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Continuing the MATH 4260 Story

Here are some ways to do it. Since you have the Meckeses’ book at hand, you might enjoy
reading some parts that we did not cover before moving on, which are detailed below. For
complete and comprehensive coverage of finite-dimensional linear algebra, see Linear Alge-
bra by Kenneth Hoffman and Ray Kunze. Equally rigorous, but slightly gentler, treatments
are (as recommended in the syllabus) Linear Algebra Done Right by Sheldon Axler (now
available as a free pdf online); The Less Is More Linear Algebra of Vector Spaces
and Matrices by Daniela Calvetti and Erikki Somersalo (written by colleagues of the Mecke-
ses at Case Western); Linear Algebra by Stephen H. Friedberg, Arnold J. Insel, and Lawrence
E. Spence; and Advanced Linear Algebra by Hugo J. Woerdeman. Again, these books treat
the finite-dimensional theory very well (and certainly present many results that hold with-
out dimension counting). For immense coverage of matrices in particular (as opposed to
more abstract finite-dimensional matters) with some analysis prerequisites, consult Matrix
Analysis by Roger A. Horn and Charles R. Johnson.

But we can’t stop with finite dimensions, and that is where we need analysis and topology.
I recommend Introductory Functional Analysis with Applications by Erwin Kreyszig and
An Introduction to Hilbert Space by Nicholas Young. Both presume some familiarity with
real analysis—more so limits, continuity, and basic topology than derivatives or integrals.
A unique introduction to real analysis is Real Analysis for the Undergraduate: With an
Invitation to Functional Analysis by Matthew A. Pons. This does exactly what it claims:
all of the material for the real analysis sequence, with topics in linear analysis at the end of
each chapter. Something of a bridge between linear algebra in all dimensions and abstract
algebra is Advanced Linear Algebra by Steven Roman, which will present more connections
with modern algebra than analysis. Finally, linear algebraic theory is wholly incomplete
without computations, both theoretical and implemented—“Be wise, linearize” 7→ “Be wise,
discretize.” For that, see the stunningly beautiful Numerical Linear Algebra by Lloyd N.
Trefethen and David Bau III.

1. There are three major, related topics in the book that we did not discuss: diagonalization,
the singular value decomposition (SVD), and the spectral theorem. (In my opinion, the
first two are better topics for our first course in linear algebra, because they depend so
heavily on finite-dimensionality, and because they can be phrased entirely in the language
of matrices. Increasingly, I think of Linear I as the progression of stories “Solve Ax = b 7→
Understand Ax = b 7→ Understand A 7→ Approximate A,” and the SVD is one of the keys
to approximating A.)

First, let V be a finite-dimensional vector space and T ∈ L(V). Diagonalization
answers the question of when V has a basis that interacts “best” with T : when there is a
basis (v1, . . . , vn) and scalars λ1, . . . , λn ∈ F such that

T

(
n∑

k=1

αkvk

)
=

n∑
k=1

αkλkvk.

That is, (v1, . . . , vn) is a basis consisting of eigenvectors of T . When such a basis exists, T
is diagonalizable. Properties of diagonalizable operators are discussed in Sections 3.5
and 3.6.

https://linear.axler.net
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2. Second, let V andW be finite-dimensional inner product spaces and T ∈ L(V ,W). Since
we are not requiring V =W , it does not make sense to think about eigenvalues for T . But
it does make sense to ask for a substitute for eigenvalues—and to ask for bases of V and
W with which T interacts particularly nicely. We might as well ask for orthonormal bases
along the way.

Suppose T 6= 0. The singular value decomposition asserts that V and W have
orthonormal bases (u1, . . . , un) and (ũ1, . . . , ũm) and that there exist σ1, . . . , σr ∈ R with
1 ≤ r ≤ min{m,n} and 0 < σr ≤ σr−1 ≤ · · · ≤ σ1 such that

T uk =

{
σkũk, 1 ≤ k ≤ r

0, r + 1 ≤ k ≤ n.

This is discussed and proved at length in Sections 5.1 and 5.2. See Problem 5.1.13 for an
analogous “decomposition” of T as a linear combination of very special operators.

An important corollary of the SVD is that we can construct a best approximation to T
in the operator norm out of all of the “rank k” operators. That is, if we want to find the
operator Tk that minimizes ‖T − Tk‖V→W with dim[Tk(V)] = k, then the SVD tells us how
to do that. At the level of matrix multiplication operators, this gives us another notion
of approximating a given problem. Previously we thought about how to “solve” Ax = b
by replacing b 6∈ col(A) with some b̂ ∈ col(A) and then taking x̂, which solves Ax̂ = b̂
exactly, as an approximation to our “impossible” problem Ax = b. What if instead we
solved Akx = b, with Ak as the best rank-k approximation to A? Or what if we just viewed
A as a collection of data, possibly a large collection, and we wanted to approximate that
collection for “storage” purposes? Again, the SVD tells us how to do it.

3. Third, let V be a finite-dimensional inner product space and T ∈ L(V). Diagonaliz-
ability says that V has a basis consisting of eigenvectors of T . When does V have an
orthonormal basis of eigenvectors of T ? (Gram–Schmidt will not give us this directly from
diagonalizability—why not?) The answer here is the spectral theorem: V has an or-
thonormal basis of eigenvectors of T if and only if T and T ∗ commute. (If T T ∗ = T ∗T ,
then T is normal.) This is proved in Section 5.4 using the SVD; there are other routes.

4. Now here is where we left off. We could have said much more about norms. First, many
norms are really measuring the same thing, even if they look different. Two norms ‖·‖ and
||| · ||| on a space V are equivalent if there are constants C1, C2 > 0 such that

C1 ‖v‖ ≤ |||v||| ≤ C2 ‖v‖

for all v ∈ V . The idea is that knowing how v behaves with respect to one norm yields its
behavior, up to a multiplicative constant, with respect to the other norm. In the special case
of the p-norms on Fn, it is possible to determine “optimal” constants for these inequalities
at which equalities are actually attained. As another example, if V is an inner product
space with V = U ⊕ U⊥ for some subspace U , putting |||v||| := ‖PUv‖ + ‖v − PUv‖ gives an
equivalent norm on V .

It turns out that when V is finite-dimensional, all norms on V are equivalent—big surprise,
as everything is nicer in finite dimensions. It is possible to construct examples of norms on
specific infinite-dimensional spaces that are not equivalent.
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5. We could also say much more about the operator norm. First, we could give an example of
an operator for which the maxima/minima of the sets in Problem 45.10 and equation (45.2)
do not exist, and so we need the notion of supremum/infimum from analysis for operator
norms on infinite-dimensional spaces. Second, we could think about a matrix A ∈ Fm×n

both as an operator in L(Fn,Fm) and (up to isomorphism) as a vector in Fmn. We could put
different p-norms on Fn and Fm and look at the operator norm of A with respect to those
underlying norms and how that operator norm might compare to another p-norm on Fmn.

Third, we said a lot about the orthogonal projection onto a subspace of an inner product
space, but we never said that it was unique. If V is an inner product space and U is a
subspace, there are many operators P : V → U such that P(V) = U , P2 = P , and P∗ = P .
Adding the condition ‖P‖V→V ≤ 1 ensures that P = PU .

While we can say a lot about the algebraic dual space V ′, more interesting, typically, is
the plain dual space V∗ := B(V ,F), which is a subspace of V ′.

6. We could also break norms. Say that Cpw([0, 1]) is the space of piecewise-continuous
functions on [0, 1]. For example,

f(x) :=

{
1, x = 0

0, 0 < x ≤ 1

is piecewise continuous on [0, 1]. Using the notion of integral extended to piecewise-continuous
functions as we do in calculus, we have ‖f‖1 = 0 but f 6= 0. Then ‖·‖1 is no longer a norm
but a seminorm: a map that satisfies all of the properties of a norm except definiteness.

If p : V → R is a seminorm on V , it turns out that V0 :={v ∈ V | p(v) = 0} is a subspace
of V . By introducing the notion of quotient space V/V0, we can construct a norm on V
out of p. That is, we put

v + V0 :={v + w | w ∈ V0} and V/V0 :={v + V0 | v ∈ V} ,

so V/V0 is a set of sets. We define arithmetic in V/V0 by

(v1 + V0) + (v2 + V0) := (v1 + v2) + V0 and α(v + V0) := (αv) + V0,

and this turns out to be well-defined. In particular, the zero vector in V/V0 is V0. Then
putting ‖v + V0‖ := p(v) gives a well-defined norm on V0. In short, “quotienting out by V0”
allows us to treat every v ∈ V0 with p(v) = 0 as the zero vector in V/V0.

The quotient space might be the first vector space in our course that was not at some
level a function space! Quotient spaces give another proof of rank–nullity, too.

7. There is much more to say about linear functionals, too. A sneaky little result that we
never needed, but that is surprisingly useful, is that if ϕ1, . . . , ϕn, ϕ ∈ V ′ with ∩nk=1 ker(ϕk) ⊆
ker(ϕ), then ϕ ∈ span(ϕ1, . . . , ϕn). This is very helpful to know.

More excitingly, it turns out that the “evaluation” functional

ϕ : C([0, 1])→ R : f 7→ f(0)

cannot be written in the form ϕ(f) =
∫ 1

0
f(x)ρ(x) dx for some ρ ∈ C([0, 1]), and so the Riesz

representation theorem can break.
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We studied linear functionals on inner product spaces extensively, but we can also work
on more general vector spaces. Recall that for an inner product space V and U ⊆ V , the
orthogonal complement of U is U⊥ ={v ∈ V | 〈v, u〉 = 0 for all u ∈ U}. For a vector
space V and U ⊆ V , the annihilator of U is

U◦ :={ϕ ∈ V ′ | ϕ(u) = 0 for all u ∈ U} ={ϕ ∈ V ′ | U ⊆ ker(ϕ)} .

How are U◦ and U⊥ related in an inner product space? For U ⊆ V ′, we put

◦U :={v ∈ V | ϕ(v) = 0 for all ϕ ∈ U} = ∩ϕ∈U ker(ϕ).

One might ask about the relationship of ◦(U◦) to U , just as we did for (U⊥)⊥. It is possible
to develop “range equals kernel circ” relationships with annihilating sets.

We also have a more general notion of adjoint, which we might inelegantly call the “al-
gebraic adjoint.” For vector spaces V and W and T ∈ L(V ,W), define T ′ ∈ L(W ′,V ′)
by

(T ′ψ)(v) = ψ(T v).

Parse through this equality to understand why T ′ψ is a linear functional on V for each linear
functional ψ on W ′. It turns out that if A ∈ Fm×n, then [T ′A] = AT. That is, the adjoint T ′
is represented by the ordinary transpose of T , not the conjugate transpose. If V and W are
inner product spaces and T has an adjoint, we might explore how T ′ and T ∗ interact.

And if we have one dual space, why not two? We can show that if V is finite-dimensional,
then V is isomorphic to V ′′ := (V ′)′. In particular, there is a “natural” isomorphism: define
J : V → V ′′ by (J v)ϕ := ϕ(v) for ϕ ∈ V ′. Operators defined by “evaluate at” are quite
common! A normed space V is reflexive if J is an isomorphism from V to V∗, and
reflexive spaces have many nice properties (here it is important that we use J , not any old
isomorphism, and V∗, not V ′).

8. There is also an algebraic structure that we have neglected: an algebra. This is a vector
space V on which there is defined a “multiplication of vectors” operation that interacts with
vector addition and scalar multiplication as one would expect, although the multiplication
does not have to be commutative. The prototypical example is operator composition in L(V).
Operator composition interacts well with the operator norm on B(V) when V is a normed
space: ‖T1T2‖V→V ≤ ‖T1‖V→V ‖T2‖V→V . Operator composition also interacts with the adjoint
when V is an inner product space (or not) in that (T1T2)∗ = T ∗2 T ∗1 . Otherwise, taking the
adjoint resembles algebraic properties of conjugating complex numbers, e.g., (T ∗)∗ = T .

More generally, if V is an algebra with a norm, we want that norm to be submulti-
plicative: ‖vw‖ ≤ ‖v‖ ‖w‖. And we are interested in the existence of an involution: a
map V → V : v 7→ v∗ that mimics the essential properties of the adjoint, e.g., (vw)∗ = w∗v∗.

9. The majority of this course has involved equalities. Three major exceptions are the
Cauchy–Schwarz inequality, the triangle inequality for norms (whether induced by an inner
product or not), and the best approximation result from projections (also that approximation
result from the SVD, which we did not discuss). Having a norm allows us to compare sizes:
a vector v is “small” if ‖v‖ is a “small” real number. If ‖v − w‖ is “small,” then v and w
are “close”—and once we have a notion of measuring closeness, we can do analysis: limits,
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continuity, derivatives, integrals. We could redevelop much of introductory real analysis by
replacing x and y with v and w and |x − y| with ‖v − w‖. This allows us to develop a
notion of limits and continuity for functions between normed spaces—not necessarily linear
operators, and not functions that are vectors within a space. For example, we could study
the continuity of F : C([0, 1]) → C([0, 1]) : f 7→ g ◦ f with g ∈ C(R) fixed, where we norm
C([0, 1]) by ‖·‖∞.

What about derivatives? When we are dealing with vectors, not real numbers, slopes
and rates of change are less meaningful. But remember that the derivative is a local linear
approximation: f(x + h) ≈ f(x) + f ′(x)h. We can ultimately encode this for a function
F : V → W by saying that f is differentiable at v ∈ V if there is an operator T ∈ B(V ,W)
such that

lim
h→0

‖F(v + h)−F(v)− T h‖W
‖h‖V

= 0,

whatever “ limh→0” means here. We call T the derivative of F at v and write DF(v) :=
T . The power of the derivative is, as in real-variable calculus, local linear approximation:
F(v + h) ≈ F(v) + DF(v)h. What is easier to study: some arbitrary map F or a linear
operator DF(v)? We do know a lot about linear operators.

10. Inequalities are what make analysis work, and analysis is what helps us answer so many
lingering questions.

(i) Let V and W be inner product spaces and T ∈ L(V ,W). What guarantees that T has
an adjoint?

(ii) Let V be an inner product space and let U be a subspace of V . What guarantees that
V = U ⊕ U⊥ and U = (U⊥)⊥?

(iii) Let V be an inner product space and ϕ ∈ V ′. What guarantees the existence of ρ ∈ V
such that ϕ(v) = 〈v, ρ〉 for all v ∈ V?

(iv) Let V be an inner product space. What guarantees the existence of an orthonormal set
{φk}∞k=1 such that

lim
n→∞

∥∥∥∥∥v −
n∑

k=1

〈v, φk〉φk

∥∥∥∥∥ = 0

for all v ∈ V?

(v) Let ‖·‖ and ||| · ||| be norms on a vector space V . What guarantees that ‖·‖ and ||| · ||| are
equivalent?

The first step in answering all of these questions is to involve completeness: every
Cauchy sequence in the space(s) must converge. This is exactly the same definition of
completeness as in analysis. Starting with completeness, adding some other topological ma-
chinery, and doing a lot of estimates will provide guarantees (sometimes sufficient, sometimes
necessary) as requested above. This is the power and the glory of functional analysis.


