − z0| = r to w or some other symbol.)

In particular, the previous example shows∫
|z−z0|=r

(z − z0)n dz =

{
0, n ∈ Z \ {−1}
2πi, n = −1.

3.3.6 Problem (!). Let I ⊆ R be an interval and let f : I → R be continuous. Show that
for any a, b ∈ I, we have ∫

[a,b]

f =

∫ b

a

f,

where the integral on the left is the line integral over the path [a, b], and the integral on
the right is the ordinary Riemann integral.

3.3.7 Problem (?). (i) Let f : D ⊆ C → C be continuous and let z0 ∈ D, r > 0 with
B(z0; r) ⊆ D. Show that ∫

|z−z0|=r
f(z) dz =

∫
|z|=r

f(z + z0) dz.

(ii) Find a continuous function g : B(0; 1)→ C such that∫
|z−z0|=r

f(z) dz =

∫
|z|=1

g(z).

[Hint: this function g will depend on both z0 and r.]
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Now we extend our definition of the line integral to all paths, not just smooth ones. Recall
that any path can be written as the composition of smooth paths, i.e., if γ is a path, then
there are smooth paths γ1, . . . , γn such that γ = ⊕nk=1γk. Naturally, then, we want to put∫

γ

f :=
n∑
k=1

∫
γk

f.

However, as with arc length, there is a question of well-definedness. That is, if we also have
γ = ⊕mj=1µj for some smooth paths µj, we need to check that

n∑
k=1

∫
γk

f =
m∑
j=1

∫
µj

f.

3.3.8 Problem (+). Check that. [Hint: adapt the proof of Theorem 3.2.29 given in
Appendix C.2. The necessary changes mostly involve the integrands, not the limits of
integration or the specific arrangement of the integrals in that proof.]

The line integral enjoys mostly obvious properties that generalize those of the definite
integral.

3.3.9 Problem (?). Let D ⊆ C and let f : D → C be continuous. The following results
hold for all paths, but in your work you may assume that the paths are smooth. In the
context of Problem 3.3.6, how do parts (i), (ii), and (iii) below generalize results from
Problem 3.2.7?

(i) Let γ1 and γ2 be paths in D and suppose that the terminal point of γ1 is the initial
point of γ2. Show that ∫

γ1⊕γ2
f =

∫
γ1

f ⊕
∫
γ2

f.

(ii) Let γ be a path in D. Show that∫
γ−
f = −

∫
γ

f.

(iii) Let γ be a path in D, let g : D → C also be continuous, and let α ∈ C. Show that∫
γ

(f + g) =

∫
γ

f +

∫
γ

g and
∫
γ

αf = α

∫
γ

f.

(iv) Show that if γ1 and γ2 are equivalent paths in D, i.e., γ1 is a reparametrization of γ2,
then ∫

γ1

f =

∫
γ2

f.

Does the positivity of ϕ′ as in Definition 3.1.35 really matter here?
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3.3.10 Problem (?). Let D ⊆ C and let f : D → C be continuous.

(i) Let γ be a path in D. What is the value of∫
γ⊕γ−

f?

Does this remind you of a result from Problem 3.2.7?

(ii) Fix z0 ∈ D and let γ be the “constant” path γ : [a, b] ⊆ R → D : t 7→ z0. What is the
value of ∫

γ

f?

Does this remind you of a result from Problem 3.2.7?

(iii) Explain why we should expect, in general, that∫
γ

f 6=
∫
γ

f,

and give a specific example of f and γ for which the equality does not hold.

3.3.2. The fundamental theorem of calculus for line integrals.

The fundamental theorem of calculus nicely extends to line integrals and thereby generalizes
the FTC for definite integrals.

3.3.11 Theorem (FTC for line integrals). Let D ⊆ C and f : D → C be continuous.
Suppose that F : D → C is an antiderivative of f . Then if γ : [a, b] ⊆ R→ D is a path,∫

γ

f = F (γ(b))− F (γ(a)).

Proof. We only give the proof in the special case that γ is smooth. Then∫
γ

f =

∫ b

a

(f ◦ γ)γ′ =

∫ b

a

(F ◦ γ)′ = F (γ(b))− F (γ(a)).

Otherwise, express γ as the composition of smooth paths, apply the result just proved to
each of those paths, add, and simplify using the telescoping identity

∑n
k=m(zk+1− zk) =

zn+1 − zm, which is valid for any set {zk}n+1
k=m ⊆ C. �

3.3.12 Problem (!). Redo as much as possible of Example 3.3.4 using the FTC for line
integrals. What goes wrong at n = −1?

This is where we finished on Friday, March 1, 2024.
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3.3.13 Example. Define γ : [0, π] → C : t 7→ eit, so γ is the upper half of the unit circle.
We study ∫

γ

dz

z
.

(i) There is no need for any fancy machinery here, as we could just use the definition of
the line integral: ∫

γ

dz

z
=

∫ π

0

γ′(t)

γ(t)
dt =

∫ π

0

ieit

eit
dt =

∫ π

0

i dt = iπ.

(ii) However, it may be instructive to see some fancy machinery. Any branch of the
logarithm worth its salt should be an antiderivative of the function f(z) := 1/z. However,
f can be defined on C \ {0}, but we know from Problem 3.3.14 that f cannot have an
antiderivative on C \ {0}. Rather, for any α ∈ R, the branch logα is an antiderivative of
f on C \

{
reiα

∣∣ r ≥ 0
}
. If we want to evaluate a line integral of f using the fundamental

theorem of calculus, we will need to be careful with both how we view the domain of f and
what antiderivative we choose.

Our instinct is probably to work with the principal logarithm, since we have Log′(z) =
1/z, and so we expect ∫

γ

dz

z
= Log(−1)− Log(1) = iπ. (3.3.2)

This certainly agrees with the work above using the definition, but our reasoning is wrong.
The principal logarithm is not differentiable on (−∞, 0], and so in particular Log is not
differentiable at −1. We cannot invoke the fundamental theorem of calculus for line inte-
grals. (Specifically, the problem is that we cannot choose a set D such that both γ(t) ∈ D
for all t ∈ [0, π] and Log is differentiable on D.)

(iii) Instead of Log, we could choose a branch of the logarithm whose branch cut does not
intersect the image of γ, for example, log−π/2, whose branch cut is the negative imaginary
axis.

R

iR

1−1

Then ∫
γ

dz

z
= log−π/2(−1)− log−π/2(1) = i arg−π/2(−1)− i arg−π/2(1).

Recall that the values arg−π/2(z) need to satisfy

−π
2
< arg−π/2(z) <

3π

2
and z = |z|ei arg−π/2(z).
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Since −1 = eiπ and 1 = ei·0 with −1, 0 ∈ (−π/2, 3π/2), we have arg−π/2(−1) = π and
arg−π/2(1) = 0, thus ∫

γ

dz

z
= iπ,

which is what we expected from the definition.

3.3.14 Problem (!). (i) Let D ⊆ C and f : D → C be continuous. Show that if f has an
antiderivative on D and γ is a closed path in D, then∫

γ

f = 0.

(ii) Compute ∫
|z|=1

z dz.

Does f(z) = z have an antiderivative on D = C?

(iii) Compute ∫
|z|=1

dz

z
.

Does f(z) = 1/z have an antiderivative on D = C \ {0}? Compare your conclusion to the
previous example and discuss the validity of the slogan “The branch cut gets in the way.”

3.3.3. The ML-inequality.

We have not yet stated a triangle inequality for line integrals; in fact, the natural (but, alas,
naive) estimate ∣∣∣∣∫

γ

f

∣∣∣∣ ≤ ∫
γ

|f |

does not even make sense.

3.3.15 Problem (!). Why not? Explain why we should not expect the quantity
∫
γ
|f | to

be real-valued, and therefore it has no place in an inequality.

Instead, the concept of arc length permits the correct adaptation of the triangle inequality
for line integrals. The following estimate is sometimes called the “ML-inequality” or “ML-
estimate” because the right side is the product of amaximum and an arc length. In particular,
it is an extension of part (ii) of Problem 3.2.9.

3.3.16 Theorem (ML-inequality). Let D ⊆ C and suppose that f : D → C is continuous.
Let γ : [a, b] ⊆ R→ C be a path in D. Then∣∣∣∣∫

γ

f

∣∣∣∣ ≤ (max
a≤t≤b

|f(γ(t))|
)
`(γ).
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Proof. We prove this only for smooth paths γ and leave the proof in the general case as an
exercise. The definition of the line integral and the triangle inequality for definite integrals
yield the following estimate:∣∣∣∣∫

γ

f

∣∣∣∣ =

∣∣∣∣∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣ ≤ ∫ b

a

|f(γ(t))γ′(t)| dt =

∫ b

a

|f(γ(t))||γ′(t)| dt.

The function
g : [a, b] ⊆ R→ R : t 7→ |f(γ(t))|

is continuous (because f , γ, and the modulus are all continuous), and so g has a maximum
on the closed, bounded interval [a, b] by the extreme value theorem. (Here it is important
that g is real-valued, as otherwise the notion of maximum does not make sense.) Then for
all t ∈ [a, b], we have

|f(γ(t))||γ′(t)| ≤M |γ′(t)|,

and so monotonicity for the definite integral of a real-valued function provides∫ b

a

|f(γ(t))γ′(t)| dt ≤M

∫ b

a

|γ′(t)| dt = M`(γ). �

3.3.17 Problem (!). Prove the ML-inequality in the case that γ is a path that is not
necessarily smooth. [Hint: suppose γ = ⊕nk=1γk, with γk smooth. First show that

∣∣∫
γ
f
∣∣ ≤∑n

k=1

∣∣∫
γk
f
∣∣. How does this help?]

3.3.18 Problem (!). Suppose that a, b ∈ R with a ≤ b and f : [a, b] → C is continuous.
Use the fact that

∫ b
a
f =

∫
[a,b]

f (Problem 3.3.6) and the ML-inequality to show∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ (max
a≤t≤b

|f(t)|
)

(b− a).

Compare this to (3.2.11).

3.3.19 Problem (?). Let D ={z ∈ C | | Im(z)| ≤ 1}, i.e., D is an infinite horizontal strip
of width 2 containing the real line. Suppose that f : D → C is continuous and satisfies
|f(z)| ≤ |Re(z)|−1 when z ∈ D with |z| ≥ 1. Use the ML-inequality and the squeeze
theorem to show

lim
R→∞

∣∣∣∣∫
[R,R+i]

f

∣∣∣∣ = 0.

3.4. Independence of path.

At last we tackle the problem of antiderivatives on a general subset of C. FTC1 tells us
that if I ⊆ R is an interval and f : I → C is continuous, then f has an antiderivative, and
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specifically FTC1 constructs an antiderivative for f . For any fixed a ∈ I, an antiderivative
is F (t) :=

∫ t
a
f ; from the point of view of the line integral (recall Problem 3.3.6), we have

integrated f over the line segment [a, t]. This approach to antiderivatives will not quite
succeed if we broaden the domain beyond real intervals.

First, continuity alone does not guarantee antiderivatives; the functions in parts (ii) and
(iii) of Problem 3.3.14 are continuous on their domains but do not have antiderivatives.
Rather, part (i) gives a necessary condition for the existence of an antiderivative: the integral
around a closed path must be zero.

Second, even if we knew that a continuous function under consideration integrated to zero
around closed paths, how might we try to construct its antiderivative? Could we replicate
the technique of FTC1? We could fix some z? ∈ D and try to “base” our antiderivative there.
We might then try to define an antiderivative as

F (z) :=

∫
[z?,z]

f,

where [z?, z] is the line segment from z? to z.
This presumes that [z?, z] ⊆ D for any z ∈ D, as f needs to be defined over [z?, z] for∫

[z?,z]
f to be defined. However, depending on the geometry of D, we have no guarantee that

[z?, z] ⊆ D for all z ∈ D.
z?

z

The next option would be not to restrict ourselves to line segments. Suppose we take an
arbitrary path γz in D whose initial point is z? and whose terminal point is z. Then we could
define

F (z) :=

∫
γz

f (3.4.1)

and perhaps that would be an antiderivative of f .
There are, again, problems with this approach. First, we have no guarantee that there

is a point z? ∈ D such that for any z ∈ D, there is also a path in D connecting z? and z;
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perhaps D is not connected.

???
z w

Of course, we could assume that D is connected, and, in general, we will. (Remember
that by Theorem 3.1.42 connectedness is the key to having f ′ = 0 imply what we think it
should imply.) We will also assume that D is open for technical reasons, whose utility will
not yet be apparent (although the role of openness in the Cauchy–Riemann equations should
be enough to convince us that it might be helpful).

3.4.1 Definition. A set D ⊆ C that is both open and connected will be called, hereafter, a
domain. Some books use the term region instead of domain.

3.4.2 Problem (+). Prove that if D1, D2 ⊆ D are domains with D1 ∩ D2 connected,
then D1 ∩ D2 is also a domain. [Hint: if D1 ∩ D2 = ∅, then this intersection is (trivially)
a domain, as it is vacuously true that ∅ is both open and connected. To keep things
interesting, suppose D1 ∩ D2 6= ∅. To see why this intersection is open and connected,
start, as always, by drawing pictures.] What about D1 ∪ D2?

Neither term in the preceding definition is ideal: every function has a domain, but not
every function has a domain that is a domain! Every subset of C could reasonably be called
a region, but not every region is a region!

Now, even if D is a domain, how do we know that the function F in (3.4.1) is well-defined?
That is, perhaps there are paths γz and φz in D whose initial points are both z? and whose
terminal points are both z, but for which∫

γz

f 6=
∫
φz

f.

µzγz

z?

z
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In that case, would the antiderivative depend on which path we pick? How would we
know which one to choose? Or could the integral of f over a path connecting z? and z be
“independent of path” in the sense that the integral is the same no matter what the path is
(provided those endpoints z? and z remain the same)?

This turns out to be a tremendously significant issue, so we first formalize it in a definition
and then state and prove a theorem.

3.4.3 Definition. Let D ⊆ C. A continuous function f : D → C is path independent
on D or independent of path on D if whenever γ1 and γ2 are paths in D with the
same initial and terminal points, then ∫

γ1

f =

∫
γ2

f.

It is important to specify the set on which a function is path independent. There are
functions f : D → C that are path independent on some smaller D0 ⊆ D (in the sense that∫
γ
f =

∫
µ
f for all paths γ and µ in D0 that have the same initial and terminal points) but

not on all of D (in the sense that there are paths γ̃ and µ̃ in D with the same initial and
terminal points but

∫
γ̃
f 6=

∫
µ̃
f).

Combining the geometric hypothesis that D is a domain with the analytic hypothesis that
f is path independent guarantees the existence of an antiderivative.

3.4.4 Theorem (Path independence). Let D ⊆ C be a domain and suppose that f : D →
C is continuous and path independent. Then f has an antiderivative on D. Specifically, fix
z? ∈ D and, for z ∈ D, let γz be any path with initial point z? and terminal point z. Then
the map

F : D → C : z 7→
∫
γz

f

is well-defined and holomorphic with F ′ = f .

This is where we finished on Monday, March 4, 2024.

Proof. Given z ∈ D, such a path γz exists because D is a domain. The function F above is
well-defined because f is independent of path: if µz is another path in D whose initial point
is z? and whose terminal point is z, then∫

γz

f =

∫
µz

f.

We will show that F is differentiable on D with F ′(z) = f(z) for all z ∈ D. The proof is
very similar to that of FTC1 (Theorem 3.2.14). Fix z ∈ D. We need to show that

lim
h→0

F (z + h)− F (z)

h
= f(z),
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equivalently,

lim
h→0

F (z + h)− F (z)− hf(z)

h
= 0. (3.4.2)

Let h ∈ C\{0} with |h| small enough that [z, z+h] ⊆ D. This is possible since D is open,
and so there is r > 0 such that B(z; r) ⊆ D; then with |h| < r, we have [z, z + h] ⊆ B(z; r)
by Problem 3.1.7. Let γz be any path in D with initial point z? and terminal point z. Then
γz ⊕ [z, z + h] is a path in D with initial point z? and terminal point z + h, so

F (z + h) =

∫
γz⊕[z,z+h]

f =

∫
γz

f +

∫
[z,z+h]

f.

Here is a sketch of this situation.

z?

z

γz

z + h

We therefore may calculate

F (z + h)− F (z) =

(∫
γz

f +

∫
[z,z+h]

f

)
−
∫
γz

f =

∫
[z,z+h]

f. (3.4.3)

Parametrize the line segment [z, z + h] by t 7→ (1 − t)z + t(z + h) = z + th, 0 ≤ t ≤ 1, as
usual, so γ′(t) = h and∫

[z,z+h]

f =

∫ 1

0

f(z + th)h dt = h

∫ 1

0

f(z + th) dt.

We combine this with (3.4.3) to find

F (z + h)− F (z)− hf(z) = h

∫ 1

0

f(z + th) dt− hf(z) = h

∫ 1

0

f(z + th) dt− h
∫ 1

0

f(z) dt

= h

∫ 1

0

[
f(z + th)− f(z)

]
dt. (3.4.4)

Then
F (z + h)− F (z)− hf(z)

h
=

∫ 1

0

[
f(z + th)− f(z)

]
dt. (3.4.5)

To prove the desired limit (3.4.2), it therefore suffices to show

lim
h→0

∫ 1

0

[
f(z + th)− f(z)

]
dt = 0.

This is true by the continuity of f at z, as we show in the following lemma. �
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3.4.5 Lemma. Let D ⊆ C be open and let f : D → C be continuous. Then

lim
h→0

∫ 1

0

[
f(z + th)− f(z)

]
dt = 0

for each z ∈ D.

Proof. This proof, too, is very similar to that of FTC1 (Theorem 3.2.14). Fix z ∈ D. We
need to show that given ε > 0, there is δ > 0 such that if h ∈ C \ {0} with |h| < δ, then∣∣∣∣∫ 1

0

[
f(z + th)− f(z)

]
dt

∣∣∣∣ < ε. (3.4.6)

Since f is continuous at z, there is δ > 0 such that if w ∈ D with |w − z| < δ, then
|f(w)− f(z)| < ε. Now suppose 0 < |h| < δ. If 0 ≤ t ≤ 1, then

|(z + th)− z| = |th| = |t||h| ≤ |h| < δ,

and therefore
max
0≤t≤1

|f(z + th)− f(z)| < ε.

Then the triangle inequality shows∣∣∣∣∫ 1

0

[
f(z + th)− f(z)

]
dt

∣∣∣∣ ≤ ∫ 1

0

∣∣f(z + th)− f(z)
∣∣ dt < ∫ 1

0

ε dt = ε. �

3.4.6 Problem (!). Compare the proofs for definite integrals of Theorem 3.2.14 (FTC1)
and Lemma 3.2.15 to the proofs for line integrals of Theorem 3.4.4 and Lemma 3.4.5.
Identify explicitly where the proofs are identical and how, if at all, they are different.
[Hint: in Lemma 3.2.15, h is strictly real; in Lemma 3.4.5, h can be nonreal.]

We have now obtained a sufficient condition for a continuous function (whose domain is
a. . .domain. . .) to have an antiderivative: the function should be path independent on that
domain. We might ask if we could weaken or change this condition and still guarantee an
antiderivative’s existence.

We cannot.
In fact, earlier, in Problem 3.3.14 we saw a necessary condition for an antiderivative’s

existence: if a function has an antiderivative, then that function integrates to zero over
closed paths. This condition turns out to be sufficient in that it implies path independence
and thus the existence of an antiderivative. We collect these seemingly disparate results into
one theorem.

3.4.7 Theorem. Let D ⊆ C be a domain and let f : D → C be continuous. The following
are equivalent:

(i) f has an antiderivative on D.



3.4. Independence of path 161

(ii) If γ is a closed path in D, then ∫
γ

f = 0.

(iii) f is independent of path in D.

Proof. (i) =⇒ (ii) This is part (i) of Problem 3.3.14.

(ii) =⇒ (iii) Suppose that γ1 and γ2 are paths in D with the same initial point z1 and the
same terminal point z2, as in the sketch below.

z?

z1

γ1

γ2

z1

z2

γ1

γ−2

Then the path γ1 ⊕ γ−2 is closed, so part (ii) and properties of line integrals imply

0 =

∫
γ1⊕γ−2

f =

∫
γ1

f −
∫
γ2

f

and so ∫
γ1

f =

∫
γ2

f.

(iii) =⇒ (i) This is Theorem 3.4.4. �

3.4.8 Problem (?). Let

D := C \ {0} and D0 :={z ∈ C | Re(z) > 0, Im(z) > 0} ,

so D and D0 are both domains. Define

f : D → C : z 7→ 1

z
.

(i) Explain why f
∣∣
D0

is path independent.

(ii) Find paths γ and µ in D with the same initial and terminal points such that
∫
γ
f 6=∫

µ
f . [Hint: try different portions of the unit circle.]

We now have new tools available in our quest for antiderivatives: we could check indepen-
dence of path, or we could check that integrals over closed paths vanish. For a given function,
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both conditions are arguably somewhat difficult to check, as they require an infinite number
of conditions to be met. The integral over every closed path must vanish—and any domain
contains infinitely many closed paths (just consider all the circular ones). Or the integrals
over any pair of paths with the same initial and terminal points must be the same—and we
can probably find infinitely many paths connecting any two points in a domain.

These sufficient conditions for the existence of an antiderivative of a function on an open,
connected subset of C are much more stringent (and annoying) than what guaranteed the
existence of an antiderivative for a function on a subinterval of R: just continuity. This
suggests that the antiderivative problem in C is a much richer story than just being the next
natural chapter in the evolution of calculus from limits to derivatives to integrals.

3.5. The Cauchy integral theorem.

We develop here a sufficient condition for a suitably nice function on a suitably nice domain
of definition to have an antiderivative, with the goal that this condition is easier to check
than the “for all”-dependent quantified statements of Theorem 3.4.7. We will once again have
to impose more conditions on the geometric structure of the domain of definition and also
on the analytic properties of the function. However, these conditions are completely natural
in applications, and we will eventually see that the existence of an antiderivative effectively
presupposes these conditions. That is, our additional hypotheses will not be that restrictive
at all; they would be satisfied in any situation worth considering.

Quite quickly, however, we will move beyond the antiderivative problem. Its solution—
more precisely, the method of its solution—will reveal incredibly important properties of
suitably nice functions defined on suitably nice subsets of C that will propel the rest of our
story.

3.5.1. Star-shaped domains.

In Theorem 3.4.4, we worked on a domain D (i.e., an open and connected set), fixed a point
z? ∈ D, and integrated over paths connecting z? to other z ∈ D. We will consider those
domains D for which the path connecting z? to z is always the line segment [z?, z].

3.5.1 Definition. A set D ⊆ C is star-shaped if there is a point z? ∈ D such that
[z?, z] ⊆ D for all z ∈ D. The point z? is called a star-center for D. A star-shaped
domain or a star domain is a domain that is also star-shaped.

3.5.2 Example. (i) We should (unsurprisingly!) expect that the set below is star-shaped,
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and its star-center should be the point indicated by the symbol ?.

?

(ii) For any z0 ∈ C and r > 0, the open ball B(z0; r) is star-shaped, and any point in
B(z0; r) is a star-center. Below we see that the line segments from both the center of the
ball z0 and an arbitrary point z in the ball can reach any other point w in the ball.

z0

z
w

This is where we finished on Wednesday, March 6, 2024.

(iii) Let 0 ≤ r < R ≤ ∞. Any annulus of the form A := {z ∈ C | r < |z| < R} is not
star-shaped: if z ∈ A, then −z ∈ A. However, 0 ∈ [z,−z] and 0 6∈ A, so [z,−z] 6⊆ A. That
is, no matter what point z we try to pick for the star-center, we cannot connect z to −z
by a line segment that is wholly contained in A.

z

−z
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3.5.3 Problem (?). Fill in the following technical details from Example 3.5.2.

(i) For any z ∈ C, show that 0 ∈ [z,−z].

(ii) Fix z0 ∈ C and r > 0. Show that if z, w ∈ B(z0; r), then [z, w] ⊆ B(z0; r). [Hint: use
the identity z0 − ((1− t)z + tw) = (1− t)(z0 − z) + t(z0 − w).]

3.5.4 Problem (!). Let z ∈ C \ {0}. Show that 0 ∈ [z,−z]. Why does this tell you that
no point in C \ {0} can be a star-center for C \ {0}, and therefore that C \ {0} is not
star-shaped?

3.5.5 Problem (?). (i) Prove that any star-shaped set is connected.

(ii) A set D ⊆ C is convex if [z, w] ⊆ C for any z, w ∈ C. Prove that every convex set
is connected.

(iii) Is every connected set star-shaped? Is every convex set star-shaped?

3.5.6 Problem (+). Let b > 0. Prove that any strip

Ub :={z ∈ C | | Im(z)| < b}

is a star domain. Find all of the star-centers of Ub.

We can now show that with the additional geometric structure of the star domain, we
can give a simple condition under which a function has an antiderivative. Namely, we show
that if f is holomorphic on the star domain D and f ′ is continuous on D, then

∫
γ
f = 0 for

all closed paths γ in D. By Theorem 3.4.7, this implies that f has an antiderivative on D.
Along the way, we will employ an important auxiliary technique called “differentiating under
the integral.”

3.5.2. Differentiating under the integral.

Suppose that I ⊆ R is an interval and a, b ∈ R with a ≤ b. Let R be the “rectangle”

R =
{

(t, s) ∈ R2
∣∣ t ∈ I, a ≤ s ≤ b

}
.

Let f : R → C be a function and denote by f(t, ·) the map f(t, ·) : [a, b]→ C : s 7→ f(t, s). If
for some t ∈ I this map f(t, ·) is continuous on [a, b], then the integral

∫ b
a
f(t, s) ds is defined.

If f(t, ·) is continuous on [a, b] for all t ∈ I, then we can define yet another function

I : I → C : t 7→
∫ b

a

f(t, s) ds.

It is natural to ask if I is differentiable (“if it moves, differentiate it”), and since the integral
has many properties in common with sums, and since finite sums and integrals can readily
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be interchanged, we might expect that

I ′(t) =
d

dt

∫ b

a

f(t, s) ds =

∫ b

a

∂

∂t
[f(t, s)] ds,

at least if f is differentiable with respect to t and if the partial derivative ft(t, ·) is continuous,
so that the new integral on the right exists. Happily, this turns out to be the case, although
the proof requires some nuance to make rigorous this interchange of derivative and integral.

3.5.7 Remark. Note carefully in the derivative

d

dt

∫ b

a

f(t, s) ds

that t is not a limit of integration of the integral, and so this is not a situation to which
FTC1 applies. Note also that t is not the variable of integration.

3.5.8 Theorem (Leibniz’s rule for differentiating under the integral). Suppose that
I ⊆ R is an interval and a, b ∈ R with a ≤ b. Put R =

{
(t, s) ∈ R2

∣∣ t ∈ I, a ≤ t ≤ b
}
. Let

f : R → C : (t, s) 7→ f(t, s) be a continuous function such that ft exists and is continuous
on R. Then the map

I : I → C : t 7→
∫ b

a

f(t, s) ds

defined and differentiable on I and

I ′(t) =

∫ b

a

ft(t, s) ds.

We prove this in Appendix C.3. The goal is to show

lim
h→0

1

h

(∫ b

a

f(t+ h, s) ds−
∫ b

a

f(t, s) ds

)
=

∫ b

a

ft(t, s) ds,

and the challenge is “interchanging” the limit of the difference quotient and the integral.
That is, we need to establish

lim
h→0

∫ b

a

f(t+ h, s)− f(t, s)

h
ds =

∫ b

a

lim
h→0

f(t+ h, s)− f(t, s)

h
ds.

This requires some delicate estimates.

3.5.9 Problem (!). Let

φ(t) :=

[∫ 1

0

s cos(s2 + t) ds

]
.

Calculate φ′ in two ways in two ways: first by evaluating the integral with FTC2 and dif-
ferentiating the result and second by differentiating under the integral and then simplifying
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the result with FTC2. (The point is to convince you that differentiating under the integral
gives the right answer.)

3.5.3. The Cauchy integral theorem.

Recall that a sufficient (and also necessary) condition for a function to have an antiderivative
on a domain is that the integral of this function over any closed curve in the domain is 0.
Cauchy’s integral theorem, in turn, gives a sufficient condition for the integral of the function
over any closed curve to be 0. Specifically, if the underlying domain is a star domain, and
if the function under consideration is holomorphic on the domain, except possibly at a star-
center, then the function integrates to 0 over any closed curve in the domain. Here is the
precise statement of that result.

3.5.10 Theorem (Cauchy integral theorem). Let D ⊆ C be a star domain with star-
center z? and let f : D → C be continuous on D and holomorphic on D \ {z?}. Then∫

γ

f = 0

for any closed path γ in D.

Proof. We give the proof under several simplifying assumptions; a fuller proof without these
simplifications appears in Appendix C.4. First, suppose that f is holomorphic on all of D
(including at the star-center z?) and that f ′ is continuous on D. Second, suppose that γ is
a smooth path. For simplicity, assume that γ has been (re)parametrized over [0, 1].

Since z? is a star-center for D and γ(t) ∈ D for each t ∈ [0, 1], we have [z?, γ(t)] ⊆ D for
each t ∈ [0, 1]. Thus (1− r)z? + rγ(t) ∈ D for each r ∈ [0, 1] and t ∈ [0, 1]. Define

γr : [0, 1] ⊆ R→ D : t 7→ (1− r)z? + rγ(t).

Then γr is a smooth path in D with γ1 = γ and γ0(t) = z?. Here is a sketch.

γ

γr

z?

We integrate f over γr and define

I : [0, 1] ⊆ R→ C : r 7→
∫
γr

f =

∫ 1

0

f((1− r)z? + rγ(t))rγ′(t) dt.
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Note that
I(0) = 0 and I(1) =

∫
γ

f.

We will show that I is constant on [0, 1] by computing I ′ via differentiation under the
integral; we will obtain I ′(r) = 0 for each r, and thus I(1) = I(0) = 0.

The integrand here is

g(r, t) := f((1− r)z? + rγ(t))rγ′(t) = f(z? + (γ(t)− z?)r)rγ′(t).

Since γ is continuously differentiable on [0, 1] and since f is holomorphic on D with f ′

continuous, it follows that g is continuous on R :=
{

(r, t) ∈ R2
∣∣ 0 ≤ r, t ≤ 1

}
, that g is

differentiable with respect to r on R, and that gr is continuous on R. In particular, the
product rule gives

gr(r, t) = f ′(z? + (γ(t)− z?)r)(γ(t)− z?)rγ′t(t) + f(z? + (γ(t)− z?)r)γ′(t).

Then

I ′(r) =

∫ 1

0

gr(r, t) dt =

∫ 1

0

f ′(z?+(γ(t)−z?)r)(γ(t)−z?)rγ′t(t) dt+
∫ 1

0

f(z?+(γ(t)−z?)r)γ′(t) dt.

(3.5.1)
We evaluate ∫ 1

0

f ′(z? + (γ(t)− z?)r)(γ(t)− z?)rγ′t(t) dt

using integration by parts. Take

u = γ(t)− z? dv = f ′(z? + (γ(t)− z?)r)rγ′(t) dt
du = γ′(t) dt v = f ′(z? + (γ(t)− z?)r).

Then∫ 1

0

f ′(z? + (γ(t)− z?)r)(γ(t)− z?)rγ′t(t) dt =
(
γ(t)− z?

)(
f((1− r)z? + rγ(t)

)∣∣t=1

t=0

−
∫ 1

0

f ′(z? + (γ(t)− z?)r) dt. (3.5.2)

Since γ is closed, we have γ(0) = γ(1), and so it follows that(
γ(t)− z?

)(
f((1− r)z? + rγ(t)

)∣∣t=1

t=0
= 0. (3.5.3)

Combining (3.5.1), (3.5.2), and (3.5.3) yields I ′(r) = 0 for all r ∈ [0, 1]. �

3.5.11 Problem (!). Check that (3.5.3) is true. Remember that γ(0) = γ(1).
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3.5.12 Problem (+). Adapt the proof of the Cauchy integral theorem to the case where γ
is only piecewise continuously differentiable. Proceed as follows. First, write γ = ⊕nk=1γk,
where each γk is continuously differentiable on [0, 1] with γk−1(1) = γk(0) for k = 1, . . . , n.
Then put γk,r(t) := (1 − r)z? + rγk(t) and γr := ⊕nk=1γk,r. Set Ik(r) :=

∫
γk,r

f , so I(r) =∑n
k=1Ik(r). Differentiate under each integral and obtain

I ′k(r) =
(
γk(t)− z?

)(
f((1− r)z? + rγk(t)

)∣∣t=1

t=0
.

Use this to recognize
∑n

k=1Ik(r) as a telescoping sum, i.e., a sum of the form∑n
k=1Ik(r) =

∑n−1
k=1(wk+1 − wk) = wn − w0

for some wk ∈ C.

This is where we finished on Friday, March 8, 2024.

3.5.13 Problem (!). How does the Cauchy integral theorem help you do Example 3.3.4
for n 6= −1 very quickly? What goes wrong when n = −1?

3.5.14 Example. It is notoriously difficult (impossible) in calculus to find a formula in
terms of “elementary functions” for an antiderivative of

f : R→ C : t 7→ et
2

.

However, we know that one exists on R because f is continuous, and so we can use the
fundamental theorem of calculus: an antiderivative is

F : R→ C : t 7→
∫ t

0

f =

∫ t

0

eτ
2

dτ.

When we extend f to C as
f̃ : C→ C : z 7→ ez

2

,

we observe that f(z) = ez
2

is entire with f ′(z) = 2zez
2

, and C is of course a star domain.
The Cauchy integral theorem implies that f has an antiderivative on C.

In fact, we can construct this antiderivative (somewhat) explicitly. By Theorem 3.4.4,
since f has an antiderivative on C, f is also path independent on C. Then since the line
segment [0, z] is contained in C for any z ∈ C, that theorem says that we could take this
antiderivative to be

F̃ : C→ C : z 7→
∫

[0,z]

f̃ =

∫
[0,z]

ew
2

dw.

This leads to the wholly unsurprising result that

F̃
∣∣∣
R
(t) =

∫
[0,t]

f̃ =

∫ t

0

f̃
∣∣∣
R

=

∫ t

0

f = F (t).
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In other words, the Cauchy integral theorem permits us to extend our antiderivative F for
f defined on R into an antiderivative F̃ for f̃ defined on C. Everything works as it should,
but it needs justification.

By the way, the logic leading to F̃ was somewhat circular, no? We used the Cauchy
integral theorem to prove that

∫
γ
f̃ = 0 for any closed curve γ in C. This proves the inde-

pendence of path of f̃ . And that proves that defining F̃ as we did leads to an antiderivative
of f̃ . The upshot with this reasoning is that we got the expected explicit antiderivative.

3.5.15 Example. Let z1, z2 ∈ C with 0 ≤ |z1| < |z2|. Fix 0 < R < |z1| and let γ be any
closed curve in B(0;R). Then ∫

γ

dz

(z − z1)(z − z2)2
= 0,

since the function f(z) := 1/[(z − z1)(z − z2)2] is holomorphic on the star domain B(0;R)
with f ′ continuous there.

R

iR

z1

z2

γ

D = B(0;R)

It is also possible, but more laborious, to obtain this result using a partial fractions de-
composition and the fundamental theorem of calculus.

3.5.16 Problem (!). Do that, laboriously.

The Cauchy integral theorem is the tool unique to complex analysis that we have long
awaited for extracting key properties of functions. We will use it constantly. In the next
section we give an extended application of the Cauchy integral theorem to studying Fourier
transforms. Appendix D revisits polar coordinates and constructs, more or less from scratch,
the principal argument function using the Cauchy integral theorem.

3.5.4. Application to Fourier transforms.

We use the Cauchy integral theorem to prove an estimate on certain integrals that arise
when taking Fourier transforms, which are integrals of the form∫ ∞

−∞
f(t)e±ikt dt,
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where f : R → C is a function and k ∈ R. The Fourier transform is a key tool in differ-
ential equations for converting ODE posed on (−∞,∞) into algebraic equations and PDE
into ODE, assuming that sufficient “decay” conditions at “spatial infinity” are assumed to
guarantee the convergence of the Fourier integrals.

The goal here is less the estimate and more the proof, which involves recognizing an
improper integral on (−∞,∞) as part of a line integral, “shifting contours,” and using
several properties of line integrals. These techniques frequently appear in any application of
complex analysis to studying integrals on (subintervals of) R, which itself is a (surprisingly?)
common application. We begin with a quick review of improper integrals.

3.5.17 Definition. Suppose that f : R→ C is continuous and that the limits∫ ∞
0

f := lim
b→∞

∫ b

0

f and
∫ 0

−∞
f := lim

a→−∞

∫ 0

a

f

exist. We then say that f is improperly integrable over (−∞,∞) and that the
improper integral of f over (−∞,∞) is∫ ∞

−∞
f :=

∫ 0

−∞
f +

∫ ∞
0

f.

We frequently test improper integrability via a kind of “absolute convergence” and “com-
parison” of improper integrals similar to Theorems 1.4.11 and 1.4.14 for series.

3.5.18 Theorem. Suppose that f : R→ C is continuous.

(i) [Absolute integrability] If |f | is improperly integrable on (−∞,∞), then so is f ,
and the triangle inequality ∣∣∣∣∫ ∞

−∞
f

∣∣∣∣ ≤ ∫ ∞
−∞
|g|

holds. In this case we say that f is absolutely integrable on (−∞,∞).

(ii) [Principal value] If f is absolutely integrable, then∫ ∞
−∞

f = lim
R→∞

∫ R

−R
f.

(iii) [Comparison test] Suppose that g : R→ C is continuous and absolutely integrable
with |f(t)| ≤ |g(t)| for all t. Then f is also absolutely integrable and∫ ∞

−∞
|f | ≤

∫ ∞
−∞
|g|.
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3.5.19 Problem (!). (i) Define

f : R→ C : t 7→ t.

Show that

lim
R→∞

∫ R

−R
t dt

exists but f is not improperly integrable on (−∞,∞).

(ii) Let C, q > 0 and suppose that f : R→ C is continuous with |f(t)| ≤ Ce−q|t| for all t.
Show that f is improperly integrable on (−∞,∞) and prove the estimate∣∣∣∣∫ ∞

−∞
f

∣∣∣∣ ≤ 2C

q
.

We are going to prove an estimate that says that, under suitable hypotheses on f ,∣∣∣∣∫ ∞
−∞

f(t)e±ikt dt

∣∣∣∣ ≤ Ce−b|k|

for some constants C, b > 0. This shows that the Fourier integral on the left is “exponentially
small” in k; informally, for “large” values of k, the integral is “really small.” One might
appreciate this result by doing the following problem.

3.5.20 Problem (+). (i) Suppose that f : R→ C is n-times differentiable on R for some
n ≥ 1 and that f (k) is absolutely integrable on (−∞,∞) for 1 ≤ k ≤ n. Show that there
exists Cn > 0 such that for any k ∈ R \ {0},∣∣∣∣∫ ∞

−∞
f(t)e±ikt dt

∣∣∣∣ ≤ Cn
|k|n

.

[Hint: use induction on n to prove the identity∫ ∞
−∞

f(t)e±ikt dt =

(
∓ 1

ik

)n ∫ ∞
−∞

f (n)(t)e±ikt dt.

It will be helpful to apply integration by parts to the identity∫ ∞
−∞

g(t)eikt dt =
1

ik

∫ ∞
−∞

g(t)
d

dt
[eikt] dt

for various choices of g.]

(ii) Let ε0 > 0. A function I : (0, ε0)→ C is small beyond all algebraic orders
of ε as ε → 0+ if for all n ∈ N there are Cn > 0, εn > 0 such that |I(ε)| ≤ Cnε

n

for all ε ∈ (0, εn). The estimate above shows that if f is infinitely differentiable on R
and if each derivative f (k) is absolutely integrable on (−∞,∞), then the Fourier integral∫∞
−∞f(t)e±ikt dt is small beyond all algebraic orders of |k|−1 as |k|−1 → 0, equivalently, as
|k| → ∞.
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Our overall goal here is to improve this estimate to the following. A function I : (0, ε0)→
C is exponentially small in ε as ε → 0+ if there are C, b, ε? > 0 such that
|I(ε)| ≤ Ce−b/ε for all ε ∈ (0, ε?). Since b/ε → ∞ as ε → 0+, we have e−b/ε → 0
as ε → 0+, and our experience with exponentials in calculus should suggest that the
convergence e−b/ε → 0 is really fast.

Prove that if I is exponentially small in ε as ε → 0+, then I is also small beyond all
algebraic orders of ε as ε→ 0+. [Hint: argue via L’Hospital’s rule that limε→0+ ε

neb/ε =∞
and therefore there is εn > 0 such that if 0 < ε < εn, then 1 ≤ εneb/ε.] However, argue that
the piecewise function

I : (0, 1)→ C : ε 7→ εn, 2−(n+1) ≤ ε < 2−n

is small beyond all algebraic orders of ε as ε→ 0+ but not exponentially small in ε.

This problem shows that with enough hypotheses on f and all of its derivatives on the real
line, we can eke out a small-beyond-all-algebraic orders estimate on its Fourier transform.
Our result below shows that by replacing those derivative hypotheses with the assumption
that f is holomorphic and suitably decaying on a strip, we can get the better estimate of
exponential smallness. In other words, by changing our focus from the one-dimensional real
line to (a subset of) the two-dimensional plane, we get stronger results.

Here is the precise result on Fourier transforms.

3.5.21 Theorem. Let b0 > 0 and let Ub0 be the strip

Ub0 :={z ∈ C | | Im(z)| < b0} .

Suppose that f : Ub0 → C is holomorphic and there are M , q > 0 such that

|f(z)| ≤Me−q|Re(z)|

for all z ∈ Ub0. Then ∣∣∣∣∫ ∞
−∞

f(t)e±ikt dt

∣∣∣∣ ≤ 2Me−b|k|

q
.

for all k ∈ R and all b ∈ (0, b0).

Proof. We give the proof only for the “+ikt” case with k > 0 and defer the other case, and
various details in this proof, to Problem 3.5.22 below.

1. Rewriting the Fourier integral as part of a line integral. Problem 3.5.19 allows us to write∫ ∞
−∞

f(t)eikt dt = lim
R→∞

∫ R

−R
f(t)eikt dt, (3.5.4)

and we manipulate this definite integral. The key idea is to recognize it as one component
of a line integral to which we can apply the Cauchy integral theorem.
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Fix R > 0 and let 0 < b < b0. Let γR be the rectangle

γR := [−R,R]⊕ [R,R + ib]⊕ [R + ib,−R + ib]⊕ [−R + ib,−R],

which we sketch below. Then γR is a closed curve in the star domain Ub0 (Problem 3.5.6),
and the function

g : Ub0 → C : z 7→ f(z)eikz

is holomorphic on Ub0 , so the Cauchy integral theorem implies∫
γR

g = 0.

R

iR

R

R + ib−R + ib

−R

Im(z) = b0

Im(z) = −b0

We can also write this as

0 =

∫
γR

g =

∫
[−R,R]

g︸ ︷︷ ︸
I1(R)

+

∫
[R,R+ib]

g︸ ︷︷ ︸
I2(R)

+

∫
[R+ib,−R+ib]

g︸ ︷︷ ︸
I3(R)

+

∫
[−R+ib,−R]

g︸ ︷︷ ︸
I4(R)

.

Each of these four integrals plays a different role in controlling the Fourier integral.

2. Shifting focus to a different line integral. First, from (3.5.4) we have∫ ∞
−∞

f(t)eikt dt = lim
R→∞

∫
[−R,R]

g = lim
R→∞

I1(R).

Next, we claim that
lim
R→∞

I2(R) = 0 and lim
R→∞

I4(R) = 0. (3.5.5)

If this is true, then
0 = lim

R→∞

(
I1(R) + I3(R)

)
, (3.5.6)

and therefore ∫ ∞
−∞

f(t)eikt dt = − lim
R→∞

I3(R). (3.5.7)
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3. Estimating I3(R). We parametrize the line segment [R + ib,−R + ib] by

[0, 1]→ C : t 7→ (1− t)(R + ib) + t(−R + ib) = R + ib− 2tR,

thus

I3(R) =

∫
[R+ib,−R+ib]

g = −2R

∫ 1

0

g(R+ib−2tR) dt = −2R

∫ 1

0

f(R+ib−2tR)eik(R+ib−2tR) dt

= −2Re−bk
∫ 1

0

f(R + ib− 2tR)eikR(1−2t) dt.

The triangle inequality for definite integrals and the estimate on f therefore give

|I3(R)| ≤ 2Re−bk
∫ 1

0

|f(R + ib− 2tR)eikR(1−2t) dt| = 2Re−bk
∫ 1

0

|f(R + ib− 2tR)| dt

≤ 2MRe−bk
∫ 1

0

e−q|Re(R+ib−2tR)| dt = 2MRe−bk
∫ 1

0

e−qR|1−2t| dt.

This definite integral is not too hard to evaluate:∫ 1

0

e−qR|1−2t| dt =
1− e−qR

qR
. (3.5.8)

All together, we conclude∣∣∣∣∫ ∞
−∞

f(t)eikt dt

∣∣∣∣ = lim
R→∞

|I3(R)| ≤ lim
R→∞

2MRe−bk
(

1− e−qR

qR

)
=

2Me−bk

q
lim
R→∞

(1− e−qR)

=
2Me−bk

q
=

2Me−b|k|

q
,

with the last equality holding since k ≥ 0. This is the desired estimate on the Fourier
integral.

This is where we finished on Monday, March 18, 2024.

4. Justifying the claim (3.5.5). We just show that limR→∞ I2(R) = 0. We parametrize the
line segment [R,R + ib] by

[0, 1]→ C : t 7→ (1− t)R + t(R + ib) = R + ibt,

and so

I2(R) =

∫ 1

0

g(R + ibt)ib dt = ib

∫ 1

0

f(R + ibt)eik(R+ibt) dt = ib

∫ 1

0

f(R + ib)eikRe−kbt dt.

The triangle inequality for definite integrals, the estimate on f , and the estimate e−kbt ≤ 1
for 0 ≤ t ≤ 1 and k, b > 0 therefore give

|I2(R)| ≤ b

∫ 1

0

|f(R + ibt)eikRe−kbt dt| dt ≤Mb

∫ 1

0

e−q|Re(R+ibt)| dt = Mb

∫ 1

0

e−qR dt

= Mbe−qR → 0 as R→∞. �
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3.5.22 Problem (+). Fill in the following omitted details from the proof of Theorem
3.5.21.

(i) The proof above shows ∣∣∣∣∫ ∞
−∞

f(t)eikt dt

∣∣∣∣ ≤ 2Me−bk

q

when k ≥ 0. Now suppose k < 0. Use substitution to show∫ ∞
−∞

f(t)eikt dt =

∫ ∞
−∞

h(τ)ei|k|τ dτ, h(τ) = f(−τ),

and then use the result above for k > 0 to estimate
∫∞
−∞h(τ)ei|k|τ dτ. The final case on the

integral follows by rewriting∫ ∞
−∞

f(t)e−ikt dt =

∫ ∞
−∞

f(t)ei(−k)t dt

and then using the result just proved for arbitrary k ∈ R.

(ii) Explain precisely why Problem 3.5.19 permits (3.5.4).

(iii) Justify more precisely (3.5.6) and (3.5.7) using algebra of limits. [Hint: if I1,
I2, I3, and I4 are functions such that limR→∞(I1(R) + I2(R) + I3(R) + I4(R)) = 0,
limR→∞I2(R) = 0, limR→∞ I4(R) = 0, and limR→∞ I1(R) exists, use algebra to explain
why limR→∞ I4(R) exists with limR→∞ I4(R) = − limR→∞ I1(R).]

(iv) Use FTC2 and properties of absolute value to justify (3.5.8).

(v) Imitate the work in Step 4 to show that limR→∞ I4(R) = 0.

3.5.5. Elementary domains.

In the context of our quest for antiderivatives, the Cauchy integral theorem was a welcome
result. In lieu of checking independence of path, it gave us a simple sufficient condition
for the existence of an antiderivative: differentiability itself. That is, for a function defined
on a star domain to have an antiderivative on that star domain, it suffices for the function
to be differentiable. However, one might rightly quibble that the star domain is a very
special geometric form. Are there more “relaxed” geometries that guarantee the existence of
antiderivatives for suitably nice functions?

We answer our question with a (somewhat circular) definition.

3.5.23 Definition. A domain (i.e., open and connected) D ⊆ C is an elementary
domain if every holomorphic function on D has an antiderivative on D.
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3.5.24 Problem (!). Is C \ {0} an elementary domain?

Certainly star domains are elementary domains, thanks to Cauchy’s integral theorem,
but are there others? It turns out that we can easily build new elementary domains out of
given ones, and so in particular we can build elementary domains out of star domains. To
do this, we need to be able to “glue” certain holomorphic functions together to produce a
new holomorphic function that agrees, under certain restrictions, with the old ones.

3.5.25 Lemma (Merging). Let D1, D2 ⊆ C be open. Let f1 : D1 → C and f2 : D2 → C
be holomorphic, and suppose f1(z) = f2(z) for all z ∈ D1 ∩ D2. Then there is a unique
holomorphic function f : D1 ∪ D2 → C such that f

∣∣
D1

= f1 and f
∣∣
D2

= D2. Specifically,

f(z) =

{
f1(z), z ∈ D1

f2(z), z ∈ D2

and f ′(z) =

{
f ′1(z), z ∈ D1

f ′2(z), z ∈ D2.

Proof. First we prove uniqueness: if g : D1 ∪ D2 → C is holomorphic with g
∣∣
D1

= f1 and
g
∣∣
D2

= f2, then necessarily g = f as defined above. Now we prove existence. With f as
defined above, first observe that f is well-defined; if D1 ∩ D2 = ∅, there is no question, and
otherwise if z ∈ D1 ∩ D2, then f1(z) = f2(z), and so there is, again, no ambiguity in the
definition of f . Next, we need to show that f is holomorphic. Fix z ∈ D1 ∪D2, let (zk) be a
sequence in (D1 ∪ D2) \ {z} with zk → z, and consider the following cases.

1. z ∈ D1. Since D1 is open, there is r > 0 such that B(z; r) ⊆ D1. Then for k large, we
have zk ∈ B(z; r), and so for k large we have zk ∈ D1 and thus f(zk) = f1(zk). Then (for k
large)

f(zk)− f(z)

zk − z
=
f1(zk)− f1(z)

zk − z
→ f ′1(z).

Since (zk) was an arbitrary sequence in (D1 ∪ D2) \ {z} with zk → z, we see that f is
differentiable at z and f ′(z) = f ′1(z).

2. z ∈ D2. The proof is identical, word for word, to the previous case, except for swapping
D1 for D2 and f1 for f2. �

3.5.26 Theorem. Let D1 and D2 be elementary domains such that their intersection D1∩
D2 is nonempty and connected. Then their union D1 ∪ D2 is also an elementary domain.

Proof. First, since D1 and D2 are domains with D1 ∩D2 nonempty and connected, D1 ∪D2

is also a domain. (Hopefully this was a conclusion from Problem 3.4.2.) So, for D1 ∪ D2 to
be an elementary domain, we want to show that an arbitrary holomorphic f : D1 ∪ D2 → C
has an antiderivative on all of D1 ∪ D2.

First, the restrictions f
∣∣
D1

and f
∣∣
D2

are also holomorphic; since D1 and D2 are elementary
domains, there are holomorphic maps F1 : D1 → C and F2 : D2 → C such that F ′1(z) = f(z)
for z ∈ D1 and F ′2(z) = f(z) for z ∈ D2. That is, F ′1 = f

∣∣
D1

and F ′2 = f
∣∣
D2
.
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Now define
g : D1 ∩ D2 → C : z 7→ F1(z)− F2(z).

Then g′(z) = 0 for all z ∈ D1 ∩ D2. Since D1 ∩ D2 is a domain by Problem 3.4.2, Theorem
3.1.42 implies that g is constant onD1∩D2; take C ∈ C such that g(z) = C for all z ∈ D1∩D2.
Thus F1(z) = F2(z) + C for all z ∈ D1 ∩ D2.

The functions F1 on D1 and F2 +C on D2 therefore satisfy the hypotheses of the merging
lemma, and so there is a (unique) holomorphic function F : D1 ∪D2 → C such that F ′(z) =
f(z) for z ∈ D1 and F ′(z) = f(z) for z ∈ D2. Thus F ′ = f on D1 ∪ D2, so F is an
antiderivative of f . �

3.5.27 Example. Since open balls are star domains, we can “glue” overlapping balls onto
an existing star domain and get an elementary domain that is (probably) not a star domain.

Not only are we assured that holomorphic functions on elementary domains have an-
tiderivatives, there is also a transparent process for constructing them. Let D ⊆ C be
elementary and f : D → C be holomorphic, so f has an antiderivative on D and therefore is
independent of path on D by Theorem 3.4.7. Then Theorem 3.4.4 guarantees that if we fix
z? ∈ D and, for z ∈ D, let γz be any path in D from z? to z, the map

F : D → C : z 7→
∫
γz

f

is an antiderivative of f . This is the seemingly circular logic referenced in Example 3.5.14:
first show the abstract existence of an antiderivative, then obtain path independence, then
construct the explicit antiderivative.

3.6. The Cauchy integral formula and its consequences.

We have said that integrals represent functions and integrals extract and measure data about
functions. So far, we have primarily seen integrals representing functions by using integrals
to construct antiderivatives of functions. Now we will see integrals do both: a certain line
integral will represent a holomorphic function in a very useful way, and a variant of this line
integral will contain highly useful data about that function.
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3.6.1. A deformation lemma.

A leitmotif of complex integration theory turns out to be deformation of curves. It may
be possible to “deform” one curve onto another in a “continuous” way; if the underlying
domain is suitably nice (possibly, but not necessarily, a star domain) and if the integrand is
suitably nice (holomorphic), then a line integral of a function over one curve should equal a
line integral of that function over the other curve. We saw this in our proof of the Cauchy
integral theorem; the curve γ was deformed onto the “constant” curve z?, or, really, the line
segment [z?, z?], and the integral over this line segment was 0.

It is possible to make this notion of deformation very precise and to prove a version of the
Cauchy integral theorem stating that the line integral of a holomorphic function is invariant
under deformation of curves if the domain is geometrically suitable. We will not explore this
and will instead be content with one very specific kind of deformation involving circles.

Recall from Example 3.3.4 that if z1 ∈ C and r1 > 0, then∫
|z−z1|=r1

dz

z − z1

= 2πi. (3.6.1)

The key connection between the integrand and the path over which the integral is taken is
the point z1: this point z1 is both the center of the circle over which the integral is taken and
the one point at which the integrand fails to be holomorphic. In the following lemma, we
relax the structure of the identity (3.6.1) to allow the center of the circle and the “bad” point
of the denominator of the integrand to be different. Although it looks very specific, this
particular integral will be quite important shortly, and the proof of the lemma below offers
further practice with the Cauchy integral theorem, manipulating paths, and doing algebra
with integrals. See Problem 3.6.6 for a nontrivial generalization of this result.

3.6.1 Lemma. Let z0 ∈ C and r0 > 0, and let z1 ∈ B(z0; r0). Then∫
|z−z0|=r0

dz

z − z1

= 2πi.

Proof. First, trying to calculate this integral by definition, unlike the one in (3.6.1), is an
exercise in futility and frustration. We have∫

|z−z0|=r0

dz

z − z1

=

∫ 2π

0

r0ie
it

(z0 + r0eit)− z1

dt = ir0

∫ 2π

0

eit

(z0 − z1) + r0eit
dt.

When z0 = z1, as in (3.6.1), the denominator collapses to r0e
it, which cancels nicely with

much of the numerator. When z0 6= z1, this definite integral is a piece of junk, and any
attempt at antidifferentiating will fail. (Try it. In light of Theorem 3.2.20, why does the
“substitution” u = (z0 − z1) + r0e

it fail?)
Let ρ > 0 such that B(z1; ρ) ⊆ B(z0; r0) and take r1 = ρ/2, so B(z1; r1) ⊆ B(z0; r0). We

know, as stated above in (3.6.1), that∫
|z−z1|=r1

dz

z − z1

= 2πi.
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We are going to “deform” the circle |z − z1| = r1 in a “continuous” manner onto the circle
|z− z0| = r0, and the integral is sufficiently “robust” that its value of 2πi remains unchanged
under this deformation. The three words in quotation marks in the previous sentence can
be made mathematically rigorous with the notion of homotopy, which we will not pursue.

We split the circle of radius r0 centered at z0 and the circle of radius r1 centered at z1

into a number of auxiliary paths as sketched below.

z0

λ1 λ2

z1

γ0

µ0

γ1

µ1

The paths γ0 and γ1 are the upper halves of their respective circles, and µ0 and µ1 are the
lower halves. The paths λ1 and λ2 are line segments. Then, abbreviating f(z) := (z− z1)−1,∫

|z−z0|=r0
f =

∫
γ0⊕µ0

f and
∫
|z−z1|=r1

f =

∫
γ1⊕µ1

f. (3.6.2)

We already know that
∫
γ1⊕µ1f = 2πi; we will first use the Cauchy integral theorem to prove

that ∫
λ1⊕γ−1 ⊕λ2⊕γ0

f = 0 and
∫
λ1⊕µ1⊕λ2⊕µ−0

f = 0,

and then we will use properties of line integrals and algebra to conclude∫
γ0⊕µ0

f =

∫
γ1⊕µ1

f.

That will give us the desired result.

This is where we finished on Wednesday, March 20, 2024.

Consider the path λ1⊕ γ−1 ⊕λ2⊕ γ0, which we draw in solid blue in the first circle below.
This is a closed path contained in B(z0;R) for any R > r0; we draw a circle of radius R
centered at z0 in dotted black below. Delete from B(z0;R) the line segment ν from z1 to
the circle of radius R centered at z0 and call the resulting set V ; this is the second circle
below. Then λ1⊕ γ−1 ⊕λ2⊕ γ0 is still a path in V . Also, f is holomorphic on V since z1 6∈ V .
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Finally, V is a star domain; this is somewhat technical to prove precisely, but any point ?
on the dotted blue line in the third circle below will be a star center for V .

z0 z1

ν

z0 z1

ν

?
z0 z1

The Cauchy integral theorem then implies that∫
λ1⊕γ−1 ⊕λ2⊕γ0

f = 0. (3.6.3)

Exactly the same arguments show that∫
λ1⊕µ1⊕λ2⊕µ−0

f = 0. (3.6.4)

Equating (3.6.3) and (3.6.4) and using the algebra and arithmetic of line integrals shows∫
γ0⊕µ0

f =

∫
γ1⊕µ1

f, (3.6.5)

and, by (3.6.2), this is the desired conclusion. �

3.6.2 Problem (!). Carry out the algebra and arithmetic of line integrals to prove (3.6.5),
assuming that (3.6.3) and (3.6.4) hold.

3.6.3 Problem (!). Find parametrizations for all the curves in the Death Star lemma.

3.6.4 Problem (+). Prove that the set V from the proof of the Death Star lemma is in
fact a star domain.

3.6.5 Problem (?). Fix r > 0 and let z ∈ C with |z| < r and Im(z) > 0. Define

γr : [0, π]→ C : t 7→ reit.

Show that ∫
[−r,r]⊕γr

dw

w − z
= 2πi

using the following two different methods.
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(i) Mimic the proof of the Death Star lemma by introducing some auxiliary curves as
below.

z

−r r

(ii) Define
µr : [π, 2π]→ C : t 7→ reit.

Use the Death Star lemma to show∫
γr⊕µr

dw

w − z
= 2πi

and then use the Cauchy integral theorem (what is the star domain?) to show∫
[−r,r]⊕µ−r

dw

w − z
= 0.

Then add the two integrals above.

3.6.6 Problem (?). Generalize the Death Star lemma as follows. Let z0 ∈ C and R > 0.
Let 0 < r0 < R and suppose that z1 ∈ B(z0; r0). Finally, suppose that r1 > 0 is such that
B(z1; r1) ⊆ B(z0; r0). Suppose that f : B(z0;R) \ {z1} → C is holomorphic. Show that∫

|z−z0|=r0
f =

∫
|z−z1|=r1

f.

[Hint: start by drawing pictures of everything.]

3.6.7 Remark. Don’t be too proud of this technological terror we’ve constructed in Lemma
3.6.1. The ability to deform one circle onto another and preserve the line integral is in-
significant next to the power of the Cauchy theorems.

3.6.2. The Cauchy integral formula.

We will now prove one of the most important results in complex analysis, a formula that
relates the values of a function in the interior of a ball to its values on the (circular) boundary
of that ball. The full utility of this result will probably not be apparent right now, but it
will serve us for the rest of the course.
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3.6.8 Theorem (Cauchy integral formula). Let D ⊆ C be open and let f : D → C be
holomorphic. Let z0 ∈ D and R > 0 such that B(z0;R) ⊆ D. Then

f(z) =
1

2πi

∫
|w−z0|=r

f(w)

w − z
dw (3.6.6)

for 0 < r < R and all z ∈ B(z0; r).

∂B(z0; r)

B(z0;R)
z0

z

D

Proof. Fix r ∈ (0, R) and z ∈ B(z0; r). The Death Star lemma allows us to rewrite

f(z) =
f(z)

2πi
(2πi) =

f(z)

2πi

∫
|w−z0|=r

dw

w − z
=

1

2πi

∫
|w−z0|=r

f(z)

w − z
dw. (3.6.7)

It therefore suffices to show∫
|w−z0|=r

f(z)

w − z
dw =

∫
|w−z0|=r

f(w)

w − z
dw,

and this is equivalent to ∫
|w−z0|=r

f(w)− f(z)

w − z
dw = 0.

The form of the integrand above should call to mind the difference quotient lemma
(Lemma 2.5.16), which tells us that the map

φ : D → C : w 7→


f(w)− f(z)

w − z
, w ∈ D \ {z},

f ′(z), w = z

is holomorphic on D \ {z} and continuous on D. In particular, φ is continuous on B(z0;R)
and holomorphic on B(z0;R) \ {z}. Recall that B(z0;R) is a star domain and one of its
(infinitely many) star centers is z. The Cauchy integral formula therefore implies that

0 =

∫
|w−z0|=r

φ(w) dw =

∫
|w−z0|=r

f(w)− f(z)

w − z
dw,

as desired. �
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This is far from the most general version of the Cauchy integral formula that exists.
Eventually we will be able to replace the line integral over a circle with a line integral over
an arbitrary closed path (like the path in the Cauchy integral theorem) and get essentially
the same formula, up to an extra factor that encodes the “orientation” of the path. However,
all the essential corollaries of the Cauchy integral formula for now just require circular paths.

3.6.9 Problem (!). How is the Death Star lemma a special case of the Cauchy integral
formula?

3.6.10 Problem (+). Here is another proof of the Cauchy integral formula that relies
primarily on the Death Star lemma and its generalization in Problem 3.6.6 rather than the
Cauchy integral theorem. By Problem B.1.5, it suffices to show that∣∣∣∣f(z)− 1

2πi

∫
|w−z0|=r

f(w)

w − z
dw

∣∣∣∣ < ε (3.6.8)

for all ε > 0. Take s > 0 small enough that B(z; s) ⊆ D and use the triangle inequality to
estimate∣∣∣∣f(z)− 1

2πi

∫
|w−z0|=r

f(w)

w − z
dw

∣∣∣∣ ≤ ∣∣∣∣f(z)− 1

2πi

∫
|w−z|=s

f(w)

w − z
dw

∣∣∣∣
+

1

2π

∣∣∣∣∫
|w−z|=s

f(w)

w − z
dw −

∫
|w−z0|=r

f(w)

w − z
dw

∣∣∣∣ .
Use Problem 3.6.6 to explain why the second term on the right is 0; then adapt (3.6.7) to
show ∣∣∣∣f(z)− 1

2πi

∫
|w−z0|=r

f(w)

w − z
dw

∣∣∣∣ =
1

2π

∣∣∣∣∫
|w−z|=s

f(w)− f(z)

w − z
dw

∣∣∣∣ .
Use the triangle inequality to show

1

2π

∣∣∣∣∫
|w−z|=s

f(w)− f(z)

w − z
dw

∣∣∣∣ ≤ max
0≤t≤2π

|f(z + seit)− f(z)|,

and then use the continuity of f at z to show that for s sufficiently small and all t ∈ [0, 2π],
we have

|f(z + seit)− f(z)| < ε.

Conclude that (3.6.8) is true.

3.6.11 Example. Let z1, z2 ∈ C with 0 ≤ |z1| < |z2|. Choose ρ > 0 such that |z1| < ρ <
|z2| and consider the open set D = B(0; ρ). Fix r, R > 0 with |z1| < r ≤ R ≤ ρ. Then
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z1 ∈ B(0; r1) and B(0;R) ⊆ B(0; ρ). This is the content of the drawing below.

R

iR

z1

z2

D = B(0; ρ)

B(0;R)

∂B(0; r)

Then the Cauchy integral formula implies∫
|z|=r

dz

(z − z1)(z − z2)2
=

∫
|z|=r

1/(z − z2)2

z − z1

dz =

∫
|z−0|=r

f(z)

z − z1

dz =
2πi

(z1 − z2)2
,

since the function f(z) := 1/(z − z2)2 is holomorphic on the open set D := B(0; ρ), and
since z1 ∈ B(0; r) with 0 < r < R and B(0;R) ⊆ D.

3.6.12 Problem (!). Contrast the result (and the drawing) above with Example 3.5.15.
Then redo Example 3.6.11 using partial fractions.

3.6.13 Problem (?). Explain why the Cauchy integral formula does not (apparently)
allow us to evaluate ∫

|z|=2

dz

z2 − 1
.

Then rewrite the integrand using partial fractions and realize that the Cauchy integral
formula (or maybe just the Death Star lemma!) does, in fact, apply.

This is where we finished on Friday, March 22, 2024.

The true value of the Cauchy integral formula (CIF) is not that it enables us to compute
certain line integrals that would otherwise be difficult or impossible (although it does).
Rather, the CIF provides an integral representation of a function, and integrals are the key
instrument for extract information about functions.

Specifically, the CIF uses one-dimensional information about a function f—the values of
w 7→ f(w)/(w − z) on the circle of radius r centered at z0—to compute two-dimensional
information about f—its values on the ball of radius r centered at z0. This may feel similar
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to the fundamental theorem of calculus, which reads∫ b

a

f ′ = f(b)− f(a)

when f is differentiable on [a, b] and f ′ is continuous on [a, b]. Both the CCIF and the
FTC give information about a function from an integral whose integrand is related to that
function.

The CIF, however, might have at least two advantages over our beloved FTC. First,
the FTC requires information about the derivative on the whole interval [a, b] to produce
information about f at the endpoints; we need one-dimensional data (values on an interval)
to get zero-dimensional data (the difference of values at the endpoints). Second, the FTC
requires information about a function other than f (namely, the derivative of f), whereas
the integrand in the CIF is really just f gussied up via division by a linear polynomial.

We only proved the Cauchy integral formula for line integrals over circles, whereas the
Cauchy integral theorem holds for line integrals over arbitrary closed paths. We will eventu-
ally generalize the integral formula to permit more arbitrary closed paths, but that will also
require us to account for a notion of “orientation” on the paths. As it stands, our version of
the integral formula above is perfectly suited to give us a rich amount of information about
functions.

3.6.3. The generalized Cauchy integral formula.

Here is the first of many deep consequences of the Cauchy integral formula. Suppose that
the hypotheses of the Cauchy integral formula are met. That is, we have an open set D
and a holomorphic function f : D → C, and we have fixed z0 ∈ D and R > 0 such that
B(z0;R) ⊆ D. Then for any r ∈ (0, R) and z ∈ B(z0; r), we can write

f(z) =
1

2πi

∫
|w−z0|=r

g(w, z) dw, where g(z, w) :=
f(w)

w − z
.

The map g is defined on the set

D0 :=
{

(z, w) ∈ C2
∣∣ |z − z0| < r, |w − z0| = r

}
.

In particular, for (z, w) ∈ D0, we have z 6= w. It should follow, then, that g is continuous on
D0 (this needs some development, since we have not discussed continuity for functions defined
on subsets of C2) and that g is differentiable with respect to z (this too needs development,
since we have not discussed partial derivatives for functions of several complex variables),
and that

gz(z, w) =
f(w)

(w − z)2
.

If this is all indeed true (it is), then we might expect that we could differentiate under the
(line) integral as in Leibniz’s rule (Theorem 3.5.8) and find

f ′(z) =
1

2πi

∫
|w−z0|=r

gz(z, w) dw =
1

2πi

∫
|w−z0|=r

f(w)

(w − z)2
dw.
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Now look at this integrand. Exactly the same reasoning as above suggests that we can
differentiate under the integral again to conclude that f ′ is differentiable and

f ′′(z) = 2

(
1

2πi

∫
|w−z0|=r

f(w)

(w − z)3
dw

)
.

Turn the crank and be convinced that f ′′ is differentiable. . .
If this reasoning holds, then we have discovered something remarkable. A holomorphic

function is not just once differentiable but infinitely many times differentiable. This is
definitely not true for functions defined on (subsets of) R.

3.6.14 Problem (?). Show that the function

f : R→ C : t 7→

{
t2, t ≥ 0

−t2, t < 0

is differentiable on R and that f ′ is continuous on R but not differentiable at 0.

Moreover, it appears that we can represent all of a function’s erivatives as a line integral
of the quotient of the original function and a polynomial. This result is called the generalized
Cauchy integral formula, and it has many proofs. The proof that we will give hinges on the
venerable mathematical technique known as brute force.

3.6.15 Remark. Brute force is the best force.

Here is the brute force part of the proof; the proof of the following lemma is in Appendix
C.5.

3.6.16 Lemma. Let z0 ∈ C and r > 0. Suppose that f : ∂B(z0; r)→ C is continuous and
let k ≥ 1 be an integer. Define

Fk : C \ C(z0; r)→ C : z 7→
∫
|w−z0|=r

f(w)

(w − z)k
dw. (3.6.9)

Then Fk is holomorphic with F ′k = kFk+1.

In the following we denote the kth derivative of a function f by f (k), i.e.,

f (k)(z) =

{
f(z), k = 0

(f (k−1))′(z), k ≥ 1.

3.6.17 Theorem (Generalized Cauchy integral formula). Suppose that D ⊆ C is open
and f : D → C is holomorphic. Then f is infinitely differentiable on D. In particular,
if z0 ∈ D with B(z0;R) ⊆ D, then for any r ∈ (0, R), z ∈ B(z0;R), and k ≥ 0, the kth
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derivative of f is

f (k)(z) =
k!

2πi

∫
|w−z0|=r

f(w)

(w − z)k+1
dw. (3.6.10)

Proof. We induct on k, starting with k = 0, i.e., f (0) = f . Then (3.6.10) is just the Cauchy
integral formula. Assume that (3.6.10) holds for some k ≥ 0; then

f (k) =
k!

2πi
Fk+1,

where Fk+1 was defined in (C.5.1). Lemma 3.6.16 implies that Fk+1 is holomorphic with
F ′k+1 = (k + 1)Fk+2. Consequently, f (k) is differentiable with

f (k+1)(z) = (f (k))′(z) = (k+1)Fk+2(z) =
(k + 1)k!

2πi
Fk+2(z) =

(k + 1)!

2πi

∫
|w−z0|=r

f(w)

(w − z)k+2
dw.

This is the desired form of f (k+1) from (3.6.10). �

Once again, we see an integral representing a function—specifically, the kth derivative of
a function.

3.6.18 Example. Let z1, z2 ∈ C with 0 ≤ |z1| < |z2|. Let 0 < ρ < |z2| − |z1|, so
z1 6∈ B(z2; ρ). (Otherwise, we would have |z1 − z2| < ρ, and then the reverse triangle
inequality would give |z2| − |z1| < |z1 − z2| < ρ.) Fix 0 < r < R ≤ ρ, so z2 ∈ B(z2; r) and
B(z2;R) ⊆ B(z2; ρ). This is the content of the drawing below.

R

iR

z1

z2

D = B(z2; ρ)

B(z2;R)

∂B(z2; r)

Then∫
|z−z2|=r

dz

(z − z1)(z − z2)2
=

∫
|z−z2|=r

1/(z − z1)

(z − z2)1+1
dz = 2πi

d

dz

[
1

z − z1

] ∣∣∣∣
z=z2

= − 2πi

(z1 − z2)2
,

since the function f(z) := 1/(z− z1) is holomorphic on the open set D := B(z2; ρ) and the
balls constructed above satisfy the hypotheses of the generalized Cauchy integral formula.

3.6.19 Problem (!). Can you redo this example with partial fractions?
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3.6.20 Problem (!). (i) Redo Examples 3.5.15, 3.6.11, and 3.6.18 one after the other.

(ii) Why do these three examples all require different techniques? What are those tech-
niques, and how are the results different?

(iii) Why do none of those techniques help us evaluate∫
|z|=r

dz

(z − z1)(z − z2)2
,

where z1, z2 ∈ B(0; r)?

At last, we can fully characterize when a function has an antiderivative. This effectively
completes the third phase of our course—the integral calculus phase—and opens the way to
a multiverse of complex analytic possibilities.

3.6.21 Problem (+). Let D ⊆ C be a domain and suppose that f : D → C is continuous.

(i) Suppose here (and only here, i.e., not in the following parts) that D is also an elemen-
tary domain. Show that a function f is holomorphic if and only if f has an antiderivative
on D. [Hint: one direction is the definition; for the other, if F ′ = f , what do you know
about F ′′?]

(ii) Show that f is holomorphic if and only if f is “locally antidifferentiable” in the sense
that if z0 ∈ D and r > 0 such that B(z0; r) ⊆ D, then there is a holomorphic function
F : B(z0; r)→ C such that F ′(z) = f(z) for all z ∈ B(z0; r). [Hint: an open ball B(z0; r) is
a star domain.]

(iii) [Morera’s theorem] Show that f : D → C is holomorphic if and only if
∫
γ
f = 0

for any closed curve γ whose image is contained in some ball B(z0; r) ⊆ D. [Hint: use the
hint from the preceding part and the independence of path theorem.]

(iv) Use Problem C.4.8 to show that in the preceding part, we can replace “all closed
curves γ ∈ D” with “all triangular paths ∂∆(z1, z2, z3) such that ∆(z1, z2, z3) ⊆ D.”

3.6.4. Liouville’s theorem.

Here is a first result from that multiverse of possibilities. We have not used the following
definition all that much, so now is a good time to bring it up.

3.6.22 Definition. A holomorphic function f : C→ C is called entire. That is, f : C→
C is entire if f is differentiable at each z ∈ C.

If we replace C by R in the preceding definition, we are familiar with many functions
that are infinitely differentiable on R. And many of those functions are bounded; consider
f(t) = sin(t), which satisfies | sin(t)| ≤ 1 for all t ∈ R. It turns out that only the most trivial
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of bounded functions can be entire.

3.6.23 Theorem (Liouville). Suppose that f : C→ C is entire and bounded, i.e., there is
M > 0 such that |f(z)| ≤M for all z. Then f is constant.

Proof. We show that f ′(z) = 0 for all z; since C is a domain, it follows that f is constant.
Fix z ∈ C and r > 0. In the notation of the generalized Cauchy integral formula, we take
z0 = z, R = 2r, k = 1, and D = C. Then

f ′(z) =
1

2πi

∫
|w−z|=r

f(w)

(w − z)2
dw,

and if |w − z| = r, then we can estimate the integrand as∣∣∣∣ f(w)

(w − z)2

∣∣∣∣ =
|f(w)|
|w − z|2

=
|f(w)|
r2

≤ M

r2
.

Then the ML-inequality implies

|f ′(z)| =
∣∣∣∣ 1

2πi

∫
|w−z|=r

f(w)

(w − z)2
dw

∣∣∣∣ ≤ 2πrM

2πr2
=
M

r2
.

Since this is true for an arbitrary r > 0, we can use the squeeze theorem and send r → ∞
to conclude |f ′(z)| = 0, thus f ′(z) = 0. �

3.6.24 Example. Previously we have seen that sin(·) is unbounded on C, e.g., by consid-
ering

sin(iy) =
ei(iy) − e−i(iy)

2i
=
e−y − ey

2i
,

thus
| sin(iy)| = |e

−y − ey|
2

→∞ as y → ±∞.

But even without this estimate, since we know that sin(·) is entire and not constant (e.g.,
sin(0) = 0 and sin(π/2) = 1), we are guaranteed that sin(·) is unbounded on C. This is, of
course, a marked contrast to the familiar estimate | sin(x)| ≤ 1 for x ∈ R.

As an application of Liouville’s theorem, we derive a first (somewhat weak) version of the
fundamental theorem of algebra, which states that every polynomial with complex coefficients
has a root in C. Note that not every polynomial with real coefficients has a root in R (think
of the most famous quadratic in the world, which is, from one point of view, the reason this
course exists).

3.6.25 Theorem. Let f(z) =
∑n

k=0akz
k be a polynomial of degree n ≥ 1, i.e., a0, . . . , an ∈

C and an 6= 0. Then f has a root in C: there is z0 ∈ C such that f(z0) = 0.
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Proof. Suppose not. Then f(z) 6= 0 for all z ∈ C, and so the function 1/f is defined on C;
moreover, g is holomorphic on C. If we can show that 1/f is also bounded on C, i.e., there
is M > 0 such that 1/|f(z)| ≤M for all z ∈ C, then Liouville’s theorem will tell us that 1/f
is constant. That is, there is c ∈ C such that 1/f(z) = c for all z ∈ C (and so in particular
c 6= 0), and then f(z) = 1/c for all z ∈ C. But then f is not a polynomial of degree at least
1.

Here is the argument that 1/f is bounded. Multiple applications of the reverse triangle
inequality show

|f(z)| ≥ |an||z|n −
n−1∑
k=0

|ak||z|k.

Define

h : R→ R : t 7→ |an|tn −
n−1∑
k=0

|ak|tk,

so |f(z)| ≥ h(|z|), and h is a polynomial whose leading coefficient |an| is positive. Thus
limt→∞ h(t) =∞, so there is t0 > 0 such that if t ≥ t0, then |h(t)| ≥ 1.

For z ∈ C with |z| ≥ t0, we then have

1

|f(z)|
≤ 1

h(|z|)
≤ 1.

And since 1/f is continuous on the closed ball B(0; t0), there ism > 0 such that 1/|f(z)| ≤ m
for z ∈ B(0; t0). All together, we have 1/|f(z)| ≤ max{1,m}, and so 1/f is bounded, as
desired. �

This is where we finished on Monday, March 25, 2024.
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4. THE MULTIVERSE OF ANALYTIC FUNCTIONS

4.1. Analyticity.

The fact that a once-differentiable function is really infinitely many times differentiable
should be surprising, if not shocking. We will now develop a result that is nothing short of
staggering.

4.1.1. Taylor series.

Suppose that D ⊆ C is open and z0 ∈ D with R > 0 such that B(z0;R) ⊆ D. Fix z ∈ B(z0; r)
with 0 < r < R. Then the Cauchy integral formula gives

f(z) =
1

2πi

∫
|w−z0|=r

f(w)

w − z
dw. (4.1.1)

We can manipulate the factor 1/(w− z) in the integrand in a powerful, critical way. We use
three tricks.

Trick 1. Adding zero and factoring. We rewrite the denominator as

w − z = w − z0 + z0 − z = w − z0 − (z − z0).

Since, in the line integral in (4.1.1), we presume |w − z0| = r > 0, we have w − z0 6= 0, and
so we may factor

w − z = w − z0 − (z − z0) = (w − z0)

(
1− z − z0

w − z0

)
. (4.1.2)

Trick 2. Recognizing the geometric series. Here is a drawing of how w, z, and z0 are related
to each other.

|z − z0|

|w
−
z 0
|

z0 z

w

Hopefully the picture emphasizes that |w − z| < |w − z0|, but this is easy to prove. We are
assuming in (4.1.1) that z ∈ B(z0; r) and |w − z0| = r, thus |z − z0| < r = |w − z0|. So, the
second factor in (4.1.2) has the form 1− u, where u = (z − z0)/(w − z0). Thus |u| < 1, and
so we can express that second factor as a geometric series.
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Trick 3. Deploying the geometric series. Here we go: since |(z − z0)/(w − z0)| < 1, the
geometric series gives

1− z − z0

w − z0

=
∞∑
k=0

(
z − z0

w − z0

)k
=
∞∑
k=0

(z − z0)k

(w − z0)k
,

and therefore

w − z = (w − z0)

(
1− z − z0

w − z0

)
= (w − z0)

∞∑
k=0

(z − z0)k

(w − z0)k
=
∞∑
k=0

(z − z0)k

(w − z0)k+1
.

We combine all the tricks to rewrite∫
|w−z0|=r

f(w)

w − z
dw =

∫
|w−z0|=r

f(w)
∞∑
k=0

(z − z0)k

(w − z0)k+1
dw

Suppose for the moment that we can “interchange” the line integral and the series, i.e.,∫
|w−z0|=r

f(w)
∞∑
k=0

(z − z0)k

(w − z0)k+1
dw =

∞∑
k=0

∫
|w−z0|=r

f(w)
(z − z0)k

(w − z0)k+1
dw. (4.1.3)

This is certainly true if the series is just a finite sum (
∫
γ

∑n
k=0fk =

∑n
k=0

∫
γ
fk) and morally

it should smack of differentiating under the integral; both there and here we are swapping
an integral and a limiting procedure. If we can perform this interchange, then

∞∑
k=0

∫
|w−z0|=r

f(w)
(z − z0)k

(w − z0)k+1
dw =

∞∑
k=0

(∫
|w−z0|=r

f(w)

(w − z0)k+1
dw

)
(z − z0)k.

After some rearranging, we conclude that if (4.1.3) is indeed permitted, then we have shown

f(z) =
∞∑
k=0

(
1

2πi

∫
|w−z0|=r

f(w)

(w − z0)k+1
dw

)
(z − z0)k. (4.1.4)

If we put

ak :=
1

2πi

∫
|w−z0|=r

f(w)

(w − z0)k+1
dw, (4.1.5)

then this just compresses to

f(z) =
∞∑
k=0

ak(z − z0)k, (4.1.6)

and we might remember from the generalized Cauchy integral formula that

ak =
f (k)(z0)

k!
.

In other words, if (4.1.3) is true, then f is really a power series—at least locally, around
a given point—and the coefficients in this power series expansion effectively arise from the
generalized Cauchy integral formula.
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We can be a little more precise about z. We have proved the identities (4.1.4) and (4.1.6),
up to verifying (4.1.3), with the assumption that z ∈ B(z0; r) for some 0 < r < R, where
B(z0;R) ⊆ D. However, we can cut down on the annoying role of r slightly (but not entirely),
and we do so in the following theorem.

4.1.1 Theorem (Taylor). Let D ⊆ C be open and let f : D → C be holomorphic. Let
z0 ∈ D and R > 0 such that B(z0;R) ⊆ D. Then

f(z) =
∞∑
k=0

ak(z − z0)k, ak :=
f (k)(z0)

k!
(4.1.7)

for each z ∈ B(z0;R). Equivalently,

ak =
1

2πi

∫
|w−z0|=r

f(w)

(w − z0)k+1
dw (4.1.8)

for any r ∈ (0, R).

Proof. We continue to defer verifying the interchange (4.1.3). Fix z ∈ B(z0;R), so |z−z0| <
R. Take r > 0 such that |z−z0| < r < R. Then z ∈ B(z0; r), and all of the work above applies
to give (4.1.7) and (4.1.8). The only reason that we needed to specify this “intermediate”
radius r was to use the Cauchy integral formula (4.1.1). �

This is where we finished on Wednesday, March 27, 2024.

The series (4.1.7) has a special name.

4.1.2 Definition. Suppose that f : D ⊆ C → C is infinitely differentiable at z0 ∈ D. The
Taylor series of f centered at z0 is the series

∞∑
k=0

f (k)(z0)

k!
(z − z0).

Of course, this series is defined for any z ∈ C as a sequence of partial sums. Incidentally,
calculus textbooks usually call the Taylor series at z0 = 0 (if f is defined there and holomor-
phic on a ball centered at 0) the Maclaurin series. Outside of calculus classes, virtually no
one uses this terminology.

Here are the major questions about Taylor series.

1. Does the series converge? That is, does

lim
n→∞

n∑
k=0

f (k)(z0)

k!
(z − z0)

exist? Implicitly, for what z (if any) does this limit exist?
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2. If this limit exists, is it f(z)? That is, do we have

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)?

This second question is more nuanced than our previous questions of series convergence,
because now we want to relate the value of the sum of the Taylor series of f specifically to
f .

The good news is that Theorem 4.1.1 (mostly) answers these questions for holomorphic
functions.

4.1.3 Corollary. Let f : D → C be holomorphic and let z0 ∈ D. Suppose that R > 0 is
such that B(z0;R) ⊆ D. Then the Taylor series for f centered at z0 converges to f on
B(z0;R). That is,

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0), z ∈ B(z0;R).

4.1.2. Interchange of series and integrals.

An interchange like (4.1.3) is, in the most abstract sense, a consequence of uniform con-
vergence of a sequence/series of functions. However, we will not discuss the machinery of
uniform convergence, as all of its applications in our course ultimately boil down to tractable
arguments with geometric series. Here is the general structure of those arguments.

4.1.4 Theorem (Interchange). Let D ⊆ C and let f , fk : D → C be continuous for k ≥ 0.
Suppose that for some C > 0 and ρ ∈ (0, 1), the estimate

|fk(z)| ≤ Cρk

holds for each k ≥ 0 and all z ∈ D. Then the following are true.

(i) The series
∑∞

k=0fk(z) converges for each z ∈ D.

(ii) The function

f : D → C : z 7→
∞∑
k=0

fk(z)

is continuous on D.

(iii) If γ is a path in D, then ∫
γ

f =
∞∑
k=0

∫
γ

fk. (4.1.9)

That is, the series
∑∞

k=0

∫
γ
fk converges to

∫
γ
f .
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4.1.5 Problem (+). Prove each part of the interchange theorem as outlined below.

(i) Use the comparison test and the geometric series to establish the convergence of the
series

∑∞
k=0fk(z) for a given z.

(ii) For continuity, fix z0 ∈ D and let ε > 0. Choose an integer n ≥ 0 such that 2Cρn+1(1−
ρ) < ε/2. Then use the continuity of f0, . . . , fn to find δ > 0 such that if z ∈ D with
|z − z0| < δk, then |fk(z)− fk(z0)| < ε/2(n+ 1). Last, estimate

|f(z)− f(z0)| ≤
n∑
k=0

|fk(z)− fk(z0)|+
∞∑

k=n+1

(
|fk(z)|+ |fk(z0)|

)
.

Show that if |z − z0| < min0≤k≤n δk, then both sums above are bounded by ε/2. For the
second sum, Problem 1.4.13 will be helpful.

(iii) Use the ML-inequality to show that for any n ≥ 0,∣∣∣∣∣
n∑
k=0

∫
γ

fk −
∫
γ

∣∣∣∣∣ ≤ C`(γ)ρn+1

1− ρ
.

Then recall that 0 < ρ < 1 and take the limit as n→∞.

4.1.6 Problem (+). Use the interchange theorem to prove (4.1.3) by estimating

max
|w−z0|=r

∣∣∣∣f(w)
(z − z0)k

(w − z0)k+1

∣∣∣∣ ≤Mr(f)ρk,

where
Mr(f) :=

1

r
max
|w−z0|=r

f(w) and ρ :=
|z − z0|

r
.

Explain why ρ ∈ (0, 1).

4.1.3. Power series.

We will now step away from (ostensibly) studying holomorphic functions to review some
essential features of power series. We will return to discuss Taylor series extensively.

4.1.7 Definition. Let (ak) be a sequence in C and z0 ∈ C. The power series cen-
tered at z0 with coefficients (ak) is the series

∞∑
k=0

ak(z − z0)k.

Recall that the symbol
∑∞

k=0ak(z − z0)k plays the dual role of denoting the sequence of
partial sums

(∑n
k=0ak(z − z0)k

)
and the limit of this sequence, if this limit exists. A power
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series carries z as an extra parameter, and so the convergence of a power series will depend
on the value of z. In particular, a power series centered at z0 always converges at z = z0.

4.1.8 Problem (!). To what? Recall the convention of denoting z0 = 1, even when z = 0.

We will now state a general convergence theorem for power series which we also likely
saw for real power series in calculus. We will not prove it here, as the proof will not teach
us anything new specifically about complex analysis.

4.1.9 Theorem. Let (ak) be a sequence in C and z0 ∈ C. There exists a unique (extended)
real number R ≥ 0 such that the power series

∑∞
k=0ak(z − z0)k converges for |z − z0| < R

and diverges for |z − z0| > R. This number R is the radius of convergence of the
power series.

The radius of convergence R is an extended real number in the sense that we may have
R = ∞, in which case the series converges for all z ∈ C. The uniqueness of the radius of
convergence means that if we have a number r > 0 such that the power series converges for
|z − z0| < r and diverges for |z − z0| > r, then r is the radius of convergence. Theorem
4.1.9 tells us nothing about what happens on the “boundary” of convergence, i.e., when
|z − z0| equals the radius of convergence. Here is an illustration of what can happen for
finite, positive R.

R

iR

R

z0
converges

???
diverges

4.1.10 Problem (+). Let (ak) be a sequence in C and let z0 ∈ C.

(i) Let z1 ∈ C\{z0} such that the series
∑∞

k=0ak(z1−z0)k converges. Put ρ = |z1−z0| > 0
and show that for some Cρ > 0, the fundamental estimate for power series

|ak| ≤
Cρ
ρk

(4.1.10)

holds for all k ≥ 0. [Hint: use the test for divergence to show the existence of an integer
N ≥ 0 such that |ak|ρk ≤ 1 for all k ≥ N + 1. Then put Cρ := max0≤k≤N |akρk|.]

(ii) Let z1 ∈ C \ {z0} such that the series
∑∞

k=0ak(z1 − z0)k converges. Show that for
all z ∈ C such that |z − z0| < |z1 − z0|, the series

∑∞
k=0ak(z − z0)k converges absolutely.

Conclude that the radius of convergence of the power series
∑∞

k=0ak(z − z0)k is at least
|z1 − z0|. [Hint: use the estimate (4.1.10) to compare

∑∞
k=0|ak(z − z0)k| to a geometric

series.]
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(iii) Look ahead to Example 4.1.12 and explain why if the power series
∑∞

k=0ak(z − z0)k

converges at z = z1, then we cannot guarantee that it converges at all z with |z − z0| =
|z1 − z0|.

(iv) Suppose now that the radius of convergence of the power series
∑∞

k=0ak(z − z0)k is
R > 0. Show that if ρ ∈ (0, R), then there is Cρ > 0 such that the estimate (4.1.10) holds
for all k ≥ 0. [Hint: apply part (i) with z1 = z0 + ρ.]

(v) With R > 0 as the radius of convergence of
∑∞

k=0ak(z − z0)k, use the fundamen-
tal estimate for power series and the interchange theorem to show that the function
f(z) :=

∑∞
k=0ak(z − z0)k is continuous on B(z0;R). [Hint: fix 0 < r < ρ < R. Show

that |ak(z − z0)k| ≤ Cρ(r/ρ)k when z ∈ B(z0; r). Conclude by the interchange theorem that
f is continuous on B(z0; r).]

While there is a formula for the radius of convergence R in terms of the coefficients (ak),
and while this formula always works, it is both complicated and unwieldy. Often it is best
to use the ratio or root tests or to recognize the power series as the Taylor series for a
holomorphic function. Indeed, we can paraphrase Theorem 4.1.1 and Corollary 4.1.3 in the
following useful way.

4.1.11 Corollary. Let f : D → C be holomorphic, let z0 ∈ D, and suppose B(z0; r) ⊆ D
for some r > 0. Then the radius of convergence of the Taylor series for f centered at z0 is
at least r.

That is, for a holomorphic function, the radius of convergence of its Taylor series centered
at some point in its domain is at least as large as the radius of any open ball centered at that
point and contained in the domain. Unlike the Taylor series of a function of a real variable,
we do not have to check any estimates on the remainder in the series; we just squeeze the
largest open ball possible into the domain of our holomorphic function. Note the qualifying
phrase “at least”: it is possible for the Taylor series to converge on a larger ball than is
contained in the domain. (Trivial example: take D = B(0; 1) and f : D → C : z 7→ 0; then
the Taylor series converges on C.)

4.1.12 Example. As in real calculus, a power series may converge or diverge for z ∈ C
with |z − z0| = R. The behavior varies from series to series. It is even possible for a series
to converge at some z with |z − z0| = R and diverge at others.

(i) The exponential power series
∞∑
k=0

zk

k!

has center z0 = 0 and coefficients ak = 1/k!. Since this series converges for all z ∈ C, as
we saw in Example 1.4.21 via the ratio test (and as we have used ceaselessly since), the
radius of convergence is R =∞.
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(ii) The familiar geometric series
∞∑
k=0

zk

has center z0 = 0 and coefficients ak = 1. We saw in Theorem 1.4.12 that the geometric
series converges for |z| < 1 and diverges for |z| ≥ 1. We were even able to use some
algebra and analysis to find a formula for the sum when |z| < 1. While the ratio test
gave convergence for |z| < 1 and divergence for |z| > 1, we had to use other techniques
to establish divergence at |z| = 1. In particular, the geometric series is an example of a
power series that diverges at every point on its “boundary of convergence,” i.e., at every
point with |z| equal to the radius of convergence.

(iii) Consider the series
∞∑
k=0

(−1)k

k + 1
zk.

We use the ratio test and study∣∣∣∣ (−1)k+1

(k + 1) + 1
zk+1 · k + 1

(−1)kzk

∣∣∣∣ = |z|k + 1

k + 2
→ |z| as k →∞.

Strictly speaking, we should assume z 6= 0 here for the ratio test to work; at z = 0 we
are guaranteed convergence, since that is the center of this power series. Thus (like our
previous two examples) the series converges for |z| < 1 and diverges for |z| > 1.

When |z| = 1, we may have convergence or divergence: take z = 1 to see that the series
is the alternating harmonic series

∞∑
k=0

(−1)k

k + 1
(1)k =

∞∑
k=0

(−1)k
1

k + 1
= −

∞∑
j=1

(−1)j

j
,

which converges. Take z = −1 to see that the series is the harmonic series

∞∑
k=0

(−1)k

k + 1
(−1)k =

∞∑
k=0

1

k + 1
=
∞∑
j=1

1

j
,

which diverges.

4.1.13 Problem (!). Use the ratio test to determine the radius of convergence R of the
power series

∞∑
k=0

zk

k2 + 1
.

Then use the comparison test to study the series when |z| = R.



4.1. Analyticity 199

4.1.14 Problem (?). Abel’s test for series convergence states that if (ak) is a decreasing
sequence of real positive numbers, i.e., 0 < ak+1 ≤ ak for all k, then the series

∑∞
k=0akz

k

converges for all z ∈ C \ {1} with |z| = 1. What does Abel’s test say about the series in
part (iii) of Example 4.1.12?

To determine the Taylor series for a function at a given point, we often have three options,
which we list below from least to most preferred.

1. Calculate the coefficients using the generalized Cauchy integral formula, e.g., (4.1.5).

2. Calculate lots of derivatives of f and then use the fact that the kth coefficient is f (k)(z0)/k!.

3. Recognize f as some modification of a function whose Taylor series is known, and ma-
nipulate that known Taylor series.

4.1.15 Example. Let f(z) = 1/(1 − z). We know that f is holomorphic on C \ {1} and
that f(z) =

∑∞
k=0z

k for |z| < 1, but what is the Taylor series expansion for f centered at an
arbitrary z0 ∈ C \ {1}, and what is the largest ball on which that series converges? There
are several ways of proceeding here, which we broadly divide into geometric, analytic, and
algebraic techniques.

(i) Geometry. We could draw pictures and just figure out what is the largest ball B(z0;R)
contained in C \ {1}. Then we could use Theorem 4.1.1 or Corollary 4.1.11 to ensure
convergence of the Taylor series on B(z0;R). Note, though, that these results do not
imply the divergence of the Taylor series outside B(z0;R). Pretty quickly the pictures will
convince us that R = |1 − z0|. Then we would have to check convergence/divergence for
|z − z0| > R.

R

iR

1

z0

R

iR

1

z0

R

iR

1
z0

This is where we finished on Monday, April 1, 2024.

(ii) Analysis. We could differentiate f repeatedly and observe patterns:

f(z) = (1− z)−1, f ′(z) = −(1− z)−2(−1) = (1− z)−2,

f ′′(z) = −2(1−z)−3(−1) = 2(1−z)−3, f (3)(z) = −6(1−z)−4(−1) = 6(1−z)−4, . . .

A formal induction argument establishes

f (k)(z) = k!(1− z)−(k+1),
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and so the Taylor series for f centered at z0 is

∞∑
k=0

k!(1− z0)−(k+1)

k!
(z − z0)k =

∞∑
k=0

1

(1− z0)k+1
(z − z0)k. (4.1.11)

Since f is holomorphic on the open set C \ {1}, this Taylor series converges on any ball
B(z0;R) such that B(z0;R) ⊆ C \ {1}. How can we find R just from the coefficients of this
series? We could use the ratio test and calculate∣∣∣∣ (z − z0)k+1

(1− z0)(k+1)+1
· (1− z0)k+1

(z − z0)k

∣∣∣∣ =
|z − z0|
|1− z0|

→ |z − z0|
|1− z0|

as k →∞.

Thus the series converges for |z−z0| < |1−z0| and diverges for |z−z0| > |1−z0|. Problem
4.1.16 discusses the divergence of this series when |z − z0| = |1− z0|.

(iii) Algebra. In lieu of the differentiation above, we could try to use a known Taylor series.
Specifically, we would write, for z, z0 ∈ C \ {1},

f(z) =
1

1− z
=

1

1− z0 + z0 − z
=

1

1− z0 − (z − z0)
=

1

(1− z0)

[
1−

(
z − z0

1− z0

)]

=

(
1

1− z0

) 1

1−
(
z − z0

1− z0

)
 =

1

1− z0

f

(
z − z0

1− z0

)
.

These calculations are just the tricks that we used with the geometric series earlier on the
Cauchy integral formula. Since f(w) =

∑∞
k=0w

k for |w| < 1, we therefore have

f(z) =
1

1− z0

∞∑
k=0

(
z − z0

1− z0

)k
for

∣∣∣∣z − z0

1− z0

∣∣∣∣ < 1,

and this gives the same Taylor series as above.

4.1.16 Problem (!). Use the test for divergence to show that the series (4.1.11) diverges
when |z − z0| = |1− z0|.

4.1.17 Example. Since Log is holomorphic on C\(−∞, 0], its Taylor series centered at any
z0 ∈ C \ (−∞, 0] converges on any ball B(z0; r) such that B(z0; r) ⊆ C \ (−∞, 0]. Drawing
some pictures, we might expect that the largest such ball has radius |z0| if Re(z0) ≥ 0 but
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radius | Im(z0)| if Re(z0) < 0; this can be justified.

R

iR

z0

R

iR

z0

R

iR

z0

Now we find the actual Taylor series and compare its radius of convergence to what
Taylor’s theorem predicts. We compute some derivatives:

Log′(z) = z−1, Log′′(z) = −z−2, Log′′′(z) = 2z−3, Log(4)(z) = −6z−4,

Log(5)(z) = 24z−5, . . . ,

and so, observing this pattern and/or inducting, we find

Log(k)(z) = (−1)k+1(k − 1)!z−k.

Then the Taylor series for Log(·) centered at any z0 ∈ C \ (−∞, 0] is

∞∑
k=0

f (k)(z0)

k!
(z − z0)k = Log(z0) +

∞∑
k=1

(−1)k+1(k − 1)!

k!
z−k0 (z − z0)k

= Log(z0) +
∞∑
k=1

(−1)k+1

kzk0
(z − z0)k.

We can test the convergence of the series (starting with k = 1, since we can ignore
finitely many terms in the series without affecting convergence) with the ratio test:∣∣∣∣(−1)(k+1)+1

(k + 1)zk+1
0

(z − z0)k+1 · kzk0
(−1)k+1(z − z0)k

∣∣∣∣ =
k

k + 1

(
|z − z0|
|z0|

)
→ |z − z0|

|z0|
as k →∞.

Consequently, the series converges if |z − z0| < |z0|, and so if Re(z0) < 0, then the series
converges on a larger ball than can fit in the domain of Log. What happens outside this
ball, i.e., on the shaded region below?

R

iR

z0
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The ratio test tells us that the map

S : B(z0; |z0|)→ C : z 7→ Log(z0) +
∞∑
k=1

(−1)k+1

kzk0
(z − z0)k (4.1.12)

is defined, and Taylor’s theorem tells us that S
∣∣
B(z0;| Im(z0)|) = Log. What, if anything, do

the values of S at z ∈ B(z0; |z0|) with Im(z0) ≤ 0 have to do with Log?

4.1.18 Problem (!). Let z0 ∈ C with Re(z0) ≥ 0. Show that B(z0; |z0|) ∩ (−∞, 0] = ∅.
[Hint: show that if x > 0, then | − x − z0| > |z0|.] Conclude that in this case, the largest
ball on which the Taylor series for Log centered at z0 converges is wholly contained in the
domain of Log.

4.1.19 Problem (?). This problem explores the behavior of the map S defined in (4.1.12)
for z0 ∈ C with Re(z0) < 0. For simplicity, we restrict to Im(z0) > 0, but similar results can
be obtained for Im(z0) < 0. (Note that z0 6∈ (−∞, 0], so Log is defined and holomorphic
at z0.)

(i) Show that | Im(z0)| < |z0|. Explain why the Taylor series for Log centered at z0

converges on a larger ball than is contained in the domain of Log.

(ii) Put θ0 := Arg(z0); since Re(z0) < 0 and Im(z0) > 0, we have π/2 < θ0 < π. Show
that

θ0 − π < 0 < π < (θ0 − π) + 2π,

so [0, π] ⊆ (θ0 − π, (θ0 − π) + 2π].

(iii) Let U ={z ∈ C | Im(z) > 0}, so U is the upper half-plane. With θ0 as in the previous
step, explain why Arg(z) = argθ0−π(z) for all z ∈ U and therefore Log

∣∣
U = logθ0−π

∣∣
U .

(iv) With z0 and θ0 as above, conclude that

S(z) =

{
Log(z), z ∈ B(z0; |z0|) ∩ U
Log(z) + 2πi, z ∈ B(z0; |z0|) \ U .

[Hint: argue first that the Taylor series for Log and logθ0−π centered at z0 have the same
coefficients. Then, by considering the branch cut for logθ0−π, explain why logθ0−π is analytic
on B(z0; |z0|). Conclude that the Taylor series for logθ0−π converges to S on B(z0; |z0|).
What does this imply about S(z) for z ∈ B(z0; |z0|)∩U? To determine the value of S(z) for
z ∈ B(z0; |z0|) \ U , use the fact that argθ0−π(z) = Arg(z) + 2π if Re(z) < 0 and Im(z) < 0.]

4.1.20 Problem (!). (i) What is the Taylor series for Log centered at 1?
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(ii) What is the Taylor series for

f : C \ {−1} → C : z 7→ Log(z + 1)?

(iii) How is all of this related to the series in part (iii) of Example 4.1.12 and its convergence
on B(0; 1)?

This is where we finished on Wednesday, April 3, 2024.

Notwithstanding the oddities above, power series are some of the nicest functions in
existence, because calculus-type computations with them are very easy—and so it is a wonder
of nature that holomorphic functions are (locally) power series. Here is another theorem
about power series that should be familiar from calculus; while it can be proved using
methods of real-variable calculus (Problem 4.1.33), we will give some arguments illustrating
the utility of the Cauchy integral theorem and formula and the fundamental estimate for
power series. We might call this a “differentiation under the series” result in line with
differentiating under the integral.

4.1.21 Theorem. Suppose that the power series
∑∞

k=0ak(z − z0)k converges on B(z0;R).
Then the function f(z) :=

∑∞
k=0ak(z − z0)k is holomorphic on B(z0;R) with

f (n)(z) =
∞∑
k=n

(
n−1∏
j=0

(k − j)

)
ak(z − z0)k−n =

∞∑
k=n

k!

(k − n)!
ak(z − z0)k−n (4.1.13)

for each z ∈ B(z0;R) and each integer n ≥ 0. In particular, the series in (4.1.13) converges
on B(z0;R), and

ak =
f (n)(z0)

k!
. (4.1.14)

4.1.22 Problem (!). To motivate the equality (4.1.13), try differentiating f(z) = zk some
n times, observe patterns, and try to rewrite the coefficients in the derivatives as quotients
of factorials. For example, calculate f ′, . . . , f (6) for f(z) = z5.

Proof. First, the function f is continuous on B(z0;R) by part (v) of Problem 4.1.10. Note
that (4.1.14) follows directly from (4.1.13) by substituting z = z0.

For simplicity, we start by assuming z0 = 0, so the power series f(z) =
∑∞

k=0akz
k con-

verges on B(0;R).

1. Sketch of the proof of holomorphy. We will apply Morera’s theorem (part (iii) of Problem
3.6.21) and show that

∫
γ
f = 0 for any closed curve in B(0;R). Note that Morera’s theorem

can apply because f is continuous. Ideally we would do this with a simple interchange of
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summation and integration:∫
γ

f(z) dz =

∫
γ

∞∑
k=0

akz
k dz =

∞∑
k=0

ak

∫
γ

zk dz = 0,

since each integral
∫
γ
zk dz vanishes by the fundamental theorem of calculus (or the Cauchy

integral theorem). However, justifying the interchange is, as usual, a bit delicate.

2. Sketch of the proof of the identity (4.1.13). First we prove the case n = 1. We will
use the Cauchy integral formula to obtain the series representation of the derivatives. Fix
z ∈ B(0;R) and let |z| < r < R. Then

f ′(z) =
1

2πi

∫
|z|=r

f(w)

(w − z)2
dw =

1

2πi

∫
|z|=r

∞∑
k=0

ak
wk

(w − z)2
dw. (4.1.15)

If we can interchange the series and the integral, then we have

f ′(z) =
∞∑
k=0

ak

(
1

2πi

∫
|z|=r

wk

(w − z)2
dw

)
, (4.1.16)

and the generalized Cauchy integral formula gives

1

2πi

∫
|z|=r

wk

(w − z)2
dw =

{
0, k = 0

kzk−1, k ≥ 1.

The case of a general n ≥ 1 in (4.1.13) follows by induction.

3. Rigorous proof of holomorphy. Let 0 < r < R. We will show that f is holomor-
phic on B(0; r) and that f ′(z) =

∑∞
k=1kakz

k−1 for all z ∈ B(0; r); in particular, the se-
ries

∑∞
k=1kakz

k−1 converges on B(0; r). Then given z ∈ B(0;R), we just take r such that
|z| < r < R to conclude that f is differentiable at z with f ′(z) in the desired form. The
identity (4.1.13) then follows by induction on n.

So, with 0 < r < R, let ρ > 0 satisfy r < ρ < R. The fundamental estimate (4.1.10) for
power series provides Cρ > 0 such that |ak| < Cρρ

−k for all k. Let γ be a closed curve in
B(0; r); if z ∈ image(γ), then |z| < r. Consequently,

|akzk| < Cρ

(
r

ρ

)k
.

Since r/ρ < 1, the interchange theorem (Theorem 4.1.4) applies to show∫
γ

f =

∫
γ

∞∑
k=0

akz
k dz =

∞∑
k=0

ak

∫
γ

zk dz,

and each integral
∫
γ
zk dz vanishes since each integrand is a polynomial and therefore holo-

morphic, and γ is closed.
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4. Rigorous proof of the identity (4.1.13). The work in the sketch shows that we only need
to justify the interchange of integration from (4.1.15) to (4.1.16). So, let z ∈ B(0;R) with
|z| < r < ρ < R. By Problem 3.1.26, there is d0 > 0 such that d0 ≤ |w − z| for all w ∈ C
with |w| = r. Then the fundamental estimate for power series gives∣∣∣∣ akw

k

(w − z)2

∣∣∣∣ ≤ Cρr
k

d2
0ρ
k

=
Cρ
d2

0

(
r

ρ

)k
.

Since r/ρ < 1, the interchange lemma applies to show∫
|z|=r

∞∑
k=0

ak
wk

(w − z)2
dw =

∞∑
k=0

∫
|z|=r

ak
wk

(w − z)2
dw,

as desired. �

4.1.23 Problem (?). Complete the proof of Theorem 4.1.21 in the following steps.

(i) The proof above assumed z0 = 0. Suppose now that the series f(z) :=
∑∞

k=0ak(z−z0)k

converges on B(z0;R). Explain why g(w) :=
∑∞

k=0akw
k converges on B(0;R). Obtain

g′(w) =
∑∞

k=1kakw
k−1 and then use f(z) = g(z − z0) to obtain the desired result for f .

(ii) Use induction on n to prove the general formula (4.1.13).

4.1.24 Example. Recognizing a given power series as the derivative of another is a useful
skill. After staring at the series

∞∑
k=2

k(k − 1)zk

for a while, hopefully we agree that it looks like a second derivative, since the starting
index is 2. Missing are the factorial quotient k!/(k − 2)! and the power zk−2. For k ≥ 2,
we calculate

k!

(k − 2)!
=
k(k − 1)(k − 2)!

(k − 2)!
= k(k − 1),

and so all that is “wrong” in this series is the power of z. We therefore rewrite

∞∑
k=2

k(k − 1)zk = z2

∞∑
k=2

k!

(k − 2)!
zk−2 = z2

(
d2

dz2

∞∑
k=0

zk

)
= z2 d

2

dz2

[
1

1− z

]
= z2

(
2

(1− z)3

)
=

2z2

(1− z)3
.

The work above illustrates our thought process in obtaining a “closed-form” expression
for the series, but it is not the most rigorous way of proceeding. Instead, we might define

f : C \ {1} → C : z 7→ 1

1− z
,
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so

f(z) =
∞∑
k=0

zk and f ′′(z) =
∞∑
k=2

k!

(k − 2)!
zk−2 =

∞∑
k=2

k(k − 1)zk−2,

with both equalities holding for |z| < 1. For any z 6= 1, we have f ′′(z) = 2/(1− z)3, and so

∞∑
k=2

k(k − 1)zk = z2

∞∑
k=2

k(k − 1)zk−2 = z2f ′′(z) =
2z2

(1− z)3
.

4.1.25 Problem (!). Let D ⊆ C be open and let f : D → C be analytic. Suppose that f ′

is constant on D. Find a, b ∈ C such that f(z) = az + b for all z ∈ D. [Hint: what are the
Taylor coefficients of f?]

4.1.26 Problem (?). The coefficients of a power series are unique in the following sense.
Let z0 ∈ C and let (ak) and (bk) be sequences in C such that for some R > 0,

∞∑
k=0

ak(z − z0)k =
∞∑
k=0

bk(z − z0)k

for all z ∈ B(z0;R). In particular, both series converge on all of B(z0;R). Show that
ak = bk for all k. [Hint: let f be the difference of the series and use Theorem 4.1.21.]

4.1.27 Problem (?). Here is another proof of Liouville’s theorem (Theorem 3.6.23). Sup-
pose that f : C→ C is entire; explain why

f(z) =
∞∑
k=0

akz
k, ak :=

f (k)(0)

k!

for all z ∈ C. If M > 0 satisfies |f(z)| ≤ M for all z ∈ C, use the generalized Cauchy
integral formula to show

|ak| ≤Mr−k

for all r > 0 and k ≥ 0. Send r →∞ and conclude ak = 0 for k ≥ 1.

4.1.4. Analytic functions.

We have shown that every holomorphic function is “locally” a power series, and, conversely,
that every power series defines a holomorphic function. The latter result is what we expected
from real variable calculus, which taught us that power series are infinitely differentiable;
what is new in complex analysis is that differentiable functions are really power series, at
least locally. (Recall that in analysis, something is “locally” true if it is true on a ball.) Here
is a more compact and standard way of saying “locally a power series.”
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4.1.28 Definition. Let D ⊆ C. A function f : D → C is analytic on D if for each
z0 ∈ D, there is r > 0 and a sequence (ak) in C such that

f(z) =
∞∑
k=0

ak(z − z0)k (4.1.17)

for each z ∈ B(z0; r) ∩ D.

Theorems 4.1.1 and 4.1.21 combine to tell us that analytic functions are precisely the
holomorphic functions.

4.1.29 Theorem. Let D ⊆ C be open. A function f : D → C is analytic if and only if f
is holomorphic, in which case the series expansion (4.1.17) of f about a point z0 ∈ D is its
Taylor series.

4.1.30 Example. Many familiar functions are analytic on C because of how we chose to
define them as power series. This includes the exponential, the sine, and the cosine:

ez = exp(z) =
∞∑
k=0

1

k!
zk, sin(z) =

∞∑
k=0

(−1)k

(2k + 1)!
z2k+1, and cos(z) =

∞∑
k=0

(−1)k

(2k)!
z2k.

The appearance of these functions is somewhat special because we have chosen to expand
them as series centered at z0 = 0 and because these series converge for all z. In general,
the power series expansion (4.1.17) of an analytic function need not be valid on all of the
function’s domain D, just on some open ball contained in D. For the exponential, the sine,
and the cosine, the expansions above are valid on all balls B(0; r) for any r > 0.

4.1.31 Remark. It is not ideal to say that a function is analytic at a point; in this sense,
using analytic as a synonym for holomorphic or differentiable is wrong. Analyticity is a
property on a whole set; differentiability is a property localized at a point. Changing the
values of a function somewhere on its domain can destroy analyticity on the domain but
not differentiability at a point; changing the values of a function at a point can destroy
differentiability.

Although we do not usually employ the terminology “analytic” in real-variable calculus,
it is entirely possible for a function defined on (a subinterval of) R to be analytic in the
sense that for each point in that interval, the function equals its Taylor series around that
point. Indeed, that is probably how we first rigorously met the exponential and trigonometric
functions in calculus.

4.1.32 Definition. Let I ⊆ R be an interval. A function f : I → R is real analytic
on I if for each t0 ∈ I, there is a sequence of real numbers (ak) and a real number r > 0
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such that for t ∈ (t0 − r, t0 + r) ∩ I,

f(t) =
∞∑
k=0

ak(t− t0)k. (4.1.18)

Theorem 4.1.21 holds for real analytic functions: a real analytic function is infinitely
differentiable, and in the expansion (4.1.18), the coefficients satisfy ak = f (k)(t0)/k!.

4.1.33 Problem (+). We can prove the n = 1 case of Theorem 4.1.21 without using
the Cauchy theorems; indeed, this is how the proof works for real analytic functions. For
simplicity, take z0 = 0, so f(z) =

∑∞
k=0akz

k converges on B(0;R).
Fix 0 < r < R. We show that

∑∞
k=1kakz

k−1 converges on B(0; r) and that f is differen-
tiable on B(0; r) with f ′(z) =

∑∞
k=1kakz

k−1.

(i) First we show the convergence. Let r < ρ < R and assume |z| < r. Use the fundamental
estimate for power series (4.1.10) to show that for some Cρ > 0 and all k ≥ 1, the estimate

|kakzk−1| ≤ Cρ
r
k

(
r

ρ

)k
holds. Then show that the series

∞∑
k=1

k

(
r

ρ

)k
converges.

(ii) Continue to assume |z| < r < ρ < R. We show differentiability by establishing

lim
h→0

1

h

[
f(z + h)− f(z)− h

∞∑
k=1

kakz
k−1

]
= 0.

First show

f(z + h)− f(z)− h
∞∑
k=1

kakz
k−1 =

∞∑
k=2

ak
[
(z + h)k − zk − kzk−1

]
.

Then, for k ≥ 2, use the binomial theorem to obtain

(z + h)k − zk − kzk−1 =
k∑
j=0

(
k

j

)
zk−jhj − zk − kzk−1 = h2

k−2∑
`=0

(
k

`+ 2

)
zk−(`+2)h`.

Next, choose δ > 0 such that r + δ < ρ, and assume |h| < δ. Show that∣∣∣∣∣
k−2∑
`=0

(
k

`+ 2

)
zk−(`+2)h`

∣∣∣∣∣ ≤ (r + δ)k

δ2
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and conclude ∣∣∣∣∣1h
[
f(z + h)− f(z)− h

∞∑
k=1

kakz
k−1

]∣∣∣∣∣ ≤ Cρ|h|
δ2

∞∑
k=0

(
r + δ

ρ

)k
.

Why is this a good conclusion?

However, Theorem 4.1.29 does not remain true for real analytic functions. There are
plenty of infinitely differentiable functions on R that are not real analytic; a classical coun-
terexample is

f(t) :=

{
e−1/t2 , t 6= 0

0, t = 0.

One can show that f is infinitely differentiable on R and f (k)(0) = 0 for all k. Thus the
Taylor series for f centered at 0 converges to the zero function R, and that is definitely not
f . This is in line with our previous remarks that, as we know well from calculus, a function
on R can be n-times differentiable but not (n+1)-times differentiable. Differentiability on C
is much stronger: the existence of one derivative guarantees the existence of all derivatives
and the convergence of the Taylor series back to the original function to boot.

But in the happy case that we do have a real analytic function f : I ⊆ R → R, can we
extend it to an analytic function on some open set D ⊆ C with I ⊆ D? After all, we did
that quite successfully with the exponential and trigonometric functions.

R
( )

I

R

iR

I

D

Such an extension has a formal name.

4.1.34 Definition. Let D0 ⊆ D ⊆ C. A function f : D → C is an analytic continu-
ation of a function f0 : D0 → C if f is analytic and if f

∣∣
D0

= f0, i.e., if f(z) = f0(z) for
all z ∈ D0.

So, when does a real analytic function have an analytic continuation from a real interval
to an open subset of the plane? And if a function has an analytic continuation, is that
continuation unique? That is, could a function f0 have two analytic continuations, f1 and
f2, with f1 6= f2? Such a possibility should be frightening, as it might mean that there is
more than one way to extend, say, the exponential to the plane—and so perhaps we have
been working with the wrong exponential all along!

Of course, this is nonsense. Analytic continuations, if they exist, surely must be unique.
The question is how to show it.



4.2. The zeros of an analytic function 210

Forcing two functions f1 and f2 to be the same is really saying that f1 − f2 = 0. And so
we will take up the study of the zeros of an analytic function: if f is analytic, what can we
say about those z at which f(z) = 0? In particular, what is the minimum amount of data
about a function that we need to conclude that it is always zero? (Not much.)

4.2. The zeros of an analytic function.

Power series are, euphemistically, “just” polynomials of “infinite” degree. A spot of work
with the roots of polynomials, then, will motivate some of the broader results on the zeros
of analytic functions that we will develop.

4.2.1. Roots of polynomials.

Let f(z) =
∑n

k=0akz
k be a polynomial of degree n ≥ 1. Note that this formula for f is its

Taylor expansion centered at 0, since f (k)(z) = 0 for all integers k ≥ n+ 1 and all z ∈ C. By
the fundamental theorem of algebra, f has a root z1 ∈ C. Since f is entire, we may expand
f as a power series centered at z1: f(z) =

∑∞
k=0bk(z − z1)k. Here b0 = f(z1) = 0, and also

bk = f (k)(z1)/k! = 0 for k ≥ n+ 1. Thus f(z) =
∑n

k=1bk(z − z1)k, and so we may factor

f(z) = (z − z1)
n∑
k=1

bk(z − z1)k−1 = (z − z1)p1(z), p1(z) =
n−1∑
j=0

bj+1(z − z1)j.

We now recognize p1 as a polynomial of degree n − 1; if n = 1, then p1 is constant, and
in particular p1(z1) 6= 0. Otherwise, f = 0, and then f would not be a polynomial of degree
at least 1. If n ≥ 2, then either p1(z1) 6= 0, or p1(z1) = 0, in which case we can repeat the
argument above and factor

p1(z) = (z − z1)p2(z),

where p2 is a polynomial of degree n− 2. In this case, we can rewrite

f(z) = (z − z1)2p2(z).

And then the process continues to allow us to conclude that for some integer m1 ≥ 1, there
is a polynomial p1 of degree n−m1 such that p1(z1) 6= 0 and

f(z) = (z − z1)m1p1(z). (4.2.1)

We want to call the integer m1 the multiplicity or order of z1 as a root of f . As
with most integer-dependent processes, a rigorous proof of the factorization (4.2.1) would
use induction on n.

We could go further from (4.2.1) and say that, if m < n, then p1 is a polynomial of degree
at least 1, and therefore p1 has a root z2. Note that z2 6= z1 since p1(z1) 6= 0. Then we could
write p1(z) = (z − z2)m2p2(z), where p2(z1) 6= 0. And so on. Eventually we would factor

f(z) = a(z − z1)m1 · · · (z − zr)mr , (4.2.2)

where z1, . . . , zr ∈ C are distinct andm1, . . . ,mr ≥ 1 are integers withm1+· · ·+mr = n. The
coefficient a ∈ C \ {0} is the constant polynomial that arises from the very last factorization
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of pr, i.e., pr(z) = (z − zr)mra. This factorization is the fundamental theorem of algebra,
and a rigorous proof also needs induction.

This is where we finished on Friday, April 5, 2024.

Somewhat more important than the full factorization (4.2.2) for our work on the zeros
of analytic is that if f is a polynomial with f(z0) = 0, then f(z) = (z − z0)mp(z) for some
integer m ≥ 1 and some polynomial p such that p(z0) 6= 0.

4.2.1 Example. Let f(z) = z2 − 1, so f(z) = (z − 1)(z + 1). While this is the full
factorization (4.2.2), in light of the previous remark consider just the root z0 = 1. Here
p(z) = z + 1 = z − (−1), since p(1) = 2 6= 0 and f(z) = (z − 1)p(z), so m = 1.

4.2.2. Isolated zeros.

Viewing analytic functions as “infinite degree polynomials,” we will see just how much the
behavior of zeros of analytic functions resembles the results above for polynomials.

4.2.2 Theorem. Let D ⊆ C be open and suppose that f : D → C is analytic. Let z0 ∈ D
such that f(z0) = 0 and take r > 0 such that B(z0; r) ⊆ D. Then one, and only one, of the
following holds:

(i) f(z) = 0 for all z ∈ B(z0; r).

(ii) There is an analytic function g : B(z0; r)→ C and an integer m ≥ 1 such that f(z) =
(z − z0)mg(z) for z ∈ B(z0; r) and, additionally, g(z0) 6= 0. The integer m is the smallest
integer k such that f (k)(z0) 6= 0, and g(z0) = f (m)(z0). Moreover, there is ρ ∈ (0, r] such
that f(z) 6= 0 for z ∈ B∗(z0; ρ).

Proof. Write f(z) =
∑∞

k=0ak(z − z0)k for z ∈ B(z0; r), where ak = f (k)(z0)/k!. We consider
the following two cases on the coefficients.

(i) ak = 0 for all k. Since f(z) =
∑∞

k=0ak(z−z0)k for all z ∈ B(z0; r), we then have f(z) = 0
for all z ∈ B(z0; r). This is (i).

(ii) There is n ≥ 1 such that an 6= 0. Note that a0 = f(z0) = 0, so this is only possible for
some n ≥ 1. Now let m ≥ 1 be the smallest integer satisfying am 6= 0. (That such a smallest
integer exists is a consequence of the well-ordering property of the positive integers.) We
may then write

f(z) =
∞∑
k=0

ak(z−z0)k =
∞∑
k=m

ak(z−z0)k =
∞∑
j=0

aj+m(z−z0)j+m = (z−z0)m
∞∑
j=0

aj+m(z−z0)j.

(4.2.3)
These equalities are valid for z ∈ B(z0; r).
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Then, for z ∈ B∗(z0; r), we have
∞∑
j=0

aj+m(z − z0)j =
f(z)

(z − z0)m
.

That is, the series on the left converges for z ∈ B∗(z0; r), and certainly the series converges
at z = z0. Thus the map

g : B(z0; r)→ C : z 7→
∞∑
j=0

aj+m(z − z0)j

is analytic. Moreover, we have the factorization f(z) = (z − z0)mg(z) from (4.2.3), and by
definition of g we compute g(z0) = am 6= 0. This is (ii), except for the claim about ρ, which
we leave as a problem below. �

4.2.3 Problem (!). Prove the result above about ρ. [Hint: use the continuity of g and the
fact that g(z0) 6= 0.]

Case (ii) above has a special name.

4.2.4 Definition. Let D ⊆ C be open and let f : D → C be analytic. Let z0 ∈ D and let
m ≥ 1 be an integer. Then z0 is an zero of f of order (multiplicity) m if for
some r > 0 such that B(z0; r) ⊆ D, there is an analytic function g : B(z0; r) → C such
that f(z) = (z − z0)mg(z) for z ∈ B(z0; r) with g(z0) 6= 0. In the case m = 1, the zero is
sometimes called simple.

4.2.5 Example. We find the zeros and their orders for several different functions.

(i) f1(z) = z2 on C. Here f1(z) = 0 if and only if z = 0, and we can basically read off
from the definition of f1 that 0 has order 2. Indeed, with g(z) = 1 for all z, we have
f1(z) = (z − 0)2g(z), and certainly g(0) 6= 0.

(ii) f2(z) = Log(z) on C \ {0}. Since Log(z) = ln(|z|) + iArg(z), we have Log(z) = 0 if
and only if both ln(|z|) = 0 and Arg(z) = 0. First, ln(|z|) = 0 if and only if |z| = 1, which
happens if and only if z = eit for some t ∈ (−π, π]. So, at the very least, all zeros of Log
lie on the unit circle. Next, since −π < t ≤ π, we have Arg(eit) = t, and so Arg(eit) = 0 if
and only if t = 0. Thus the only zero of Log is ei·0 = 1.

There is no transparent factorization of Log as Log(z) = (z − 1)g(z) for some explicit
function g, so we calculate derivatives to check the order of 1 as a root of Log. We do not
have to go far: Log′(z) = 1/z, so Log′(1) = 1 6= 0. Thus 1 is a zero of order 1 of Log, i.e.,
a simple zero.

(iii) f3(z) = e2z − 2ez + 1 on C. Here we use the factorization w2 − 2w + 1 = (w − 1)2

to write f3(z) = (ez − 1)2. Then f3(z) = 0 if and only if ez = 1, so the zeros of f are the
numbers 2πik for k ∈ Z. We calculate f ′3(z) = 2(ez − 1), so f ′3(2πik) = 0, and f ′′3 (z) = 2ez,
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so f ′′3 (2πik) = 2 6= 0. Each zero therefore has order 2.

4.2.6 Problem (!). Show that each zero of the sine is simple.

The functions f1 and f2 in the preceding example each had only one zero, although they
had different orders. The function f3 had infinitely many zeros, all of the same order, but
these zeros relate to each other “pairwise” in a special way: they are “isolated” from each
other. We can see this just by plotting the zeros: around each zero we can draw a ball that
does not intersect a neighboring ball.

R

iR

z1

z2

z−1

z−2

zk = 2πik

We formalize this geometric observation.

4.2.7 Definition. Let D ⊆ C be open and let f : D → C be analytic. A point z0 ∈ D
is an isolated zero of f if there is r > 0 such that B(z0; r) ⊆ D and f(z) 6= 0 for
z ∈ B∗(z0; r).

4.2.8 Problem (!). Let D ⊆ C be open, let f : D → C be analytic, and let z0 ∈ D with
f(z0) = 0. Prove the following. [Hint: the following are mostly consequences of Definition
4.2.7 and the mutual exclusivity of the two conclusions of Theorem 4.2.2.]

(i) Prove that z0 is an isolated zero of f if and only if z0 is a zero of order m of f for some
m ≥ 1.

(ii) Prove that z0 is not an isolated zero of f if and only if there is r > 0 such that
B(z0; r) ⊆ D with f(z) = 0 for all z ∈ B(z0; r).
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So, if z0 is an isolated zero of f , then z0 is the only zero of f in this ball B(z0; r); outside
the ball, f certainly may have zeros.

4.2.9 Problem (!). Show that there exists an entire function g such that sin(z) = zg(z).
Explain why g must have some zeros.

Additionally, for different isolated zeros of the same function, there are no guarantees
about the relative sizes of the balls surrounding them and excluding other zeros. In Example
4.2.5, the zeros of f3 were a nice, uniform distance away from each other. The same is true
for the roots of polynomials.

4.2.10 Problem (!). Explain why. Specifically, explain why if f is a polynomial, then
there exists d > 0 such that if f(z) = f(w) = 0, then |z − w| ≥ d.

This does not always happen.

4.2.11 Example. Let D = C \ {0} and let f(z) = sin(π/z). Then f is analytic on D and
f(z) = 0 if and only if π/z = kπ for some integer k. That is, the zeros of f are the numbers
zk = 1/k. These numbers are definitely isolated; after a bit of algebra, we can find rk > 0
such that if |z − 1/k| < rk, then z 6= 1/j for any integer j 6= k. But note that zk → 0
as k → ∞, and in particular the distance between successive zeros zk and zk+1 shrinks as
k →∞.

R

iR

zk−1zkzk+1

Although we cannot guarantee that the zeros of an analytic function are all a minimum
distance apart, we can be assured that they are isolated, at least for a function that is
not always zero. In other words, the only “interesting” zeros—those of a function that is not
identically zero—must be isolated. We will actually prove a sort of converse to this statement
and, in the process, demonstrate that only a small amount of data must be considered to
guarantee that a function is always zero. From this, we will quickly extract a test for
determining when two functions really are the same.

4.2.3. The identity principle.

4.2.12 Theorem. Let D ⊆ C be a domain and let f : D → C be analytic. The following
are equivalent.

(i) f(z) = 0 for all z ∈ D.



4.2. The zeros of an analytic function 215

(ii) There is z0 ∈ D such that f (k)(z0) = 0 for all k ≥ 0.

(iii) There is a sequence (zk) in D of distinct points (i.e., zk 6= zj for j 6= k) such that
f(zk) = 0 for all k and zk → z0 for some z0 ∈ D.

(iv) f has a zero that is not isolated.

This is where we finished on Monday, April 8, 2024.

Proof. (i) =⇒ (ii) This is essentially a direct calculation: if f(z) = 0 for all z ∈ D, then,
fixing z, we have

f ′(z) = lim
h→0

f(z + h)− f(z)

h
= lim

h→0

0

h
= 0.

Thus f ′(z) = 0 for all z ∈ D. Proceeding inductively, we find f (k)(z) = 0 for all z ∈ D and
all integers k ≥ 0. We can then take any point z0 ∈ D to satisfy the condition in part (ii).

(ii) =⇒ (iii) Since D is open, we may fix r > 0 such that B(z0; r) ⊆ D. Since f (k)(z0) = 0
for all k, we have f(z) =

∑∞
k=0f

(k)(z0)(z − z0)k/k! = 0 for all z ∈ B(z0; r). (In particular,
if D = B(z0; r), this shows that f(z) = 0 for all z ∈ D, i.e., this argument proves that (ii)
implies (i) in this special case.) Now set zk := z0 + r/(k + 1). It is straightforward to check
that zk 6= zj for j 6= k, that zk ∈ B(z0; r) ⊆ D for each k, and that zk → z0 ∈ D.

(iii) =⇒ (iv) We claim that z0 is this zero that is not isolated, and we prove this by con-
tradiction. If z0 is isolated, then there is r > 0 such that B(z0; r) ⊆ D and f(z) 6= 0 for
z ∈ B∗(z0; r). Since zk → z0, for k sufficiently large we have zk ∈ B(z0; r). And since the
points zk are all distinct, we have zk = z0 for at most one k ≥ 1. Thus for k large, we really
have zk ∈ B∗(z0; r). But f(zk) = 0, which contradicts our prior conclusion that f(z) 6= 0 for
z ∈ B∗(z0; r).

(iv) =⇒ (i) Let z0 be the zero that is not isolated. Problem 4.2.8 gives r > 0 with B(z0; r) ⊆
D, we have f(z) = 0 for all z ∈ B(z0; r). If D = B(z0; r), then we are done. Otherwise,
we need to do more work, and it is here that we will use for the first time in the proof the
hypothesis that D is connected, not merely open.

We want to show that f(z) = 0 for all z ∈ D. We give two arguments. The first is
geometric and relies on an assertion about subsets of C that requires more technical tools
from analysis than we care to develop here. The second is more rigorous but also possibly
more opaque.

Argument #1. Let z ∈ D and let γ be a path in D from z0 to z. It is possible to cover the
image of γ by a finite sequence of overlapping balls of the same radius ρ ≤ r centered at
points on the image of γ, starting with the point z0, such that the center of the jth ball is
contained in the (j − 1)st ball, and such that each ball is contained in D with z belonging
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to the last ball. That is, if Γ is the image of γ, then for some z1, . . . , zn ∈ Γ,

Γ ⊆
n⋃
k=0

B(zj; ρ) ⊆ D and zj−1 ∈ B(zj; ρ), j = 1, . . . , n with z ∈ B(zn; ρ).

For example, the situation could look like the following sketch, in which n = 3.

z0

z1

z2

z3 z

Here is how we exploit this “covering.” We know that f(w) = 0 for all w ∈ B(z0; ρ) ⊆
B(z0; r). We also know that z1 ∈ B(z0; ρ) and B(z0; ρ) is open. So, take s1 > 0 such that
B(z1; s1) ⊆ B(z0; ρ).

z0

z1

z2

z3 z

Then f(w) = 0 for all w ∈ B(z1; s1). Consequently, f (k)(z1) = 0 for all k; this is the
implication of (ii) by (i), or common sense. Then f(w) = 0 for all w ∈ B(z1; ρ) by the
implication of (i) by (ii) in the special case that D is a ball, or more common sense.

Now iterate this reasoning: for each j ≥ 1, we can show that f(w) = 0 for all w ∈
B(zj−1; ρ) and that B(zj; sj) ⊆ B(zj−1; ρ) for some sj > 0. Then f(w) = 0 for all w ∈
B(zj; sj), and so f (k)(zj) = 0 for all k ≥ 0.

z0

z1

z2

z3 z

z0

z1

z2

z3 z
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Hence f(w) = 0 for all w ∈ B(zj; ρ). Repeat this reasoning until we stop at j = n and
conclude f(w) = 0 for all w ∈ B(zn; ρ). Since z ∈ B(zn; ρ), we are done.

z0

z1

z2

z3 z

The difficulty with this approach is the construction of this special “finite covering” of
the image of γ, which needs, among other things, the tools of compactness and uniform
continuity. Below we present a less geometrically obvious (but still geometrically motivated)
proof that has the advantage of being logically self-contained to the tools that we already
possess.

Argument #2. Put

D1 :={z ∈ D | z is an isolated zero of f in D or f(z) 6= 0}

and
D2 :={z ∈ D | f(z) = 0 and z is not an isolated zero of f in D} .

Note that D2 is nonempty, that D1 ∪D2 = D, and that D1 ∩D2 = ∅. We claim that D1 and
D2 are both open; if this is true, then Problem 3.1.45 forces D1 = ∅ since D is a domain.
Then D = D2, in which case f(z) = 0 for all z ∈ D.

We first show that D1 is open. If z ∈ D1 is an isolated zero of f in D, let r > 0 be such
that B(z; r) ⊆ D with f(w) 6= 0 for w ∈ B∗(z0; r). Thus B∗(z; r) ⊆ D1, and since we know
z ∈ D1 already, we conclude B(z; r) ⊆ D. If z ∈ D1 satisfies f(z) 6= 0, then by continuity
there is r > 0 such that B(z; r) ⊆ D and f(w) 6= 0 for w ∈ B(z; r). This implies that
w ∈ D1 for all w ∈ B(z; r), and so B(z; r) ⊆ D1. Either way, we have found r > 0 such that
B(z; r) ⊆ D1.

Now we show that D2 is open. If z ∈ D2, then f(z) = 0 and z is not an isolated zero of f
in D. So, for some r > 0 such that B(z; r) ⊆ D, we have f(w) = 0 for all w ∈ B(z; r). That
is, each w ∈ B(z; r) is a zero of f ; now we show that each w is a zero that is not isolated,
which will imply w ∈ D2 and thus B(z; r) ⊆ D2. Given w ∈ B(z; r), take s > 0 such that
B(w; s) ⊆ B(z; r). It is still the case that f(ξ) = 0 for all ξ ∈ B(w; s), so w is a zero of f in
D that is not isolated, as desired. �

4.2.13 Problem (?). In the proof that part (iv) of Theorem 4.2.12 implies part (i), perhaps
a more natural decomposition would be

D1 :={z ∈ D | z is an isolated zero of f in D}
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and
D2 :={z ∈ D | z is not an isolated zero of f in D} .

Explain why D1 is not open, so this decomposition does not work.

4.2.14 Problem (?). Give an example of an open setD and an analytic function f : D → C
such that f is not identically zero on D but such that f has a zero in D that is not an
isolated zero. That is, f and D should satisfy the following two conditions.

(i) There exists z1 ∈ D such that f(z1) 6= 0.

(ii) There exist z2 ∈ D and r > 0 such that B(z2; r) ⊆ D and f(z) = 0 for all z ∈ B(z2; r).

Such an open set D cannot be connected—why?

4.2.15 Problem (!). Does the situation of Example 4.2.11 contradict the equivalence of
parts (i) and (iii) of Theorem 4.2.12?

While Theorem 4.2.12 is stated for the zeros of a function, this result carries over nicely
to comparing two functions: just study where their difference is zero.

4.2.16 Corollary (Identity principle). Let D ⊆ C be a domain and let f1, f2 : D → C be
analytic. Suppose that f1(zk) = f2(zk) for a sequence (zk) of distinct points in D such that
zk → z for some z ∈ D. Then f1 = f2 on D.

Proof. Put f = f1− f2 and use the equivalence of parts (i) and (iii) of Theorem 4.2.12. �

Perhaps the most useful “test” to emerge from this theorem is part (iii): f need only be
zero on a sequence of distinct points in D that converges to a point in D in order for us to
conclude that f is always zero on D! For example, if f is zero on a line segment in D (a
one-dimensional subset of an open, and therefore two-dimensional, set), then f is zero on all
of D. This is only a very “little” amount of data!

4.2.17 Problem (!). Prove this ebullient claim. Specifically, let D ⊆ C be a domain with
z1, z2 ∈ D and z1 6= z2. Suppose that f1, f2 : D → C are analytic with f1(z) = f2(z) for all
z ∈ [z1, z2]. Prove that f1 = f2 on D.

This is where we finished on Wednesday, April 10, 2024.

4.2.18 Example. Many “functional identities” that are known on R remain true for func-
tions extended analytically to C. Often they can be proved brute-force (the best force) from
the definitions of these analytic continuations, but we can also use the identity principle.

We know that ln(t1t2) = ln(t1) + ln(t2) for t1, t2 > 0. We would like to say that
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Log(z1z2) = Log(z1) + Log(z2) for z1, z2 ∈ C \ {0}, but this probably is not true for the
entire plane. Nonetheless, we can say the following.

Fix τ > 0 and define

f : (0,∞)→ R : t 7→ ln(tτ)−
[

ln(t) + ln(τ)
]
.

Then, really, f(t) = 0 for all t > 0, and so certainly f is real analytic. (We are not
saying anything about the real analyticity of ln, although since ln = Log

∣∣
(0,∞)

and Log is
holomorphic on C \ (−∞, 0], we do obtain the real analyticity of ln from the analyticity of
Log.)

Next, if τ > 0 and z ∈ C \ (−∞, 0], then zτ ∈ C \ (−∞, 0] as well. (Why? Consider the
real and imaginary parts of zτ.) Thus the function

f̃ : C \ (−∞, 0]→ C : z 7→ Log(zτ)−
[

Log(z) + Log(τ)
]

is analytic, since the principal logarithm is analytic except on the branch cut (−∞, 0].
Furthermore, f̃(t) = f(t) = 0 for all t ∈ (0,∞). By the identity principle, then, f̃(z) = 0
for all z ∈ C \ (−∞, 0]. That is,

Log(zτ) = Log(z) + Log(τ) (4.2.4)

for all z ∈ C \ (−∞, 0] and τ > 0.
Now let z, w ∈ C \ {0}, so zw = |zw|ei[Arg(z)+Arg(w)]. In particular, |zw| > 0. If

ei[Arg(z)+Arg(w)] ∈ C \ (−∞, 0], then we will have

Log(zw) = Log(|zw|) + Log(ei[Arg(z)+Arg(w)]) (4.2.5)

So, when do we have ei[Arg(z)+Arg(w)] ∈ C \ (−∞, 0]? Equivalently, when do we have
ei[Arg(z)+Arg(w)] 6∈ (−∞, 0]? We know that eiθ ∈ (−∞, 0] if and only if θ = (2k + 1)π for
some k ∈ Z. Since −π < Arg(z), Arg(w) < π, we have −2π < Arg(z) + Arg(w) ≤ 2π,
and so the only way for Arg(z) + Arg(w) to be an odd integer multiple of π is when
Arg(z) + Arg(w) = ±π.

We claim that if impose this restriction, then (hopefully familiar) properties of Log and
Arg combine with (4.2.5) to imply Log(zw) = Log(z) + Log(w). In short, we will have
shown

z, w ∈ C \ {0} with − π < Arg(z) + Arg(w) < π =⇒ Log(zw) = Log(z) + Log(w).

4.2.19 Problem (!). (i) Let z, w ∈ C \ {0} such that −π < Arg(z) + Arg(w) < π. Use
(4.2.5) and various properties of Log and Arg to show that Log(zw) = Log(z) + Log(w).

(ii) Give an example of z, w ∈ C\{0} such that Log(zw) 6= Log(z)+Log(w). [Hint: it will
be necessary that Arg(z) + Arg(w) = ±π, and this can be achieved by taking z, w ∈ iR.]
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4.2.4. Analytic continuation.

Now we can answer a major question that has been driving us since we first extended the
exponential to the plane: is there only one way to extend a real analytic function into C?
Yes.

4.2.20 Theorem (Analytic continuation of real analytic functions). Let I ⊆ R be an
interval and let f : I → R be real analytic. Then there exists a domain D ⊆ C such that
I ⊆ D and that f has a unique analytic continuation on D.

Proof. The uniqueness result is the identity theorem; see Problem 4.2.22.
Now we show existence. First we have to construct the domain D. For each t ∈ I, there

is rt > 0 such that the Taylor series for f converges to f on (t − rt, t + rt) ∩ I. We may as
well make rt so small that (t− rt, t+ rt) ⊆ I. Then there is a sequence (ak,t) of real numbers
such that f(τ) =

∑∞
k=0ak,t(τ− t)k for all τ ∈ (t− rt, t+ rt). Specifically, ak,t = f (k)(t)/k!.

Now we set

D :=
⋃
t∈I

B(t; rt) ={z ∈ C | |z − t| < rt for some t ∈ I} .

We claim that D is open and connected. For openness, fix z ∈ D and take t ∈ I such
that z ∈ B(t; rt); since B(t; rt) is open, there is r > 0 such that B(z; r) ⊆ B(t; rt). For
connectedness, fix z, w ∈ D. Take z ∈ B(t; rt) and w ∈ B(s; rs) for some t, s ∈ I. Let
γ = [z, t]⊕ [t, s]⊕ [s, w]; then γ is a path in D with initial point z and terminal point w.

R
t

z

s

w

Next, we show that with the sequence (ak,t) and the radius rt > 0 defined above, the
series

∑∞
k=0ak,t(z − t)k converges for each z ∈ B(t; rt). Specifically, we show that the series

converges on B(t; s) for each s < rt. So, fix some such s, so t + s ∈ (t − rt, t + rt). Then
the series

∑∞
k=0ak,t((t + s) − t)k converges. We know that this series converges for any

z ∈ (t − rt, t + rt). Part (ii) of Problem 4.1.10 with z0 = t and z1 = t + s tells us that the
series then converges for each z ∈ C with |z − t| < |(t+ s)− s| = s, as desired.

Finally, we define the analytic continuation. First, for t ∈ I, define

ft : B(t; rt)→ C : z 7→
∞∑
k=0

ak,t(z − t)k.

By the work above, ft is analytic on B(t; rt). Next, note that if B(t; rt) ∩ B(s; rs) 6= ∅ for
some t, s ∈ I, then by Problem 4.2.21 below, there is a sequence of distinct points (wk) in
B(t; rt) ∩ B(s; rs) such that wk → w for some w ∈ B(t; rt) ∩ B(s; rs). Since ft(wk) = fs(wk)
for each k, the identity principle implies that ft(z) = fs(z) for each z ∈ B(t; rt) ∩ B(s; rs).
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Consequently, we may define

f̃ : D → C : z 7→ ft(z) if z ∈ B(t; rt).

There is no ambiguity in this definition if z ∈ B(t; rt) ∩ B(s; rs) for two distinct t, s ∈ I, as
the work above shows ft(z) = fs(z). Finally, since each ft is analytic on B(t; rt), the function
f̃ is analytic on D. And clearly f̃(t) = f(t) for each t ∈ I. �

4.2.21 Problem (?). Let z1, z2 ∈ C and r1, r2 > 0 such that B(z1; r1) ∩ B(z2; r2) 6= ∅.
Show that there exists a sequence of distinct points (wk) in B(z1; r1) ∩ B(z2; r2) such that
wk → w for some w ∈ B(z1; r1) ∩ B(z2; r2). [Hint: as usual, start by drawing a picture.]

4.2.22 Problem (+). (i) Let D ⊆ C be a domain and let I ⊆ R be a nonempty interval
such that I ⊆ D. Suppose that f1, f2 : D → C are analytic with f1(t) = f2(t) for all t ∈ I.
Prove that f1 = f2 on D. [Hint: use Problem 4.2.17.]

(ii) Prove that analytic continuations, whether of real analytic functions defined on a real
interval or not, are unique. That is, suppose that D0 ⊆ C is a domain and f : D0 → C is
analytic. Let D ⊆ C also be a domain with D0 ⊆ D. Suppose that f̃1, f̃2 : D → C are both
analytic continuations of D0. Then f̃1 = f̃2.

4.3. Isolated singularities.

We now know a great deal about analytic functions, especially their power series expansions
and their zeros. What happens if a function fails to be analytic, or holomorphic, or differen-
tiable, on some proper subset of its domain? Depending on the geometry of that region of
failure, we may still be able to say quite a lot about the function. Studying such failures is
not just a natural evolution of our narrative—frequently applications demand consideration
of functions that are not analytic in certain controlled ways.

We begin with the simplest failure of analyticity: the isolated singularity.

4.3.1 Definition. Let z0 ∈ C and r > 0. A function f : B∗(z0; r) → C has an isolated
singularity at z0 if f is analytic on B∗(z0; r).

4.3.2 Remark. We will not study “non-isolated singularities.” We might call a point z0 ∈ C
a non-isolated singularity of a function f : B∗(z0; r)→ C if there is no ρ ∈ (0, r) such that
f is analytic on B∗(z0; ρ). For example, Log is not analytic on any punctured ball centered
at the origin because such a ball contains a “continuum” of singularities inherited from
its intersection with the negative real axis. But there is very little more to say about the
behavior of Log on the negative real axis than we have already exhaustively said; there is
much more to say about isolated singularities.

It may appear that there are lots of ways for a function to fail to be analytic at a single
point in a ball, and lots of possible behaviors on that punctured ball, but the power of
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analyticity on the punctured ball is such that there are only really three situations to consider.
The following three canonical examples, all of which are functions defined and analytic on
C \ {0}, will illustrate those three behaviors:

f(z) =
ez − 1

z
, g(z) =

ez − 1

z2
, and h(z) = e1/z.

The form of these functions illustrates a general truth: most isolated singularities arise in
practice via some kind of division by 0.

4.3.1. Removable singularities.

If f : B∗(z0; r) → C has an isolated singularity at z0, perhaps it is natural to ask about the
limit behavior of f at z0. Either the limit limz→z0 f(z) exists, or it does not. If the limit
does exist, our experience with removable discontinuities suggests that we can extend f to
z0 and retain continuity, perhaps analyticity.

We can.

4.3.3 Example. The function

f : C \ {0} → C : z 7→ ez − 1

z

can be written, for z 6= 0, as

f(z) =
1

z

(
∞∑
k=0

zk

k!
− 1

)
=

1

z

∞∑
k=1

zk

k!
=
∞∑
k=1

zk−1

k!
=
∞∑
j=0

zj

(j + 1)
!.

Certainly this series converges when z = 0, and specifically it converges to 1. So, if we
define

f̃ : C→ C : z 7→
∞∑
j=0

zj

(j + 1)
!,

then f̃ is entire and f̃
∣∣∣
C\{0}

= f . In particular, note that limz→0 f(z) = f̃(0) = 1. (We

probably wanted to say this from the start thanks to L’Hospital’s rule, except we never
developed that for functions of a complex variable.) Thus we constructed an analytic
continuation f̃ of f by setting

f̃(z) =

{
f(z), z 6= 1

limw→1 f(w), z = 1.

This construction did not require all that much work, since f was essentially a power series
centered at 0 in disguise.

This example generalizes in several ways. Here is the first generalization.
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4.3.4 Theorem. Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r) → C is analytic and
L := limz→z0 f(z) exists. Then the function

f̃ : B(z0; r)→ C : z 7→

{
f(z), z 6= z0

L, z = z0

is analytic.

Proof. The ball B(z0; r) is a star domain with star-center z0, and the function f̃ is continuous
on B(z0; r) and analytic on B∗(z0; r). The Cauchy integral theorem implies that

∫
γ
f̃ = 0 for

all closed curves γ in B(z0; r), and so Morera’s theorem (part (iii) of Problem 3.6.21) implies
that f̃ is analytic on B(z0; r). �

We now name this first kind of isolated singularity.

4.3.5 Definition. Let z0 ∈ C and r > 0. An analytic function f : B∗(z0; r) → C has a
removable singularity at z0 if the limit limz→z0 f(z) exists.

Theorem 4.3.4 says that any analytic function f : B∗(z0; r)→ C with a removable singu-
larity at z0 has an analytic continuation to that singularity. Conversely, the existence of an
analytic continuation f̃ : B(z0; r)→ C of f implies that f has a removable singularity at z0,
since the limit limz→z0 f(z) = limz→z0 f̃(z) must exist by the continuity of f̃ and the equality
f(z) = f̃(z) on B∗(z0; r).

4.3.6 Problem (!). Let z0 ∈ C and r > 0. Show that an analytic function f : B∗(z0; r)→ C
has a removable singularity at z0 if and only if there is a sequence (ak) such that

f(z) =
∞∑
k=0

ak(z − z0)k, z ∈ B∗(z0; r).

[Hint: if f has this expansion, then argue that f = f̃
∣∣∣
B∗(z0;r)

, where f̃ is this power series

on all of B(z0; r). Conversely, if f has a removable singularity, use Theorem 4.3.4 to get
this analytic continuation of f .]

4.3.7 Problem (?). Let D ⊆ C be open, let f : D → C be analytic, and let z0 ∈ D. Define

φ : D → C : z 7→


f(z)− f(z0)

z − z0

, z 6= z0

f ′(z0), z = z0.

(i) Show that φ is analytic on D.
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(ii) What is the Taylor series of φ centered at z0?

(iii) Compare these results to the difference quotient lemma (Lemma 2.5.16).

(iv) How is this a generalization of Example 4.3.3?

4.3.8 Problem (+). Let z0 ∈ C and r > 0. Use the following to prove the Riemann
removability criterion: an analytic function f : B∗(z0; r) → C has a removable
singularity at z0 if and only if f is bounded in the sense that for some ρ ∈ (0, r] and
M > 0, it is the case that |f(z)| ≤M for all z ∈ B∗(z0; ρ).

(i) (⇐=) Use the fact that f has an analytic continuation to B(z0; r) and the extreme
value theorem on B(z0; r/2).

(ii) (=⇒) Since f is bounded, we can artificially force some limit behavior at z0 by studying

g : B∗(z0; r)→ C : z 7→ (z − z0)f(z).

Use the squeeze theorem to show that limz→z0 g(z) = 0, so g has a removable singularity
at z0 and thus an analytic continuation g̃ to B(z0; r). Develop a power series expansion
for f at z0 based on this analytic continuation, its value g̃(0) = 0, and the identity f(z) =
g(z)/(z − z0) for z 6= z0.

4.3.9 Problem (?). (i) Let D ⊆ C be open and let f : D → C be analytic. Show that f
has a removable singularity at every point of D.

(ii) Let D ⊆ C be open and f : D → C be continuous. Suppose that for some z0 ∈ D, f
is analytic on D \ {z0}. Show that f is really analytic on D.

4.3.2. Poles.

Suppose next that f : B∗(z0; r) → C is analytic but the limit limz→z0 f(z) does not exist.
As we know from calculus, there are different gradations of a limit not existing. An infinite
limit (a vertical asymptote) technically does not exist as a real number, but knowing that
a limit is infinite surely tells us more information than just saying that the limit does not
exist.

4.3.10 Example. Consider the function

g : C \ {0} → C : z 7→ ez − 1

z2
.

We study g through two approaches.
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(i) Just as in Example 4.3.3, we can try to expand g as a power series:

g(z) =
1

z2

(
∞∑
k=0

zk

k!
− 1

)
=

1

z2

∞∑
k=1

zk

k!
=
∞∑
k=1

zk−2

k!
= z−1 +

∞∑
k=2

zk−2

k!
= z−1 +

∞∑
j=0

zj

(j + 2)!
.

However, in contrast to the calculation in Example 4.3.3, we have not really expressed g
as a power series but rather as the sum of some negative powers of z (well, one negative
power) and a power series.

What is this saying about the limit behavior of g near 0? The series
∑∞

j=0z
j/(j + 2)!

gives an entire function with limz→0

∑∞
j=0z

j/(j + 2)! = 1/2, and so perhaps we expect that

lim
z→0

g(z) = lim
z→0

(
z−1 +

∞∑
j=0

zj

(j + 2)!

)
= lim

z→0
z−1 +

1

2
=∞.

However, this is nonsense, as we have never developed the notion of what an infinite limit
for a function of a complex variable should mean.

(ii) We might recognize g as the quotient of f from Example 4.3.3 with z. That is,

g(z) =
(ez − 1)/z

z
=
f(z)

z
, where lim

z→0
f(z) = 1.

Does this mean that
lim
z→0

g(z) = lim
z→0

f(z)

z
=

1

0
=∞?

It strongly suggests that, but it more strongly suggests that we need a notion of infinite
limit first.

This is where we finished on Friday, April 12, 2024.

4.3.11 Definition. Let z0 ∈ C and r > 0. For a function f : B∗(z0; r) → C, we write
limz→z0 |f(z)| =∞ if for all M > 0, there is δ ∈ (0, r] such that if 0 < |z − z0| < δ, then
M < |f(z)|.

4.3.12 Example. We have

lim
z→0

1

|z|
=∞,

for given M > 0, we can take δ = 1/M to see that if |z| < δ, then M < 1/|z|.
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4.3.13 Problem (!). Show that

lim
z→0

∣∣∣∣ez − 1

z2

∣∣∣∣ =∞.

[Hint: the limit limz→0(ez − 1)/z = 1 will be helpful.]

More generally, suppose that f : B∗(z0; r) → C has an isolated singularity at z0 with
limz→z0 |f(z)| =∞. Take δ > 0 such that if z ∈ B∗(z0; δ), then 1 < |f(z)|, so in particular
f(z) 6= 0 for z ∈ B∗(z0; δ). Then the function

g : B∗(z0; δ)→ C : z 7→ 1

f(z)

is defined and analytic. Moreover, it is not too much work to check that limz→z0 g(z) = 0.

4.3.14 Problem (!). Check this.

Then g has a removable singularity at z0 and therefore an analytic continuation to B(z0; δ)
of the form

g̃ : B(z0; δ)→ C : z 7→

{
1/f(z), z 6= z0

0, z = z0.

Since 1/f(z) 6= 0 for all z ∈ B∗(z0; δ), we see that g̃(z) 6= 0 for z ∈ B∗(z0; δ), too. Then g̃
really has an isolated zero at z0, and so there is an integer m ≥ 1 and an analytic function
q : B(z0; ρ)→ C for some ρ ∈ (0, δ] such that for z ∈ B(z0; ρ),

g̃(z) = (z − z0)mq(z) and q(z) 6= 0.

Thus for z ∈ B∗(z0; ρ), we have

f(z) =
1

g̃(z)
=

1

(z − z0)mq(z)
=

1/q(z)

(z − z0)m
.

Put p(z) := 1/q(z) to conclude the following.

4.3.15 Theorem. Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r) → C is analytic and
limz→z0 |f(z)| =∞. Then there exist ρ ∈ (0, r], an integer m ≥ 1, and an analytic function
p : B(z0; ρ)→ C such that p(z0) 6= 0 and

f(z) =
p(z)

(z − z0)m
for z ∈ B∗(z0; ρ).

This gives rise to another kind of named isolated singularity.
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4.3.16 Definition. Let z0 ∈ C and r > 0. An analytic f : B∗(z0; r) → C has a pole
of order m at z0 if there exist ρ ∈ (0, r], an integer m ≥ 1, and an analytic function
p : B(z0; ρ)→ C such that p(z0) 6= 0 and

f(z) =
p(z)

(z − z0)m
for z ∈ B∗(z0; ρ). (4.3.1)

4.3.17 Example. Consider again the function

f(z) =
ez − 1

z2

on C \ {0}. We might be tempted to say that f has a pole of order 2 at 0 because of the
z2 in the denominator, but this is wrong. The numerator satisfies e0 − 1 = 0, and that is
not what we should have in (4.3.1). Rather, we can rewrite

f(z) =
(ez − 1)/z

z
=
p(z)

z
,

where

p(z) =

{
(ez − 1)/z, z 6= 0

1, z = 0

is analytic by Example 4.3.3. Obviously p(0) 6= 0, so f has a pole of order 1 at 0.

4.3.18 Remark. Informally, we might say that f has a pole of order m at z0 if and only if
1/f has a zero of order m at z0. This is not quite true, since 1/f(z) 6= 0 for all z at which
this quotient is defined (and it is not defined at z0 anyway), but hopefully the euphemism
is helpful.

4.3.19 Problem (!). Let z0 ∈ C and r > 0. Show that an analytic function f : B∗(z0; r)→
C has a pole of order m at z0 if and only if there exist numbers ak ∈ C for 1 ≤ k ≤ m and
an analytic function g : B(z0; r)→ C such that

f(z) =
m∑
k=1

ak
(z − z0)k

+ g(z), z ∈ B∗(z0; r) and am 6= 0.

[Hint: when all else fails, give up and go back to the definition.]

4.3.3. Essential singularities.

We have now seen two kinds of behaviors at isolated singularities: either limz→z0 f(z) exists,
or it does not but limz→z0 |f(z)| =∞. The third possibility, simply, is that neither of these
behaviors holds.
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4.3.20 Example. Let
f : C \ {0} → C : z 7→ e1/z.

Put zk = 1/2πik to see that zk → 0 and f(zk) = e2πik = 1. Thus f(zk)→ 1 as well, and so
it cannot be the case that limz→z0 |f(z)| =∞.

Now put wk = 1/k to see that wk → 0 as well but f(wk) = ek → ∞. Then the limit
limz→z0 f(z) cannot exist.

Finally, we examine the series behavior of f near 0:

f(z) = e1/z =
∞∑
k=0

(1/z)k

k!
=
∞∑
k=0

z−k

k!
.

This representation of f contains infinitely many negative powers of z, unlike the pole in
Example 4.3.10, which had only finitely many (specifically, one), and unlike the removable
singularity in Example 4.3.3, which had none.

4.3.21 Definition. Let z0 ∈ C and r > 0. An analytic function f : B∗(z0; r) → C has an
essential singularity at z0 if z0 is neither a removable singularity nor a pole. That
is, the limit limz→z0 f(z) does not exist, but it is also not the case that limz→z0 |f(z)| =∞.

This is not the most helpful of definitions, as it requires us to check that two conditions
do not hold. However, the situation of Example 4.3.20 in fact characterizes essential sin-
gularities. Along one “path of approach” to an essential singularity, a function blows up,
but along a different, suitably chosen path, the function can become arbitrarily close to any
z ∈ C. In Example 4.3.20, we just saw that with the case of z = 1.

4.3.22 Problem (!). Fix z ∈ C. Determine a sequence (zk) such that zk → 0 and
e1/zk → z.

Given that a function with an essential singularity can become arbitrarily close to any
complex number for inputs close to the singularity as well as become arbitrarily large, the
words “nervous” and “erratic” are often used to describe behavior near essential singularities.
Here is the precise statement of this behavior.

4.3.23 Theorem (Casorati–Weierstrass). Let z0 ∈ C and r > 0. Let f : B∗(z0; r) → C
be analytic. Then z0 is an essential singularity of f if and only if both of the following hold.

(i) There is a sequence (wk) in B∗(z0; r) such that wk → z0 and |f(wk)| → ∞.

(ii) For each z ∈ C, there is a sequence (zk) in B∗(z0; r) such that zk → z0 and f(zk)→ z.

Proof. (⇐=) The condition (i) means that limz→z0 f(z) cannot exist (as a finite complex
number), and therefore z0 is not a removable singularity of f . The condition (ii) means that
limz→z0 |f(z)| 6=∞, and therefore z0 is not a pole of f . The only other possibility is that z0

is an essential singularity of f .
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(=⇒) This is Problem 4.3.24. �

4.3.24 Problem (+). Prove the forward direction of the Casorati–Weierstrass theorem as
follows.

(i) If z0 is an essential singularity of f , then z0 is not removable. By the Riemann re-
movability criterion (Problem 4.3.8), f is not bounded near z0. Manipulate quantifiers to
produce the sequence (wk).

(ii) Fix z ∈ C and suppose there is no sequence (zk) with zk → z0 and f(zk) → z.
Argue that there exist M , ρ > 0 such that M ≤ |f(w) − z| for all w ∈ B∗(z0; ρ). [Hint:
contradiction, manipulate quantifiers.] Conclude that g(w) := 1/[f(w) − z] is analytic
and bounded on B∗(z0; ρ); obtain an analytic continuation g̃ of g to B(z0; ρ) by Riemann
removability. Solve for f as f(w) = 1/g̃(w) + z for w ∈ B∗(z0; ρ). Depending on whether
or not limw→z0 g̃(w) = 0, conclude that either f has a pole at z0 or a removable singularity
there. This contradicts the assumption that f has an essential singularity at z0.

We might also try to characterize essential singularities by the series behavior of functions
near them.

4.3.25 Problem (!). Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r) → C is analytic
and that we can write

f(z) =
∞∑
k=1

ak
(z − z0)k

+ g(z), z ∈ B∗(z0; r),

where g : B(z0; r)→ C is analytic and infinitely many of the ak are nonzero. Explain why
f must have an essential singularity at z0. [Hint: Problems 4.3.6 and 4.3.19.]

The challenge is the reverse: why, if f has an essential singularity at z0, must f also have
a series expansion of the peculiar form given in the problem above? This is true, but it is
quite hard to show with only the tools that we have on hand. So, we need new tools.

4.4. Laurent series.

We introduced removable singularities, poles, and essential singularities via the limit behavior
of the function at the singularity. Removable singularities lead to analytic continuations,
poles lead to a nice fractional representation, and essential singularities lead to very nervous
behaviors. It would, perhaps, be nice if there were one “unified” test that we could apply to
singularities to determine their nature. We will develop such a test by examining the series
behavior of functions near isolated singularities.

The pattern that emerged from our previous examples is that removable singularities at
z0 lead to ordinary power series at z0; poles lead to series with negative powers of z − z0,
but only finitely many such negative powers (up to and including the order of the pole); and
essential singularities have infinitely many negative powers of z − z0. This pattern is indeed
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true, as we have verified for removable singularities in Problem 4.3.6 and for poles in Problem
4.3.19, but we have yet to verify it for essential singularities. We do this now. Moreover,
we can do this in a more general context than the isolated singularity, which requires the
function to be analytic on a punctured ball centered at z0.

4.4.1 Example. The function

f(z) =
1

z(z − 1)(z − 3)

is analytic on C \ {0, 1, 3} with simple poles at the points 0, 1, and 3. Much of our prior
success hinged on working on open balls on which functions were analytic. Now we might
try the next best thing: what are the largest ball-like subsets of C on which f is analytic?
Such subsets would have to exclude the three poles.

We might start with the largest punctured balls on which f is analytic. These are the
sets of points z ∈ C such that 0 < |z| < 1, 0 < |z − 1| < 1, and 0 < |z − 3| < 2.

R

iR

1 3
R

iR

1 3

R

iR

31

We might also consider regions “between” the singularities. One such region is the “ring”
of points z such that 1 < |z| < 3. This is really the open ball B(0; 3) with the closed ball
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B(0; 1) removed from its center.

R

iR

1 3

Another region is the set of z such that 3 < |z|, which is the whole plane with the ball
B(0; 3) removed.

R

iR

1 3

We place under one name the different subsets of C that appeared in the preceding
example.

4.4.2 Definition. Let z0 ∈ C and 0 ≤ r < R ≤ ∞. The annulus centered at z0

of inner radius r and outer radius R is

A(z0; r, R) :={z ∈ C | r < |z − z0| < R} .
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4.4.3 Example. The function f from Example 4.4.1 is analytic on any annulus A(z0; 0, R),
where z0 ∈ C \ {0, 1, 3} and R > 0 is chosen such that B(z0;R) ⊆ C \ {0, 1, 3}. But
at the points z0 = 0, 1, 3, the choices of annuli A(z0; r, R) on which f is analytic are
more complicated. We need to choose r and R to exclude 0, 1, and 3; certainly taking
r > 0 excludes z0 from A(z0; r, R), but what about the other two singularities? Here are
the largest such annuli, and we remark on how we chose the radii to exclude the other
singularities in addition to z0.

(i) z0 = 0. They are (1) A(0; 0, 1) [radii chosen to exclude 1], (2) A(0; 1, 3) [radii chosen
to exclude 1 and 3], and (3) A(0; 3,∞).

1

2

3

R

iR

(ii) z0 = 1. They are (1) A(1; 0, 1) [radii chosen to exclude 0], (2) A(1; 1, 2) [radii chosen
to exclude 0 and 1]; A(1; 2,∞).

1

2

3

R

iR

(iii) z0 = 3. They are (1) A(3; 0, 2) [radii chosen to exclude 1]; (2) A(3; 2, 3) [radii chosen
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to exclude 1 and 0]; A(3; 2,∞).

1

2

3

R

iR

4.4.4 Problem (!). Let z0 ∈ C. Prove the following set equalities for annuli.

(i) If 0 < R <∞, then A(z0; 0, R) = B∗(z0;R).

(ii) A(z0; 0,∞) = C \ {z0}.

(iii) If 0 < r <∞, then A(z0; r,∞) = C \ B(z0; r).

4.4.5 Problem (!). Let 0 < z1 < z2 and suppose z3 ∈ C with Re(z3) > 0 and Im(z3) > 0.
Draw the largest annuli centered at z1, z2, and z3 such that none of z1, z2, or z3 belong to
any of these annuli. [Hint: this is what we drew in Example 4.4.3.]

This is where we finished on Monday, April 15, 2024.

We can now state the principal result about the series behavior of an analytic function
on an annulus. Its proof is in Appendix C.6.

4.4.6 Theorem. Let z0 ∈ C and 0 ≤ r < R ≤ ∞. Suppose that f : A(z0; r, R) → C is
analytic. Then there exist unique analytic functions

fr : B(0; 1/r)→ C and fR : B(0;R)→ C,

where we interpret B(0; 1/0) = B(0;∞) = C, such that fr(0) = 0 and

f(z) = fr

(
1

z − z0

)
+ fR(z − z0)
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for each z ∈ A(z0; r, R). We may expand fr and fR as power series centered at 0 to find

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

a−k
(z − z0)k

=
∞∑

k=−∞

ak(z − z0)k, (4.4.1)

where for each k ∈ Z, the coefficient ak satisfies

ak =
1

2πi

∫
|z−z0|=s

f(z)

(z − z0)k+1
dz (4.4.2)

for any s ∈ (r, R).
The ordered pair (fr, fR) is the Laurent decomposition of f on A(z0; r, R); the

series (4.4.1) is the Laurent series of f on A(z0; r, R); and the coefficients (4.4.2) are
the Laurent coefficients of f on A(z0; r, R). The function fr is the principal
part of the Laurent decomposition. The doubly infinite series on the right of (4.4.1) is
defined to be the sum of the two series on the left.

4.4.7 Remark. (i) We often compress the series expansion in (4.4.1) to

∞∑
k=−∞

ak(z − z0)k :=
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

a−k
(z − z0)k

More generally, we are taking the view that if (wk) is a doubly-infinite sequence,
i.e., a function from Z to C, then

∞∑
k=−∞

wk :=
∞∑
k=0

wk +
∞∑
k=1

w−k,

and the doubly-infinite series on the left converges if and only if each series on
the right converges. This view of doubly-infinite series is not universally applied (cf. the
“Cauchy principal value” of Fourier series).

(ii) Above we called the function fr the principal part of the Laurent series for f . The
function

A(z0; r, R)→ C : z 7→ fr((z − z0)−1) =
∞∑
k=1

a−k
(z − z0)k

may also be called the principal part.

4.4.8 Problem (!). Explain why the principal part of the Laurent decomposition of a
function at an isolated point is entire.

The formula (4.4.2) is useful for estimating the Laurent coefficients in terms of f , but
it rarely provides an expedient way of actually calculating the coefficients. As with Taylor
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series, the strategy is to reduce a new Laurent expansion to an old one (or an old Taylor
series).

Laurent decompositions and series meld analysis and geometry. The same function f may
be defined on different annuli centered at a point z0, and it is likely that f will have different
Laurent decompositions and series on those different annuli. We saw this with Taylor series:
changing the center of the series changes the coefficients of the series. But now the center of
the annulus can stay the same, and if the radii change, so may the Laurent decomposition
and series.

4.4.9 Example. We find a variety of Laurent decompositions and series for

f : C \ {0, 1, 3} → C : z 7→ 6

z(z − 1)(z − 3)
=

2

z
− 3

z − 1
+

1

z − 3
,

which we previously considered in Examples 4.4.1 and 4.4.3, up to the convenient scaling
factor of 6 (which makes the denominators in the partial fractions expansion above nicer).

These are mostly consequences of careful algebraic manipulations involving geometric
series, which we spell out in full generality in Problem 4.4.11 below. More informally, the
goal is to rewrite each of the rational functions in the partial fractions expansion of f above
in the form

? · 1

1−??
, |??| < 1.

Then we can expand the factor 1/(1−??) using the geometric series:

1

1−??
=
∞∑
k=0

(??)k.

(i) On A(0; 0, 1). We want to write

f(z) = f0

(
1

z

)
+ f1(z), 0 < |z| < 1,

where f0 : B(0; 1/0) = C→ C and f1 : B(0; 1)→ C are analytic.
Since |z| < 1, the geometric series directly gives

− 3

z − 1
=

3

1− z
= 3

∞∑
k=0

zk.

Next, we factor out 3 to find
1

z − 3
=

1

3
(z

3
− 1
) .

Since |z| < 1, we also have |z/3| < 1, so this is the right set-up for the geometric series.
(Had we factored out z to get 1/z(1− 3/z), we would have |3/z| < 1 if and only if 3 < |z|,
and that is not the case in this annulus.) So,

1

z − 3
= −1

3

 1

1− z

3

 = −1

3

∞∑
k=0

(z
3

)k
.
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Note that the maps z 7→ −3/(z−1) and z 7→ 1/(z−3) are analytic at 0, so these expansions
really just find their Taylor series at 0.

We therefore have

f(z) =
2

z
+ 3

∞∑
k=0

zk − 1

3

∞∑
k=0

(z
3

)k
=

2

z
+
∞∑
k=0

(
3− 1

3k+1

)
zk.

This is the Laurent series for f . Its Laurent decomposition is given by

f0(w) = 2w and f1(w) =
∞∑
k=0

(
3− 1

3k+1

)
wk.

Changing variables to w is not all that necessary here, but hopefully it clears up the role
of the reciprocal 1/z in f0(1/z), and later it will help us distinguish z − z0 in the Laurent
series from the behavior of f0 and f1. Note that f0 is entire and f1 contains a term that is a
multiple of the geometric series, so f1 is only defined on B(0; 1). This is what we predicted
at the start.

(ii) On A(0; 1, 3). We want to write

f(z) = f1

(
1

z

)
+ f3(z), 1 < |z| < 3,

where f1 : B(0; 1/1) → C and f3 : B(0; 3) → C are analytic. We can no longer rewrite
−3/(z−1) with the geometric series exactly as before, since now |z| > 1. But this suggests
dividing by z instead:

− 3

z − 1
= − 3

z

(
1− 1

z

) ,
and here |1/z| < 1. Thus

− 3

z − 1
= −3

z

 1

1− 1

z

 = −3

z

∞∑
k=0

1

zk
.

Next, since |z| < 3, we have |z/3| < 1, and so the same calculations and reasoning as
above give

1

z − 3
= −1

3

 1

1− z

3

 = −1

3

∞∑
k=0

(z
3

)k
.

Thus

f(z) =
2

z
− 3

z

∞∑
k=0

1

zk
− 1

3

∞∑
k=0

(z
3

)k
=

2

z
− 3

z
− 3

z

∞∑
k=1

1

zk
− 1

3

∞∑
k=0

(z
3

)k
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= −1

z
+
∞∑
k=1

(−3)
1

zk+1
+
∞∑
k=0

(
− 1

3k+1

)
zk = −1

z
+
∞∑
j=0

(−3)
1

zj
+
∞∑
k=0

(
− 1

3k+1

)
zk.

Here we have taken pains to write everything inside the sums, the better to see the coeffi-
cients on the powers of z. The Laurent decomposition is therefore

f1(w) := −w +
∞∑
j=0

(−3)wj and f3(w) :=
∞∑
k=0

(
− 1

3k+1

)
wk.

(iii) On A(0; 3,∞). We want to write

f(z) = f3

(
1

z

)
+ f∞(z), |3| < z(<∞),

where f3 : B(0; 1/3)→ C and f∞ : B(0;∞) = C→ C are analytic. As before, since 3 < |z|,
we have |1/z| < |3/z| < 1, and so the expansion

− 3

z − 1
= −3

z

∞∑
k=0

1

zk

is still valid. Next, however, we use the estimate |3/z| < 1 to obtain

1

z − 3
=

1

z

(
1− 3

z

) =
1

z

 1

1− 3

z

 =
1

z

∞∑
k=0

(
3

z

)k
.

Thus

f(z) =
2

z
− 3

z

∞∑
k=0

1

zk
+

1

z

∞∑
k=0

(
3

z

)k
=

2

z
− 3

z
− 3

z

∞∑
k=1

1

zk
+

1

z
+

1

z

∞∑
k=1

3k

zk

=
∞∑
k=1

(−3)
1

zk+1
+
∞∑
k=1

3k

zk+1
=
∞∑
k=1

(−3 + 3k)
1

zk+1
=
∞∑
j=2

(−3 + 3j−1)
1

zj
.

The Laurent decomposition is therefore

f3(w) :=
∞∑
j=2

(−3 + 3j−1)wj and f∞(w) = 0.

Here we are in the (surprising?) situation that the Laurent decomposition has no nonneg-
ative powers of z!

This is where we finished on Wednesday, April 17, 2024.
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(iv) On A(1; 1, 2). We want to write

f(z) = f1

(
1

z − 1

)
+ f2(z − 1), 1 < |z − 1| < 2,

where f1 : B(0; 1/1) → C and f2 : B(0; 2) → C are analytic. This requires artificially
introducing z − 1 into the quotients 2/z and 1/(z − 3), and we do so by adding zero.

First,
2

z
=

2

z − 1 + 1
.

Since |z−1| > 1, we cannot expand this with a geometric series in powers of z−1. Instead,
we divide and use the inequality |1/(z − 1)| < 1 to obtain

2

z
=

2

z − 1 + 1
=

2

(z − 1)

(
1 +

1

z − 1

) =
2

z − 1

 1

1−
(
− 1

z − 1

)


=
2

z − 1

∞∑
k=0

(
− 1

z − 1

)k
.

Next,
1

z − 3
=

1

z − 1 + 1− 3
=

1

(z − 1)− 2
.

We could either factor out z−1 or 2 to get a structure that looks like 1/(1−??) on the way
to the geometric series. Since |z − 1| < 2, we would have 2/|z − 1| > 1, so we factor out 2:

1

z − 3
=

1

(z − 1)− 2
=

1

2

(
z − 1

2
− 1

) .
Since |(z − 1)/2| < 1, we have

1

z − 3
= −1

2

 1

1− z − 1

2

 = −1

2

∞∑
k=0

(
z − 1

2

)k
.

Thus

f(z) =
2

z − 1

∞∑
k=0

(−1)k
1

(z − 1)k
− 3

z − 1
− 1

2

∞∑
k=0

(
z − 1

2

)k
=

2

z − 1
+

2

z − 1

∞∑
k=1

(−1)k
1

(z − 1)k
− 3

z − 1
+
∞∑
k=0

(
− 1

2k+1

)
(z − 1)k

= − 1

z − 1
+
∞∑
k=1

2(−1)k
1

(z − 1)k+1
+
∞∑
k=0

(
− 1

2k+1

)
(z − 1)k
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= − 1

z − 1
+
∞∑
j=2

2(−1)j−1 1

(z − 1)j
+
∞∑
k=0

(
− 1

2k+1

)
(z − 1)k.

The Laurent decomposition is therefore

f1(w) = −w +
∞∑
j=2

2(−1)j−1wj and f3(w) =
∞∑
k=0

(
− 1

2k+1

)
wk.

Here, hopefully the placeholder variable w clarifies the different roles of the independent
variable of f1 and f3 and the powers of z − 1 in the series for f .

4.4.10 Problem (!). Find all of the other Laurent decompositions on the annuli drawn
in Example 4.4.3.

4.4.11 Problem (!). The following identities are often useful when computing the Laurent
series of a rational function with simple poles. Let z, w ∈ C with |z| 6= |w|. Show that

1

z − w
=



1

z
(

1− w

z

) =
∞∑
k=0

wk

zk+1
, |w| < |z|

− 1

w
(

1− z

w

) = −
∞∑
k=0

zk

wk+1
, |z| < |w|.

4.4.12 Problem (!). Give an example of a function f with an essential singularity at
some z0 ∈ C such that the Laurent series f(z) =

∑∞
k=−∞ak(z − z0)k has infinitely many

coefficients ak that are 0 with k < 0.

The Taylor series for a function analytic on a ball contains all the essential “data” for
that function in its coefficients. If we know the countable sequence of coefficients in the
Taylor series—a somewhat less than one-dimensional set of data—then (in principle) we
know everything about that function in two dimensions on that ball, and in fact (in principle)
on any ball centered at that point, regardless of the radius.

What data is contained in the Laurent coefficients of a function? Here we must remember
that geometry, not just analysis, plays a role. In the preceding example, we saw that a
function could have two very different Laurent series depending on the underlying annuli.
If, in the case of an isolated singularity, we choose the annulus to be a punctured ball, we
can glean a complete characterization of the singularity from the behavior of the Laurent
coefficients. (Later we will see that one particular Laurent coefficient contains valuable data
for our favorite activity of gathering other data: evaluating integrals.)

To ease our passage, we point out that if f : A(z0; r, R)→ C is analytic for some z0 ∈ C
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and 0 ≤ r < R ≤ ∞, and if we already know that

f(z) =
∞∑
k=0

bk(z − z0)k +
∞∑
k=1

ck
(z − z0)k

for z ∈ A(z0; r, R) and some coefficients bk, ck ∈ C, then by uniqueness, the coefficients bk
and ck are the Laurent coefficients of f . Specifically, we could define

gR : B(0;R)→ C : w 7→
∞∑
k=0

bkw
k and gr : B(0; 1/r)→ C : w 7→

∞∑
k=1

ckw
k

to see that gR and gr are analytic and gr(0) = 0. Since f(z) = gR(z − z0) + gr((z − z0)−1)
on A(z0; r, R), the pair (gr, gR) is the Laurent decomposition of f on A(z0; r, R).

Equipped with all of this information about the Laurent series, we are now able to charac-
terize isolated singularities via the structure of Laurent coefficients. In particular, we confirm
our prior expectation that essential singularities correspond to infinitely many negative pow-
ers in the series expansion.

4.4.13 Theorem. Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r) → C is analytic and
let f(z) =

∑∞
k=−∞ak(z − z0)k be the Laurent expansion of f on the annulus A(z0; 0, r) =

B∗(z0; r). Then

(i) f has a removable singularity at z0 if and only if ak = 0 for k ≤ −1.

(ii) f has a pole of order m ≥ 1 at z0 if and only if a−m 6= 0 and ak = 0 for k ≤ −(m+1).

(iii) f has an essential singularity at z0 if and only if ak 6= 0 for infinitely many k ≤ −1.

Proof. (i) (=⇒) Suppose that f has a removable singularity at z0. By Problem 4.3.6, we
can write f(z) =

∑∞
k=0bk(z − z0)k for some bk ∈ C and all z ∈ B∗(z0; r). By the uniqueness

of the Laurent series, we have bk = ak for k ≥ 0 and ak = 0 for k < 0.

(⇐=) If f(z) =
∑∞

k=0ak(z − z0)k for z ∈ B∗(z0; r), then an analytic continuation of f to
B(z0; r) is just this series. Consequently, limz→z0 f(z) = a0 exists, and so f has a removable
singularity at z0.

(ii) (=⇒) Suppose that f has a pole of order m ≥ 1 at z0. By Problem 4.3.19, there are
b−1, . . . , b−m ∈ C and an analytic function g : B(z0; r)→ C such that

f(z) =
m∑
k=1

b−k
(z − z0)k

+ g(z), z ∈ B∗(z0; r), with b−m 6= 0.

If we define

f0 : C→ C : w 7→
m∑
k=1

b−kw
k and fr : B(0; r)→ C : w 7→ g(w + z0),

then (fr, f0) is a Laurent decomposition for f . In particular, aj = bj for j = −1, . . . ,−m
and aj = 0 for j ≤ −(m+ 1).
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(⇐=) Rewrite, for z ∈ A(z0; r, R),

f(z) =
∞∑

k=−m

ak(z − z0)k =
∞∑

k=−m

ak(z − z0)k+m(z − z0)−m =
1

(z − z0)m

∞∑
k=−m

ak(z − z0)k+m

=
1

(z − z0)m

∞∑
j=0

aj−m(z − z0)j.

Put p(z) :=
∑∞

j=0aj−m(z− z0)j. Above we factored f(z) = (z− z0)−mp(z), so the series p(z)
does converge for each z ∈ A(z0; r, R). That is, the series converges for r < |z − z0| < R,
and so by Problem 4.1.10 it converges for all z ∈ B(z0;R). Thus p is analytic on B(z0;R).
Moreover, p(z0) = a−m 6= 0. We conclude f(z) = (z − z0)−mp(z) with p analytic on a ball
centered at z0 and p(z0) 6= 0; hence f has a pole of order m at z0.

(iii) (=⇒) Since z0 is an essential singularity of f , z0 is not a removable singularity, and so
it cannot be the case that ak = 0 for all k ≤ −1. But z0 is also not a pole, so it cannot be
the case that ak = 0 for all k ≤ −(m + 1) for some integer m ≥ 1. Thus, given any integer
m ≥ 1, there must be some integer k < −m such that ak 6= 0. We can therefore construct a
sequence of infinitely many distinct points (amk) such that mk+1 < mk < 0 and amk 6= 0 for
all k.

(⇐=) This is Problem 4.3.25. �

4.4.14 Problem (+). Let z0 ∈ C and R > 0. Suppose that f : B∗(z0;R)→ C is analytic.
Here is another proof of the Riemann removability criterion (as stated in Problem 4.3.8)
using Laurent series (and not using the “multiply by z − z0” trick from that problem).
The only hard thing to prove is the reverse direction (boundedness implies removable
singularity), so let (ak) be the Laurent coefficients of f ; show that ak = 0 for k ≤ −1 by
using the integral definition (4.4.2) for s ∈ (0, ρ] and the ML-inequality. What happens in
the limit of this integral as s→ 0+?

4.4.15 Problem (?). Let z0 ∈ C and R > 0. Suppose that f : B∗(z0;R)→ C is analytic.
Prove that f has a removable singularity at z0 if and only if limz→z0(z − z0)f(z) = 0. In
the context of Problem 4.4.16, explain why we might euphemistically call a removable
singularity a “pole of order 0.”

4.4.16 Problem (+). Let z0 ∈ C and R > 0. Suppose that f : B∗(z0;R)→ C is analytic.
Prove that the following are equivalent.

(i) f has a pole of order m ≥ 1 at z0.

(ii) lim
z→z0

(z − z0)mf(z) exists and is nonzero.

(iii) lim
z→z0

(z − z0)m+1f(z) = 0.
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(iv) There exist ρ ∈ (0, R] and M > 0 such that

|f(z)| ≤ M

|z − z0|m
for z ∈ B∗(z0; ρ).

4.5. Residue calculus.

So very many of our labors have involved line integrals. We built and characterized an-
tiderivatives via line integrals, thereby completing one of the major stories of real-variable
calculus in the complex setting. Moreover, we learned that the integral is the tool for extract-
ing data about functions—specifically via the Cauchy integral formula and Taylor/Laurent
coefficients. That story is more or less complete, and we will not typically succeed in finding
antiderivatives for analytic functions on annuli.

4.5.1 Problem (!). Explain why. [Hint: let z0 ∈ C and 0 < r < s < R ≤ ∞ and evaluate∫
|z−z0|=s(z − z0)−1 dz. Is the annulus A(z0; r, R) an elementary domain?]

4.5.1. Line integrals in annuli.

Nonetheless, we might ask what we can learn about line integrals of analytic functions over
closed curves in annuli. Such integrals appeared so often in our former work that it is natural
to pursue them further. So, let z0 ∈ C and 0 ≤ r < R ≤ ∞, and let f : A(z0; r, R) → C be
analytic. Let (fR, fr) be the Laurent decomposition of f in A(z0; r, R), and let γ be a closed
curve in A(z0; r, R). Then∫

γ

f =

∫
γ

(
fR(z− z0) + fr((z− z0)−1)

)
dz =

∫
γ

fR(z− z0) dz+

∫
γ

fr((z− z0)−1) dz. (4.5.1)

4.5.2 Problem (!). Recall that fR : B(0;R)→ C is analytic. Use this, the hypothesis that
γ is a closed curve in A(z0; r, R) ⊆ B(z0;R), and the Cauchy integral theorem to show that∫

γ

fR(z − z0) dz = 0.

Then (4.5.1) collapses to ∫
γ

f =

∫
γ

fr((z − z0)−1) dz. (4.5.2)

In the notation of Theorem 4.4.6, write

fr((z − z0)−1) =
∞∑
k=1

a−k
(z − z0)k

,

and remember that since γ is a curve in A(z0; r, R), the point z0 does not belong to the
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image of γ. Suppose that we can interchange the sum and integral to find∫
γ

fr((z − z0)−1) dz =

∫
γ

∞∑
k=1

a−k
ak

(z − z0)k
dz =

∞∑
k=1

a−k

∫
γ

dz

(z − z0)k
. (4.5.3)

This interchange can be justified by Theorem C.7.1 (which is really just an application of
the original interchange theorem), and the integrals are all defined because z0 does not lie on
the image of γ. It then turns out that most of the series on the right of (4.5.3) will collapse
to 0.

4.5.3 Problem (!). Use the fundamental theorem of calculus to show∫
γ

dz

(z − z0)k
= 0, k ≥ 2. (4.5.4)

Also explain why (4.5.4) does not follow from the Cauchy integral theorem.

We combine (4.5.1), (4.5.2), (4.5.3), and (4.5.4) to conclude∫
γ

f = a−1

∫
γ

dz

z − z0

. (4.5.5)

For the purposes of calculating
∫
γ
f , all of the other data from the Laurent series was

irrelevant; only the particular coefficient a−1 matters. Using the definition of a−1 from
(4.4.2), the formula (4.5.5) reads∫

γ

f =

(
1

2πi

∫
|z−z0|=s

f(z) dz

)(∫
γ

dz

z − z0

)
. (4.5.6)

The line integral of f over γ is therefore the product of two integrals—one an integral of f
over a (more or less) arbitrary circle, and one an integral of a “tame” rational function over
the given curve γ. In other words, the data of the line integral—the curve γ and the integrand
f—decouple into two integrals, one dependent on f (but not γ), and one dependent on γ
(but not f), and both dependent on the center z0 of the underlying annulus.

Both factors in (4.5.6) will reappear in our subsequent study of integrals in more general
domains. We name and examine the second factor, adjusted slightly, first.

This is where we finished on Friday, April 19, 2024.

4.5.2. The winding number.

The following analytic concept remarkably encapsulates the geometric phenomenon of “ori-
entation” for curves.

4.5.4 Definition. Let γ be a closed curve in C and let z ∈ C be a point that is not in the



4.5. Residue calculus 244

image of γ. Then the winding number of γ with respect to z is

χ(w; z) :=
1

2πi

∫
γ

dw

w − z
.

Sometimes the winding number is called the index of γ with respect to z.

4.5.5 Problem (+). The winding number is indeed a “number” in the sense that it is an
integer. In the following, let γ : [0, 1] → C be a continuously differentiable, closed curve
and let z ∈ C not be in the image of γ.

(i) Show that χ(γ; z) ∈ C if and only if

exp

(∫
γ

dw

w − z

)
= 1.

(ii) Define

f : [0, 1]→ C : t 7→
∫ 1

0

γ′(τ)

γ(τ)− z
dτ.

Show that γ satisfies the ODE

γ′(t)− f ′(t)γ(t) = −f ′(t)z.

(iii) Multiply through by the integrating factor e−f(t) and conclude that

γ(t)e−f(t) − γ(a)e−f(a) = e−f(t)z − e−f(a)z.

(iv) Use this to show that
(γ(b)− z)(1− ef(b)) = 0.

(v) Since z is not in the image of γ, conclude that ef(b) = 1, as desired.

(vi) How should you modify this argument for the case that γ is only piecewise continu-
ously differentiable?

We can now rewrite (4.5.6) once again. Here is a summary of our work.

4.5.6 Theorem. Let z0 ∈ C and 0 ≤ r < R ≤ ∞. Let f : A(z0; r, R)→ C be analytic and
let γ be a closed curve in A(z0; r, R). Then∫

γ

f =

(∫
|z−z0|=s

f(z) dz

)
χ(γ; z0), r < s < R.

We will develop and generalize this formula to the highly useful situation in which f has
a finite number of isolated singularities within an elementary domain. First, however, we
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focus on the geometry of the winding number.

4.5.7 Example. Although it is not at all obvious at first glance, the winding number does
what it promises. For k ∈ Z \ {0}, r > 0, and z0 ∈ C, define

γ : [0, 2π]→ C : t 7→ z0 + reikt.

Intuitively, we should view γ as “tracing out” the circle of radius r centered at z0 a total
number of |k| times, with the circle oriented counterclockwise if k > 0 and clockwise if
k < 0.

Now let z ∈ C with |z − z0| 6= r. We can calculate∫
γ

dw

w − z
=

{
2πik, |z − z0| < r

0, |z − z0| > r,
(4.5.7)

and so

χ(γ; z) =

{
k, |z − z0| < r

0, |z − z0| > r.

In other words, χ(γ; z) “counts” the number of times that γ “winds around” z0: either k
times (with the sign of k indicating orientation) if z is “inside” the circle of radius r centered
at z0, or no times at all if z is “outside” this circle.

4.5.8 Problem (?). Obtain the first identity in (4.5.7) by justifying each of the following
equalities:

∫ 2π

0

rikeikt

z0 + reikt − z
dt =

∫ 2kπ

0

rieiτ

z0 + reiτ − z
dτ =

k∑
j=1

∫ 2jπ

2(j−1)π

rieiτ

z0 + reiτ − z
dτ

= k

∫ 2π

0

rieiτ

z0 + reiτ − z
dτ = k

∫
|w−z0|=r

dw

w − z
= 2πik.

For the second, use the Cauchy integral theorem. What is the appropriate star domain?

4.5.9 Example. In Problem 3.6.5, we calculated the following. Suppose that r > 0 and
z ∈ C with |z| < r and Im(z) > 0. With

γr : [0, π]→ C : t 7→ reit,

we found
χ(γr ⊕ [−r, r]; z) =

1

2πi

∫
[−r,r]⊕γr

dw

w − z
= 1.

That is, the semicircle drawn below “winds around” any point z in its “interior” exactly
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once.

z

−r r

Motivated by Examples 4.5.7 and 4.5.9, we can introduce some geometric notions for
curves that we have heretofore avoided.

4.5.10 Definition. Let γ be a closed curve in C.

(i) The interior of γ is the set

int(γ) :={z ∈ C | χ(γ; z) 6= 0} .

(ii) The exterior of γ is the set

ext(γ) :={z ∈ C | χ(γ; z) = 0} .

(iii) The curve γ is positively oriented if χ(γ; z) > 0 for all z ∈ int(γ) and neg-
atively oriented if χ(γ; z) < 0 for all z ∈ int(γ).

4.5.11 Problem (?). Let r, b > 0 and let

γr,b = [−r − ib, r − ib]⊕ [r − ib, r + ib]⊕ [r + ib,−r + ib]⊕ [−r + ib, r − ib].

(i) Draw a picture of γr,b.

(ii) Use the strategy of Problem 3.6.5 and the Cauchy integral theorem to compute
χ(γr,b; z) for any z ∈ C.

(iii) What is the interior of γr,b and what is the exterior?

(iv) Is γr,b positively or negatively oriented?

(v) Are these the results you expected from your picture?

4.5.3. The residue theorem.

The following situation often arises in practice. Let D ⊆ C be an elementary domain—so
D is open and connected, and if h : D → C is analytic and γ is a closed curve in D, then∫
γ
h = 0. Fix a finite number of distinct points z1, . . . , zn ∈ D, and let f : D \ {zk}nk=1 → C



4.5. Residue calculus 247

be analytic. Choose rk > 0 such that B(zk; rk) ⊆ D and if j 6= k, then zj 6∈ B(zk; rk).
Consequently, f is analytic on each B∗(zk;Rk), and so each zk is an isolated singularity of f .
Let fk be the principal part of the Laurent decomposition of f

∣∣
B∗(zk;rk)

, so each fk is entire.
(This is not exactly the notation that we used for principal parts before.)

It turns out that if we “remove” all the principal parts from f , then we are left with a
rather nice function.

4.5.12 Lemma. Under the hypotheses and notation above, the function

g : D \ {zk}nk=1 → C : z 7→ f(z)−
n∑
k=1

fk

(
1

z − zk

)
(4.5.8)

has removable singularities at zk and consequently has an analytic continuation g̃ on D.

Proof. We do this only for n = 2, which will show all the steps necessary for the general
case without some notational confusion. So, here

g(z) = f(z)− f1

(
1

z − z1

)
− f2

(
1

z − z2

)
.

We want to show that
lim
z→z1

g(z) and lim
z→z2

g(z)

exist. We give the proof only for z1, as the work for z2 is almost identical. For z1, in turn it
suffices to show that

lim
z→z1

f2

(
1

z − z2

)
and lim

z→z2
f(z)− f1

(
1

z − z1

)
exist.

The first limit is quite easy, since f2 is entire and z1 6= z2:

lim
z→z1

f2

(
1

z − z2

)
= f2

(
1

z1 − z2

)
.

For the second limit, let (f1, h1) be the full Laurent decomposition of f
∣∣
B∗(z1;r1)

on the annulus
B∗(z1; r1). To be fair, this is not the notation that we were using before, but what matters
now is that h1 : B(0; r1)→ C is analytic and

f(z) = f1

(
1

z − z1

)
+ h1(z − z1), z ∈ B∗(z1; r1).

Subtracting, we find

lim
z→z1

f(z)− f1

(
1

z − z1

)
= lim

z→z1
h1(z − z1) = h1(0).
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As we discussed above, the desired limit therefore exists, and in particular

lim
z→z1

g(z) = h1(0)− f2

(
1

z1 − z2

)
.

The limit at z2 can be calculated analogously, and the reasoning for n ≥ 3 just involves more
notation. �

Let g̃ be as in the preceding lemma and let γ be a closed curve in D. Since g̃ is analytic
and D is an elementary domain, we have ∫

γ

g̃ = 0.

Now we add the additional hypothesis that none of the points zk belong to the image of γ.
Then g̃(z) = g(z) for all z in the image of γ, and so

0 =

∫
γ

g̃ =

∫
γ

g.

Using the definition of g in (4.5.8), we have

0 =

∫
γ

f(z) dz −
n∑
k=1

∫
γ

fk

(
1

z − zk

)
dz.

Since fk is entire, it has the Taylor series expansion

fk(w) =
∞∑
j=1

aj,kw
k, w ∈ C,

Theorem C.7.1 with r = 0 and R = rk shows∫
γ

fk

(
1

z − zk

)
dz = 2πia1,kχ(γ; zk) (4.5.9)

and thus

0 =

∫
γ

f − 2πi
n∑
k=1

a1,kχ(γ; zk). (4.5.10)

This is where we finished on Monday, April 22, 2024.

Now it is time to name these coefficients ak,1.

4.5.13 Definition. Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r)→ C is analytic, and
let f(z) =

∑∞
k=−∞ak(z − z0)k be the Laurent series for f on B∗(z0; r). The residue of
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f at z0 is the coefficient a−1, and we write

Res(f ; z0) = a−1 =
1

2πi

∫
|z−z0|=s

f(z) dz, 0 < s < r.

There are, happily, many methods of computing residues that do not rely on the definition,
either via the integral or the Laurent series, and we will eventually develop some of them.
More immediately, all of our work up to and including (4.5.10) can be summarized in one
theorem, the mightiest and proudest of the Cauchy theorems.

4.5.14 Theorem (Cauchy’s residue theorem). Let D ⊆ C be an elementary domain and
let z1, . . . , zn ∈ C be distinct points. Let f : D \ {zk}nk=1 → C be analytic, and let γ be a
closed curve in D such that no zk belongs to the image of γ. Then∫

γ

f = 2πi
n∑
k=1

Res(f ; zk)χ(γ; zk).

As with Theorem 4.5.6, the residue theorem perfectly decouples the problem of computing
a line integral into two distinct problems: the analytic problem of finding the residue (which
involves the integrand and not the underlying curve) and the geometric problem of computing
the winding number (which involves the curve and not the function)—the two problems are
connected in that they both involve the isolated singularities of the integrand.

4.5.15 Problem (?). Let D ⊆ C be an elementary domain and let f : D → C be analytic.

(i) How does the residue theorem imply the Cauchy integral theorem? That is, why
does the residue theorem imply

∫
γ
f = 0 in this case? (Note that we used the Cauchy

integral theorem in the proof of the residue theorem, so logically the residue theorem is
not independent of the Cauchy integral theorem.)

(ii) Show that the residue theorem implies the following more general version of the Cauchy
integral formula: if γ is a closed curve in D and z ∈ D does not belong to the image of γ,
then

1

2πi

∫
γ

f(w)

w − z
dw = f(z)χ(γ; z). (4.5.11)

(iii) Show that (4.5.11) implies the version of the Cauchy integral formula in Theorem
3.6.8. [Hint: use Example 4.5.7.]

(iv) Show that, in fact, (4.5.11) implies the Cauchy integral theorem as stated in (i). [Hint:
by Problem 3.1.25, since D is open, there is some z ∈ D such that z is not in the image of
γ. Set g(w) = (w − z)f(w) and apply (4.5.11) to g in lieu of f .]
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4.5.16 Problem (!). Use Theorem 4.5.6 to prove the residue theorem in the very special
case n = 1 and D = B(z1; r) for some r > 0.

4.5.17 Example. We revisit the integrand from Examples 3.5.15, 3.6.11, and 3.6.18 one
last time. Let z1, z2 ∈ C with 0 ≤ |z1| < z2 and let r > 0 such that z1, z2 ∈ B(0; r). We
compute the value of ∫

|z|=r

dz

(z − z1)(z − z2)2
,

which (as we saw in Problem 3.6.19) cannot be done directly with the Cauchy integral
theorem or the (generalized) Cauchy integral formula.

In the notation of the residue theorem, let D = C, so D certainly is an elementary
domain (it is star-shaped). Define

f : C \ {z1, z2} → C : z 7→ 1

(z − z1)(z − z2)2
,

so f has isolated singularities at z1 and z2. Let

γ : [0, 2π]→ C : t 7→ reit,

so γ is a closed path in D. Then∫
|z|=r

dz

(z − z1)(z − z2)2
= 2πi

(
Res(f ; z1)χ(γ; z1) + Res(f ; z2)χ(γ; z2)

)
.

Example 4.5.7 shows that
χ(γ; z1) = χ(γ; z2) = 1,

so we just need to compute the residues. A partial fractions expansion for f will help:

f(z) =
1

(z1 − z2)2(z − z1)
− 1

(z1 − z2)2(z − z2)
− 1

(z1 − z2)(z − z2)2
. (4.5.12)

In fact, this gives the Laurent decompositions (though not precisely the Laurent series) of
f at z1 and z2:

f(z) =
1

(z1 − z2)2(z − z1)︸ ︷︷ ︸
pole at z1, analytic at z2

−
(

1

(z1 − z2)2(z − z2)
+

1

(z1 − z2)(z − z2)2

)
︸ ︷︷ ︸

pole at z2, analytic at z1

.

The terms that are analytic at z1 will not contribute any terms involving (z − z1)−1

to the Laurent series at z1; the term that is analytic at z2 will not contribute any terms
involving (z − z2)−1 to the Laurent series at z2. Thus

Res(f ; z1) =
1

(z1 − z2)2
and Res(f ; z2) = − 1

(z1 − z2)2
.

That is, Res(f ; z1) = −Res(f ; z2), and so∫
|z|=r

dz

(z − z1)(z − z2)2
= 2πi

(
Res(f ; z1) + Res(f ; z2)

)
= 0.
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4.5.18 Problem (!). Use the partial fractions expansion (4.5.12), the Death Star lemma,
and the fundamental theorem of calculus to give a different proof that

∫
|z|=rf(z) dz = 0.

Such a calculation would have resolved the impasse in Problem 3.6.19 with the prior Cauchy
theorems.

4.5.4. Evaluating real-valued integrals on (subintervals of) R.

The residue theorem is a pathway to many abilities that some consider to be unnatural, at
least from the point of view of real-variable calculus. One classical application is evaluating
integrals, definite or improper, of functions defined on (subintervals of) R. The broad idea
is that one modifies the interval of integration into a path γ in C, augments that path with
another path µ so that γ⊕µ is closed, and then integrates over this closed path and evaluates
that integral with the residue theorem. Hopefully the auxiliary integral over µ is easy to
control so that information is recovered about the desired integral over γ.

γ

γ

µ

∫
γ

f =

∫
γ⊕µ

f︸ ︷︷ ︸
Residue theorem

−
∫
µ

f︸︷︷︸
Something else?

There are many, many integrals that can be evaluated exactly using residue techniques.
Here we do just one: we revisit the Fourier transform from Section 3.5.4 and instead of
estimating the Fourier integral we calculate one precisely. Our goal is less to develop any
systematic, broadly adaptable set of techniques and more to see just one specific application.

4.5.19 Theorem. Define

sech: R→ R : t 7→ 2

et + e−t
.

Then ∫ ∞
−∞

sech(t)e±ikt dt = π sech

(
πk

2

)
, k ∈ R. (4.5.13)

The function sech (or more precisely a rescaling of its square) appears as a solution to the
celebrated Korteweg–de Vries (KdV) partial differential equation, which models the behavior
of nonlinear waves in shallow water; this function is a versatile tool in many areas of applied
mathematics. First, the integral in (4.5.13) converges by the comparison test in Theorem
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3.5.18 and, from that theorem and the evenness of sech, we have∫ ∞
−∞

sech(t)e±ikt dt = lim
R→∞

∫ R

−R
sech(t)eikt dt.

4.5.20 Problem (!). Check that.

It therefore suffices to understand the definite integral
∫ R
−R sech(t)eikt dt for large R. The

integrand under consideration is really the restriction of

g(z) :=
2eikz

ez + e−z

to R. We are not indicating dependence on k (it is fixed in R throughout this discussion)
and where g is defined for all z such that ez + e−z 6= 0.

4.5.21 Problem (!). Check that g is defined on C\{iπ/2 + iπk | k ∈ Z}. Also, check that
g has poles of order 1 at each point iπ/2 + iπk, k ∈ Z.

We will view the interval [−R,R] as the path γ discussed above and augment this interval
with a path µ so that the composition γ ⊕ µ is a rectangle, just like in Section 3.5.4. More
precisely, fix b, R > 0 and consider the path

γR,b := [−R,R]⊕ [R,R + ib]⊕ [R + ib,−R + ib]⊕ [−R + ib,−R].

This is a closed path, and for 0 < b < π/2, the integrand g is analytic on a star domain
containing this path. (Take the star domain to be a slightly larger rectangle that does not
contain ±iπ/2.) Then we have

∫
γR,b

g = 0, and we are back in the situation of Section 3.5.4.
This will actually not be very helpful to us here, and so instead we will take b ∈ (π/2, 3π/2),
so that the interior (in the sense of Definition 4.5.10) of γR,b contains only one isolated
singularity of g: iπ/2.

R

iR

R

R + ib−R + ib

−R

iπ/2

−iπ/2

The residue theorem implies∫
γR,b

g = 2πiRes

(
g;
iπ

2

)
χ

(
γR,b;

iπ

2

)
= 2πiRes

(
g;
iπ

2

)
,
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since χ(γR,b; iπ/2) = 1 by Problem 4.5.11. It therefore suffices to calculate this residue and
to control

IR,b :=

∫
[R,R+ib]⊕[R+ib,−R+ib]⊕[−R+ib,−R]

g (4.5.14)

for large R; then we will be have∫ R

−R
g =

∫
[−R,R]

g =

∫
γR,b

g − IR,b = 2πiRes

(
g;
iπ

2

)
− IR,b. (4.5.15)

First we calculate the residue. We are really in the following situation.

4.5.22 Lemma. Let z0 ∈ C and r > 0. Suppose that p, q : B(z0; r)→ C are analytic with
p(z0) 6= 0 and q(z0) = 0. If q has a simple zero at z0, then

Res

(
p

q
; z0

)
=
p(z0)

q′(z0)
.

4.5.23 Problem (!). Prove this lemma. [Hint: write q(z) = (z − z0)r(z), where for some
ρ ∈ (0, r], the map r : B(z0; ρ) → C is analytic with r(z) 6= 0 for all z. Explain why
r(z0) = q′(z0). Then factor

p(z)

q(z)
=

(
p(z)

r(z)

)
1

z − z0

.

Expand p/r in its Taylor series at z0, identify the constant term, and conclude
Res(p/q; z0) = p(z0)/r(z0).]

Thus with p(z) = 2eikz and q(z) = ez + e−z, we have

Res

(
g;
iπ

2

)
= Res

(
2eikz

ez + e−z
; z =

iπ

2

)
=

2eik(iπ/2)

eiπ/2 − e−iπ/2
=

2e−kπ/2

i− (−i)
= −ie−kπ/2. (4.5.16)

This is where we finished on Wednesday, April 24, 2024.

Now we return to the problem of controlling the integral IR,b. Our experience in Section
3.5.4 should suggest that the integrals over the vertical sides will vanish as R→∞.

4.5.24 Problem (?). Prove that. Specifically, show

lim
R→∞

∫
[R,R+ib]

g = lim
R→∞

∫
[−R+ib,−R]

g.

[Hint: adapt the work from Step 4 in Section 3.5.4.]

Now we manipulate the integral over the top side, and it is here that a precise choice of
b will be helpful. The line segment [R + ib,−R + ib] is parametrized by

λR,b : [0, 1]→ C : t 7→ (1− t)(R + ib) + t(−R + ib) = R + ib− 2tR,
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so ∫
[R+ib,−R+ib]

g = −2R

∫ 1

0

g(R + ib− 2tR) dt.

This is not a very transparent formula, but we might think that the integral over [R +
ib,−R+ ib] should basically be the integral over [−R,R], just reversed and shifted upwards.
With this insight, we substitute u = R− 2tR to find

−2R

∫ 1

0

g(R + ib− 2tR) dt =

∫ −R
R

g(u+ ib) du = −
∫ R

−R
g(u+ ib) du.

That looks much more like
∫ R
−Rg.

How much more? We have∫ R

−R
g(u+ ib) du =

∫ R

−R

2eik(u+ib)

eu+ib + e−(u+ib)
du = e−kb

∫ R

−R

2eiku

eibeu + e−ibe−u du
.

If we take b = π, then we will have e±ib = −1, so the denominator will factor nicely, and we
will still retain our restriction of keeping b ∈ (π/2, 3π/2). Thus∫

[R+iπ−R+iπ]

g = −
∫ R

−R
g(u+ iπ) du = e−kπ

∫ R

−R

2eiku

eu + e−u
du = e−kπ

∫ R

−R
g

and so, by the definition of IR,b in (4.5.14), we have

IR,b =

∫
[R,R+ib]⊕[R+ib,−R+ib]⊕[−R+ib,−R]

g = e−kπ
∫ R

−R
g +

∫
[R,R+ib]

g +

∫
[−R+ib,−R]

g. (4.5.17)

We combine everything from (4.5.15), (4.5.16), and (4.5.17) to obtain∫ R

−R
g = 2πiRes

(
g;
iπ

2

)
− IR,b = 2πi(−ie−kπ/2)− e−kπ

∫ R

−R
g −

∫
[R,R+ib]

g −
∫

[−R+ib,−R]

g.

A bit of algebra simplifies this to

(1 + e−kπ)

∫ R

−R
g = 2πe−kπ/2 −

∫
[R,R+ib]

g −
∫

[−R+ib,−R]

g,

and then ∫ R

−R
g =

2πe−kπ/2

1 + e−kπ
− 1

1 + e−kπ

(∫
[R,R+ib]

g +

∫
[−R+ib,−R]

g

)
.

Taking the limit as R→∞ and using Problem 4.5.24, we conclude∫ ∞
−∞

sech(t)eikt dt = lim
R→∞

∫ R

−R
g =

2πe−kπ/2

1 + e−kπ
= π

(
2

ekπ/2 + e−kπ/2

)
= π sech

(
kπ

2

)
,

as claimed in the theorem.
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4.5.25 Problem (!). Explain why the exact result of Theorem 4.5.19 agrees with the
estimate of Theorem 3.5.21.

4.5.5. The open mapping theorem.

We study here two consequences of the residue theorem on the way to proving our very last
result, the open mapping theorem. The first two results count, up to multiplicities, the zeros
and/or poles of an analytic function in certain regions; since many problems can be posed
in the form “solve f(z) = w for z given w,” equivalently, “find the roots of g(z) := f(z)− w
given f and w,” these are worthwhile tools to possess.

The open mapping theorem is one avenue toward finishing our story of complex analysis.
We have said many times how special analytic functions are compared to infinitely differen-
tiable or even real analytic functions on (subsets of) R. In particular, in our study of the
Cauchy–Riemann equations, we saw that analytic functions are genuinely two-dimensional
objects in the sense that they cannot take strictly real or strictly imaginary values (i.e., their
ranges cannot be contained in the coordinate axes) unless they are (locally) constant. Now
we will see something stronger: the range of a nonconstant analytic function is open, and so
around every point in the range we can fit a ball that is also contained in the range.

The result below relates a discrete quantity—the (difference between the) number of zeros
and poles that a function has inside a closed path—to a continuous one—the line integral
involving that path and that function.

4.5.26 Theorem (Counting). Let D ⊆ C be an elementary domain and let p1, . . . , pN ∈
D. Suppose that f : D \ {pk}Nk=1 is analytic with poles of order nk at pk. Suppose also that
z1, . . . , zM ∈ D \ {pk}Nk=1 are the zeros of f , and that mk is the order of the zero at zk.
Finally, let γ be a closed path in D \ {pk}nk=1 such that χ(γ; pk) = χ(γ; zk) = 1 for all k.
Then

M∑
k=1

mk −
N∑
k=1

pk =
1

2πi

∫
γ

f ′

f
.

Proof. The map f ′/f is analytic on D \
(
{pk}Nk=1 ∪ {zk}Mk=1

)
with isolated singularities at

zk and pk, so by the residue theorem∫
γ

f ′

f
= 2πi

[
N∑
k=1

Res

(
f ′

f
; pk

)
χ(γ; pk) + Res

(
f ′

f
; zk

)
χ(γ; zk)

]
.

Since χ(γ; pk) = χ(γ; zk) = 1, this reduces to∫
γ

f ′

f
= 2πi

[
N∑
k=1

Res

(
f ′

f
; pk

)
+ Res

(
f ′

f
; zk

)]
.

We claim (and prove below) that

Res

(
f ′

f
; pk

)
= −nk and Res

(
f ′

f
; zk

)
= mk



4.5. Residue calculus 256

and from this the theorem follows. �

Continue to assume the notation and hypotheses of the counting theorem. We can view
the integer

Z(f ; γ) :=
M∑
k=1

mk

as giving the number of zeros of f in the interior of γ, counting multiplicity, and the number

P(f ; γ) :=
N∑
k=1

nk

as the number of poles of f in the interior of γ, again counting multiplicity.

4.5.27 Problem (?). Let z0 ∈ C and r > 0. Suppose that f : B∗(z0; r) → C is analytic
with f(z) 6= 0 on B∗(z0; r). Prove that

Res

(
f ′

f
; z0

)
=

{
−m, z0 is a pole of order m of f
m, z0 is a zero of order m of f.

[Hint: Write f(z) = (z − z0)±mp(z), where p : B(z0; ρ) → C is analytic for some ρ ∈
(0, r] and p(z0) 6= 0. Compute f ′/f in terms of z0, m, and p and look for the Laurent
decomposition to expose the term containing (z − z0)−1.]

The next result effectively says that if one function is a suitably small perturbation of
another on the image of a closed path—“suitably small” to be made precise below—then
both functions have, up to multiplicity, the same number of zeros inside the path.

4.5.28 Theorem (Rouché). Let D ⊆ C be open and suppose that f , g : D → C are
analytic and γ is a closed path in D. If

|g(z)− f(z)| < |f(z)| (4.5.18)

for all z in the image of γ, then

Z(f ; γ) = Z(g; γ). (4.5.19)

Proof. We first claim that neither f nor g has a zero in the image of γ. Otherwise, if
f(z0) = 0 for some z0 in the image of γ, then (4.5.18) implies

0 = |f(z0)| > |g(z0)− f(z0)| = |g(z0)| ≥ 0,

thus 0 < 0, which is impossible. Similarly, if g(z0) = 0 for some z0 in the image of γ, then

|f(z0)| > |g(z0)− f(z0)| = |f(z0),

and this, too, is impossible.
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Now, suppose that the domain of γ is [a, b] ⊆ R. Then

µ : [a, b]→ C : t 7→ g(γ(t))

f(γ(t))

is a path in C, and more precisely µ is a path in B(1; 1). We have

|g(γ(t))− f(γ(t))| < |f(γ(t))|

for each t, so dividing by |f(γ(t))| yields |µ(t)− 1| < 1.
Finally, the map B(1; 1)→ C : z 7→ 1/z is analytic on the star domain B(1; 1), and so the

Cauchy integral theorem implies ∫
µ

dz

z
= 0. (4.5.20)

(This is possibly the first time in our entire story that this kind of integral has vanished!)
The definition of the line integral yields∫

µ

dz

z
=

∫
γ

(g/f)′

g/g
(4.5.21)

as well. But the counting theorem computes this as∫
γ

(g/f)′

g/f
= Z

(
g

f
; γ

)
− P

(
g

f
; γ

)
. (4.5.22)

We combine (4.5.20), (4.5.21), and (4.5.22) to obtain

Z

(
g

f
; γ

)
= P

(
g

f
; γ

)
. (4.5.23)

We claim that

Z

(
g

f
; γ

)
= Z(g; γ) and P

(
g

f
; γ

)
= Z(f ; γ). (4.5.24)

Both identities should be intuitively plausible: the only zeros of g/f can come from g (a
quotient is 0 if and only if the numerator is 0), and, since g is analytic, the only poles of
g/f can come from f (poles effectively correspond to dividing by 0). Assuming (4.5.24) to
be true, the equality in (4.5.24) then reduces to the desired Z(g; γ) = Z(f ; γ). �

Here is how we can view g as a perturbation of f : by adding 0,

g = (g − f) + f.

Then g is a “suitably small” perturbation of f if |g(z) − f(z)| is “suitably small,” and the
estimate (4.5.18) quantifies that precisely
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4.5.29 Problem (!). Complete the proof of Rouché’s theorem by filling in the following
gaps.

(i) Prove (4.5.21). [Hint: consider separately the cases that γ is a smooth path and only a
path.]

(ii) Prove (4.5.24). [Hint: elaborate on the intuitive remarks in the proof.]

We can view the estimate (4.5.18) in Rouché’s theorem as saying that f and g are small
perturbations of each other:

g(z) =
(
g(z)− f(z)

)
+ f(z).

If the “perturbation” term g(z)−f(z) is suitably small—namely, |g(z)−f(z)| < |f(z)|—then
g and f have the same number of zeros in the interior of γ, counting multiplicities.

4.5.30 Problem (!). (i) Show that Rouché’s theorem remains true if the estimate (4.5.18)
is replaced by |g(z) + f(z)| < |f(z)|.

(ii) If instead of the estimate (4.5.18) we have |g(z)| < |f(z)|, how does the conclusion
(4.5.19) change?

4.5.31 Theorem (Open mapping). Let D ⊆ C be open and let f : D → C be analytic
and nonconstant (i.e., there exist z1, z2 ∈ D such that f(z1) 6= f(z2)). Then f(D) =
{f(z) | z ∈ D} is open.

Proof. Fix z0 ∈ D. Our goal is to find r > 0 such that B(f(z0); r) ⊆ f(D). That is, if
w ∈ C with |f(z0)− w| < r, then there is z ∈ D such that f(z) = w.

The key idea in the proof is that f(z) = w if and only if f(z) − w = 0. That is, this
“surjectivity” problem is really a root-finding problem.

Define
g : D → C : z 7→ f(z)− f(z0).

Then g(z0) = 0, but g is not identically zero, since f is not constant. Thus z0 must be an
isolated zero of g, so there is s > 0 such that B(z0; s) ⊆ D and g(z) 6= 0 for z ∈ B∗(z0; s).
By the extreme value theorem, the number

r := min
|z−z0|≤s/2

|g(z)|

is defined. We will show that B(f(z0); r) ⊆ f(D).
To do this, fix w ∈ B(f(z0); r) and consider the map

h : D → C : z 7→ f(z)− w.

We want to be sure that h has a root, and specifically we will show that h has a root in
B(z0; s/2). Let γ : [0, 2π]→ C : t 7→ z0 + seit/2. Then, if z is in the image of γ,

|g(z)− h(z)| = |w − f(z0)| < r ≤ |g(z)|.
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Thus Rouché’s theorem implies Z(g; γ) = Z(h; γ).
Since g(z0) = 0, we have 1 ≤ Z(g; γ), and so 1 ≤ Z(h; γ). Consequently, h has at least

one root in the ball B(z0; s/2). �

4.5.32 Problem (!). Let D ⊆ C be open and f : D → C be analytic and nonconstant.

(i) Prove that the image of f cannot be the image of a path. [Hint: Problem 3.1.25.]

(ii) Prove that the image of f is in fact a domain. [Hint: if γ is a path in D, then f ◦ γ
is a path in f(D).]

This is where we finished on Friday, April 26, 2024.
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A. Very Elementary Set Theory

A.1. Sets and operations on sets.

This appendix corresponds to material covered on Monday, January 8, 2024.

We will frequently work with sets of real and complex numbers. To do so efficiently, we
need a very small number of set-theoretic concepts.

A.1.1 Undefinition. A set is a collection of objects, called elements. If x is an element
of the set A, then we write x ∈ A, and if y is not an element of the set A, then we write
y 6∈ A.

This is an undefinition, not a definition, because we have not defined what “collections”
or “objects” means. And we will not. If a set A consists of only finitely many elements,
then we may denote A by listing those elements between curly braces. For example, the set
consisting precisely of the numbers 1, 2, and 3 is {1, 2, 3}; the set consisting precisely of the
number 1 is {1}, and 1 ∈ {1}.

A.1.2 Example. Let A = {1, 2, 3}. Then 1 ∈ A but 4 6∈ A.

If U is a set, and if P (x) is a statement that is either true or false for each x ∈ U , then
we denote the set of all elements x of U for which P (x) is true by

{x ∈ U | P (x)} .

A.1.3 Example. If U = {1, 2, 3}, then

{x ∈ U | x is even} = {2}.

A.1.4 Definition. A set A is a subset of a set B if for each x ∈ A, it is the case that
x ∈ B. That is, every element of A is an element of B. If A is a subset of B, we write
A ⊆ B.

In symbols,
A ⊆ B ⇐⇒ (x ∈ A =⇒ x ∈ B).

A.1.5 Example. {1, 2} ⊆ {1, 2, 3} and {1, 2, 3} ⊆ {1, 2, 3}.

A.1.6 Definition. Two sets A and B are equal, written A = B, if A ⊆ B and B ⊆ A.
An element x and the set {x} whose sole element is x cannot be equal: x 6= {x}.
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In symbols,
A = B ⇐⇒ (x ∈ A ⇐⇒ x ∈ B).

A.1.7 Hypothesis. (i) There exists a set ∅ that contains no element. That is, if x is an
element of any set U , then x 6∈ ∅.

(ii) An element x of a set U cannot be equal to the set {x} whose only element is x. That
is, x 6= {x}.

A.1.8 Definition. Let A and B be subsets of the set U . The union of A and B is the set

A ∪B :={x ∈ U | x ∈ A or x ∈ B} ,

the intersection of A and B is the set

A ∩B :={x ∈ U | x ∈ A and x ∈ B} ,

and the complement of A in B is the set

B \ A :={x ∈ B | x 6∈ A} .

That is, A∪B is the set of all elements in either A or B (or both), A∩B is the set of all
elements in both A and B, and B \ A is the set of all elements in B but not in A.

A.1.9 Example. Let
A = {1, 2, 3} and B = {2, 4, 6}.

Then
A ∪B = {1, 2, 3, 4, 6},

A ∩B = {2},

and
B \ A = {4, 6}.

A.1.10 Problem (!). Let A and B be as in Example A.1.9. Determine the elements of
each of the following sets.

(i) A \B

(ii) (A \B) ∪B

(iii) (A ∩B) \ A

(iv) A \∅

(v) ∅ \B
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A.2. Composition of functions.

This appendix corresponds to material covered on Friday, January 12, 2024.

If the range of one function is contained in the domain of another function, we can compose
them.

A.2.1 Definition. Let A, B, C, and D be sets and let f : A → B and g : C → D be sets.
Suppose that f(A) ⊆ C. The composition of f with g is the function

g ◦ f : A→ D : x 7→ g(f(x)).

A.2.2 Example. Define

f : C \ {±i} → C \ {0} : z 7→ z2 + 1 and g : C \ {0} → C : w 7→ 2

w
.

Then
g(f(z)) =

2

f(z)
=

2

z2 + 1
.

A.2.3 Problem. Let f : A→ B and g : C → D be functions with f(A) ⊆ C. Prove that

g ◦ f ={(x, z) | (x, y) ∈ f =⇒ (y, z) ∈ g} .

The tool of composition allows us to invert certain functions.

A.2.4 Theorem. Let A and B be sets and suppose that f : A → B is injective or
one-to-one in the sense that if f(x1) = f(x2) for x1, x2 ∈ A, then x1 = x2. Let

g :={(f(x), x) | x ∈ A} ={(y, x) | (x, y) ∈ f} .

Then g : f(A)→ A is a function and

g(f(x)) = x for all x ∈ A and f(g(y)) = y for all y ∈ f(A). (A.2.1)

Moreover, g is the only function from f(A) to A to satisfy (A.2.1). We call g the inverse
of f , and we write f−1 := g.

A.2.5 Problem (?). Prove Theorem A.2.4. [Hint: to show that g : f(A)→ A is a function,
think carefully about what aspects of Definition 1.2.2 need to be checked. The verification
of (A.2.1) is a direct computation. Finally, suppose that h : f(A) → A satisfies (A.2.1)
when g is replaced by h. We need to show h = g. If w ∈ f(A), write w = f(x) for some
x ∈ A; what, then, are g(w) and h(w)?]
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A.2.6 Example. Example 1.2.6 (or common sense) tells us that the function

h : C→ C : z 7→ z2

is not one-to-one, since h(1) = h(−1). Consider, however, the restriction f := h
∣∣
iR+

, where
iR+ = {iy | y ≥ 0}. By (the work in) Example 1.2.6, the image of f is f(R+) = (−∞, 0].
Moreover, we can check that f is one-to-one: if f(iy1) = f(iy2) with y1, y2 ≥ 0, then

−y2
1 = −y2

2, thus y
2
1 = y2

2. Then
√
y2

1 =
√
y2

2, so by Remark 1.1.9 y1 = y2.
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B. Rigorous Constructions of the Complex Numbers

B.1. The real numbers R.

This appendix corresponds to material covered on Monday, January 8, 2024.

For almost all of our day-to-day experiences in this course, it will be perfectly adequate
to say what we did at the start: that a complex number is an expression of the form x+ iy,
where x and y are real numbers and the symbol i satisfies i2 = −1. But since this is a course
in mathematics, we should strive for a deeper understanding of the symbol x + iy at least
once (and then promptly forget it). And to succeed at that, it might be helpful to think first
about what real numbers are and defer studying that all-important symbol i a bit longer.

We will denote the set of real numbers by the symbol R. We will typically use the letters
s, t, and τ to represent real numbers (the third letter, τ, is the Greek letter “tau”). When
considering real numbers in forming complex numbers, we will often use letters like x, y, u,
and v.

The real numbers have many properties. Many, many properties. These properties are
likely so familiar to us that we use them instinctively and without thinking. The purpose
of this brief foray into real numbers is to make us think explicitly about those properties.
It turns out that from a handful of axiomatic properties, we can derive all other useful
properties of real numbers. This is an approach that we will often deploy throughout the
course: start with a few reasonable axioms (which themselves may be proved in another
context, like a real analysis class) and then develop everything from those axioms. And
very often those axioms will arise from some “dynamic” property of the objects that we are
studying.

More informally, the following will usually be our philosophy.

B.1.1 Hypothesis. What things do defines what things are.

Already in our remarks that the equation t2 + 1 = 0 has no real solutions we have used
several properties of real numbers. First, the left side of the equation presumes that additive
and multiplicative operations are defined—given t, we can compute t2 and then add that
to 1. Second, the equivalence of this equation to t2 = −1 presumes that the operation of
addition has an inverse (the additive inverse of 1 is −1). Third, the fact that we cannot solve
t2 = −1 for a real number x because t2 ≥ 0 for all real x but −1 < 0 presumes that R has
an ordering structure that interacts with multiplication and addition.

We now list those axiomatic aspects of R in order of the frequency with which we will
explicitly use them in this course. Note that nowhere do we say conclusively what real
numbers are, but we go on at length about what they do (and do not do).

(R1) We can do arithmetic with real numbers. The real numbers R satisfy the field
axioms: there exist operations + and · defined on pairs of real numbers such that for all
s, t ∈ R, the symbols s + t and s · t are also real numbers, and the operations + and ·
behave exactly as we expect. (Set-theoretically, by “operations” we mean that + and · are
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functions from R2 to R. But we will not discuss functions for some time yet.) By “exactly
as we expect,” we mean the following.

1. Commutativity. s+ t = t+ s and s · t = t · s for all s, t ∈ R.

2. Associativity. (s+ t) + τ = s+ (t+ τ) and (s · t) · τ = s · (t · τ) for all s, t, τ ∈ R.

3. Distributivity. s · (t+ τ) = (s · t) + (s · τ) for all s, t, τ ∈ R.

4. Identities. There exist numbers 0, 1 ∈ R such that 0 6= 1, t + 0 = t and s · 1 = s for all
s, t ∈ R. Moreover, 0 6= 1.

5. Inverses. For each t ∈ R, there is −t ∈ R such that t+ (−t) = 0, and for each s ∈ R\{0}
there is 1/s ∈ R such that s · (1/s) = 1.

Of course, we call + “addition” and · “multiplication,” while “subtraction” is s−t := s+(−t)
and “division” is s/t := s·(1/t). After this introduction, we will usually denote multiplication
by juxtaposition, e.g., st = s · t and s(t+ τ) = s · (t+ τ).

From these five classes of axioms, we can prove everything else about how arithmetic
works. For example, we could show that the additive identity 0 is unique, and then that
additive inverses are unique, and then that 0× t = 0 for all t ∈ R (an interesting connection
between the additive identity and the operation of multiplication). And then we could show
that −t = (−1) · t; in the axioms above, −t is just a symbol for the additive inverse of t
(just as 1/t is a symbol for the multiplicative inverse of t). The axioms do not specify any
connection between the additive inverse and the identity for multiplication, but we can prove
that such a connection is there.

Because of the arithmetic structure of the real numbers, they contain several other im-
portant kinds of numbers. First, the natural numbers are real numbers; intuitively,
these are the positive whole numbers 1, 2, 3, and so on. More formally, we declare 1 to be
a natural number and then recursively define t ∈ R to be a natural number if t = k + 1 for
some natural number k. We denote the set of all natural numbers by N.

Then we define the integers Z to be the natural numbers together with their additive
inverses and the identity for addition. That is,

Z := N ∪ {0} ∪{−k | k ∈ N} .

Finally, we define the rational numbers Q to be quotients of integers (with nonzero denomi-
nators). That is,

Q :=

{
p ·
(

1

q

) ∣∣∣∣ p, q ∈ Z, q 6= 0

}
.

Because R is closed under addition, multiplication, additive inverses, and multiplicative
inverses, we have N ⊆ R, Z ⊆ R, and Q ⊆ R.

B.1.2 Example. From the five axioms for arithmetic we can prove many other familiar
properties. Here are several.

(i) The number 0 is unique in the sense that if ω ∈ R satisfies t+ω = t for all t ∈ R, then
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ω = 0. Here is why: we can put t = 0 to find 0 = 0 + ω = ω by definition of 0.

(ii) Inverses are unique. For addition, if t+ s = 0, then s should equal −t. We check this
by assuming t + s = 0, adding −t to both sides, and then using the definition of 0, the
associativity of addition, and the definition of −t:

−t = −t+ 0 = −t+ (t+ s) = (−t+ t) + s = 0 + s = s.

(iii) We want to say that 0 · t = 0 for all t ∈ R, but so far we only know how 0 interacts
with addition. So, we introduce addition into the quantity 0 · t:

0 · t = (0 + 0) · t = (0 · t) + (0 · t).

Then we add −(0 · t) to both sides to get

0 = (0 · t) + [−(0 · t)] by definition of the inverse for addition
= [(0 · t) + (0 · t)] + [−(0 · t)] since 0 · t = (0 · t) + (0 · t)
= (0 · t) + [(0 · t) + [−(0 · t)]] since addition is associative
= (0 · t) + 0 by definition of the inverse for addition, again
= (0 · t) by definition of 0.

(iv) When we see −t, our instinct is probably to think of it as the product −t = (−1) · t.
This is true, but it needs justification, since all we know about −t is that it satisfies
t+ (−t) = 0. That is, from the axioms we only know how −t interacts with addition, not
multiplication (just like with 0 above).

What does it mean to have −t = (−1) · t? We think about what −t should do, and we
conclude that we want t+ [(−1) · t] = 0, since inverses are unique. We check this by using
the definition of 1 and the distributive property to compute

t+ [(−1) · t] = (1 · t) + [(−1) · t] = [1 + (−1)] · t = 0 · t = 0.

(v) As a consequence of the work above, we now have some particular results relating the
identities for addition and multiplication in the context of both operations:

1 + (−1) = 0, 1 · (−1) = −1, and 0 · 1 = 0.

(R2) We can compare and order real numbers. The real numbers are ordered in
the sense that we can “compare” two real numbers and obtain natural insights into their
relative “sizes.” Specifically, there exists a set P ⊆ R with the following properties.

1. 1 is positive. 1 ∈ P . (And so P 6= ∅.)

2. Closure. The set P is closed under addition and multiplication: if s, t ∈ P , then s+t ∈ P
and s · t ∈ P .

3. Trichotomy. For each t ∈ R, one, and only one, of the following holds: either t = 0 or
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t ∈ P or −t ∈ P .

Of course we call P the positive numbers. We introduce an “ordering” on R by
saying that for s, t ∈ R, we have s < t if t− s ∈ P and s ≤ t if either s < t or s = t. (And
sometimes we write t > s if s < t and t ≥ s if s ≤ t.)

From the three axioms for P and the field axioms, we can obtain familiar results about the
interaction of arithmetic and inequalities. For example, if 0 < s and t < τ, then s · t < s · τ.

B.1.3 Example. The ordering on R induced by P behaves exactly as we expect.

(i) For each t ∈ R, we have t ∈ P if and only if 0 < t. This is just the definition of < with
s = 0.

(ii) For all s, t ∈ R, one, and only one, of the following holds: either s = t, or s < t, or
t < s.

(iii) Multiplication by positive numbers preserves inequalities: we expect that if 0 < s
and t < τ, then s · t < s · τ. Here is why. First, s · t < s · τ if and only if 0 < s · τ − s · t.
Distribution lets us rewrite this second inequality as 0 < s · (τ − t). Since 0 < s, we have
s ∈ P , and since t < τ, we have τ− t ∈ P , and so s · (τ− t) ∈ P .

(R3) We cannot find gaps among the real numbers. The natural numbers (and
integers) definitely have gaps: there is no k ∈ Z such that 1 < k < 2. The rational numbers
do not have gaps in this sense (if p, q ∈ Q with p < q, then r := (p+q)/2 satisfies p < r < q),
but the rationals do have gaps in the following less obvious sense. There is no rational number
r? such that r2

? = 2, but given any ε > 0, it is possible to find a rational number r such
that −ε < r2 − 2 < ε. More informally, we can approximate

√
2 as closely as we like with

rationals, but
√

2 is irrational.
This is not the case with real numbers: they are complete. This is perhaps the most

technical and least intuitive property of R to state; while it has been present throughout our
lives, it is not as accessibly articulated as the field axioms or the ordering axioms. Here is
one way to describe completeness.

1. Any set of real numbers that is nonempty and bounded above has a least upper bound.
Suppose A ⊆ R is nonempty and bounded above in the sense that there is M ∈ R such
that t ≤ M for all t ∈ A. (We call M an upper bound for A; an upper bound is not
unique, for if M is an upper bound for A, then so is M + 1.) Then A has a least upper
bound in the sense that there exists m ∈ R such that (1) t ≤ m for all t ∈ A and (2) if
s < m, then there is t ∈ A such that s < t ≤ m. The first property of m ensures that m
is an upper bound for A; the second property ensures that no s smaller than m can be an
upper bound for A, and so m is the least upper bound for A.

A course in real analysis absolutely, completely, utterly hinges on completeness, but we
will not discuss this property further in our course. Many results that we state but do not
prove, such as convergence tests for series and the existence of definite integrals, do boil
down to an invocation of completeness somewhere in their proofs.
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We are proceeding under the assumption that there exists a set R with the properties
(R1), (R2), and (R3). It is possible to prove that there is such a set.

We will not do this. Instead, we present two useful consequences of all the axioms of R.
One is the fundamental motivation for the course, and the other is a remarkably versatile
little inequality.

B.1.4 Theorem. The additive inverse of the multiplicative identity has no square root in
R. That is, there is no t ∈ R such that t · t = −1.

Proof. We assume that there is t ∈ R such that t · t = −1 and then we use trichotomy to
derive a contradiction.

Case 1. t = 0. Then t · t = 0 · 0 = 0.

Case 2. t > 0. Then t · t > 0, but −1 < 0.

Case 3. t < 0. Then t · t > 0, but, again, −1 < 0.

We used four facts about real numbers in the cases above: (1) 0 · 0 = 0, (2) t · t > 0 when
t > 0, (3) t · t > 0 when t < 0, and (4) −1 < 0. Each of those facts could be proved from the
field axioms in (R1) and the order axioms in (R2), possibly with the help of some auxiliary
results along the way. �

B.1.5 Problem (?). Let x ≥ 0 be a real number with the property that if ε > 0, then
x ≤ ε. Prove that x = 0. [Hint: if x > 0, what happens when we take ε = x/2?]

B.2. The complex numbers C.

This appendix corresponds to material covered on Monday, January 8, 2024.

Our goal is now to give an airtight definition of the symbol x + iy so that it enjoys all
the arithmetic properties of a field, i.e., the five axioms in (R1). The key insight comes from
our geometric explorations that identified complex numbers x+ iy with ordered pairs (x, y)
of real numbers x and y.

B.2.1 Definition. Let A be a set and x, y ∈ A. The ordered pair (x, y) is the set

(x, y) :=
{
{x}, {x, y}

}
.

No one ever uses this definition of an ordered pair in practice, but its redeeming grace is
the following theorem.

B.2.2 Theorem. Let A be a set and x, y, u, v ∈ A. Then (x, y) = (u, v) if and only if
x = u and y = v.
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B.2.3 Problem (!). Do not prove Theorem B.2.2—this is a course in complex analysis,
not set theory. Instead, think about what needs to be done to prove it. [Hint: what does
“=” mean here?]

We are going to define complex numbers as ordered pairs of real numbers. But wait! We
want real numbers to be complex numbers. However, a real number cannot be an ordered
pair of real numbers. . .right?

This suggests that we really need a new interpretation of real numbers, too.

B.2.4 Hypothesis. There exists a set R̂, which we call the temporary real num-
bers, on which there are defined two operations, + and ·, which satisfy the field axioms
(R1). Moreover, there exists a set P̂ ⊆ R, called the temporary positive numbers,
that satisfies the order axioms (R2) and such that R̂ has the least upper bound property
(R3) with respect to the ordering on R̂ defined by s < t if t− s ∈ P̂.

B.2.5 Definition. (i) A complex number is an ordered pair (x, y), where x, y ∈ R̂.
We denote the set of all complex number numbers by

C =
{

(x, y)
∣∣∣ x, y ∈ R̂

}
.

(ii) A real number is an ordered pair (x, 0), where x ∈ R̂. We denote the set of all
real numbers by

R =
{

(x, 0)
∣∣∣ x ∈ R̂

}
.

The immediate upshot of this definition of R is that every real number is now a complex
number. Momentarily we will create arithmetic in C, and then we will show that R satisfies
the field axioms (R1), the order axioms (R2), and the completeness axiom (R3) with respect
to those arithmetical and ordering operations. Invoking Hypothesis B.1.1, we will discard
the temporary real numbers R̂ and only work with R for the rest of the course, since R does
what real numbers should do.

To define arithmetic in C, it is helpful to remember how we formally added and multiplied
in the past:

(x+ iy)+(u+ iv) = (x+u)+ i(y+v) and (x+ iy)(u+ iv) = · · · = (xu−yv)+ i(xv+yu).

Based on these formulas, we define complex addition by

(x, y)⊕ (u, v) := (x+ u, y + v) (B.2.1)

and complex multiplication by

(x, y)� (u, v) :=
(
(x · u)− (y · v), (x · v) + (y · u)

)
. (B.2.2)

We are going to show that we can represent elements of C in the form x + iy that we
know and like. Specifically, direct calculations reveal

(0, 1)� (0, 1) = (−1, 0) and (x, y) = (x, 0)⊕
[
(0, 1)� (y, 0)

]
.
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B.2.6 Problem (+). (Presumes knowledge of abstract algebra.) Prove that R̂ and R are
isomorphic as fields, where arithmetic in R̂ uses + and ·, while arithmetic in R uses ⊕ and
�.

B.2.7 Example. The ordered pair (1, 0) is the identity for multiplication. We check

(x, y)� (1, 0) =
(
(x · 1)− (y · 0), (x · 0) + (y · 1)

)
= (x− 0, 0 + y) = (x, y).

The operations ⊕ and � satisfy the field axioms (R1), and it is possible to define a subset
of “positive” numbers in R (but not, as we shall see, in C) that meet the ordering axioms
(R2). The set R also satisfies the least upper bound property with respect to the ordering
induced by these positive numbers. And so R does what any good set of real numbers should
do, and arithmetic works in the broader set C in the way that we fundamentally expect.

B.2.8 Problem (+). (i) Check that the rest of the field axioms from (R1) hold for ⊕
and �, assuming that the field axioms hold for + and · on R̂. [Hint: for the multiplicative
inverses, think about what (1.1.7) says in the language of ordered pairs.]

(ii) Suppose that P̂ ⊆ R̂ satisfies the order axioms from (R2). Put

P :=
{

(x, 0) ∈ R
∣∣∣ x ∈ P̂} .

Show that P satisfies also the order axioms (R2).

(iii) Write (s, 0) ≺ (t, 0) if (t−s, 0) ∈ P . Show that R has the least upper bound property
(R3) with respect to ≺, assuming that R̂ has the least upper bound property with respect
to <.

However, while we can compare any two elements of R, we cannot compare any two
elements of C and expect arithmetic to respect this comparison as it does on R.

B.2.9 Problem (?). Show that C cannot be ordered in the sense that there is no subset
PC of C satisfying the order axioms of (R2). Proceed by contradiction: assume there is
PC ⊆ C with the following three properties.

(i) (1, 0) ∈ PC.

(ii) If z, w ∈ PC, then z ⊕ w ∈ PC and z � w ∈ PC.

(iii) If (x, y) ∈ C, then one, and only one, of the following holds: either (x, y) = (0, 0), or
(x, y) ∈ PC, or (−x,−y) ∈ PC.

Since (0, 1) 6= (0, 0), it must be the case that either (0, 1) ∈ PC or (0,−1) ∈ PC. What
contradictions result in either case? [Hint: what do you know about (0, 1) � (0, 1) and
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(0,−1)� (0,−1)?]

Although we cannot order C as we do R, we do get what we really wanted in the first
place: in contrast to Theorem B.1.4, the additive inverse of the multiplicative identity has a
square root in C.

B.2.10 Theorem. (i) (0, 1)� (0, 1) = (−1, 0).

(ii) (0, y) = (0, 1)� (y, 0) for all y ∈ R̂.

Proof. These are direct calculations.

(i) (0, 1)� (0, 1) =
(
(0 · 1)− (1 · 1), (0 · 1) + (1 · 0)

)
= (0− 1, 0 + 0) = (−1, 0).

(ii) (0, 1)� (y, 0) =
(
(0 · y)− (1 · 0), (0 · 0) + (1 · y)

)
= (0− 1, 0 + y) = (0, y). �

Since the field axioms for ⊕ and � fall out as they should, we have

(x, y) = (x, 0)⊕ (0, y) = (x, 0)⊕
[
(0, 1)� (y, 0)

]
. (B.2.3)

This is exactly the representation of a complex number that we expect: x+iy, if we identify x
and (x, 0), y and (y, 0), and i and (0, 1). Indeed, working constantly in terms of ordered pairs
and the baroque notation ⊕ and � is, at best, wearying. Representing complex numbers as
the symbols x + iyi much slicker, and the intuitive notions of arithmetic on x + iy are all
that we ever use in practice.

Going forward, we will use ordinary letters once again for real numbers; thus, a real
number x is really an ordered pair x = (ξ, 0), where ξ is a temporary real number. Likewise,
we will use, as before, single letters such as z and w for complex numbers (by the way, a
sentence like “z > 0” will always imply that z is a real number). We will write + instead of
⊕ and · instead of �, but we can always refer to (B.2.1) and (B.2.2) if we need to comfort
ourselves with arithmetic on ordered pairs. We put

i := (0, 1) (B.2.4)

to end where we started.

B.2.11 Theorem. C ={x+ iy | x, y ∈ R}.

Proof. Use the definition of i and the identity (B.2.3). �

B.2.12 Problem (!). Reread the two paragraphs preceding Theorem B.2.11 until you get
a headache. Describe the intensity of your headache and what you did to get rid of it.

B.2.13 Problem (+). (Presumes knowledge of linear and abstract algebra.) The approach
of this section is certainly not the only way to construct C. We could also view C as a
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special set of 2 × 2 matrices. (We will not burden ourselves by giving a formal definition
of a matrix.)

(i) Check that � is really matrix-vector multiplication:

(x, y)� (u, v) = (xu− yv, xv + yu) =

[
xu− yv
xv + yu

]
=

[
x −y
y x

](
u
v

)
=

[
u −v
v u

](
x
y

)
.

(ii) Now put

R2×2
C :=

{[
x −y
y x

] ∣∣∣∣ x, y ∈ R̂
}

and check that C (as defined in Definition B.2.5) and R2×2
C are isomorphic as fields, where

addition and multiplication in C are ⊕ and �, while addition and multiplication in R2×2
C

are the usual addition and multiplication for 2× 2 matrices.

(iii) To what subset of R2×2
C is R (as defined in Definition B.2.5) isomorphic as a field?
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C. Assorted Proofs

C.1. The proof of part (ii) of Theorem 2.6.14.

We first need the tool of uniform continuity, as developed in real analysis or, more generally,
metric space topology.

C.1.1 Lemma (Uniform continuity). Suppose that f : D ⊆ C→ C is continuous, where
D is a set of the form

D ={x+ iy | x0 ≤ x ≤ x1, y0 ≤ y ≤ y1} or D = B(x0 + iy0; r0). (C.1.1)

Then for all ε > 0, there exists δ > 0 such that if w, z ∈ D with |w − z| < δ, then

|f(w)− f(z)| < ε.

We will not prove this lemma, but we contrast its “uniformity” with “ordinary continuity,”
which would say that for all ε > 0 and z ∈ D, there is δ > 0 such that if |w − z| < δ, then
|f(w)− f(z)| < ε. In “ordinary” continuity, the threshold δ can depend on both ε and z; in
“uniform” continuity, the same δ works for the whole set D. The key is that the two varieties
of D in (C.1.1) are closed and bounded sets (and so Lemma C.1.1 turns out to hold for much
more general D than these varieties, though we will not need them).

Now we restate and prove the theorem.

2.6.14 Theorem. Suppose that D ⊆ C is open and let f : D → C be a function. Write
f(x + iy) = u(x, y) + iv(x, y), where we think of u and v as being defined on the set
D̃ :=

{
(x, y) ∈ R2

∣∣ x+ iy ∈ D
}
. In the following we write ux, uy, vx, and vy for the

partial derivatives of u and v with respect to x and y.

(ii) Let x + iy ∈ D and let r > 0 be such that B(x + iy; r) ⊆ D. Suppose that the four
partial derivatives ux, uy, vx, and vy exist and are continuous on B(x + iy; r). Moreover,
suppose that the partials satisfy the Cauchy–Riemann equations{

ux(x, y) = vy(x, y)

uy(x, y) = −vx(x, y).

at x+ iy. Then f is differentiable at x+ iy and

f ′(x+ iy) = ux(x, y) + ivx(x, y) = vy(x, y)− iuy(x, y).

We first emphasize that the Cauchy–Riemann equations only need to hold at this partic-
ular point x + iy, not on all of D. This proof uses four ideas. The first is to write out the
limit that f ′ needs to satisfy. The second is to rewrite this limit using the Cauchy–Riemann
equations so that the real part of the limit only involves u and the imaginary part only in-
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volves v. The third is to rewrite those real and imaginary parts by “adding zero” in a clever
way to expose the fundamental theorem of calculus. And the fourth is to use the FTC to
rewrite certain differences as integrals and then estimate those integrals using the triangle
inequality and the continuity of the partials.

We want to show that

lim
h+ik→0

f((x+ iy) + (h+ ik)− f(x+ iy)

h+ ik
= ux(x, y) + ivx(x, y),

equivalently,

lim
h+ik→0

f((x+ iy) + (h+ ik)− f(x+ iy)− (h+ ik)
[
ux(x, y) + ivx(x, y)

]
h+ ik

= 0.

So, for all ε > 0, we want to find δ > 0 such that if 0 < |h+ ik| < δ, then∣∣∣∣∣f((x+ iy) + (h+ ik)− f(x+ iy)− (h+ ik)
[
ux(x, y) + ivx(x, y)

]
h+ ik

∣∣∣∣∣ < ε. (C.1.2)

We have

f((x+ iy) + (h+ ik)− f(x+ iy) =
[
u(x+h, y+ k) + iv(x+h, y+ k)

]
−
[
u(x, y) + iv(x, y)

]
=
[
u(x+ h, y + k)− u(x, y)

]
+ i
[
v(x+ h, y + k)− v(x, y)

]
.

We compute

(h+ ik)
[
ux(x, y) + ivx(x, y)

]
=
[
hux(x, y)− kvx(x, y)

]
+ i
[
hvx(x, y) + kux(x, y)

]
In the real part of this expression, use the Cauchy–Riemann equations to rewrite

−kvx(x, y) = kuy(x, y),

and in the imaginary part,
kux(x, y) = kuy(x, y).

Then

(h+ ik)
[
ux(x, y) + ivx(x, y)

]
=
[
hux(x, y) + kuy(x, y)

]
+ i
[
hvx(x, y) + kuy(x, y)

]
.

This allows us to conclude

f((x+ iy) + (h+ ik)− f(x+ iy)− (h+ ik)
[
ux(x, y) + ivx(x, y)

]
=
([
u(x+ h, y + k)− u(x, y)

]
−
[
hux(x, y) + kuy(x, y)

])
+ i
([
v(x+ h, y + k)− v(x, y)

]
−
[
hvx(x, y) + kuy(x, y)

])
. (C.1.3)

We have now rewritten the real part of the limit so that it only involves u and the imaginary
part so that it only involves v. Moreover, the real and imaginary parts are effectively the
same: just replace u with v. So, we will only estimate the real part.
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In the real part, add and subtract u(x, y), u(x+ h, y), u(x, y + k) so that[
u(x+ h, y + k)− u(x, y)

]
−
[
hux(x, y) + kuy(x, y)

]
= u(x+ h, y + k)− u(x, y + k)

+ u(x, y)− u(x+ h, y)

+ u(x+ h, y)− u(x, y)− hux(x, y)

+ u(x, y + k)− u(x, y)− kuy(x, y).

Then use the fundamental theorem of calculus (or Example 3.2.24) to rewrite the third line
on the right above as

u(x+ h, y)− u(x, y)− hux(x, y) = h

∫ 1

0

ux(x+ hτ, y) dτ− hux(x, y)

∫ 1

0

1τ

= h

∫ 1

0

[
ux(x+ hτ, y)− ux(x, y)

]
dτ

and likewise the fourth line as

u(x, y + k)− u(x, y)− kuy(x, y) = k

∫ 1

0

[
uy(x, y + kτ)− uy(x, y)

]
dτ.

Then write the first line as

u(x+ h, y + k)− u(x, y + k) = h

∫ 1

0

ux(x+ hτ, y + k) dτ

and the second line as

u(x, y)− u(x+ h, y) = −h
∫ 1

0

ux(x+ hτ, y) dτ,

so that together the first and second lines equal

u(x+h, y+k)−u(x, y+k)+u(x, y)−u(x+h, y) = h

∫ 1

0

[
ux(x+hτ, y+k)−ux(x+hτ, y)

]
dτ.

All together, we obtain[
u(x+ h, y + k)− u(x, y)

]
−
[
hux(x, y) + kuy(x, y)

]
h+ ik

= I + II + III,

where

I =
h

h+ ik

∫ 1

0

[
ux(x+ hτ, y + k)− ux(x+ hτ, y)

]
dτ,

II =
h

h+ ik

∫ 1

0

[
ux(x+ hτ, y)− ux(x, y)

]
dτ,

and

III =
k

h+ ik

∫ 1

0

[
uy(x, y + kτ)− uy(x, y)

]
dτ.
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Estimating the difference quotient in u above therefore amounts to using the (real-valued)
triangle inequality on these three integrals and exploiting the uniform continuity of the partial
derivatives. Recall that the four partial derivatives are continuous on the ball B(x+ iy; r) ⊆
D, and so they are continuous on the smaller closed ball B(x + iy; r/2) ⊆ D, too. Uniform
continuity then tells us that given ε > 0, there is δ > 0 such that if ξ+iη, ξ̀+iὴ ∈ B(x+iy; r/2)

and
√

(ξ − ξ̀)2 + (η − ὴ)2 < δ, then

|ux(ξ, η)− ux(ξ̀, ὴ)| < ε

6
and |uy(ξ, η)− uy(ξ̀, ὴ)| < ε

6
.

Suppose that 0 < |h+ ik| < δ; this forces |h| ≤ |h+ ik| < δ and |k| ≤ |h+ ik| < δ. Then√
(x− x)2 + (y + kτ− y)2 =

√
k2τ2 = |k|τ ≤ |k| < δ,√

(x+ hτ− (x+ hτ))2 − (y + k − y)2 =
√
k2 = |k| < δ,

and √
(x− x)2 + (y + kτ− y)2 =

√
k2τ2 = |k|τ < δ.

Thus if 0 ≤ τ ≤ 1, we have∣∣ux(x+ hτ, y + k)− ux(x+ hτ, y)
∣∣ < ε

6
,

∣∣ux(x+ hτ, y)− ux(x, y)
∣∣ < ε

6
,

and
∣∣uy(x, y + kτ)− uy(x, y)

∣∣ < ε

6
.

Furthermore, since |h| ≤ |h+ ik| and |k| ≤ |h+ ik|, we have

|h|
|h+ ik|

≤ 1 and
|k|

|h+ ik|
≤ 1.

The triangle inequality and the estimates above therefore provide

|I|+ |II|+ |III| < ε

6
+
ε

6
+
ε

6
,

and so we see that given ε > 0, there is δ > 0 such that if 0 < |h+ ik| < δ, then

IV :=

∣∣∣∣∣
[
u(x+ h, y + k)− u(x, y)

]
−
[
hux(x, y) + kuy(x, y)

]
h+ ik

∣∣∣∣∣ < ε

2
.

Exactly the same arguments, using the same δ, show

V :=

∣∣∣∣∣
[
v(x+ h, y + k)− v(x, y)

]
−
[
hux(x, y) + kuy(x, y)

]
h+ ik

∣∣∣∣∣ < ε

2
.

By (C.1.3) and the triangle inequality, we have∣∣∣∣∣f((x+ iy) + (h+ ik)− f(x+ iy)− (h+ ik)
[
ux(x, y) + ivx(x, y)

]
h+ ik

∣∣∣∣∣ ≤ IV + V < ε,

and this is the desired estimate (C.1.2).

C.2. The proof of Theorem 3.2.29.
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3.2.29 Theorem. Arc length is well-defined in the sense that if a path γ can be expressed
as compositions of smooth paths via

γ = ⊕nk=1γk and γ = ⊕mj=1µj,

then
n∑
k=1

`(γk) =
m∑
j=1

`(µj). (C.2.1)

Proof. Since γ is a path, by Problem 3.1.24 there are t0, . . . , tN ∈ [a, b] such that t0 = a,
tN = b, ts−1 < ts, and νs := γ

∣∣
[ts−1,ts]

is continuously differentiable.
For j = 1, . . . ,m, let µj : [aj, bj] ⊆ R→ D be smooth paths such that γ = ⊕mj=1µj. Since

γ = ⊕mj=1µj, Problem 3.1.15 tells us that a = a1 and b = b1 +
∑m

j=2(bj − aj). We show that

m∑
j=1

`(µj) =
N∑
s=1

`(νs). (C.2.2)

Replacing the µj with γk, we have the desired equality (C.2.1).
To prove (C.2.2), we use Problem 3.1.15 and put

τj :=


a = a1, j = 0

b1, j = 1,

τj−1 + bj − aj, j ≥ 2

and 1[τj−1,τj ](t) :=

{
1, τj−1 ≤ t ≤ τj

0, t < τj−1 or t > τj

to have

γ(t) =
(
⊕mj=1 µj

)
(t) =

m∑
j=1

1[τj−1,τj ](t)µj(t+ aj − τj−1),

and so
γ
∣∣
[τj−1,τj ]

(t) = µj(t+ aj − τj−1).

In particular, γ is continuously differentiable on [a, b] \ {τj}mj=0 and

γ
∣∣
[τj−1,τj ]

′
(t) = µ′j(t+ aj − τj−1).

with the derivatives at t = τj−1 and t = τj interpreted as in Problem 2.5.22. Now we consider
cases on N .

Case 1: N = 1. Then γ is in fact continuously differentiable on all of [a, b], and so

N∑
s=1

`(νs) =
N∑
s=1

∫ ts

ts−1

|ν ′s(t)| dt =
N∑
s=1

∫ ts

ts−1

|γ′(t)| dt =

∫ b

a

|γ′(t)| dt =
m∑
j=1

∫ τj

τj−1

|γ′(t)| dt.

(C.2.3)
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For each j ≥ 1, we have∫ τj

τj−1

|γ′(t)| dt =

∫ τj

τj−1

|µ′j(t+ aj − τj−1)| dt =

∫ bj

aj

|µ′j(u)| du = `(µj) (C.2.4)

via the substitution u = t+ aj − τj−1 and the identities

τj−1 + aj − τj−1 = aj and τj + aj − τj−1 =

{
b1 + a1 − a1, j = 1

(τj−1 + bj − aj) + aj − τj−1, j ≥ 2
= bj.

Combining (C.2.3) and (C.2.4) gives

N∑
s=1

`(νs) =
m∑
j=1

`(µj),

as desired.

Case 2: N ≥ 2. We may assume that γ is not continuously differentiable at any of the ts
with 1 ≤ s < N .

Here is why. First, if γ is continuously differentiable at every ts, then γ is continuously
differentiable on [a, b], and we are back in the previous case. Second, if γ is continuously
differentiable at some ts, then γ is continuously differentiable on [ts−1, ts+1], and so by re-
labeling and renumbering the ts at the start of the proof, we may ignore this particular
ts.

Then we have {ts}Ns=0 ⊆ {τj}mj=0. Here is why. Certainly t0 = a = τ0 and tN = b = τm.
For 1 ≤ s ≤ N−1, we are assuming that γ is not continuously differentiable at ts, so if ts 6= τj
for some s and all j, then ts ∈ (τj∗−1, τj∗) for some j∗. But then γ would be continuously
differentiable at ts. So, we can write ts = τjs for some js with 0 ≤ js ≤ m; note that j0 = 0,
jN = m, and js−1 < js for 1 ≤ N .

Then
N∑
s=1

`(νs) =
N∑
s=1

∫ ts

ts−1

|ν ′s(t)| dt =
N∑
s=1

∫ τjs

τjs−1

|ν ′s(t)| dt.

Fixing s, we have ∫ τjs

τjs−1

|ν ′s(t)| dt =

js∑
r=js−1+1

∫ τr

τr−1

|ν ′s(t)| dt.

If t satisfies
ts−1 = τjs−1 ≤ τr−1 ≤ t ≤ τr ≤ τjs = ts,

then
νs(t) = ν

∣∣
[ts−1,ts]

(t) = ν
∣∣
[τr−1,τr]

(t) = µr(t+ ar − τr−1),

and so ∫ τr

τr−1

|ν ′s(t)| dt =

∫ τr

τr−1

|µ′r(t+ ar − τr−1)| dt = `(µr)
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by the same substitution as in (C.2.4). Thus

js∑
r=js−1+1

∫ τr

τr−1

|ν ′s(t)| dt =

js∑
r=js−1+1

`(µr)

and so
N∑
s=1

`(νs) =
N∑
s=1

jk∑
r=jk−1+1

`(µr) =
m∑
j=1

`(µj). �

C.3. The proof of Theorem 3.5.8.

3.5.8 Theorem. Suppose that I ⊆ R is an interval and a, b ∈ R with a ≤ b. Put
R =

{
(t, s) ∈ R2

∣∣ t ∈ I, a ≤ t ≤ b
}
. Let f : R → C : (t, s) 7→ f(t, s) be a continuous

function such that ft exists and is continuous on R. Then the map

I : I → C : t 7→
∫ b

a

f(t, s) ds

defined and differentiable on I and

I ′(t) =

∫ b

a

ft(t, s) ds.

Proof. Fix t ∈ I. We want to show that

lim
h→0

I(t+ h)− I(t)

h
=

∫ b

a

ft(t, s) ds,

equivalently,

lim
h→0

1

h

(
I(t+ h)− I(t)− h

∫ b

a

ft(t, s) ds

)
= 0.

That is, we want to show that for all ε > 0, there is δ > 0 such that if |h| < δ, then∣∣∣∣1h
(
I(t+ h)− I(t)− h

∫ b

a

ft(t, s) ds

)∣∣∣∣ < ε. (C.3.1)

We compute

I(t+ h)− I(t)− h
∫ b

a

ft(t, s) ds =

∫ b

a

f(t+ h, s) ds−
∫ b

a

f(t, s) ds− h
∫ b

a

ft(t, s) ds

=

∫ b

a

[
f(t+ h, s)− f(t, s)− hft(t, s)

]
ds. (C.3.2)

It therefore suffices to show

lim
h→0

∫ b

a

f(t+ h, s)− f(t, s)− hft(t, s)
h

ds = 0. (C.3.3)
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By definition of the partial derivative, we know that

lim
h→0

f(t+ h, s)− f(t, s)− hft(t, s)
h

= 0

for any fixed t and s. Our challenge is now to make this limit hold “uniformly” over all
s ∈ [0, 1] so that we can “pass the limit through the integral” in (C.3.3).

Example 3.2.24 allows us to rewrite

f(t+ h, s)− f(t, s) = h

∫ 1

0

ft(t+ hτ, s) dτ,

and so∫ b

a

[
f(t+ h, s)− f(t, s)− hft(t, s)

]
ds =

∫ b

a

[
h

∫ 1

0

ft(t+ hτ, s) dτ− hft(t, s)
]
ds. (C.3.4)

Now rewrite

ft(t, s) = ft(t, s)

∫ 1

0

1 dτ =

∫ 1

0

ft(t, s) dτ,

so that∫ b

a

[
h

∫ 1

0

ft(t+ hτ, s) dτ− hft(t, s)
]
ds = h

∫ b

a

∫ 1

0

[
ft(t+hτ, s)− ft(t, s)

]
dτ ds. (C.3.5)

We combine (C.3.2), (C.3.4), and (C.3.5) to conclude that

1

h

(
I(t+ h)− I(t)− h

∫ b

a

ft(t, s) ds

)
=

∫ b

a

∫ 1

0

[
ft(t+ hτ, s)− ft(t, s)

]
dτ ds,

and so we estimate with two applications of the triangle inequality that∣∣∣∣1h
(
I(t+ h)− I(t)− h

∫ b

a

ft(t, s) ds

)∣∣∣∣ ≤ (b− a) max
a≤s≤b

∣∣∣∣∫ 1

0

[
ft(t+ hτ, s)− ft(t, s)

]
dτ

∣∣∣∣
≤ (b− a) max

a≤s≤b

(
max
0≤τ≤1

∣∣ft(t+ hτ, s)− ft(t, s)
∣∣) .

Now we will use uniform continuity. Since I is an interval and t ∈ I, there are t0, t1 ∈ I
such that t0 < t < t1 and [t0, t1] ⊆ I. Then ft is continuous on a set D of the first form in
(C.1.1), and so given ε > 0, there is δ > 0 such that both [t− δ, t+ δ] ⊆ I and, if |ξ− t| < δ,
then ∣∣ft(ξ, s)− ft(t, s)∣∣ < ε

b− a
for all s ∈ [a, b]. What is critical here is that we can make the difference above uniformly
small over all s ∈ [a, b].

Take 0 < |h| < δ, so that |(t+hτ)− t| = |h||τ < |h| < δ, since 0 ≤ τ ≤ 1. This guarantees∣∣ft(t+ hτ, s)− ft(t, s)
∣∣ < ε

b− a
,

and thus
(b− a) max

a≤s≤b

(
max
0≤τ≤1

∣∣ft(t+ hτ, s)− ft(t, s)
∣∣) < ε

when 0 < |h| < δ. This proves the desired estimate (C.3.1). �
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C.4. A fuller proof of Theorem 3.5.10.

We begin by calling upon the fearsome power of the triangle. This completes our return to
kindergarten geometry begun with lines and circles.

What is a triangle? Let z1, z2, z3 ∈ C. Surely the path below is a triangle.

z1 z2

z3

We recognize this path as the composition of three line segments in a particular order,
namely [z1, z2] ⊕ [z2, z3] ⊕ [z3, z1]. However, we might also argue that the two-dimensional
region below is a triangle as well.

z1 z2

z3

Both “triangular paths” and “triangular regions” will be very useful to us, and so we should
give precise definitions of them both, and use notation that distinguishes them. While
we recognized the triangular path above as a composition of line segments, how might we
tractably describe the triangular region above in terms of z1, z2, z2?

One useful approach is to recognize the region as a union of line segments—specifically,
all line segments whose initial point is z1 and whose terminal point lies on the line segment
[z2, z3].

z1 z2

z3

Based on this reasoning, we make the following definition.

C.4.1 Definition. Let z1, z2, z3 ∈ C.
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(i) The triangle spanned by z1, z2, and z3 is the set

∆(z1, z2, z3) :=
⋃

0≤s≤1

[z1, (1− s)z2 + sz3] =
{

(1− t)z1 + t
(
(1− s)z2 + sz3

) ∣∣ 0 ≤ s, t ≤ 1
}
.

(C.4.1)

(ii) The triangular path spanned by z1, z2, and z3 is the closed path

∂∆(z1, z2, z3) := [z1, z2]⊕ [z2, z3]⊕ [z3, z1]. (C.4.2)

C.4.2 Problem (?). Let z1, z2, z3 ∈ C.

(i) Prove that the order in which we specify the endpoints of a triangle is irrelevant in the
sense that

∆(z1, z2, z3) = ∆(zσ(1), zσ(2), zσ(3))

for any function σ : {1, 2, 3} → {1, 2, 3} that is one-to-one and onto (i.e., any permutation).
Explain why the order of the points matters very much when we are working with a
triangular path.

(ii) Suppose that two or more of the points z1, z2, z3 are equal, or that all three points
belong to some line segment [z, w]. Prove that ∆(z1, z2, z3) is really a line segment. (Re-
markably, this “degenerate” case will not require any special treatment in our subsequent
use of triangles!)

The key to a version of the Cauchy integral theorem that drops the hypothesis of continuity
on f ′ is that f should integrate to 0 over triangles. This turns out to be true.

C.4.3 Theorem (Cauchy–Goursat theorem). Suppose that f is holomorphic on an open
set D (which need not be star-shaped or even a domain). Let z1, z2, z3 ∈ D such that
∆(z1, z2, z3) ⊆ D. Then ∫

∂∆(z1,z2,z3)

f = 0.

We will not prove this theorem here; its proof is a wonderful union of analysis (careful
estimates using the definition of the derivative and the triangle inequality for integrals)
and geometry (breaking a given triangle into an infinite sequence of nested triangles) and
more analysis (estimating integrals over those nested triangles and finding a subsequence of
triangles whose intersection is nonempty).

C.4.4 Corollary (“Relaxed” Cauchy–Goursat theorem). Let D ⊆ C be a star domain
with star center z?. Suppose that f : D → C is continuous on D and holomorphic on
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D \ {z?}. Then ∫
∂∆(z?,z1,z2)

f = 0

for any z1, z2 ∈ D such that ∆(z?, z1, z2) ⊆ D.

Proof. Let w ∈ [z?, z1], z ∈ [z1, z2], and ξ ∈ [z2, z?] as drawn below.

z? w z1

z

z2

ξ

Write
∫
∂∆(z?,z1,z2)

f as the sum of the integrals of f over the six line segments [z?, w], [w, z1],
[z1, z], [z, z2], [z2, ξ], and [ξ, z?]. Then add and subtract the integrals of f over the interior line
segments [w, ξ], [z, w], and [ξ, z]. Conclude that

∫
∂∆(z?,z1,z2)

f is the sum of the integrals of f
over the four triangles ∂∆(z?, w, ξ), ∂∆(w, z1, z), ∂∆(z, z2, ξ), and ∂∆(w, z, ξ). Furthermore,
the integrals over the last three triangles are all 0, because those triangles are contained in
D \{z?}; this set is open and f is holomorphic on D \{z?}, so the Cauchy–Goursat theorem
applies there. We are left with ∫

∂∆(z?,z1,z2)

f =

∫
∂∆(z?,w,ξ)

f.

We estimate
max

η∈∂∆(z?,w,ξ)
|f(η)| ≤ max

η∈∂∆(z?,z1,z2)
|f(η)| =: M,

and so ∣∣∣∣∫
∂∆(z?,w,ξ)

f

∣∣∣∣ ≤M
(
|z? − w|+ |w − ξ|+ |ξ − z?|

)
.

Since
lim

(z,w,ξ)→(z?,z?,z?)
|z? − w|+ |w − ξ|+ |ξ − z?| = 0,

we conclude ∫
∂∆(z?,z1,z2)

f =

∫
∂∆(z?,w,ξ)

f = 0. �

C.4.5 Problem (!). Chase through the algebra of triangles, line segments, and integrals in
the preceding proof. Specifically, carry out the direction to “add and subtract the integrals
of f over the interior line segments [w, ξ], [z, w], and [ξ, z] and conclude that

∫
∂∆(z?,z1,z2)

f is
the sum of the integrals of f over the four triangles ∂∆(z?, w, ξ), ∂∆(w, z1, z), ∂∆(z, z2, ξ),
and ∂∆(w, z, ξ).”
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At last we are ready to prove that a holomorphic function integrates to 0 around closed
paths without assuming that the derivative is continuous and without assuming that the path
is a triangle.

C.4.6 Theorem (Cauchy integral theorem). Let D ⊆ C be a star domain with star-
center z?, and let f : D → C be continuous. If f is also holomorphic on D \ {z?}, then∫

γ

f = 0

for any closed path γ in D.

Proof. We will show that
F (z) :=

∫
[z?,z]

f

is an antiderivative of f on D. The proof is very similar to that of Theorem 3.4.4, except we
have replaced the general path connecting z? and z with the line segment [z?, z].

Fix z ∈ D. As always, we want to show that

lim
h→0

F (z + h)− F (z)

h
= f(z),

equivalently,

lim
h→0

F (z + h)− F (z)− hf(z)

h
= 0.

By Problem C.4.7 below, there is r > 0 such that if h ∈ C with |h| < r, then ∆(z?, z, z+h) ⊆
D. Assume that h ∈ C satisfies |h| < r from now on.

We calculate

F (z + h)− F (z) =

∫
[z?,z+h]

f −
∫

[z?,z]

f =

∫
[z?,z+h]

f +

∫
[z,z?]

f.

If we add and subtract the integral of f over [z + h, z], then we will have integrated f over
the triangle ∂∆(z?, z + h, z), and this integral is 0 by the relaxed Cauchy–Goursat theorem,
since f is continuous on D and holomorphic on D \ {z?}. That is,∫

∂∆(z?,z+h,z)

f = 0.

z?

z + hz
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So, we do just that:

F (z + h)− F (z) =

∫
[z?,z+h]

f +

∫
[z+h,z]

f +

∫
[z,z?]

f −
∫

[z+h,z]

f

=

∫
[z?,z+h]⊕[z+h,z]⊕[z,z?]

f +

∫
[z,z+h]

f

=

∫
∂∆(z?,z+h,z)

f +

∫
[z,z+h]

f

=

∫
[z,z+h]

f.

Then

F (z + h)− F (z)− hf(z) =

∫
[z,z+h]

f − hf(z) = h

∫ 1

0

[
f(z + th)− f(z)

]
dt,

as we previously calculated in (3.4.4). Since f is continuous on D, Lemma 3.4.5 then implies

lim
h→0

F (z + h)− F (z)− hf(z)

h
= lim

h→0

∫ 1

0

[
f(z + th)− f(z)

]
dt = 0,

as desired. �

C.4.7 Problem (?). Let D ⊆ C be a star domain with star center z? and let z ∈ D. Since
D is open, there is r > 0 such that B(z; r) ⊆ D. Prove that if h ∈ C with |h| < r, then
∆(z?, z, z + h) ⊆ D. [Hint: use the definition of a triangle as a union of line segments, the
definition of an open ball, and a lot of estimates.] Note that for arbitrary z1, z2 ∈ D, the
triangle ∆(z?, z1, z2) need not be wholly contained in D.

z1

z2

z?

C.4.8 Problem (?). Let D ⊆ C be a star-domain with star-center z? and suppose that
f : D → C is continuous with the following property: for all z ∈ C, there is r > 0 such
that if h ∈ C with 0 < |h| < r, then ∆(z?, z, z + h) ⊆ D and

∫
∆(z?,z,z+h)

f = 0. Reread
the preceding problem and the proof of the Cauchy integral theorem and convince yourself
that

∫
γ
f = 0 for all closed paths γ in D.
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C.5. The proof of Lemma 3.6.16.

3.6.16 Lemma. Let z0 ∈ C and r > 0. Suppose that f : ∂B(z0; r)→ C is continuous and
let k ≥ 1 be an integer. Define

Fk : C \ ∂B(z0; r)→ C : z 7→
∫
|w−z0|=r

f(w)

(w − z)k
dw. (C.5.1)

Then Fk is holomorphic with F ′k = kFk+1.

Proof. This is essentially a differentiation under the integral argument for a very specific
integrand. We need to show that for any z ∈ C \ ∂B(z0; r), we have

lim
h→0

Fm(z + h)− Fm(z)

h
= mFm+1(z),

equivalently,

lim
h→0

Fm(z + h)− Fm(z)− hmFm+1(z)

h
. (C.5.2)

We compute

Fm(z + h)− Fm(z)− hmFm+1(z)

=

∫
|w−z0|=r

f(w)

[
(w − z)m+1 − (w − z)((w − z)− h)m − hm((w − z)− h)m

(w − z)m+1((w − z)− h)

]
dw.

(C.5.3)

This calculation just requires finding a common denominator inside the integral.
We claim that for all integers m ≥ 1, there is a function Pm : C2 → C and a constant

Cm > 0 such that

ξm+1−ξ(ξ+h)m+mh(ξ+h)m = h2Pm(ξ, h) and |Pm(ξ, h)| ≤ Cm(|ξ|+ |h|)m−1 (C.5.4)

for all ξ, h ∈ C. The proof of this claim is Problem C.5.1. With this claim in hand, we can
estimate the integral on the right in (C.5.3) via the ML-inequality.

Problem 3.1.26 gives d0 > 0 such that d0 < |w− z| for all w satisfying |w− z0| = r. Since
we are taking h→ 0, we may as well assume that

|h| ≤ min

{
1,
d0

2

}
. (C.5.5)

The triangle inequality implies

|w − z| = |(w − z0) + (z0 − z)| ≤ |w − z0|+ |z − z0| = r + |z − z0| =: ρ.

Then taking ξ = w − z in (C.5.4) gives∣∣(w − z)m+1 − (w − z)((w − z)− h)m − hm((w − z)− h)m
∣∣ = |Pm(w − z,−h)|



C.5. The proof of Lemma 3.6.16 287

≤ Cm|h|2(|w − z|+ | − h|)m−1 ≤ Cm|h|2(ρ+ 1)m−1,

while the reverse triangle inequality implies

|(w − z)− h| ≥ |w − z| − |h| ≥ d0 − |h| ≥
d0

2
.

We put
M := max

|w−z0|=r
|f(w)|,

and use the ML-inequality to estimate

∣∣Fm(z + h)− Fm(z)− hmFm+1(z)
∣∣ ≤ 2πrMCm|h|2(ρ+ 1)m−1

dm+1
0

(
d0

2

) .

If we divide both sides by |h|, we conclude∣∣∣∣Fm(z + h)− Fm(z)− hmFm+1(z)

h

∣∣∣∣ ≤ C|h|, C :=
4MCmπr(ρ+ 1)m−1

dm+2
0

.

The squeeze theorem then yields the limit (C.5.2). �

C.5.1 Problem (+). Prove the claim (C.5.4) using one of the following options.

(i) Add and subtract (ξ + h)m+1 to find

ξm+1 − ξ(ξ + h)m +mh(ξ + h)m = −
(
(ξ + h)m+1 − ξm+1

)
+ (m+ 1)h(ξ + h)m.

Rewrite

(ξ + h)m+1 − ξm+1 = (m+ 1)h

∫ 1

0

(ξ + th)m dt

using the fundamental theorem of calculus and obtain

ξm+1 − ξ(ξ + h)m +mh(ξ + h)m = (m+ 1)h

(∫ 1

0

[
(ξ + h)m − (ξ + th)m

]
dt

)
.

Use the fundamental theorem of calculus again to rewrite∫ 1

0

[
(ξ + h)m − (ξ + th)m

]
dt = mh

∫ 1

0

∫ 1

0

(1− t)
(
ξ + th+ τh(1− t)

)m−1
dτ dt.

Define

Pm(ξ, h) := m(m+ 1)

∫ 1

0

∫ 1

0

(1− t)
(
ξ + th+ τh(1− t)

)m−1
dτ dt.

Prove the estimate on Pm using multiple applications of the triangle inequality.
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(ii) Expand (ξ + h)m using the binomial theorem:

(ξ + h)m =
m∑
k=0

(
m

k

)
ξkhm−k = ξm +mξm−1h+

m−2∑
k=0

(
m

k

)
ξkhm−k.

Then do arithmetic.

C.6. The proof of Theorem 4.4.6.

We first state and prove another “deformation” lemma. This resembles the Death Star lemma
in that we show that the integral of a holomorphic function over one circle equals the integral
of that function over another circle. However, now the circles remain centered at the same
points and only the radii change; moreover, the function is not assumed to be holomorphic
on a certain circle “interior” to both circles over which the integrals run.

C.6.1 Lemma. Suppose that f is analytic on the annulus A(z0; r, R) and r < ρ < P < R.
Then ∫

|z−z0|=ρ
f =

∫
|z−z0|=P

f. (C.6.1)

Proof. We “partition” the annulus A(z0; ρ,P) into a family of “rectangles” γ0, . . . , γn as in
the sketch below.

More precisely, each “rectangle” is of the form

γk := [z0 + ρei(k−1)θn , z0 + Pei(k+1)θn ]⊕ λk ⊕ [z0 + Pei(k+1)θn , z0 + ρei(k+1)θn ]⊕ µ−k ,

where
θn =

2π

n
for some positive integer n,

λk(t) = z0 + Peit, θk ≤ t ≤ ϑk,
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and
µk(t) = z0 + ρeit, θk ≤ t ≤ ϑk.

The integer n is chosen to be large enough that each “rectangle” γk is contained in the ball
B(zk; s), where

zk = z0 +

(
ρ+ P

2

)
eikθn and s :=

P− ρ
2

+ min

{
R− P

2
,
ρ− r

2

}
.

This choice of center and radius for B(zk; s) ensures B(zk; s) ⊆ A(z0; r, R), so f is analytic
on B(zk; s). Since the ball B(zk; s) is a star-domain, the Cauchy integral theorem implies∫
γk
f = 0 for all k.
We then have

0 =
n∑
k=1

∫
γk

f =
n∑
k=1

∫
λk

f −
n∑
k=1

∫
µk

f =

∫
|z−z0|=P

f −
∫
|z−z0|=ρ

f,

from which the equality (C.6.1) follows. �

Now we restate and prove the Laurent decomposition.

4.4.6 Theorem. Let z0 ∈ C and 0 ≤ r < R ≤ ∞. Suppose that f : A(z0; r, R) → C is
analytic. Then there exist unique analytic functions

fR : B(0;R)→ C and fr : B(0; 1/r)→ C,

where we interpret B(0; 1/0) = B(0;∞) = C, such that fr(0) = 0 and

f(z) = fR(z − z0) + fr

(
1

z − z0

)
for each z ∈ A(z0; r, R). We may expand fR and fr as power series centered at 0 to find

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

a−k
(z − z0)k

=
∞∑

k=−∞

ak(z − z0)k, (C.6.2)

where for each k ∈ Z, the coefficient ak satisfies

ak =
1

2πi

∫
|z−z0|=s

f(z)

(z − z0)k+1
dz (C.6.3)

for any s ∈ (r, R).

Proof. We give the proof in the following steps.

1. Reduction to the case z0 = 0. Suppose that the theorem is true for z0 = 0 and define

g : A(0; r, R)→ C : z 7→ f(z + z0).
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Then g is analytic, and so there is a Laurent decomposition (gR, gr) for g on A(0; r, R). That
is, gR : B(0;R) and gr : B(0; 1/r) are analytic with gr(0) = 0 and

g(z) = gR(z) + gr

(
1

z

)
, z ∈ A(0; r, R),

and so
f(z) = g(z − z0) = gR(z − z0) + gr

(
1

z − z0

)
, z ∈ A(z0; r, R).

Thus (gR, gr) is a Laurent decomposition for f on A(z0; r, R) as well.
Suppose that (fR, fr) is another Laurent decomposition for f on A(z0; r, R). Put g̃R(z) :=

fR(z+z0) for z ∈ B(0;R) and g̃r(ξ) := fr(ξ+z0) for ξ ∈ B(0; 1/r). Then (g̃R, g̃r) is a Laurent
decomposition for g on A(0; r, R), and so g̃R = gR and g̃r = gr. Thus fR = gR and fr = gr.
This proves the uniqueness of the decomposition on A(z0; r, R).

Finally, we discuss the coefficients. We have

gR(z) =
∞∑
k=0

akw
k and gr(ξ) =

∞∑
k=1

a−kξ
k, ak =

1

2πi

∫
|w|=s

g(w)

wk+1
dw, r < s < R.

Part (i) of Problem 3.3.7 and the formula g(z) = f(z + z0) then give the formula (C.6.3) for
ak in terms of f .

2. Uniqueness on A(0; r, R). Suppose that an analytic function g : A(0; r, R) → C can be
written as

g(z) = gR(z) + gr

(
1

z

)
and g(z) = ğR(z) + ğr

(
1

z

)
for all z ∈ A(0; r) and some analytic functions gR, ğR : B(0;R)→ C and gr, ğr : B(0; 1/r)→
C with gr(0) = ğr(0) = 0. Put

hR : B(0;R)→ C : z 7→ gR(z)− ğR(z) and hr : B(0; 1/r)→ C : ξ 7→ gr(ξ)− ğr(ξ).

Then hR and hr are analytic and hr(0) = 0. Additionally,

hR(z) + hr

(
1

z

)
= g(z)− g(z) = 0, z ∈ A(0; r, R).

Now consider the analytic function

Hr : A(0; r,∞)→ C : z 7→ hr

(
1

z

)
,

which satisfies
hR(z) = −Hr(z), z ∈ A(0; r, R).

The merging lemma (Lemma 3.5.25) implies that the function

H : C→ C : z 7→

{
hR(z), |z| < R

−Hr(z), |z| > r
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is well-defined and analytic, i.e., entire.
We now show that H is bounded. First suppose R < |z|. Since r < R, if R < |z|, then

r < |z| and 1/|z| < 1/R < 1/r, thus

|H(z)| = |Hr(z)| =
∣∣∣∣hr (1

z

)∣∣∣∣ ≤ max
|w|≤1/R

|hr(W )| =: MR.

Since H is entire, the maximum
mR := max

|z|≤R
|H(z)|

certainly exists. And so |H(z)| ≤ max{MR,mr} for any z ∈ C. Thus H is indeed bounded;
since H is also entire, by Liouville’s theorem H is constant, say, H(z) = c for all z ∈ C.

Now let n ≥ r be an integer. Then

c = |H(n)| = |Hr(n)| =
∣∣∣∣hr ( 1

n

)∣∣∣∣→ 0 as n→∞.

The limit holds because hr is analytic on B(0; 1/r) and hr(0) = 0. Thus c = 0, and so
H(z) = 0 for all z. We conclude, therefore, that hR(z) = 0 for all |z| < R and

0 = Hr(z) = hr

(
1

z

)
for all |z| > r, thus hr(w) = 0 for all |w| < r. This proves that gR = ğR and gr = ğr.

3. Existence on subannuli A(0; ρ,P). Assume that g : A(0; r, R) → C is analytic and let
r < ρ < P < R. Fix z ∈ A(0; ρ,P). By Problem 4.3.7, the function

φ : A(0; r, R)→ C : w 7→


g(w)− g(z)

w − z
, w 6= z

g′(z), w = z

is analytic on A(0; ρ,P). Lemma C.6.1 therefore implies that∫
|w|=ρ

φ(w) dw =

∫
|w|=P

φ(w) dw.

That is, ∫
|w|=ρ

g(w)− g(z)

w − z
dw =

∫
|w|=P

g(w)− g(z)

w − z
,

which rearranges to∫
|w|=ρ

g(w)

w − z
dw − g(z)

∫
|w|=ρ

dw

w − z
=

∫
|w|=P

g(w)

w − z
dw − g(z)

∫
|w|=P

dw

w − z
.

Since |z| > ρ, the Cauchy integral formula implies∫
|w|=ρ

dw

w − z
= 0,
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while since |z| < P, the Cauchy integral theorem implies∫
|w|=P

dw

w − z
= 2πi.

We therefore obtain ∫
|w|=ρ

g(w)

w − z
dw =

∫
|w|=P

g(w)

w − z
dw − 2πig(z),

and, in turn,

g(z) =
1

2πi

∫
|w|=P

g(w)

w − z
dw − 1

2πi

∫
|w|=ρ

g(w)

w − z
dw.

Lemma 3.6.16 implies that

gP(z) :=
1

2πi

∫
|w|=P

g(w)

w − z
dw (C.6.4)

is analytic on C \ C(0; P) and that

g̃ρ(ξ) := − 1

2πi

∫
|w|=ρ

g(w)

w − ξ
dw

is analytic on C \ C(0; ρ). The work above shows

g(z) = gP(z) + g̃ρ(z), z ∈ A(0; ρ,P).

We really want to write g in the form

g(z) = gP(z) + gρ

(
1

z

)
for some analytic function gρ : B(0; 1/ρ)→ C, and so this suggests defining

gρ(ξ) :=


g̃ρ

(
1

ξ

)
, 0 < |ξ| < 1

ρ

0, ξ = 0.

We now need to check that gρ is analytic on B(0; 1/ρ). By definition, gρ is analytic on
B∗(0; 1/ρ), and for ξ ∈ B∗(0; 1/ρ), we have

gρ(ξ) = g̃ρ

(
1

ξ

)
= − 1

2πi

∫
|w|=ρ

g(w)

w − 1

ξ

dw =
1

2πi

∫
|w|=ρ

g(w)

1− ξw
ξ

dw =
1

2πi

∫
|w|=ρ

ξg(w)

1− ξw
dw.

(C.6.5)
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If we can show that limξ→0 gρ(ξ) = 0, then gρ will be analytic on B(0; 1/ρ) by part (ii) of
Problem 4.3.9. To do this, we may assume that |ξ| ≤ 1/2ρ and use the reverse triangle
inequality to bound

|1− ξw| ≥ 1− |ξw| = 1− ρ|ξ| ≥ 1− ρ
(

1

2ρ

)
=

1

2
.

Then ∣∣∣∣∫
|w|=ρ

g(w)

1− ξw
dw

∣∣∣∣ ≤ πρMρ(g), Mρ(g) := max
|w|=ρ

|g(w)|,

and so by the squeeze theorem

lim
ξ→0

gρ(ξ) =
1

2πi
lim
ξ→0

ξ

(∫
|w|=ρ

g(w)

1− ξw
dw

)
= 0.

4. Existence on A(0; r, R). Let g : A(0; r, R) → C be analytic. Step 3 above proves the
existence of a Laurent decomposition (gP, gρ) on any annulus A(0; ρ,P) with r < ρ < P < R,
and Step 2 shows that this decomposition is unique. (In Step 2, just replace r with ρ and
R with P.) Now let r < ρ1 < ρ2 < P2 < P1 < R, so A(0; ρ2,P2) ⊆ A(0; ρ1,P1) ⊆ A(0; r, R).
Let (gP1 , gρ1) be the Laurent decomposition of g on A(0; ρ1,P1) and let (gP2 , gρ2) be the
Laurent decomposition of g on A(0; ρ2,P2). Then the restriction

(
gP1

∣∣
A(0;ρ2,P2)

, gρ1
∣∣
A(0;ρ2,P2)

)
is a Laurent decomposition for g on A(0; ρ2,P2), and so gP1(z) = gP2(z) for all z ∈ B(0; P2)
and gρ1(ξ) = gρ2(ξ) for all ξ ∈ B(0; 1/ρ2).

Now define

gR : B(0;R)→ C : z 7→ gP(z), |z| < P and gr : B(0; 1/ρ)→ C : ξ 7→ gρ(ξ), |ξ| < 1/ρ.

By the work above, these are well-defined, analytic functions with gr(0) = 0. Moreover, if
z ∈ A(0; r, R), and if r < ρ < |z| < P < R, then

g(z) = gP(z) + gρ

(
1

z

)
= gR(z) + gr

(
1

z

)
.

This proves the existence of the Laurent decomposition on A(0; r, R).

5. Coefficients on A(0; r, R). Let g : A(0; r, R) → C be analytic, and let (gR, gr) be its
Laurent decomposition. Since gR and gr are analytic and gr(0) = 0, they have power series
expansions of the form

gR(z) =
∞∑
k=0

αkz
k and gr(z) =

∞∑
k=1

βkz
k.

Now we need to calculate their coefficients αk and βk more transparently in terms of g.
We begin with an observation that may seem unmotivated but is in fact quite important.

For any s1, s2 ∈ (r, R) and n ∈ Z, Lemma C.6.1 implies that∫
|w|=s1

g(w)

wn
dw =

∫
|w|=s2

g(w)

wn
dw.
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For this reason, the numbers

ak :=
1

2πi

∫
|w|=s

g(w)

wk+1
dw, s ∈ (r, R), k ∈ Z,

are defined independently of s.
Now fix z ∈ B(0;R) and let P ∈ (r, R) such that |z| < P < R. By (C.6.4),

gR(z) = gP(z) =
1

2πi

∫
|w|=P

g(w)

w − z
dw =

1

2πi

∫
|w|=P

g(w)

w

 1

1− z

w

 dw

=
1

2πi

∫
|w|=P

g(w)

w

∞∑
k=0

(
zk

wk

)
dw.

Here we have used the estimate |z| < P = |w| to invoke the geometric series. Then the
interchange theorem (Theorem 4.1.4) allows us to conclude

gR(z) =
1

2πi

∞∑
k=0

∫
|w|=P

g(w)zk

wk+1
dw =

∞∑
k=0

(
1

2πi

∫
|w|=P

g(w)

wk+1
dw

)
zk, z ∈ A(0; ρ,P) =

∞∑
k=0

akz
k.

Similarly, with ξ ∈ B(0; 1/r) and ρ ∈ (r, R) such that |ξ| < 1/ρ, by (C.6.5) we have

gr(ξ) = gρ(ξ) =
1

2πi

∫
|w|=ρ

ξg(w)

1− ξw
dw =

ξ

2πi

∫
|w|=ρ

g(w)
∞∑
k=0

(ξw)k dw.

Here we have used the estimate |ξw| = |ξ|ρ < (1/ρ)ρ = 1 to introduce the geometric series.
Then the interchange theorem implies

gr(ξ) =
ξ

2πi

∞∑
k=0

∫
|w|=ρ

g(w)ξkwk dw =
∞∑
k=0

(
1

2πi

∫
|w|=ρ

g(w)wk dw

)
ξk+1

=
∞∑
j=1

(
1

2πi

∫
|w|=ρ

g(w)wj−1 dw

)
ξj =

∞∑
j=1

(
1

2πi

∫
|w|=ρ

g(w)

w−j+1
dw

)
ξj =

∞∑
j=1

a−jξ
j. �

C.7. The proofs of equations (4.5.3) and (4.5.9).

We prove a theorem that encapsulates the situations of both equalities.

C.7.1 Theorem. Let 0 ≤ r < R ≤ ∞ and z0 ∈ C, and let f : A(z0; r, R)→ C be analytic.
Let (fR, fr) be the Laurent decomposition of f on A(z0; r, R). Let γ be a closed curve in
B(0; 1/r) with B(0; 1/0) =∞. Then∫

γ

fr

(
1

z − z0

)
dz = a−1

∫
γ

dz

z − z0

= 2πiRes(f ; z0)χ(γ; z0).
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Proof. Recall that fr : B(0; 1/r)→ C is analytic, with B(0; 1/0) = C, and

fr(w) =
∞∑
k=1

a−kw
k, a−k :=

1

2πi

∫
|z−z0|=s

f(z)(z − z0)k−1 dz, r < s < R. (C.7.1)

We will apply the interchange theorem (Theorem 4.1.4) to interchange the order of summa-
tion and integration and show∫

γ

∞∑
k=1

a−k
(z − z0)k

dz =
∞∑
k=1

∫
γ

a−k
(z − z0)k

dz. (C.7.2)

For k ≥ 2, the fundamental theorem of calculus (see Problem 4.5.3) provides∫
γ

dz

(z − z0)k
= 0.

Then
∞∑
k=1

∫
γ

a−k
(z − z0)k

dz = a−1

∫
γ

dz

z − z0

= 2πiRes(f ; z0)χ(γ; z0).

To justify the use of the interchange theorem, we first call upon Problem 3.1.26 to summon
up t0 ∈ [a, b] such that

|γ(t)− z0| ≥ |γ(t0)− z0| =: d0

for all t ∈ [a, b]. And since γ(t) ∈ A(z0; r, R) for all t, we have d0 = |γ(t0) − z0| > r. Then
we estimate ∣∣∣∣ a−k

(z − z0)k

∣∣∣∣ ≤ |a−k|dk0
(C.7.3)

for any z ∈ image(γ). Next, from (C.7.1) and the ML-inequality, we estimate

|a−k| ≤
1

2π
(2πs)Ms(f)sk−1 = Ms(f)sk, Ms(f) := max

|z−z0|=s
|f(z)|. (C.7.4)

This is valid for any s ∈ (r, R).
Combining (C.7.3) and (C.7.4), we have∣∣∣∣ a−k

(z − z0)k

∣∣∣∣ ≤Ms(f)

(
s

d0

)k
.

This is valid for any z ∈ image(γ), any s ∈ (r, R), and any integer k ≥ 1. Since r < d0,
we may choose s ∈ (r, d0) to ensure s/d0 ∈ (0, 1). Then the interchange theorem applies to
validate (C.7.2). �
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D. Polar Coordinates Revisited

We present here a construction of polar coordinates, specifically of the principal argument,
that is independent of the annoying “existential” result in part (π4) of Theorem 1.5.10.
Specifically, we will use the Cauchy integral theorem to redevelop the principal logarithm
and principal argument with explicit integral formulas.

We do assume the following.

D.1 Hypothesis. (i) Theorems 1.5.2 and 1.5.4 about the exponential are true. (Most of
these results are easy to prove anyway, except for the functional equation.)

(ii) There exists π > 0 such that eiτ 6∈ (−∞, 0) for τ ∈ (−π, π) and eiπ = −1. These
results are consequences of Theorem 1.5.10, but we do not assume any part of that theorem
here.

(iii) The function

ln : (0,∞)→ R : t 7→
∫ t

1

dτ

τ

satisfies eln(t) = t for all t > 0. This was developed in Problem 3.2.19. Moreover, we can
write ln (trivially) as the line integral

ln(t) =

∫
[1,t]

dτ

τ

by Problem 3.3.6.

Assuming these, and only these, results about exponentials, natural logarithms, and π,
we put D := C \ (−∞, 0], so D is a star domain.

D.2 Problem (!). Draw a picture to convince yourself that C \ (−∞, 0] is a star domain.
What should a star-center be? Prove it.

For z ∈ D, let γz : [0, 1] ⊆ R→ D be a path with γz(0) = 1 and γz(1) = z.

R

iR

1

z

γz

Now put

L : D → C : z 7→
∫
γz

dw

w
.
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D.3 Problem (+). Explain why L is well-defined and holomorphic on D with L′(z) = 1/z.
Exactly the same strategy as incan then be used to show that eL(z) = z for all z ∈ D; this
is really just a Show that L solves the IVP{

L′(z) = 1/z

L(1) = 0

and, using the same strategy as in part (ii) of Problem 3.2.19, deduce that eL(z) = z for all
z ∈ D.

We compute L(z) for several increasingly more complicated forms of z ∈ D.

D.4 Problem (+). (i) z = t > 0. Show that

L(t) = ln(t).

R

iR

1

γt

t

(ii) z = reiθ for some r > 0 and θ ∈ (−π, π). Put

µreiθ : [0, 1]→ C : t 7→ reiθt,

so [1, r]⊕ µreiθ is a path in D from 1 to reiθ.

R

iR

1

reiθ

[1, r]

r

µreiθ

Show that
L(reiθ) = ln(r) + iθ.

[Hint: use the definition of the line integral to evaluate
∫
µ
reiθ
dw/w.]
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(iii) z ∈ D is arbitrary. Take γz = [1, |z|] ⊕ µz, where µz is any path in D from |z| to z.
Show that

L(z) = ln(|z|) + iA(z), A(z) := −i
∫
µz

dw

w
.

We will show that A can be thought of as the principal argument Arg restricted to
C \ (−∞, 0]. Namely, we will show the polar coordinates identity z = |z|eiA(z), the reality of
A, and the bounds −π < A(z) < π. (Recall that A is defined on C \ (−∞, 0], so we want to
exclude π from the range of A.)

D.5 Problem (+). Let z ∈ D.

(i) Use the identities z = eL(z) and L(z) = ln(|z|) + iA(z) to compute

z = |z|eiA(z).

(ii) Show that |eiA(z)| = 1 and thus e− Im[A(z)] = 1. Conclude that Im[A(z)] = 0 and
therefore A(z) ∈ R.

(iii) Conclude further that

Re[L(z)] = ln(|z|) and Im[L(z)] = A(z)

and therefore that A is continuous on D.

(iv) To obtain the desired bounds −π < A(z) < π, suppose instead that |A(z)| ≥ π. Let
ν : [0, 1]→ D be a path from 1 to z, and put f(t) := |A(ν(t))|. Use the intermediate value
theorem to find t0 ∈ (0, 1) such that f(t0) = π. Then use the polar coordinates identity to
show

ν(t0) = |ν(t0)|eiA(ν(t0)) < 0.

Why is this a contradiction?

Here is what we have shown.

D.6 Theorem. For z ∈ C \ (−∞, 0], let γz be any path in C \ (−∞, 0] with initial point 1
and terminal point z. Put

L(z) :=

∫
γz

dw

w
and A(z) := Im[L(z)].

Then the maps

A : C \ {0} → (−π, π] : z 7→

{
A(z), z ∈ C \ (−∞, 0]

π, z ∈ (−∞, 0)
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and

L : C \ {0} → C : z 7→

{
L(z), z ∈ C \ (−∞, 0]

L(|z|) + iπ, z ∈ (−∞, 0)

satisfy the following.

(i) eL(z) = z for all z ∈ C \ {0} and A(reiθ) = θ for θ ∈ (−π, π].

(ii) z = |z|eiA(z) for all z ∈ C \ {0}.

(iii) Re[L(z)] = ln(|z|) and Im[L(z)] = A(z).

(iv) The map A is continuous on C \ (−∞, 0] and discontinuous on (−∞, 0].

(v) The map L is holomorphic on C \ (−∞, 0] with L′(z) = 1/z, but L is not continuous
on (−∞, 0].

Of course, we write Log = L and Arg = A.

D.7 Problem (+). Using the definition of A given above, check that the method of
Example 2.2.19 still works to show that A is discontinuous on (−∞, 0). [Hint: A(reit) = t
for r > 0 and t ∈ (−π, π).] Then show that A is also discontinuous at 0. Along the way,
be sure to demonstrate why none of these discontinuities are removable.

D.8 Problem (+). Let D ⊆ C be an elementary domain. A holomorphic loga-
rithm of a function f : D → C is a holomorphic function L : D → C such that f(z) = eL(z)

for all z ∈ D. This problem shows that f : D → C has a holomorphic logarithm on D if
and only if f is both holomorphic and never 0 on D.

(i) Show that if f : D → C has a holomorphic logarithm L on D, then f is analytic,
f(z) 6= 0 for all z ∈ D, and

L′(z) =
f ′(z)

f(z)
, z ∈ D. (D.0.1)

Thus (D.0.1) determines L, up to a constant of integration.

(ii) Conversely, suppose that f : D → C is holomorphic and f(z) 6= 0 for all z ∈ D. The
identity (D.0.1) suggests that we might define a holomorphic logarithm of f on D as an
antiderivative of f ′/f ; specifically, fix z? ∈ D and put

L(z) := C +

∫
γz

f ′

f
,

where γz is a path in D with initial point z? and terminal point z, and C is a constant of
integration that we will determine later.

First explain why L is well-defined and satisfies (D.0.1). Then, following the method of
part (ii) of Problem 3.2.19, put g(z) = e−L(z)f(z), show that g′(z) = 0, and determine the
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value of C that yields g(z?) = 1. Conclude, with this value of C, that g(z) = 1 and thus
f(z) = eL(z).


	OVERVIEW OF NOTES
	INTRODUCTION
	PRECALCULUS
	Arithmetic and geometry
	The (un)definition of complex numbers
	Addition and multiplication
	The modulus
	The conjugate (and the modulus, continued)
	Division

	Functions
	Sequences
	Analytic and geometric notions of sequential convergence
	Properties of convergent sequences

	Series
	The exponential and trigonometric functions
	The exponential
	The sine and the cosine

	Geometry revisited: polar coordinates
	Logarithms and powers
	The natural logarithm
	Complex logarithms
	Powers

	Algebra: solving zn=w

	DIFFERENTIAL CALCULUS
	Functions (briefly revisited)
	Limits
	The (correct) definition of limit
	Algebraic properties of limits
	Limits and geometry
	Limits in R

	Limits and topology
	Continuity
	The definition of continuity and examples
	Removable discontinuities
	The extreme value theorem

	Differentiation
	The definition of the derivative
	Local linearity
	Fundamental properties of derivatives
	The reverse chain rule
	The derivative of a function of a real variable

	The Cauchy–Riemann equations
	Some formal analysis
	Open sets
	The Cauchy–Riemann equations, done correctly
	The differential equation f'=0


	INTEGRAL CALCULUS
	Paths, curves, contours
	Smooth paths
	Composition of paths and nonsmooth paths
	Reversing paths
	Reparametrizing paths
	Connectedness

	Definite integrals
	Properties of ``good'' integrals
	The definite integral of a complex-valued function
	The fundamental theorem of calculus
	Consequences of the fundamental theorem of calculus
	Arc length

	Line integrals
	Definition and properties of line integrals
	The fundamental theorem of calculus for line integrals
	The ML-inequality

	Independence of path
	The Cauchy integral theorem
	Star-shaped domains
	Differentiating under the integral
	The Cauchy integral theorem
	Application to Fourier transforms
	Elementary domains

	The Cauchy integral formula and its consequences
	A deformation lemma
	The Cauchy integral formula
	The generalized Cauchy integral formula
	Liouville's theorem


	THE MULTIVERSE OF ANALYTIC FUNCTIONS
	Analyticity
	Taylor series
	Interchange of series and integrals
	Power series
	Analytic functions

	The zeros of an analytic function
	Roots of polynomials
	Isolated zeros
	The identity principle
	Analytic continuation

	Isolated singularities
	Removable singularities
	Poles
	Essential singularities

	Laurent series
	Residue calculus
	Line integrals in annuli
	The winding number
	The residue theorem
	Evaluating real-valued integrals on (subintervals of) R
	The open mapping theorem


	Very Elementary Set Theory
	Sets and operations on sets
	Composition of functions

	Rigorous Constructions of the Complex Numbers
	The real numbers R
	The complex numbers C

	Assorted Proofs
	The proof of part (ii) of Theorem 2.6.14
	The proof of Theorem 3.2.29
	The proof of Theorem 3.5.8
	A fuller proof of Theorem 3.5.10
	The proof of Lemma 3.6.16
	The proof of Theorem 4.4.6
	The proofs of equations (4.5.3) and (4.5.9)

	Polar Coordinates Revisited

