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Day 1: Monday, January 8. We discussed how complex numbers arise—naturally,
artificially, or cleverly—in problems that seem to involve only real numbers. See pp. 1–2 of
the book. I am presuming familiarity with the set theory in Appendix A.1 of the lecture
notes. The book discusses some of this on pp. 98–99 starting with the paragraph “Next, we
introduce some set notation. . .”; stop on p. 99 just above “Connected Sets.” Appendix B
of the notes offers more rigorous perspectives on constructing complex numbers out of real
numbers. I will likely assign problems from Appendices A and B for Problem Set 1, and
Appendix B also has several portfolio options that you might like.

Day 2: Wednesday, January 10. See p. 2 for one definition of C as R2 (which may run
into problems since R 6⊆ R2, but we want R ⊆ C). Pages 3–5 cover elementary arithmetic
and pages 13–15 cover elementary geometry. We proved part of Proposition 1.2.5 and will
discuss integer powers next time. The many examples on pp. 16–22 are very much worth
your time.

Day 3: Friday, January 12. We took another look at division; see pp. 5–7. Proposition
1.1.5 is a useful tool that we will mostly take for granted, and Examples 1.1.6 and 1.1.7
offer helpful additional practice with arithmetic. We then talked about functions, which we
will continue to do for the rest of the course. Pages 41–47 give examples of a variety of
functions and include visualizations of domains and ranges. Since we have not yet studied
polar coordinates, you may only want to consider Examples 1.4.1, 1.4.4, and 1.4.5 right
now. See also Appendix A.2 in the lecture notes for some (hopefully familiar) properties of
function composition.

Day 4: Wednesday, January 17. We discussed sequences and their convergence and
divergence. See Definition 1.5.1, Proposition 1.5.2 for the uniqueness of the limit, and
Example 1.5.3 for some concrete sequences and a picture. Example 1.5.9 is a useful result
that highlights a variety of different sequence techniques in action.

Day 5: Friday, January 19. See Fig. 1.31 for an illustration of sequential convergence
in the plane, and also Fig. 1.32. We proved the “conjugate” part of Theorem 1.5.7 and the
forward direction of Theorem 1.5.8. The book’s proof of Theorem 1.5.8 is different and well
worth reading, as it uses the clever identity Re(z) = (z + z)/2. We will not discuss Cauchy
sequences in this class, so you can omit Definition 1.5.10 and Theorem 1.5.11 (if you promise
to take real analysis). Finally, we discussed series on p. 56; our definition is rather more
precise than the book’s “expression of the form.” You should be comfortable with the algebra
of series in Theorem 1.5.15 and the test for divergence in Theorem 1.5.17.

Day 6: Monday, January 22. We continued talking about series. Our major result was
the geometric series; see Theorem 1.5.13 and Example 1.5.14. Example 1.5.9 discusses the
convergence and divergence of the “power” sequence (zk) in a manner somewhat different from
our treatment of this sequence during the geometric series proof. Note the philosophy in the
paragraph preceding Theorem 1.5.15 and then be prepared to use that theorem frequently.
Everything on pages 59 and 60 is worth reading, although you are not required to know
the proofs of Theorem 1.5.17, Proposition 1.5.18, Theorem 1.5.20, or Theorem 1.5.21. (All
demonstrate valuable techniques in analysis but nothing unique to complex analysis.) Last,
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we stated the ratio test (Theorem 1.5.23) and applied it to the exponential (Example 1.5.24).
The root test (Theorem 1.5.25) is also good to know.

Day 7: Wednesday, January 24. The exponential is defined on pp. 64–65, and the book
calls it ez, not exp(z). We have not earned the right to call it ez yet. Theorem 1.6.2 proves
the functional equation using the Cauchy product formula in Theorem 1.5.28; this is nice
to know but not required. Proposition 1.6.3 gives a somewhat euphemistic proof of Euler’s
identity (with many · · · ) assuming knowledge of the real sine and cosine; see also Corollary
1.6.4. This goes in the reverse order of our work in class, in which we defined the sine
and cosine in terms of the exponential. Example 1.6.5 offers useful computational practice.
Read the last paragraph on p. 68 about π and see Proposition 1.6.7 for the periodicity of
the exponential, which presumes periodicity results for the sine and cosine. For trig, see
p. 76 for motivation for the definition of the complex sine and cosine and then Definition
1.7.1, Example 1.7.2, and, for more practice, the proofs of Propositions 1.7.3 and 1.7.4 and
Example 1.7.7.

Day 8: Friday, January 26. We went back and finally discussed polar coordinates. The
book does this in Section 1.3 by assuming that polar coordinates exist as we did in Calculus
II. (In contrast, in class we proved the existence of polar coordinates by assuming some other
fundamental things.) All of the material on pp. 25–30 is worth reading. Note that (1.3.13)
gives a formula for the principal argument. . .if you believe in the inverse tangent first. We
will discuss other parts of Section 1.3 later. You should also read p. 68, which discusses polar
coordinates in the context of the exponential and then the section “Exponential and Polar
Representations” on pp. 69–72 (you don’t have to read Example 1.6.10 yet).

Day 9: Monday, January 29. We developed the complex logarithm, as on p. 86 and
Definition 1.8.2 and Definition 1.8.4. Note that the book is not typically using set-builder
notation with the symbols log and arg. Examples 1.8.1, 1.8.3, and 1.8.5 give lots of good
computational practice. Think carefully about the observations at the top of p. 88.

Day 10: Wednesday, January 31. Pages 90–91 discuss complex powers (stop on p. 90
with the paragraph ending “As a convention, ez . . .”). Read Example 1.8.7 and the three cases
starting at the bottom of p. 90. The book studies the algebraic equation zn = w way back
on pp. 34–36, albeit without the exponential. Read Examples 1.3.11 and 1.3.12 and look at
the pictures (Figures 1.20 and 1.21). Then we thought more broadly about functions. See
pp. 45–47 on the real and imaginary parts of a function; in the examples, you can skip the
geometric discussions (unless you’re interested) but do consider the algebraic manipulations
of writing f(x+ iy) = u(x, y) + iv(x, y) and figuring out u and v.

Day 11: Friday, February 2. We developed the correct definition of limit for a function
(via sequences) and talked about some useful (but unsurprising) consequences of that defini-
tion. The book does this via the ε-δ definition, which we will study later. All of the material
on pp. 103–106 is worth reading; in particular, these pages cover the “algebra of limits” that
I put in the notes but did not cover in any detail in class. Figure 2.8 on p. 103 illustrates
limits geometrically, and we will use this idea when we connect limits to balls next week.
You may want to skim Section 2.1 now; this is a sort of catch-all section for topological
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concepts, but we will meet them more slowly, and only as we need them. In particular, the
concept of accumulation point sneaks in on p. 98. Example 2.2.15 presents limits of rational
functions in the context of continuity (which we will discuss shortly), and Example 2.2.17
corresponds to our limits of the principal argument, again using continuity vocabulary. You
should be able to follow these examples now without too much trouble, but we will build
the machinery of continuity from scratch soon.

Day 12: Monday, February 5. The book discusses open balls on p. 96 with slightly
different notation and closed balls on p. 98. The ε-δ definition of limit appears on p. 103
with a useful illustration in Figure 2.8. You should read Section 2.2.4 in the lecture notes
on limits of functions of a real variable; we did not discuss this in class. Continuity is
defined on p. 108. Theorem 2.2.13 contains the essential algebraic properties of continuity.
Examples 2.2.14 and 2.2.15 contain unsurprising continuity properties of polynomial and
rational functions.

Day 13: Wednesday, February 7. Example 2.2.16 gives another nonremovable discon-
tinuity, and Example 2.2.17 treats the argument. Examples 2.2.19 and 2.2.20 and Theorem
2.2.21 are worth reading and closely resemble our work in class.

Day 14: Friday, February 9. Section 2.3 discusses the derivative. We will strictly
avoid using the word “analytic” as a synonym for “differentiable” for quite some time. All of
the material on pp. 114–118 is worth knowing and, up to and including Proposition 2.3.8,
hopefully wholly unsurprising. The methods of Example 2.3.9 for proving that a function is
not differentiable are important. Pages 119–120 briefly discuss local linearity, in particular
in Proposition 2.3.10; for a deeper discussion of how the derivative is the “best” local linear
approximation, see Section 2.5.2 in the lecture notes. You should know the statement of the
chain rule in Theorem 2.3.11, but you do not need to know its proof, nor the proofs of any of
the prior differentiation rules. Theorem 2.3.12 contains a slightly different (and maybe more
general) version of the reverse chain rule than the one that appears as Theorem 2.5.15 in the
lecture notes. Look at Figure 2.14 for a reminder of how the order of composition goes here.
Example 2.3.13 is worth working through in its entirety. Can you get this result using just
the reverse chain rule in the lecture notes? Last, the book treats complex-valued functions
of a real variable separately on pp. 143–145. I claim that this separation of coverage is not
really necessary and that our work in the lecture notes is sufficient to allow the domains D
to be a subset of R or of C; what is really different is how the real and imaginary parts of a
function of a real variable behave under differentiation, as discussed in Section 2.5.5 of the
lecture notes.

Day 15: Monday, February 12. The book discusses the Cauchy–Riemann equations
on pp. 130–132 with the assumption that the function’s domain is open. We did not make
this assumption in our fooling around in class, and we will revisit today’s work with that
assumption next time. The book discusses open sets on pp. 97–98, and we will discuss them
in more detail next time, too.

Day 16: Wednesday, February 14. We discussed some examples and nonexamples of
open sets before reviewing for the exam. Part (a) of Example 2.1.3 is our proof that open
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balls are open. There are some more examples of open sets in the bullet points on p. 98. We
will not discuss closed sets or closures or interior/boundary points in our course.

Day 17: Friday, February 16. You took Exam 1.

Day 18: Monday, February 19. We did Example 2.5.3, which is one of the Cauchy–
Riemann consequences. Examples 2.5.4, 2.5.5, and 2.5.6 offer more illustrations of using the
Cauchy–Riemann equations to check differentiability.

Day 19: Wednesday, February 21. We proved a slightly weaker version of Theorem
2.5.7, which really used Theorem 2.4.7 without the mean value theorem in two dimensions
from Theorem 2.4.6. A good review of parametric curves appears on pp. 139–143. The
book introduces paths on pp. 145–148. We will avoid discussing piecewise continuous differ-
entiability explicitly, although it will eventually underly the nonsmooth paths that we are
constructing. The book defines composition of paths in Definition 3.1.11. Example 3.1.2
presents the incredibly important circles, line segments, and arcs as paths. Definition 3.1.11
defines composition of paths.

Day 20: Friday, February 23. Definition 3.1.4 defines the reverse of a path, and
Example 3.1.5 does the reverse of a line segment. The other examples on pp. 146–148 are
worth reading. Equivalent parametrizations appear in Definition 3.2.16 a bit later.

Day 21: Monday, February 26. All of the material on pp. 149–153 regarding definite
integrals and antiderivatives is worth reading. We will not use the book’s “continuous an-
tiderivative” terminology; any antiderivative for us will have to be continuous, because it will
be differentiable. See also Definition 3.3.1 and Example 3.3.2 for antiderivatives of functions
of a complex (and not necessarily real) variable.

Day 22: Wednesday, February 28. We proved the fundamental theorem of calculus!
The book discusses this on pp. 153–155, although this treatment assumes the FTC for real-
valued functions and extends it from that to the complex-valued case.

Day 23: Friday, March 1. A good argument for why the arc length formula is what it is
appears on pp. 161–162; see also Example 3.2.18. All of the results and examples about line
integrals on pp. 156–161 are worth reading carefully. There are many more examples here
than we will do in class. Note that the book writes its integrals over circles as∫

|z−z0|=r

f(z) dz =

∫
Cr(z0)

f(z) dz.

Also, in Example 3.2.13, I would never use x in the integrand that way, so just think of the
integral as ∫

|z|=1

Re(z) dz.

The book states the FTC for line integrals as part (c) of the larger independence of path
theorem (Theorem 3.3.4), which we will discuss presently.
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Day 24: Monday, March 4. Examples 3.3.5 through 3.3.9 all deal with antiderivatives
and use the FTC for line integrals (even though they appear in the section about indepen-
dence of path). These examples are hugely worth reading and working through in precise
detail. Theorem 3.2.19 is the ML-inequality. Read Example 3.2.20. Theorem 3.3.4 contains
the major results on independence of path; we only discussed part (a) so far.

Day 25: Wednesday, March 6. We finished proving the independence of path theorem,
i.e., the rest of Theorem 3.3.4 in the book. Pages 184–185 discuss star-shaped sets.

Day 26: Friday, March 8. Section 3.4 proves a version of the Cauchy integral theorem
using line integrals from vector calculus. We will not touch this at all. For future reference,
it may be worth reading pp. 177–178 to see the definitions of interior and exterior of curves
and positively and negatively oriented curves. The book uses this language a lot, but we
won’t in class.

Section 3.5 gives a different proof that also differs from our work in class. This proof
hinges on the special case of Theorem 3.5.2, which requires a topological property from
compactness (p. 184). Assuming this special case to be true, you should be able to follow
the proof of Theorem 3.5.4, which resembles some of the material in the appendices to the
lecture notes.

Section 3.6 gives a deeper generalization of Cauchy’s theorem in part (iii) of Theorem
3.6.5 and in Theorem 3.6.7. These results require more topology and analysis than are
appropriate for our course. In particular, they introduce the notion of “homotopy,” a word
I’ve said a few times in class.

You definitely don’t have to read Section 3.4 (although Examples 3.4.7 and 3.4.8 are
useful), and you are not obligated to read Section 3.5 or 3.6 or 3.7. The version of Cauchy’s
integral theorem in the lecture notes will be all that we need.

Day 27: Monday, March 18. See Examples 3.4.7 and 3.4.8 for useful Cauchy conse-
quences. The material on Fourier transforms is not exactly in the book (although we will
revisit these integrals with residues—see Chapter 5 of the book).

Day 28: Wednesday, March 20. Today’s material (which finished the Fourier transform
estimate and started calculating a line integral that is rather harder than it looks) is not in
the book, so you will need to rely on the notes.

Day 29: Friday, March 22. We proved the magnificent Cauchy integral formula, and
there was much rejoicing in the land. The book states and proves this as Theorem 3.8.1. The
book’s version is vastly more general than ours in that it allows more arbitrary paths than
circles, but at the cost of relying on the somewhat ambiguous notions of “positive orientation”
and “interior.” (Well, intuitively these notions are not ambiguous, but try casting them in
exact mathematical language.) We will only use our version of the integral formula over
circles—to get the “good stuff” that follows, circles are all we need. (Kindergarten geometry
FTW!) Example 3.8.2 is very similar to our final (and only) example in class today. For
Example 3.8.3, try rewriting the integrand using partial fraction and then use the Cauchy
integral formula—no need for Cauchy’s theorem “for multiply connected domains.”



MATH 4391 (Section 51, Spring 2024) Daily Reading Log 6

Day 30: Monday, March 25. The book states the generalized Cauchy integral formula in
Theorem 3.8.6 and proves it using a more general differentiation under the integral argument
(Lemma 3.8.4 and Theorem 3.8.5); that argument is more powerful than the one in the notes,
but it requires more technical hypotheses on the integrand. Read Example 3.8.7 afterward.
Liouville’s theorem is Theorem 3.9.2. It relies on a more general version of the estimate that
we proved; this is Theorem 3.9.1 (take n = 2 in that theorem for our estimate). Theorem
3.9.4 proves the fundamental theorem of algebra but relies on the notion of the limit of a
function as z →∞ in C (Definition 2.2.10), which we did not develop.

Day 31: Wednesday, March 27. Our series expansion is Theorem 4.3.1, which relies on
uniform convergence arguments and the Weierstrass M-test from Section 4.1 (in the book);
we will not use those methods. Subsequent +-problems in the lecture notes will outline more
self-contained methods to justify the interchange; the important thing is that you see the
powerful role of the geometric series in conjunction with the picky hypotheses and precise
structure of the Cauchy integral formula.

Day 32: Friday, March 29. You took Exam 2.

Day 33: Monday, April 1. Examples 4.3.4, 4.3.6, 4.3.7, 4.3.8, and 4.3.9 offer lots of
practice with manipulating Taylor series and with obtaining Taylor series for new functions
from known ones; we will continue practicing this next time. Definition 4.2.1 defines power
series, and Example 4.2.2 tests the convergence of power series using the ratio and root
tests. Theorem 4.2.5 states precisely the result on the radius of convergence, but doing this
precisely requires the notion of a lim sup, which is too much real analysis for our class. You
do not need to know this theorem as stated in the book, but you should read Definition 4.2.6
and look at Figure 4.5. Remark 4.3.3 discusses how to get a lower bound on the radius of
convergence of a Taylor series.

Day 34: Wednesday, April 3. We did two excruciatingly detailed examples about
Taylor series that further developed the recommended reading from Day 33. Problem 41 on
pp. 260–261 contains further details about our Log example.

Day 35: Friday, April 5. Corollary 4.2.9 gives the formula for differentiating a power
series, and Remark 4.3.3 revisits this formula for Taylor series. Examples 4.2.12 and 4.2.13
give more practice in recognizing a power series as the derivative of a function. The para-
graphs at the bottom of p. 252 and at the start of Section 4.5 on p. 272 reinforce our remarks
about factoring polynomials.

Day 36: Monday, April 8. We proved Theorem 4.5.2. Read Example 4.5.3 and maybe
Example 4.3.10.

Day 37: Wednesday, April 10. We proved a more involved version of Theorem 4.5.4
(also with a different proof) and deduced from that the identity principle (Theorem 4.5.5).

Day 38: Friday, April 12. Example 4.5.6 shows how the identity principle allows one to
extend functional equations from R into C; we did this for a property of the logarithm. The
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paragraph just above that example is very important. Then we started discussing isolated
singularities. Page 276 describes all three kinds and has three very illustrative figures.
Example 4.5.9 (a), Proposition 4.5.10, Example 4.5.11, Theorem 4.5.12, and Example 4.5.13
all contain valuable information about removable singularities.

Day 39: Monday, April 15. We developed poles and essential singularities. All of the
material on pp. 279–283 is worth reading. You don’t have to read about singularities at ∞
on pp. 283–284. Ignore references to Laurent series for now; we will develop that shortly.
Look at the picture of an annulus on p. 261.

Day 40: Wednesday, April 17. We stated, but did not prove, the very technical (and
very important) theorem on the Laurent decomposition and the Laurent series. This appears
as Theorem 4.4.1 in the textbook, which does not emphasize the functions fr and fR as we
did. The proof is not easy; the textbook’s relies on uniform convergence at several points,
and the one in the appendices on. . .other stuff. However, the crux of the existence of the
decomposition is establishing the identity (4.4.3) in the book; once you have that, the series
results basically write themselves from geometric series arguments. More important for us
is learning how to construct and manipulate Laurent series. Examples 4.4.2 through 4.4.7
are immensely worth reading. The identity (4.4.8) is helpful.

Day 41: Friday, April 19. We continued with Laurent examples and then talked about
integrating a function analytic in an annulus over a closed path in that annulus. The result
involves a very special Laurent coefficient and one other integral factor. Example 4.49 does
this somewhat differently and just interchanges the whole Laurent series and the integral.
There, that “other integral factor” does not appear (it’s 1) because of the Death Star lemma.

Day 42: Monday, April 22. We discussed the winding number, which does not appear
in the book, and then proved the almighty residue theorem, which appears as Theorem 5.1.2
in the book.

Day 43: Wednesday, April 24. Definition 5.1.1 defines residues. Proposition 5.1.3 gives
some easy ways to calculate residues that do not involve the definition; see also Proposition
5.1.3, Theorem 5.1.6, and Lemma 5.7.1. In general, if you really need a residue, there’s going
to be a way to calculate it without the definition that involves an integral (Internet will help).
Examples 5.1.4, 5.1.5, 5.1.7, and 5.1.8 give a bunch of “toy” line integrals that are evaluated
using the residue theorem. (The point of these examples is not that the actual integral under
consideration is hugely important; they’re just ways to see the residue theorem in action.)
Sections 5.2, 5.3, 5.4, and 5.5 offer a comprehensive, exhaustive, masterful treatment of
various definite and improper integrals using residue methods. If you really need to calculate
an integral using complex analysis, you can probably find ideas in there. Problem 24 in
Section 5.4 offers a different approach to the Fourier integral that we are studying.

Day 44: Friday, April 26. We proved the open mapping theorem (Corollary 5.7.14)
by means of the counting theorem (Theorems 5.7.2, 5.7.3, and 5.7.6) and Rouché’s theorem
(Theorem 5.7.9). All of these theorems have somewhat different proofs in the book. Section
5.7 is hugely worth reading for all of the consequences of the residue theorem that it presents;
there is a wealth of information packed in here.


