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Day 1: Monday, August 12.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Section 1.2 has a broad overview of the subject and some important terms (like linear
PDE and superposition). You definitely don’t have to understand everything in here,
but it gives a good vision of the subject and some important examples. We will revisit
some of this material throughout the term.

Broadly, we care about PDE (I use this as both a singular and plural noun, depending on
the context) because many interesting quantities in life depend on more than one variable.
Your ODE course treated functions of a single variable, often time (y = y(t)), and now we
will have multiple variables, often time and at least one spatial dimension (u = u(x, t)).
Notation is always a nightmare, and I will say things like ut and ∂t[u] to mean the partial
derivative of u with respect to t. So if u(x, t) = cos(xt), then ut(x, t) = − sin(xt)x. I
probably won’t write

∂u

∂t
or

∂

∂t
[u(x, t)].

You have no reason to care about these PDE right now, but here are some things that
we will study:

ut + ux = 0 Transport equation
ut − uxx = 0 Heat equation
utt − uxx = 0 Wave equation
utt + uxx = 0 Laplace’s equation.

It turns out that we can represent all solutions to the transport equation very explicitly and
compactly, and so that PDE will be a great “lab rat” as we develop new techniques—we can
always see how something new compares to what we know about transport. We will not be
so comprehensive with the other examples above, and in particular “boundary conditions”—
whether x lives in a bounded interval or on the whole real line (maybe with some limit
conditions on u as x → ±∞)—will play a larger role there. Also, the algebraic structure
of these PDE sometimes has a profound effect; we will see that if you know how to solve
transport or heat as given, then you effectively get solutions to ut−ux = 0 and ut +uxx = 0.
However, the ± distinction between wave and Laplace is important.

All four PDE are linear and homogeneous in the sense that if u and v are solutions
and c1, c2 ∈ R, then c1u+ c2v is also a solution.

1.1 Problem. Prove that.

This phenomenon is sometimes gussied up with the term superposition, which fails
for nonlinear problems. Here are two nonlinear equations that we will eventually study:

ut + uux = 0 Burgers’s equation
ut + uxxx + uux = 0 Korteweg–de Vries (KdV) equation.
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1.2 Problem. If u and v solve Burgers’s equation, what goes wrong if you try to show
that c1u+ c2v is also a solution for c1, c2 ∈ R?

A major goal of our course, perhaps achievable only in hindsight, will be to understand
how the algebraic structure of these PDE contributes to the existence and properties of
solutions, and how the existence results and the exact properties differ from equation to
equation. Simple, seemingly banal changes in the algebraic structure (the arrangement of +
and −, linearity or nonlinearity) and the analytic structure (what derivatives appear, how
many, where) can lead to profound changes in the behavior of solutions to PDE.

Lawrence C.Evans, in his magisterial graduate-level text Partial Differential Equations,
captures the challenge and the orientation of PDE study quite evocatively:

“There is no general theory concerning the solvability of all partial differ-
ential equations. Such a theory is extremely unlikely to exist, given the
rich variety of physical, geometric, and probabilistic phenomena which can
be modeled by PDE. Instead, research focuses on various particular partial
differential equations that are important for applications within and outside
of mathematics, with the hope that insight from the origins of these PDE
can give clues as to their solutions.”

Peter Olver’s book Introduction to Partial Differential Equations gives the following as a
mission statement for a first undergraduate course in PDE, and I agree with it fully:

“[T]he primary purpose of a course in partial differential equations is to
learn the principal solution techniques and to understand the underlying
mathematical analysis.”

We will focus rather less on deriving PDE from models and physical principles and rather
more on the solution techniques and mathematical analysis—and connections to other classes.
No course is an island, and we will see here why you might want to study things in real and
complex analysis and topology. However, when we do have explicit solutions for a PDE, we
will comment on how their behavior reflects physical reality, or not.

Two of our major tools in this course will be integrals (definite and improper) and fun-
damental results from ODE. We will start by reviewing essential properties of the definite
integral and then applying them to redevelop familiar results from ODE at a more abstract
level (and more rapid pace). Throughout the course, we’ll see that integrals fundamentally
measure and/or extract useful data about functions (and all the cool kids want to be data
scientists these days) and also represent functions in convenient and/or meaningful ways.
You have already seen this in your calculus classes: the number

1

b− a

∫ b

a

f(x) dx

gives a good measure of the “average value” that the function f takes on the interval [a, b],
while the function

F (x) :=

∫ x

a

f(t) dt
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is an antiderivative of f in the sense that F ′(x) = f(x). Eventually we will see that integrals
like ∫ b

a

|f(x)| dx and
(∫ b

a

|f(x)|2 dx
)1/2

are good measures of “size” for f (that is, they are integral norms). We will also find repre-
senting functions via (inverse) Fourier transforms, which are defined via improper integrals,
particularly convenient.

But to get anywhere, we need to be comfortable with how integrals work. I claim that
you only need four properties of integrals in order to get the fundamental theorem of calculus
(FTC), and all of those properties have geometric motivations (there are other motivations,
too, but geometry/area is probably the most universally accessible). For simplicity (and
to annoy the Calc II instructors), I’ll write

∫ b
a
f most of the time, and we’ll agree that the

dummy variable of integration doesn’t matter:∫ b

a

f =

∫ b

a

f(x) dx =

∫ b

a

f(u) du =

∫ b

a

f(s) ds =

∫ b

a

f(t) dt =

∫ b

a

f(τ) dτ.

That last dummy variable τ is the Greek letter “tau.”
Here are those properties (taken from my complex analysis lecture notes).

(
∫
1) First, the integral of a function f : [a, b] ⊆ R → R should somehow measure the net

area of the region between the graph of f and the interval [a, b]. Since the most fundamental
area is the area of a rectangle, we should expect∫ b

a

1 dt = b− a.

t

f(t)

a b

1

(
∫
2) If we divide the region between the graph of f and the interval [a, b] into multiple

components, measure the net area of those components, and add those net areas together,
we should get the total net area of the region between the graph of f and the interval
[a, b]. There are many such ways to accomplish this division, but perhaps one of the most
straightforward is to split [a, b] up into two or more subintervals and consider the net areas of
the regions between the graph of f and those subintervals. So, we expect that if a ≤ c ≤ b,
then ∫ c

a

f(t) dt+

∫ b

c

f(t) dt =

∫ b

a

f(t) dt.
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t

f(t)

a c b

(
∫
3) If f is nonnegative, the net area of the region between the graph of f and the interval

[a, b] should be the genuine area of the region between the graph of f and the interval [a, b],
and this should be a positive quantity. So, we expect that if 0 ≤ f(t) on [a, b], then

0 ≤
∫ b

a

f(t) dt.

(
∫
4) Adding two functions f , g : [a, b] ⊆ R→ R should “stack” the graphs of f and g on top

of each other. Then the region between the graph of f and the interval [a, b] gets “stacked”
on top of region between the graph of g and the interval [a, b]. Consequently, the net area of
the region between the graph of f + g and the interval [a, b] should just be the sum of these
two areas: ∫ b

a

f(t) dt+

∫ b

a

g(t) dt =

∫ b

a

[
f(t) + g(t)

]
dt.

t

f(t)

a b

+

t

g(t)

a b

=

t

f(t) + g(t)

a b

Next, multiplying a function f : [a, b] ⊆ R → R by a constant α ∈ R should somehow
“scale” the net area of the region between the graph of f and the interval [a, b] by that factor
α. For example, the area under the graph of 2f over [a, b] should be double the area under
the graph. Consequently, the net area of the region between the graph of αf and the interval
[a, b] should be the product ∫ b

a

αf(t) dt = α

∫ b

a

f(t) dt.
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2 ·
t

f(t)

a b

=
t

2f(t)

a b

Day 2: Wednesday, August 14.

Here is a more formal and less geometric approach to the integral. Let I ⊆ R be an interval
(for the rest of today, I is always an interval). Denote by C(I) the set of all continuous
real-valued functions on I. We should be able to integrate every f ∈ C(I), and we can.

2.1 Theorem. Let I ⊆ R be an interval and denote by C(I) the set of all continuous
functions from I to R. There exists a map∫

: {(f, a, b) | f ∈ C(I), a, b ∈ I} → R : (f, a, b) 7→
∫ b

a

f

with the following properties.

(
∫
1) [Constants] If a, b ∈ I, then ∫ b

a

1 = b− a.

(
∫
2) [Additivity of the domain] If f ∈ C(I) and a, b, c ∈ I, then∫ c

a

f +

∫ b

c

f =

∫ b

a

f.

(
∫
3) [Monotonicity] If f ∈ C(I) and a, b ∈ I with a ≤ b and 0 ≤ f(t) for all t ∈ [a, b],

then

0 ≤
∫ b

a

f.

If in particular 0 < f(t) for all t ∈ [a, b] and if a < b, then

0 <

∫ b

a

f.

(
∫
4) [Linearity in the integrand] If f , g ∈ C(I), a, b ∈ I, and α ∈ R, then∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g and
∫ b

a

αf = α

∫ b

a

f.

The number
∫ b
a
f is the definite integral of f from a to b.



Day 2: Wednesday, August 14 9

Properties (
∫
4) encodes the linearity of the integral as an operator on the integrand with

the limits of integration fixed, while property (
∫
2) is its additivity over subintervals with

the integrand fixed. Property (
∫
3) encodes the idea that a nonnegative function should have

a nonnegative integral, while property (
∫
1) defines the one value of the integral that it most

certainly should have from the point of view of area.
Specifically, we can express the definite integral as a limit of Riemann sums—among them,

the right-endpoint sums: ∫ b

a

f = lim
n→∞

b− a
n

n∑
k=1

f

(
a+

k(b− a)

n

)
. (2.1)

That this limit exists is a fundamental result about continuous functions, which we will
not prove. From (2.1) we can prove properties (

∫
1), (

∫
3), and (

∫
4) quite easily. Property

(
∫
2) is not so obvious from (2.1), and in fact this property hinges on expressing

∫ b
a
f as a

“limit” of several kinds of Riemann sums, not just the right-endpoint sum. And then there
is still the challenge of ensuring that limits of all sorts of “well-behaved” Riemann sums for
f (including, but not limited to, left and right endpoint and midpoint sums) all converge to
the same number. Moreover, it is plausible that one might want to integrate functions that
are not continuous. (We will eventually have to handle this.)

2.2 Problem (?). Let I ⊆ R be an interval and f , g : I → R be continuous. Let a, b,
c ∈ I and α ∈ R. Using only Theorem 2.1, prove the following. You should not use the
Riemann sum formula (2.1) at all. The goal is to see how other properties of the integral
follow directly from the essential features of Theorem 2.1.

(i) [Generalization of (
∫
1)]

∫ b

a

α = α(b− a)

(ii)
∫ a

a

f = 0

(iii)
∫ b

a

f = −
∫ a

b

f

2.3 Problem (Wholly optional, only if you know induction). Use induction to gen-
eralize additivity as follows. Let I ⊆ R be an interval and f : I → C be continuous. If
t0, . . . , tn ∈ I, then ∫ tn

t0

f =
n∑
k=1

∫ tk

tk−1

f.

2.4 Problem. Let I ⊆ R be an interval.

(i) Suppose that f , g : I → R are continuous and a, b ∈ R with a ≤ b. If f(t) ≤ g(t) for
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all t ∈ [a, b], show that ∫ b

a

f ≤
∫ b

a

g. (2.2)

(ii) Continue to assume a, b ∈ I with a ≤ b. Prove the triangle inequality∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

[Hint: recall that if x, r ∈ R with r ≥ 0, then −|x| ≤ x ≤ |x| and |x| ≤ r if and only if
−r ≤ x ≤ r. Use this to estimate f(t) in terms of ±|f(t)| and then apply part (i).]

(iii) Continue to assume a, b ∈ I with a ≤ b. Suppose that f : I → R is continuous and
there are m, M ∈ R such that m ≤ f(t) ≤M for all t ∈ [a, b]. Show that

m(b− a) ≤
∫ b

a

f ≤M(b− a). (2.3)

(iv) Show that if we remove the hypothesis a ≤ b, then the triangle inequality becomes∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

|f |
∣∣∣∣ .

Why is the extra absolute value on the right necessary here?

We now have only a handful of results about the definite integral, and yet they are enough
to prove the fundamental theorem of calculus. (Conversely, by themselves, they do not help
us evaluate integrals more complicated than

∫ b
a
α for α ∈ C!) This is our first rigorous

verification that an integral gives a meaningful representation of a function. Specifically,
integrals represent antiderivatives.

2.5 Theorem (FTC1). Let f : I → C be continuous and fix a ∈ I. Define

F : I → C : t 7→
∫ t

a

f

Then F is an antiderivative of f on I.

Proof. Fix t ∈ I. We need to show that F is differentiable at t with F ′(t) = f(t). That is,
we want

lim
h→0

F (t+ h)− F (t)

h
= f(t),

equivalently,

lim
h→0

F (t+ h)− F (t)− hf(t)

h
= 0.
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We first compute

F (t+ h)− F (t) =

∫ t+h

a

f(τ) dτ−
∫ t

a

f(τ) dτ

=

∫ t+h

a

f(τ) dτ +

∫ a

t

f(τ) dτ

=

∫ t+h

t

f(τ) dτ.

Next,

hf(t) = f(t)[(t+ h)− t] = f(t)

∫ t+h

t

1 dτ =

∫ t+h

t

f(t) dτ.

We then have

F (t+ h)− F (t)− hf(t) =

∫ t+h

t

f(τ) dτ−
∫ t+h

t

f(t) dτ =

∫ t+h

t

[
f(τ)− f(t)

]
dτ.

Note that this is one instance in which using the variable of integration τ clarifies the fact
that t is constant here. It therefore suffices to show that

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0, (2.4)

and we do that in the following lemma. �

2.6 Problem. Reread, and maybe rewrite, the preceding proof. Identify explicitly each
property of or result about integrals that was used without reference.

This is a specific instance of a more general phenomenon in manipulating difference quo-
tients and doing “derivatives by definition.” The difference quotient has h in the denominator,
and we are sending h → 0, so the denominator is small. A quotient of the form 1/h with
h ≈ 0 is large, and large numbers are problematic in analysis. The limit as h → 0 of
the difference quotient exists because the numerator is sufficiently small compared to the
denominator for the numerator to “cancel out” the effects of that h. In particular, to show

lim
h→0

F (t+ h)− F (t)− hf(t)

h
= 0,

we want the numerator F (t + h) − F (t) − hf(t) to be even smaller than the denominator.
The answer to small denominators is smaller numerators.

Below is a proof of (2.5) for completeness; I will not require you to know it.
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2.7 Lemma. Let I ⊆ R be an interval and let f : I → C be continuous. Then

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0

for any t ∈ I.

Proof. We use the squeeze theorem. The triangle inequality implies∣∣∣∣1h
∫ t+h

t

[
f(τ)− f(t)

]
dτ

∣∣∣∣ ≤ 1

|h|
|t+h−h| max

0≤s≤1
|f((1−s)t+s(t+h))−f(t)| = max

0≤s≤1
|f(t+sh)−f(t)|.

We now need to show that

lim
h→0

max
0≤s≤1

|f(t+ sh)− f(t)| = 0.

This will involve the definition of continuity.
Let ε > 0, so our goal is to find δ > 0 such that if 0 < |h| < δ, then

max
0≤s≤1

|f(t+ sh)− f(t)| < ε. (2.5)

Since f is continuous at t, there is δ > 0 such that if |t − τ| < δ, then |f(τ) − f(t)| < ε.
Suppose 0 < |h| < δ. Then if 0 ≤ s ≤ 1, we have

|(t+ sh)− t| = |sh| ≤ |h| < δ,

thus (2.5) holds. �

2.8 Problem. Prove that the left limit in (2.5) holds. What specific changes are needed
when h < 0?

With FTC1, we can prove a second version that facilitates the computation of integrals
via antiderivatives, but first we need to review the mean value theorem.

2.9 Theorem (Mean value). Let a, b ∈ R with a < b and let f : [a, b]→ R be continuous
with f differentiable on (a, b). Then there is c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

2.10 Problem. (i) Let I ⊆ R be an interval. Suppose that f : I → R is differentiable
with f ′(t) = 0 for all t ∈ I. Show that f is constant on I. [Hint: fix t0 ∈ I and let
t ∈ I \ {t0}. Assuming that t > t0, use the mean value theorem to express the difference
quotient (f(t)− f(t0))/(t− t0) as a derivative, which must be 0. What happens if t < t0?]

(ii) Give an example of a function f defined on the set [−1, 1] \ {0} that is differentiable
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with f ′(t) = 0 for all t but f is not constant. [Hint: go piecewise.]

2.11 Corollary (FTC2). Let I ⊆ R be an interval and let f : I → C be continuous. If F
is any antiderivative of f on I, then∫ b

a

f = F (b)− F (a)

for all a, b ∈ I.

Proof. Let G(t) :=
∫ t
a
f , so G is an antiderivative of f by FTC1. Put H = G−F , so h′ = 0

on I. Since I is an interval, the mean value theorem mplies that H is constant. The most
important inputs here are a and b, so we note that H(a) = H(b), and so

G(a)− F (a) = G(b)− F (b).

But G(a) =
∫ a
a
f = 0, so this rearranges to

G(b) = F (b)− F (a),

and G(b) =
∫ b
a
f . �

The fundamental theorems of calculus are, of course, the keys to both substitution and
integration by parts, two of the most general techniques for evaluating integrals in terms of
simpler functions. Recall that substitution involves turning the more complicated integral∫ b
a
f(ϕ(t))ϕ′(t) dt into the simpler integral

∫ ϕ(b)
ϕ(a)

f(u) du. For this to make sense, the function
ϕ should be defined and continuous on an interval containing a and b, and f should be
defined and continuous on an interval containing ϕ(a) and ϕ(b). But the first integrand
should be continuous on I, and that requires ϕ′ to be continuous on I.

2.12 Definition. Let I ⊆ R be an interval. A function ϕ : I → R is continuously
differentiable if ϕ is differentiable on I (and thus continuous itself on I) and if also
ϕ′ is continuous on I. We denote the set of all continuously differentiable functions on I
by C1(I).

2.13 Theorem (Substitution). Let I, J ⊆ R be intervals with a, b ∈ I. Let ϕ ∈ C1(I)
and f ∈ C(J) with ϕ(t) ∈ J for all t ∈ I. Then∫ b

a

(f ◦ ϕ)ϕ′ =

∫ ϕ(b)

ϕ(a)

f.

Proof. We use FTC2. Let F be any antiderivative of f on J (say F (τ) =
∫ τ

ϕ(a)
f). The

chain rule implies that F ◦ ϕ is an antiderivative of (f ◦ ϕ)ϕ′; indeed,

(F ◦ ϕ)′ = (F ′ ◦ ϕ)ϕ′ = (f ◦ ϕ)ϕ′.
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Then FTC2 implies both∫ ϕ(b)

ϕ(a)

f = F (ϕ(b))− F (ϕ(a)) and
∫ b

a

(f ◦ ϕ)ϕ′ = (F ◦ ϕ)(a)− (F ◦ ϕ)(b).

These differences are equal. �
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Pages 4–6 review first-order linear ODE via integrating factors. This is not the method
that we used in class, and I don’t think it will be very helpful when we want to apply
these ODE techniques to PDE. You might try redoing the textbook’s examples with
variation of parameters.

A recurring theme of our subsequent applications of integrals will be that we are trying
to estimate or control some kind of difference (this is roughly 90% of analysis), and it turns
out to be possible to rewrite that difference in a tractable way by introducing an integral.
It may be possible to manipulate further terms under consideration by rewriting them as
integrals, too. The fundamental identity that we will use in the future is (3.1) below.

3.1 Example. FTC2 allows us to rewrite a functional difference as an integral. When we
incorporate substitution, we can get a very simple formula for that difference. Suppose
that I ⊆ R is an interval, f ∈ C1(I), and a, b ∈ I. Then

f(b)− f(a) =

∫ b

a

f ′.

We will reverse engineer substitution and make the limits of integration simpler and the
integrand more complicated. (This turns out to be a good idea.)

Define
ϕ : [0, 1]→ R : t 7→ (1− t)a+ tb = a+ (b− a)t.

Then ϕ(0) = a, ϕ(1) = b, and a ≤ ϕ(t) ≤ b for all t if a ≤ b, and otherwise b ≤ ϕ(t) ≤ a for
all t if b ≤ a. (Here is a proof of the first case, assuming a ≤ b. Then b− a ≥ 0 and t ≥ 0,
so (b−a)t ≥ 0, thus a ≤ a+ (b−a)t. But also (1− t)a ≤ (1− t)b since 1− t ≥ 0 and a ≤ b,
thus (1 − t)a + tb ≤ (1 − t)b + tb = b.) In other words, we think of ϕ as “parametrizing”
the line segment between the points a and b on the real line.

Substitution implies ∫ b

a

f ′ =

∫ 1

0

f(ϕ(t))ϕ′(t) dt,

and we calculate ϕ′(t) = b− a. Thus∫ b

a

f ′ = (b− a)

∫ 1

0

f ′(a+ (b− a)t) dt.
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In conclusion, if f ∈ C1(I) and a, b ∈ I, then

f(b)− f(a) = (b− a)

∫ 1

0

f ′(a+ (b− a)t) dt. (3.1)

This represents explicitly how f(b)− f(a) depends on the quantity b− a; if we know how
to control f ′ (maybe f ′ is bounded on an interval containing a and b), then we have an
estimate for the size of f(b)− f(a) in terms of b− a. While the mean value theorem would
allow us to rewrite (f(b) − f(a))/(b − a) in terms of f ′, that result is existential and not
nearly as explicit as (3.1).

3.2 Problem. Prove the following variant of Example 3.1: if I ⊆ R is an interval, f ∈
C1(I), and t, t+ h ∈ I, then

f(t+ h)− f(t) = h

∫ 1

0

f ′(t+ τh) dτ.

3.3 Problem. Suppose that f : R→ R is continuous and p-periodic for some p ∈ R, in
the sense that f(t + p) = f(t) for all t ∈ R. Then the integral of f over any interval of
length p is the same: ∫ a+p

a

f =

∫ p

0

f

for all a ∈ R. Give two proofs of this identity as follows.

(i) Define

F : R→ R : a 7→
∫ a+p

a

f

and use FTC1 and the p-periodicity of f to show that F ′(a) = 0 for all a. Since F is also
defined on an interval (the interval here is R), F must be constant.

(ii) First explain why ∫ a+p

a

f =

∫ p

0

f +

(∫ a+p

p

f −
∫ a

0

f

)
.

Then substitute u = t− p to show∫ a+p

p

f =

∫ a

0

f(t− p) dt

and use the p-periodicity of f .
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3.4 Problem (Integration by parts). Let I ⊆ R be an interval and f , g ∈ C1(I) and a,
b ∈ I. Prove that ∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g. (3.2)

[Hint: this is equivalent to an identity for
∫ b
a
(f ′g + fg′) and that integrand is a perfect

derivative by the product rule.]

3.5 Problem. Suppose that f , f ′, and f ′′ are continuous on R; we might say f ∈ C2(R).
Suppose also that f ′(0) = 0 and there is M > 0 such that

|f ′′(t)| ≤M for all t ∈ R.

Show that
|f(x)− f(y)| ≤M

(
|x|+ |y|

)
|x− y|.

By considering the special case f(x) = x2, explain why we might call this a “difference of
squares” estimate. [Hint: use Example 3.1 to rewrite the difference f(x)−f(y) as an integral
involving f ′ and expose the factor x−y. That is, f(x)−f(y) = (x−y)I(x, y), where I(x, y)

represents this integral. Since f ′(0) = 0, we have I(x, y) = I(x, y) − (x − y)
∫ 1

0
f ′(0) dt

Rewrite this difference as an integral from 0 to 1 of some integrand (which involves f ′) and
apply Example 3.1 again to that integrand so that, in the end, I(x, y) is a double integral
involving f ′′.]

We have now built enough machinery to study elementary ODE, all of which will reappear
in our study of genuine PDE. It will We proceed through three kinds of first-order problems—
specifically, all are initial value problems (IVP).

The first is the direct integration problem{
y′ = f(t)

y(0) = y0.
(3.3)

Here f ∈ C(I) is a given function and y0 ∈ R. Also, I ⊆ R is an interval with 0 ∈ I.
The goal is to find a differentiable function y on I such that y′(t) = f(t) for all t ∈ I. (In
general, when solving an ODE, one wants a differentiable function y defined on an interval
that “makes the ODE true” when values from that interval are substituted in. Also, the
domain of a solution should be an interval to reflect the physical ideal that time should be
“unbroken”—and because it makes things nice mathematically. In particular, the interval
should contain 0 so that we can evaluate y(0) and find y(0) = y0. Last, the derivative
should be continuous to reflect the physical ideal that the rates of change do not vary too
much—and because it makes things nice mathematically.)

We work backwards. Assume that the problem has a solution y, so y′(t) = f(t) for all
t ∈ I. For t ∈ I fixed, integrate both sides of this equality from 0 to t to find∫ t

0

y′(τ) dτ =

∫ t

0

f(τ) dτ.
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Be very careful to change the variable of integration from t to τ (or anything other than t),
since t is now in the limit of integration. We cannot do anything more for the integral on
the right, but on the left FTC2 gives∫ t

0

y′(τ) dτ = y(t)− y(0) = y(t)− y0.

That is,

y(t)− y0 =

∫ t

0

f(τ) dτ,

and so

y(t) = y0 +

∫ t

0

f(τ) dτ.

Thus if y solves the IVP (3.3), then y has the form above. This is a uniqueness result:
the only possible solution is this one. But is this really a solution? We check

y′(t) =
d

dt

[
y0 +

∫ t

0

f(τ) dτ

]
= f(t)

by FTC1 and

y(0) = y0 +

∫ 0

0

f(τ) dτ = y0 + 0 = y0.

Yes.
We write this up formally.

3.6 Theorem. Let I ⊆ R be an interval with 0 ∈ I, let f ∈ C(I), and let y0 ∈ R. The only
solution to {

y′ = f(t)

y(0) = y0

is

y(t) = y0 +

∫ t

0

f(τ) dτ.

3.7 Example. To solve {
y′ = e−t

2

y(0) = 0,

we integrate:

y(t) = 0 +

∫ t

0

e−τ
2

dτ =

∫ t

0

e−τ
2

dτ.

We stop here, because we cannot evaluate this integral in terms of “elementary functions.”
(Long ago with times tables, working with t2 was hard; then that got easier, but we got
older and wiser and sadder and took trig, and working with sin(t) was hard. Now we are
even older, and by the end of the course, working with

∫ t
0
f(τ) dτ should feel just as natural
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as working with any function defined in more “elementary” terms.)

Now we make the ODE more complicated and introduce y-dependence on the left side:
we study the linear first-order problem{

y′ = ay + f(t)

y(0) = y0.

Again, f ∈ C(I) for some interval I ⊆ R with 0 ∈ I, and a, y0 ∈ R. The function f is
sometimes called the forcing or driving term. And, again, the expression y′ = ay+f(t)
means that we want y to satisfy y′(t) = ay(t) + f(t) for all t in the domain of y (which
hopefully will turn out to be I). If a = 0, this reduces to a direct integration problem, and
it would be nice if our final solution formula will respect that.

To motivate our solution approach, we first suppose f = 0 and consider the exponential
growth problem

y′ = ay.

Calculus intuition suggests that all solutions have the form y(t) = Ceat, where necessarily
C = y(0) = y0. We will make that intuition rigorous shortly. The valuable, if surprising,
idea that has come down to us through the generations is to replace the constant C with
an unknown function u and guess that y(t) = u(t)eat solves the more general problem
y′ = ay + f(t). This is the first appearance of an ansatz in this course—that is, we have
made a guess that a solution has a particular form.

Now the goal is to solve for u. Under the ansatz y(t) = u(t)eat, we compute, with the
product rule,

y′(t) = u′(t)eat + u(t)aeat,

and we substitute that into our ODE y′ = ay + f(t). Then we need

u′(t)eat + u(t)aeat = au(t)eat + f(t).

The same term u(t)aeat appears on both sides (this is a hint that we made the right ansatz),
and we subtract it, leaving

u′(t)eat = f(t).

We solve for things by getting them by themselves, so divide to find

u′(t) = e−atf(t).

This is an ODE for u, but it would be nice if it had an initial condition. We know
y(t) = u(t)eat and y(0) = y0, so

y0 = y(0) = u(0)ea0 = u(0).

That is, u must solve the direct integration problem{
u′ = e−atf(t)

u(0) = y0,
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and so, from our previous work,

u(t) = y0 +

∫ t

0

e−aτf(τ) dτ.

Returning to the ansatz y(t) = u(t)eat, we have

y(t) = eat
(
y0 +

∫ t

0

e−aτf(τ) dτ

)
,

and so we have proved another theorem.

3.8 Theorem. Let f ∈ C(I) for some interval I ⊆ R with 0 ∈ I and a, y0 ∈ R. Then the
only solution to {

y′ = ay + f(t)

y(0) = y0
(3.4)

is

y(t) = eat
(
y0 +

∫ t

0

e−aτf(τ) dτ

)
. (3.5)

Is it?

3.9 Problem. (i) Check that the function y in (3.5) actually solves (3.4). (Does y satisfy
y′(t) = ay(t) + f(t) for all t in some interval containing 0? Do we have y(0) = y0? Is y′

continuous?)

(ii) Check that we recover the direct integration result of Theorem 3.6 from Theorem 3.8
when a = 0.

By the way, the ODE y′ = ay + f(t) is sometimes more precisely called a first-order
constant coefficient linear ODE. It is constant-coefficient because the coefficient
a on y is a constant real number. This ODE is homogeneous if f(t) = 0 for all t
and otherwise nonhomogeneous. The uniqueness part of Theorem 3.8 proves that all
solutions to y′ = ay have the form y(t) = y(0)eat. Sometimes this is established with
separation of variables, which we will consider shortly.

3.10 Example. We study {
y′ = 2y + 3e−4t

y(0) = 1,

and rather than just use the formula from (3.5), we repeat the “variation of parameters”
argument with the concrete data at hand. The corresponding homogeneous problem is
y′ = 2y, which has the solutions y(t) = Ce2t, and so we guess that our nonhomogeneous
problem has the solution y(t) = u(t)e2t. Substituting this into both sides of the ODE, we
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want
u′(t)e2t + u(t)(2e2t) = 2u(t)e2t + 3e−4t,

thus
u′(t)e2t = 3e−4t,

and so
u′(t) = 3e−6t.

With the initial condition u(0) = y(0) = 1, this is the direct integration problem{
u′ = 3e−6t

u(0) = 1,

and the solution to that is

u(t) = 1 +

∫ t

0

3e−6τ dτ = 1 +
3e−6τ

−6

∣∣∣∣τ=t
τ=0

= 1 +
3e−6t − 3

−6
=

3

2
+
e−6t

2
.

Thus the solution to the original IVP is

y(t) = e2t
(

3

2
+
e−6t

2

)
.
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Pages 2–3 review separation of variables for ODE.

Our experience with ODE in general, and our concrete work with the linear problem,
tell us that initial conditions should determine solutions uniquely. But sometimes in both
ODE and PDE, one is less concerned with the initial state of the solution and more with
its behavior at a “boundary.” For example, what is the long-time asymptotic behavior of a
solution? Does it have a limit at infinity, or does it settle down into some coherent shape?
Here is one toy problem of how boundary behavior determines the solution.

4.1 Example. Let f ∈ C(R) and a ∈ R. We know that all solutions to

y′ = ay + f(t)

have the form

y(t) = eat
(
y(0) +

∫ t

0

e−aτf(τ) dτ

)
. (4.1)

What, if any, choices for the initial condition y(0) guarantee

lim
t→∞

y(t) = 0?
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We consider some cases on a, starting with the easiest a = 0. Here

y(t) = y(0) +

∫ t

0

f(τ) dτ,

so we want

lim
t→∞

(
y(0) +

∫ t

0

f(τ) dτ

)
= 0.

Since

lim
t→∞

∫ t

0

f(τ) dτ =

∫ ∞
0

f(τ) dτ,

this suggests

y(0) = −
∫ ∞
0

f(τ) dτ.

This both specifies the value of y(0) and adds an additional constraint into our problem:
f must be improperly integrable on [0,∞). With this choice of y(0), we have

y(t) = −
∫ ∞
0

f(τ) dτ +

∫ t

0

f(τ) dτ = −
∫ ∞
t

f(τ) dτ,

and we expect from calculus that

lim
t→∞

∫ ∞
t

f(τ) dτ = 0.

Now we consider the case a > 0. From (4.1), we note that our solution is the product
of two functions, one of which blows up as t → ∞ (since limt→∞ e

at =∞ for a > 0). We
probably want the other factor in the product to tend to 0 as t→∞; if that factor limited,
say, to a nonzero constant, then the whole limit would be ∞ times that constant, which
would definitely not be 0. Indeed, we can see this using the definition of limit: if we assume
limt→∞ y(t) = 0, then there is M > 0 such that if t ≥M , then |y(t)| ≤ 1. With y given by
(4.1), we find ∣∣∣∣y(0) +

∫ t

0

e−aτf(τ) dτ

∣∣∣∣ ≤ e−at.

Since a > 0, this inequality and the squeeze theorem imply

lim
t→∞

(
y(0) +

∫ t

0

e−aτf(τ) dτ

)
= 0,

and thus

y(0) = −
∫ ∞
0

e−aτf(τ) dτ and y(t) = −eat
∫ ∞
t

e−aτf(τ) dτ.

This directly generalizes the case of a = 0. In fact, we get a little more freedom here, in
that for a > 0, it is easier for

∫∞
0
e−aτf(τ) dτ to exist (see below).

We leave the case a < 0 as a (possibly surprising) exercise.
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4.2 Problem. Suppose that y solves y′ = ay + f(t) with a < 0 and limt→∞ y(t) = 0. As
in the previous example, there is M > 0 such that for all t ≥M , we have∣∣∣∣y(0) +

∫ t

0

e−aτf(τ) dτ

∣∣∣∣ ≤ e−at.

However, since −a > 0, this does not imply any convergence of the integral term to y(0).
Consider the concrete problem

y′ = −2y + 3e−t.

Show that every solution to this problem satisfies limt→∞ y(t) = 0, and thus the boundary
condition is of no help in specifying the initial condition.

4.3 Problem. We clarify a remark from the previous example about improper integrals.
In the following, let a > 0.

(i) Suppose that f ∈ C(R) is absolutely integrable on [0,∞); that is,∫ ∞
0

|f | := lim
b→∞

∫ b

0

|f |

converges. Show that
∫∞

0
e−aτf(τ) dτ converges as well.

(ii) Suppose that f ∈ C(R) is bounded on [0,∞); that is, there is M > 0 such that

|f(t)| ≤M

for all t ≥ 0. Show that
∫∞

0
e−aτf(τ) dτ still converges. Give an example to show that f

need not be absolutely integrable on [0,∞).

Now we move to separable ODE. Before defining and solving this kind of ODE in
general, we do a pedestrian, but illustrative, example.

4.4 Example. We study {
y′ = y2

y(0) = y0.

If y0 = 0, then we can take y(t) = 0 for all t to get a solution; indeed, y′(t) = 0 and
(y(t))2 = 02 = 0 for all t.

Otherwise, suppose y0 6= 0. We expect that y 6= 0, so we can divide to find

y′
1

y2
= 1.
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This is a time when Leibniz notation is more evocative. Write

dy

dt

1

y2
= 1,

pretend that dy and dt are parts of a fraction, and separate variables:

dy

y2
= dt.

Slap (. . .indefinite. . .) integrals on both sides to get∫
dy

y2
=

∫
dt

and antidifferentiate to find
−1

y
= t+ C.

Solve for y:

y(t) = − 1

t+ C
.

Last, solve for C: we want y(0) = y0, so

− 1

0 + C
= y0,

and then
C = − 1

y0
.

Since y0 6= 0, we have no qualms about division here. All together,

y(t) = − 1

t− 1

y0

=
1

y−10 − t
.

Recalling that a formula alone is not sufficient to describe a function, we also establish
the domain of this solution. As a formula alone, y above is defined on R \ {y−10 }, but that
is not an interval. Remember that we want the domain of the solution to this IVP to be an
interval containing 0. The largest intervals in R \ {y−10 } (go big or go home) are (−∞, y−10 )
and (y−10 ,∞). Which interval we use depends on whether y0 < 0 or y0 > 0; if y0 < 0, then
y−10 < 0, too, so 0 6∈ (−∞, y−10 ) but 0 ∈ (y−10 ,∞). The reverse holds when y0 > 0, and so
there we take the domain to be (−∞, y−10 ).

Both situations illustrate a “blow-up in finite time.” If we send t to the boundary of
the domain, then the solution explodes to ±∞. For example, when y0 > 0, the solution is
defined on (−∞, y−10 ), and we have

lim
t→(y−1

0 )−
y(t) = lim

t→(y−1
0 )−

1

y−10 − t
=∞.

Note that here we are only using the limit from the left.
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Now we generalize this work substantially. Let f and g be continuous functions (quite
possibly on different subintervals of R), and consider the IVP{

y′ = f(t)g(t)

y(0) = y0.

If g(y0) = 0, then we claim that y(t) = y0 is a solution to this IVP, which we call an
equilibrium solution.

4.5 Problem. Prove that.

Suppose that g(y0) 6= 0. Since g is continuous, for y “close to” y0, we have g(y) 6= 0. In
fact, g(y) is either positive for all y close to y0 or negative for all y close to y0.

Now we work backward. Assume that y solves this IVP with g(y0) 6= 0. Since y is
continuous and y(0) = y0, for t close to 0, we have y(t) close to y0, and thus g(y(t)) 6= 0. We
can then divide to find that for t close to 0, y must also satisfy

y′(t)

g(y(t))
= f(t).

This is the heart of separation of variables: division. And division is only possible when the
denominator is nonzero. We integrate both sides from 0 to t, still keeping t close to 0:∫ t

0

y′(τ)

g(y(τ))
dτ =

∫ t

0

f(τ) dτ. (4.2)

There is not much more that we can say about the integral on the right, but on the left
we take the composition g ◦ y as a hint to substitute u = y(t). This yields∫ t

0

y′(τ)

g(y(τ))
dτ =

∫ y(t)

y(0)

du

g(u)
=

∫ y(t)

y0

du

g(u)
. (4.3)

Combining (4.2) and (4.3), we conclude that if y solves the separable IVP with y0 6= 0, then
for t sufficiently close to 0, we have∫ y(t)

y0

du

g(u)
=

∫ t

0

f(τ) dτ.

We rewrite this one more time. Put

H(y, t) :=

∫ y

y0

du

g(u)
−
∫ t

0

f(τ) dτ.

Here the domain of H is all y such that g(u) 6= 0 for u between y0 and y and all t such that
f is defined between 0 and t. Thus if y solves the separable IVP with y0 6= 0, then for t
sufficiently close to 0, we have

H(y(t), t) = 0.

This is an implicit equation for y.
It would be nice if we could reverse our logic and conclude that if H(y(t), t) = 0, then y

solves the separable IVP. More generally, why should we be able to solve H(y, t) = 0? That
we can is the content of the following problem.
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4.6 Problem. The implict function theorem says the following. Let a, b, c ∈ R
with a < b and c > 0. Let H be defined on D :=

{
(y, t) ∈ R2

∣∣ a < y < b, |t| < c
}
, and

suppose that the partial derivatives Hy and Ht exist and are continuous on D. Suppose
that H(y0, 0) = 0 for some y0 ∈ (a, b) with Hy(y0, 0) 6= 0. Then there exist δ, ε > 0 and a
continuously differentiable function Y : (−δ, δ)→ (y0 − ε, y0 + ε) such that H(y, t) = 0 for
|t| < δ and |y − y0| < ε if and only if y = Y (t). In particular, Y (0) = y0.

We use the implicit function theorem to prove the existence of solutions to separable
IVP.

(i) For practice, consider H(y, t) := y2 + t2 − 1. Check that H(1, 0) = 0 and Hy(1, 0) 6= 0
and conclude that H(Y (t), t) = 0 for some function Y defined on a subinterval (−δ, δ).
Then do algebra and find an explicit formula for Y .

(ii) In this part and the following, consider the separable problem{
y′ = f(t)g(y)

y(0) = y0,

where g is continuous on (a, b), f is continuous on (−c, c), and y0 ∈ (a, b) with g(y0) 6= 0.
Without loss of generality, we will assume g(y) > 0 for y ∈ (a, b). Our goal is to solve the
implicit equation

H(y, t) :=

∫ y

y0

du

g(u)
−
∫ t

0

f(τ) dτ = 0

First check that H(y0, 0) = 0 and Hy(y0, 0) 6= 0, and obtain the existence of a function Y
meeting the conclusions of the implicit function theorem with Y (0) = 1. (In particular, we
get Y (0) = y0.)

(iii) Now we show that Y solves the original ODE. Differentiate the identityH(Y (t), t) = 0
with respect to t, use the multivariable chain rule and FTC1, and conclude that Y ′ =
f(t)g(Y ).

(iv) It turns out that just from H(Y (0), 0) = 0 we can obtain Y (0) = y0, even without the
implicit function theorem. To see this, use properties of integrals to show thatH(Y (0), 0) =
0 implies ∫ Y (0)

y0

du

g(u)
= 0.

Suppose that Y (0) 6= y0 and use the monotonicity of the integral and the fact that g(u) > 0
for u between y0 and Y (0) to obtain a contradiction.
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There are many examples of second-order constant-coefficient linear ODE on pp. 6–13.
Example 8, while worth reading, is probably more complicated than any problem that
we will encounter at this level for some time. (If we need variation of parameters for
second-order problems, we will review it later.)

We do one more separable ODE to illustrate the utility of definite integrals.

5.1 Example. We know full well that the solution to the exponential growth problem{
y′ = ry

y(0) = y0

is y(t) = y0e
rt. (Here r ∈ R is a fixed parameter.) Suppose we did not know this from

calculus. How would we see it at the level of separation of variables?
If y0 = 0, then y(t) = 0 is the equilibrium solution, so assume y0 6= 0. Working

backwards, if y solves this IVP, then since y(t) = y0 6= 0, we have y(t) 6= 0 for t ≈ 0. More
precisely—and this will be important later—either y(t) > 0 for t ≈ 0 or y(t) < 0 for t ≈ 0.

We divide to find
y′(t)

y(t)
= r

and integrate, for t ≈ 0, to find∫ t

0

y′(τ)

y(τ)
dτ =

∫ t

0

r dτ = rt.

We substitute u = y(τ) on the left:∫ t

0

y′(τ)

y(τ)
dτ =

∫ y(t)

y(0)

du

u
=

∫ y(t)

y0

du

u
= ln(|y(t)|)− ln(|y0|) = ln

(∣∣∣∣y(t)

y0

∣∣∣∣) .
Here we are using the notion that the natural logarithm is the integral

ln(t) :=

∫ t

1

dτ

τ
.

We obtain
ln

(∣∣∣∣y(t)

y0

∣∣∣∣) = rt

and exponentiate to find ∣∣∣∣y(t)

y0

∣∣∣∣ = ert,
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so
|y(t)| = |y0|ert. (5.1)

At this point our algebraic (and ODE) experience would tell us y(t) = ±y0ert, and then
we would handwave the ± away. However, we can be more precise.

Recall that we are assuming y0 6= 0, so either y0 > 0 or y0 < 0. If y0 > 0, when t ≈ 0,
we have y(t) > 0, too. Then |y(t)| = y(t) and |y0| = y0, so (5.1) becomes y(t) = y0e

rt. If
y0 < 0, when t ≈ 0, we have y(t) < 0, too. Then |y(t)| = −y(t) and y0 = −y0, so (5.1)
becomes −y(t) = −y0ert, thus y(t) = y0e

rt.
The moral of the story is that using definite integrals and initial values cuts down on

much of the nonsense of the constant of integration and the absolute value manipulations
that appear in a first ODE course when separating variables for this problem.

The final kind of ODE that we need to review for this course is the second-order constant-
coefficient linear problem, which reads

ay′′ + by′ + cy = f(t),

with a, b, c ∈ R, a 6= 0 (so that the problem is genuinely second-order), and f continuous on
some interval containing 0. We largely focus here on the homogeneous case of f = 0. Then
one studies the characteristic equation

aλ2 + bλ+ c = 0

and develops solution patterns based on the root structure. They are the following.

Root structure Solution pattern

Two distinct real roots λ1 6= λ2 y(t) = c1e
λ1t + c2e

λ2t

One repeated real root λ0 y(t) = c1e
λ0t + c2te

λ0t

Two complex conjugate roots α± iβ (β 6= 0) y(t) = eαt
(
c1 cos(βt) + c2 sin(βt)

)
That any of these solution patterns actually works can be checked by directly substituting

it into the ODE and using the structure of a, b, and c that results from the root pattern.
(For example, in the repeated real root case one has b2 − 4ac = 0, thus c = b2/4a, and also
λ0 = −b/2.) The proof that all solutions fall into these patterns is more involved and we
do not pursue it, outside of some special cases that illustrate “energy” methods that will
subsequently be useful. Instead, we do some canonical examples.

5.2 Example. (i) The characteristic equation of y′′ − y = 0 is λ2 − 1 = 0. Factoring the
difference of perfect squares, we have λ = ±1. These are distinct real roots, so all solutions
are y(t) = c1e

t + c2e
−t.

(ii) The characteristic equation of y′′ = 0 is λ2 = 0, so λ = 0. This is a repeated real root,
so all solutions are y(t) = c1e

0t + c2te
0t = c1 + c2t. (Of course, we could directly integrate
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twice to get the same result.)

(iii) The characteristic equation of y′′ + y = 0 is λ2 + 1 = 0, so λ2 = −1 and thus λ = ±i.
These are complex conjugate roots with α = 0 (which is certainly allowed) and β = 1. All
solutions are y(t) = e0t

(
c1 cos(t) + c2 sin(t)

)
= c1 cos(t) + c2 sin(t).

Now we show uniqueness of solutions to an IVP in a special form. The result is unsur-
prising; the key trick will be useful. Suppose that u and v both solve the IVP

y′′ + λ2y = f(t)

y(0) = y0

y′(0) = y1

for λ 6= 0, y0, y1 ∈ R, and some function f . (That is, taking y = u and y = v produces
equalities throughout the IVP.) Set z(t) := u(t)− v(t). We will show that z(t) = 0 for all t,
which forces u = v.

5.3 Problem. Use the linearity of the IVP to show that z satisfies
z′′ + λ2z = 0

z(0) = 0

z′(0) = 0.

Now here is the trick: multiply both sides of z′′ + λ2z = 0 by z′ to get

z′′z′ + λ2zz′ = 0. (5.2)

A moment’s calculation gives
∂t[z

2] = 2zz′

by the chain rule, thus

∂t

[
z2

2

]
= zz′. (5.3)

Likewise,
∂t[(z

′)2] = 2z′z′′,

so
z′′z′ = ∂t

[
(z′)2

2

]
. (5.4)

We combine (5.2), (5.3), and (5.4) to find

∂t[(z
′)2 + λ2z2] = 0,

so the function (z′)2 + λ2z2 is constant. We know its value at precisely one point: t = 0.
Thus

(z′(t))2 + λ2(z(t))2 = (z′(0))2 + λ2(z(0))2 = 0
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for all t, since z′(0) = z(0) = 0 by Problem 5.3.
Now here is another trick: if a, b ∈ R, then

0 ≤ a2 ≤ a2 + b2.

So if a2 + b2 = 0, then
0 ≤ a2 ≤ 0,

and so a2 = 0, thus a = 0. With a = λz(t) and b = z′(t), we find λz(t) = 0 for all t, and
since λ 6= 0, this gives z(t) = 0 for all t, as desired.

5.4 Problem. Generalize the preceding work as follows. Let V ∈ C1(R) with V(r) > 0 for
all r 6= 0, V(0) = 0, and V ′(0) = 0. Show that the only solution to the IVP

y′′ + V ′(y) = 0

y(0) = 0

y′(0) = 0

is y = 0. [Hint: for existence, be sure to explain why y = 0 is actually a solution. For
uniqueness, suppose that y solves the IVP, multiply by y′, and obtain that (y′)2/2 + V(y)
is constant. What is its value? What does that tell you about V(y)?]

5.5 Problem. Let λ 6= 0. This problem connects solutions to y′′+λ2y = 0 and y′′−λ2y = 0
via hyperbolic trig functions.

(i) Show that the only solution to the IVP
y′′ + λ2y = 0

y(0) = y0

y′(0) = y1

is
y(t) = y0 cos(λt) +

y1
λ

sin(λt).

For t fixed, what is limλ→0 y(t)? [Hint: L’Hospital’s rule will be helpful.] Compare this to
part (ii) of Example 5.2.

(ii) The hyperbolic sine and cosine, respectively, are

sinh(t) :=
et − e−t

2
and cosh(t) :=

et + e−t

2
.

Show that the only solution to the IVP
y′′ − λ2y = 0

y(0) = y0

y′(0) = y1
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is
y(t) = y0 cosh(λt) +

y1
λ

sinh(λt).

[Hint: suppose that u and v solve this IVP and define w(t) := u(t/λ)− v(t/λ). Show that
w′′−w = 0 with w(0) = w′(0) = 0. Show next that (w′+w)′ = w′+w, so w′(t)+w(t) = Cet

for some constant C. Take t = 0 to conclude C = 0, so w′ = −w. Thus w(t) = Ke−t for
some constant K; take t = 0 again to conclude K = 0.] For t fixed, what is limλ→0 y(t)?
Again, compare this to part (ii) of Example 5.2.
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Section 1.2 contains a variety of PDE that are, more or less, really ODE (or that can be
solved with ODE ideas and no fancy new PDE ones). Examples 1 through 6 are worth
reading and attempting; pay no attention to the “general” vs. “generic” distinction
for solutions. Pages 48–50 focus specifically on PDE that are ODE. A version of the
transport equation is derived on pp. 85–86 under “An application to gas flow.”

We are finally ready to study some PDE, although the first few will be artificial PDE
that are really ODE. We begin with a convention.

6.1 Undefinition. A function u is a solution to a PDE if u solves that PDE at each
point in its domain and if every partial derivative of u up to the highest-order derivative in
the PDE exists and is continuous.

We will solve the PDE
ut = 0

in a moment, with u = u(x, t). The partial derivatives ut and ux must exist and be continu-
ous; even though ux does not appear in the PDE, we still require its existence and continuity.
Similarly, a solution u = u(x, t) to the heat equation

ut = uxx

must have continuous partial derivatives ut, ux, utt, uxx, uxt, and utx, even though only two
of these actually appear in the PDE. (Recall that since the mixed partials are continuous,
they are equal: uxt = utx.)

Here are some examples in which we use ODE techniques. The major change is that initial
data will now be functions, and we will have to consider the regularity of those functions.

6.2 Example. If u = u(x, t) satisfies ut = 0, then we think that u is constant in t, so u
should be a function of x alone, maybe u(x, t) = f(x). Indeed, ∂t[f(x)] = 0. We might see
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this at the level of integrals: since ut(x, t) = 0 for all t, we have

0 =

∫ t

0

ut(x, τ) dτ = u(x, t)− u(x, 0),

thus
u(x, t) = u(x, 0),

and u “ignores” the contribution of t. This, however, neglects the domain of u; the integral
calculation is valid if u is defined on the interval containing 0 and t, but what if it is not?

6.3 Problem. Draw the set

D :=
{

(x, t) ∈ R2
∣∣ x2 + t2 < 1 or (x− 3)2 + t2 < 1

}
and construct a function u on D that solves ut = 0 with u not constant in t.

6.4 Example. Cautioned by that domain problem, we solve{
ut = u, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

This is really a “family” of ODE “indexed” by x; for each x, we want to solve{
ut(x, t) = u(x, t), −∞ < t <∞
u(x, 0) = f(x).

Of course this is the same as {
y′ = y

y(0) = y0,

and so our solution to the PDE is

u(x, t) = f(x)et.

Since ux must exist and be continuous, we want f ∈ C1(R). Thus we need to be more
careful and restrictive with the initial data for a PDE than we were for an ODE.

6.5 Example. We solve 
utt + x2u = 0 −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞.

When x = 0, this is effectively the ODE y′′ = 0, and we can solve that via direct integration.
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That is, for x = 0, we have
u(0, t) = g(0)t+ f(0).

For x 6= 0, we can use Problem 5.5 (with x playing the role of λ) to write

u(x, t) = f(x) cos(xt) + g(x)
sin(xt)

x
.

Of course, we want
lim
x→0

u(x, t) = u(0, t),

and Problem 5.5 assures us that that is true. Finally, we need f , g ∈ C2(R) because we
want uxx to exist and be continuous.

These PDE were really ODE because derivatives with respect to only one variable ap-
peared in them. Now we derive from (nebulous) physical principles our first genuine PDE.

Consider a substance that moves or flows along an infinite path parallel to a horizontal
line—maybe a pollutant moving through a stream, maybe cars along a road, maybe gas
through a pipe. We think of the path as the real line R = (−∞,∞). The substance enters
the path from “far away” on the left and flows to the right; once on the path, the substance
does not leave the path, and there are no other sources for the substance along the path. (If
the path is a road and the substance is cars, there are no on or off ramps.)

Suppose that we measure position along this path by the variable x, and let u(x, t) be
the density of the substance at position x and time t. Usually density = mass/volume, but
this may feel strange—how can there be volume at a single point in space? We will adopt
the one-dimensional point of view that u measures density via the approximation

u(x, t) ≈ the amount of the substance between points x− h and x+ h on the path at time t
2h

when h > 0 is small.
Let a < b. A Riemann sum argument suggests that the amount of the substance between

position a and position b on the path is∫ b

a

u(x, t) dx,

and we will take this as the definition of “amount.”

6.6 Remark. Here is that argument. Divide the interval [a, b] into the n subintervals
[xk, xk+1] for k = 0, . . . , n− 1 with

xk := a+

(
b− a
n

)
k.

For xk ≤ x ≤ xk+1, we have u(x, t) ≈ u(xk, t) if n is large and the subinterval is small
(and if u is continuous).

u(xk, t) amount of substance
unit length

× (xk+1 − xk) length = u(xk, t)(xk+1 − xk) amount.
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So, over all of [a, b], there is approximately

n∑
k=0

u(xk, t)(xk+1 − xk) amount,

and this is a Riemann sum for the integral
∫ b
a
u(x, t) dx.

Thus the rate of change of the amount of the substance between positions a and b at time
t is

∂t

[∫ b

a

u(x, t) dx

]
.

Without knowing u, this is not a very helpful quantity, but the following is true. For a
“sufficiently nice” function u, we have

∂t

[∫ b

a

u(x, t) dx

]
=

∫ b

a

ut(x, t) dx. (6.1)

This equality is called “differentiating under the integral,” and it will be a hugely useful
technique for us in the future. We will revisit it and discuss it at length. For now, just
assume that it is valid.

A partial derivative has entered the stage, and we should be happy. But we have nothing
to compare this partial derivative to, no equality, and so we do not yet have a PDE. We
therefore introduce something new: let q(x, t) be the rate of change of the amount of this
substance at position x and time t. We call q the flux of this substance. This, too, is
a little change: is the substance zero-dimensional so that it can exist at a single point in
space? We adopt another one-dimensional point of view: q measures this rate of change if

q(x, t) ≈ the amount of substance that passes through point x between times t− k and t+ k

2k

for k > 0.
Consider any “interval” [a, b] on the path. The substance enters the interval at position

a with rate q(a, t) and leaves the interval at position b with rate q(b, t). Remember that the
substance is not added to or removed from the path at all, so entering from the left and
leaving from the right is the only way that the amount of the substance in [a, b] can change.
Thus the rate of change of the amount of the substance in [a, b] is “rate in minus rate out”
(a good paradigm for population models in ODE!), and so that rate is

q(a, t)− q(b, t) = −
∫ b

a

qx(x, t) dx.

Here we have rewritten the difference as an integral (a good trick!) to make things consonant
with our previous calculation of the rate of change in (6.1). That is,∫ b

a

ut(x, t) dx = −
∫ b

a

qx(x, t) dx,



Day 7: Monday, August 26 34

and so ∫ b

a

[
ut(x, t) + qx(x, t)

]
dx = 0. (6.2)

Now here is a marvelous fact about integrals.

6.7 Problem. Let I ⊆ R be an interval and let g ∈ C(I) such that∫ b

a

g = 0

for all a, b ∈ I with a ≤ b. Prove that g(x) = 0 for all x ∈ I. [Hint: fix a ∈ I and let
G(x) :=

∫ x
a
g. What do you know about G′? Calculate it in two ways.]

We combine this result and the fact that a and b were arbitrary to conclude from (6.2)
that

ut(x, t) + qx(x, t) = 0

for all x and t. This is good, because it is an equation, and a PDE at that, but not so good in
that we have two quantities (density and flux) and only one equation—not usually a recipe
for success. One way of proceeding is to assume that flux is somehow related to density,
which is not unreasonable—surely the density should somehow affect the rate of change of
the amount of the substance. Perhaps the simplest relation is linear: assume

q(x, t) = cu(x, t)

for some constant c. Then u must satisfy

ut + cux = 0.

This is (one version of) the transport equation, and we will study it in detail.

Day 7: Monday, August 26.
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Pages 58–67 treat the somewhat broader problem aux + but + cu = f(x, t). We will
work our way up to this full problem. The book also has a slightly different approach
via the early introduction of characteristic curves (which we will meet later when we
allow the coefficients a, b, and c to depend on space and/or time). Reading pp. 58–61
(stopping with Example 1) and comparing it to our approach below is a worthwhile
exercise.

We solve the transport equation with c = 1 and claim that from this solution we can
obtain all solutions to the more general problem with c 6= 1. We defer the study of this claim
until later.
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So, consider the problem {
ut + ux = 0, −∞ < x, t <∞
u(x, 0) = f(x).

To avoid irrelevant strangeness with the domain, we are looking for solutions defined on all
of R2. The key to success here is to recognize the presence of some hidden coefficients:

ut + ux = (1 · ut) + (1 · ux).

This is really a dot product:

(1 · ut) + (1 · ux) =

(
ux
ut

)
·
(

1
1

)
.

The first vector is the gradient of u, ∇u = (ux, ut), and so we have

∇u ·
(

1
1

)
= 0.

This dot product is the directional derivative: it measures how fast u is changing
in the direction of the vector (1, 1), and the equality above says that u is really constant in
that direction.

What does this mean? Fix (x, t) ∈ R2. “Moving” through (x, t) in the direction of the
vector (1, 1) means moving along the line parametrized by(

x
t

)
+ s

(
1
1

)
. (7.1)

And u should be constant on any such line (as drawn in blue below).

x

t

(x+ s, t+ s)

That is, we expect that u(x, t) equals the value of u at any point above in (7.1), for any
choice of s ∈ R. Perhaps we can choose s cleverly and maybe bring in the initial condition.
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We make this more precise. With (x, t) ∈ R2 still fixed, we put

v(s) := u(x+ s, t+ s)

and compute, via the multivariable chain rule, that

v′(s) = ux(x+ s, t+ s) + ut(x+ s, t+ s) = 0

for all s. Thus v is constant. In particular,

u(x, t) = v(0) = v(s)

for any s. We can make the initial condition show up by taking t+ s = 0, thus s = −t. That
is,

u(x, t) = v(−t) = u(x− t, t− t) = u(x− t, 0) = f(x− t).

We have proved a theorem.

7.1 Theorem. Let f ∈ C1(R) and suppose that u solves{
ut + ux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

(7.2)

Then
u(x, t) = f(x− t).

This is a uniqueness result: the only possible solution to the IVP (7.2) is the one above.
But is it really a solution?

7.2 Problem. Check that.

More generally, we claim that the only solution to{
ut + cux = 0

u(x, 0) = f(x)

is
u(x, t) = f(x− ct).

That this u is a solution can be checked as in Problem 7.2. (Do that.) That this u is the
only solution still needs proof, which we will provide later.

So, here is our first reason for adoring the transport equation: it is a genuine PDE (that
is not an ODE) and we know all of its solutions. The second reason is that these solutions
respect our physical intuition: it turns out that the initial data f just gets “propagated”—
dare we say, “transported”—along the x-axis with “speed” c. This is best seen through some
pictures.



Day 7: Monday, August 26 37

Here is a graph for the initial data f .

x

u(x, 0) = f(x)

Say that c > 0 and we consider the solution u at time t1 > 0. Then u(x, t1) = f(x − ct1),
and this graph is just the graph of f “shifted” by ct1 units to the right.

x

u(x, t1) = f(x− ct1)

ct1

We let time evolve more and the graph gets shifted more.

x

u(x, t2) = f(x− ct2)

ct2

What we are really seeing here is the structure of a “traveling wave”—a fixed profile steadily
translated in the same direction. We will explore the traveling wave structure of solutions
to PDE much more in the future.

7.3 Example. The only solution to{
ut + 3ux = 0, −∞ < x, t <∞
u(x, 0) = sin(x), −∞ < x <∞

is
u(x, t) = sin(x− 3t).

We can take advantage of the diverse, flexible geometry of our domain R2 to specify the
behavior of a solution not via an initial condition (i.e., via its behavior on the x-axis) but via
a “side condition” in which we prescribe the solution’s behavior on a one-dimensional curve
in R2. We can take advantage of the diverse, flexible geometry of our domain R2 to specify
the behavior of a solution not via an initial condition (i.e., via its behavior on the x-axis)
but via a “side condition” in which we prescribe the solution’s behavior on a one-dimensional
curve in R2.
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7.4 Example. We consider the problem{
ut + 3ux = 0, −∞ < x, t <∞
u(s, s) = sin(s), −∞ < s <∞.

This prescribes the behavior of u on the line x = t. We know that if ut + 3ux = 0, then
u(x, t) = f(x − 3t), where f(x) = u(x, 0). Working backward, if we have a solution with
the side condition, then

sin(s) = u(s, s) = f(s− 3s) = f(−2s).

If we can express f explicitly, then we will know u. Here is where some algebraic trickery
helps: put σ = −2s, so s = −σ/2. Then

f(−2s) = f(σ) = sin
(
−σ

2

)
= − sin

(σ
2

)
.

Then we expect that the solution is

u(x, t) = − sin

(
x− t

2

)
,

and we could always check that explicitly.

7.5 Problem. In what sense is any initial condition a side condition?

7.6 Example. Here is a situation in which we will not be as transparently successful in
managing the side condition. Consider{

ut + 3ux = 0, −∞ < x, t <∞
u(s,−s3) = sin(s), −∞ < s <∞.

(7.3)

Now we are prescribing the behavior of u on the cubic t = −x3. As before, the solution, if
it exists, must have the form u(x, t) = f(x− 3t) for some function f , and here we want

sin(s) = u(s,−s3) = f(s− 3(−s3)) = f(s+ 3s3).

We would like to try the same algebraic trickery as before and put σ = s+ s3 and solve for
s in terms of σ, but it is not at all apparent how to do that. (Perhaps a formula for roots
of a cubic would help, but who knows what that says.)

Instead, as detailed below, we can appeal to the inverse function theorem to
argue that there exists a function h ∈ C1(R) such that σ = s + s3 if and only if s = h(σ).
We therefore put

f(σ) := sin(h(σ)) and u(x, t) := sin(h(x− 3t))

to obtain a solution candidate. We leave checking that this actually is a solution as an
exercise with the inverse function theorem.
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7.7 Problem. The following two statements are true.

(i) Suppose that σ ∈ C(R) is strictly monotonic (i.e., σ is either strictly increasing or
strictly decreasing). Then there exists h ∈ C(R) such that

h(σ(s)) = s and σ(h(S)) = S for all s, S ∈ R.

Such a function h is, of course, the inverse of σ; this result says that a continuous strictly
monotonic function on R has a continuous inverse.

(ii) Let σ ∈ C1(R) and h ∈ C(R) such that σ′(s) 6= 0 for all s ∈ R and σ(h(S)) = S for all
S ∈ R. Then h ∈ C1(R) and

h′(S) =
1

σ′(h(S))
(7.4)

for all S ∈ R. (The identity (7.4) is, hopefully, exactly what we expect by differentiating
both sides of σ(h(S)) = S and using the chain rule. The novelty here is that h is not
initially assumed to be differentiable.)

Use these facts to justify the claims at the end of Example 7.6. That is, using these two
facts, explain why there exists a function h ∈ C1(R) such that putting

u(x, t) := sin(h(x− 3t))

solves the problem (7.3).

Day 8: Wednesday, August 28.

Our work with side conditions was strictly algebraic; now we consider the interaction of the
side condition curve with the geometry of the PDE.

8.1 Example. We revisit the side conditions of Examples 7.4 and 7.6 more geometrically.
Recall that all solutions to ut + 3ux = 0 have the form u(x, t) = f(x − 3t) for some
f ∈ C1(R), and, since this transport equation is equivalent to

0 =

(
ux
ut

)
·
(

3
1

)
= ∇u ·

(
3
1

)
,

solutions u are constant on lines parallel to (3, 1), i.e., lines with slope 1/3.

(i) We graph in blue lines with slope 1/3. Any solution u to ut + 3ux = 0 is constant on
these lines. We graph in black the line parametrized by (s, s) with s ∈ R, i.e., the line
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t = x. We note that this black line intersects each blue line exactly once.

x

t

(ii) Again we graph in blue lines with slope 1/3. Again, any solution u to ut + 3ux = 0 is
constant on these lines. We graph in black the curve parametrized by (s,−s3) with s ∈ R,
i.e., the cubic t = −x3. We note that this black curve intersects each blue line exactly
once.

x

t

We will explore these graphical phenomena more generally later in the context of char-
acteristics as part of our study of variable-coefficient linear problems, e.g., PDE of the form
ut + c(x, t)ux = 0. For now, we just want to observe the very nice interaction of the side
condition curves with the lines of slope 1/3 that govern our solutions.

Here is a PDE with a side condition that does not admit any solution.

8.2 Example. Suppose that u solves{
ut + 3ux = 0, −∞ < x, t <∞
u(3s, s) = sin(s), −∞ < s <∞.
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Then u has the form u(x, t) = f(x− 3t) for some f ∈ C1(R), and this f must satisfy

sin(s) = u(3s, s) = f(3s− 3s) = f(0) (8.1)

for all s ∈ R. This is impossible, as the sine is not constant. (For example, (8.1) would
require 0 = sin(0) = f(0) = sin(π/2) = 1.)

Algebraically, the problem simply fails. Geometrically, we note that the side condition
curve is the line t = x/3, and u must be constant on this line. But the side condition says
that u cannot be constant on this line! In contrast to the geometry of Example 8.1, the
side condition curve intersects a line of slope 1/3 more than once (in fact, infinitely often).

8.3 Problem. What goes wrong if you try to solve{
ut + 3ux = 0, −∞ < x, t <∞
u(s, s2) = sin(s), −∞ < s <∞?

Discuss the failure of this problem algebraically (the values s = 0 and s = 1/3 will be
useful) and geometrically; include a sketch of how the side condition curve interacts with
lines of slope 1/3. Contrast that interaction with the situation in Example 8.2.

Now we return to the dangling problem of solving the more general transport equation.
Consider the IVP {

aut + bux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

(8.2)

Here a, b 6= 0 to avoid the trivial case of a PDE that is really an ODE. Everything that
we did for ut + ux = 0 could be replicated by recognizing that this transport equation is
equivalent to

∇u ·
(
b
a

)
= 0.

The only challenge would be the extra notation of a and b throughout.
However, to illustrate a valuable PDE technique that will serve us well with more compli-

cated problems, we do not do this. Instead, suppose that we only know our previous result
that {

vt + vx = 0, −∞ < x, t <∞
v(x, 0) = g(x), −∞ < x <∞.

⇐⇒ v(x, t) = g(x− t). (8.3)

How can we use (8.3) to solve (8.2)? (In (8.3), we are using v and g, not u and f , in an
effort not to overwork notation.)

This technique is rescaling. First, we simplify the problem as much as possible by
noting that, since b 6= 0, the IVP (8.2) is equivalent to{

ut + cux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞,

c =
b

a
. (8.4)
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Now we assume that u solves (8.4). The key step is to define a new function via

U(X,T ) := u(αX, βT ),

where α, β ∈ R are fixed constants whose value we will determine later. Specifically, we
would like to choose them conveniently so that U solves an IVP like (8.3), which we fully
understand.

We compute

UX(X,T ) = αux(αX, βT ) and UT (X,T ) = βut(αX, βT ).

We hope that UT + UX = 0. We compute further

UT (X,T ) + UX(X,T ) = βut(αX, βT ) + αux(αX, βT ).

Since we know
ut(x, t) + ux(x, t) = 0

for all (x, t) ∈ R2, if we take β = 1 and α = c, then we have

UT (X,T ) + UX(X,T ) = ut(cX, T ) + ux(cX, T ) = 0.

And since c 6= 0, we can always express u in terms of U . That is, we have

U(X,T ) = u(cX, T ) and u(x, t) = U
(x
c
, t
)
. (8.5)

We are just missing an initial condition. We want to prescribe U(X, 0) = F (X) for some
function F , and this means

F (X) = U(X, 0) = u(cX, 0) = f(cX).

To avoid overworking our variables, maybe we should define F via another symbol entirely,
like F (S) = f(cS).

Then U satisfies{
UT + UX = 0, −∞ < X, T <∞
U(X, 0) = F (X), −∞ < X <∞,

F (S) := f(cS),

and so by (8.3) we have

U(X,T ) = F (X − T ) = f(c(X − T )).

By (8.5), we conclude

u(x, t) = U
(x
c
, t
)

= f
(
c
(x
c
− t
))

= f(x− ct).

And if we really want to go back to (8.2), we find

u(x, t) = f

(
x− b

a
t

)
= f

(
ax− bt

a

)
.

This rescaling trick can be employed more generally as follows. Suppose that u = u(x, t)
solves a “complicated” PDE. Put U(X,T ) = γu(αX, βT ) and choose α, β, and γ (above
γ = 1 because the transport equation was linear) so that U solves a “simpler” PDE. Use the
relationship u(x, t) = γ−1U(α−1x, β−1t) to recover u from knowledge of U .
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8.4 Problem. The heat equation for u = u(x, t) is

ut − κuxx = 0, −∞ < x <∞, t ≥ 0,

where κ > 0. (The importance of nonnegative time will be discussed later.) Suppose that
u solves the heat equation and define U(X,T ) = u(αX, βT ) for α, β ∈ R. What values of
α and β make U solve the “simpler” heat equation

UT − UXX = 0?

8.5 Problem. Let a, b, c, A, B, C 6= 0. The most general version of the Korteweg–de
Vries (KdV) equation for u = u(x, t) is

aut + buxxx + cuux = 0, −∞ < x, t <∞.

Suppose that u solves the KdV equation and define U(X,T ) = γu(αX, βT ). What values
of α, β, and γ make U solve the KdV equation

AUT +BUXXX + CUUX = 0?

The point of this change of variables is that if we know how to solve KdV with one set of
coefficients, then we know how to solve it with any other.

Day 9: Friday, August 30.

No class.

Day 10: Wednesday, September 4.

No class.

Day 11: Friday, September 6.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Appendix A.3 discusses Leibniz’s rule at length (and in more detail than you are
required to know). The examples on pp. 683–684 show how the rule can fail if the
integrand is not sufficiently nice. A more general version of the rule appears on p. 687
and encompasses improper integrals, which we will eventually find useful. Lemma 1
on p. 177 gives a proof similar to ours for calculating ∂t

[∫ t
0
f(t, s) ds

]
. A generalization

of this appears in equation (12) on p. 688.

And we’re back.
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We now consider the nonhomogeneous transport equation:{
ut + ux = g(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

Going back to the derivation of the (homogeneous) transport equation, one can think of g
as a “source” (or “sink”) term for the substance moving along the path—if the substance is
cars and the path is a road, a nonzero g corresponds to on/off ramps along the road. This
problem will be valuable to us for at least three reasons: (1) it illustrates and motivates
some useful techniques with definite integrals, (2) its solution will be a key step in solving
the (homogeneous) wave equation later, and (3) its solution form will motivate a surprisingly
helpful idea for solving nonhomogeneous wave and heat equations later, too.

We get down to business and repeat our prior successful strategy. Fix x, t ∈ R and set

v(s) := u(x+ s, t+ s),

so

v′(s) = ux(x+ s, t+ s) + ut(x+ s, t+ s) = g(x+ s, t+ s) and v(0) = u(x, t).

Direct integration implies

v(s) = v(0) +

∫ s

0

v′(σ) dσ = u(x, t) +

∫ s

0

g(x+ σ, t+ σ) dσ.

That is,

u(x+ s, t+ s) = u(x, t) +

∫ s

0

g(x+ σ, t+ σ) dσ

for all x, t, s ∈ R.
As before, we choose s conveniently with s = −t to make the initial condition at u(x, 0)

show up:

u(x− t, 0) = u(x, t) +

∫ −t
0

g(x+ σ, t+ σ) dσ,

and so

f(x− t) = u(x, t) +

∫ −t
0

g(x+ σ, t+ σ) dσ.

One more rearrangement yields

u(x, t) = f(x− t)−
∫ −t
0

g(x+ σ, t+ σ) dσ.

It will pay off to clean up the integral a bit. The following is the nonobvious result of
trial and error, but one motivation is that it would be nice to see the “x − t” structure in
the integrand as well as in f . We can get this by substituting τ = t+ σ (for lack of a better
variable of integration), so

τ(0) = t, τ(−t) = 0, dτ = dσ, and σ = τ− t.
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Then

−
∫ −t
0

g(x+ σ, t+ σ) dσ = −
∫ 0

t

g(x− t+ τ, τ) dτ =

∫ t

0

g(x− t+ τ, τ) dτ.

We summarize our work.

11.1 Theorem. Let f ∈ C1(R) and g ∈ C(R2) and suppose that u solves{
ut + ux = g(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

(11.1)

Then

u(x, t) = f(x− t) +

∫ t

0

g(x− t+ τ, τ) dτ. (11.2)

However, we did not show that any function u in the form (11.2) actually solves (11.1).
This requires computing both

∂x

[∫ t

0

g(x− t+ τ, τ) dτ

]
and ∂t

[∫ t

0

g(x− t+ τ, τ) dτ

]
.

We did something like the x-derivative in (6.1) when deriving the transport equation, but
we never justified it, and the t-derivative looks even more complicated, since t appears in
both the limit of integration and the integrand.

The time has come to sort this out. Consider the more abstract situation of calculating
the derivative

∂x

[∫ b

a

f(x, s) ds

]
.

Here h is defined on {
(x, s) ∈ R2

∣∣ a ≤ s ≤ b, x ∈ J
}
,

where J is some interval. For the integral to exist, we want the map

[a, b]→ R : s 7→ f(x, s)

to be continuous for each x ∈ J . We might abbreviate this map by f(x, ·) and say that we
want f(x, ·) ∈ C([a, b]).

So what is the derivative, assuming that we do not recall (6.1)? The integral is approxi-
mately a Riemann sum, and derivatives and sums interact nicely:∫ b

a

f(x, s) ds ≈
n∑
k=1

f(x, sk)(sk − sk−1)

for a partition {sk}nk=1 of the interval [a, b]. Certainly

∂x

[
n∑
k=1

f(x, sk)(sk − sk−1)

]
=

n∑
k=1

fx(x, sk)(sk − sk−1),
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and
n∑
k=1

fx(x, sk)(sk − sk−1) ≈
∫ b

a

fx(x, s) ds,

so perhaps

∂x

[∫ b

a

f(x, s) ds

]
=

∫ b

a

fx(x, s) ds?

With some extra hypotheses, and work, this turns out to be true. The crux of the problem
is an “interchange of limits” argument, the sort that permeates much of analysis. Using the
definition of the derivative (and algebraically rearranging some terms on the left), this boils
down to showing

lim
h→0

∫ b

a

f(x+ h, s)− f(x, s)

h
ds =

∫ b

a

lim
h→0

f(x+ h, s)− f(x, s)

h
ds. (11.3)

What properties of integrals give us the right to do this?

11.2 Theorem (Leibniz’s rule for differentiating under the integral). Let J ⊆ R be
an interval and a, b ∈ R with a ≤ b. Let D :=

{
(x, s) ∈ R2

∣∣ x ∈ J, a ≤ s ≤ b
}
. Suppose

that f ∈ C(D) and that fx exists on D with fx ∈ C(D). Then the map

I : J → R : x 7→
∫ b

a

f(x, s) ds

is defined and differentiable on J and

I ′(x) =

∫ b

a

fx(x, s) ds.

11.3 Problem. Here is a sketch of the proof, up to some tricky estimates.

(i) Chase through the algebra of difference quotients and integrals to show that it suffices
to establish (11.3) to prove Leibniz’s rule.

(ii) Go further and show (using, perhaps, Problem 3.2) that it suffices to establish

lim
h→0

∫ b

a

∫ 1

0

[
fx(x+ th, s)− fx(x, s)

]
dt ds = 0. (11.4)

(iii) Proving (11.4) takes some careful work with uniform continuity on compact subsets
of R2, and that is beyond the scope of our class. However, show that if fxx exists and is
continuous on D and if there is M > 0 such that |fxx(x, s)| ≤ M for all (x, s) ∈ D, then
(11.4) holds. [Hint: use Problem 3.2 again and watch out for the triple integral that shows
up.]
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11.4 Problem. Let

φ(x) :=

∫ 1

0

s cos(s2 + x) ds.

Calculate φ′ in two ways in two ways: first by evaluating the integral with FTC2 and dif-
ferentiating the result and second by differentiating under the integral and then simplifying
the result with FTC2. (The point is to convince you that differentiating under the integral
gives the right answer.)

If g ∈ C1(R2), then Leibniz’s rule justifies the calculation

∂x

[∫ t

0

g(x− t+ τ, τ) dτ

]
=

∫ t

0

gx(x− t+ τ, τ) dτ

by taking f(x, s) = g(x − t + s, s) with t ∈ R fixed. The hypothesis g ∈ C1(R2) is, by the
way, stronger than what we had in Theorem 11.1. (It is also asking more of g than we did
of the forcing term in the ODE from Theorem 3.8. PDE are hard.)

We still need to calculate

∂t

[∫ t

0

g(x− t+ τ, τ) dτ

]
,

and now the variable of differentiation appears in both the limit of integration (which should
remind us of FTC1) and in the integrand (which should remind us of Leibniz’s rule). To do
this, it suffices to know how to compute

∂t

[∫ t

0

f(t, s) ds

]
,

as we could then take f(t, s) = g(x− t+ s, s) with x fixed.
Here is the trick: we introduce a fake variable and set

F (x, t) :=

∫ x

0

f(t, s) ds.

Then ∫ t

0

f(t, s) ds = F (t, t),

so by the multivariable chain rule

∂t

[∫ t

0

f(t, s) ds

]
= Fx(t, t) + Ft(t, t).

But
Fx(t, t) = ∂x

[∫ x

0

f(t, s) ds

] ∣∣∣∣
x=t

= f(t, t)

by FTC1 and

Ft(t, t) = ∂t

[∫ x

0

f(t, s) ds

] ∣∣∣∣
x=t

=

∫ t

0

ft(t, s) ds

by Leibniz’s rule.
We have proved the following.
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11.5 Lemma. Let f ∈ C1(R2). Then

∂t

[∫ t

0

f(t, s) ds

]
= f(t, t) +

∫ t

0

ft(t, s) ds

for all t ∈ R.

11.6 Problem. Use this lemma to show that if g ∈ C1(R2), then

u(x, t) :=

∫ t

0

g(x− t+ τ, τ) dτ

solves {
ut + ux = g(x, t), −∞ < x, t <∞
u(x, 0) = 0, −∞ < x <∞.

11.7 Problem. Find all solutions to{
ut + cux + ru = g(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

where f ∈ C1(R), g ∈ C1(R2), and c, r ∈ R. [Hint: as always, start with v(s) := u(x +
cs, t + s) for x, t ∈ R fixed and find an ODE for v.] This transport equation models the
propagation of a substance where the amount of the substance on the path can change
both from the “source/sink” term g and in proportion r to the amount of substance on the
path.

Day 12: Monday, September 9.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Page 281 provides cultural and historical context for the wave equation. Pages 282–285
exhaustively derive the wave equation from physical principles. Pages 300–302 derive
D’Alembert’s formula using a slightly different approach from ours in class. Read
Examples 3 and 4 on pp. 303–304.

We commence our study of a new PDE: the wave equation. In the immortal words
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of G. B. Whitham from his staggering Linear and Nonlinear Waves,

“[A] wave is any recognizable signal that is transferred from one part of [a]
medium, to another with a recognizable velocity of propagation. The signal
may be any feature of the disturbance, such as a maximum or an abrupt
change in some quantity, provided that it can be clearly recognized and its
location at any time can be determined. The signal may distort, change
its magnitude, and change its velocity provided it is still recognizable.”

The initial value problem (IVP) for the wave equation on R reads
utt = uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞.

Here f , g : R → R are given functions. This IVP models the motion of an infinitely long
string that moves in the vertical direction only: let u(x, t) be the displacement of the string
from its rest position at position x along its length and time t. The function f models the
initial displacement and g the initial velocity. While a finite string is of course physically
much more realistic, we will see that finite length leads to some complicated, and possibly
unsatisfying, boundary conditions; mathematically, the infinite string is rather “nicer” (if
more unrealistic physically).

We can solve the IVP by noticing a formal similarity to the difference of perfect squares:
u solves the wave equation if and only if

utt − uxx = 0,

and we might rewrite this in “operator” notation as

(∂2t − ∂2x)u = 0,

and then factor that as
(∂t − ∂x)(∂t + ∂x)u = 0.

What this means is that if u solves utt = uxx, and if we define v := ut + ux, then v solves

vt − vx = 0.

12.1 Problem. Prove that.

The function v therefore solves a transport equation. Since

v(x, 0) = ut(x, 0) + ux(x, 0) = g(x) + ∂x[u](x, 0) = g(x) + ∂x[f ](x) = g(x) + f ′(x),

the function v really solves {
vt − vx = 0, −∞ < x, t <∞
v(x, 0) = g(x) + f ′(x).
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We know that the solution to this problem is

v(x, t) = g(x+ t) + f ′(x+ t).

Consequently, the solution u to the original wave equation utt = uxx must also solve

ut + ux = v(x, t) = g(x+ t) + f ′(x+ t).

Since u(x, 0) = f(x), we meet another transport equation:{
ut + ux = g(x+ t) + f ′(x+ t), −∞ < x, t <∞
u(x, 0) = f(x).

We know from Theorem 11.1 that the solution to{
ut + ux = h(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞

is

u(x, t) = f(x− t) +

∫ t

0

h(x− t+ τ, τ) dτ.

With
h(x, t) = g(x+ t) + f ′(x+ t),

we have

h(x− t+ τ, τ) = g((x− t+ τ) + τ) + f ′((x− t+ τ) + τ) = g(x− t+ 2τ) + f ′(x− t+ 2τ).

Thus the solution u to the wave equation utt = uxx is

u(x, t) = f(x− t) +

∫ t

0

[
g(x− t+ 2τ) + f ′(x− t+ 2τ)

]
dτ.

We change variables in the integral with

s = x− t+ 2τ, ds = 2 dτ, s(0) = x− t, s(t) = x+ t,

to find∫ t

0

[
g(x− t+ 2τ) + f ′(x− t+ 2τ)

]
dτ =

1

2

∫ x+t

x−t

[
g(s) + f ′(s)

]
ds

=
f(x+ t)− f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds.

We conclude

u(x, t) = f(x−t)+f(x+ t)− f(x− t)
2

+
1

2

∫ x+t

x−t
g(s) ds =

f(x+ t) + f(x− t)
2

+
1

2

∫ x+t

x−t
g(s) ds.

Here is a slightly more general result.
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12.2 Theorem (D’Alembert’s formula). Let f ∈ C2(R) and g ∈ C1(R) and c > 0. The
only solution u ∈ C2(R2) to

utt = c2uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞

(12.1)

is the function

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g(s) ds. (12.2)

12.3 Problem. Prove this.

(i) First, check that u as defined in (12.2) actually solves the wave IVP (12.1). Explain
why the regularity assumptions f ∈ C2(R) and g ∈ C1(R) are necessary.

(ii) Next, develop the result for c 6= 1 from the work above by assuming that u solves
(12.1) and setting U(X,T ) = u(αX, βT ) for some α, β ∈ R. Choose α and β so that U
solves UTT = UXX and use the work above (updating the initial conditions as needed) to
find a formula for U . From that, develop the formula (12.2) for u.

12.4 Example. We solve the wave IVP (12.1) for c = 1 and some choices of f and g and
graph some results.

(i) Take
f(x) = 2e−x

2

and g(x) = 0.

D’Alembert’s formula tells us that the solution is

u(x, t) =
2e−(x+t)

2 − 2e−(x−t)
2

2
+

1

2

∫ x+t

x−t
0 ds = e−(x+t)

2

+ e−(x−t)
2

.

Here are some plots.

x

u(x, 0) t = 0

x

u(x, 1) t = 1

x

u(x, 2) t = 2

x

u(x, 4) t = 4
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It looks like the initial condition u(x, 0) = 2e−x
2

has split into two smaller “pulses,”
one moving to the right and the other to the left. This is exactly what the formula
u(x, t) = e−(x+t)

2−e−(x−t)2 says: as t increases, the graph of x 7→ e−(x+t)
2

moves to the left,
while x 7→ e−(x−t)

2

moves to the right. However, the graph of u(·, t) is not really just the
graph of x 7→ e−(x+t)

2

superimposed on the graph of x 7→ e−(x−t)
2

; there is an interaction
between the two graphs due to the sum in the definition of u. Nonetheless, this interaction
is very “weak” for x or t large because e−s

2

is very small when |s| is very large.

(ii) Take
f(x) = 10e−x

2

and g(x) = cos(x).

D’Alembert’s formula tells us that the solution is

u(x, t) =
10e−(x+t)

2
+ 10e−(x−t)

2

2
+

1

2

∫ x+t

x−t
cos(s) ds

= 5
(
e−(x+t)

2

+ e−(x−t)
2)

+

(
sin(x+ t)− sin(x− t)

)
2

.

Here are some graphs.

x

u(x, 0) t = 0

x

u(x, 1) t = 1

x

u(x, 3) t = 3

x

u(x, 9) t = 9

Again, it looks like the initial condition “splits” into two “smaller” pulses that travel
to the right and left; now there is more “noise” between them due to the nonzero initial
condition on ut. In particular, the pulses are not nearly as “identical” as they were for the
previous initial data; contrast times 1, 3, and 9 with the previous pulses for times 1, 2, and
4.

Here is why this “counterpropagating pulse” phenomenon happens. Rewrite D’Alembert’s
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formula as

f(x+ ct) + f(x− ct)
2

+
1

2c

∫ x+ct

x−ct
g(s) ds =

1

2

(
f(x+ ct) +

∫ x+ct

0

g(s) ds

)
+

1

2

(
f(x− ct) +

∫ 0

x−ct
g(s) ds

)
and abbreviate

F (X) :=
1

2

(
f(X) +

1

c

∫ X

0

g(s) ds

)
and G(X) :=

1

2

(
f(X) +

1

c

∫ 0

X

g(s) ds

)
.

Then if u solves utt = c2uxx, we can write

u(x, t) = F (x+ ct) +G(x− ct). (12.3)

This is the superposition of the “profiles” F and G with F translated left with “speed” c
and G translated “right.” And this is why the graphs in Example 12.4 break up into two
“counterpropagating” profiles.

12.5 Remark. The profiles F and G above are definitely not the initial data f and g in
general. In fact, the formula (12.3) makes sense without any initial data. Just assume
that u solves utt = c2uxx and artificially introduce the initial conditions f(x) := u(x, 0)
and g(x) := ut(x, 0). Then the work above shows that u satisfies (12.3), and we can forget
about f and g if we want.

The structure in (12.3) is really a sum of traveling waves.

12.6 Definition. A function u : R2 → R is a traveling wave if there exist a function
p : R→ R and c ∈ R such that

u(x, t) = p(x− ct)

for all x, t ∈ R. The function p is the profile and the scalar c is the wave speed.

The idea of a traveling wave is that the profile p is translated, or “travels,” via the shift
by −ct. In particular, if c > 0, then as time increases, the graph of x 7→ u(x, t) is just the
graph of p translated to the right by ct units.

12.7 Problem. Explain why all solutions to the homogeneous transport equation ut+ux =
0 are traveling waves but solutions to the wave equation are typically not traveling waves.

Day 13: Wednesday, September 11.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Example 6 on p. 307 and the following remark and Example 7 on pp. 308–310 present
the “method of images” for the semi-infinite string.
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When studying a PDE in the unknown function u = u(x, t), the process of guessing that
u is a traveling wave of the form u(x, t) = p(x − ct) and then figuring out the permissible
profile(s) p and wave speed(s) c, if any, is called making a traveling wave ansatz for
that PDE. (In general, an ansatz for a PDE is an educated guess that a solution has a
particular form.)

13.1 Example. For the sake of a toy problem, we pause from our study of the wave
equation and consider a nonlinear transport equation:

ux + ut + u2 = 0.

We make the traveling wave ansatz u(x, t) = p(x− ct) for a profile function p = p(X) and
a wave speed c ∈ R. The multivariable chain rule tells us that

ux(x, t) = p′(x− ct) and ut(x, t) = −cp′(x− ct).

Thus p and c must satisfy

p′(x− ct)− cp′(x− ct) + [p(x− ct)]2 = 0

for all x, t ∈ R. If we take x = X and t = 0, which we are free to do, we see that p must
satisfy

(1− c)p′(X) + [p(X)]2 = 0,

or, more succinctly,
(1− c)p′ + p2 = 0.

This is actually a separable ODE, and we can rewrite it as

(1− c) dp
dX

= −p2.

The equilibrium solution is p(X) = 0. When c = 1, we have −p2 = 0, and so again
p(X) = 0. From now on, assume c 6= 1 and p 6= 0. Then we formally separate variables
and integrate:

(1−c) dp
dX

= −p2 =⇒ c− 1

p2
dp

dX
= 1 =⇒ (c−1)

∫
p−2 dp =

∫
dX =⇒ (1−c)p−1 = X+K.

Here we are using K, not C, for the constant of integration, to avoid confusion with c.
Since 1− c 6= 0, we can solve for p:

p(X) =
1− c
X +K

.

Actually, this encodes the zero solution resulting from c = 1, and so all traveling waves are

u(x, t) =
1− c

x− ct+K
. (13.1)
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13.2 Problem. Find all other solutions to ut+ux+u2 = 0. [Hint: put v(s) = u(x+s, t+s)
and find a separable ODE for v.]

13.3 Problem. We have said (and proved) that all solutions to the transport equation
ut + ux = 0 are traveling waves, but make a traveling wave ansatz u(x, t) = p(x − ct)
anyway and solve for p and c. What is special about the case c = −1?

13.4 Problem. Make a traveling wave ansatz u(x, t) = p(x − ct) for the KdV equation
ut + uxxx + uux = 0 and find, but do not solve, an ODE that p must satisfy.

We will continue making traveling wave ansatzes for other PDE that we meet and inter-
preting those solutions physically and mathematically in the broader context of those equa-
tions. Now we return to the wave equation and tease out more properties from D’Alembert’s
formula.

Common jargon for the wave equation is that it “exhibits finite propagation speed.” Phys-
ically, this means that data or disturbances in one part of the fictitious infinite string take
some time to affect other parts of the string. Here is what this means mathematically.

Suppose that the initial data f and g have compact support in the sense that there
is R > 0 such that

f(s) = 0 and g(s) = 0 for |s| > R.

In other words, f and g can only be nonzero on the interval [−R,R]. (Here we are using s
for the independent variable of f and g to avoid confusion with x.) In more other words,
the only “data” carried by f and g exists on this finite interval.

s

f(s)

−R R

If the string is governed by utt = c2uxx, then we expect that c > 0 is the speed of the wave(s)
moving through the string. After t units of time, data or disturbances should only propagate
ct units along the x-axis from where they were at time 0. This is born out by D’Alembert’s
formula.

Fix t > 0 and suppose that R+ ct < x. Then this position x is more than ct units outside
the “support” of f and g. We do not expect the data or disturbances from f and g to reach
position x in only this time t. Now here is the math: since R+ ct < x and c, t > 0, we have

R < R + 2ct < x+ ct, R < x− ct, and R < x− ct < x+ ct.

Since f(s) = 0 for s > R, we have
f(x+ ct) + f(x− ct)

2
= 0.
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Also, since g(s) = 0 on (R,∞) and [x− ct, x+ ct] ⊆ (R,∞), we have∫ x+ct

x−ct
g(s) ds = 0.

D’Alembert’s formula then implies that u(x, t) = 0.
Here is what we have proved.

13.5 Corollary (Finite propagation speed for the wave equation). Let f ∈ C2(R) and
g ∈ C1(R) have compact support with f(s) = g(s) = 0 for |s| > R. Let c > 0. If u solves
the wave IVP (12.1), then u(x, t) = 0 for |x| > R + c|t|.

13.6 Problem. Review the work preceding the corollary and check that it holds for |x| >
R + c|t|, not just for x > R + ct as we actually worked out above.

13.7 Problem. Formulate and prove a finite propagation speed result for the transport
IVP {

ut + cux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞

that is similar to Corollary 13.5.

As an illustration of more properties of D’Alembert’s formula (and, really, more properties
of functions and integrals), we introduce our first boundary condition and study the “semi-
infinite” string. Suppose that one end of the string is fixed at x = 0, so u(0, t) = 0 for all t,
and the string extends infinitely to the right for x > 0. We take initial data valued only for
x ≥ 0 and consider the IVP-BVP

utt = uxx, 0 ≤ x <∞, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x <∞
ut(x, 0) = g(x), 0 ≤ x <∞
u(0, t) = 0, −∞ < t <∞.

(13.2)

Here we assume f ∈ C2([0,∞)) and g ∈ C1([0,∞)). As usual, at the left endpoint 0 we only
assume that limits from the right hold, e.g.,

lim
x→0+

f(x) = f(0), lim
h→0+

f(0 + h)− f(0)

h
= f ′(0), lim

x→0+
f ′(x) = f ′(0), and so on.

There are two new wrinkles in this problem. The first is the presence of the boundary
condition u(0, t) = 0. We call this a boundary condition because it specifies what the solution
is doing at the left endpoint, or “boundary,” of its x-domain.

The second is that f and g are only defined on [0,∞). If f and g were defined on all of R,
we could reduce this to the wave IVP previously solved and use D’Alembert’s formula. The
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right idea is to extend f and g to R. That is, we want functions f̃ ∈ C2(R) and g̃ ∈ C1(R)
such that

f̃(x) = f(x) and g̃(x) = g(x) for x ≥ 0.

One way to make f and g̃ well-behaved on (−∞, 0) is to exploit the good behavior of f and
g and just “reflect” f and g across the vertical axis. That is, we could make f the even
reflection of f

fe(x) =

{
f(x), x ≥ 0

f(−x), x < 0

or the odd reflection of f

fo(x) =

{
f(x), x ≥ 0

−f(−x), x < 0.
(13.3)

Here are pictures with the original graph of f in black and the graph of the extension added
in blue.

x

fe(x)

x

fe(x)

We could do the same reflections for g. The question is then what behavior we can get
at x = 0: will the reflections be sufficiently differentiable there?

Here is where we need to think about the data in our problem. The boundary condition
u(0, t) = 0 talks to the initial conditions and implies

f(0) = u(0, 0) = 0 and g(0) = ut(0, 0) = ∂t[u(0, t)]
∣∣
t=0

= ∂t[0] = 0.

To be clear, we are assuming that the semi-infinite IVP-BVP has a solution, and we are
concluding that f(0) = g(0) = 0. We will henceforth require this in the initial data; the
problem does not make sense without it.

We know that odd functions are 0 at 0, so this suggests that we use the odd reflections
fo and g̃o.
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13.8 Problem. Check this claim: if h : R → R is odd, i.e., if h(s) = h(−s) for all s ∈ R,
then h(0) = 0. Also show that if h is odd, then h′′ is odd, so h′′(0) = 0.

We hope, then, that D’Alembert’s formula with the initial data given by fo and go will
provide a solution to (13.2) when restricted to x ≥ 0 and t = 0:

u(x, t) =
fo(x+ t) + fo(x− t)

2
+

1

2

∫ x+t

x−t
go(s) ds.

Will it? There are several things to check.

Day 14: Friday, September 13.

Material from Basic Partial Differential Equations by Bleecker & Csordas

The remark on p. 308 discusses how to solve the semi-infinite string problem with
the boundary condition ux(0, t) = 0. Pages 326–327 give physical motivation for the
driven wave equation.

First we claim that if g ∈ C([0,∞)) and g(0) = 0, then go ∈ C(R), so the integral is at
least defined.

14.1 Problem. Check this continuity claim.

Next, we check the newest and shiniest part of the IVP-BVP: the boundary condition.
We want u(0, t) = 0 for all t, so we need

fo(t) + fo(−t)
2

+
1

2

∫ t

−t
go(s) ds = 0.

Since fo is odd, fo(t) = −fo(−t), so the first term is 0.

14.2 Problem. Show that if h ∈ C(R) is odd, then∫ a

−a
h = 0

for any a ∈ R. [Hint: substitute.] Draw a picture indicating why this should be true in
general (caution: picture 6= proof).

With this calculation, the integral term is also odd, so the boundary condition does work
out.

What about differentiability? We want fo ∈ C2(R) and go ∈ C1(R). But since fo is odd,
we need f ′′o (0) = 0. Will this happen? We expect

f ′o(x) =

{
f ′(x), x > 0

f ′(−x), x < 0
and f ′′o (x) =

{
f ′′(x), x > 0

−f ′′(−x), x < 0.
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For f ′′o to be continuous, we therefore want

0 = f ′′o (0) = lim
x→0+

f ′′o (x) = lim
x→0+

f ′′(x) = f ′′(0),

where the second-to-last equality is from the piecewise formula for f ′′o , and the last equality
is from the continuity of f ′′ on [0,∞). Does the IVP-BVP structure of (13.2) guarantee this?

14.3 Problem. (i) Check that if u solves the semi-infinite problem (13.2), then we do
have f ′′(0) = 0. [Hint: how does the boundary data talk to the initial data and the PDE
to help you calculate f ′′?] The conclusion here is that requiring f ′′(0) = 0 is a natural,
unrestrictive condition for the semi-infinite wave IVP-BVP to make sense.

(ii) Suppose that f ∈ C2([0,∞) with f(0) = f ′′(0) = 0. With the odd reflection fo defined
in (13.3), show that fo ∈ C2(R). [Hint: the hard work is at x = 0: use left and right limits
for the difference quotients to show that f ′o(0) and f ′′o (0) are defined, and then show that
lims→0 f

′′
o (s) = f ′′o (0).]

The conclusion is success: if f ∈ C2([0,∞)) with f(0) = f ′′(0) = 0 and g ∈ C1([0,∞))
with g(0) = 0, then we can construct a solution to the semi-infinite wave IVP-BVP (13.2)
out of the odd reflections and D’Alembert’s formula. The nuance here is that we have these
“compatibility conditions” f(0) = f ′′(0) = g(0) = 0 for the problem to make sense. Nothing
in the original statement of (13.2) gave those conditions explicitly; they were lurking hidden
in the background.

14.4 Example. Here is the solution to the semi-infinite wave IVP-BVP with c = 1 when

f(x) = 4x3e−x
2

and g(x) = 0.

Here f and g are already odd, so we do not need to go to any great lengths to calculate
their odd reflections. Indeed, we just have

u(x, t) = 2(x+ t)3e−(x+t)
2

+ 2(x− t)3e−(x−t)2 .

Below we graph the solution for various time values.

x

u(x, 0) t = 0

x

u(x, 1) t = 1

x

u(x, 2) t = 2

x

u(x, 5) t = 5
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As before, we see that the solution splits up into two counterpropagating pulses, but
now they are clearly reflections or “images” of each other through the vertical axis.

14.5 Problem. Prove that if f and g are odd, then D’Alembert’s formula (12.2) yields an
odd function in x, i.e., u(−x, t) = −u(x, t). This justifies the “reflection” remark in the
example above.

14.6 Problem (Optional, involved). Solve the problem
utt = uxx, 0 ≤ x <∞, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x <∞
ut(x, 0) = g(x), 0 ≤ x <∞
ux(0, t) = 0, −∞ < t <∞,

where f ∈ C2([0,∞)) and g ∈ C1([0,∞)). This problem models a semi-infinite string where
the left endpoint is allowed to move vertically. [Hint: try even extensions for f and g.
What “compatibility” conditions arise?]

Now we take up the study of the driven or nonhomogeneous wave equation:
utt = uxx + h(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞,

(14.1)

where we assume, as usual, f ∈ C2(R) and g ∈ C1(R) and, at the minimum, h ∈ C(R2). We
develop our solution method by first noting some (probably non-obvious) patterns among
the driven linear equations that we have previously solved.

1. The first-order linear nonhomogeneous IVP at the ODE level “splits” into the sum of two
“easier” problems:{

y′ = ay + f(t)

y(0) = y0
=

{
y′ = ay

y(0) = y0
+

{
y′ = ay + f(t)

y(0) = 0.

This sum is wholly euphemistic; the point is that the solution to the “full” IVP is the sum
of solutions to the “simpler” IVP. They are “simpler” because the first has no driving term
(but has a “harder” initial condition), while the second has an “easier” initial condition (but
a “harder” driving term).

Of course, the solution to {
y′ = ay

y(0) = y0

is
y(t) = eaty0,
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and the solution to {
y′ = ay + f(t)

y(0) = 0

is

y(t) = eat
∫ t

0

e−aτf(τ) dτ.

The key to everything is rewriting this second solution:

eat
∫ t

0

e−aτf(τ) dτ =

∫ t

0

ea(t−τ)f(τ) dτ.

We recognize the presence of the first solution within the second solution via a notational
sleight-of-hand: put

P(t) := eat,

so

eaty0 = P(t)y0 and
∫ t

0

ea(t−τ)f(τ) dτ =

∫ t

0

P(t− τ)f(τ) dτ.

We think of P as a “propagator operator” for the homogeneous problem in that it “propagates”
the initial data y0 to where it should be at time t (namely, to eaty0). The solution to the full
nonhomogeneous IVP is therefore

y(t) = P(t)y0 +

∫ t

0

P(t− τ)f(τ) dτ.

2. The nonhomogeneous transport IVP similarly “splits”:{
ut = −ux + g(x, t)

u(x, 0) = f(x)
=

{
ut = −ux
u(x, 0) = f(x)

+

{
ut = −ux + g(x, t)

u(x, 0) = 0.

Here we are writing the −ux term on the right to suggest that these problems are really
“families” of ODE in t “indexed” by x ∈ R. For example, if we fix x ∈ R and put v(t) = u(x, t),
then the transport equation is v′ = −ux + g(x, t), which is morally an ODE in t.

Our hard work has shown that the solution to{
ut = −ux
u(x, 0) = f(x)

is
u(x, t) = f(x− t),

while the solution to {
ut = −ux + g(x, t)

u(x, 0) = 0

is

u(x, t) =

∫ t

0

g(x− t+ τ, τ) dτ.
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We introduce a new “propagator” that is “indexed” by x via

P(t, x)f := f(x− t).

Then the solution to {
ut = −ux
u(x, 0) = f(x)

is
u(x, t) = P(t, x)f.

Now fix τ and denote by g(·, τ) the map

g(·, τ) : R→ R : X 7→ g(X, τ).

Then we can recognize the propagator in the solution to{
ut = −ux + g(x, t)

u(x, 0) = 0

via

u(x, t) =

∫ t

0

g(x− t+ τ, τ) dτ =

∫ t

0

g(x− (t− τ), τ) dτ =

∫ t

0

P(t− τ, x)g(·, τ) dτ.

The solution to the full nonhomogeneous transport IVP is therefore

u(x, t) = P(t, x)f +

∫ t

0

P(t− τ, x)(·, τ) dτ.

Hopefully we see a pattern: the solution to the nonhomogeneous problem is the sum of
the propagator applied to the initial data and the integral of the propagator “shifted by t−τ”
applied to the driving term.

This pattern is not wholly helpful for the driven wave equation, however, because that
problem has two initial conditions. The right idea is to turn to the dreaded variation of
parameters formula for second-order linear ODE. Here is a version of that formula that we
typically do not see in standard ODE classes, as checking it requires differentiating under
the integral.

14.7 Theorem (Variation of parameters). Let b, c ∈ R and let f ∈ C(R). Suppose that
P ∈ C2(R) solves 

P ′′ + bP ′ + cP = 0

P(0) = 0

P ′(0) = 1.
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Then for y0, y1 ∈ R, the only solution to the IVP
y′′ + by′ + cy = f(t)

y(0) = y0

y′(0) = y1

(14.2)

is

y(t) = P ′(t)y0 + P(t)(y1 + y0b) +

∫ t

0

P(t− τ)f(τ) dτ. (14.3)

In particular, the functions

z(t) := P ′(t)y0 + P(t)(y1 + y0b) and y?(t) :=

∫ t

0

P(t− τ)f(τ) dτ

solve the respective IVP
z′′ + bz′ + cz = 0

z(0) = y0

z′(0) = y1

and


y′′? + by′? + cy? = f(t)

y?(0) = 0

y′?(0) = 0.

(14.4)

Proving this theorem is challenging. First, one needs a uniqueness result for second-
order linear IVP to guarantee the “only” result; we will not pursue that here. Second (or
maybe first), what is the motivation for this formula? It is much less obvious than variation
of parameters for first-order linear IVP, which effectively falls out from the product rule.
The slickest way of proceeding for the second-order case is to convert that problem into a
first-order linear system, which then has much in common with first-order (scalar) problems.

14.8 Problem. (i) Check that the formula (14.3) does yield a solution to (14.2). [Hint:
Lemma 11.5.]

(ii) Let λ ∈ R \ {0}. What does Theorem 14.7 say about the solution to
y′′ + λ2y = f(t)

y(0) = y0

y′(0) = y1?

How does this resemble Problem 5.5?
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Day 15: Monday, September 16.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 327–328 give a different motivation for Duhamel’s formula. Page 329 states
and proves the formula, and Example 6 on page 330 goes through the calculations for
concrete initial and driving data.

Inspired by the propagators for ODE and the transport equation, we revisit the wave
equation. The solution to the homogeneous problem

utt = uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞,

is given by D’Alembert’s formula:

u(x, t) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds.

This morally resembles the first two terms of the solution (14.3) to the homogeneous second-
order linear ODE (in the case b = 0) in that the initial data appears in each term separately.
If we stare a little longer, we might see a resemblance between the terms in that

∂t

[
1

2

∫ x+t

x−t
g(s) ds

]
=
g(x+ t) + g(x− t)

2
.

This is a consequence of a more general FTC identity.

15.1 Problem. Let I, J ⊆ R be intervals. Let f ∈ C(I) and a, b ∈ C1(J) with a(t),
b(t) ∈ I for all t ∈ J . Show that

∂t

[∫ b(t)

a(t)

f

]
= f(b(t))b′(t)− f(a(t))a′(t).

[Hint: FTC1 + properties of integrals + chain rule.]

Now define

P(t, x)g :=
1

2

∫ x+t

x−t
g(s) ds. (15.1)

The result above shows
∂t[P(t, x)f ] =

f(x+ t) + f(x− t)
2

,

and so D’Alembert’s formula compresses to

u(x, t) = ∂t[P(t, x)f ] + P(t, x)g.
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This strongly resembles the first two terms in (14.3)!
Consequently, by analogy with (14.4) we are led to conjecture that

u(x, t) :=

∫ t

0

P(t− τ, x)h(·, τ) dτ (15.2)

solves 
utt = uxx + h(x, t), −∞ < x, t <∞
u(x, 0) = 0, −∞ < x <∞
ut(x, 0) = 0, −∞ < x <∞,

We check the PDE and leave the initial conditions as an exercise. To do this, we need the
identities

∂x

[∫ t

0

φ(x, t, τ) dτ

]
=

∫ t

0

φx(x, t, τ) dτ and ∂t

[∫ t

0

φ(x, t, τ) dτ

]
= φ(x, t, t)+

∫ t

0

φt(x, t, τ) dτ

for suitably well-behaved φ.
Then with u from (15.2), we have

uxx(x, t) = ∂2x

[∫ t

0

P(t− τ, x)h(·, τ) dτ

]
=

∫ t

0

∂2x
[
P(t− τ, x)h(·, τ)

]
dτ.

Here we use the formula (15.1) to compute

P(t− τ, x)h(·, τ) =
1

2

∫ x+(t−τ)

x−(t−τ)
h(s, τ) ds =

1

2

∫ x+t−τ

x−t+τ

h(s, τ) ds,

and therefore, for τ fixed,

∂x
[
P(t− τ, x)h(·, τ)

]
=

1

2
∂x

[∫ x+t−τ

x−t+τ

h(s, τ) ds

]
=
h(x+ t− τ, τ)− h(x− t+ τ, τ)

2

and

∂2x
[
P(t−τ, x)h(·, τ)

]
= ∂x

[
h(x+ t− τ, τ)− h(x− t+ τ, τ)

2

]
=
hx(x+ t− τ, τ)− hx(x− t+ τ, τ)

2
.

Thus

uxx(x, t) =
1

2

∫ t

0

[
hx(x+ t− τ, τ)− hx(x− t+ τ, τ)

]
dτ. (15.3)

Now we work on the time derivative. We have

ut(x, t) = ∂t

[∫ t

0

P(t− τ, x)h(·, τ) dτ

]
= P(t− t, x)h(·, t) +

∫ t

0

∂t
[
P(t− τ, x)h(·, τ)

]
dτ.

We compute

P(t− t, x)h(·, t) = P(0, x)h(·, t) =
1

2

∫ x+0

x−0
h(s, t) ds =

1

2

∫ x

x

h(s, t) ds = 0
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and, for τ fixed,

∂t
[
P(t− τ, x)h(·, τ)

]
=

1

2
∂t

[∫ x+t−τ

x−t+τ

h(s, τ) ds

]
=
h(x+ t− τ, τ) + h(x− t+ τ, τ)

2
.

Then

ut(x, t) =
1

2

∫ t

0

[
h(x+ t− τ, τ) + h(x− t+ τ, τ)

]
dτ,

so

utt(x, t) =
h(x+ t− t, t) + h(x− t+ t, t)

2
+

1

2

∫ t

0

∂t
[
h(x+ t− τ, τ) + h(x− t+ τ, τ)

]
dτ.

Certainly
h(x+ t− t, t) + h(x− t+ t, t)

2
=
h(x, t) + h(x, t)

2
= h(x, t),

while∫ t

0

∂t
[
h(x+ t− τ, τ) + h(x− t+ τ, τ)

]
dτ =

∫ t

0

[
hx(x+ t− τ, τ)− hx(x− t+ τ, τ)

]
dτ.

All together,

utt(x, t) = h(x, t) +
1

2

∫ t

0

[
hx(x+ t− τ, τ)− hx(x− t+ τ, τ)

]
dτ = h(x, t) + uxx(x, t),

after comparison to (15.3).

15.2 Problem. (i) Show that the function u defined in (15.2) satisfies

u(x, 0) = ut(x, 0) = 0

for all x ∈ R, and conclude that the function

u(x, t) = ∂t[P(t, x)f ] + P(t, x)g +

∫ t

0

P(t− τ, x)h(·, τ) dτ (15.4)

solves the driven wave equation
utt = uxx + h(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞.

(ii) Show that the solution to the driven wave equation is unique. [Hint: if u and v both
solve it, what IVP does their difference w := u− v solve, and why does that imply w = 0?]

Any actual calculations with the formula (15.4) for concrete initial and driving terms f ,
g, and h boil down to computing antiderivatives, and there is probably not much insight to
be gained from such manipulations at this point in life. Instead, here is a way to recognize
the formula (15.2) as a double integral.
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15.3 Problem. Let h ∈ C(R2) and let x, t ∈ R. Let D(x, t) be the region in R2 consisting
of the boundary and interior of the triangle whose endpoints are (x− t, 0), (x+ t, 0), and
(x, t). Show that ∫ t

0

P(t− τ, x)h(·, τ) dτ =
1

2

∫∫
D(x,t)

h,

with the propagator P defined in (15.1). [Hint: start by drawing D(x, t). For simplicity in
solving this problem, you may assume x > 0 and t > 0, although the result is valid for all
x and t.]

Day 16: Wednesday, September 18.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 310–311 discuss solving the finite string wave equation with the “method of
images.” Theorem 3 contains the main result. It is not really necessary to assume that
f̃o and g̃o are as regular as the theorem does; such regularity is forced on them by the
“compatibility conditions,” without which the problem really does not make sense.

Our best success with the wave equation involved having it posed spatially (in x) on
(−∞,∞). That gave us D’Alembert’s formula, from which all good things flow. The next
best situation was the semi-infinite string, which we reduced to the infinite string on (−∞,∞)
by carefully extending the initial data. We now consider the most physically realistic, but
also most mathematically complicated, situation: the finite string.

Assume that a string of length L > 0 is constrained to move vertically with its endpoints
fixed. If u(x, t) is the displacement of the string from its equilibrium position at time t
and spatial position x ∈ [0, L], this means u(0, t) = u(L, t) = 0 for all t. We arrive at the
initial-boundary value problem (IVP-BVP)

utt = uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x ≤ L

ut(x, 0) = g(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, −∞ < t <∞.

(16.1)

As usual, f and g are the initial data, and we assume f ∈ C2([0, L]) and g ∈ C1([0, L]).
(Why? We want a solution u to this problem to be twice continuously differentiable on{

(x, t) ∈ R2
∣∣ 0 ≤ x ≤ L, t ∈ R

}
. This forces f = u(·, 0) ∈ C2([0, L]) and the same for g.)

Our success with the semi-infinite string suggests that we extend f and g carefully to
(−∞,∞) and use D’Alembert’s formula. By “carefully,” we mean that the extensions should
be sufficiently differentiable. We fool around with some values for f and g to see what
extension might be the right one. Assume that the IVP-BVP (16.1) has a solution u. First,

f(0) = u(0, 0) by the initial condition f(x) = u(x, 0), 0 ≤ x ≤ L
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= 0 by the boundary condition u(0, t) = 0, −∞ < t <∞.

Next,

f ′′(x) = uxx(x, 0) by differentiating the initial condition f(x) = u(x, 0) twice in x

= utt(x, 0) because u solves utt = uxx.

Thus f ′′(0) = utt(0, 0). Now we differentiate both sides of u(0, t) = 0 twice with respect to t
to find utt(0, t) = 0 for all t. Thus utt(0, 0) = 0, and so f ′′(0) = 0.

We conclude that if the IVP-BVP (16.1) has a solution, then the initial data f must meet
the “compatibility conditions” f(0) = f ′′(0) = 0. Here is the picture; note how f resembles
the graph of y = x2 at the endpoints.

x

f(x)

L

x

fo(x)

L−L

16.1 Problem. Continue to suppose that (16.1) has a solution.

(i) Show that f(L) = f ′′(L) = 0.

(ii) Show that g(0) = 0.

(iii) What happens if you try to get information on f ′ and g′?

These results suggest that we try to use the odd extensions (or reflections) of f and g.
The challenge here is that because f and g are only defined on [0, L], at best we could extend
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them to be odd on [−L,L]. We simply do not have enough data to continue that reflection
outside this interval, since we only know the values of f and g on [0, L]. So, start with, as
before

fo : [−L,L]→ R : x 7→

{
f(x), 0 ≤ x ≤ L

−f(−x), −L ≤ x < 0

and

go : [−L,L]→ R : x 7→

{
g(x), 0 ≤ x ≤ L

−g(−x), −L ≤ x < 0.

Now here is the clever part. We are going to extend fo and go from [−L,L] to (−∞,∞)
periodically. Informally, we “copy and paste” the graphs from [−L,L] to the intervals [(2k+

1)L, (2k+3)L] for k ∈ Z. Call these periodic extensions f̃o and g̃o; we require them to satisfy

f̃o(x+ 2L) = f̃o(x) and g̃o(x+ 2L) = g̃o(x)

for all x ∈ R.

x

f̃o(x)

L−L L−L 2L−2L

We are going to apply D’Alembert’s formula to the problem
utt = uxx, −∞ < x, t <∞
u(x, 0) = f̃o(x), −∞ < x <∞
ut(x, 0) = g̃o(x), −∞ < x <∞.

(16.2)

To do this, we need to be sure that f̃o ∈ C2(R) and g̃o ∈ C1(R), and for this to be worthwhile
for our original finite string problem, we need to be sure that the solution produced by
D’Alembert’s formula meets the boundary conditions u(0, t) = u(L, t) = 0.

16.2 Problem (Optional, possibly annoying). (i) Show that f̃o is twice differentiable
at x = L and that f̃ ′′o is continuous at x = L. It may help to argue first that f̃o is “odd”
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about L in the sense that f̃o(L− ξ) = −f̃o(L+ ξ) for 0 ≤ ξ ≤ L.

x

f̃o(x)

L 2LL− ξ L+ ξ

From this, argue by periodicity that f̃o ∈ C2(R).

(ii) Solve (16.2) with D’Alembert’s formula. Check the boundary conditions u(0, t) =

u(L, t) = 0. [Hint: use the oddness of f̃o, and also of g̃o, at L, as discussed above.]

Day 17: Friday, September 20.

We took Exam 1.

Day 18: Monday, September 23.

Much of our work has concerned initial value problems. We are given initial-in-time data,
and we build solutions out of that data. Often we obtain uniqueness results: there is only
one solution to the differential equation at hand with the given initial data (Theorem 3.6,
Theorem 3.8, Problem 5.4, Theorem 7.1, Theorem 11.1, Theorem 12.2, Theorem 14.7, Prob-
lem 15.2). Once uniqueness is established, a natural follow-up question is that of “continuous
dependence on initial conditions.” Very informally, this is motivated by the slogan if two
things start “close together” and move according to the “same rules,” then they should remain
“close together” at least for “some time.”

18.1 Problem. Suppose that y1 and y2 both solve

y′ = ay + f(t)

for some a ∈ R and f ∈ C(R). Show that if 0 ≤ t ≤ T , then

|y1(t)− y2(t)| ≤ eaT |y1(0)− y2(0)|.

This gives a measure of how “close” y1 and y2 are on the interval [0, T ] in terms of T and
the initial data.
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We study this in the context of the wave equation. First, for functions f , g ∈ C(R), we
define the “wave operator” W [f, g] by

W [f, g](x, t) :=
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds. (18.1)

Now let f1, f2 ∈ C2(R) and g1, g2 ∈ C1(R). Suppose that u and v solve the wave IVP
utt = uxx, −∞ < x, t <∞
u(x, 0) = f1(x), −∞ < x <∞
ut(x, 0) = g1(x), −∞ < x <∞

and


vtt = vxx, −∞ < x, t <∞
v(x, 0) = f2(x), −∞ < x <∞
vt(x, 0) = g2(x), −∞ < x <∞.

(18.2)

If f1 and f2 are “close,” and if g1 and g2 are “close,” will u and v be “close”?
First we spell out what we mean by “close.” We assume there are δ, ε > 0 such that

|f1(x)− f2(x)| < δ and |g1(x)− g2(x)| < ε

for all x ∈ R. This means that the graph of f2 lies between the graphs of f1 − δ and f1 + δ,
a sort of “δ-tube” centered on the graph of f1; equivalently, the graph of f1 − f2 lies in the
“strip” between −δ and δ. The same, of course, holds for g1 and g2 with δ replaced by ε.
(Later we will see that there are other ways of measuring closeness of functions via different
“norms” on function spaces—many involve integrals as a measurement of “averaging.”)

x

f1(x)− δ

f2(x)

f1(x) + δ

x

f1(x)− f2(x)

x = δ

x = −δ

18.2 Problem. Suppose that u and v solve the wave IVP in (18.2). Let w = u − v,
f = f1 − f2, and g = g1 − g2. Show that w =W [f, g] with W defined in (18.1).

Our task is now to control the size of w, ideally in terms of δ and ε. We use the notation
of the preceding problem. Since w =W [f, g], we have

|w(x, t)| ≤ |f(x+ t) + f(x− t)|
2

+
1

2

∣∣∣∣∫ x+t

x−t
g(s) ds

∣∣∣∣ .
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The triangle inequality on the first term implies

|f(x+ t) + f(x− t)| ≤ |f(x+ t)|+ |f(x− t)|,

and then the triangle inequality on f implies

|f(x+ t)| = |f1(x+ t)− f2(x+ t)| < δ,

and the same for |f(x− t)|. All together,

|f(x+ t) + f(x− t)|
2

<
δ + δ

2
= δ.

We estimate the integral with the triangle inequality for integrals (Problem 2.4):∣∣∣∣∫ x+t

x−t
g(s) ds

∣∣∣∣ ≤ ∫ x+t

x−t
|g(s)| ds,

at least if x− t ≤ x+ t, i.e., if t ≥ 0. Since

|g(s)| = |g1(s)− g2(s)| < ε

for all s ∈ R, this implies ∣∣∣∣∫ x+t

x−t
g(s) ds

∣∣∣∣ ≤ ∫ x+t

x−t
ε ds = 2tε

when t ≥ 0.

18.3 Problem. Show that if t < 0, then∣∣∣∣∫ x+t

x−t
g(s) ds

∣∣∣∣ < 2|t|ε.

We conclude

|u(x, t)− v(x, t)| = |w(x, t)| = |W [f, g](x, t)| < δ + |t|ε. (18.3)

This shows that for any fixed time t ∈ R, the solutions u and v are uniformly close in x in a
manner depending precisely on how close the initial conditions are.

However, this estimate is less than ideal because it depends on time t. As t → ±∞,
δ + |t|ε→∞, and so perhaps over long times the solutions u and v could grow apart.

18.4 Problem. Here is a somewhat silly example of how this could occur. Let δ, ε > 0.
Take f1 = g1 = 0 and f2(x) = δ/2 and g2(x) = ε/2. Show that if u and v solve (18.2), then

u(x, t) = 0 and v(x, t) =
δ + εt

2
.
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Check explicitly that (18.3) still holds, but explain informally how u and v “grow apart”
in time.

The factor of |t| in (18.3) arose from from estimating the integral term in W [f, g]. A
recurring tension in analysis is whether estimates or equalities are preferable; perhaps, de-
pending on g, we could get sharper control over

∫ x+t
x−tg(s) ds by actually computing it. It

turns out that we can get a better estimate than (18.3) if we ask a different question, and
so we focus on the finite string problem. (The question of continuous dependence on initial
conditions for the semi-infinite string would yield the same estimate as above.)

Let L > 0 and let u and v now solve
utt = uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f1(x), 0 ≤ x ≤ L

ut(x, 0) = g1(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, −∞ < t <∞

and


vtt = vxx, 0 ≤ x ≤ L, −∞ < t <∞
v(x, 0) = f2(x), 0 ≤ x ≤ L

vt(x, 0) = g2(x), 0 ≤ x ≤ L

v(0, t) = v(L, t) = 0, −∞ < t <∞.
(18.4)

Put f = f1 − f2 and g = g1 − g2, and let f̃o and g̃o be the 2L-periodic, odd extensions, i.e.,

f̃o(x) =

{
f(x), 0 ≤ x ≤ L

−f(−x), −L ≤ x < 0
and f̃o(x+ 2L) = f̃o(x), x ∈ R.

Assume that the initial data satisfies all the hypotheses necessary for w =W [f̃o, g̃o] to solve
wtt = wxx, −∞ < x, t <∞
w(x, 0) = f̃o(x), −∞ < x <∞
wt(x, 0) = f̃o(x), −∞ < x <∞,

so, restricted to [0, L], w also solves
wtt = wxx, 0 ≤ x ≤ L, −∞ < t <∞
w(x, 0) = f(x), 0 ≤ x ≤ L

wt(x, 0) = g(x), 0 ≤ x ≤ L

w(0, t) = w(L, t) = 0, −∞ < t <∞.

And now we start to estimate. Assume there are δ, ε > 0 such that

|f1(x)− f2(x)| < δ and |g1(x)− g2(x)| < ε

for all x ∈ [0, L].

18.5 Problem. Explain why

|f̃o(x)| < δ and |g̃o(x)| < ε

for all x ∈ R.
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It follows as before that ∣∣∣∣∣ f̃o(x+ t) + f̃o(x− t)
2

∣∣∣∣∣ < δ

for all x, t ∈ R. The difference is that the integral term in W [f̃o, g̃o] will be much better
behaved.

Day 19: Wednesday, September 25.

Material from Basic Partial Differential Equations by Bleecker & Csordas

The corollary on p. 314 deduces continuous dependence on initial conditions for the
finite string problem from Theorem 5 on pp. 313–314. That theorem proves the hard-
won estimate with the independent-of-time upper bound δ + 2Lε that we eke out.
Theorem 1 on p. 289 proves uniqueness for the finite string problem via energy esti-
mates. The remark on pp. 290–291 explains how to interpret that energy integral in
terms of classical kinetic + potential energy.

Here is how we do not get that better behavior: do what we did before and expect
something to change. We could estimate∣∣∣∣∫ x+t

x−t
g̃o(s) ds

∣∣∣∣ < 2|t|ε

exactly as for the infinite string using the triangle inequality for integrals, and that still
produces the annoying factor of t in the estimate. We can do better by using the special
structure of g̃o here: it is odd and 2L-periodic in addition to enjoying the estimate |g̃o(s)| < ε
for all s.

To cut down on writing, we let h ∈ C(R) be odd and 2L-periodic with |h(x)| < ε for all
x. We claim that ∫ c+2L

c

h = 0 (19.1)

for all c ∈ R; in words, the integral of h over any interval of length 2L vanishes.

19.1 Problem. Prove this. [Hint: use the results of Problems 3.3 and 14.2.]

Here is what we will show: the value of
∫ b
a
f is bounded by a constant multiple of ε

independent of a and b (but dependent on L). We start with a suggestive proof by picture.
Here −2L < a < −L and 2L < b < 3L.

x

h(x)

L−L L−L 2L−2L 3L−3L a b
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We expand ∫ b

a

h =

∫ −L
a

h+

∫ L

−L
h+

∫ b

L

h. (19.2)

By (19.1), or the cancelation of positive and negative areas from the picture,
∫ L
−Lh = 0.

Thus by the triangle inequality for real numbers and the triangle inequality for integrals,∣∣∣∣∫ b

a

h

∣∣∣∣ =

∣∣∣∣∫ −L
a

h+

∫ b

L

h

∣∣∣∣ ≤ ∣∣∣∣∫ −L
a

h

∣∣∣∣+

∣∣∣∣∫ b

L

h

∣∣∣∣ ≤ ∫ −L
a

|h|+
∫ b

L

|h|.

Now we use the estimate on h and actually evaluate some integrals:∣∣∣∣∫ b

a

h

∣∣∣∣ ≤ ∫ −L
a

|h|+
∫ b

L

|h| <
∫ −L
a

ε+

∫ b

L

ε = ε(−L− a) + ε(b− L).

Since −2L < a < −L, we have L < −a < 2L, and so 0 < −L − a < L. Since L < b < 3L,
we have 0 < b− L < 2L. And so∣∣∣∣∫ b

a

h

∣∣∣∣ < ε(−L− a) + ε(b− L) < Lε+ 2Lε = 3Lε. (19.3)

Here is what happens more generally, beyond the special case of this picture. Let a, b ∈ R
with a < b. Divide R into intervals of the form [(2j+ 1)L, (2j+ 3)L) with j ∈ Z. Then there
are j, k ∈ Z such that

(2j + 1)L ≤ a < (2j + 3)L and (2k + 1)L ≤ b < (2k + 3)L. (19.4)

In the picture above, we have −3L ≤ a < −L and L ≤ b < 3L, so there j = −2 and k = 0.
In the general case, since a < b, it follows that j ≤ k.

19.2 Problem. Does it? If a < b, then the inequalities above imply (2j + 1)L ≤ a < b <
(2k + 3)L. Manipulate this into j < k + 1. Since j and k are integers, this means j ≤ k.

Now we expand the integral again:∫ b

a

h =

∫ (2j+3)L

a

h+

(∫ (2j+5)L

(2j+3)L

h+

∫ (2j+7)L

(2j+5)L

h+ · · ·+
∫ (2k+1)L

(2k−1)L
h+

∫ (2k+3)L

(2k+1)L

h

)
+

∫ b

(2k+3)L

h.

The parenthetical sum here boiled down to the single integral
∫ L
−Lh in the toy calculation

(19.2). Every integral in the parenthetical sum is 0 by (19.1). Thus

∣∣∣∣∫ b

a

h

∣∣∣∣ =

∣∣∣∣∣
∫ (2j+3)L

a

h+

∫ b

(2k+3)L

h

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ (2j+3)L

a

h

∣∣∣∣∣+
∣∣∣∣∫ b

(2k+3)L

h

∣∣∣∣ ≤ ∫ (2j+3)L

a

|h|+
∫ b

(2k+3)L

|h|

<

∫ (2j+3)L

a

ε+

∫ b

(2k+3)L

ε = ε((2j + 3)L− a) + ε(b− (2k + 3)L).
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The estimates (19.4) imply

(2j + 3)L− a < 2L and b− (2k + 3)L < 2L.

All together, ∣∣∣∣∫ b

a

h

∣∣∣∣ < ε((2j + 3)L− a) + ε(b− (2k + 3)L) < 2Lε+ 2Lε = 4Lε.

This is a slightly worse estimate (in that the right side is larger) than our toy calculation
that gave us (19.3).

19.3 Problem. Why? What was special about the positioning of a in that toy drawing?
Why will that not always be the case, as compared to (19.4)?

But it is not a big deal. The point is that the size of
∫ b
a
h is indeed controlled by a constant

multiple of ε, with the constant independent of a and b.
At last, here is how this is useful. All along the goal has been to estimate

∫ x+t
x−tg̃o(s) ds.

We know that g̃o is continuous, odd, and 2L-periodic with |g̃o(s)| < ε for all s ∈ R. Our
work above therefore implies (with a = x− t and b = x+ t) that∣∣∣∣∫ x+t

x−t
g̃o(s) ds

∣∣∣∣ < 4Lε.

With u and v as solutions to (18.4), all of our work implies

|u(x, t)− v(x, t)| < δ + 2Lε

for all x ∈ [0, L] and t ∈ R. This is the uniform-in-time estimate that we were lacking for
the infinite string wave equation.

It has taken us some time, but now we can state a general result for wave IVP.

19.4 Theorem. (i) Let f1, f2 ∈ C2(R) and g1, g2 ∈ C1(R). Suppose that δ, ε > 0 with

|f1(x)− f2(x)| < δ and |g1(x)− g2(x)| < ε

for all x ∈ R. Let u and v solve
utt = uxx, −∞ < x, t <∞
u(x, 0) = f1(x), −∞ < x <∞
ut(x, 0) = g1(x), −∞ < x <∞

and


vtt = vxx, −∞ < x, t <∞
v(x, 0) = f2(x), −∞ < x <∞
vt(x, 0) = g2(x), −∞ < x <∞.

(19.5)

Then
|u(x, t)− v(x, t)| < δ + |t|ε

for all x, t ∈ R.
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(ii) Let L > 0 and f1, f2 ∈ C2([0, L]) and g1, g2 ∈ C1([0, L]) with

f1(x) = f ′′1 (x) = f2(x) = f ′′2 (x) = g1(x) = g2(x) = 0

for x = 0, L. Suppose that δ, ε > 0 with

|f1(x)− f2(x)| < δ and |g1(x)− g2(x)| < ε

for all x ∈ R. Let u and v solve
utt = uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f1(x), 0 ≤ x ≤ L

ut(x, 0) = g1(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, −∞ < t <∞

and


vtt = vxx, 0 ≤ x ≤ L, −∞ < t <∞
v(x, 0) = f2(x), 0 ≤ x ≤ L

vt(x, 0) = g2(x), 0 ≤ x ≤ L

v(0, t) = v(L, t) = 0, −∞ < t <∞.
(19.6)

Then
|u(x, t)− v(x, t)| < δ + 2Lε

for all x, t ∈ R.

There is just one embarrassing gap in our results above. We have long since proved
uniqueness for the infinite string wave equations in (19.5) via D’Alembert’s formula. How-
ever, for the finite string problems in (19.6), we merely used the odd periodic extensions to
construct a solution via D’Alembert. We never proved that it was unique.

19.5 Problem (Optional). To be fair, we never proved uniqueness for the semi-infinite
string, either. Here is how to do that. Let f ∈ C2([0,∞)) and g ∈ C1([0,∞)) with

f(0) = f ′′(0) = g(0) = 0.

Suppose that u solves 
utt = uxx, 0 ≤ x <∞, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x <∞
ut(x, 0) = g(x), 0 ≤ x <∞.

Define

uo(x, t) :=

{
u(x, t), x ≥ 0, t ∈ R
u(−x, t), x < 0, t ∈ R.

Check that uo solves 
(uo)tt = (uo)xx, −∞ < x, t <∞
uo(x, 0) = fo(x), −∞ < x <∞
(uo)t(x, 0) = go(x),−∞ < x <∞,
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where fo and go are the usual odd extensions of f and g to R. [Hint: the real work is making
sure uo is sufficiently differentiable at x = 0.] Conclude that uo is given by D’Alembert’s
formula, and so this determines the values of u uniquely in terms of f and g.

D’Alembert’s formula will not help us get uniqueness for the finite string problem. Instead,
we introduce a totally new method, which will reappear for other PDE in the future. We
study what is called an “energy integral.” In the mathematical jargon, an “energy integral”
refers to the integral (definite or improper) of some nonnegative function that, through the
right lens, might represent some physical notion of “energy,” kinetic or potential (whatever
that means).

Here is how this arises. Suppose that u and v both solve finite string problems with the
same initial data:
utt = uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x ≤ L

ut(x, 0) = g(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0

and


vtt = vxx, 0 ≤ x ≤ L, −∞ < t <∞
v(x, 0) = f(x), 0 ≤ x ≤ L

vt(x, 0) = g(x), 0 ≤ x ≤ L

v(0, t) = v(L, t) = 0.

Put w := u− v.

19.6 Problem. Check that
wtt = wxx, 0 ≤ x ≤ L, −∞ < t <∞
w(x, 0) = 0, 0 ≤ x ≤ L

wt(x, 0) = 0, 0 ≤ x ≤ L

w(0, t) = w(L, t) = 0.

(19.7)

We would like to show that w = 0. To do this, we set

E(t) :=

∫ L

0

[
wt(x, t)

2 + wx(x, t)
2
]
dx.

This is our “energy integral”; it is the integral of a nonnegative quantity. We claim that E is
differentiable and E ′(t) = 0 for all t.

We will check this later. For now, here is how it helps. If E ′ = 0, this means that E is
constant; one helpful value is probably t = 0, so we compute

E(t) = E(0) =

∫ L

0

[
wt(x, 0)2 + wx(x, 0)2

]
dx

for all t. From the initial conditions, wt(x, 0) = 0 and, since w(x, 0) = 0 for all x, we have
wx(x, 0) = 0 for all x, too. Thus E(0) = 0. And, since E is constant, so too do we have
E(t) = 0 for all t.

Now, observe that each E(t) is the integral of a nonnegative function. This is important.
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19.7 Problem. Let a, b ∈ R with a < b and f ∈ C([a, b]) with f(x) ≥ 0 for each x ∈ [a, b].
If
∫ b
a
f = 0, show that f(x) = 0 for all x ∈ [a, b]. [Hint: suppose f(x0) 6= 0 for some

x0 ∈ [a, b]. Draw a picture. What does this imply about the value of
∫ b
a
f? Turn the picture

into a proof. Continuity will play a role.]

This problem, together with the result E(t) = 0 and the definition of E(t), implies

wt(x, t)
2 + wx(x, t)

2 = 0 (19.8)

for all x ∈ [0, L] and t ∈ R. We have all but arrived at w(x, t) = 0 for all x ∈ [0, L] and
t ∈ R.

19.8 Problem. Use (19.8), the boundary condition w(0, t) = 0, and FTC2 to show that
w(x, t) = 0 for all x ∈ [0, L] and t ∈ R.

Our last task is to justify the earlier claim that E ′ = 0.

19.9 Problem. Compute E ′(t) by differentiating under the integral; use the identity wtt =
wxx to replace a factor that appears in the differentiated integrand; and then recognize
the integrand as a perfect derivative in x. Be sure to explain why, if w solves (19.7),
the hypotheses of Leibniz’s rule (Theorem 11.2) are met. After that, use FTC2 and the
boundary conditions to obtain E ′(t) = 0.

Day 20: Friday, September 27.

No class due to university closure.

Day 21: Monday, September 30.

Material from Basic Partial Differential Equations by Bleecker & Csordas

While we only stated and did not really discuss the heat equation (yet), there is
a wealth of information in the book. Pages 121–125 give a derivation of the heat
equation from physical principles and present one very special solution.

We begin our study of the heat equation on the line:{
ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞.

Broadly, the heat equation models the distribution of heat in an infinitely long rod; the
function f specifies the initial heat distribution along the rod. As with the wave equation,
we start with this physically unrealistic situation of an infinite spatial domain, and eventually
we will move to the more physically realistic (and mathematically complicated) “finite” rod.
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The heat equation might look superficially similar to the wave equation; after all, both
have the term uxx on one side of the equation. We might even think that the heat equation
is simpler than the wave equation in that only one time derivative appears. Not so! The
“imbalance” of derivatives in the heat equation vastly complicates it. We will not have such
a sweeping D’Alembert’s formula for the heat equation, and both existence and uniqueness
of solutions becomes much trickier here.

In fact, we need entirely new tools to tackle the heat equation. Our success with the
transport and wave equations arose fundamentally from familiar calculus. Now we need
unfamiliar calculus. We start by building some machinery in two areas that may appear
to have nothing to do with the heat equation, or PDE in general: the essential calculus
of complex-valued functions of a real variable (good news: it is the same as the essential
calculus of real-valued functions of a real variable) and improper integrals.

Here is a terrible definition of complex numbers.

21.1 Undefinition. C =
{
x+ iy

∣∣ x, y ∈ R, i2 = −1
}
.

This definition is terrible because it provides no explanation of what the string of symbols
x+ iy actually means or why such an object i actually exists. We just assume the existence
of complex numbers and that their arithmetical properties act as they should.

21.2 Definition. Let z ∈ C with z = x + iy for some x, y ∈ R. The real part of
z is Re(z) := x; the imaginary part of z is Im(z) := y; and the modulus of z is
|z| :=

√
Re(z)2 + Im(z)2. That is, |x+ iy| =

√
x2 + y2.

We define equality of z, w ∈ C as z = w if and only if both Re(z) = Re(w) and
Im(z) = Im(w).

21.3 Example. With z = 2+ i and w = 1−3i, we multiply as we would with real numbers
and remember i2 = −1:

zw = (2+i)(1−3i) = (2+ i)1+(2+i)(−3i) = 2+ i−6i−3i2 = 2−5i−3(−1) = 2−5i+3

= 5− 5i = 5(1− i).

Since the modulus satisfies |zw| = |z||w|, we have (with z = 5 and w = 1− i, now)

|5(1− i)| = |5||1− i| = |5||1 + (−1)i| = |5|
√

2.

Here is a crash course in complex calculus. Let I ⊆ R be an interval and let f : I → C
be a function. Put

f1(t) := Re[f(t)] and f2(t) := Im[f(t)].

Then f1, f2 : I → R are functions, and real-valued functions at that, and f(t) = f1(t)+if2(t).
Now we do calculus.
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21.4 Definition. With the notation above, we say that

(i) limt→a f(t) = L if limt→a f1(t) = Re[L] and limt→a f2(t) = Im[L] (with a = ±∞ al-
lowed);

(ii) f is continuous if f1 and f2 are continuous;

(iii) f is differentiable if f1 and f2 are differentiable, and we define

f ′(t) := f ′1(t) + if ′2(t);

(iv) if f is continuous (in the sense of the above), then for any a, b ∈ I, we define∫ b

a

f :=

∫ b

a

f1 + i

∫ b

a

f2.

From these definitions, one can prove that all the familiar computational rules of real-
valued calculus hold, e.g., the product and chain rules for differentiation, the linearity of the
integral in the integrand, and the fundamental theorem of calculus. We will do none of that
explicitly and just assume that everything works as it should.

Our most important complex-valued function of a real variable is the following version of
the exponential.

21.5 Definition. For t ∈ R, let eit := cos(t) + i sin(t).

Motivation for this definition comes from inserting it into the power series for the (real)
exponential, doing some algebra, and recognizing the series for sine and cosine.

21.6 Example. Here is how calculus works for the exponential. Let f(t) := eit. Then,
with the notation above, f1(t) = cos(t) and f2(t) = sin(t), so

f ′(t) = − sin(t) + i cos(t) = i2 sin(t) + i cos(t) = i[i sin(t) + cos(t)] = ieit.

That is, the chain rule formula

f ′(t) = ∂t[e
it] = eit∂t[it] = eiti

works as we expect.
Now we integrate:∫ 2π

0

f =

∫ 2π

0

cos(t) dt+ i

∫ 2π

0

sin(t) dt = 0 + i0 = 0.

We also have∫ 2π

0

f =

∫ 2π

0

eit dt =
1

i

∫ 2π

0

ieit dt =
1

i

∫ 2π

0

f ′(t) dt =
1

i
[f(2π)− f(0)] =

1

i
[1− 1] = 0.

Here we are using the identity e2πik = 1 for all k ∈ Z.
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Now we develop further results on integrals.

21.7 Definition. Let f : R→ C be continuous. Suppose that both of the limits∫ 0

−∞
f := lim

a→−∞

∫ a

0

f and
∫ ∞
0

f := lim
b→∞

∫ b

0

f

exist. Then we say that f is integrable, and we define∫ ∞
−∞

f :=

∫ 0

−∞
f +

∫ ∞
0

f.

21.8 Example. Let f(t) = e−|t| and a < 0 and b > 0. We compute some integrals:∫ 0

a

f =

∫ 0

a

e−|t| dt =

∫ 0

a

et dt = e0 − ea = 1− ea

and ∫ b

0

f =

∫ b

0

e−|t| dt =

∫ b

0

e−t dt = −(e−b − e−0) = 1− e−b.

Then

lim
a→−∞

∫ 0

a

f = lim
a→−∞

(1− ea) = 1 and lim
b→∞

∫ b

0

f = lim
b→∞

(1− e−b) = 1,

so
∫ 0

−∞f =
∫∞

0
f = 1. Thus f is integrable and∫ ∞

−∞
f = 1 + 1 = 2.

It is often both difficult to establish that f is integrable and unnecessary to calculate∫∞
−∞f exactly. Instead, the following tests usually suffice.

21.9 Theorem. Let f : R→ C be continuous.

(i) [Absolute integrability implies integrability] If |f | is integrable, then so is f , and
the triangle inequality holds:∣∣∣∣∫ ∞

−∞
f

∣∣∣∣ ≤ ∫ ∞
−∞
|f |.

(ii) [Comparison test] Suppose that g : R → C is continuous with |g| integrable and
|f(t)| ≤ |g(t)| for all t. Then |f |, and thus f , are integrable, and∫ ∞

−∞
|f | ≤

∫ ∞
−∞
|g|.
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21.10 Example. Let f : R → C be continuous with |f | integrable. Let k ∈ R and put
h(t) := f(t)eikt. Since |eis| = 1 for all s ∈ R (check it), we have

|f(t)eikt| = |f(t)||eikt| = |f(t)|,

and so by the comparison test (with actual equality holding), the functions h and |h| are
integrable.

21.11 Problem. Let a > 0 and let f(x) = e−ax
2

. Show that f is integrable. [Hint: first
find C > 0 such that eax−ax

2 ≤ C for 0 ≤ x ≤ 1. Then argue that e−ax
2 ≤ e−ax for x ≥ 1.

Put these estimates together to show e−ax
2 ≤ (C + 1)e−ax for x ≥ 0.]

21.12 Problem. It is important in the definition of the improper integral to specify the
convergence of the integrals

∫ 0

−∞f and
∫∞

0
f separately. If f : R → C is continuous and

if limR→∞
∫ R
−R f exists, then we call this limit the Cauchy principal value of the

improper integral of f over (−∞,∞), and we might write

P.V.

∫ ∞
−∞

f := lim
R→∞

∫ R

−R
f.

(i) Give an example of a continuous function f : R → C such that limR→∞
∫ R
−R f exists

and yet f is not integrable.

(ii) If, however, f is integrable, then
∫∞
−∞f = P.V.

∫∞
−∞f . Here is why. Assume that

f : R → C is integrable and let ε > 0. Explain why there exists R0 > 0 such that if
R > R0, then ∣∣∣∣∫ 0

−∞
f −

∫ 0

−R
f

∣∣∣∣ < ε

2
and

∣∣∣∣∫ ∞
0

f −
∫ R

0

f

∣∣∣∣ < ε

2
.

Use this to show that ∣∣∣∣∫ ∞
−∞

f −
∫ R

−R
f

∣∣∣∣ < ε,

and conclude that
∫∞
−∞f = limR→∞

∫ R
−Rf .

(iii) Something special happens when we try to integrate a nonnegative function. The
following is true in general: if g : [0,∞) → [0,∞) is continuous, increasing (g(x1) ≤ g(x2)
for 0 ≤ x1 ≤ x2), and bounded above (there is M > 0 such that 0 ≤ g(x) ≤ M for all
x ≥ 0), then limx→∞ g(x) exists. The proof of this result depends on the completeness of
the real numbers, but drawing a picture probably suggests why it is true. Draw such a
picture. Then use this result to show that if f : R → [0,∞) is continuous, and if there is
M > 0 such that

∣∣∫ R
−Rf

∣∣ ≤ M for all R ≥ 0, then f is integrable. [Hint: apply the result
to the functions R 7→

∫ R
0
f and R 7→

∫ 0

−Rf .]
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Day 22: Wednesday, October 2.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 415–418 give an overview of transforms, including but not limited to the Fourier.
This is extremely worthwhile reading for the mathematical cultural background that
it provides. Integrability and the Fourier transform are defined on p. 423; note the
symmetric limit in (8), which is not how we defined improper integrals. See also the
remark on the Cauchy principal value at the bottom of p. 423/top of p. 424.
Many of the “nice” function properties that we are assuming today are spelled out in
Section 7.2. We will revisit quite a few of these as we layer more rigor over our Fourier
analysis. Our derivation of the heat equation solution appears on pp. 460–461, with
plenty of references to other parts of Chapter 7 that we have not quite discussed yet
(including convolutions).

We introduce the critical tool of the Fourier transform and deploy it on the heat equation.
We take an “eat dessert first” approach (inspired by Tim Hsu’s Fourier Series, Fourier
Transforms, and Function Spaces: A Second Course in Analysis). Specifically, here is our
strategy.

1. We define the Fourier transform for continuous, absolutely integrable functions. Eventu-
ally we will relax the continuity requirement to piecewise continuity.

2. We apply the Fourier transform to the heat equation.

3. ???.

4. We get a candidate solution formula for the heat equation.

5. We check that this candidate is actually a solution (i.e., by doing calculus).

6. We use this solution to learn other interesting things about the heat equation.

7. We study other aspects of the heat equation that we will not be able to understand
with the Fourier transform. In particular, we develop the machinery to prove a uniqueness
theorem for solutions to the heat equation. (We got that more or less for free along with
existence from D’Alembert’s formula for the wave equation. The heat equation is harder.)

8. We fill in a variety of gaps in our understanding of the Fourier transform so that we can
study other problems with it more rigorously.

9. We study other problems with it more rigorously.

Example 21.10 assures us that the following definition makes sense. (Does it?)

22.1 Definition. Let f : R → C be continuous with |f | integrable (Definition 21.7). The
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Fourier transform of f at k ∈ R is

f̂(k) :=
1√
2π

∫ ∞
−∞

f(x)e−ikx dx.

We sometimes write F[f ](k) = f̂(k).

The factor of 1/
√

2π is a bit of a “fudge factor” that makes some calculations and identities
later easier and more transparent, at the cost of making others harder and more opaque.
Life is a series of compromises.

Previously we have said that integrals extract useful data about functions and also rep-
resent functions. We have not seen all that much extraction of useful data, but it turns out
that the Fourier modes f̂(k) will tell us a variety of useful facts about f . The Fourier
transform also “represents” f in the following sense. Here, for the first of many times, we
will use the weasel word “nice” to refer to a property of functions that we will fill in later in
our subsequent, more rigorous treatment of Fourier transforms.

22.2 Untheorem. Let f : R→ C be “nice.” Then

f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eikx dk.

That is, for suitable f , we can recover f from its Fourier transform.
Since this is a course in differential equations, we should wonder how the Fourier transform

interacts with the derivative. Quite nicely, thank you for asking.
If f is differentiable, and if both f and f ′ are “nice,” then we should be able to represent

f ′ (not just f) via its Fourier transform:

f ′(x) =
1√
2π

∫ ∞
−∞

f̂ ′(k)eikx dk.

But we should also be able to calculate f ′ from the Fourier representation of f and differen-
tiation under the integral:

f ′(x) = ∂x

[
1√
2π

∫ ∞
−∞

f̂(k)eikx dk

]
=

1√
2π

∫ ∞
−∞

∂x[f̂(k)eikx] dk =
1√
2π

∫ ∞
−∞

ikf̂(k)eikx dk.

Equating these two putative representations of f ′ and doing a little algebra, we find∫ ∞
−∞

[f̂ ′(k)− ikf̂(k)]eikx dk = 0

for all x ∈ R.
Now here is a “nice” property of Fourier integrals. We should think of the transform as

an “instrument” that we apply to functions, and the results we get are those Fourier modes.
If the results are always 0, the input should always be 0.
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22.3 Untheorem. Let g : R→ C be “nice” and suppose that∫ ∞
−∞

g(k)eikx dk = 0

for all x ∈ R. Then g(k) = 0 for all k ∈ R.

It follows that
f̂ ′(k) = ikf̂(k).

This is immensely important: under the lens of the Fourier transform, differentiation becomes
“multiply by ik.” We might say

∂̂x[·] = ik × (̂·).

We can extend this to the second derivative (and higher derivatives) for “nice” functions:

f̂ ′′(k) = (̂f ′)′(k) = ikf̂ ′(k) = (ik)2f̂(k) = −k2f̂(k).

This is all that we need to know about the Fourier transform to apply it with abandon
to the heat equation. Suppose that u solves{

ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞

and that u and f are “nice.” We apply the Fourier transform to u “spatially” or “in the
x-variable.” Consequently, “nice” should mean, at least, that u(·, t) is integrable for each
t > 0 (where u(·, t) is the map x 7→ u(x, t)) and also that f is integrable.

Put
û(k, t) =

1√
2π

∫ ∞
−∞

u(x, t)e−ikx dx.

We should think of t as just a parameter in the integrand; all of the action is happening with
x. Then

ûxx(k, t) = −k2û(k, t).

In the time variable, we recognize differentiation under the integral:

ût(k, t) =
1√
2π

∫ ∞
−∞

ut(x, t)e
−ikx dx =

1√
2π

∫ ∞
−∞

∂t[u(x, t)e−ikx] dx

= ∂t

[
1√
2π

∫ ∞
−∞

u(x, t)e−ikx dx

]
= ∂t[û](k, t).

To avoid confusion, we will not write this as ût(k, t). All together, we expect that a “nice”
solution u to the heat equation with “nice” initial data f will satisfy{

∂t[û](k, t) = −k2û(k, t)

û(k, 0) = f̂(k).
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This is really a family of IVP at the ODE level parametrized in k ∈ R. (We posed the
heat equation only for t > 0, but we can solve this IVP for all t, so we might as well consider
all t here.) The notation may be burdensome, but all this is asking us to do is solve{

y′ = −k2y
y(0) = f̂(k)

for each k ∈ R. Certainly we know how to do that: y(t) = f̂(k)e−k
2t. And so û should

satisfy
û(k, t) = f̂(k)e−k

2t.

Now we can recover u from û by Untheorem 22.2:

u(x, t) =
1√
2π

∫ ∞
−∞

û(k, t)eikx dk =
1√
2π

∫ ∞
−∞

f̂(k)e−k
2teikx dk. (22.1)

This may well be a valid candidate for a solution formula!

22.4 Problem. (i) Fix t > 0 and x ∈ R and define g(k) := f̂(k)e−k
2teikx. Show that if f̂

is integrable or bounded (bounded meaning the existence of M > 0 such that |f̂(k)| ≤ M
for all k), then g is integrable, and so the integral on the right in (22.1) converges. (It
will turn out that if f is integrable, then f̂ is always bounded, although not necessarily
integrable.)

(ii) Assume that we may differentiate under the integral on the right in (22.1) with respect
to x and t as much as we want for x ∈ R and t > 0. Show that u as defined by (22.1)
satisfies ut = uxx.

(iii) Show that u as defined by (22.1) meets u(x, 0) = f(x). [Hint: Untheorem 22.2.]

22.5 Problem. Repeat the work above for the transport IVP{
ut + ux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞

and recover the expected, beloved formula u(x, t) = f(x − t). [Hint: apply the Fourier
transform to u in x and get an ODE-type IVP for û. Solve it. Then recover u from its
Fourier transform via Untheorem 22.2. Do some algebra in the integrand and recognize the
integral as the Fourier transform of f .]

Now we begin the laborious process of verifying that (22.1) actually gives a formula for a
solution to the heat equation. Problem 22.4 ensures that, if |f | is integrable, then the formula
actually converges to a real number for each x ∈ R and t > 0. (What goes wrong if t ≤ 0?
This is one mathematical reason to take t > 0 in our statement of the heat equation—we do
it because it leads to a problem that we can solve!)
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We first replace f̂(k) in (22.1) by its integral definition and find

u(x, t) =
1√
2π

∫ ∞
−∞

(
1√
2π

∫ ∞
−∞

f(y)e−iky dy

)
e−k

2teikx dk.

Here we are writing the variable of integration in the definition of f̂(k) as y so as not to
overwork x. This cleans up slightly to

u(x, t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(y)e−ikye−k
2teikx dy dk. (22.2)

We might note that the factor of f(y) is the only factor in the integrand that does not depend
on k. If we interchange the order of integration (a dicey move—is Fubini’s theorem valid for
double improper integrals?), then we could probably pull it out of one integral:

u(x, t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(y)e−ikye−k
2teikx dk dy =

1

2π

∫ ∞
−∞

f(y)

(∫ ∞
−∞

e−ikye−k
2teikx dk

)
dy.

We focus on the integral in parentheses. Collect the complex exponentials into one:∫ ∞
−∞

e−ikye−k
2teikx dk =

∫ ∞
−∞

e−k
2teik(x−y) dk.

Pull in that factor of 1/2π and define

H(s, t) :=
1

2π

∫ ∞
−∞

e−k
2teiks dk.

Problem 21.11 and the comparison test ensure that this integral converges. Then our solution
candidate should be

u(x, t) =

∫ ∞
−∞

H(x− y, t)f(y) dy. (22.3)

Now we need to check that this integral converges and that it is sufficiently differentiable in
x and t. Doing so will require a much deeper understanding of H, which turns out to be
quite a nice function.

Day 23: Friday, October 4.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Example 6 on pp. 425–426 computes the Fourier transform of the Gaussian. Example
1 on pp. 124–125 discusses the heat kernel, and p. 461 shows how the heat kernel
satisfies the heat equation itself.

We start by cleverly rewriting H:

H(s, t) =
1

2π

∫ ∞
−∞

e−k
2teiks dk =

1√
2π

(
1√
2π

∫ ∞
−∞

e−(k
√
t)2e−i(−s)k dk

)
.
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While this may not have been the obvious move, it shows that H(s, t) is basically a Fourier
transform (with the unusual notational choice of using s for the Fourier variable but k for
the variable of integration). Specifically, put

G(X) := e−X
2

.

This is a “Gaussian”-type function, and one of its chief virtues is that it decays extremely
fast as X → ±∞.

X

e−X
2

Now let G(
√
t·) be the function

G(
√
t·) : R→ R : k 7→ e−(k

√
t)2 .

Then
H(s, t) =

1√
2π
Ĝ(
√
t·)(−s). (23.1)

Problem 22.4 ensures that this Fourier transform really is defined. So what is it?
The form of this transform first motivates us to think about transforms of “scaled” func-

tions. Let g : R→ C be continuous with |g| integrable, and let α ∈ R. Denote by g(α·) the
map

g(α·) : R→ C : x 7→ g(αx).

23.1 Problem. Explain why |g(α·)| is integrable.

Then, by definition,

ĝ(α·)k =
1√
2π

∫ ∞
−∞

g(αx)e−ikx dx.

How can we relate ĝ(α·) to ĝ? One idea is to make just g show up in the integrand. Substitute
u = αx to find, formally,∫ ∞

−∞
g(αx)e−ikx dx =

1

α

∫ α·∞

α·(−∞)

g(u)e−i(k/α)u du.

If α > 0, we should then expect

ĝ(α·)k =
1

α
ĝ

(
k

α

)
. (23.2)
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23.2 Problem (Nonzero scaling preserves integrability). Clean this up using the follow-
ing more general approach. Let h : R→ C be continuous and integrable and let α ∈ R\{0}.
Prove that ∫ ∞

−∞
h(αx) dx =

1

|α|

∫ ∞
−∞

h(s) ds.

What does this say about ĝ(α·) for α 6= 0 and |g| integrable? [Hint: study the integrals∫ 0

a
h(αx) dx and

∫ b
0
h(αx) dx. Change variables and pay attention to how the sign of α

affects the limits of integration.]

23.3 Problem (Horizontal translation preserves integrability). Let g : R→ C be con-
tinuous with |g| integrable. Let d ∈ R. Prove that the “shifted map”

Sdg : R→ C : x 7→ g(x+ d)

is integrable with∫ ∞
−∞

g(x+ d) dx =

∫ ∞
−∞

g(u) du and Ŝdg(k) = eikdĝ(k).

[Hint: for integrability, it may be easier to prove that the limits in Definition 21.7 exist and
then use Problem 21.12 to express

∫∞
−∞S

df = limR→∞
∫ R
−RS

df .]

We combine (23.1) and (23.2) to obtain

H(s, t) =
1√
2π
Ĝ(
√
t·)(−s) =

1√
2π

(
1√
t

)
Ĝ
(
− s√

t

)
. (23.3)

So, what is Ĝ?
By definition, it is

Ĝ(k) =
1√
2π

∫ ∞
−∞

e−x
2

e−ikx dx.

This is one of those times when brute force is not, in fact, the best force, and we need some
tricks to evaluate this integral. We start by thinking about what G does (possibly from our
separable ODE days):

G ′(x) = −2xe−x
2

(= −2xG(x)).

We also expect
Ĝ ′(k) = ikĜ(k).

Then
ikĜ(k) =

1√
2π

∫ ∞
−∞
−2xe−x

2

e−ikx dx.

We work quite a bit at the integral on the right:∫ ∞
−∞
−2xe−x

2

e−ikx dx =
2

i

∫ ∞
−∞
−ixe−x2e−ikx dx =

2

i

∫ ∞
−∞

∂k[e
−x2e−ikx] dx.
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If we can interchange the derivative and integral, then

ikĜ(k) =
2

i
∂k

[
1√
2π

∫ ∞
−∞

e−x
2

e−ikx dx

]
=

2

i
∂k[Ĝ](k). (23.4)

Be careful with notation: we are writing G ′ = ∂x[G] for the “ordinary” derivative of G but
∂k[Ĝ] for the derivative of the Fourier transform of G. (Strictly speaking, we have not proved
that the transform is differentiable, because we did not justify interchanging the improper
integral and ∂k above. We will.) Now rejoice at (23.4): this is really an ODE for Ĝ, and it
reads

∂k[Ĝ](k) = −k
2
Ĝ(k).

Perhaps it would look better as
y′(t) = − t

2
y(t)?

Then y(t) = y(0)e−t
2/4, and so

Ĝ(k) = Ĝ(0)e−k
2/4.

So what is Ĝ(0)? By definition,

Ĝ(0) =
1√
2π

∫ ∞
−∞

e−x
2

dx,

and it turns out that ∫ ∞
−∞

e−x
2

dx =
√
π, (23.5)

an identity that we will not prove here. Thus

Ĝ(k) =

√
π√
2π
e−k

2/4 =
e−k

2/4

√
2
. (23.6)

All together, we conclude from (23.3) and (23.6) that

H(s, t) =
1√
2πt
Ĝ
(
− s√

t

)
=

1√
2πt

(
1√
2

)
e−(−s/

√
t)2/4 =

1√
4πt

e−s
2/4t.

We call this function H the heat kernel.
This is a very nice expression for H—no more integrals! Be aware that s ∈ R can be

arbitrary, but we need t > 0. Also, it is traditional to leave the 4 inside the square root.

23.4 Problem. Check that H satisfies the heat equation in the sense that Ht = Hss.

At last we return to our candidate solution (22.3) for the heat equation:

u(x, t) =

∫ ∞
−∞

H(x− y, t)f(y) dy =

∫ ∞
−∞

e−(x−y)
2/4t

√
4πt

f(y) dy, x ∈ R, t > 0. (23.7)

With this explicit formula for H, we can prove the convergence of this integral with two
different hypotheses on f .
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23.5 Problem. Prove that the (second) integral in (23.7) converges in each of the following
cases, assuming x ∈ R and t > 0. [Hint: use the comparison test—the function that you
“compare the integrand to” will be different in each case.]

(i) f is bounded in the sense that there exists M > 0 such that |f(y)| ≤M for all y ∈ R.

(ii) |f | is integrable.

This assures us that the function u in (23.7) is defined: u(x, t) ∈ R for all x ∈ R and
t > 0. Is u differentiable, and does u satisfy the heat equation? If differentiation under the
improper integral is justified (something we really do need to think about), then Problem
23.4 implies

ut(x, t) = ∂t

[∫ ∞
−∞

H(x− y, t)f(y) dy

]
=

∫ ∞
−∞

∂t[H(x−y, t)f(y)] dy =

∫ ∞
−∞

Hss(x−y, t)f(y) dy

=

∫ ∞
−∞

∂2x[H(x− y, t)f(y)] dy = ∂2x

[∫ ∞
−∞

H(x− y, t)f(y) dy

]
= uxx(x, t).

Day 24: Monday, October 7.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Example 1 on p. 459 is Tychonov’s example for nonuniqueness in the
heat equation. Pages 462–463 outline the ε–δ-style argument that
limt→0+

∫∞
−∞H(x− y, t)f(y) dy = f(x). This is the behavior that one expects

with a delta function; see p. 471. Another “bounded in finite time” uniqueness result
is Theorem 2 on p. 465.

Now that we have a solution to the heat equation, we start exploiting its properties. First,
the formula

u(x, t) =

∫ ∞
−∞

H(x− y, t)f(y) dy

is not defined at t = 0, but we want u(x, 0) = f(x). One can show that if f is continuous,
then

lim
t→0+

∫ ∞
−∞

H(x− y, t)f(y) dy = f(x). (24.1)

This is mostly a classical ε–δ argument that is a little too technical for us to do here but
that does not require all that many fancy tools. Thus if we put instead

u(x, t) =

{∫∞
−∞H(x− y, t)f(y) dy, x ∈ R, t > 0

f(x), x ∈ R, t = 0,
(24.2)

then u is continuous on D0 :=
{

(x, t) ∈ R2
∣∣ x ∈ R, t ≥ 0

}
, and u solves ut = uxx on

D :=
{

(x, t) ∈ R2
∣∣ x ∈ R, t > 0

}
. All in all, this is a bit weaker than what we found
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for the transport and wave equations, where the solution formulas met the initial conditions
immediately, without any extra work.

Next, what about uniqueness? We got that for free for transport and wave just from
those happy solution formulas. Is there only one solution to{

ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞?

Remarkably, no! Even taking f = 0 does not force uniqueness.

24.1 Theorem (Tychonov). There exists a function u that is continuous on D0 (as defined
above) and that solves the heat equation ut = uxx on D (as defined above) with u(x, 0) = 0.
However, u is not identically zero.

With some effort, one can show that for t > 0, Tychonov’s solution is not bounded in x
by any exponentially growing function. Physically this unboundedness is wholly unrealistic:
how could the temperature in a rod soar to ∞ without help from any extra heat source?
(There is no heat source in the heat IVP beyond the initial temperature.)

So what does force uniqueness? It turns out that if we build a hypothesis onto the
solution’s behavior, not just the initial temperature, then we get uniqueness.

24.2 Theorem. Suppose that u solves the heat equation{
ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = 0, −∞ < x <∞

and is continuous at t = 0. Suppose also that u is bounded in finite time in the
sense that for all T > 0, there is MT > 0 such that |u(x, t)| ≤ MT for all x ∈ R and
t ∈ [0, T ]. Then u(x, t) = 0 for all x ∈ R and t ≥ 0.

We will prove this theorem later after we develop some new tools. Here is how it helps.

24.3 Problem. Suppose that u and v solve the same heat equation{
ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞
and

{
vt = vxx, −∞ < x <∞, t > 0

v(x, 0) = f(x), −∞ < x <∞

and are both bounded in finite time. Prove that u = v. [Hint: consider w = u − v, show
that w is bounded in finite time (the triangle inequality), and apply Theorem 24.2.]

We might then ask what conditions on f guarantee that the solution to the heat IVP as
given by (24.2) guarantee that u is bounded in finite time. Given T > 0, we want MT > 0
such that |u(x, t)| ≤ MT for all x ∈ R and t ∈ [0, T ]. Taking, say, T = 1 and t = 0, this
shows that we want M1 > 0 such that |u(x, 0)| ≤ M1 for all x ∈ R. That means we want
|f(x)| ≤M1 for all x. And so the initial temperature distribution must be bounded.
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Is that enough? We drop the subscript and assume |f(x)| ≤ M for all x ∈ R and some
M > 0. The previous paragraph shows that with u defined by (24.2), we have |u(x, 0)| ≤M
for all x ∈ R. Now we estimate u(x, t) for t > 0. The triangle inequality for integrals implies

|u(x, t)| ≤ M√
4πt

∫ ∞
−∞

e−(x−y)
2/4t dy =

M√
4πt

∫ ∞
−∞

e−[(x−y)/2
√
t]2 dy.

24.4 Problem. Substitute s = −(x − y)/2
√
t in the integral on the right and use (23.5)

to derive a bound for u that is independent of t.

Now we have an existence and uniqueness result for the heat equation (pending some
housekeeping with unproven results).

24.5 Theorem. Let f ∈ C(R) be bounded in the sense that there exists M > 0 such that
|f(x)| ≤M for all x ∈ R. Then the only solution to the heat IVP{

ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞
(24.3)

is

u(x, t) =

{∫∞
−∞H(x− y, t)f(y) dy, x ∈ R, t > 0

f(x), x ∈ R, t = 0,
H(s, t) =

e−s
2/4t

√
4πt

.

So what else is this solution doing? First, no matter what the initial temperature distri-
bution is, eventually everything “cools all the way down.”

24.6 Problem. Let f ∈ C(R) be bounded and let |f | be integrable. Let u solve (24.3).
Prove that

lim
t→∞

u(x, t) = 0

for each x ∈ R. Go further and explain how this limit is “uniform” in x by finding a bound
|u(x, t)| ≤M(t) valid for all x ∈ R and t > 0 with limt→∞M(t) = 0.

This is physically reasonable, yes? Now we prove a physically baffling result. Suppose
that f(x) ≥ 0 for all x ∈ R but f(x0) > 0 for some x0 ∈ R. Assuming, as usual, that f is
continuous, there is δ > 0 such that f(x) > 0 for x0 − δ < x < x0 + δ. Then, for t > 0,

u(x, t) =

∫ ∞
−∞

H(x− y, t)f(y) dy ≥
∫ x0+δ

x0−δ
H(x− y, t)f(y) dy > 0.

The second, strict inequality is just monotonicity of the integral. The first, nonstrict in-
equality is a consequence of the following (and the nonnegativity of H and f).
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24.7 Problem. Let a, b, c, d ∈ R with a < c < d ≤ b. Suppose that f ∈ C([a, b]) with
f(x) ≥ 0 for x ∈ [a, b]. Prove that ∫ d

c

f ≤
∫ b

a

f. (24.4)

If f(x) > 0 for x ∈ [a, b], show that the nonstrict inequality in (24.4) becomes strict. [Hint:
start with a picture and check that

∫ d
c
f =

∫ b
a
f −

∫ c
a
f −

∫ b
d
f .]

Here is what we have shown: if the initial temperature distribution f is nonnegative on
R but positive at some point x0 (and maybe 0 elsewhere on R), then u is positive for all
x and all t > 0. Informally, “if f is positive somewhere, then u is positive everywhere.” If
we think about the heat equation as modeling the temperature of an infinite rod, then the
initial heat contribution from f gets “transported instantly” to all of the rod, even if that
initial heat contribution is localized over a small spatial interval, like (x0− δ, x0 + δ). This is
an “infinite propagation speed” result for the heat equation, and it stands in marked contrast
to the “finite propagation speeds” for the transport and wave equations.

24.8 Problem. Let f ∈ C(R) be bounded and nonnegative and suppose that u solves
(24.3). Prove that if u(x0, t0) = 0 for some x0 ∈ R and t0 > 0, then u(x, t) = 0 for all
x ∈ R and t > 0. [Hint: contrapositive, quantifiers.]

24.9 Problem. Prove the following “comparison” principle for the heat equation. Suppose
that f1, f2 ∈ C(R) are bounded with f1(x) ≤ f2(x) for all x and u and v solve{

ut = uxx, x ∈ R, t > 0

u(x, 0) = f1(x), x ∈ R
and

{
vt = vxx, x ∈ R, t > 0

v(x, 0) = f2(x), x ∈ R.

Prove that either u(x, t) = v(x, t) for all x ∈ R and t > 0 or that u(x, t) < v(x, t) for all
x ∈ R and t > 0.

Day 25: Wednesday, October 9.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Theorem 2 on p. 143 states the maximum principle; see also the minimum principle on
the following page and Example 2 on pp. 145–146. The maximum principle is proved
on pp. 148–149.

We turn our attention to proving Theorem 24.2. Our main tool in this proof is a result
worthwhile in and of itself: a “maximum principle.” Here we no longer work with the heat
equation on the whole real line, just on a finite spatial subinterval.
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25.1 Theorem (Maximum principle). Suppose that u solves

ut = uxx

for a ≤ x ≤ b and 0 < t ≤ T and that u is continuous for a ≤ x ≤ b and 0 ≤ t ≤ T . Let

D :=
{

(x, t) ∈ R2
∣∣ a ≤ x ≤ b, 0 ≤ t ≤ T

}
and

Dpara :=
{

(a, t) ∈ R2
∣∣ 0 ≤ t ≤ T

}
∪
{

(x, 0) ∈ R2
∣∣ a ≤ x ≤ b

}
∪
{

(b, t) ∈ R2
∣∣ 0 ≤ t ≤ T

}
.

Then
max
(x,t)∈D

u(x, t) = max
(x,t)∈Dpara

u(x, t).

Proof. First we draw some pictures: the set D and its “parabolic boundary” Dpara.

x

t

a b

T

D

x

t

a b

T

Dpara

Since u is continuous on the closed, bounded set D, the extreme value theorem implies that
u attains its maximum somewhere on D: there is (x0, t0) ∈ D such that

M := u(x0, t0) = max
(x,t)∈D

u(x, t).

Likewise, since Dpara is also closed and bounded, u attains a maximum somewhere on Dpara,
and, since Dpara ⊆ D, we have

m := max
(x,t)∈Dpara

u(x, t) ≤M.

Our goal is to show m = M ; we proceed by contradiction and assume m < M .
We need some results from single-variable calculus, which we briefly review here (and

discuss further in Problem 25.4 below). Suppose f ∈ C2([c, d]), so f achieves its maximum
at some x? ∈ [c, d]. If x? ∈ (c, d), then f ′(x?) = 0 and f ′′(x?) ≤ 0. If, however, all we know
is that x? ∈ [c, d], i.e., x? is one of the endpoints, then all we know is that f ′(x?) ≥ 0 .

Here is how these results motivate the maximum principle. If (x0, t0) ∈ D \ Dpara, then
a < x0 < b and 0 < t ≤ T . We have ut(x0, t0) ≥ 0, since the function u(x0, ·) achieves its
maximum on [0, T ] at t0 ∈ (0, T ] and uxx(x0, t0) ≤ 0, since the function u(·, t0) achieves its
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maximum on [a, b] at x0 ∈ (a, b). But we also know ut(x0, t0) − uxx(x0, t0) = 0. If we knew
more, like ut(x0, t0) > 0, or uxx(x0, t0) < 0, then we would get a contradiction. If we could
rule out t0 = T , then we would have 0 < t0 < T , and so ut(x0, t0) > 0. That would be
enough for the contradiction. Or, if we could ensure uxx(x0, T ) < 0, that would also get us
the contradiction. However, we do not have enough information to do any of that.

Instead, the trick of the proof is to modify u into a new function v, which has a slightly
more tractable second derivative in x. Probably the simplest function that has a nontrivial
second derivative is x 7→ x2, or a multiple thereof. So, we put

v(x, t) := u(x, t) + εx2,

where we will specify ε > 0 shortly.
Now we think about extreme values. First, if (x, t) ∈ Dpara, then x2 ≤ max{a2, b2}. (This

is sensitive if a < 0 or b < 0.) So,

max
(x,t)∈Dpara

v(x, t) ≤ m+ εmax{a2, b2}. (25.1)

Since we are assuming m < M , if we take ε > 0 small enough relative to m, M , a2, and b2,
then

m+ εmax{a2, b2} < M. (25.2)

And
v(x0, t0) = M + εx20 ≥M.

(We have to keep the nonstrict inequality just in case x0 = 0.) So, since (x0, t0) ∈ D,

max
(x,t)∈D

v(x, t) ≥M. (25.3)

By the way, this maximum exists by the extreme value theorem, just as it did for u.
We combine (25.1), (25.2), and (25.3) to conclude

max
(x,t)∈Dpara

v(x, t) < max
(x,t)∈D

v(x, t) =: v(x1, t1)

for some (x1, t1) ∈ D \ Dpara. Here is a sketch of D \ Dpara.

x

t

a b

T

D \ Dpara

We then have a < x1 < b and 0 < t1 ≤ T . By the reasoning above, vxx(x1, t1) ≤ 0 and
vt(x1, t1) ≥ 0. Thus

vt(x1, t1) ≥ vxx(x1, t1). (25.4)
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But we know more about v: for a ≤ x ≤ b and 0 < t ≤ T ,

vt(x, t) = ut(x, t) and vxx(x, t) = uxx(x, t) + 2ε.

Then the inequality (25.4) reads

ut(x1, t1) ≥ uxx(x1, t1) + 2ε,

and that simplifies to 2ε ≤ 0, a contradiction. �

25.2 Problem. Reread the preceding proof and convince yourself that at no point was
differentiability of u at t = 0 used. (This is important, because we really cannot assume
that u is differentiable at t = 0 in practice!)

25.3 Problem. Suppose that the heat equation is modeling the temperature distribution
of a finite rod with endpoints at x = a and x = b. Explain how the maximum principle
implies that the maximum temperature that the rod reaches between times 0 and T occurs
either at the endpoints at some point in time from times 0 to T or somewhere within the
rod but only at time 0.

25.4 Problem. In calculus, we usually apply derivative tests for extreme values occurring
at interior points of intervals, so here is a chance to think about what happens at the
endpoints. Let f ∈ C2([a, b]) and suppose that

f(a) = max
a≤x≤b

f(x).

(i) Use the definition of the derivative to prove that f ′(a) ≤ 0.

(ii) Give an example (start by drawing a picture) to show that we may have f ′(a) < 0, in
contrast to our likely calculus intuition that f ′(a) = 0.

(iii) Give examples (start, again, by drawing pictures) to show that any of the possibilities
f ′′(a) > 0, f ′′(a) = 0, or f ′′(a) < 0 are possible. When drawing, remember that f ′(a) ≤ 0.

25.5 Problem. Let u satisfy the hypotheses of the maximum principle. By considering
v := −u, prove that u also achieves its minimum on the parabolic boundary.

Now we start to prove Theorem 24.2. The idea is that if u solves the heat equation for
all x ∈ R and t > 0 and is continuous at t = 0 and bounded in finite time and if u(x, 0) = 0,
then u = 0 (which is what we expect with zero initial conditions). Let T > 0; we show
that u(x, t) = 0 for x ∈ R and 0 < t ≤ T . Since T > 0 is arbitrary, this shows u(x, t) = 0
for all t > 0 and x ∈ R. (The case t = 0 is the initial condition, so we ignore that.) Fix
x0 ∈ R and t0 ∈ (0, T ]. Our goal is now to show |u(x0, t0)| ≤ ε for all ε > 0; then we will
have u(x0, t0) = 0. We will do this by introducing an comparator function (which depends
on ε, x0, and t0) and applying the maximum principle to that function; it will turn out to
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be “easy” to compute maxima on the parabolic boundary of its domain, and those maxima
will force the inequalities −ε ≤ u(x0, t0) ≤ ε.

The question is now what the right “comparator function” is and what is the right finite
spatial interval on which to apply the maximum principle (be aware that now u is defined
for x ∈ R).

Day 26: Friday, October 11.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Theorem 1 on p. 140 proves uniqueness for the finite rod heat equation.

We finish the proof of Theorem 24.2. Here is the strategy.

1. We are going to construct a “comparator” function v such that v(x, t) ≤ 0 for all x ∈ R
and t ∈ [0, T ] with v(x0, t0) = u(x0, t0) − ε. This will yield u(x0, t0) ≤ ε, and a similar
construction will give the lower bound. We will achieve this inequality on v by finding that
v solves the heat equation and applying the maximum principle.

2. One way to build v is to exploit the linearity of the heat equation. We will find a solution
w of the heat equation (wt = wxx) and normalize it so w(x0, t0) = 1.

3. Then we will put v(x, t) := u(x, t) − εw(x, t) and get v(x, t) ≤ 0. By the claims above,
this shows u(x, t) ≤ ε.

4. We will leave as a problem proving the inequality −ε ≤ u(x, t) via similar means.

Here is w:
w(x, t) :=

x2 + 2t

x20 + 2t0
. (26.1)

This is something of a “miracle” function—it is just so simple!—and it is the sort of thing
that one cooks up in a sudden 15 minutes of inspiration after a week of frustration.

26.1 Problem. Check that w is defined (i.e., no division by zero problems) and solves the
heat equation wt = wxx with w(x0, t0) = 1.

Now we need to find the right domain D on which we will apply the maximum principle
to this v. Since v is defined for all x ∈ R, we are free to choose any spatial interval that we
like. Perhaps the simplest is symmetry: −r ≤ x ≤ r for some r > 0. That is, we take

D =
{

(x, t) ∈ R2
∣∣ −r ≤ x ≤ r, 0 ≤ t ≤ T

}
.

The maximum principle then guarantees that

max
(x,t)∈D

v(x, t) = max
(x,t)∈Dpara

v(x, t),
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where

Dpara =
{

(−r, t) ∈ R2
∣∣ 0 ≤ t ≤ T

}
∪
{

(x, 0) ∈ R2
∣∣ −r ≤ x ≤ r

}
∪{(r, t) | 0 ≤ t ≤ T}

is the parabolic boundary. If we can show that the maximum of v on Dpara is nonpositive,
we are done. This will involve actually specifying r.

x

t

−r r

T

(x0, t0)

We start estimating. Because we are subtracting w in the definition of v, to get an upper
bound on v on Dpara, we want lower bounds on w on Dpara. On the vertical sides of Dpara,
we have x = ±r and t ∈ [0, T ], so

w(±r, t) =
r2 + 2t

x20 + 2t0
≥ r2

x20 + 2t0
,

so here, using the finite time bound on u (which says u(x, t) ≤ |u(x, t)| ≤MT for x ∈ R and
t ∈ [0, T ])

v(±r, t) ≤ u(±r, t)− ε r2

x20 + 2t0
≤MT − ε

r2

x20 + 2t0
.

If we take r sufficiently large relative to MT , x0, t0, and ε, then

MT −
r2

x20 + 2t0
≤ 0.

On the horizontal side, we have |x| ≤ r and t = 0, so

w(x, 0) = ε
x2

x20 + 2t0
≥ 0,

and so here, using the initial condition u(x, 0) = 0,

v(x, 0) = u(x, 0)− w(x, 0) = −w(x, 0) ≤ 0.

Thus v(x, t) ≤ 0 on the parabolic boundary, as desired. The reasoning above implies
u(x0, t0) ≤ ε, and we claim the other inequality holds.

26.2 Problem. Prove it. Specifically, by considering instead the “comparator” function
v(x, t) := −u(x, t)− εw(x, t), with w still defined as above, show that −ε ≤ u(x0, t0), which
completes the argument.
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We have done a lot of work on the heat equation posed spatially on R, i.e., the “infinite
rod” model. In particular, we had to assume an infinite spatial domain to use the Fourier
transform. However, the maximum principle only required us to work on a finite domain.
We might wonder, mathematically and physically, about the heat equation for a “finite rod.”

As with the wave equation for a finite string, this involves boundary conditions:
ut = uxx, 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x), 0 ≤ x ≤ L

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0,

(26.2)

for given functions f : [0, L] → R and a, b : R → R. Now we require that the PDE hold at
t = 0, unlike in our work on the line. It turns out that this is mathematically tractable in
the sense that for the finite rod, we will eventually construct solutions that are genuinely
differentiable at t = 0.

26.3 Problem. How differentiable do f , a, and b need to be for (26.2) to make sense?
Recall that we assume that any solution to (26.2) is twice continuously differentiable for
0 ≤ x ≤ L and t ≥ 0. Also, what are the values of f(0), f(L), f ′′(0), and f ′′(L)?

Alternatively, we could pose a slightly different problem that demands continuity at t = 0:
ut = uxx, 0 ≤ x ≤ L, t > 0

u(x, 0) = f(x), 0 ≤ x ≤ L

lim(s,t)→(x,0+) u(s, t) = f(x)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0.

(26.3)

Either way, we can use an energy method to prove uniqueness.

26.4 Problem. Explain why to show uniqueness of (26.2), it suffices to show that if u
solves 

ut = uxx, 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = 0, 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, t ≥ 0,

(26.4)

then u = 0.

26.5 Theorem. There is only one solution to (26.4).

Proof. We assume that u solves (26.2) and study the “energy integral”

E(t) :=

∫ L

0

u(x, t)2 dx.

We have E(t) ≥ 0 since the integrand is nonnegative and

E(0) =

∫ L

0

u(x, 0)2 dx =

∫ L

0

0 dx = 0
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from the initial condition u(x, 0) = 0. We will show E ′(t) ≤ 0 for all t. Then E is decreasing,
so E(t) ≤ 0 for all t ≥ 0. But 0 ≤ E(t) as well, so 0 ≤ E(t) ≤ 0, and therefore E(t) = 0 for
all t.

Onwards to differentiating. A solution to (26.4) is really twice continuously differentiable
for 0 ≤ x ≤ L and t ≥ 0, per our PDE conventions, so Leibniz’s rule applies. We have

E ′(t) = ∂t

[∫ L

0

u(x, t)2 dx

]
=

∫ L

0

∂t[u(x, t)2] dx =

∫ L

0

2u(x, t)ut(x, t) dx

after differentiating under the integral and using the chain rule. This is an integral with
respect to x, and we can connect ut and uxx via the heat equation, so we should probably
do so and obtain

E ′(t) = 2

∫ L

0

u(x, t)uxx(x, t) dx.

If in a calculus class we encountered an antidifferentiation problem of the form
∫
ff ′′,

we would probably integrate by parts with u = f (terrible notation here) and dv = f ′′ to
conclude

∫
ff ′′ = ff ′ −

∫
f ′f ′. Doing so here gives

E ′(t) = 2u(x, t)ux(x, t)
∣∣x=L
x=0
− 2

∫ L

0

ux(x, t)
2 dx.

Since u(0, t) = u(L, t) = 0 by the boundary conditions, the first terms are 0, and so

E ′(t) = −2

∫ L

0

ux(x, t)
2 dx ≤ 0,

as desired. �

26.6 Problem. To prove uniqueness for (26.3), we would want to show that if u solves
ut = uxx, 0 ≤ x ≤ L, t > 0

u(x, 0) = 0, 0 ≤ x ≤ L

lim(s,t)→(x,0+) u(s, t) = 0

u(0, t) = u(L, t) = 0, t ≥ 0.

(26.5)

then u = 0. Reread the proof of the preceding theorem and explain why it still works for
(26.5). [Hint: the subtle point is that maybe E is now only differentiable on (0,∞). Why?
Does that really matter?]

For simplicity, we will usually work with t ≥ 0 in the PDE part of the heat equation on
finite spatial domains. That is, we will not consider (26.5) much further.
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Day 27: Monday, October 14.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Remark (2) on pp. 141–142 discusses “continuous mean-square dependence” on initial
data. The paragraph at the start of “The Maximum Principle and its consequences”
on pp. 142–143 discusses how ‖·‖L2 does not imply control over ‖·‖∞. Continuous
dependence on initial conditions in ‖·‖∞ appears in Theorem 3 on p. 147; see also the
remark at the bottom of that page and Example 3 on p. 148.

The proof of Theorem 26.5 contains an important auxiliary result. Suppose that w solves{
wt = wxx, 0 ≤ x ≤ L, t ≥ 0

w(0, t) = w(L, t) = 0, t ≥ 0

and is continuous for 0 ≤ x ≤ L and t ≥ 0. Then the function

E[w] :=

∫ L

0

w(x, t)2 dx

is decreasing, and so E[w](t) ≤ E[w](0) for all t ≥ 0.

27.1 Problem. Reread the proof of Theorem 26.5 and convince yourself that this is true.
(Here we are saying nothing about an initial condition for w(x, 0), and so we no longer
conclude that E[w](t) = 0 for all t, nor do we want to.)

Now suppose we have two heat solutions with the same boundary conditions but possibly
different initial conditions:

ut = uxx, 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = a(t), t ≥ 0

u(L, t) = b(t), t ≥ 0

u(x, 0) = f1(x), 0 ≤ x ≤ L

and


vt = vxx, 0 ≤ x ≤ L, t ≥ 0

v(x, 0) = a(t), t ≥ 0

v(L, t) = b(t), t ≥ 0

v(x, 0) = f2(x), 0 ≤ x ≤ L.

Put w = u− v, so w solves
wt = wxx, 0 ≤ x ≤ L, t ≥ 0

w(x, 0) = 0, t ≥ 0

w(L, t) = 0, t ≥ 0

w(x, 0) = f1(x)− f2(x), 0 ≤ x ≤ L.

Then the energy integral above implies E[w](t) ≤ E[w](0) for all t, where

E[w](t) =

∫ L

0

w(x, t)2 dx =

∫ L

0

[
u(x, t)− v(x, t)

]2
dx
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and

E[w](0) =

∫ L

0

w(x, 0)2 dx =

∫ L

0

[
f1(x)− f2(x)

]2
dx.

That is, ∫ L

0

[
u(x, t)− v(x, t)

]2
dx ≤

∫ L

0

[
f1(x)− f2(x)

]2
dx (27.1)

for all t ≥ 0.
This should feel like our “continuous dependence on initial conditions” result for the wave

equation. Both here and there, we bounded a difference of two solutions to the same PDE
in terms of a difference of the initial conditions. The difference here is that the differences
are no longer purely pointwise—they involve integrals.

How should we interpret these integrals? We need some new analytic tools. Recall that
we have said, repeatedly, that integrals represent functions and extract and measure data
about functions. We have seen such representations via FTC1 and the Fourier integral in
Untheorem 22.2 (the latter still needing some patching up). We have seen data extracted via
Fourier modes—such data is useful for representation purposes as in that touchy untheorem,
and there are other uses to come.

One of the most natural measurements to desire about a function is its size: how “large” is
it? That depends on one’s perspective. Say that f : [0, L]→ C is continuous. From calculus,
f has extreme values, and so

‖f‖∞ := max
0≤x≤L

|f(x)|

is defined.

x

f(x)
‖f‖∞

We might call this number ‖f‖∞ the “maximum norm” of f . This value ‖f‖∞ measures how
large in a “pointwise” sense f can be.

We might also think about average value. The number

1

L

∫ L

0

|f(x)| dx

is the average value of |f | on [0, L]. Put

‖f‖L1 :=

∫ L

0

|f(x)| dx.

We call this the “L1-norm” of f . (The unfortunate overworking of L as both an endpoint of
the domain of f and part of the name of the norm is an accident of culture and bad writing.)
When L > 0 is fixed, we might think that if ‖f‖L1 is a “large” number, then “on average” f
should be large, while if ‖f‖L1 is small, then “on average” f should be small.
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But neither ‖·‖∞ nor ‖·‖L1 appears in our estimates for the heat equation. Instead, we
introduce the “L2-norm”:

‖f‖L2 :=

(∫ L

0

|f(x)|2 dx
)1/2

.

The square root preserves a nice scaling property: ‖αf‖L2 = |α| ‖f‖L2 . Such a scaling
property is already present in ‖·‖∞ and ‖·‖L1 . Then (27.1) says

‖u(·, t)− v(·, t)‖L2 ≤ ‖f1 − f2‖L2 .

As usual, u(·, t) is the function from [0, L] to R given by x 7→ u(x, t), and the same for v(·, t).
If ‖·‖∞ measures pointwise extremes, and ‖·‖L1 measures average value, what is left for

‖·‖L2 to measure? The less satisfying answer is that ‖·‖L2 is simply a “mathematically
nicer” norm for a variety of reasons that we have yet to encounter. The possibly satisfying
“physical” reason is the slogan “squaring makes small things smaller and larger things larger.”
Recall that if 0 < y < 1, then 0 < y2 < y < 1, while if 1 < y, then 1 < y < y2.
Perhaps a function f records the outputs of an experiment or the difference between two
experiments; in comparing those differences, we might want an instrument that magnifies
“large” differences but penalizes “small” differences less. Squaring in the L2-norm introduces
that magnification/penalization behavior while still retaining the “averaging” behavior of the
L1-norm.

x

1

f(x)

f(x)2

Our gut instinct is probably to want estimates in ‖·‖∞, as this is what we know best from
calculus so far. Unfortunately, an estimate in ‖·‖L1 or ‖·‖L2 need not imply an estimate in
‖·‖∞. Consider the following picture, where ε, L, M > 0 are fixed.

x

f(x)

M

LL/2− ε L/2 + ε
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It should be the case that ‖f‖∞ = M but ‖f‖L1 and ‖f‖L2 are “small” since the area under
the graph of f = |f | is quite small.

27.2 Problem. Quantify this. First, find a piecewise formula for f (you may assume
that what look like line segments in the drawing above are actually line segments). Then
calculate ‖f‖L1 and ‖f‖L2 . Explain precisely how ‖f‖∞ can be “large” even though ‖f‖L1

and ‖f‖L2 are “small.” [Hint: try something like M = 1/ε or M = 1/ε2.]

Nonetheless, we can still obtain ‖·‖∞ estimates on differences of solutions to the heat
boundary value problems. The maximum principle and Problem 25.5 together tell us that if

wt = wxx, 0 ≤ x ≤ L, t ≥ 0

w(0, t) = w(L, t) = 0, t ≥ 0

w(x, 0) = f1(x)− f2(x), 0 ≤ x ≤ L,

then the maximum and minimum values of w over 0 ≤ x ≤ L and 0 ≤ t ≤ T (for any T > 0)
occur on the “parabolic boundary” sketched below.

x

t
T

L

w(0, t) = 0, t ≥ 0 w(L, t) = 0, t ≥ 0

w(x, 0) = f1(x)− f2(x), 0 ≤ x ≤ L

On the vertical sides of this boundary (x = 0 and x = L), w = 0, so those sides contribute
nothing really interesting to the extreme values of w. Suppose −ε ≤ f1(x) ≤ f2(x) ≤ ε for
all x ∈ [0, L]. Then the minimum of w on the parabolic boundary is at least −ε and the
maximum is at least ε, so −ε ≤ w(x, t) ≤ ε for all x ∈ [0, L] and t ∈ [0, T ]. Even better, this
estimate is independent of T , so it is true for all t ≥ 0.

Here is what we have proved.

27.3 Theorem. Suppose that u and v solve
ut = uxx, 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = a(t), t ≥ 0

u(L, t) = b(t), t ≥ 0

u(x, 0) = f1(x), 0 ≤ x ≤ L

and


vt = vxx, 0 ≤ x ≤ L, t ≥ 0

v(x, 0) = a(t), t ≥ 0

v(L, t) = b(t), t ≥ 0

v(x, 0) = f2(x), 0 ≤ x ≤ L.

(i) If ‖f1 − f2‖L2 < ε, then ‖u(·, t)− v(·, t)‖L2 < ε for all t ≥ 0.

(ii) If ‖f1 − f2‖∞ < ε, then ‖u(·, t)− v(·, t)‖∞ < ε and ‖u(·, t)− v(·, t)‖L2 < Lε for all
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t ≥ 0.

27.4 Problem. Prove the L2-estimate in part (ii) of Theorem 27.3.

We could also ask for a continuous dependence on initial conditions result for the heat
equation on the line. Since there are no inherent boundary conditions (notwithstanding a
boundedness in finite time condition that we might impose to guarantee uniqueness), we just
ask how we might estimate the solution to{

ut = uxx, x ∈ R, t > 0

u(x, 0) = f(x), x ∈ R

in terms of f . There is not much to do here: if there is M > 0 such that |f(y)| ≤M for all
y ∈ R, then (for t > 0)

|u(x, t)| =
∣∣∣∣∫ ∞
−∞

H(x− y, t)f(y) dy

∣∣∣∣ ≤M

∫ ∞
−∞

H(x− y, t) dy.

We basically showed in Problem 24.4 that this integral is independent of both x and y. Call
its value C, so we have shown

|u(x, t)| ≤ CM,

where C is independent of x, t, and f , and M depends only on f .
We could go further and ask about “average” behavior of solutions to the heat equation on

the line. This would require introducing the improper integral analogues of the L1- and L2-
norms, and generalizing ‖·‖∞ to functions defined on R (and note that continuous functions
on R need not attain an absolute maximum or minimum there—think of arctan). This is
where we are headed anyway, and it will be a natural part of our upcoming retread of the
Fourier transform—we have eaten dessert first, and now it is time for better nutrition.

Day 28: Wednesday, October 16.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 222–223 discuss piecewise continuous functions. Examples 1, 2, and 3 on pp.
424–425 compute Fourier transforms from the definition. Problem 10 on p. 429 proves
the Riemann–Lebesgue lemma.

An adequate theory of the Fourier transform requires us to integrate more than just
continuous functions. Consider the following functions graphed below. The “area under the
graph” between x = −1 and x = 1 of each function should be the same, even though the
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functions are quite different.

x

f1(x)

−1 1

x

f2(x)

−1 1

x

f3(x)

−1 1

Any “good” notion of area should take into account that “the area under a point is 0.” That
f2 disagrees with f1 just at x = 0, and that f3 is not even defined at x = 0 should not
matter.

These three functions have two important features in common. First, they are “mostly”
continuous in the sense that they are defined and continuous at all but finitely many points
of [−1, 1]. The function f1 is defined and continuous at all points in this interval; the function
f2 is defined everywhere but discontinuous at 0; and f3 is not even defined at 0. Second,
these functions have very good limit behaviors: the limit

lim
s→x±

fk(x)

exists for all x ∈ (−1, 1) and each k, and “most of the time” these limits are equal (and equal
fk(x) to boot) because the fk are “mostly continuous. Also, the two limits

lim
s→−1+

fk(x) and lim
s→1−

fk(x)

exist. The point is that the fk are not all that badly behaved—in particular, there are no
vertical asymptotes/blow-ups.

Here is a fourth function, now defined on (most of) [−1, 2], that should have a well-defined
area under its graph.

x

f4(x)

−1 1 2

The only difference here is that sometimes lims→x+ f4(s) 6= lims→x− f4(s) for some x ∈
(−1, 2).

All of these functions are what we want to call “piecewise continuous.”

28.1 Definition. Let a, b ∈ R with a < b and suppose there is {xk}nk=1 ⊆ [a, b] such that
the function f : [a, b] \ {xk}nk=1 → C is continuous and that all of the following limits exist:

lim
s→a+

f(s), lim
s→x±

f(s), a < x < b, and lim
s→b−

f(s).

Then we say that f is piecewise continuous on [a, b]. The set of all piecewise con-
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tinuous functions on [a, b] is Cpw([a, b]).

We emphasize that a piecewise continuous function on [a, b] need not be a function defined
“on” [a, b]. The point is that any integral worth its salt should “forgive” the absence of
definition at a few points and also jump discontinuities. We now give meaning to

∫ b
a
f for

f ∈ Cpw([a, b]), assuming that we only know how to integrate continuous functions, per
Theorem 2.1.

Here are two illustrative examples of how this should proceed.

28.2 Example. (i) Let f ∈ Cpw([a, b]) be discontinuous and/or undefined at a. Define

f̃ : [a, b]→ C : x 7→

{
lims→a+ f(s), x = a

f(x), a < x ≤ b.

Then f̃ ∈ C([a, b]), and so we set
∫ b
a
f :=

∫ b
a
f̃ .

(ii) Let f ∈ Cpw([a, b]) be discontinuous and/or undefined at c ∈ (a, b). Define

f̃1 : [a, c]→ C : x 7→

{
f(x) a ≤ x < c

lims→c− f(s), x = c

and

f̃2 : [c, b]→ C : x 7→

{
lims→c+ f(s), x = c

f(x), c < x ≤ b.

Then f̃1 ∈ C([a, c]) and f̃2 ∈ C([c, b]), and so we put
∫ b
a
f :=

∫ c
a
f̃1 +

∫ b
c
f̃2.

For f ∈ Cpw([a, b]) with f discontinuous and/or undefined on {xk}nk=1 ⊆ [a, b], we just do
this repeatedly: break [a, b] into n subintervals on which f is continuous and has left/right
limits at the endpoints, create a continuous function by setting the values at the endpoints
to be those left/right limits, and then defining

∫ b
a
f as the sum of the (ordinary) integrals

over those subintervals. We then recover the analogue of Theorem 2.1. We can even obtain
a new meaning of integrating over a subinterval of [a, b]: for a ≤ c < d ≤ b, we have∫ d

c

f =

∫ b

a

fχ[c,d], χ[c,d](x) :=

{
1, c ≤ x ≤ d

0, x < c or c > d.

28.3 Theorem. Every part of Theorem 2.1 remains true for I = [a, b] when C([a, b]) is
replaced by Cpw([a, b]).
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28.4 Problem. Define

f : [−1, 1]→ C : x 7→

{
0, −1 ≤ x < 0

1, 0 ≤ x ≤ 1
and F : [−1, 1]→ C : x 7→

∫ x

−1
f.

Show that F ∈ C([−1, 1]) but F is not differentiable at 0. Thus the fundamental theorem
of calculus can fail when the integrand is not continuous!

We have defined piecewise continuity on a closed, bounded subinterval of R, but the
Fourier transform requires us to work on all of (well, most of) R. We might like to say that
f ∈ Cpw(R) if f ∈ Cpw([a, b]) for all [a, b] ⊆ R, but this is a little awkward—what exactly is
the domain of f? Here it helps to be more explicit (and annoying).

28.5 Definition. Let {xk}∞k=1 ⊆ R be a subset such that {xk}∞k=1 ∩ [a, b] is finite for any
closed, bounded subinterval [a, b] ⊆ R; equivalently, there is d > 0 such that |xk − xj| ≥ d
for all j 6= k. Suppose that f : R \ {xk}∞k=1 → C is continuous and that the limits

f(x±) = lim
s→x±

f(x)

exist for all x ∈ R. Then f is piecewise continuous on R. The set of all piecewise
continuous functions on R is Cpw(R).

As before, a piecewise continuous function on R does not have to be defined “on” R,
though certainly we have C(R) ⊆ Cpw(R). Unlike before, since R has no endpoints, we just
need to know that the left and right limits at any point in R exist. Continuity forces their
equality off {xk}∞k=1. Also, the condition that {xk}∞k=1∩ [a, b] be finite for all closed, bounded
subintervals [a, b] ⊆ R just ensures that the points at which f ∈ Cpw(R) is discontinuous
and/or undefined do not “crowd up” too much anywhere. In practice, the functions that
we will typically meet will be discontinuous and/or undefined at only a “few” points in R,
probably finitely many, sometimes only at one or two points.

We now define improper integrals of piecewise continuous functions on R using the integral
for piecewise continuous functions on subintervals of R.

28.6 Definition. (i) Let f ∈ Cpw(R) and suppose that the limits∫ 0

−∞
f := lim

a→−∞

∫ 0

a

f and
∫ ∞
0

f := lim
b→∞

∫ b

0

f

exist. Then f is integrable on R and we put∫ ∞
−∞

f =

∫ 0

−∞
f +

∫ ∞
0

f.

(ii) A function f ∈ Cpw(R) is absolutely integrable if |f | is integrable, and we
denote by L1, or sometimes L1(R), the set of all absolutely integrable functions. The L1-
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(semi)norm of f ∈ L1 is

‖f‖L1 :=

∫ ∞
−∞
|f |.

As much as possible, we should try to avoid working with the definition of the integral
(sometimes this is not possible) to show that a function is integrable. Fortunately, the
comparison test carries over.

28.7 Theorem (Comparison test). Let f ∈ Cpw(R) and g ∈ L1 with |f(x)| ≤ |g(x)| for
x ∈ R \ {xk}∞k=1 for some set {xk}∞k=1 ⊆ R. Here we assume that R \ {xk}∞k=1 is contained
in the domains of both f and g. Then f ∈ L1 and∣∣∣∣∫ ∞

−∞
f

∣∣∣∣ ≤ ∫ ∞
−∞
|f | ≤

∫ ∞
−∞
|g|.

28.8 Problem. Prove that L1 is a vector space in the sense that αf ∈ L1 and f + g ∈ L1

for all f , g ∈ L1 and α ∈ R. (For the sum, use the triangle inequality for real numbers
and the comparison test; if f : R \ {xk}∞k=1 → C and g : R \ {yk}∞k=1 → C are continuous,
interpret the domain of f + g as R \ {xk, yk}∞k=1.)

28.9 Problem. Prove that ‖·‖L1 satisfies three of the four properties that one usually
demands of a “norm” on a vector space:

‖f‖L1 ≥ 0, ‖αf‖L1 = |α| ‖f‖L1 , and ‖f + g‖L1 ≤ ‖f‖L1 + ‖g‖L1

for all f , g ∈ L1 and α ∈ R. However, find an example of f ∈ L1 such that f 6= 0 but
‖f‖L1 = 0. For this reason, we might strictly prefer to call ‖·‖L1 a “seminorm” (for it to be
a norm, we would want ‖f‖L1 = 0 to force f = 0).

At last we are ready to (re)define the Fourier transform.

28.10 Definition. The Fourier transform of f ∈ L1 at k ∈ R is

f̂(k) = F[f ](k) :=
1√
2π

∫ ∞
−∞

f(x)e−ikx dx.

We first observe that while f ∈ L1 need not be defined on all of R, the Fourier transform
definitely is; convergence of the Fourier integral follows from the comparison test and the
identity |e−ikx| = 1 for all k, x ∈ R. We will soon see that f̂ can be a much nicer function
than f .

Now we actually calculate a Fourier transform (this is the first time that we have done
so directly from the definition!).
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28.11 Example. Fix r > 0 and let

f(x) :=

{
1, |x| ≤ r

0, |x| > r.
(28.1)

It is a worthwhile exercise in the definition of the integral to show f ∈ L1; we leave this as
a problem. It then follows from Problem 21.12 that

f̂(k) =
1√
2π

lim
R→∞

∫ R

−R
f(x)e−ikx dx,

so we calculate this integral. We may as well assume R > r, and then∫ R

−R
f(x)e−ikx dx =

∫ r

−r
e−ikx dx.

That is,

lim
R→∞

∫ R

−R
f(x)e−ikx dx =

∫ r

−r
e−ikx dx,

and so
f̂(k) =

1√
2π

∫ r

−r
e−ikx dx.

For k = 0, this gives

f̂(0) =
1√
2π

∫ r

−r
1 dx =

2r√
2π
,

while for k 6= 0 we have

f̂(k) =
1√
2π

1

−ik

∫ r

−r
−ike−ikx dx = − 1

ik
√

2π

∫ r

−r
∂x[e

−ikx] dx =
eikr − e−ikr

ik
√

2π

=
2r

kr
√

2π

eikr − e−ikr

2i
=

2r√
2π

sin(kr)

kr
.

Now put

sinc(X) :=

{
sin(X)/X, X 6= 0

1, X = 0.

We have shown
f̂(k) =

2r√
2π

sinc(kr),

and this is a rather nicer function than f , since we recall from calculus that sinc is infinitely
differentiable.

28.12 Problem. Do that worthwhile exercise and show that f ∈ L1, where f is defined in
(28.1).
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28.13 Problem. Let f ∈ L1.

(i) Prove that if f is even, then f̂ is even, while if f is odd, then f̂ is odd.

(ii) Prove that f̂(k) = f̂(−k). Here x+ iy = x − iy is the complex conjugate of
x+ iy ∈ C. [Hint: use the fact that

∫ b
a
f =

∫ b
a
f .]

(iii) Prove that if f is real-valued and even, then f̂ is also real-valued. How does this
explain the result of Example 28.11?

The nice properties of f̂ as computed in Example 28.11 carry over well to Fourier trans-
forms in general.

28.14 Theorem. Let f ∈ L1.

(i) The Fourier transform is linear: for f , g ∈ L1 and α, β ∈ C,

̂αf + βg(k) = αf̂(k) + βĝ(k).

(ii) The Fourier transform f̂ is bounded with the estimate

|f̂(k)| ≤ ‖f‖L1√
2π

for all k ∈ R.

(iii) The Fourier transform is continuous: f̂ ∈ C(R).

(iv) [Riemann–Lebesgue lemma] The Fourier transform vanishes at ±∞:
limk→±∞ f̂(k) = 0.

Proof. Linearity is just the vector space property of L1 and the linearity of the integral.
The boundedness estimate is the triangle inequality:

|f̂(k)| = 1√
2π

∣∣∣∣∫ ∞
−∞

f(x)e−ikx dx

∣∣∣∣ ≤ 1√
2π

∫ ∞
−∞
|f(x)e−ikx| dx =

1√
2π

∫ ∞
−∞
|f(x)| dx =

‖f‖L1√
2π

.

The proofs of continuity and vanishing at ±∞ require more ε–δ-type analysis than we care to
do here. We discuss one situation of continuity in the problem below, under more hypotheses,
and we discuss vanishing at ±∞ later under other, and more, hypotheses.

Note that f ∈ L1 implies f ∈ Cpw(R), by definition of L1, but now f̂ ∈ C(R): this is much
better behavior for f̂ ! �
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28.15 Problem. (i) A natural way to try to prove continuity of f̂ is to rewrite

|f̂(k2)− f̂(k1)| =
|k2 − k1|√

2π

∣∣∣∣∫ ∞
−∞

(∫ 1

0

e−ix[(1−t)k1+tk2] dt

)
xf(x) dx

∣∣∣∣ . (28.2)

First show that (28.2) is true. The utility of (28.2) is that it exposes transparently a factor
of k2 − k1; we might hope that if k2 − k1 is small, then we could use the boundedness of
the improper integral to show that |f̂(k2) − f̂(k1)| is small. Unfortunately, this integral
may not converge unless (Jf)(x) := xf(x) is absolutely integrable. Suppose, now, that
Jf ∈ L1 and use (28.2) to prove continuity of f̂ .

(ii) Prove that if all we know is that f̂ is continuous and vanishes at ±∞, then f̂ is
bounded (although this does not help us recover the bound in terms of ‖f‖L1). Do not use
the definition of f̂ , just the two properties of being continuous on R and vanishing at ±∞.

Day 29: Friday, October 18.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Proposition 1 on p. 432 proves the all-important identity f̂ ′(k) = ikf̂(k) using the
decay order language from p. 432. See also Corollary 1 on that page. Theorem 1 on
p. 433 gives another condition on f ∈ L1 that guarantees f̂ ∈ L1 (among other nice
things). See also the remark and example on p. 434. Pages 447–448 state and discuss
the inversion theorem, and its proof begins on p. 498. Example 3 on pp. 436–437
applies the Fourier transform to y′ = ay + f(x).

We formalize the most useful property of the Fourier transform.

29.1 Theorem. Let f ∈ L1 ∩ C1(R) with f ′ ∈ L1(R). Then f̂ ′(k) = ikf̂(k) for all k ∈ R.

Proof. Since f ′ ∈ L1, Problem 21.12 allows us to write

f̂ ′(k) =
1√
2π

∫ ∞
−∞

f ′(x)e−ikx dx =
1√
2π

lim
R→∞

∫ R

−R
f ′(x)e−ikx dx.

The goal is to get f , not f ′, to show up in the Fourier integral. We are now working with
the integral of the product of a derivative (the f ′(x) factor) and a very well-behaved factor
that is easy to differentiate and antidifferentiate (the e−ikx factor), so we integrate by parts
with dv = f ′(x) dx (as we do not necessarily have more derivatives on f) and u = e−ikx to
find∫ R

−R
f ′(x)e−ikx dx = f(x)e−ikx

∣∣x=R
x=−R −

∫ R

−R
f(x)(−ik)e−ikx dx

= f(R)e−ikR − f(−R)eikR + ik

∫ R

−R
f(x)e−ikx dx.
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Now we see the Fourier integral for f start to emerge. It would be nice if those “boundary”
terms at the start vanished, and they do: the hypotheses here imply limR→±∞ f(R) = 0, and
so we have

lim
R→∞

(
f(R)e−ikR − f(−R)eikR + ik

∫ R

−R
f(x)e−ikx dx

)
= 0 + ik

∫ ∞
−∞

f(x)e−ikx dx.

Incorporating our insistent factor of 1/
√

2π, we are done. �

29.2 Problem. Let f ∈ L1∩C1(R) with f ′ ∈ L1(R). This problem shows limx→∞ f(x) = 0,
and an analogous argument can treat the limit at −∞.

(i) By considering the identity f(x) = f(0) +
∫ x

0
f ′(s) ds, show that L := limx→∞ f(x)

exists.

(ii) Prove by contradiction that L = 0: if L > 0, argue that for some M > 0 and all
x ≥M , we have f(x) ≥ L/2. Why does this contradict f ∈ L1? Make a similar argument
if L < 0.

(iii) Give an example of f ∈ L1 such that limx→∞ f(x) 6= 0. [Hint: construct f so that the
limit does not even exist. It will be hard to get a continuous f to do that, so allow f to be
discontinuous, possibly in infinitely many places; f can be mostly 0, except where it is not
0.]

29.3 Remark. The previous problem and theorem have profound consequences. Here are
the easy sound bites before we see those consequences. First, ODE become algebraic equa-
tions under the Fourier transform, while PDE become ODE in the “time” variable under
the Fourier transform in the “spatial” variable:

ÔDE = algebraic, P̂DE = ODE.

Second, and unfortunately, it is not guaranteed that the candidate solution from the Fourier
transform will encompass all solutions to a problem. The reason is that the hypotheses of
Theorem 29.1 presume decay of the solution at (spatial) infinity.

As we previously observed in our study of the heat equation, we can iterate Theorem 29.1
and take the transform of any derivative.

29.4 Corollary. Let f ∈ Cr(R) for some r ≥ 1 and suppose f (j) ∈ L1 for j = 0, . . . , r.
Then f̂ (r)(k) = (ik)rf̂(k).

This gives new insight into the decay of Fourier coefficients as k → ±∞. For k 6= 0, the
corollary says

f̂(k) =
f̂ (r)(k

(ik)r
and so |f̂(k)| ≤

∥∥f (r)
∥∥
L1√

2π

(
1

|k|r

)
. (29.1)
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That is, if f is r-times continuously differentiable and all of its first r derivatives are inte-
grable, then f̂ decays like k−r at ±∞. This is fast!

Next we consider inverting the Fourier transform. Untheorem 22.2 gives us the (unfortu-
nately false) hope that

f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eikx dk (29.2)

for f ∈ L1. The first problem here is that maybe f̂ 6∈ L1. This turns out to be the case with
the function f from Example 28.11, namely because sinc 6∈ L1 (which follows from a picky
argument involving exploding lower bounds and the harmonic series).

It is possible to add hypotheses to f ∈ L1 that guarantee f̂ ∈ L1. Here is one example.

29.5 Problem. Let f ∈ L1 ∩ C2(R) with f ′, f ′′ ∈ L1. Show that f̂ ∈ L1. [Hint: how fast
does f̂ decay?]

So, we might want to relax the inversion statement to involve the weaker symmetric limit
in the integral: maybe

f(x) =
1√
2π

P.V.

∫ ∞
−∞

f̂(k)eikx dk =
1√
2π

lim
R→∞

∫ R

−R
f̂(k)eikx dk.

This too turns out to be false.

29.6 Problem. Explain why by considering

f(x) :=

{
1, x = 0

0, x 6= 0.

Explain how this means that Untheorem 22.3 is really just that—an untheorem, not a true
theorem.

The true story of Fourier inversion involves “averages.” For f ∈ L1, the limits

f(x±) := lim
s→x±

f(s)

exist for all x ∈ R, and, with slightly more hypotheses on f , the actual Fourier inversion
formula is

f(x+) + f(x−)

2
=

1√
2π

lim
R→∞

∫ R

−R
f̂(k)eikx dk. (29.3)

29.7 Problem. Suppose that f ∈ L1∩C(R) with f̂ ∈ L1 and (29.3) is true for some x ∈ R.
Why does that imply about (29.2)?

What are those other hypotheses? The function f needs to be more than just piecewise
continuous (like all functions in L1)—it needs to be piecewise continuously differentiable. We
first give the definition by a picture, and then we give the definition.
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x

f(x)

−2 −1 1 2 3

This is a pretty nice function on [−2, 3]. It has some jump discontinuities, and it is not
defined at −1, and it is defined and continuous but not differentiable at 1, but it is definitely
the case that

f(x±) := lim
s→x±

f(s)

exist for all x ∈ (−2, 3), and that

lim
s→−2+

f(s) and lim
s→3−

f(s)

exist, and that the limits of the left and right difference quotients

lim
h→0+

f(x+ h)− f(x+)

h
and lim

h→0−

f(x+ h)− f(x−)

h
(29.4)

exist at all x ∈ (−2, 3). Also, the limits of the appropriate difference quotients at the
endpoints exist:

lim
h→0+

f(−2 + h)− f(−2+)

h
and lim

h→0−

f(3 + h)− f(3−)

h
.

Suppose that we take the unusual step of defining f ′(x) to be either of the difference quotients
in (29.4) when they are both equal. Then

f ′(x) =

{
0, x 6= −2, 1, 2, 3 and x < 1 or x > 2

1, 1 < x < 2.

This function f ′ is piecewise continuous on [−2, 3] in the sense of Definition 28.1!
Our current interest, however, is in functions defined on (most of) R, so we adapt this

example from [−2, 3] to R.

29.8 Definition. Let f ∈ Cpw(R) and suppose that

lim
h→0+

f(x+ h)− f(x+)

h
and lim

h→0−

f(x+ h)− f(x−)

h

exist for all x ∈ R. (In the expression f(x + h) we are assuming that h 6= 0 is so small
relative to x that f is actually defined at x + h; this is possible because, by definition of
Cpw(R), f is defined at all but countably many points in R, and these points all lie at a
certain minimum positive distance from each other.)
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Suppose also that these limits are equal for x ∈ R \ {xk}∞k=1, where {xk}∞k=1 ⊆ R is a
set such that {xk}∞k=1 ∩ [a, b] is finite for any closed, bounded subinterval [a, b] ⊆ R. For
such x, let f ′(x) be either of the limits above. Suppose last that f ′ ∈ Cpw(R). Then we say
that f is piecewise continuously differentiable on R, and we denote the set
of such functions by C1pw(R).

As with Cpw(R), a function in C1pw(R) need not be defined on all of R. Additionally, and
unfortunately, a function in C1pw(R) need not be differentiable on all of its domain—thus the
domains of f and f ′ as defined above may be different! It is probably best not to think too
hard about this and to keep the picture above foremost in mind.

Now, ponderously, we can state the true Fourier inversion theorem.

29.9 Theorem (Fourier inversion). Let f ∈ L1 ∩ C1pw(R). Then

f(x+) + f(x−)

2
=

1√
2π

lim
R→∞

∫ R

−R
f̂(k)eikx dk.

As with Theorem 28.14, the proof of this theorem is more analysis-heavy than appropriate
for our class. In practice, we will not use it all that much—remember that we want to use the
Fourier transform to find candidate solutions for differential equations. If we assume that
such solutions are nice enough that the ideal inversion formula (29.2) applies, then we have
hope of checking it rigorously. (Anyway, even Theorem 29.9 is better than the full result for
inverting the Laplace transform, which requires complex analysis and line integrals.)

Last, we give a name to the integral appearing in the ideal version (29.2) of Fourier
inversion.

29.10 Definition. Let g ∈ L1. The inverse Fourier transform of g is

ĝ(x) :=
1√
2π

∫ ∞
−∞

g(k)eikx dk.

The inverse Fourier transform, therefore, is just the “reflection” ĝ(x) = ĝ(−x). Theorem
29.9 therefore says that if f ∈ L1 ∩ C1(R) with f̂ ∈ L1, then

f =

̂̂
f.

At this point we might be disappointed and frustrated with Fourier inversion. The hypotheses
are complicated and the results are awkward. One life lesson might be to move away from
seeking pointwise equalities and more toward averaging (we already saw this with continuous
dependence on initial conditions for the heat equation). Perhaps there is a “norm” ‖·‖ in
which we might meaningfully measure function “size” and for which we would have

‖f −

̂̂
f‖ = 0

with fewer hypotheses on f? There is, but it requires more analysis and integration theory
than we can develop here.
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Instead, we return to applying the Fourier transform to differential equations. Let a ∈ R
and f ∈ L1. We will find a solution candidate for the ODE y′ = ay + f(x) via the Fourier
transform. Of course we do not need the transform at all to solve this ODE—we have
variation of parameters. The point here is to see more about how the Fourier transform
interacts with differential equations and how some other, less obvious properties of the
transform naturally arise.

As usual, we work backwards. Assume there exists y ∈ L1∩C1(R) with y′ ∈ L1 such that
y′ = ay + f(x). We take the transform of both sides of y′ = ay + f(x) to find

ŷ′(k) = ây + f(k)

and then use the derivative property and linearity to have

ikŷ(k) = aŷ(k) + f̂(k).

This is the algebraic equation that ŷ(k) must solve—no more derivatives in here.
We rearrange this to

(ik − a)ŷ(k) = f̂(k).

If a 6= 0, then Re(ik− a) = −a 6= 0, so ik− a 6= 0 for all k ∈ C. Then we can solve for ŷ(k):

ŷ(k) =
f̂(k)

ik − a
.

29.11 Problem. If a = 0, then the division strategy above fails. Show that if y ∈ L1∩C1(R)

with y′ ∈ L and y′ = f(x) (it is redundant here to specify f ∈ L1), then f̂(0) = 0. This is
a “solvability condition” on f : under the assumptions on y, we cannot solve y′ = f(x) for
all f ∈ L1.

At this point we might use the inversion theorem to suggest that

y(x) =
1√
2π

∫ ∞
−∞

ŷ(k)eikx dk =
1√
2π

∫ ∞
−∞

f̂(k)

ik − a
eikx dk.

This is essentially what we did with the heat equation, and then we would study this inte-
gral intensely. However, the integral above looks nothing like any result from variation of
parameters, which suggests that we can do better.

One idea is to look more carefully at the integrand. Maybe we can find g ∈ L1 such that

ĝ(k) =
1

ik − a
,

and then the integral would be∫ ∞
−∞

f̂(k)ĝ(k)eikx dk =
√

2π

̂̂
fĝ(x).

Maybe there is something more profound that we can say about

̂̂
fĝ(x). How does the Fourier

transform interact with products?
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29.12 Problem. Explain why you should expect f̂ g(k) 6= f̂(k)ĝ(k) in general.

Day 30: Monday, October 21.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 435–436 discuss convolution.

We first take up the task of finding g ∈ L1 such that

ĝ(k) =
1

ik − a
.

Our approach is wholly nonrigorous: we fool around. This equation is equivalent to

ikĝ(k)− aĝ(k) = 1,

and the left side looks like a derivative relation:

ikĝ(k)− aĝ(k) = ĝ′(k)− âg(k) = ĝ′ − ag(k).

So, we would like
ĝ′ − ag(k) = 1. (30.1)

Now it looks like we are assuming that g ∈ C1pw(R) with g′ ∈ L1, but, remember, we are
only fooling around. The identity (30.1) reads∫ ∞

−∞
(g′(x)− ag(x))e−ikx dx =

√
2π.

As they say, “if it moves, differentiate it.” Differentiate both sides with respect to k and pass
the derivative through the integral (why not? we are just fooling around) to find∫ ∞

−∞
x(g′(x)− ag(x))e−ikx dx = 0. (30.2)

Put q(x) := x(g′(x)− ag(x)). Then (30.2) says

q̂(k) = 0

for all k, and, notwithstanding our disappointments with the inverse transform, we want this
to imply q(x) = 0 for all x. Thus, maybe,

x(g′(x)− ag(x)) = 0

for all x, so for x 6= 0,
g′(x) = ag(x).
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Then g(x) = g(0)eax, right? But, for g(0) 6= 0, such g explode at ±∞ (depending on the
sign of a), and so g 6∈ L1. Maybe, however, the elimination of x = 0 from consideration
above gives us an idea. We do not need g ∈ C1(R) to have g ∈ L1. What if we “break” the
exponential where it starts to explode?

For simplicity, assume from now on that a > 0. Put

E+
a (x) :=

{
eax, x < 0

0, x ≥ 0.

Then E+
a ∈ C1pw(R) and in fact E+

a is differentiable everywhere except at x = 0 with

(E+
a )′(x) =

{
aeax, x < 0

0, x > 0
= aE+

a (x).

So, E+
a seems to be doing what we expect from our very dodgy formal manipulations above.

Now we check that E+
a actually does what we want.

30.1 Problem. Using only the definitions of L1 and the Fourier transform, show that
E+
a ∈ L1 and

Ê+
a (x) =

1√
2π

(
1

a− ik

)
.

It then follows from our previous work that if y′ = ay + f(x) with y, y′, f ∈ L1, then

ŷ(k) =
f̂(k)

ik − a
= −
√

2πf̂(k)Ê+
a (k).

So, what is going on with the product of those transforms?
Start with f , g ∈ L1. Then

2πf̂(k)ĝ(k) =

(∫ ∞
−∞

f(x)e−ikx dx

)(∫ ∞
−∞

g(y)e−iky dy

)
.

We have collected those insistent, persistent factors of
√

2π on the left, and we have written
different variables of integration for the different integrals—this is just good mathematical
grammar. Since the integrals are numbers, we can move one inside the other by linearity:

2πf̂(k)ĝ(k) =

∫ ∞
−∞

(∫ ∞
−∞

f(x)e−ikx dx

)
g(y)e−iky dy =

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)e−ik(x+y) dx dy.

We want to see a single Fourier transform pop out of all this. It would be nice if the
exponential did not depend on both x and y, so we substitute s = x+ y with x = s− y and
ds = dx in the inner integral to find∫ ∞

−∞
f(x)g(y)e−ik(x+y) dx =

∫ ∞
−∞

f(s− y)g(y)e−iks ds.
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Then
2πf̂(k)ĝ(k) =

∫ ∞
−∞

∫ ∞
−∞

f(s− y)g(y)e−iks ds dy.

If we could get that e−iks out by itself, the double integral would look more like a Fourier
integral. We can accomplish this by interchanging the order of integration—a perilous Fu-
bination for a doubly improper integral:∫ ∞

−∞

∫ ∞
−∞

f(s− y)g(y)e−iks ds dy =

∫ ∞
−∞

∫ ∞
−∞

f(s− y)g(y)e−iks dy ds.

30.2 Theorem. [Fubini, highly specialized] This works. More precisely let f , g ∈ L1 and
let a ∈ Cpw(R) with a bounded (there is M > 0 such that |a(s)| ≤M for all s ∈ R). Then∫ b

a

∫ d

c

f(x− y)g(y)h(x) dx dy =

∫ d

c

∫ b

a

f(x− y)g(y)h(x) dy dx

for −∞ ≤ a ≤ b ≤ ∞ and −∞ ≤ c ≤ d ≤ ∞.

We take the version of Fubini above for granted and will not prove it. Thus

2πf̂(k)ĝ(k) =

∫ ∞
−∞

∫ ∞
−∞

f(s− y)g(y)e−iks dy ds =

∫ ∞
−∞

(∫ ∞
−∞

f(s− y)g(y) dy

)
e−iks ds.

The inner integral on the right has a special name.

30.3 Theorem. Let f ∈ L1 and g ∈ Cpw(R) with g bounded. Then the convolution of
f and g,

(f ∗ g)(x) :=

∫ ∞
−∞

f(x− y)g(y) dy,

converges for each x ∈ R.

30.4 Problem. Prove this theorem with the comparison test. Then show that f ∗g = g∗f
by substituting.

In our toy problem, we have assumed f ∈ L1 from the start, and now we are working
with g = E+

a , which is definitely bounded, so the boundedness hypothesis in the definition of
convolution does not restrict us here. We have shown, more generally, that (after changing
variables from s back to x)

2πf̂(k)ĝ(k) =

∫ ∞
−∞

(f ∗ g)(x)e−ikx dx,

but that seems to be presuming f ∗ g ∈ L1, no?
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30.5 Theorem. No. (Yes?) Let f , g ∈ L1 and suppose that at least one of these functions
is bounded. Then f ∗ g ∈ L1 and

‖f ∗ g‖L1 ≤ ‖f‖L1 ‖g‖L1 .

30.6 Problem. Prove this theorem as follows. First, the hypotheses guarantee that f ∗ g
is defined on R. Next, fix R > 0. Use the triangle inequality and Fubini’s theorem and fill
in the details of the following estimates:∫ R

−R
|(f ∗ g)(x)| dx ≤

∫ ∞
−∞

∫ R

−R
|f(x− y)||g(y)| dx dy ≤ ‖f‖L1 ‖g‖L1 .

Then apply part (iii) of Problem 21.12.

Embiggened by this result, we have

f̂(k)ĝ(k) =
1√
2π

(
1√
2π

∫ ∞
−∞

(f ∗ g)(x)e−ikx dx

)
=
f̂ ∗ g(k)√

2π
.

This is the answer to our question of how the Fourier transform interacts with products.

30.7 Theorem. Let f , g ∈ L1 with at least one of these functions bounded. Then

f̂(k)ĝ(k) =
f̂ ∗ g(k)√

2π
.

Now we use the Fourier transform, once and for all, and faster, on our toy problem
y′ = ay + f(x). Once more, we are assuming that y ∈ C1(R) actually solves this ODE (not
a big deal, since we do know how to solve it!) with y, y′ ∈ L1. Then

ŷ(k) = −
√

2πf̂(k)Ê+
a (k) = −

√
2π

(
1√
2π

)
f̂ ∗ E+

a (k) = −f̂ ∗ E+
a (k).

This strongly suggests that a solution candidate should be

y(x) = −(f ∗ E+
a )(x).

We work on this convolution:

(f ∗ E+
a )(x) =

∫ ∞
−∞

f(x− y)E+
a (y) dy =

∫ 0

−∞
f(x− y)eay dy = −

∫ x

∞
f(s)ea(x−s) ds

after substituting s = x− y with y = x− s and ds = −dy. Thus

(f ∗ E+
a )(x) = eax

∫ ∞
x

e−asf(s) ds,
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and so the solution to y′ = ay + f(x) should be

y(x) = −eax
∫ ∞
x

e−asf(s) ds. (30.3)

Actually checking this is not too hard with the product rule and FTC1, which still works
for improper integrals.

More interesting might be the question of why the Fourier transform (laboriously) only
gave us one solution to y′ = ay+f(x). We never specified an initial condition, so we might be
expecting an arbitrary constant somewhere in the solution. Where is it? To use the Fourier
transform, we presumed y ∈ C1(R) with y, y′ ∈ L1. That forces limx→±∞ y(x) = 0. The
long-ago Example 4.1 told us that the only solution to y′ = ay+ f(x) with limx→∞ y(x) = 0
has exactly this form (30.3). The Fourier transform will not necessarily yield all solutions
to a differential equation because legitimate application of the transform presumes decay at
spatial infinity.

30.8 Problem. Redo the Fourier analysis of y′ = ay+ f(x) assuming a < 0 and using the
function

E−a (x) :=

{
0, x < 0

eax, x ≥ 0.

Use the now-developed machinery of convolutions to streamline your response—no need
for all of the asides as developed above. [Hint: you will need a formula for Ê−a (k) when
a < 0. Can you possibly relate this to the existing formula for Ê+

−a(k)?]

Day 31: Wednesday, October 23.

Here is an abstract situation that arises in practice with the heat equation. We need one
more function space.

31.1 Definition. A function f ∈ Cpw(R) is bounded if there exists C > 0 such that
|f(x)| ≤ C for all x in the domain of f . The set of all bounded functions is L∞.

31.2 Problem. Prove that L∞ is a vector space in the sense that f+g ∈ L∞ and αf ∈ L∞
for all f , g ∈ L∞ and α ∈ C.

31.3 Problem. Give an example of f ∈ L1 such that f 6∈ L∞. [Hint: f can be mostly 0,
except where it is not 0.]

We would like to put a norm on L∞ by

‖f‖∞ := max
x∈R
|f(x)|.

The problem is that a (piecewise) continuous function may be bounded and yet never attain
a maximum on R; think of arctan or f(x) = 1− sech(x) = 1− 2/(ex + e−x). The real norm
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on L∞ comes from replacing max by sup, which requires just a little too much real analysis
for this course.

Back to Fourier business. Let m, f ∈ L1 with at least one of m, f in L∞. Then the
convolution g := m ∗ f is defined and g ∈ L1. Moreover, ĝ = m̂f̂/

√
2π. We know f̂ ∈ L∞ by

basic Fourier transform properties; suppose also that m is so nice that m̂ ∈ L1. Then by the
comparison test m̂f̂ ∈ L1, and so ĝ ∈ L1. Suppose, somehow, that we know that g ∈ C1(R).
Then Fourier inversion shows g =

̂̂
g, equivalently, g(x) = ̂̂g(−x). Since ĝ ∈ L1, its transform̂̂g vanishes at infinity. That is, we have shown

lim
x→±∞

(m ∗ f)(x) = 0.

Here is how this applies to the heat equation. We know that if f ∈ L∞, then the only
solution to {

ut = uxx, x ∈ R, t > 0

u(x, 0) = f(x), x ∈ R

satisfies

u(x, t) =

∫ ∞
−∞

H(x− y, t)f(y) dy, H(s, t) =
e−s

2/4t

√
4πt

, s ∈ R, t > 0.

This looks like “convolution in space”:

u(x, t) = (H(·, t) ∗ f)(x).

For t > 0 fixed, the function H(·, t) is superbly nice: we have H(·, t) ∈ L1 ∩ L∞ and
Ĥ(·, t) ∈ L1 since Ĥ(·, t) is “basically” another Gaussian like H. Also, differentiating under
the integral (which we still need to check implies that u(·, t) ∈ C1(R). So, with t > 0 fixed
and m = H(·, t), the work above tells us that limx→±∞ u(x, t) = 0. This resembles the result
of Problem 24.6 with the limit now in space rather than time.

31.4 Problem. Let f ∈ L1 ∩ C1(R) with f̂ ∈ L1. Prove that f ∈ L∞ and find C > 0 such
that |f(x)| ≤ C for all x ∈ R. [Hint: Fourier inversion.]

Day 32: Friday, October 25.

You took Exam 2.

Day 33: Monday, October 28.

We know well that

u(x, t) := (H(·, t) ∗ f)(x), H(s, t) :=
e−s

2/4t

√
4πt
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solves the heat equation{
ut = uxx, (x, t) ∈ D
u(x, 0) = f(x),

D :=
{

(x, t) ∈ R2
∣∣ x ∈ R, t > 0

}
.

We have only required f ∈ L1 ∪ L∞ for the convolution H(·, t) ∗ f to be defined for t > 0.
Since we presume no differentiability of u at t = 0, we have not said anything about the
requisite regularity of f . It turns out that is not too important.

33.1 Example. Let

f(x) :=

{
1, |x| ≤ 1

0, |x| > 1.

This f is decidedly discontinuous. But since f(y) = 0 for |y| > 1, we have

u(x, t) := (H(·, t) ∗ f)(x) =

∫ 1

−1
H(x− y, t) dy =

1√
4πt

∫ 1

−1
e−(x−y)

2/4t dy.

Now u is a very nice function; the integrand meets all of the hypotheses for Leibniz’s rule
for definite integrals, and, repeatedly differentiating under the integral, we find u ∈ C∞(D).
That is, the solution u is vastly smoother than the initial data f .

The situation above is really a more general consequence of convolution. Suppose that
f ∈ L1 and g ∈ L∞, so f ∗ g is defined. Suppose further that f ∈ C1(R) and f ′ ∈ L1; then
f ′ ∗ g is defined, and we would expect from differentiation under the integral that

(f ∗ g)′(x) = ∂x

[∫ ∞
−∞

f(x− y)g(y) dy

]
=

∫ ∞
−∞

∂x[f(x− y)g(y)] dy =

∫ ∞
−∞

f ′(x− y)g(y) dy

= (f ′ ∗ g)(x).

Here is another reason why we would expect (f ∗ g)′ = f ′ ∗ g. Suppose f , g ∈ L1,
f ∈ C1(R), f ′ ∈ L1, and g ∈ L∞. Then, again, both f ∗ g and f ′ ∗ g are defined, and both
are in L1 with

f̂ ′ ∗ g(k) =
√

2πf̂ ′(k)ĝ(k) =
√

2πikf̂(k)ĝ(k) = ik
(√

2πf̂(k)ĝ(k)
)

= ikf̂ ∗ g(k) = ̂(f ∗ g)′(k).

This is not a proof that f ∗ g is differentiable, but the putative equality f̂ ′ ∗ g = ̂(f ∗ g)′ does
lead us to expect (f ∗ g)′ = f ′ ∗ g.

It happens that we have omitted an argument in our study of convolutions: to have
f ∗ g ∈ L1, we need f ∗ g ∈ Cpw(R). We never proved this, but we can get better: if f ∈ L1

and g ∈ L∞, then f ∗ g ∈ C(R). That is, convolution of piecewise continuous functions is
genuinely continuous.

33.2 Theorem. If f ∈ L1 and g ∈ L∞, then f ∗ g ∈ C(R).



Day 33: Monday, October 28 127

Proof. Fix x ∈ R It suffices to show

lim
h→0

(f ∗ g)(x+ h) = (f ∗ g)(x).

We consider the difference

(f ∗ g)(x+ h)− (f ∗ g)(x) =

∫ ∞
−∞

f(x+ h− y)g(y) dy −
∫ ∞
−∞

f(x− y)g(y) dy

=

∫ ∞
−∞

[
f(x+ h− y)− f(x− y)

]
g(y) dy.

Then we estimate

|(f∗g)(x+h)−(f∗g)(x)| ≤
∫ ∞
−∞

∣∣[f(x+h−y)−f(x−y)
]
g(y)

∣∣ dy ≤ C

∫ ∞
−∞

∣∣f(x−y+h)−f(x−y)
∣∣ dy,

where C > 0 is such that |g(y)| ≤ C for all y ∈ R. Substitute s = x− y above to find

|(f∗g)(x+h)−(f∗g)(x)| ≤ C

∫ ∞
−∞
|f(s+h)−f(s)| dy = C

∥∥Shf − f∥∥
L1 , (Shf)(s) := f(s+h).

It turns out that
lim
h→0

∥∥Shf − f∥∥
L1 = 0

for any f ∈ L1. Here are some pictures to suggest why this is true.

x

f(x)
f(x+ h)

x

f(x+ h)− f(x)

The idea is that for h small, the graphs of f and Shf are so close that they have roughly the
same area underneath. The closeness of the graphs of Shf and f “far away” from the origin
in the first picture also indicates the proof strategy of showing limh→0

∥∥Shf − f∥∥
L1 = 0:

split the integral into three integrals over (−∞,−M ], [−M,M ], and [M,∞), where M > 0
is large enough so that the integrals over (−∞,−M ] and [M,∞) are very small, and then
exploit the piecewise continuity of f on [−M,M ] to take h small enough that the integral
over [−M,M ] is very small. �
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33.3 Problem. For r > 0, let

χ(x, r) :=

{
1, |x| ≤ r

0, |x| > r.
(33.1)

Let f ∈ L1. Explain why (f ∗ χ(·, r))(x)/2r is the average value of f on [x − r, x + r],
and so we can view convolution as (up to a constant factor) an “averaging” operation, in
addition to sometimes a “smoothing” one.

We do one more application of the Fourier transform to solving PDE and rederive D’Alembert’s
formula

u(x, t) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds

for the wave equation 
utt = uxx, x, t ∈ R
u(x, 0) = f(x), x ∈ R
ut(x, 0) = g(x), x ∈ R.

Of course, the goal is not to see another derivation of D’Alembert’s formula so much as to
see the Fourier transform in action.

Taking the Fourier transform, we arrive at the ODE for û(k, ·):
∂2t [û](k, t) + k2û(k, t) = 0

û(k, 0) = f̂(k)

∂t[û](k, 0) = ĝ(k).

This is a more notationally complicated version of the problem
y′′ + k2y = 0

y(0) = y0

y′(0) = y1,

and the solution to that is

y(t) = y0 cos(kt) + y1t sinc(kt), sinc(τ) :=

{
sin(τ)/τ, τ 6= 0

1, τ = 0.

33.4 Problem. Check that. This is a little different from the similar-looking result in
Problem 5.5, as here we are not necessarily assuming k 6= 0.

With that ODE result, we have

û(k, t) = f̂(k) cos(kt) + ĝ(k)t sinc(kt),
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and so Fourier inversion suggests the candidate solution

u(x, t) =
1√
2π

∫ ∞
−∞

û(k, t)eikx dk =
1√
2π

∫ ∞
−∞

f̂(k) cos(kt)eikx dk+
1√
2π

∫ ∞
−∞

ĝ(k)t sinc(kt)eikx dk.

We examine each term on the right separately.
First, we use the complex form of the cosine,

cos(τ) =
eiτ + e−iτ

2
,

to express

1√
2π

∫ ∞
−∞

f̂(k) cos(kt)eikx dk =
1

2

(
1√
2π

∫ ∞
−∞

f̂(k)eik(x+t) dk

)
+

1

2

(
1√
2π

∫ ∞
−∞

f̂(k)eik(x−t) dk

)
,

and then Fourier inversion gives

1√
2π

∫ ∞
−∞

f̂(k) cos(kt)eikx dk =
f(x+ t) + f(x− t)

2
.

This is the first term in Duhamel’s formula, so we are on the right track.
The second term in our candidate solution is

1√
2π

∫ ∞
−∞

ĝ(k)t sinc(kt)eikx dk =
1

2

[∫ ∞
−∞

ĝ(k)

(
2t sinc(kt)√

2π

)
eikx dk

]
=

1

2

∫ ∞
−∞

ĝ(k)χ̂(k, t)eikx dk,

where χ was defined in (33.1) and its Fourier transform was calculated in Example 28.11.
That is,

1√
2π

∫ ∞
−∞

ĝ(k)t sinc(kt)eikx dk =

√
2π

2

(
1√
2π

∫ ∞
−∞

ĝ(k)χ̂(k, t)eikx dk

)
=

√
2π

2

̂

ĝχ̂(·, t)(x).

Recall that for functions φ and ψ, we have the general relation

φ̂ ∗ ψ =
√

2πφ̂ψ̂

and so we expect

φ ∗ ψ =

̂

φ̂ ∗ ψ =
√

2π

̂̂
φψ̂.

Thus the second term in the candidate solution should be

1√
2π

∫ ∞
−∞

ĝ(k)t sinc(kt)eikx dk =
(g ∗ χ(·, t))(x)

2
.

33.5 Problem. Use the definition of convolution and the definition of χ in (33.1) to show,
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as expected from D’Alembert’s formula, that

(g ∗ χ(·, t))(x)

2
=

1

2

∫ x+t

x−t
g(s) ds.

Day 34: Wednesday, October 30.

Material from Basic Partial Differential Equations by Bleecker & Csordas

The examples on pp. 683–684 suggest that we cannot naively differentiate under the
integral all the time. Pages 684–687 discuss dominated convergence; this is wholly
optional. Pages 687–689 discuss differentiating under the integral—note the remark at
the top of p. 689 on piecewise continuity. Pages 339–340 provide a concise historical
overview of Laplace’s equation. Pages 342–343 discuss steady-state solutions to heat
and wave.

The time has come to pay our dues and think seriously about differentiating under the
integral. For a long time, we have blithely assumed that we can do this, and when we could,
it proved things like solutions to the heat equation given by convolution, and smoothing of
initial data. Why does this work?

Here is the broad situation. We have an interval I ⊆ R, and we put

D :=
{

(h, τ) ∈ R2
∣∣ h ∈ I, τ ∈ R

}
.

And we have a function q : D → C. The unusual choice of variables here will pay off shortly.
For some h0 ∈ I, we want to say

lim
h→h0

∫ ∞
−∞

q(h, τ) dτ =

∫ ∞
−∞

lim
h→h0

q(h, τ) dτ. (34.1)

What do we need first for this equality to make sense and second for it to be true?
Of course, the integrals must be defined and the limit on the right must exist. So, we

want q(h, ·) ∈ L1 for all h ∈ I, and we want the limit

Q(τ) := lim
h→h0

q(h, τ)

to exist for all τ ∈ R, and we want Q ∈ L1. Is this enough to guarantee that the limit on
the left exists and the equality (34.1) is true?

34.1 Problem. No. Let

q(h, τ) :=


1,

1

|h|
≤ τ <

2

|h|
, h 6= 0, τ ∈ R

0, otherwise.
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(i) To get a feel for q, first graph q(1, ·), q(1/2, ·), and q(1/4, ·).

(ii) Show limh→0 q(h, τ) = 0 for any τ ∈ R. [Hint: what happens if |h| is small enough that
τ < 1/|h|?]

(iii) Compute
∫∞
−∞q(h, τ) dτ and show that limh→0

∫∞
−∞q(h, τ) dτ =∞.

(iv) Explain why there exists no M ∈ L1 such that |q(h, τ)| ≤ |M(τ)| for all (h, τ) ∈ R2.
[Hint: given τ > 0, compute q(1/τ, τ) and conclude |M(τ)| ≥ 1 when τ > 0. Alternatively,
use the previous part to get a lower bound on ‖M‖L1 in terms of |h|; what happens as
h→ 0?]

34.2 Problem. And no. Let

q(h, τ) :=


1,

1

|h|
≤ τ <

1

|h|
+ 1, h 6= 0, τ ∈ R

0, otherwise.

(i) To get a feel for q, first graph q(1, ·), q(1/2, ·), and q(1/4, ·).

(ii) Show limh→0 q(h, τ) = 0 for any τ ∈ R. [Hint: again, what happens if |h| is small
enough that τ < 1/|h|?]

(iii) Compute
∫∞
−∞q(h, τ) dτ and show that limh→0

∫∞
−∞q(h, τ) dτ = 1.

(iv) Explain why there exists no M ∈ L1 such that |q(h, τ)| ≤ |M(τ)| for all (h, τ) ∈ R2.
[Hint: again, given τ > 0, compute q(1/τ, τ) and conclude |M(τ)| ≥ 1 when τ > 0.]

We need an extra hypothesis on q, which might feel vaguely reminiscent of the “trapping”
or “dominating” behavior of the comparison test. The right thing to assume is the existence
of M ∈ L1 such that |q(h, τ)| ≤ |M(τ)| for all (h, τ) ∈ D. (Indeed, assuming this makes the
hypothesis q(h, ·) ∈ L1 unnecessary by the comparison test!)

Here is the technical result.

34.3 Theorem (Dominated convergence). Let I ⊆ R be an interval, let D :={
(h, τ) ∈ R2

∣∣ h ∈ I, τ ∈ R
}
, let h0 ∈ I, and let q : D → C be a function with the fol-

lowing properties.

(i) q(h, ·) ∈ Cpw(R) for each h ∈ I.

(ii) The limit Q(τ) := limh→h0 q(h, τ) exists for all τ ∈ R.

(iii) Q ∈ Cpw(R).

(iv) There is M ∈ L1 such that |q(h, τ)| ≤ |M(τ)| for all (h, τ) ∈ D.
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Then
lim
h→h0

∫ ∞
−∞

q(h, τ) dτ =

∫ ∞
−∞

lim
h→h0

Q(τ) dτ.

34.4 Problem. (i) Let f ∈ L1 and g ∈ L∞. Theorem 33.2 tells us that f ∗g is continuous.
Why does dominated convergence not prove this? [Hint: f and g may only be piecewise
continuous.]

(ii) We previously claimed that with H(s, t) = e−s
2/4t/
√

4πt and f ∈ L1 ∪ L∞, we had
limt→0+(H(·, t) ∗ f)(x) = f(x). Why does dominated convergence not prove this? (By the
way, Theorem 34.3 still works if h0 is an endpoint of I and the limit limh→h0 is replaced
with limh→h+0

or limh→h−0
, so say something more profound than “It’s the wrong kind of

limit.”)

We now apply this to give precise hypotheses on when differentiating under an improper
integral is valid. Now we take an interval I ⊆ R and, changing notation slightly, put
D :=

{
(s, τ) ∈ R2

∣∣ s ∈ I, τ ∈ R
}
. Let f : D → C, f = f(s, τ), be a function; we want

∂s

[∫ ∞
−∞

f(s, τ) dτ

]
=

∫ ∞
−∞

fs(s, τ) dτ.

For each side even to make sense, this demands that fs exists on D, that f(s, ·) ∈ L1 for all
s ∈ I, and that fs(s, ·) ∈ L1. This equality is really saying

lim
h→0

∫ ∞
−∞

f(s+ h, τ)− f(s, τ)

h
dτ =

∫ ∞
−∞

lim
h→0

f(s+ h, τ)− f(s, τ)

h
dτ

for all s ∈ I (where the hypothesis f(s, ·) ∈ L1 for all s ∈ I ensures that the integrals are
defined). So, for s ∈ I fixed, we want to interchange the limit as h→ 0 with

q(h, τ) :=

{
[f(s+ h, τ)− f(s, τ)]/h, h 6= 0, τ ∈ R
fs(s, τ), h = 0, τ ∈ R.

We are thinking now of q defined for h ≈ 0 (how close depending on s) and τ ∈ R.
We check the hypotheses of dominated convergence. Since f(s, ·) ∈ L1 for all s, so

also f(s, ·) ∈ Cpw(R), so q(h, ·) ∈ Cpw(R). Since fs is defined on D, the limit fs(s, τ) =
limh→0 q(h, τ) exists for all τ, and since fs(s, ·) ∈ L1, we also have fs(s, ·) ∈ Cpw(R). All that
is missing is a dominating function, and we claim that we just need to dominate fs.

That is, suppose there exists M ∈ L1 such that |fs(s, τ)| ≤ |M(τ)| for all (s, τ) ∈ D. We
claim that |q(h, τ)| ≤ |M(τ)| for h ≈ 0 and τ ∈ R, and we really only need to show this for
h 6= 0. So, fix σ ∈ I, τ ∈ R, and h 6= 0 small relative to σ. Then

q(h, τ) =
f(σ + h, τ)− f(σ, τ)

h
=

1

h

∫ σ+h

σ

fs(s, τ) ds,
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and so we estimate (if h > 0; if h < 0 we just flip the limits of integration)

|q(h, τ)| ≤ 1

h

∫ σ+h

σ

|fs(s, τ)| ds ≤ 1

h

∫ σ+h

σ

|M(τ)| ds =
1

h
(σ + h− σ)|M(τ)| = |M(τ)|.

We have therefore checked all of the hypotheses of dominated convergence.
Here is our streamlined result.

34.5 Theorem (Differentiating under the integral for improper integrals). Let I ⊆ R
be an interval, let D :=

{
(s, τ) ∈ R2

∣∣ s ∈ I, τ ∈ R
}
, and let f : D → C be a function with

the following properties.

(i) f(s, ·) ∈ L1 for all s ∈ I.

(ii) fs exists on D.

(iii) fs(s, ·) ∈ Cpw(R) for all s ∈ I.

(iv) There exists M ∈ L1 such that |fs(s, τ)| ≤ |M(τ)| for all (s, τ) ∈ D.

Then
∂s

[∫ ∞
−∞

f(s, τ) dτ

]
=

∫ ∞
−∞

fs(s, τ) dτ.

We apply this to check over differentiating a convolution. Recall that for f ∗ g to be
defined, we need to assume either f ∈ L1 and g ∈ L∞, or f ∈ L∞ and g ∈ L1. If f ∈ C1(R),
we expect (f ∗ g)′ = f ′ ∗ g, so we need to assume either f ′ ∈ L1 and g ∈ L∞ or f ′ ∈ L∞
and g ∈ L1. Put F (x, g) := f(x − y)g(y), so (f ∗ g)(x) =

∫∞
−∞F (x, y) dy. To differentiate

under the integral, we need to dominate |Fx(x, y)| ≤ |M(y)| for some M ∈ L1. Since
Fx(x, y) = f ′(x − y)g(y), we can take M = Cg if we assume g ∈ L1 and f ′ ∈ L∞ with
|f ′(s)| ≤ C for all s ∈ R.

34.6 Problem. This may feel a little less general than our initial possibility that f ∗ g is
defined when f ∈ L1 and g ∈ L∞. The pesky problem is that f ′ is evaluated at x − y;
if g ∈ L∞, there is really no way to guarantee |f ′(x − y)| ≤ |M(y)| for all x, y ∈ R with
M ∈ L1. In fact, show that if |f ′(x−y)| ≤ |M(y)| for all x, y ∈ R, then |f ′(s)| ≤ |M(t)| for
all s, t ∈ R. This would be a very strong domination condition on f ′, one that is probably
too hard to check in practice.

Here is the technical result on differentiating convolution.

34.7 Theorem. Let f ∈ L∞ ∩ C1(R) with f ′ ∈ L∞, and let g ∈ L1. Then f ∗ g ∈ C1(R)
with (f ∗ g)′ = f ′ ∗ g.

We might call this the “smoothing” property of convolution: g can be a very “bad”
function—possibly nowhere differentiable (such functions do exist!) but still piecewise continuous—
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and yet, if f is differentiable, then so is f ∗ g.

34.8 Problem. The discussion above proves almost all of Theorem 34.7. Under the hy-
potheses of that theorem, explain why f ′ ∗ g ∈ C(R). [Hint: Theorem 33.2.]

34.9 Problem. Let D :=
{

(s, t) ∈ R2
∣∣ s ∈ R, t > 0

}
. With H(s, t) = e−s

2/4t/
√

4πt de-
fined on D, set u(x, t) := (H(·, t) ∗ f)(x) with f ∈ L1. Prove that u ∈ C∞(D) by checking
that the hypotheses of Theorem 34.7 are met for the x-derivatives and by using Theorem
34.5 for the t-derivatives. [Hint: to make things easier for the t-derivatives, ignore the
factor of 1/

√
4πt, since that can factor out of the integral; to get a good bound on the

integrand, prove differentiability for t ∈ [1/n,∞) with n ≥ 1.]

34.10 Problem. What additional hypothesis on f ∈ L1 guarantees f̂ ∈ C1(R)?

We now proceed to take up the last of the major linear PDE of the course: Laplace’s
equation. Recall that transport, wave, and heat read

ut + ux = 0, utt − uxx = 0, and ut − uxx = 0.

Transport and wave are, in a certain sense, symmetric in x and t; interchanging the order
of the variables (u(x, t) or u(t, x)) really results in an equivalent problem. That is certainly
not the case in heat, due to the imbalanced derivatives. But wave and heat are alike in that
one variable is “privileged” over the other: one variable comes with a negative sign, and so
there is a moral distinction between the time and the space variables.

Laplace’s equation is unlike these preceding three problems. Written incorrectly, it is

uxx + utt = 0,

so there is still a transport/wave-type symmetry in the variables, but neither is “privileged”
over the other with a negative sign. Written correctly (as no one uses time for a variable in
Laplace’s equation), it is

uxx + uyy = 0,

and we think of both x and y as spatial coordinates in R2. Thus Laplace’s equation will
expose us to some more geometric and topological tools than its predecessor.

Here is one reason to care about Laplace’s equation. The two-dimensional generalizations
of the wave and heat equations (think of a surface vibrating or a stovetop being heated) are

utt = uxx + uyy and ut = uxx + uyy,

respectively. Perhaps one is interested in steady-state solutions u, which are inde-
pendent of time: ut = 0 and thus utt = 0. Such solutions depend only on spatial behavior,
and so the 2D steady-state wave and heat equations both reduce to Laplace’s equation:
uxx + uyy = 0.

We call the operator
∆u := uxx + uyy
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the Laplacian, and if ∆u = 0, then we say that u is harmonic. While we will find some
concrete solutions to Laplace’s equation, meaningful solutions often depend in a complicated
way on the geometry of the underlying domain of the desired solution, and we will not have
as neat formulas as we do for transport and wave, or even heat. Instead, our interest will
be in learning about properties of harmonic functions, and especially how those properties
require us to learn more about the geometry and topology of R2.

Day 35: Friday, November 1.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 473–474 solve Laplace’s equation in the upper half-plane via the Fourier trans-
form. Problem 7 on p. 394 discusses some of the challenges in differentiating the
candidate solution. Example 1 on p. 341 presents the radial solution to Laplace’s
equation for n = 2; Example 1 on pp. 24–25 does it for n = 3; and the remarks on p.
26 generalize this to n dimensions.

As a first example, we solve a version of Laplace’s equation with the Fourier transform.
We do this really for more practice with Fourier transforms and some ODE concepts than
for any deep insight into Laplace’s equation.

35.1 Example. Consider the problem{
∆u = 0, x ∈ R, y > 0

u(x, 0) = f(x), x ∈ R, y = 0.
(35.1)

This asks us to solve Laplace’s equation on the upper half-plane
{

(x, y) ∈ R2
∣∣ y > 0

}
with “boundary” data specified at y = 0 via f . Since the spatial variable x can be any
number in R, we take the Fourier transform in x and obtain an ODE in y for the transform:{

∂2y [û](k, y)− k2û(k, y) = 0

û(k, 0) = f̂(k).

As usual, this might look more familiar as an ODE if we recast it in different notation:{
z′′(y)− k2z(y) = 0

z(0) = f̂(k).

We will only solve this for k 6= 0, as when we formally invert the transform to get a
candidate solution, the Fourier integral will not care about the value of û(k, y) at k = 0.
At the very least, then, for k 6= 0 we can say z(y) = c1(k)eky +c2(k)e−ky for some constants
c(k) and c2(k); here we are thinking of k as a parameter in the problem. The challenge
is that we have only one initial condition, but this is a second-order ODE. Nothing is
specifying z′(0).
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However, we do have some extra structure underlying our assumptions. Namely, we
expect û(·, y) ∈ L∞: for each y > 0, there should be M(y) > 0 such that if k ∈ R, then
|û(k, y)| ≤M(y). The problem is that the term c1(k)eky can be unbounded for k > 0, and
likewise the term c2(k)e−ky can be unbounded for k < 0, unless we have further control on
c1(k) and c2(k). (We might try c1(k) = e−ky, but c1 is not allowed to depend on y.)

The simplest solution is brute force: we choose c1 and c2 to “turn off” the problematic
exponentials at the problematic values of k. That is, we take c1(k) = 0 for k > 0 and
c2(k) = 0 for k < 0. Then

z(y) = c1(k)eky + c2(k)e−ky =

{
c2(k)e−ky, k > 0

c1(k)eky, k < 0.

We can write this more compactly as

z(y) =

{
c2(k)e−|k|y, k > 0

c1(k)e−|k|y, k < 0
= c(k)e−|k|y, k 6= 0, c(k) :=

{
c2(k), k > 0

c1(k), k < 0.

Then we need f̂(k) = z(0) = c(k).
Returning to the actual problem, we have deduced that if u solves Laplace’s equation

in the upper half-plane, then we should have û(k, y) = f̂(k)e−|k|y. It would be nice to
recognize the second factor as a transform, for the purposes of convolution, and, gloriously,
we can: if

g(x, y) :=
1√
2π

2y

x2 + y2
,

then ĝ(k, y) = e−|k|y. We discuss this more below. Thus

û(k, y) = ĝ(k, y)f̂(k) =
√

2π ̂g(·, y) ∗ f(k),

and so our candidate solution is

u(x, y) =
√

2π(g(·, y) ∗ f)(x) =
1

π

∫ ∞
−∞

y

(x− s)2 + y2
f(s) ds,

once the dust settles from some algebra.

With the formal work done, we can show that u as defined above actually solves (35.1).
Most of this is just careful work with differentiating under the integral, as we show below. It
can also be shown that limy→0+ u(x, y) = f(x), which is morally similar to the result (24.1)
for the heat equation (and technically just as involved).

35.2 Problem. Let f ∈ L1. For x ∈ R and y > 0, put

u(x, y) := (L(·, y) ∗ f)(x), L(x, y) :=
y

x2 + y2
.
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(i) Use Theorem 34.7 to check that u(·, y) is twice differentiable for all y > 0.

(ii) Fix x ∈ R. Let n ≥ 1 be an integer and let Dn :=
{

(y, s) ∈ R2
∣∣ y ≥ 1/n, s ∈ R

}
.

Use Theorem 34.5 to show that u(x, ·) is twice differentiable on Dn. (Note that s is now
the variable of integration, so in that theorem switch the roles of s and τ.)

(iii) Actually calculate uxx and uyy and show uxx + uyy = 0.

Now we start to study more deeply the geometry of Laplace’s equation.

35.3 Example. Since the variables x and y are “symmetric” in uxx + uyy = 0, we might
look for a solution that is also “symmetric” in x and y; in particular, such a solution should
satisfy u(x, y) = u(y, x). Possibly the most symmetric structure in R2 is a circle centered
at the origin, and so we look for solutions that are the same over circles. That is, u(x, y)

should only depend on the value of
√
x2 + y2, which is the distance from (x, y) to the

origin. Thus we posit

u(x, y) = f(r(x, y)), r(x, y) :=
√
x2 + y2,

where f ∈ C2((0,∞)), and we need to determine f . Since r is not differentiable at (0, 0),
we do not expect this u to be defined on or differentiable on all of R2.

We first compute

rx(x, y) =
1

2
√
x2 + y2

2x = x[r(x, y)]−1

and
rxx(x, y) = [r(x, y)]−1 − x[r(x, y)]−2rx(x, y) = [r(x, y)]−1 − x2[r(x, y)]−3.

Then
ux(x, y) = f ′(r(x, y))rx(x, y)

and so

uxx(x, y) = f ′′(r(x, y))[rx(x, y)]2 + f ′(r(x, y))rxx(x, y)

= f ′′(r(x, y))x2[r(x, y)]−2 + f ′(r(x, y))
(
[r(x, y)]−1 − x2[r(x, y)]−3

)
.

Of course, the y-partials are the same, with the factors of x replaced by y. Thus
uxx + uyy = 0 if and only if

f ′′(r)(x2 + y2)r−2 + f ′(r)
(
2r−1 − (x2 + y2)r−3

)
= 0,

where we have abbreviated r = r(x, y). Since r2 = x2 + y2, this becomes

f ′′(r) + f ′(r)(2r−1 − r−1) = 0,

and so
f ′′(r) + r−1f ′(r) = 0.
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Recall that we only want f ∈ C2((0,∞)). We are saying that f must satisfy

f ′′(
√
x2 + y2) + f ′(

√
x2 + y2)/

√
x2 + y2 = 0

for all (x, y) ∈ R2 \ {(0, 0)}; taking y = 0 and x > 0 means

f ′′(x) + x−1f ′(x) = 0.

This is an ODE for f , and the analysis in this paragraph is morally the same as finding
the ODE for a traveling wave profile (recall Example 13.1).

Rather than privilege x over y, we overwork our variables and take r to be the indepen-
dent variable of f ; thus we want to solve

f ′′(r) + r−1f ′(r) = 0.

This is a variable-coefficient second-order linear ODE—not the friendliest of beasts. How-
ever, if we put g(r) = f ′(r), then it becomes

g′(r) = −r−1g(r),

which is a separable ODE; it solution (fixing the initial value at r = 1, not r = 0, since
neither f nor g should be defined at r = 0) is

g(r) = g(1) exp

(∫ r

1

−ρ−1 dρ
)

= g(1)e− ln(r) = g(1)eln(r
−1) = g(1)r−1,

and so f must satisfy
f ′(r) = g(1)r−1,

thus
f(r) = g(1) ln(r) + f(1).

In more evocative notation,

u(x, y) := c1 ln(
√
x2 + y2) + c2

solves Laplace’s equation on R2 \ {(0, 0)} for any c1, c2 ∈ R.

35.4 Problem. Find all functions f ∈ C2((0,∞)) such that

u(x, y, z) := f(
√
x2 + y2 + z2)

solves uxx + uyy + uzz = 0 on R3 \ {(0, 0, 0)}. What changes in the analysis from the
preceding example does the inclusion of the variable z require?
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35.5 Problem. Prove the following rotational invariance of the Laplacian. Sup-
pose that u is harmonic on R2. Let a, b, θ ∈ R and define

U(X, Y ) := u(cos(θ)X + sin(θ)Y + a,− sin(θ)X + cos(θ)Y + b).

This change of coordinates may be easier to visualize as[
cos(θ) sin(θ)
− sin(θ) cos(θ)

](
X
Y

)
+

(
a
b

)
.

This is a rotation by the angle θ coupled with a shift by the vector (a, b). Prove that
∆U = 0. This is interpreted as the invariance of ∆ under rotations and affine translations.

Day 36: Monday, November 4.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Page 385 discusses elementary topology of R2. Theorem 1 on pp. 386–387 presents
the (weak) maximum principle with a proof different from ours in class (and the
one in the notes here is a bit of a refinement of that proof from class, anyway)—
the key difference is that the book proves it by contradiction. Theorem 4 on p. 391
is the (strong) maximum principle, and again the book’s proof is different—it uses
a supremum, whereas our proof used a covering lemma. Both tools require more
knowledge of analysis beyond our course. Read Example 3 on p. 356 and Example 3
on p. 388.

Because of the two-dimensional geometry underling ∆u := uxx + uyy = 0, there are
somewhat broader domains appropriate for u with Laplace’s equation than were available
for transport, wave, and heat. We gradually introduce some elementary topology of R2 to
manage those domains.

36.1 Definition. The open ball of radius r > 0 centered at (x0, y0) ∈ R2 is

B((x0, y0); r) :=
{

(x, y) ∈ R2
∣∣ (x− x0)2 + (y − y0)2 < r2

}
.

R

iR

(x0, y0)

r
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Open balls are immensely useful for controlling the geometry of certain subsets of R2.
In single-variable calculus, most of the interesting results occurred for functions defined on
open or closed intervals. Here is the two-dimensional analogue of open intervals.

36.2 Definition. A set D ⊆ R2 is open if for each (x, y) ∈ D, there is r > 0 such that
B((x, y); r) ⊆ D.

In single-variable calculus we also need to keep track of the endpoints of open intervals:
the points a and b function as the “boundary” of (a, b) in the sense that perturbing even
slightly from a or b lands one either in (a, b) or in R \ (a, b).

36.3 Definition. Let D ⊆ R2. The boundary of D is the set of all points (x, y) ∈ R2

such that for every r > 0, both

B((x, y); r) ∩ D 6= ∅ and B((x, y); r) ∩ (R2 \ D) 6= ∅.

We denote the boundary of D by ∂D.

The interval (a, b) is open, but when we include the boundary points and turn it into
[a, b], it becomes closed.

36.4 Definition. The closure of D ⊆ R2 is D := D ∪ ∂D.

The closure is a key component of the extreme value theorem, which we previously used
for a very anodyne subset of R2 in the maximum principle for the heat equation. We review it
more carefully here since Laplace’s equation can involve much more complicated geometries.

First, recall that both kinds of intervals (a, b) and [a, b] are (at least for a, b ∈ R)
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bounded—nothing can be all that large in those intervals.

36.5 Definition. A set D ⊆ R2 is bounded if there exists R > 0 such that D ⊆
B((0, 0);R).

x

y

Here are some comforting and useful results.

36.6 Problem. Let D ⊆ R2.

(i) Prove that if D is open, then D ∩ ∂D = ∅, and consequently D 6= D.

(ii) Prove that D is bounded if and only if D is bounded.

These results are comforting because we should expect them from our one-dimensional
intuition. The first is particularly useful because it ensures that we can specify the behavior
of a function defined on D separately on D and ∂D and not have any conflicting overlap; in
particular, we can pose the so-called Dirichlet problem for Laplace’s equation as{

∆u = 0 on D
u(x, y) = f(x, y) on ∂D,

for D ⊆ R2 open, with the idea that u ∈ C(D) ∩ C2(D), i.e., we require differentiability only
on the “interior” D.

36.7 Remark. The notation C(D)∩C2(D) is customary but awful. A function in C(D) has
domain D, whereas a function in C2(D) has domain D. For D open, we have D 6= D. Since
two functions with different domains cannot be equal, we really should have C(D)∩C2(D) =
∅. What we mean by u ∈ C(D) ∩ C2(D) is that u ∈ C(D) and u

∣∣
D ∈ C

2(D), where u
∣∣
D

is the restriction u
∣∣
D : D → R : (x, y) 7→ u(x, y). Best not to think too hard about all

this.

Now we have all the machinery necessary for our version of the extreme value theorem.
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36.8 Theorem (Extreme value). Let D ⊆ R be bounded and let u ∈ C(D). Then there
exist (xmin, ymin), (xmax, ymax) ∈ D such that

u(xmin, ymin) = min
(x,y)∈D

u(x, y) and u(xmax, ymax) = max
(x,y)∈D

u(x, y). (36.1)

This theorem does not tell us where the extreme values occur in D—perhaps in D, perhaps
in ∂D. We can say much more for a harmonic function.

36.9 Theorem (Weak maximum principle). Let D ⊆ R be open and bounded and let u ∈
C(D) be harmonic in D. Then u attains its extreme values on ∂D: there exist (xmin, ymin),
(xmax, ymax) ∈ ∂D such that (36.1) hold.

Proof. The important thing to prove here is not the existence of the extreme values (that is
the extreme value theorem) but rather their location: on ∂D. We often think of the boundary
as a “lower-dimensional” set than D; whereas D is genuinely two-dimensional when D is open
(such a D contains lots of open balls), often the boundary is parametrized as the image of
a curve that depends on only one variable—a very one-dimensional set. Thus the boundary
may be “easier” to work with than D.

Here is how we would like the proof to work, although it will not work this way. Suppose
that u attains its maximum at (x0, y0) ∈ D; since D is open, this means (x0, y0) 6∈ ∂D. Then
uxx(x0, y0) ≤ 0 and uyy(x0, y0) ≤ 0 by the second derivative test. If either of these inequalities
is strict, we have ∆u(x0, y0) < 0. This contradicts the assumption that ∆u(x0, y0) = 0. The
problem is that we cannot guarantee that either inequality is strict.

We therefore modify u into a function whose second derivatives are more tractable. Specif-
ically, we first summon up a function w ∈ C(D) such that w(x, y) ≥ 0 on D and ∆w(x, y) > 0
on D. Then we put v(x, y) := u(x, y) + εw(x, y) for some ε > 0, which we will select later.
We compute ∆v(x, y) = ε∆w(x, y) > 0 on D. The extreme value theorem gives (x1, y1) ∈ D
such that v attains its maximum at (x1, y1). If (x1, y1) ∈ D, the second derivative test gives
∆v(x1, y1) ≤ 0, a contradiction. Thus (x1, y1) ∈ ∂D.

Now we use the nonnegativity of w to compare

u(x, y) ≤ u(x, y) + εw(x, y) = v(x, y) ≤ v(x1, y1) = u(x1, y1) + εw(x1, y1).

for any (x, y) ∈ D. And last we employ ε. Since w ∈ C(D), the extreme value theorem
guarantees the existence ofM ≥ 0 such that w(x, y) ≤M for all (x, y) ∈ D. Thus v(x1, y1) ≤
u(x1, y1) + εM , and so we have shown

u(x, y) ≤ u(x1, y1) + εw(x1, y1) ≤ u(x1, y1) + εM

for all (x, y) ∈ D and all ε > 0. Taking the limit as ε→ 0+, we obtain

u(x, y) = lim
ε→0+

u(x, y) ≤ lim
ε→0+

u(x1, y1) + εM = u(x1, y1)

for all (x, y) ∈ D. That is,

u(x1, y1) = max
(x,y)∈D

u(x, y) and (x1, y1) ∈ ∂D,
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as desired. �

36.10 Problem. Reread the proof of the maximum principle for the heat equation (The-
orem 25.1) and compare it to the one above for Laplace’s equation. In what sense does
the result for the heat equation provide more information for a more restricted geometry?
How do derivative tests from calculus appear in each proof? What are the roles of the
functions v and the parameters ε in each proof? How are they similar and/or different?

36.11 Problem. Prove the statement in the weak maximum principle about the minimum
of u. [Hint: what is −u doing?]

The weak maximum principle is “weak” because while it guarantees the attainment of
the maximum on the boundary, it does not preclude the attainment of the maximum on the
“interior.” After all, a function in general can attain its maximum in many places (think
of sine and cosine). If we add some more geometric restrictions, this cannot happen for a
harmonic function.

36.12 Definition. A set D ⊆ R2 is connected if for each (x0, y0), (x1, y1) ∈ D, there
is a continuous function γ : [0, 1]→ D such that γ(0) = (x0, y0) and γ(1) = (x1, y1).

(x0, y0) (x1, y1)

36.13 Theorem. Let D ⊆ R2 be open and connected. If u is harmonic on D, and if there
is (x0, y0) ∈ D such that u(x0, y0) = max(x,y)∈D u(x, y) or u(x0, y0) = min(x,y)∈D u(x, y),
then u is constant on D.

Proof. First, note what this theorem is not saying: D is not necessarily bounded, and u
is not necessarily continuous on D. Thus the extreme value theorem does not come into
play: the hypotheses simply presume the attainment of the maximum in the “interior” D.
To prove this theorem, we need a claim, which we will justify later: if B((x?, y?); r) ⊆ D for
some (x?, y?) ∈ D and r > 0, and if u(x?, y?) = max(x,y)∈B((x?,y?);r) u(x, y), then u is constant
on B((x?, y?); r).

Fix (x1, y1) ∈ D. Our goal is to show u(x0, y0) = u(x1, y1); that will certainly prove that u
is constant on D. We first deploy connectedness: let γ : [0, 1]→ D be continuous with γ(0) =
(x0, y0) and γ(1) = (x1, y1). Since D is open, there is r > 0 such that B((x0, y0); r) ⊆ D.
The claim implies that u is constant on B((x0, y0); r), for certainly u(x0, y0) is the maximum
value of u on this ball. If (x1, y1) ∈ B((x0, y0); r), then we are done.

Otherwise, we deploy a totally nontrivial topological trick. We can “cover” the image of
γ in D with a finite number of overlapping open balls, starting with B((x0, y0); r) above,
such that the center of the kth ball is contained in the (k − 1)st ball, with (x1, y1) as the
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center of the last ball. Our ability to perform this covering hinges on a technical compactness
argument, which we will not pursue further here.

This means that the center of the second ball, which we call (X1, Y1), is contained in
B((x0, y0); r), and so u(X1, Y1) = u(x0, y0). Then u attains its maximum on the second ball
at the center, and so u is constant on that ball, and specifically u equals u(x0, y0) on the
second ball. Thus u(X1, Y1) = u(x0, y0). If (x1, y1) is in the second ball, stop. Otherwise,
proceed to the third ball: its center (X2, Y2) is in the second ball, so u(X2, Y2) = u(x0, y0),
and so u attains its maximum on the third ball at the center, and so u is constant on the
third ball. Turn the crank. . . �

36.14 Problem. Draw a picture illustrating the situation in the proof above, assuming
that it takes four balls to cover the image of γ in D. (Be sure to include both D and the
image of γ in your picture.) Remember that the center of the first ball is (x0, y0), and the
center of the second ball lies in the first ball, and the center of the third ball lies in the
second ball, and the center of the fourth ball (which is (x1, y1)) lies in the third ball.

36.15 Problem. Give an example of D ⊆ R2 open and u harmonic on D such that u
attains its maximum in D and is not constant on D. [Hint: such a D cannot be connected;
try to define u “piecewise” on different “components” of D.]

36.16 Problem. Prove the “strong minimum” principle part of Theorem 36.13. [Hint: as
usual, think about −u.]

36.17 Remark. There is a strong maximum principle for the heat equation that says that
if the maximum is achieved at an “interior” point of the rectangle in Theorem 25.1 (in
addition to the requisite existence on the parabolic boundary), then the solution is constant
on that rectangle. This is hard to prove because it depends on a more complicated version
of the claim from the first paragraph of the proof of Theorem 36.13. (It is fair to view the
“covering” topological trick in the last paragraph above as also quite hard—and it is—but
the situation with heat is simply harder.)

Day 37: Wednesday, November 6.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Theorem 2 on p. 387 uses the weak maximum principle to prove uniqueness for the
Dirichlet problem; Theorem 3 on that page is continuous dependence on boundary
data. Read Example 1 on p. 386 Pages 366–368 derive Laplace’s equation in polar
coordinates and discuss periodicity issues in θ; see Proposition 1 on p. 366 and equation
(3) on p. 368.

A nice contrapositive of the strong maximum principle is that any nonconstant function
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that is harmonic on an open, connected set must achieve its extreme values on the bound-
ary. A nice immediate consequence of the maximum principle(s) for Laplace’s equation is
uniqueness for the Dirichlet problem.

37.1 Theorem. Let D ⊆ R2 be open and either bounded or connected. There exists at
most one solution of {

∆u = 0 on D
u(x, y) = f(x, y) on ∂D.

Proof. As usual, it suffices to show that the only solution to{
∆u = 0 on D
u(x, y) = 0 on ∂D.

is u = 0. The maximum principle (weak if D is bounded but maybe not connected, strong
if D is connected but maybe not bounded) guarantees

max
(x,y)∈D

u(x, y) = max
(x,y)∈∂D

u(x, y) = 0,

and the corresponding “minimum” principle says

min
(x,y)∈D

u(x, y) = min
(x,y)∈∂D

u(x, y) = 0

as well. Thus 0 ≤ u(x, y) ≤ 0 for all (x, y) ∈ D. �

37.2 Problem. Prove the following “continuous dependence on boundary conditions” result
for the Dirichlet problem. Suppose that D ⊆ R2 is open and bounded. Let f1, f2 ∈ C(∂D)
and suppose there is ε > 0 such that |f1(x, y)− f2(x, y)| < ε for all (x, y) ∈ ∂D. Let u and
v solve {

∆u = 0 on D
u(x, y) = f1(x, y) on ∂D

and

{
∆v = 0 on D
v(x, y) = f2(x, y) on ∂D.

Prove that |u(x, y)− v(x, y)| < ε for all (x, y) ∈ D.

Now we need to fill in some gaps in our work on the strong maximum principle (recall
that we left unproved a claim within the proof). This will lead to some related results, and
manipulations of integrals, that are all valuable by themselves. Specifically, we will want to
study Laplace’s equation on balls, and polar coordinates are ideal for balls.

Recall that for any (x, y) ∈ R2 \ {(0, 0)}, there exist r > 0 and θ ∈ R such that

x = r cos(θ) and y = r sin(θ).
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The value r is uniquely determined by r =
√
x2 + y2, whereas θ can be replaced by θ+ 2πk

for any k ∈ Z; the choice of θ is unique if it is restricted to belong to (−π, π].

θ

r
(x, y)

We are interested in the following situation. Suppose that u : B((0, 0);R)→ R is harmonic
for some R > 0. We can “rectangularize” the domain of u by putting

R :=
{

(r, θ) ∈ R2
∣∣ 0 ≤ r ≤ R, −π ≤ θ ≤ π

}
and then defining

U : R → R : (r, θ) 7→ u(r cos(θ), r sin(θ)).

The upshot here is that R is a “simpler” region than B((0, 0);R), especially from the point
of view of integration. So, what does U do? Since this is a course on PDE, we should find
a PDE that U solves. And since uxx + uyy = 0, a natural starting point is to compute Urr
and Uθθ. This is mostly a thankless calculation with the multivariable chain rule and what
we find is

Urr +
1

r2
Uθθ +

1

r
Ur = 0, 0 < r ≤ R, −π ≤ θ ≤ π. (37.1)

This looks quite a bit worse than Laplace’s equation: there is the first-order partial Ur
in there, and this is actually a variable-coefficient PDE (and we have only ever studied
constant-coefficient PDE).

Here is that calculation, in which we suppress the inputs to u and its partials:

Ur(r, θ) = ux cos(θ) + uy sin(θ), (37.2)

Urr(r, θ) =
[
uxx cos(θ) + uxy sin(θ)

]
cos(θ) +

[
uyx cos(θ) + uyy sin(θ)

]
sin(θ)

= uxx cos2(θ) + 2uxy sin(θ) cos(θ) + uyy sin2(θ),

Uθ(r, θ) = −uxr sin(θ) + uyr cos(θ),

and

Uθθ(r, θ) = −
[
− uxxr sin(θ) + uxyr cos(θ)]r sin(θ)

− uxr cos(θ)

+
[
− uyxr sin(θ) + uyyr cos(θ)

]
r cos(θ)
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− uyr sin(θ)

= uxxr
2 sin2(θ)− 2uxyr

2 sin(θ) cos(θ) + uyyr
2 cos2(θ)

− r
[
uxr cos(θ) + ruy sin(θ)

]
= uxxr

2 sin2(θ)− 2uxyr
2 sin(θ) cos(θ) + uyyr

2 cos2(θ)− rUr(r, θ).

If we try to add Urr and Uθθ (the natural thing to do, since that is ∆U), the terms that
we would like to combine do not combine well because of the factor of r2 throughout Uθθ.
Assuming r 6= 0 and dividing through by r2 gives

Urr + Uθθ = uxx + uyy −
1

r
Ur.

Thus
Urr(r, θ) +

1

r2
Uθθ(r, θ) +

1

r
Ur(r, θ) = ∆u(r cos(θ), r sin(θ)), (37.3)

so when u is harmonic we end up with (37.1).

37.3 Remark. Our strategy with Laplace’s equation in polar coordinates will be to assume
that ∆u = 0 and then obtain that (37.1) holds. However, one could work backwards:
solve (37.1) and then define u(x, y) = U(P(x, y),Θ(x, y)), where P(x, y) =

√
x2 + y2 and

Θ(x, y) is chosen to be continuously differentiable and to satisfy x = P(x, y) cos(Θ(x, y))
and y = P(x, y) sin(Θ(x, y)). For this to work, U(r, ·) needs to be 2π-periodic.

Day 38: Friday, November 8.

Material from Basic Partial Differential Equations by Bleecker & Csordas

The mean value theorem is proved at the top of p. 390; this relies on Lemma 1 from
p. 389. See the remark on p. 390 for a vector calculus interpretation of that lemma in
terms of Green’s theorem and line integrals.

We now build the tools to prove that one unproved claim in the proof of the strong
maximum principle. Our chief tool will be the following mean value principle, which is quite
valuable in and of itself. To appreciate the formula below, suppose that u : B((x0, y0);R)→ R
is continuous for some (x0, y0) ∈ R2 and R > 0. Let 0 < r < R. Then u is defined on the
circle of radius r centered at (x0, y0); any point on this circle has the form (x0 +r cos(θ), y0 +
r sin(θ)) for some θ ∈ [−π, π]. The restriction of u to this circle is therefore the map
θ 7→ u(x0 + r cos(θ), y0 + r sin(θ)), and the average value of this map is

1

2π
u(x0 + r cos(θ), y0 + r sin(θ)) dθ.

The mean value principle for harmonic functions states that u(x0, y0) equals this integral: the
value of u at the center of a ball is equal to the average value of u on any “concentric” circle
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within this ball. This is a remarkable property of “stability” and “averaging” of harmonic
functions—the average value over circles is “stable” in that it does not change as the radius
of the circle changes.

38.1 Theorem (Mean value principle for harmonic functions). Let u be harmonic on
B((x0, y0);R). Then

u(x0, y0) =
1

2π

∫ π

−π
u(x0 + r cos(θ), y0 + r sin(θ)) dθ, 0 ≤ r < R.

Proof. We give the proof only for x0 = y0 = 0. Define

φ : [0, R)→ R : r 7→ 1

2π

∫ π

−π
u(r cos(θ), r sin(θ)) dθ.

Then
φ(0) =

1

2π

∫ π

−π
u(0, 0) dθ = u(0, 0)

and so if we can show that φ is constant, then φ(r) = φ(0) = u(0, 0) for all r, and that is
our desired result.

We do this by computing φ′(r) for r > 0 and showing φ′(r) = 0. We differentiate under
the integral to find

φ′(r) =
1

2π

∫ π

−π
∂r
[
u(r cos(θ), r sin(θ))

]
dθ

=
1

2π

∫ π

−π

[
ux(r cos(θ), r sin(θ)) cos(θ) + uy(r cos(θ), r sin(θ)) sin(θ)

]
dθ.

Now here is the advantage of polar coordinates: we recall from (37.2) that with U(r, θ) :=
u(r cos(θ), r sin(θ)) and u harmonic, we have

Ur(r, θ) = ux(r cos(θ), r sin(θ)) cos(θ) + uy(r cos(θ), r sin(θ)) sin(θ).

Thus
φ′(r) =

1

2π

∫ π

−π
Ur(r, θ) dθ.

This may look no better, but we will compute below that, for r > 0,∫ π

−π
Ur(r, θ) dθ =

1

r

∫∫
x2+y2≤r2

∆u(x, y) dx dy,

where by
∫∫

x2+yr≤r2 we mean the double integral over the (closed) ball
{

(x, y) ∈ R2
∣∣ x2 + y2 ≤ r2

}
.

Since ∆u = 0, this gives the desired identity φ′(r) = 0. �

Now here is that last calculation.
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38.2 Lemma. Let u ∈ C2(B((0, 0);R)). As usual, for 0 ≤ r ≤ R and θ ∈ R, let U(r, θ) :=
u(r cos(θ), r sin(θ)). Then∫∫

x2+y2≤ρ2
∆u(x, y) dx dy = ρ

∫ π

−π
Ur(ρ, θ)

for any ρ ∈ (0, R).

Proof. We switch to polar coordinates. Recall that for f ∈ C(B(0, 0);R) we have∫∫
x2+y2≤ρ2

f(x, y) dx dy =

∫ 2π

0

∫ ρ

0

f(r cos(θ), r sin(θ))r dr dθ.

Thus

I(ρ) :=

∫∫
x2+y2≤ρ2

∆u(x, y) dx dy =

∫ 2π

0

∫ ρ

0

∆u(r cos(θ), r sin(θ))r dr dθ

=

∫ 2π

0

∫ ρ

0

(
Urr(r, θ) +

1

r2
Uθθ(r, θ) +

1

r
Ur(r, θ)

)
r dr dθ. (38.1)

In (37.3) we calculated

∆u(r cos(θ), r sin(θ)) = Urr(r, θ) +
1

r2
Uθθ(r, θ) +

1

r
Ur(r, θ) (38.2)

for r 6= 0. Since ∆u ∈ C(B((0, 0);R)), the limit as r → 0 of the right side is defined, and
so the integral over [0, ρ] with respect to r in (38.1) is not really improper; just think of the
integrand as being 0 at r = 0, thanks to that extra factor of r. (Morally, this is like thinking
of sinc(x) as sin(x)/x even at x = 0.)

Then

I(ρ) =

∫ 2π

0

∫ ρ

0

[
Ur(r, θ) + rUrr(r, θ)

]
dr dθ︸ ︷︷ ︸

I1(ρ)

+

∫ 2π

0

∫ ρ

0

Uθθ(r, θ)

r
dr dθ︸ ︷︷ ︸

I2(ρ)

.

We actually do need to justify why splitting up this integral is valid: does separating that
Uθθ(r, θ)/r term from the rest cause any problems? No: from (37.3) we have

Uθθ(r, θ)

r
= r∆u(r cos(θ), r sin(θ))− rUrr(r, θ)− Ur(r, θ),

and so the limit as r → 0 of the integrand in I2(ρ) exists. Thus, again, the integral over
[0, ρ] in I2(ρ) is not improper, and so we think of the integrand as taking that limiting value
at r = 0.

Now we can work on the two integrals I1(ρ) and I2(ρ). We recognize the product rule in
the first:

Ur(r, θ) + rUrr(r, θ) = (1 · Ur(r, θ)) + rUrr(r, θ) = ∂r[rUr(r, θ)],
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and so

I1(ρ) =

∫ 2π

0

∫ ρ

0

∂r[rUr(r, θ)] dr dθ =

∫ 2π

0

ρUr(ρ, θ) dθ = ρ

∫ π

−π
Ur(ρ, θ) dθ

by the 2π-periodicity of Ur(ρ, ·).
This is exactly the value that we want for all of I(ρ), so we hope that I2(ρ) = 0. To

compute that, we interchange the order of integration (permissible by the standard version of
Fubini’s theorem for double integrals over rectangles, not the ticklish version from Theorem
30.2, because, by the remarks above, the integrand in I2(ρ) is continuous):

I2(ρ) =

∫ ρ

0

∫ 2π

0

Uθθ(r, θ)

r
dθ dr =

∫ ρ

0

Uθ(r, 2π)− Uθ(r, 0)

r
dr.

By definition of U , we have U(r, θ + 2π) = U(r, θ) for all r and θ, and so Uθ(r, ·) is also
2π-periodic for each r. That is, Uθ(r, 2π) − Uθ(r, 0) = 0 for all r, and so I2(ρ) = 0, as
desired. �

38.3 Problem. Prove the mean value principle for a general center (x0, y0). [Hint: apply
the version proved above to v(x, y) := u(x+ x0, y + y0) for (x, y) ∈ B((0, 0);R).]

38.4 Problem. We have largely been studying Laplace’s equation in two dimensions: uxx+
uyy = 0. In one dimension, Laplace’s equation is y′′ = 0, where y = y(x). The analogue of
open balls (and, more generally, open sets) in one dimension is open intervals (a, b).

(i) Assume here that −∞ < a < b <∞. Prove that all solutions to y′′ = 0 on (a, b) satisfy
the strong maximum principle in the sense that if y′′ = 0 on (a, b) and y is continuous on
[a, b], and if there is x0 ∈ (a, b) such that y(x0) = maxa≤x≤b y(x), then y is constant on
[a, b].

(ii) Let x0 ∈ R and R > 0. Prove that all solutions to y′′ = 0 on (x0 − R, x0 + R) satisfy
the mean value equation

y(x0) =
1

2r

∫ x0+r

x0−r
y(x) dx

for r ∈ (0, R).

It turns out that the mean value principle also characterizes harmonic functions in the
following sense.

38.5 Corollary (Converse to the mean value principle). Let D ⊆ R2 be open and let
u ∈ C2(D). Suppose that for any (x0, y0) ∈ D and any R > 0 such that B((x0, y0);R) ⊆ D,
u satisfies the mean value identity

u(x0, y0) =
1

2π

∫ π

−π
u(x0 + r cos(θ), y0 + r sin(θ)) dθ

for 0 < r < R. Then u is harmonic on D.



Day 39: Monday, November 11 151

Proof. Suppose not. Then there is (x0, y0) ∈ D such that ∆u(x0, y0) 6= 0, and so either
∆u(x0, y0) > 0 or ∆u(x0, y0) < 0. Suppose the former; then by continuity and the openness
of D, there is R > 0 such that ∆u(x, y) > 0 for (x, y) ∈ B((x0, y0);R) ⊆ D.

Now define

φ : [0, R)→ R : r 7→ 1

2π

∫ π

−π
u(x0 + r cos(θ), y0 + r sin(θ)) dθ.

Then φ is constant: φ(r) = u(x0, y0) for all r. But, as in the proof of the mean value
principle, we may compute

φ′(r) =
1

2πr

∫∫
(x−x0)2+(y−y0)2≤r2

∆u(x, y) dx dy > 0,

which is impossible if φ is constant. �

38.6 Problem. Let u be harmonic on B((0, 0);R). Prove that

u(0, 0) =
1

πr2

∫∫
x2+y2≤r2

u(x, y) dx dy

for any r ∈ (0, R). Since πr2 is the area of the circle of radius r, we can interpret the
double integral on the right as the average value of u over B((0, 0); r), and so this formula
is another version of the mean value principle in a more two-dimensional sense. [Hint: first,
obtain from the ordinary mean value principle

1

2π

∫ 2π

0

u(0, 0)ρ dθ =
1

2π

∫ 2π

0

u(ρ cos(θ), ρ sin(θ))ρ dθ.

Integrate both sides from ρ = 0 to ρ = r, simplify the left side, interchange the order of
integration on the right, and think about polar coordinates.]

Day 39: Monday, November 11.

Now we can fill in a lingering gap from our proof of the strong maximum principle. The
following lemma is essentially the strong maximum principle for balls; recall that we “chained
this result along” using connectedness and one topological trick to get the strong maximum
principle for arbitrary open and connected sets.

39.1 Lemma. Let u be harmonic on B((x0, y0);R). If

u(x0, y0) = max(x,y)∈B((x0,y0);R) u(x, y),

then u is constant on B((x0, y0);R).
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Proof. Fix 0 < r < R. The mean value principle gives

u(x0, y0) =
1

2π

∫ π

−π
u(x0 + r cos(θ), y0 + r sin(θ)) dθ,

and gently rewriting the left side gives

1

2π

∫ π

−π
u(x0, y0) dθ =

1

2π

∫ π

−π
u(x0 + r cos(θ), y0 + r sin(θ)) dθ.

Subtracting, we find∫ π

−π

[
u(x0, y0)− u(x0 + r cos(θ), y0 + r sin(θ))

]
dθ = 0.

The integrand here is nonnegative since

u(x0, y0) = max
(x,y)∈B((x0,y);R)

u(x, y) ≥ u(x0 + r cos(θ), y0 + r sin(θ))

for all θ ∈ [−π, π] and r ∈ (0, R). Since the integral is 0, the integrand must be identically
0. Thus

u(x0, y0) = u(x0 + r cos(θ), y0 + r sin(θ))

for any r ∈ (0, R) and θ ∈ [−π, π]. Any point (x, y) ∈ B((x0, y0);R) can be written as
u(x, y) = u(x0+r cos(θ), y0+r sin(θ)) for some such r and θ, and so u is indeed constant. �

We prove one last “averaging” result for the Laplacian—not even for harmonic functions—
just to emphasize the role of average value and integrals in connection with ∆. Informally,
∆u(x0, y0) is twice the average value of all of the second directional derivatives of u at (x0, y0).

39.2 Theorem. Let u ∈ C2(B(x0, y0);R) for some R > 0 and put, as usual, U(r, θ) :=
u(x0 + r cos(θ), y0 + r sin(θ)), so Ur(0, θ) is the directional derivative of u in the direction
of (cos(θ), sin(θ)) through (x0, y0). Then

∆u(x0, y0)

2
=

1

2π

∫ π

−π
Urr(0, θ) dθ,

where the expression on the right is the average value of all of the second directional deriva-
tives of u at (x0, y0).

Proof. We might be tempted to use the polar coordinates formula

Urr(r, θ) = ∆u(x0 + r cos(θ), y0 + r sin(θ))− 1

r
Ur(r, θ)− Uθθ(r, θ),

but this is only valid for r 6= 0. Instead, we recall the formula for Ur from (37.2) and use
that to calculate

Urr(r, θ) = uxx(x0+r cos(θ), y0+r sin(θ)) cos2(θ)+2uxy(x0+r cos(θ), y0+r sin(θ)) sin(θ) cos(θ)
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+ uyy(x0 + r cos(θ), y0 + r sin(θ)) sin2(θ)

and so

Urr(0, θ) = uxx(x0, y0) cos2(θ) + uxy(x0, y0) sin(2θ) + uyy(x0, y0) sin2(θ).

We integrate over [−π, π] with respect to θ and use the identities∫ π

−π
cos2(θ) dθ =

∫ π

−π
sin2(θ) dθ = π and

∫ π

−π
sin(2θ) dθ = 0

to obtain ∫ π

−π
Urr(0, θ) dθ = π∆u(x0, y0),

from which the desired identity follows. �

The very last feature of Laplace’s equation that we will consider here is its connection
to an optimization problem. In calculus, we learn well how to find the extreme values of
real-valued functions defined on subsets of Rn (typically for n = 1 and n = 2). Remarkably,
solutions to Laplace’s equation minimize certain functions—whose domains are functions!

We will show this for a very restricted domain: the unit square. This will allow us to
avoid invoking some technical, and maybe distracting, results from vector calculus and focus
just on the PDE and integral manipulations. Let

R :=
{

(x, y) ∈ R2
∣∣ 0 < x < 1, 0 < y < 1

}
.

We will study solutions to the Dirichlet problem{
∆u = 0 in R
u = f on ∂R.

(39.1)

39.3 Problem. Why are solutions unique?

We first prove a highly useful “integration by parts” identity.

39.4 Problem. To motivate the following, let f ∈ C2([a, b]) and let g ∈ C1([a, b]) with
g(a) = g(b) = 0. Show that ∫ b

a

f ′′g = −
∫ b

a

f ′g′.

39.5 Lemma. Let u ∈ C2(R) ∩ C(R) and v ∈ C1(R) ∩ C(R) with v = 0 on ∂R. Then∫∫
R

(∆u)v = −
∫∫
R

(uxvx + uyvy).
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Proof. We have ∫∫
R

(∆u)v =

∫ 1

0

∫ 1

0

(uxx(x, y) + uyy(x, y))v(x, y) dx dy.

We focus on just the integral ∫ 1

0

uxx(x, y)v(x, y) dx.

Integrating by parts gives∫ 1

0

uxx(x, y)v(x, y) dx = ux(x, y)v(x, y)
∣∣x=1

x=0
−
∫ 1

0

ux(x, y)vx(x, y) dx.

Since v = 0 on ∂R, we have in particular v(1, y) = v(0, y) = 0 for all y. Thus∫ 1

0

uxx(x, y)v(x, y) dx = −
∫ 1

0

ux(x, y)vx(x, y) dx

and so ∫∫
R
uxx(x, y)v(x, y) dx dy = −

∫∫
R
ux(x, y)vx(x, y) dx dy.

A similar calculation, along with an interchange in the order of integration, shows∫∫
R
uyy(x, y)v(x, y) dx dy = −

∫∫
R
uy(x, y)vy(x, y) dx dy, (39.2)

which leads to the desired identity. �

39.6 Problem. Do that similar calculation with the interchange of integrals to obtain
(39.2).

39.7 Problem. Suppose that we have this integration by parts identity for a more general
D ⊆ R: ∫∫

D
(∆u)v = −

∫∫
D

(uxvx + uyvy) (39.3)

for u ∈ C2(D)∩C(D) and v ∈ C1(D∩C(D) with v = 0 on ∂D. Use this to prove uniqueness
of solutions to the problem {

∆u = g in D
u = f on ∂D.

[Hint: start with two solutions, subtract, and see what boundary conditions the difference
meets. In (39.3) use u = v.]

We apply this integration by parts result in the following quite possibly non-obvious way.
Let

V :=
{
w ∈ C2(R) ∩ C(R)

∣∣ w = f on ∂R
}
.
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Define
E : V → R : w 7→

∫∫
R

(w2
x + w2

y).

We will show that any solution u to the Dirichlet problem (39.1) is the minimizer of E in V
in the sense that

E [u] ≤ E [w] for all w ∈ V ,

and, conversely, any minimizer of E in V solves the Dirichlet problem.

Day 40: Wednesday, November 13.

Proving that a solution to the Dirichlet problem minimizes E is not all that difficult, with
one classical trick. Let u solve (39.1) and w ∈ V ; we want to show E [u] ≤ E [w]. We can
make u show up in E [w] by adding 0:

E [w] = E [u+ (w − u)].

Now we work on E [u+ v] with v := w − u and find

E [u+ v] = E [u] + E [v] + 2

∫∫
R

(uxvx + uyvy).

40.1 Problem. Check that.

The double integral on the right looks like the result of integration by parts, which would
allow us to bring ∆u = 0 into the calculation. What matters here is that since v = w − u
with w, u ∈ V , we have v = f − f = 0 on ∂R. So, we can integrate by parts to find∫∫

R
(uxvx + uyvy) =

∫∫
R

(∆u)v = 0,

and so
E [w] = E [u+ v] = E [u] + E [v] ≥ E [u]

since E [v] ≥ 0 for any v. This is the desired inequality.
Now suppose that u ∈ V minimizes E . By definition of V , we have u = f on ∂R, so we

just need to show ∆u = 0. This is the tricky part, and the first trick is to introduce a new
function space.

For r ≥ 0, let
Cr0(R) :=

{
v ∈ Cr(R) ∩ C(R)

∣∣ v = 0 on ∂R
}
.

40.2 Problem. How did Cr0(R) show up in Lemma 39.5?

Let v ∈ C10(R) and s ∈ R. If we know u+ sv ∈ V , then since u minimizes E we must have
E [u] ≤ E [u+ sv].
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40.3 Problem. Explain why u+ sv ∈ V .

We expand, similar to some work above,

E [u+ sv] = E [u] + s2E [v] + 2s

∫∫
R

(uxvx + uyvy).

40.4 Problem. Check that.

Integrating by parts, we find

E [u] ≤ E [u] + s2E [v] + 2s

∫∫
R

(uxvx + uyvy) = E [u] + s2E [v]− 2s

∫∫
R

(∆u)v,

and so
s

∫∫
R

(∆u)v ≤ s2

2
E [v].

This is true for all s ∈ R. When s > 0, we just have∫∫
R

(∆u)v ≤ s

2
E [v]

and so ∫∫
R

(∆u)v ≤ lim
s→0+

s

2
E [v] = 0.

40.5 Problem. By considering s < 0, show as well that

0 ≤
∫∫
R

(∆u)v.

Thus ∫∫
R

(∆u)v = 0.

How does this help get us to ∆u = 0?
We need a second trick, and this is an instance of our frequent claim that integrals are

tools for extracting data about functions. Here the function that matters is ∆u, and the tool
is multiplying by v and integrating over R. The tool returns the data 0 all the time. It
turns out that this is enough to conclude that ∆u = 0 on R, but it is easier to see why in
one dimension.

40.6 Theorem (Fundamental lemma of the calculus of variations). Let f ∈ C([a, b])
and suppose that

∫ b
a
fg = 0 for all g ∈ Cr([a, b]) with g(a) = g(b) = 0 for some r ≥ 0. Then

f = 0.

Proof. Suppose not. Then there is x0 ∈ [a, b] such that f(x0) 6= 0. We assume x0 ∈ (a, b)
and f(x0) > 0; the work for f(x0) < 0 is very similar, and the cases x0 = a or x0 = b
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are a problem below. Continuity implies the existence of δ > 0 such that f(x) > 0 for
x ∈ (x0 − δ, x0 + δ) ⊆ (a, b). This should feel very familiar, as we have made this argument
multiple times before. Here is a picture.

x

f(x)

a bx0

f(x0)

We claim there is gδ ∈ C∞([a, b]) such that gδ(x) = 0 for a ≤ x ≤ x0−δ and x0+δ ≤ x ≤ b
but gδ(x) > 0 for x0 − δ ≤ x ≤ x0 + δ. Here is another picture.

x

gδ(x)

a bx0

1

And here is a picture of how the product fgδ behaves.

x

f(x)gδ(x)

a bx0

Assuming the existence of this gδ, we have

0 <

∫ x0+δ

x0−δ
f(x)gδ(x) dx =

∫ b

a

f(x)gδ(x) dx = 0,

where the last equality follows from the hypothesis. This is a contradiction. �
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40.7 Problem. In the proof above, why did it suffice to assume x0 ∈ (a, b)? What happens
if f(a) 6= 0 but f(x) = 0 for x ∈ (a, b]?

Now we show the existence of that gδ.

40.8 Lemma. Let δ > 0. Define

hδ : R→ R : x 7→

e1/δ
2

exp

(
− 1

δ2 − x2

)
, |x| < δ

0, |x| ≥ δ.

Then hδ ∈ C∞(R).

x

hδ(x)

1

−δ δ

Proof. The challenge, of course, is ensuring differentiability at x = ±δ, as hδ is infinitely
differentiable elsewhere by properties of piecewise functions. At x = ±δ, the proof is mostly a
technical induction argument that hinges on the very rapid vanishing of e−1/x as x→∞. �

The factor of e1/δ
2

is mostly for convenience, to normalize hδ(0) = 1. We put

gδ : [a, b]→ R : x 7→ hδ(x− x0)

to obtain the desired behavior.
Everything that we have said in one dimension carries over to two dimensions: if w ∈ C(D)

satisfies
∫∫
Dwv = 0 for all v ∈ Cr(D) ∩ C(D) with v = 0 on ∂D, then w = 0. The proof is

basically the same as the above, except the function hδ should be replaced by

(x, y) 7→

e
1/δ2 exp

(
− 1

δ2 −
(
x2 + y2

)) , x2 + y2 < δ2

0, x2 + y2 ≥ δ2.
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Day 41: Friday, November 15.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 50–52 outline separation of variables with examples for heat- and wave-type
equations. Pages 126–127 do separation of variables for the heat equation ut = uxx.
Pages 127–130 treat the boundary condition u(0, t) = u(π, t) = 0 and pp. 130–133
do the periodic boundary condition u(−π, t) = u(π, t), ux(−π, t) = ux(π, t). See the
remarks on p. 133 about the validity of Fourier series expansions. More examples of
treating boundary conditions for the heat equation with separable solutions appear on
pp. 157–160. Pages 285–289 cover separation of variables for the wave equation. All of
these examples are worth reading for practice with the algebraic nuances of boundary
conditions.

Throughout this course, we have accrued a handful of precious solution formulas—the glo-
rious solution for the transport equation, D’Alembert’s formula for the infinite wave equation
(and its adaptations into semi-infinite and bounded problems), the convolution formula for
the infinite rod heat equation, and two specialized solutions for Laplace’s equation (the up-
per half-plane problem and the radial solution). We have sometimes used the explicit nature
of these solution formulas to understand more about solutions to those PDE, but often we
did not presume any particular solution formula, and we used the structure of the PDE and
some calculus/analysis techniques (old and new) to learn more.

There is a classical solution method that we have not yet discussed: separation of vari-
ables. (This has some moral similarities to, but overall is quite distinct from, separable
ODE.) This method yields concrete solutions to certain problems posed on bounded spa-
tial domains (namely, the boundary value problems for heat and wave, which we previously
studied without relying too much, if at all, on formulas), and it raises many interesting
questions in analysis via the generation of Fourier series. In PDE courses of times past,
separation of variables was often the major, possibly only, technique discussed—we live with
more evolved sensibilities now. Our appreciation of this method will be as much for those
analytic questions that it inspires as for the formulas that we get.

We develop this for the heat equation ut = uxx. If we guess that u has the “product” form

u(x, t) = X(x)T (t) (41.1)

with X ∈ C2(R) and T ∈ C1(R), then

ut(x, t) = X(x)T ′(t) and uxx(x, t) = X ′′(x)T (t).

Thus u(x, t) = X(x)T (t) solves the heat equation ut = uxx if and only if

X(x)T ′(t) = X ′′(x)T (t). (41.2)

If X(x) = 0 for all x, or T (t) = 0, then u(x, t) = 0 for all x and t. This is boring and
trivial, so we assume that X and T are not identically zero. At the values of x and t such
that X(x) 6= 0 and T (t) 6= 0, we divide (41.2) by X(x)T (t) to find

X ′′(x)

X(x)
=
T ′(t)

T (t)
. (41.3)
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This is interesting. In slightly more compact notation, we have functions f , g : R → R
such that

f(x) = g(t)

for all x, t ∈ R. Both the quantifier “for all” and the different variables x and t are important
here! We can take t = 0 to conclude f(x) = g(0) for all x, and so f is constant. And we can
take x = 0 to conclude f(0) = g(t) for all t, and so g is constant. Even better, f and g are
the same constant:

f(x) = f(0) = g(0) = g(t)

for all x and t.
Applying this to (41.3), we find λ ∈ R such that

X ′′(x)

X(x)
= λ and

T ′(t)

T (t)
= λ (41.4)

for all x, t ∈ R (or, at least those at which X and T are nonzero). We can view (41.1),
(41.3), and (41.4) as three different layers of separated variables in that we break apart the
dependence on and behavior of the x- and t-variables.

The equations in (41.4) are really

T ′(t) = λT (t) and X ′′(x)− λX(x) = 0, (41.5)

and we have spent our lives in ODE learning how to solve those. First, though, we may
wonder if we lost any legitimacy in dividing by X and T—did a scurrilous division by zero
mess up our calculations?

41.1 Problem. No. Convince yourself that if X and T solve (41.5), then u(x, t) :=
X(x)T (t) does indeed solve ut = uxx.

The equation for T is easy to solve:

T (t) = T (0)eλt.

The equation for X deserves treatment by cases depending on the sign of λ, which can be
any real number. For λ > 0, it reads

X ′′ − (
√
λ)2X = 0,

and all solutions here are
X(x) = c1e

√
λx + c2e

−
√
λx.

For λ = 0, the X-equation is just
X ′′ = 0,

and solutions are
X(x) = c1x+ c2.

And for λ < 0, if we write λ = −|λ|, then the X-equation is

X ′′ + |λ|X = 0,
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thus
X(x) = c1 cos(

√
|λ|x) + c2 sin(

√
|λ|x).

All together, we have three types of product solutions for the heat equation. To avoid
the square root, we will replace λ with λ2 throughout. We make an important algebraic
observation about the first case that will help later. Here, for λ > 0, we have

u(x, t) =
(
c1e

λx + c2e
−λx)T (0)eλ

2t =
(
T (0)c1e

λx + T (0)c2e
−λx)eλ2t. (41.6)

The values T (0), c1, and c2 can be arbitrary real numbers, so their products are arbitrary
too. Thus we can compress the solution to

u(x, t) =
(
c1e

λx + c2e
−λx)eλ2t. (41.7)

More precisely, every solution of the form (41.6) is of the form (41.7). Conversely, let C1,
C2 ∈ R and take T (0) = 1, c1 = C1, and c2 = C2 to write (41.7) in the original form (41.6).

Similarly, for the other two cases we have product solutions of the form

u(x, t) = c1x+ c2 (41.8)

and
u(x, t) =

(
c1 cos(λx) + c2 sin(λx)

)
e−λ

2t, (41.9)

where here we may assume λ > 0. (Although λ < 0 still works—why?)

41.2 Problem. Which, if any, of these solutions could be obtained from the Fourier trans-
form?

More generally, we could make a product ansatz for a function u of n variables by
writing u as a product of n functions, each of which depends on one, and only one, of the
variables of u. For example, to solve the two-dimensional heat equation

ut = uxx + uyy(= ∆u),

we would guess u(x, y, t) = X(x)Y (t)T (t), and then find three ODE, each governing one of
X, Y , and T .

41.3 Problem. Find all product solutions u(x, t) = X(x)T (t) for the transport equation
ut + ux = 0. Is every solution to the transport equation a product solution?

However, just because we can do something does not mean that we should. Which, if
any, of these product solutions for the heat equation are relevant? Separation of variables is
particularly useful for boundary value problems on finite spatial domains, and so we consider{

ut = uxx, 0 ≤ x ≤ π, t ∈ R
u(0, t) = u(π, t) = 0, t ∈ R.

(41.10)
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This is the heat equation for a finite rod of length π (chosen for convenience) with the ends
kept at the constant temperature 0. We have not bothered to specify initial conditions yet.
Which, if any, of these product solutions can meet the boundary conditions?

If we try (41.7) with λ > 0, then we need

0 = u(0, t) = (c1 + c2)e
λ2t and 0 = u(π, t) = (c1e

λπ + c2e
−λπ)eλ

2t.

If we divide through by eλ
2t, this becomes the linear system{

c1 + c2 = 0

c1e
λπ + c2e

−λπ = 0.

Here the unknowns are c1 and c2 (and maybe λ). Perhaps it is easiest to view this as a
matrix-vector problem: [

1 1
eλπ e−λπ

](
c1
c2

)
=

(
0
0

)
.

The determinant of this matrix is e−λπ − eλπ, which is nonzero.

41.4 Problem. Why?

Thus the only solution to this linear system is c1 = c2 = 0, and that means u(x, t) = 0.
That is too boring, too trivial. We claim that nothing interesting happens if we try to use a
solution of the form (41.8) to meet the boundary conditions.

41.5 Problem. What exactly happens?

And so we are down to solutions of the form (41.9). We want

0 = u(0, t) = c1e
−λ2t and 0 = u(π, t) =

(
c1 cos(λπ) + c2 sin(λπ)

)
e−λ

2t.

The first boundary condition immediately implies c1 = 0, so the second reduces to

c2 sin(λπ) = 0.

We want to avoid c2 = 0 so we avoid another trivial solution. Here is where λ finally comes
into play: we can select λ so that sin(λπ) = 0. Specifically, since sin(τ) = 0 if and only if
τ = kπ for some k ∈ Z, we can take λ = k ∈ Z and conclude that

u(x, t) = c2 sin(kx)e−k
2t (41.11)

solves (41.10). Strictly speaking, we should take k ≥ 1, since we are assuming λ > 0, but we
can check that the function above is a solution for any k ∈ Z.

Unfortunately, while this is a nontrivial (not identically zero) solution, the only initial
condition that it can meet is very boring:

f(x) = u(x, 0) = c2 sin(kx).
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We handled much more arbitrary initial conditions in our previous treatments of the finite
rod heat equation. At the very least we could use linearity of the heat equation and “su-
perposition” to show that a finite linear combination of functions of the form (41.11) solves
(41.10) with a slightly more complicated initial condition. Specifically,

u(x, t) :=
n∑
k=1

bk sin(kx)e−k
2t

solves 
ut = uxx, 0 ≤ x ≤ π, t ∈ R
u(0, t) = u(π, t) = 0, t ∈ R
u(x, 0) = f(x), 0 ≤ x ≤ π

with

f(x) =
n∑
k=1

bk sin(kx).

41.6 Problem. Check that. Why would summing over nonpositive integers be redundant,
e.g., taking u(x, t) =

∑1138
k=−1977bk sin(kx)e−k

2t?

This initial condition is still very specific. We can check that if the problem above has a
solution for some initial condition f , then f ∈ C2([0, π]) with f(0) = f(π) = 0. But surely
not all such functions are sums of sines!

This motivates a profound idea: what if we can write an initial condition f as a series of
sines:

f(x) =
∞∑
k=1

bk sin(kx)?

Can we then obtain a solution in the form

u(x, t) =
∞∑
k=1

bk sin(kx)e−k
2t?

We will review nuances of series presently; for now, the deeper questions are if we can
represent f as such a series, and if u as so defined actually gives a differentiable function.
(By the way, labeling the coefficients as bk here is just to keep us in line with some notation
that will appear momentarily.)

It turns out that it is easier to answer this question if we work with series of sines and
cosines. Here is the motivation for that. Consider a finite rod of length 2π, with endpoints
labeled at ±π, that is bent into a circle with the ends at ±π joined together. If heat flows
continuously around this rod, we should have u(−π, t) = u(π, t) and ux(−π, t) = ux(π, t).
Alternatively, we could just think that the problem{

ut = uxx, −π ≤ x ≤ π, t ∈ R
u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ∈ R

is worth solving.
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41.7 Problem. What happens if we try to use product solutions of the forms (41.7) or
(41.8) to solve this problem?

We get to the point and try solutions in the form (41.9). We first differentiate:

ux(x, t) =
(
− c1λ sin(λx) + c2λ cos(λx)

)
e−λ

2t.

Then we want(
c1 cos(−λπ) + c2 sin(−λπ)

)
e−λ

2t =
(
c1 cos(λπ) + c2 sin(λπ)

)
e−λ

2t

and (
− c1λ sin(−λπ) + c2λ cos(−λπ)

)
e−λ

2t =
(
− c1λ sin(λπ) + c2λ cos(λπ)

)
e−λ

2t.

Simplifying, this leads to the system

2c2 sin(λπ) = 0 and 2c1λ sin(λπ) = 0.

41.8 Problem. Check that.

Here we are assuming λ > 0, so to avoid a trivial solution and obtain maximum flexibility
with both c1 and c2, we choose λ so that sin(λπ) = 0. Thus, again, λ = k ∈ Z, and we have
a solution of the form

u(x, t) =
(
c1 cos(kx) + c2 sin(kx)

)
e−k

2t.

By linearity,

u(x, t) =
n∑
k=0

(
ak cos(kx) + bk sin(kx)

)
e−k

2t

solves 
ut = uxx, −π ≤ x ≤ π, t ∈ R
u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ∈ R
u(x, 0) = f(x), −π ≤ x ≤ π

with

f(x) =
n∑
k=0

(
ak cos(kx) + bk sin(kx)

)
.

As before, we might conjecture that if we can write the initial data f as

f(x) =
∞∑
k=0

(
ak cos(kx) + bk sin(kx)

)
,

then putting

u(x, t) =
∞∑
k=0

(
ak cos(kx) + bk sin(kx)

)
e−k

2t

solves the boundary value problem. Does it? Can we write f in this way? What are ak and
bk? These are the fundamental questions that lead us to Fourier series.
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41.9 Problem. Adding is sometimes easier than multiplying. What if we looked for “sum
solutions” u(x, t) = X(x) + T (t)? Find all such solutions to the heat equation ut = uxx.
Does this result make the function w from (26.1) seem less mysterious?

Day 42: Monday, November 18.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Sections 4.1 and 4.2 provide a huge amount of detail on Fourier series. All of this
is worth reading, although you are not responsible for the many proofs (which will
nonetheless clear up many lingering questions from class). The book defines Fourier
series over symmetric intervals [−L,L] for L > 0; we are taking L = π for convenience.
Trigonometric polynomials and the integral inner product are defined on pp. 189–190.
Theorem 1 on p. 192 obtains the coefficients of trigonometric polynomials in terms of
inner products. Fourier series are defined on pp. 193 and computed in several examples
on pp. 193–198 and pp. 201–202. Theorem 2 on p. 198, Theorem 1 on p. 217, and
Theorem 2 on p. 221 state “ideal” results for Fourier series convergence that relate
to the natural assumptions of our heat boundary value problem. Again, you are not
responsible for knowing the proofs of any of these theorems, but they are there if you
are interested. See Remark 1 on p. 194 and the remark on p. 204 for hints of the
delicacy of convergence otherwise.

We first briefly review some essential aspects of series convergence.

42.1 Definition. Let (zk) be a sequence in C, i.e., a function f : N → C with f(k) = zk.
The term “series” and the symbol

∑∞
k=1zk have two meanings.

(i) We denote by
∑∞

k=1zk the sequence of partial sums
(∑n

k=1zk
)
. That is,

∑∞
k=1zk is the

function f : N→ C such that f(n) =
∑n

k=1zk.

(ii) If the limit limn→∞
∑n

k=1zk of this sequence of partial sums exists, then we also denote
it by

∑∞
k=1zk. That is,

∑∞
k=1zk is the number

∑∞
k=1zk := limn→∞

∑n
k=1zk.

So, we can always give a rigorous meaning to the symbol
∑∞

k=1zk by interpreting it as a
sequence of partial sums, and sometimes we are lucky enough to have convergence and think
of this symbol as being a finite number. We will not make too much of a fuss about where
the sum starts, i.e., at k = 1 or at some other value of k.

42.2 Example. Let r ∈ C with |r| < 1. Then for any integer n ≥ 1 we have

n∑
k=0

rk =
1− rn+1

1− r
,
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and so
∞∑
k=0

rk =
1

1− r
.

This is the geometric series. But we could also think of
∑∞

k=0r
k as the sequence of

partial sums
∞∑
k=0

rk =

(
n∑
k=0

rk

)
=

(
1− rn+1

1− r

)
.

The most important method of determining series convergence is the same as for improper
integrals: the comparison test.

42.3 Theorem. Let (zk) and (wk) be sequences with |zk| ≤ |wk|. Suppose that
∑∞

k=0|wk|
converges. Then the series

∑∞
k=0wk,

∑∞
k=0|zk|, and

∑∞
k=0zk all converge, and we have the

triangle inequality: ∣∣∣∣∣
∞∑
k=0

zk

∣∣∣∣∣ ≤
∞∑
k=0

|zk| ≤
∞∑
k=0

|wk|.

Our goal in studying the periodic heat BVP
ut = uxx, −π ≤ x ≤ π, t ∈ R
u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ∈ R
u(x, 0) = f(x), −π ≤ x ≤ π

is to be able to write

f(x) =
∞∑
k=0

(
ak cos(kx)+bk sin(kx)

)
and then u(x, t) =

∞∑
k=0

(
ak cos(kx)+bk sin(kx)

)
e−k

2t.

We first think about such expansions for f and then consider if such u converge and are
differentiable.

Some additional notation and calculations will help. For f , g ∈ Cpw([−π, π]), as defined
some time ago in Definition 28.1, put

〈f, g〉 :=

∫ π

−π
fg.

It is then possible to calculate the following:

〈cos(k·), cos(j·)〉 =


2π, k = j = 0

π, k = j ≥ 1

0, k 6= j,

〈sin(k·), sin(j·)〉 =

{
π, k = j ≥ 1

0, k 6= j,
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and

〈cos(k·), sin(j·)〉 =

{
π, k = j

0, k 6= j.

Perhaps the simplest initial temperature distribution f for the problem at hand is

f(x) =
n∑
k=0

(
ak cos(kx) + bk sin(kx)

)
, (42.1)

which we call a trigonometric polynomial. Linearity of the integral gives

〈f, cos(j·)〉 =
n∑
k=0

(
ak 〈cos(k·), cos(j·)〉+ bk 〈sin(k·), cos(j·)〉

)
=


2πa0, k = j = 0

πaj, k = j ≥ 1

0, k 6= j.

Similarly,

〈f, sin(j·)〉 =

{
πbj, k = j ≥ 1

0, k 6= j.

The mismatch of 2π and π in the formula for 〈f, cos(j·)〉 and the fact that 〈f, sin(j·)〉 only
returns bj for j ≥ 1 suggests that we revise our expression of a trigonometric polynomial
from (42.1) to

f(x) =
a0
2

+
n∑
k=1

(
ak cos(kx) + bk sin(kx)

)
.

For f in this form, we now have the more consistent formulas

ak =
〈f, cos(k·)〉

π
and bk =

〈f, sin(k·)〉
π

.

This suggests (but does not demand) how we might define the coefficients ak and bk above
in the ideal trigonometric expansion of an arbitrary f ∈ Cpw([−π, π]).

42.4 Definition. Let f ∈ Cpw([−π, π]). The Fourier coefficients of f are

ak[f ] :=
〈f, cos(k·)〉

π
=

1

π

∫ π

−π
f(x) cos(kx) dx

and
bk[f ] :=

〈f, sin(k·)〉
π

=
1

π

∫ π

−π
f(x) sin(kx) dx.

The formal Fourier series of f is

FS[f ](x) :=
a0[f ]

2
+
∞∑
k=1

(
ak[f ] cos(kx) + bk[f ] sin(kx)

)
.
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Actually computing the coefficients ak[f ] and bk[f ] is mostly an exercise in integration,
often integration by parts. As with Fourier transforms, there is usually little insight to be
gained in computing explicitly the Fourier coefficients, except maybe for some very special
functions; later we will see that estimating Fourier coefficients can be more illuminating, and
useful.

For f ∈ Cpw([−π, π]) and x ∈ [−π, π], we can always interpret FS[f ](x) as a sequence of
partial sums:

FS[f ](x) =

(
a0[f ]

2
+

n∑
k=1

(
ak[f ] cos(kx) + bk[f ] sin(kx)

))
.

Ideally we would like to have FS[f ](x) = f(x), i.e.,

f(x) = lim
n→∞

a0[f ]

2
+

n∑
k=1

(
ak[f ] cos(kx) + bk[f ] sin(kx)

)
.

Determining if FS[f ](x) converges, and to what (whether f(x) or something else), has been a
major thrust of modern analysis. At the very least, if FS[f ] = f , then f must be 2π-periodic,
i.e., f(−π) = f(π).

42.5 Problem. Why?

We might wonder if ak[f ] and bk[f ] are the “best” coefficients to use if we want to write f
as an infinite sum of sines and cosines. For a variety of reasons, they are—not least because
under suitable hypotheses on f we will indeed have FS[f ](x) = f(x). Here is a formal
indication of why these coefficients are the right ones.

42.6 Problem. Let f ∈ Cpw([−π, π]). Suppose that there are sequences (ak) and (bk) such
that

f(x) =
∞∑
k=0

(
ak cos(kx) + bk sin(kx)

)
for each x ∈ [−π, π], and suppose as well that we can interchange integration and summa-
tion in the sense that

〈f, g〉 =
∞∑
k=0

(
ak 〈cos(k·), g〉+ bk 〈sin(k·), g〉

)
for any g ∈ Cpw([−π, π]). Prove that

a0 = 2a0[f ], ak = ak[f ], k ≥ 1, and bk = bk[f ], k ≥ 1.

And here is a precise indication of why the Fourier coefficients are the right ones.
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42.7 Theorem. Let f ∈ C1([−π, π) with f(−π) = f(π) and f ′(−π) = f(π). Then
FS[f ](x) = f(x) for all x ∈ [−π, π].

The hypothesis that f be continuously differentiable cannot be relaxed: there exist f ∈
C([−π, π]) such that FS[f ](x) diverges at one or more values of x! The periodicity hypotheses
f(−π) = f(π) and f ′(−π) = f(π) are not unnatural if we want f to solve a heat BVP.

42.8 Problem. Suppose that u solves
ut = uxx, −π ≤ x ≤ π, t ∈ R
u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ∈ R
u(x, 0) = f(x).

Prove that f ∈ C2([−π, π]) with

f(−π) = f(π) and f ′(−π) = f ′(π).

Here are some useful estimates on the Fourier coefficients, which we state for ak[f ] only,
though they are also true for bk[f ].

42.9 Problem. (i) Let f ∈ C([−π, π]) and put ‖f‖∞ := max−π≤x≤π |f(x)|. Prove that

|ak[f ]| ≤ 2π ‖f‖∞ .

(ii) Let f ∈ C1([−π, π]) with f(−π) = f(π). Prove the existence of C > 0 (depending on
f) such that for k ≥ 1,

|ak[f ]| ≤ C

k
.

[Hint: integrate by parts.]

The second estimate above can be improved with more regularity and periodicity hy-
potheses on f . For example, if f ∈ C2([−π, π]) with f(−π) = f(π) and f ′(−π) = f ′(π),
then

|ak[f ]| ≤ C

k2
and |bk[f ]| ≤ C

k2

for k ≥ 1.

42.10 Problem. Explain how this resembles the estimates (29.1) for the Fourier transform.
(Maybe try (re)proving those estimates for the case r = 2.) When things boil down to
integration by parts, how do the periodicity conditions here for Fourier coefficients play
the same role as the hypothesis f (j) ∈ L1, 1 ≤ j ≤ r, for the Fourier transform?
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Our hope is now that if f ∈ C2([−π, π]) with f(−π) = f(π) and f ′(−π) = f ′(π), then

u(x, t) :=
a0[f ]

2
+
∞∑
k=1

(
ak[f ] cos(kx) + bk[f ] sin(kx)

)
e−k

2t

is defined and sufficiently differentiable to solve
ut = uxx, −π ≤ x ≤ π, t ∈ R
u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ∈ R
u(x, 0) = f(x).

We will proceed assuming a0[f ] = bk[f ] = 0 for k ≥ 0 and writing just ak instead of ak[f ];
generalizing to the full version of u above will then pose no real conceptual difficulties.

So, we are considering

u(x, t) =
∞∑
k=1

ak cos(kx)e−k
2t.

Does this series converge? The hypotheses on f imply |ak| ≤ C/k2, so each term of the series
is bounded by

|ak cos(kx)e−k
2t| ≤ C

k2
, (42.2)

and
∑∞

k=1k
−2 converges by properties of p-series. The comparison test then implies that u

converges.
The estimate (42.2) tacitly assumed t ≥ 0 to obtain 0 ≤ e−k

2t ≤ 1. This suggests that we
will not be able to solve our heat problem for all t ∈ R as initially posed (and as was feasible
for initial temperature distribution f given by a trigonometric polynomial) but at best for
t ≥ 0. That is, we may have to content ourselves with solving

ut = uxx, −π ≤ x ≤ π, t ≥ 0

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ≥ 0

u(x, 0) = f(x), −π ≤ x ≤ π.

We can actually get convergence of u(x, t) for t > 0 if the sequence (ak) is merely bounded,
i.e., if there is C > 0 such that |ak| ≤ C for all k. In this case, we estimate

|ak cos(kx)e−k
2t| ≤ Ce−k

2t = Ce−kt = C(e−t)k.

since −k2t < −kt for k ≥ 1 and t > 0. When t > 0 we have 0 < e−t < 1, so the series∑∞
k=0(e

−t)k is a convergent geometric series. Thus u(x, t) converges for all x ∈ [−π, π] and
t > 0. This too suggests that we may have to content ourselves with solving the heat problem
for t > 0, which was the situation, of course, with the infinite rod heat equation.

As for the derivatives, we might hope that we can “differentiate under the sum” to find

ut(x, t) = ∂t

[
∞∑
k=1

ak cos(kx)e−k
2t

]
=
∞∑
k=1

∂t
[
ak cos(kx)e−k

2t
]

=
∞∑
k=1

−k2ak cos(kx)e−k
2t
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and

uxx(x, t) = ∂2x

[
∞∑
k=1

ak cos(kx)e−k
2t

]
=
∞∑
k=1

∂2x
[
ak cos(kx)e−k

2t
]

=
∞∑
k=1

−k2ak cos(kx)e−k
2t.

If these interchanges of sum and derivative are valid, then we certainly have ut = uxx. So
(why) does it work?

Day 43: Wednesday, November 20.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Term-by-term differentiation of a series is stated and proved on p. 689 as a corollary
of differentiation under the (improper) integral. The remarks on p. 133 discuss how
one might approximate an initial temperature distribution by a partial sum of its
Fourier series and then use that trigonometric polynomial to build an approximate
solution to the related PDE. Example 4 on p. 248 illustrates where the full Fourier
series might fail (because the PDE does not really make sense). A nice definition of
“formal solution” and “formal” appears on p. 249; this definition of “formal” applies to
many situations beyond PDE. See also the remarks on “formal solutions” on p. 252.
Pages 482–485 offer different perspectives on solutions to PDE via Fourier series by
relating them to solutions obtained via the Fourier transform. Example 1 on p. 142
offers the comforting result that solutions to this periodic heat BVP are unique; the
proof offers good practice with energy integrals.

We work on differentiating the function

u(x, t) :=
∞∑
k=1

ak cos(kx)e−k
2t, (43.1)

assuming that the sequence (ak) decays as |ak| ≤ C/k2. We will do just the t-partial, as the
theory is the same for the x-partials. The trick is to recognize this series as an improper
integral and then differentiate under the integral.

43.1 Lemma. Let (zk) be a sequence such that
∑∞

k=1zk converges. Define

h : R→ C : y 7→

{
0, y < 1

zk, k ≤ y < k + 1, k ≥ 1 is an integer.

Then
∞∑
k=1

zk =

∫ ∞
−∞

h.
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Proof. The crux of the proof are the following pictures. First, here is a sample graph of h,
which indicates h ∈ Cpw(R), which in turn follows directly from the piecewise formula for h.

y

h(y)

1 2 3 4

z1

z2

z3

z4

Second, the (net) area under the graph of h over any interval [k, k + 1] for integers k ≥ 1 is
zk.

y

h(y)

1 2 3 4

z1

z2

z3

z4

Adding everything, we obtain
∫∞
−∞h =

∑∞
k=1zk. �
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We can therefore rewrite u from (43.1) as

u(x, t) =

∫ ∞
−∞

h(x, t, y) dy,

where

h(x, t, y) :=

{
0, y < 1

ak cos(kx)e−k
2t, k ≤ y < k + 1, k ≥ 1 is an integer.

To differentiate h with respect to t, we want to find a “dominating” function M = M(x, y)
with M(x, ·) ∈ L1 such that

|ht(x, t, y)| ≤ |M(x, y)|.

We have

ht(x, t, y) =

{
0, y < 1

−k2ak cos(kx)e−k
2t, k ≤ y < k + 1, k ≥ 1 is an integer,

and so we might try to take

M(x, y) :=

{
0, y < 1

k2|ak|e−k
2t, k ≤ y < k + 1, k ≥ 1 is an integer.

This is not wholly successful, since M still depends on t. The right idea is to abandon
hope of differentiability at t = 0 and to focus on t > 0. In particular, we will no longer
require the boundary condition ux(−π, 0) = ux(π, 0).

Let n ≥ 1 be an integer and consider t ≥ 1/n. By running through all integers n, we can
cover all t ∈ (0,∞). Then with t ≥ 1/n, we obtain

|ht(x, t, y)| ≤

{
0, y < 1

k2|ak|e−k
2/n, k ≤ y < k + 1, k ≥ 1 is an integer.

We are still assuming |ak| ≤ C/k2, so putting

M(x, y) :=

{
0, y < 1

Ce−k
2/n, k ≤ y < k + 1, k ≥ 1 is an integer

seems like a good idea. Since
∑∞

k=1e
−k2/n converges with n ≥ 1 fixed (by comparison to the

geometric series), it follows that M(x, ·) ∈ L1. This is enough to permit us to differentiate
under the integral.

Here are the summaries of all of our work. First we state a result for the periodic finite
heat equation, and we include a “continuity as t → 0+” condition similar to the one for the
infinite heat equation.
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43.2 Theorem. Let f ∈ C2([−π, π]) with f(−π) = f(π) and f ′(−π) = f ′(π). The function

u(x, t) :=
a0[f ]

2
+
∞∑
k=1

(
ak[f ] cos(kx) + bk[f ] sin(kx)

)
e−k

2t

is defined for −π ≤ x ≤ π and t ≥ 0 and solves
ut = uxx, −π ≤ x ≤ π, t > 0

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t ≥ 0

u(x, 0) = f(x), −π ≤ x ≤ π

lim(s,t)→(x,0+) u(s, t) = f(x), −π ≤ x ≤ π.

43.3 Problem. Explain why the boundary condition ux(−π, t) = ux(π, t) holds for t > 0.

Next, we summarize our “differentiation under the sum” result.

43.4 Theorem. Let I ⊆ R be an interval. For each integer k ≥ 0, let fk ∈ C1(I) such that
the following hold.

(i) f(s) :=
∑∞

k=0fk(s) converges for each s ∈ I.

(ii) For each k ≥ 0, there is Mk ≥ 0 such that |f ′k(s)| ≤Mk for all s ∈ I.

(iii)
∑∞

k=0Mk converges.

Then f ∈ C1(I) and

f ′(s) =
∞∑
k=0

f ′k(s).

We could develop a very similar result for the problem
ut = uxx, 0 ≤ x ≤ π, t > 0

u(0, t) = u(π, t) = 0, t ≥ 0

u(x, 0) = f(x), 0 ≤ x ≤ π,

assuming that we had a valid expansion f(x) =
∑∞

k=1bk sin(kx). We will not do this, as it
would not teach us anything particularly new about PDE or analysis.

Rather, the more interesting mathematical question here is not about u but about f .
What can we say about FS[f ](x) for more general f ∈ Cpw([−π, π])? As we have noted,
continuity alone is not enough to guarantee any kind of convergence. However, with slightly
stronger assumptions we have the following analogue of Fourier inversion (Theorem 29.9).
We need a variant on the function space C1pw(R) from Definition 29.8. Recall that we use the
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notation
f(x±) := lim

s→x+±
f(s)

for a function f and a point x.

43.5 Definition. Let a, b ∈ R with a < b. Let f ∈ Cpw([a, b]) and suppose that

lim
h→0+

f(x+ h)− f(x+)

h
and lim

h→0−

f(x+ h)− f(x−)

h

exist for all x ∈ (a, b) and that they are equal for all but finitely many points in (a, b).
Suppose also that the limits

lim
h→0+

f(a+ h)− f(a+)

h
and lim

h→0−

f(b+ h)− f(b−)

h

exist. (In the expressions f(x + h), f(a + h), and f(b + h) we are assuming that h 6= 0
is so small that f is actually defined at these points; this is possible, since f is undefined
for at most finitely many points in [a, b] by definition of Cpw([a, b]).) Then we say that f
is piecewise continuously differentiable on [a, b], and we denote the set of all
such functions by C1pw([a, b]).

Here is the best that we can say about the convergence of Fourier series in general.

43.6 Theorem. Let f ∈ C1pw([−π, π]). Then

FS[f ](x) =


f(x+) + f(x−)

2
, x ∈ (−π, π)

f(−π+) + f(π−)

2
, x = ±π.

Except at the endpoints ±π, this theorem is effectively the analogue of the Fourier inver-
sion result in Theorem 29.9. Now is a good time to point out that the Fourier coefficients (or
“modes”) ak[f ] and bk[f ] are the analogues of the Fourier coefficients f̂(k), while the Fourier
series is the analogue of the inverse Fourier transform.
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43.7 Example. We define f ∈ Cpw([−π, π]) by

f(x) =



1, x = −π
3, −π < x < −1

−1, −1 ≤ x < 1

1, 1 ≤ x < 2

2, x = 2

3, 2 < x < π.

Note that f is not even defined at x = 1 and x = π. Here is the graph.

x

f(x)

−2 −1 1 2−π π

−1

1

2

3

By continuity, we have FS[f ](x) for −π < x < −1, −1 < x < 1, 1 < x < 2, and
2 < x < π. At x = ±π, we have

FS[f ](x) =
f(−π+) + f(π−)

2
=

3 + 3

2
= 3.

Otherwise, we have

FS[f ](−1) =
f(−1−) + f(−1+)

2
=

3 + (−1)

2
= 1,

FS[f ](1) =
f(1−) + f(1+)

2
=
−1 + 1

2
= 0,

and
FS[f ](2) =

f(2−) + f(2+)

2
=

1 + 3

2
= 2.

That is,

FS[f ](x) =



3, −π ≤ x < −1

1, x = −1

−1, −1 < x < 1

0, x = 1

1, 1 < x < 2

2, x = 2

3, 2 ≤ x ≤ π.
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Among other things, we might note that FS[f ] is defined on [−π, π], even though f is
undefined at some points in that interval. This is just like how a function’s Fourier trans-
form can be defined on (−∞,∞) even if the function is undefined at some real numbers.
Integrals can eat and/or forgive bad behaviors at single points.

Here is the graph of FS[f ].

x

f(x)

−2 −1 1 2−π π

−1

1

2

3

Day 44: Friday, November 22.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Bessel’s inequality and the Riemann–Lebesgue lemma are discussed on pp. 209–212 (in
particular, see the illuminating Figure 2 on p. 212). The proof of Bessel’s inequality
on pp. 209–210 includes the “best approximation” result.

We do one example of an honest-to-goodness Fourier series calculation, in part to illustrate
the annoyances underlying such calculations, but really to see a “smoothing” effect akin to
that of the infinite heat equation.

44.1 Example. We want to solve
ut = uxx, −π ≤ x ≤ π, t > 0

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t) t > 0

u(x, 0) = f(x), −π ≤ x ≤ π,

where

f : [−π, π]→ R : x 7→

{
1, |x| ≤ π/2

0, |x| > π/2.
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Here are the graphs of f and FS[f ].

x

f(x)

−π π−π
2

π

2

1

x

f(x)

−π
2

π

2

1
1/2

−π π

We have the following convergence of FS[f ]:

FS[f ](x) =



0, −π ≤ x < −π/2
1/2, x = −π/2
1, −π/2 < x < π/2

1/2, x = π/2

0, π/2 < x ≤ π.

We begin by computing the Fourier coefficients of f . We have

ak[f ] =
1

π

∫ π

−π
f(x) cos(kx) dx =

1

π

∫ π/2

−π/2
cos(kx) dx.

At k = 0, this reduces to a0[f ] = 1. Otherwise, for k ≥ 1, we have

ak[f ] =
sin(kx)

kπ

∣∣∣∣x=π/2
x=−π/2

=
1

kπ

[
sin

(
kπ

2

)
− sin

(
−kπ

2

)]
=

2

kπ
sin

(
kπ

2

)
.

If k is even, then k/2 ∈ Z, and so sin(kπ/2) = 0. If k is odd, then k = 2j + 1 for some
j ∈ Z, and thinking about the unit circle returns

sin

(
(2j + 1)π

2

)
= (−1)j.

Thus
a2j[f ] = 0, j ≥ 1, and a2j+1[f ] =

2(−1)j

(2j + 1)π
.

Last, since f is even and sin(k·) is odd, we have

bk[f ] =
1

π

∫ π

−π
f(x) sin(kx) dx = 0.

All together,

FS[f ](x) =
a0[f ]

2
+
∞∑
k=1

(
ak[f ] cos(kx) + bk[f ] sin(kx)

)
=

1

2
+
∞∑
j=0

2(−1)j

(2j + 1)π
.
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We therefore expect that our solution u is

u(x, t) =
1

2
+
∞∑
j=0

2(−1)j

(2j + 1)π
cos((2j + 1)x)e−(2j+1)2t.

We can check that u is sufficiently differentiable for t > 0 using Theorem 43.4. This
mostly amounts to considering, more abstractly, a function v of the form v(x, t) =∑∞

k=0ak cos(kx)e−k
2t where there is C > 0 such that |ak| ≤ C for all k and checking

the convergence of
∑∞

k=0k
2e−k

2t, which holds for t > 0.
Here is the point: although the initial data f has discontinuities, the solution u is

sufficiently continuously differentiable for all t > 0. Once again, the heat equation smooths.

44.2 Problem. Prove that
∑∞

k=0k
2e−k

2t converges for all t > 0.

Now we return to our earlier question about the convergence of FS[f ] for f ∈ Cpw([−π, π]).
For each x ∈ [−π, π], the Fourier series FS[f ](x) makes sense as a sequence of partial sums,
but without further hypotheses on f , it need not converge to f(x), or even converge at all.
However, we can say something profound about convergence “on average.”

44.3 Theorem. Let f ∈ Cpw([−π, π]). Then

lim
n→∞

∥∥∥∥∥f −
(
a0[f ]

2
+

n∑
k=1

(
ak[f ] cos(k·) + bk[f ] sin(k·)

))∥∥∥∥∥ = 0. (44.1)

That is, “on average” the nth partial sum of the Fourier series for f becomes “very close”
to f when n is “large.” We now have three results on Fourier series convergence: this,
Theorem 43.6, and Theorem 42.7. We have gradually weakened our hypotheses on f , and,
in some sense, our results have weakened. Theorem 44.3 no longer guarantees that FS[f ](x)
converges to f(x) or even converges as a series at all.

44.4 Problem. (i) Define

gn : [−π, π]→ R : x 7→
(x
π

)n
.

Compute
lim
n→∞

‖gn‖ and lim
n→∞

gn(π).

(ii) Define

gn : [−π, π]→ R : x 7→


0, −π ≤ x < 0√
n, 0 ≤ x < 1/n

0, 1/n ≤ x ≤ π.
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Compute
lim
n→∞

‖gn‖ and lim
n→∞

gn(0).

(iii) Define

gn : [−π, π]→ R : x 7→


0, −π ≤ x < 1/n√
n, 1/n ≤ x < 2/n

0, 2/n ≤ x ≤ π.

Compute
lim
n→∞

‖gn‖ and lim
n→∞

gn(x), with x ∈ [−π, π] fixed.

(iv) Define

gn : [−π, π]→ R : x 7→


0, −π ≤ x < 1/n

n, 1/n ≤ x < 2/n

0, 2/n ≤ x ≤ π.

Compute
lim
n→∞

‖gn‖ and lim
n→∞

gn(x), with x ∈ [−π, π] fixed.

(v) For integers n ≥ 0 let gn ∈ Cpw([−π, π]) and let g ∈ Cpw([−π, π]). Explain how
the previous parts show that knowing limn→∞ gn(x) = g(x) for all x implies nothing
about the value, or even existence, of limn→∞ ‖gn − g‖. Explain how likewise knowing
limn→∞ ‖gn − g‖ = 0 implies nothing about the value, or even existence, of limn→∞ gn(x).

Measuring convergence of Fourier series through the norm ‖·‖ also provides more insight
as to why we chose the coefficients ak[f ] and bk[f ], beyond the established facts that “they
work.” The reason is that they “really” work.

To understand this, it will help to have some more compact notation. Recall that for f ,
g ∈ Cpw([−π, π]), we have written

〈f, g〉 =

∫ π

−π
fg,

and now, as with our prior work on heat boundary value problems, we put

‖f‖ :=
√
〈f, f〉 =

(∫ π

−π
[f(x)]2 dx

)1/2

.

Fourier series involve infinite sums of functions of the form cos(k·) and sin(k·). Each set
{cos(k·)}∞k=0 and {sin(k·)}∞k=1 is countably infinite, and so their union is countably infinite
as well. For convenience, we rescale these functions by their norms and define

U :=

{
cos(k·)
‖cos(k·)‖

}∞
k=0

∪
{

sin(k·)
‖sin(k·)‖

}∞
k=1

.

We make things more abstract and just write

U = {φj}∞j=1.
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That is, for each k ≥ 1, either there is j ≥ 0 such that φk = cos(j·)/ ‖cos(j·)‖, or there is
` ≥ 1 such that φk = sin(`·)/ ‖sin(`·)‖; conversely, each function of the form cos(j·)/ ‖cos(j·)‖
or sin(`·)/ ‖sin(`·)‖ equals one of these φk.

44.5 Problem. (i) Explain why U is orthonormal in the sense that

〈f, g〉 =

{
1, f = g

0, f 6= g

for all f , g ∈ E .

(ii) Let f ∈ Cpw([−π, π]). Show that

{ak[f ]}∞k=0 ∪ {bk[f ]}∞k=0 = {〈f, φj〉}∞j=1.

(iii) Explain why the limit (44.1) holds if and only if

lim
m→∞

∥∥∥∥∥f −
m∑
j=1

〈f, φj〉φj

∥∥∥∥∥ = 0.

Now here is how the Fourier coefficients “really” work. Not only is the nth partial sum
of the Fourier series for f a “good” approximation to f “on average” when n is “large,” this
partial sum is the best approximation to f out of all candidate functions in a certain class.

44.6 Theorem. Let f ∈ Cpw([−π, π]) and α1, . . . , αm ∈ R. Then∥∥∥∥∥f −
m∑
j=1

〈f, φj〉φj

∥∥∥∥∥ ≤
∥∥∥∥∥f −

m∑
j=1

αjφj

∥∥∥∥∥ .
Moreover, the only choice of α1, . . . , αm that achieves equality above is αj = 〈f, φj〉.

Proof. We prove the equivalent statement∥∥∥∥∥f −
m∑
j=1

〈f, φj〉φj

∥∥∥∥∥
2

≤

∥∥∥∥∥f −
m∑
j=1

αjφj

∥∥∥∥∥
2

,

which removes the pesky square roots from ‖·‖. We may compute∥∥∥∥∥f −
m∑
j=1

αjφj

∥∥∥∥∥
2

= ‖f‖2 +
m∑
j=1

(
α2
j − 2αj 〈f, φj〉

)
(44.2)

and then “complete the square” in each of the j terms:

α2
j − 2αj 〈f, φj〉 =

(
α2
j − 2αj 〈f, φj〉+ | 〈f, φj〉 |2

)
− | 〈f, φj〉 |2 = |αj − 〈f, φj〉 |2 − | 〈f, φj〉 |2.
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Thus ∥∥∥∥∥f −
m∑
j=1

αjφj

∥∥∥∥∥
2

= ‖f‖2 +
m∑
j=1

|αj − 〈f, φj〉 |2 −
m∑
j=1

| 〈f, φj〉 |2.

The middle term is the sum of nonnegative terms |αj − 〈f, φj〉 |2 and therefore nonnegative
itself, which implies ∥∥∥∥∥f −

m∑
j=1

αjφj

∥∥∥∥∥
2

≥ ‖f‖2 −
m∑
j=1

| 〈f, φj〉 |2 =: M. (44.3)

The quantity M is a lower bound on
∥∥∥f −∑m

j=1αjφj

∥∥∥2. Therefore, taking αj = 〈f, φj〉
gives ∥∥∥∥∥f −

m∑
j=1

〈f, φj〉φj

∥∥∥∥∥
2

= M. (44.4)

That is, ∥∥∥∥∥f −
m∑
j=1

〈f, φj〉φj

∥∥∥∥∥
2

= M ≤

∥∥∥∥∥f −
m∑
j=1

αjφj

∥∥∥∥∥
2

for any other choice of αj. �

44.7 Problem. Work through the details of computing (44.2). [Hint: it will help to use
different letters for the indices of summation in different slots, so write∥∥∥∥∥f −

m∑
j=1

〈f, φj〉φj

∥∥∥∥∥
2

=

〈
f −

m∑
j=1

〈f, φj〉φj, f −
m∑
`=1

〈f, φ`〉φ`

〉
.

Note also that 〈g, h〉 = 〈h, g〉.] Highlight exactly where you use the orthonormality of
{φj}∞j=1.

44.8 Problem. Combine (44.3) and (44.4) to conclude

m∑
j=1

| 〈f, φj〉 |2 ≤ ‖f‖2

for all m. It is a fact that if (zj) is a sequence in C, and there is C > 0 such that∑m
j=1|zj| ≤ C for all m ≥ 1, then

∑∞
j=1|zj| converges with

∑∞
j=1|zj| ≤ C. Use this to prove

that
∑∞

j=1| 〈f, φj〉 |2 converges and that

∞∑
j=1

| 〈f, φj〉 |2 ≤ ‖f‖2 . (44.5)

Deduce from the test for convergence the Riemann–Lebesgue lemma for Fourier



Day 45: Monday, December 2 183

series coefficients:
lim
j→∞
〈f, φj〉 = 0.

The inequality (44.5) is Bessel’s inequality. This is in fact not a strict inequality
but rather an equality, called Parseval’s equality, although that is harder to prove.

44.9 Problem. Assuming Parseval’s equality to be true, prove Theorem 44.3. [Hint:
again, combine (44.3) and (44.4) and use the definition of the convergence of the series∑∞

j=1| 〈f, φj〉 |2 to ‖f‖2.]

Day 45: Monday, December 2.

Throughout this course, we have paid special attention to how techniques and tools from
calculus (and analysis) arise in solving—and, more importantly, understanding—PDE. Chief
among these tools was the integral as a means for representing functions and extracting
data about functions. The integral still plays a critical role in our current work on Fourier
series (by extracting, as it did with the Fourier transform, the Fourier modes of a function),
but now we are moving from an analytic-focused approach to a linear analytic approach.
Introducing more perspectives from (infinite-dimensional) linear algebra will make clear what
really matters.

We have considered two boundary value problems for the finite rod heat equation. In
each case, we separated variables, and the crux of that ansatz involved solving a second-
order linear ODE subject to boundary conditions. Here is a summary of those results.

Dirichlet boundary conditions Periodic boundary conditions
ut = uxx, 0 ≤ x ≤ π, t > 0

u(0, t) = u(π, t) = 0, t ≥ 0

u(x, 0) = f(x), 0 ≤ x ≤ π


ut = uxx, −π ≤ x ≤ π, t > 0

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t), t > 0

u(x, 0) = f(x), −π ≤ x ≤ π

Product ansatz: u(x, t) = X(x)T (t){
−X ′′ = λX on [0, π]

X(0) = X(π) = 0

{
−X ′′ = λX on [−π, π]

X(−π) = X(π), X ′(−π) = X ′(π)

Eigenvalues and eigenfunctions{
λ = k2, k ≥ 1

X(x) = bk sin(kx)

{
λ = k2, k ≥ 0

X(x) = ak cos(kx) + bk sin(kx)

Eigenfunction series expansion (ideal)

f(x) =
∞∑
k=1

bk sin(kx) f(x) =
a0
2

+
∞∑
k=1

(
ak cos(kx) + bk sin(kx)

)
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45.1 Problem. We never discussed the validity of a “Fourier sine series” f(x) =∑∞
k=1bk sin(kx) for f ∈ Cpw([0, π]). Such a series would have to be odd, so that suggests

extending f ∈ Cpw([0, π]) to [−π, π] via

fo(x) :=

{
f(x), 0 ≤ x ≤ π

−f(−x), −π ≤ x < 0.

Define the Fourier sine series of f ∈ Cpw([0, π]) to be FSS[f ](x) := FS[fo](x).

(i) Determine coefficients bk such that FSS[f ](x) =
∑∞

k=1bk sin(kx).

(ii) Discuss the convergence of FSS[f ](x). Specifically, develop results analogous to The-
orems 42.7, 43.6, and 44.3.

45.2 Problem. Explain how looking for product solutions to the “insulated rod” problem
ut = uxx, 0 ≤ x ≤ π, t > 0

ux(0, t) = ux(π, t) = 0, t > 0

u(x, 0) = f(x), 0 ≤ x ≤ π

motivates a “Fourier cosine series” FCS[f ](x) = a0/2 +
∑∞

k=1ak cos(kx). Specify what
boundary conditions arise in the product ansatz. Give formulas for ak and develop conver-
gence results analogous to Theorems 42.7, 43.6, and 44.3. The rod is “insulated” because
the boundary conditions prevent any flow of heat into or out of the rod at the left and
right ends.

Now we isolate and abstract the key elements of these constructions. We first need an
environment in which to work.

45.3 Definition. A vector space over C is a nonempty set V such that for each f ,
g ∈ V and α ∈ C, there exist elements f + g ∈ V (the vector addition of f and g)
and αf ∈ V (the scalar multiplication of α and f) that satisfy the “usual” rules of
arithmetic.

Axioms for vector addition.

1. Commutativity: v + w = w + v for all v, w ∈ V.

2. Associativity: v + (w + u) = (v + w) + u for all v, w, u ∈ V.

3. Identity: there exists 0 ∈ V such that v + 0 = v for all v ∈ V.

4. Inverse: for each v ∈ V, there exists −v ∈ V such that v + (−v) = 0.

Axioms for scalar multiplication.
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5. Identity: 1v = v for all v ∈ V.

6. Associativity: α(βv) = (αβ)v for all α, β ∈ C and v ∈ V.

Axioms relating vector addition and scalar multiplication.

7. Distributivity: (α + β)v = (αv) + (βv) for all α, β ∈ C and v ∈ V.

8. Distributivity again: α(v + w) = (αv) + (βw) for all α ∈ C and v, w ∈ V.

45.4 Example. (i) Most of the function classes that we have so far considered are vector
spaces, including Cr(I) for any interval I ⊆ R, Cpw([a, b]), Cpw(R), C1pw([a, b]), C1pw(R), L1,
and L∞. For each class, most of the vector space axioms follow at once because they are
inherited from function addition and multiplication of functions by constants, and all of that
arithmetic behaves “as usual” because it in turn is inherited from arithmetic in C. Typically
the hardest part is proving that, with f + g defined pointwise as (f + g)(x) = f(x) + g(x),
we have f + g ∈ V for all f , g ∈ V .

(ii) For the purposes of Fourier analysis, we have been working with spaces that encode
boundary conditions, like {

f ∈ C2([0, π])
∣∣ f(0) = f(π) = 0

}
(45.1)

and {
f ∈ C2([−π, π])

∣∣ f(−π) = f(π), f ′(−π) = f ′(π)
}
. (45.2)

(iii) More generally, we could work with the so-called regular Sturm–Liouville
boundary conditions and consider the space{

f ∈ C2([a, b])
∣∣ c1f(a) + c2f

′(a) = 0, c3f(b) + c4f
′(b) = 0

}
with

c21 + c22 6= 0 and c23 + c24 6= 0.

or with periodic Sturm–Liouville boundary conditions via{
f ∈ C2([a, b])

∣∣ f(a) = f(b), f ′(a) = f ′(b)
}
.

We add little extra difficulty by allowing the functions in these spaces to be complex-valued,
and so we do.

45.5 Problem. Show that the space (45.1) satisfies regular Sturm–Liouville boundary
conditions and (45.2) satisfies periodic conditions.

Next, we need additional structure in our environment: a tool for extracting data about
vectors.
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45.6 Definition. Let V be a vector space over C. An inner product on V is a function

〈·, ·〉 : {(f, g) | f, g ∈ V} → C

such that the following hold.

(i) [Distributivity] 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉 for all f1, f2, g ∈ V.

(ii) [Homogeneity] 〈αf, g〉 = α 〈f, g〉 for all α ∈ C and f , g ∈ V.

(iii) [Conjugacy] 〈f, g〉 = 〈g, f〉 for all f , g ∈ V.

(iv) [Nonnegativity] 〈f, g〉 ≥ 0 for all f ∈ V.

(v) [Definiteness] If 〈f, f〉 = 0, then v = 0.

If an inner product is defined on a vector space V, then we call V an inner product
space relative to that inner product.

45.7 Example. The primary inner product that we will employ is

〈f, g〉 :=

∫ b

a

f(x)g(x) dx,

defined on C([a, b]). All of the axioms are easy to check from the algebra of integrals;
perhaps the most thought is needed for definiteness, but we have done that many times.
Indeed, if 〈f, f〉 = 0, then

∫ b
a
|f(x)|2 dx = 0; the integrand is nonnegative, so we know well

that |f(x)|2 = 0 for all x, and thus f = 0.

45.8 Problem. (i) Why does defining

〈f, g〉 :=

∫ 1

0

f ′(x)g(x) dx

not give an inner product on C1([0, 1])?

(ii) Suppose that we remove the conjugacy axiom from the definition of the inner product
but keep all of the others. What contradiction results from considering 〈if, if〉?

Now we begin to extract data about vectors from inner products. The nicest vectors in
inner product spaces have very simple behaviors relative to the inner product.

45.9 Definition. Let V be an inner product space.

(i) A subset U ⊆ V is orthogonal if 〈f, g〉 = 0 for all f , g ∈ U with f 6= g.
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(ii) A subset U ⊆ V is orthonormal if

〈f, g〉 =

{
1, f = g

0, f 6= g.

45.10 Example. The sets {sin(k·)}k∈Z, {cos(k·)}k∈Z, and {sin(k·)}k∈Z ∪ {cos(k·)}k∈Z
are orthogonal but not orthonormal in C([−π, π]) with the inner product 〈f, g〉 =∫ π
−πf(x)g(x) dx.

45.11 Problem. Which of the three sets of functions from the previous example are or-
thogonal in C([0, π]) with inner product 〈f, g〉 =

∫ π
0
f(x)g(x) dx ?

45.12 Remark. We adopt the following convention: if V is an inner product space and
U ⊆ V is orthonormal and finite, then when we write U = {φk}mk=1, we assume that the φk
are distinct. That is, φj 6= φk for j 6= k, and so when we say that {φk}mk=1 is orthonormal,
we have

〈φk, φj〉 =

{
1, k = j

0, k 6= j.

This avoids irritating and awkward redundancies with labeling the same element of a set
twice. For example, with V = C([−π, π]) and inner product 〈f, g〉 =

∫ π
−πfg, the set U :=

{1/
√

2π, cos(·)/π} is orthonormal. But if we put φ1 = φ2 = 1/
√

2π and φ3 = cos(·)/π,
then U = {φk}3k=1 and yet 〈φ1, φ2〉 6= 0.

Here is the great convenience of orthonormal sets: we know easily how to represent vectors
as linear combinations of elements of those sets.

45.13 Theorem. Let V be an inner product space and {φk}mk=1 be orthonormal. Suppose
that we can write f ∈ V as

f =
n∑
k=1

αkφk

for some αk ∈ C. Then
αk = 〈f, φk〉 .

Proof. Fix j with 1 ≤ j ≤ n and compute

〈f, φj〉 =

〈
n∑
k=1

αkφk, φj

〉
=

n∑
k=1

αk 〈φk, φj〉 = αj.

The third equality is orthonormality with 〈φk, φj〉 = 1 for k = j and 0 otherwise, per the
convention in Remark 45.12. �

In addition to facilitating convenient representations of vectors, inner products give a
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natural way of measuring size of vectors.

45.14 Theorem. Let V be an inner product space. The norm on V induced by the inner
product is the map

‖·‖ : V → R : f 7→
√
〈f, f〉,

and it satisfies the following properties.

(i) [Nonnegativity] ‖f‖ ≥ 0 for all f ∈ V.

(ii) [Definiteness] ‖f‖ = 0 if and only if f = 0.

(iii) [Homogeneity] ‖αf‖ = |α| ‖f‖ for all α ∈ C, f ∈ V.

(iv) [Triangle inequality] ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f , g ∈ V.

From now on, when we use the symbol ‖·‖, it will always be for the norm induced by the
underlying inner product.

45.15 Problem. Let V be an inner product space. Suppose that theCauchy–Schwarz
inequalty holds for all f , g ∈ V :

| 〈f, g〉 | ≤ ‖f‖ ‖g‖ .

(It does.) Use this to prove the triangle inequality. [Hint: start by squaring both sides of
the desired triangle inequality.]

We now have (almost) all of the underlying structure that we need to state and govern our
Fourier series problems except for a way of actually representing the differential equations
that arise from the product ansatz. For that, we need linear operators; in general, these are
maps between vector spaces that “respect” the linear structure of each space. Our operators
will be slightly different and more specific. First, we will consider operators that map from
a “subspace” of a given space back to itself.

45.16 Definition. Let V be a vector space. A subsetW ⊆ V is a subspace of V if 0 ∈ W
and if f + g, αf ∈ W for all f , g ∈ W and α ∈ C.

45.17 Example. Let I ⊆ R be an interval and 0 ≤ r1 ≤ r2 be integers. Then Cr2(I) is a
subspace of Cr1(I).

45.18 Problem. Explain why L1 and L∞ are not subspaces of each other.

Now we are ready for our flavor of linear operators.
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45.19 Definition. Let V be a vector space. A linear operator in V is a map
A : D(A) → V, where D(A) ⊆ V is a subspace of V, called the domain of A, such
that the following hold.

(i) [Additivity] A(f + g) = Af +Ag for all f , g ∈ D(A).

(ii) [Homogeneity] A(αf) = αAf for all α ∈ C, f ∈ D(A).

45.20 Example. Let V = C([0, 1]), D(A) = C1([0, 1]), and Af := f ′. Then A is a linear
operator in V with domain D(A).

The linear operators that matter to us will interact very well with the underlying inner
products.

45.21 Definition. Let V be an inner product space and let A : D(A) → V be an operator
in A.

(i) A is self-adjoint if
〈Af, g〉 = 〈f,Ag〉

for all f , g ∈ D(A).

(ii) A is positive semidefinite if

〈Af, f〉 ≥ 0

for all f ∈ D(A).

The following example is prototypical in proving symmetry and positivity of a differential
operator: integrate by parts and use the boundary conditions.

45.22 Example. Let

V := C([0, π]) and 〈f, g〉 :=

∫ π

0

f(x)g(x) dx.

Let
D(A) :=

{
f ∈ C2([0, π])

∣∣ f(0) = f(π) = 0
}

and Af := −f ′′.

(i) We show that A is self-adjoint. Integrating by parts once gives, for f , g ∈ D(A),

−〈Af, g〉 =

∫ π

0

f ′′(x)g(x) dx = f ′(x)g(x)
∣∣x=π
x=0
−
∫ π

0

f ′(x)g′(x) dx = −
∫ π

0

f ′(x)g′(x) dx,

since g(0) = g(π) for g ∈ D(A). A second integration by parts gives∫ π

0

f ′(x)g′(x) dx = f(x)g′(x)
∣∣x=π
x=0
−
∫ π

0

f(x)g′′(x) dx = −
∫ π

0

f(x)g′′(x) dx
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since f(0) = f(π) for f ∈ D(A). Chasing through the negatives, we have

〈Af, g〉 =

∫ π

0

f ′(x)g′(x) dx = −
∫ π

0

f(x)g′′(x) dx =

∫ π

0

f(x)[−g′′(x)] dx = 〈f,Ag〉 .

(ii) We show that A is positive semidefinite. For f ∈ D(A), we compute

−〈Af, f〉 =

∫ π

0

f ′′(x)f(x) dx = f ′(x)f(x)
∣∣x=π
x=0
−
∫ π

0

f ′(x)f ′(x) dx = −
∫ π

0

|f ′(x)|2 dx

That is,
〈Af, f〉 = ‖f ′‖2 ≥ 0.

45.23 Problem. In the example above, what happens if we redefine A as Af = f ′′?

45.24 Problem. Redevelop the results of this example for the following operators.

(i) Af = −f ′′, V = C([−π, π]), D(A) =
{
f ∈ C2([−π, π])

∣∣ f(−π) = f(π), f ′(−π) = f ′(π)
}
.

(ii) Au = −∆u, V =
{
u ∈ C(R)

∣∣ u = 0 on ∂R
}
, D(A) = C2(R) ∩ V , R ={

(x, y) ∈ R2
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
. [Hint: Lemma 39.5.]

We can now finally state the abstract version of the first problem that arose from a product
ansatz: given a vector space V and a linear operator A : D(A)→ V in V , find f ∈ D(A) and
λ ∈ C such that

Af = λf.

More precisely, we always wanted f 6= 0 to avoid trivial product solutions.

45.25 Definition. Let V be a vector space and let A : D(A) → V be a linear operator in
V. Suppose that f ∈ D(A) \ {0} and λ ∈ C satisfy

Af = λf.

Then λ is an eigenvalue of A with corresponding eigenvector f . When V is a
space of functions, we often say eigenfunction instead of eigenvector.

45.26 Example. Classical results from ODE tell us that if V = C(I) for any subinterval
I ⊆ R, and Af = f ′′ with D(A) = C2(I), then every λ ∈ R is an eigenvalue of A with
corresponding eigenfunctions f(x) = c1e

√
λx + c2e

−
√
λx if λ > 0, f(x) = c1 + c2x if λ = 0,

and f(x) = c1 cos(
√
|λ|x) + c2 sin(

√
|λ|x) if λ < 0. Finding eigenfunctions for λ ∈ C is

possible, but it would require the annoying task of computing square roots of complex,
nonreal numbers.
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45.27 Example. Let V be a vector space and let A : D(A) → V be a linear operator in
A. Suppose that 0 is not an eigenvalue of A, and let g ∈ V . Then there exists at most one
f ∈ D(A) such that Af = g. For if there were two distinct f1, f2 ∈ D(A) with Afk = g,
k = 1, 2, then f1− f2 6= 0 but A(f1− f2) = 0. Then f1− f2 would be an eigenvector for 0.

45.28 Problem. Let V = D(A) = C([0, 1]) and (Af)(x) = xf(x). Prove that no λ ∈ C
is an eigenvalue of A. [Hint: if (x − λ)f(x) = 0 for some λ ∈ [0, 1], continuity forces
f(λ) = 0.]

45.29 Problem. Let V be a vector space and let A : D(A)→ V be a linear operator in A.
Suppose that λ ∈ C is an eigenvalue of A. Prove that the eigenspace

Eλ :={f ∈ D(A) | Af = λf}

is a subspace of V . Is every vector in Eλ an eigenvector corresponding to λ?

There is a deep connection between how an operator interacts with an inner product
and how its eigenvalues and eigenvectors behave. The next theorem and example show that
seemingly special properties of solutions to f ′′ + λf = 0 with various boundary conditions
arise naturally from the operator-theoretic properties of Af := −f ′′ on those function spaces.

45.30 Theorem. Let V be an inner product space and let A : D(A) → V be an operator
in V.

(i) If A is self-adjoint, then any eigenvalue of A is real: if Af = λf for some f 6= 0, then
λ ∈ R.

(ii) If A is self-adjoint, then eigenvectors corresponding to distinct eigenvalues are orthog-
onal. That is, if Af1 = λ1f1 and Af2 = λ2f2 with λ1 6= λ2, then 〈f1, f2〉 = 0.

(iii) If A is positive semidefinite, then its eigenvalues are nonnegative: if Af = λf for
some f 6= 0, then λ ≥ 0.

Proof. (i) We would like to show λ = λ. We know that conjugates show up when we work
in the second slot of the inner product, so we take an inner product with the only relevant
vector at hand:

〈f, λf〉 = λ 〈f, f〉 = λ ‖f‖2 .

But also
〈f, λf〉 = 〈f,Af〉 = 〈Af, f〉 = 〈λf, f〉 = λ 〈f, f〉 = λ ‖f‖2 .

Thus
λ ‖f‖2 = 〈f, λf〉 = λ ‖f‖2 ,

so
(λ− λ) ‖f‖2 = 0.
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Since f is an eigenvector, f 6= 0, and therefore ‖f‖ 6= 0. Thus λ− λ = 0.

(ii) We want to control 〈f1, f2〉, and that quantity almost shows up when we consider mul-
tiples like 〈λ1f1, f2〉 or 〈f1, λ2f2〉, which are the natural multiples to consider, given the
eigenrelations assumed here. We compute

〈λ1f1, f2〉 = 〈Af1, f2〉 = 〈f1,Af2〉 = 〈f1, λ2f2〉 = λ2 〈f1, f2〉 = λ2 〈f1, f2〉 ,

since A is self-adjoint and therefore has real eigenvalues. That is,

λ1 〈f1, f2〉 = 〈λ1f1, f2〉 = λ2 〈f1, f2〉 ,

thus
(λ1 − λ2) 〈f1, f2〉 = 0,

and since λ1 6= λ2, we must have 〈f1, f2〉 = 0.

(iii) Since A is positive, we work with the only natural quantity relating A, λ, and an
inequality:

0 ≤ 〈Af, f〉 = 〈λf, f〉 = λ 〈f, f〉 = λ ‖f‖2 .

Since f is an eigenvector, f 6= 0, and so ‖f‖ 6= 0. Dividing, we have 0 ≤ λ. �

45.31 Problem. Adapt the proof above to show that if A is positive definite in the
sense that 〈Af, f〉 > 0 for all f 6= 0, then all of the eigenvalues of A are positive.

45.32 Example. (i) In Example 45.22, we showed that Af = −f ′′ is self-
adjoint and positive as an operator in V = C([0, π]) with domain D(A) ={
f ∈ C2([0, π])

∣∣ f(0) = f(π) = 0
}
. We also know (from separation of variables) that its

eigenvalues are k2 for k ≥ 1, and any eigenfunction corresponding to k2 is a scalar multi-
ple of sin(k·), and the set {sin(k·)}∞k=1 is orthogonal. All of this agrees with the previous
theorem on the eigenbehavior of self-adjoint positive operators. Here A has rather fewer
eigenvalues than the second derivative operator in Example 45.26. This is because A here
is a different operator: its domain is not all of C2([0, π]).

(ii) We have also shown that A is self-adjoint and positive as an operator in V = C([−π, π])
with domain D(A) =

{
f ∈ C2([−π, π])

∣∣ f(−π) = f(π), f ′(−π) = f ′(π)
}
. Here, however,

the eigenvalues are k2 for k ≥ 0, and every eigenfunction corresponding to k2 can be written
as f(x) = c1 cos(kx) + c2 sin(kx). Domains matter.

This example suggests that we should pay attention to the “size” of eigenspaces. (Counting
elements does us no good, for any nontrivial subspace W , i.e., W 6= {0}, of a vector space V
has infinitely many elements—why?) In each case, k2 was an eigenvalue of the operator A,
but in the first case the eigenspace for k2 was

{c sin(k·) | c ∈ R}
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while in the second it was

{c1 cos(k·) + c2 sin(k·) | c1, c2 ∈ R} .

Both eigenspaces contain infinitely many functions, but the second should appear “larger”
than the first as it admits two free constants. (Strictly speaking, in the context of Example
45.32, the first is a subspace of C([0, π]), while the second is a subspace of C([−π, π]); that
is, the domains are different.)

45.33 Problem. Prove that {c1 cos(k·) + c2 sin(k·) | c1, c2 ∈ R} 6={c sin(k·) | c ∈ R}.

The following theorem spells out a situation in which an eigenspace has this “finite”
behavior.

45.34 Theorem. Let V be an inner product space and A : D(A)→ V be an operator in V
with eigenvalue λ ∈ C. There exists at most one integer m ≥ 1 such that the eigenspace
Eλ (Problem 45.29) has the form

Eλ =

{
m∑
k=1

αkφk

∣∣∣∣∣ α1, . . . , αm ∈ C

}

for some orthonormal subset {φk}mk=1 ⊆ D(A). This integer m is the geometric mul-
tiplicity of λ as an eigenvalue of A. (The subset {φk}mk=1, unlike m, is not unique.)

We will not prove this theorem here. Of course, it really is a statement about dimension
and orthonormal basis: Eλ above is m-dimensional, and {φk}mk=1 is an orthonormal basis
for Eλ. One would first prove the uniqueness of m, i.e., that dimension is well-defined, and
then apply the Gram–Schmidt process to construct an orthonormal basis from an “ordinary”
basis. In the interest of “getting to the good stuff,” we will not do that here.

45.35 Problem. What is the geometric multiplicity of each eigenvalue of the operators in
Example 45.32?

Here, at last, is the “good stuff”—or, at least, what we would like to be true.

45.36 Untheorem. Let V be an inner product space and A : D(A) → V be a self-adjoint
operator in V whose eigenvalues are the set {λk}∞k=1. Assume the following.

(i) λk < λk+1 for all k.

(ii) lim
k→∞

λk =∞.

(iii) Each eigenvalue λk has finite geometric multiplicity mk and the eigenspace corre-
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sponding to λk can be written as

Ek =

{
mk∑
j=1

αiφ
k
j

∣∣∣∣∣ α1, . . . , αmk
∈ C

}

with {φkj}
mk
j=1 ⊆ D(A) orthonormal.

Define

Pk : V → Ek : f 7→
k∑
j=1

〈
f, φkj

〉
φkj . (45.3)

Then

lim
n→∞

∥∥∥∥∥f −
n∑
k=1

Pkf

∥∥∥∥∥ = 0 (45.4)

for any f ∈ V.

45.37 Problem. Review the two motivating boundary value problems that arose from the
Dirichlet and periodic boundary conditions for the heat equation. Explain how each of
these problems meets the hypotheses of Untheorem 45.36. [Hint: for the periodic boundary
conditions, it will be helpful to write the eigenvalues as λk = (k− 1)2 for k ≥ 1.] For each,
write out an explicit formula for

∑3
k=1Pkf .

Like other optimistic statements in this course, Untheorem 45.36 is not a real theorem
because it is not really true. The hypotheses here alone do not, in fact, guarantee the desired
conclusion. We need more—more on the space V and the domain D(A) and the operator
A. It turns out that knowing a different characterization of the eigenvalues as minimizing
values of a certain map is enough.

45.38 Lemma (Rayleigh quotient). Assume the hypotheses of Untheorem 45.36 and
define

RA : D(A) \ {0} → R : f 7→ 〈Af, f〉
‖f‖2

.

Suppose also that the eigenvalues satisfy

λ1 = min{RA[f ] | ‖f‖ = 1} (45.5)

and, for k ≥ 2,

λk = min{RA[f ] | ‖f‖ = 1 and Pjf = 0, 1 ≤ j ≤ k − 1} , (45.6)

where Pk was defined in (45.3). Then the limit (45.4) holds.

Proving this lemma requires quite a bit more analysis and extra hypotheses on V , D(A),
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and A. However, if one accepts that the sets in (45.5) and (45.6) do have minimum values,
then it is possible to prove that those minima are eigenvalues and the vector at which the
minimum is attained is a corresponding eigenvector.

45.39 Problem. To motivate the set (45.5), suppose that λ is an eigenvalue of A : D(A)→
V with eigenvector f and that V is an inner product space. Show that

λ =
〈Af, f〉
‖f‖2

.
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