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How to Use This Daily Log

This document is our primary reference for the course. It contains all of the material that
we discuss in class along with some supplementary remarks that may not be mentioned in
a class meeting. Each individual day has references, when applicable, to relevant material
from the text Basic Partial Differential Equations by David Bleecker and George Csordas.

This log contains three classes of problems.

(!) Problems marked (!) are meant to be attempted immediately. They will directly address
or reinforce something that we covered (or perhaps omitted) in class. It will be to your great
benefit to pause and work (!)-problems as you encounter them. You should attempt, and be
able to complete, all (!)-problems whether or not they are assigned for problem sets.

(?) Problems marked (?) are intentionally more challenging and deeper than (!)-problems.
The (?)-problems will summarize and generalize ideas that we have discussed in class and give
you broader, possibly more abstract perspectives. You should attempt the (?)-problems on a
second rereading of the lecture notes, after you have completed the (!)-problems. Completing
all of the (?)-problems constitutes the minimal preparation for exams.

(+) Problems marked (+) are candidates for the portfolio project. These are meant to be
more challenging than the (!)- and (?)-problems and will take you deeper into calculations and
proofs and make connections to concepts across and beyond the course. Some (+)-problems
do presume knowledge of other classes (e.g., linear algebra, ODE, real or complex analysis,
topology), but the majority do not. It is not necessary to do all (+)-problems in preparation
for an exam; instead, you should look out for (+)-problems that you find interesting and
exciting, as that will make the portfolio project more meaningful (and palatable) for you.
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Day 1: Monday, January 6.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Section 1.2 has a broad overview of the subject and some important terms (like linear
PDE and superposition). You definitely don’t have to understand everything in here,
but it gives a good vision of the subject and some important examples. We will revisit
some of this material throughout the term.

Broadly, we care about PDE (which we use as both a singular and a plural noun, de-
pending on context) because many interesting quantities in life depend on more than one
variable and because the study of PDE employs and motivates many interesting concepts
in mathematics. In this course, we will usually study functions of two variables, typically
one for space and one for time (or sometimes both for two-dimensional space), and usually
the unknown function in our equations will be u; we will write u = u(x, t) to emphasize
that u depends on x and t, and x will denote space and t time. Major challenge of PDE
involve data and geometry: when the domain of our unknown function is two-dimensional
(or higher-dimensional), we must keep track of much more data from the inputs, and there
are many more options available for the domain’s geometry as a subset of R2 (or Rn). We
will avoid these challenges by taking fairly banal domains when working with one spatial
variable and one temporal variable; there, each variable will belong to some subinterval of
R, possibly infinite, possibly closed and bounded.

This course will provide many opportunities to revisit topics from single and multivariable
calculus; we will become stronger students of familiar calculus because of these opportunities,
and we will develop new appreciation for things that we previously learned, most especially
the integral. We will also have many opportunities to ask, but not fully answer, questions
that connect PDE to other courses—in particular real and complex analysis, linear algebra,
and topology. Questions from PDE motivate many of the rigorous results from those courses
that we will not prove, fully or even partially, here. But we will prove many results here;
after all, a proof is just an argument that we are correct about something.

We will devote significant attention to the following four canonical linear PDE:

ut + ux = 0 Transport equation
ut − uxx = 0 Heat equation
utt − uxx = 0 Wave equation
utt + uxx = 0 Laplace’s equation.

It turns out that we can represent all solutions to the transport equation very explicitly and
compactly, and so that PDE will be a great “lab rat” as we develop new techniques—we can
always see how something new compares to what we know about transport. In fact, once we
know how to solve the transport equation as written above, a versatile “rescaling” technique
will allow us to solve

aut + bux = 0

for any choice of a, b ∈ R. And, thanks to a clever “factoring” technique, we will be able to
import many ideas from the transport equation to the wave equation, and so transport and



Day 1: Monday, January 6 5

wave morally belong to the same “class” of PDE. But heat and Laplace are totally different,
both from each other and from the transport/wave class. In particular, the difference between
wave and Laplace, which is just the choice of ±, is remarkable—a banal change in the
algebraic structure of the PDE produces a profound change in the behavior of solutions and
in the mathematical techniques and tools necessary for their analysis.

All four PDE are linear and homogeneous in the sense that if u and v are solutions
and c1, c2 ∈ R, then c1u+ c2v is also a solution.

1.1 Problem (!). Prove that.

This phenomenon is sometimes gussied up with the term superposition, which fails
for nonlinear problems. Here are two nonlinear equations that we will eventually study:

ut + uux = 0 Burgers’s equation
ut + uxxx + uux = 0 Korteweg–de Vries (KdV) equation.

1.2 Problem (!). If u and v solve Burgers’s equation, what goes wrong if you try to show
that c1u+ c2v is also a solution for c1, c2 ∈ R?

Here are some things that we will not do. Lawrence C. Evans, in his magisterial graduate-
level text Partial Differential Equations, captures the challenge and the orientation of PDE
study quite evocatively:

“There is no general theory concerning the solvability of all partial differ-
ential equations. Such a theory is extremely unlikely to exist, given the
rich variety of physical, geometric, and probabilistic phenomena which can
be modeled by PDE. Instead, research focuses on various particular partial
differential equations that are important for applications within and outside
of mathematics, with the hope that insight from the origins of these PDE
can give clues as to their solutions.”

Peter Olver’s book Introduction to Partial Differential Equations gives the following as a
mission statement for a first undergraduate course in PDE, and I agree with it fully:

“[T]he primary purpose of a course in partial differential equations is to
learn the principal solution techniques and to understand the underlying
mathematical analysis.”

We will focus rather less on deriving PDE from models and physical principles and rather
more on the solution techniques and mathematical analysis.

Two of our major tools in this course will be integrals (definite and improper) and fun-
damental results from ODE. We will start by reviewing essential properties of the definite
integral and then applying them to redevelop familiar results from ODE at a more abstract
level (and more rapid pace). Throughout the course, we will see that integrals fundamentally
measure and/or extract useful data about functions (and all the cool kids want to be data
scientists these days) and also represent functions in convenient and/or meaningful ways.
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We know this from calculus: the number

1

b− a

∫ b

a

f(x) dx

gives a good measure of the “average value” that the function f takes on the interval [a, b],
while the function

F (x) :=

∫ x

a

f(t) dt

is an antiderivative of f in the sense that F ′(x) = f(x). Eventually we will see that integrals
like ∫ b

a

|f(x)| dx and
(∫ b

a

|f(x)|2 dx
)1/2

are good measures of “size” for f (that is, they are integral norms). We will also find repre-
senting functions via (inverse) Fourier transforms, which are defined via improper integrals,
particularly convenient.

But to get anywhere, we need to be comfortable with how integrals work. We only need
four properties of integrals in order to get the fundamental theorem of calculus (FTC), and
all of those properties have geometric motivations (there are other motivations, too, but
geometry/area is probably the most universally accessible). For simplicity (and to annoy
the calculus professors), we will write

∫ b
a
f most of the time, and we will agree that the

dummy variable of integration does not matter:∫ b

a

f =

∫ b

a

f(x) dx =

∫ b

a

f(u) du =

∫ b

a

f(s) ds =

∫ b

a

f(t) dt =

∫ b

a

f(τ) dτ.

That last dummy variable τ is the Greek letter “tau.”
Here are those properties.

(
∫
1) First, the integral of a function f : [a, b] ⊆ R → R should somehow measure the net

area of the region between the graph of f and the interval [a, b]. Since the most fundamental
area is the area of a rectangle, we should expect∫ b

a

1 dt = b− a.

t

f(t)

a b

1

(
∫
2) If we divide the region between the graph of f and the interval [a, b] into multiple

components, measure the net area of those components, and add those net areas together,
we should get the total net area of the region between the graph of f and the interval
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[a, b]. There are many such ways to accomplish this division, but perhaps one of the most
straightforward is to split [a, b] up into two or more subintervals and consider the net areas of
the regions between the graph of f and those subintervals. So, we expect that if a ≤ c ≤ b,
then ∫ c

a

f(t) dt+

∫ b

c

f(t) dt =

∫ b

a

f(t) dt.

t

f(t)

a c b

(
∫
3) If f is nonnegative, the net area of the region between the graph of f and the interval

[a, b] should be the genuine area of the region between the graph of f and the interval [a, b],
and this should be a positive quantity. So, we expect that if 0 ≤ f(t) on [a, b], then

0 ≤
∫ b

a

f(t) dt.

(
∫
4) Adding two functions f , g : [a, b] ⊆ R→ R should “stack” the graphs of f and g on top

of each other. Then the region between the graph of f and the interval [a, b] gets “stacked”
on top of region between the graph of g and the interval [a, b]. Consequently, the net area of
the region between the graph of f + g and the interval [a, b] should just be the sum of these
two areas: ∫ b

a

f(t) dt+

∫ b

a

g(t) dt =

∫ b

a

[
f(t) + g(t)

]
dt.

t

f(t)

a b

+

t

g(t)

a b

=

t

f(t) + g(t)

a b

Next, multiplying a function f : [a, b] ⊆ R → R by a constant α ∈ R should somehow
“scale” the net area of the region between the graph of f and the interval [a, b] by that factor
α. For example, the area under the graph of 2f over [a, b] should be double the area under
the graph. Consequently, the net area of the region between the graph of αf and the interval
[a, b] should be the product ∫ b

a

αf(t) dt = α

∫ b

a

f(t) dt.
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2 ·
t

f(t)

a b

=
t

2f(t)

a b

It turns out that these four properties are all that we need to prove the fundamental
theorem of calculus, which we will.

Day 2: Wednesday, January 8.

Here is a more formal and less geometric approach to the integral. Let I ⊆ R be an interval
(for the rest of today, I is always an interval). Denote by C(I) the set of all continuous
real-valued functions on I. We should be able to integrate every f ∈ C(I), and we can.

2.1 Theorem. Let I ⊆ R be an interval and denote by C(I) the set of all continuous
functions from I to R. There exists a map∫

: {(f, a, b) | f ∈ C(I), a, b ∈ I} → R : (f, a, b) 7→
∫ b

a

f

with the following properties.

(
∫
1) [Constants] If a, b ∈ I, then ∫ b

a

1 = b− a.

(
∫
2) [Additivity of the domain] If f ∈ C(I) and a, b, c ∈ I, then∫ c

a

f +

∫ b

c

f =

∫ b

a

f.

(
∫
3) [Monotonicity] If f ∈ C(I) and a, b ∈ I with a ≤ b and 0 ≤ f(t) for all t ∈ [a, b],

then

0 ≤
∫ b

a

f.

If in particular 0 < f(t) for all t ∈ [a, b] and if a < b, then

0 <

∫ b

a

f.
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(
∫
4) [Linearity in the integrand] If f , g ∈ C(I), a, b ∈ I, and α ∈ R, then∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g and
∫ b

a

αf = α

∫ b

a

f.

The number
∫ b
a
f is the definite integral of f from a to b.

Properties (
∫
4) encodes the linearity of the integral as an operator on the integrand with

the limits of integration fixed, while property (
∫
2) is its additivity over subintervals with

the integrand fixed. Property (
∫
3) encodes the idea that a nonnegative function should have

a nonnegative integral, while property (
∫
1) defines the one value of the integral that it most

certainly should have from the point of view of area.
Specifically, we can express the definite integral as a limit of Riemann sums—among them,

the right-endpoint sums: ∫ b

a

f = lim
n→∞

b− a
n

n∑
k=1

f

(
a+

k(b− a)
n

)
. (2.1)

That this limit exists is a fundamental result about continuous functions, which we will
not prove. From (2.1) we can prove properties (

∫
1), (

∫
3), and (

∫
4) quite easily. Property

(
∫
2) is not so obvious from (2.1), and in fact this property hinges on expressing

∫ b
a
f as a

“limit” of several kinds of Riemann sums, not just the right-endpoint sum. And then there
is still the challenge of ensuring that limits of all sorts of “well-behaved” Riemann sums for
f (including, but not limited to, left and right endpoint and midpoint sums) all converge to
the same number. Moreover, it is plausible that one might want to integrate functions that
are not continuous. (We will eventually have to handle this.)

2.2 Problem (?). Let I ⊆ R be an interval and f , g : I → R be continuous. Let a, b,
c ∈ I and α ∈ R. Using only Theorem 2.1, prove the following. You should not use the
Riemann sum formula (2.1) at all. The goal is to see how other properties of the integral
follow directly from the essential features of Theorem 2.1.

(i) [Generalization of (
∫
1)]

∫ b

a

α = α(b− a)

(ii)
∫ a

a

f = 0

(iii)
∫ b

a

f = −
∫ a

b

f

2.3 Problem (+). Use induction to generalize additivity as follows. Let I ⊆ R be an
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interval and f : I → C be continuous. If t0, . . . , tn ∈ I, then∫ tn

t0

f =
n∑
k=1

∫ tk

tk−1

f.

2.4 Problem (?). Let I ⊆ R be an interval.

(i) Suppose that f , g : I → R are continuous and a, b ∈ R with a ≤ b. If f(t) ≤ g(t) for
all t ∈ [a, b], show that ∫ b

a

f ≤
∫ b

a

g. (2.2)

(ii) Continue to assume a, b ∈ I with a ≤ b. Prove the triangle inequality∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

[Hint: recall that if x, r ∈ R with r ≥ 0, then −|x| ≤ x ≤ |x| and |x| ≤ r if and only if
−r ≤ x ≤ r. Use this to estimate f(t) in terms of ±|f(t)| and then apply part (i).]

(iii) Continue to assume a, b ∈ I with a ≤ b. Suppose that f : I → R is continuous and
there are m, M ∈ R such that m ≤ f(t) ≤M for all t ∈ [a, b]. Show that

m(b− a) ≤
∫ b

a

f ≤M(b− a). (2.3)

(iv) Show that if we remove the hypothesis a ≤ b, then the triangle inequality becomes∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

|f |
∣∣∣∣ .

Why is the extra absolute value on the right necessary here?

We now have only a handful of results about the definite integral, and yet they are enough
to prove the fundamental theorem of calculus. (Conversely, by themselves, they do not help
us evaluate integrals more complicated than

∫ b
a
α for α ∈ C!) This is our first rigorous

verification that an integral gives a meaningful representation of a function. Specifically,
integrals represent antiderivatives.

2.5 Theorem (FTC1). Let f : I → C be continuous and fix a ∈ I. Define

F : I → C : t 7→
∫ t

a

f

Then F is an antiderivative of f on I.
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Proof. Fix t ∈ I. We need to show that F is differentiable at t with F ′(t) = f(t). That is,
we want

lim
h→0

F (t+ h)− F (t)
h

= f(t),

equivalently,

lim
h→0

F (t+ h)− F (t)− hf(t)
h

= 0.

We first compute

F (t+ h)− F (t) =
∫ t+h

a

f −
∫ t

a

f

=

∫ t+h

a

f +

∫ a

t

f

=

∫ t+h

t

f.

The first two terms of the numerator of the difference quotient have now collapsed into a
single integral, so it would be nice if that third term, −hf(t), were also an integral. First we
cleverly rewrite h:

h = (t+ h)− t =
∫ t+h

t

1.

Then we use linearity of the integral to compute

hf(t) = f(t)

∫ t+h

t

1 =

∫ t+h

t

f(t).

It may help at this point to introduce a variable of integration. Recall that t has been
fixed throughout this proof, so we should not overwork it. Instead, we use τ, and so we have
We then have

F (t+ h)− F (t)− hf(t) =
∫ t+h

t

f(τ) dτ−
∫ t+h

t

f(t) dτ =

∫ t+h

t

[
f(τ)− f(t)

]
dτ.

It therefore suffices to show that

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0, (2.4)

and we do that in the following lemma. �

2.6 Problem (!). Reread, and maybe rewrite, the preceding proof. Identify explicitly each
property of or result about integrals that was used without reference.
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This is a specific instance of a more general phenomenon in manipulating difference quo-
tients and doing “derivatives by definition.” The difference quotient has h in the denominator,
and we are sending h → 0, so the denominator is small. A quotient of the form 1/h with
h ≈ 0 is large, and large numbers are problematic in analysis. The limit as h → 0 of
the difference quotient exists because the numerator is sufficiently small compared to the
denominator for the numerator to “cancel out” the effects of that h. In particular, to show

lim
h→0

F (t+ h)− F (t)− hf(t)
h

= 0,

we want the numerator F (t + h) − F (t) − hf(t) to be even smaller than the denominator.
The answer to small denominators is smaller numerators.

2.7 Lemma. Let I ⊆ R be an interval and let f : I → C be continuous. Then

lim
h→0

1

h

∫ t+h

t

[
f(τ)− f(t)

]
dτ = 0

for any t ∈ I.

Proof. We use the squeeze theorem. The triangle inequality implies∣∣∣∣1h
∫ t+h

t

[
f(τ)− f(t)

]
dτ

∣∣∣∣ ≤ 1

|h|
|t+h−h| max

0≤s≤1
|f((1−s)t+s(t+h))−f(t)| = max

0≤s≤1
|f(t+sh)−f(t)|.

We now need to show that

lim
h→0

max
0≤s≤1

|f(t+ sh)− f(t)| = 0.

This will involve the definition of continuity.
Let ε > 0, so our goal is to find δ > 0 such that if 0 < |h| < δ, then

max
0≤s≤1

|f(t+ sh)− f(t)| < ε. (2.5)

Since f is continuous at t, there is δ > 0 such that if |t − τ| < δ, then |f(τ) − f(t)| < ε.
Suppose 0 < |h| < δ. Then if 0 ≤ s ≤ 1, we have

|(t+ sh)− t| = |sh| ≤ |h| < δ,

thus (2.5) holds. �

2.8 Problem (?). Prove that the left limit in (2.5) holds. What specific changes are needed
when h < 0?

2.9 Problem (?). Prove the following “averaging” identity. Let I ⊆ R be an interval,
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x ∈ I, and f ∈ C(I). Then

f(x) = lim
r→0

1

2r

∫ x+r

x−r
f.

This says that the value of f at at point x is the limit of the average values of f on intervals
centered at x as the width of those intervals shrinks to 0. [Hint: with x fixed, put

F1(r) :=

∫ x+r

0

f and F2(r) :=

∫ x−r

0

f

and show that
1

2r

∫ x+r

x−r
f =

1

2

(
F1(r)− F1(0)

r
− F2(r)− F2(0)

r

)
.

Now think about difference quotients. How does this help?]

With FTC1, we can prove a second version that facilitates the computation of integrals
via antiderivatives, but first we need to review the mean value theorem, which we state but
do not prove.

2.10 Theorem (Mean value). Let a, b ∈ R with a < b and let f : [a, b]→ R be continuous
with f differentiable on (a, b). Then there is c ∈ (a, b) such that

f(b)− f(a)
b− a

= f ′(c).

2.11 Problem (?). (i) Let I ⊆ R be an interval. Suppose that f : I → R is differentiable
with f ′(t) = 0 for all t ∈ I. Show that f is constant on I. [Hint: fix t0 ∈ I and let
t ∈ I \ {t0}. Assuming that t > t0, use the mean value theorem to express the difference
quotient (f(t)− f(t0))/(t− t0) as a derivative, which must be 0. What happens if t < t0?]

(ii) Give an example of a function f defined on the set [−1, 1] \ {0} that is differentiable
with f ′(t) = 0 for all t but f is not constant. [Hint: go piecewise.]

2.12 Problem (?). Suppose that y solves the ODE y′ = ry for some r 6= 0 on some interval
I ⊆ R. That is, y′(t) = ry(t) for all t ∈ I. Prove that u(t) := y(t)e−rt is constant. Explain
why this justifies (what is hopefully!) our expectation that all solutions to this ODE are
multiples of an exponential.

2.13 Corollary (FTC2). Let I ⊆ R be an interval and let f : I → C be continuous. If F
is any antiderivative of f on I, then∫ b

a

f = F (b)− F (a)

for all a, b ∈ I.
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Proof. Let G(t) :=
∫ t
a
f , so G is an antiderivative of f by FTC1. Put H = G−F , so h′ = 0

on I. Since I is an interval, the mean value theorem mplies that H is constant. The most
important inputs here are a and b, so we note that H(a) = H(b), and so

G(a)− F (a) = G(b)− F (b).

But G(a) =
∫ a
a
f = 0, so this rearranges to

G(b) = F (b)− F (a),

and G(b) =
∫ b
a
f . �

The fundamental theorems of calculus are, of course, the keys to both substitution and
integration by parts, two of the most general techniques for evaluating integrals in terms of
simpler functions. Recall that substitution involves turning the more complicated integral∫ b
a
f(ϕ(t))ϕ′(t) dt into the simpler integral

∫ ϕ(b)
ϕ(a)

f(u) du. For this to make sense, the function
ϕ should be defined and continuous on an interval containing a and b, and f should be
defined and continuous on an interval containing ϕ(a) and ϕ(b), and also ϕ should map the
interval containing a and b to the domain of f , so f ◦ϕ is defined and continuous. Also, the
product (f ◦ ϕ)ϕ′ should be continuous, and that requires ϕ′ to be continuous on I.

2.14 Definition. Let I ⊆ R be an interval. A function ϕ : I → R is continuously
differentiable if ϕ is differentiable on I (and thus continuous itself on I) and if also
ϕ′ is continuous on I. We denote the set of all continuously differentiable functions on I
by C1(I).

2.15 Theorem (Substitution). Let I, J ⊆ R be intervals with a, b ∈ I. Let ϕ ∈ C1(I)
and f ∈ C(J) with ϕ(t) ∈ J for all t ∈ I. Then∫ b

a

(f ◦ ϕ)ϕ′ =
∫ ϕ(b)

ϕ(a)

f.

Proof. Let F (τ) :=
∫ τ

ϕ(a)
f . The chain rule implies that F ◦ϕ is an antiderivative of (f ◦ϕ)ϕ′;

indeed, by FTC1,
(F ◦ ϕ)′ = (F ′ ◦ ϕ)ϕ′ = (f ◦ ϕ)ϕ′.

Then FTC2 implies∫ b

a

(f ◦ ϕ)ϕ′ = F (ϕ(b))− F (ϕ(a)) =
∫ ϕ(b)

ϕ(a)

f −
∫ ϕ(a)

ϕ(a)

f =

∫ ϕ(b)

ϕ(a)

f. �

A recurring theme of our subsequent applications of integrals will be that we are trying
to estimate or control some kind of difference (this is roughly 90% of analysis), and it turns
out to be possible to rewrite that difference in a tractable way by introducing an integral.
It may be possible to manipulate further terms under consideration by rewriting them as
integrals, too. The fundamental identity that we will use in the future is (2.6) below.
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2.16 Example. FTC2 allows us to rewrite a functional difference as an integral. When
we incorporate substitution, we can get a very simple formula for that difference. Suppose
that I ⊆ R is an interval, f ∈ C1(I), and a, b ∈ I. Then

f(b)− f(a) =
∫ b

a

f ′.

We will reverse engineer substitution and make the limits of integration simpler and the
integrand more complicated. (This turns out to be a good idea.)

Define
ϕ : [0, 1]→ R : t 7→ (1− t)a+ tb = a+ (b− a)t.

Then ϕ(0) = a, ϕ(1) = b, and a ≤ ϕ(t) ≤ b for all t if a ≤ b, and otherwise b ≤ ϕ(t) ≤ a for
all t if b ≤ a. (Here is a proof of the first case, assuming a ≤ b. Then b− a ≥ 0 and t ≥ 0,
so (b−a)t ≥ 0, thus a ≤ a+(b−a)t. But also (1− t)a ≤ (1− t)b since 1− t ≥ 0 and a ≤ b,
thus (1 − t)a + tb ≤ (1 − t)b + tb = b.) In other words, we think of ϕ as “parametrizing”
the line segment between the points a and b on the real line.

Substitution implies ∫ b

a

f ′ =

∫ 1

0

f ′(ϕ(t))ϕ′(t) dt,

and we calculate ϕ′(t) = b− a. Thus∫ b

a

f ′ = (b− a)
∫ 1

0

f ′(a+ (b− a)t) dt.

In conclusion, if f ∈ C1(I) and a, b ∈ I, then

f(b)− f(a) = (b− a)
∫ 1

0

f ′(a+ (b− a)t) dt. (2.6)

This represents explicitly how f(b)− f(a) depends on the quantity b− a; if we know how
to control f ′ (maybe f ′ is bounded on an interval containing a and b), then we have an
estimate for the size of f(b)− f(a) in terms of b− a. While the mean value theorem would
allow us to rewrite (f(b) − f(a))/(b − a) in terms of f ′, that result is existential and not
nearly as explicit as (2.6).

2.17 Problem (!). Prove the following variant of Example 2.16: if I ⊆ R is an interval,
f ∈ C1(I), and t, t+ h ∈ I, then

f(t+ h)− f(t) = h

∫ 1

0

f ′(t+ τh) dτ.

2.18 Problem (?). Suppose that f : R → R is continuous and p-periodic for some
p ∈ R, in the sense that f(t + p) = f(t) for all t ∈ R. Then the integral of f over any
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interval of length p is the same: ∫ a+p

a

f =

∫ p

0

f

for all a ∈ R. Give two proofs of this identity as follows.

(i) Define

F : R→ R : a 7→
∫ a+p

a

f

and use FTC1 and the p-periodicity of f to show that F ′(a) = 0 for all a. Since F is also
defined on an interval (the interval here is R), F must be constant.

(ii) First explain why ∫ a+p

a

f =

∫ p

0

f +

(∫ a+p

p

f −
∫ a

0

f

)
.

Then substitute u = t− p to show∫ a+p

p

f =

∫ a

0

f(t− p) dt

and use the p-periodicity of f .

2.19 Problem (!). Let I ⊆ R be an interval and f , g ∈ C1(I) and a, b ∈ I. Prove the
integration by parts identity∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g. (2.7)

[Hint: this is equivalent to an identity for
∫ b
a
(f ′g + fg′) and that integrand is a perfect

derivative by the product rule.]

2.20 Problem (?). Let f ∈ C2(R) with f(0) = 0. Prove that

f(x+ y)− f(x)− f(y) = xy

∫ 1

0

∫ 1

0

f ′′(sx+ ty) ds dt

for all x, y ∈ R. What happens in the case f(τ) = τ2?

2.21 Problem (+). Suppose that f ∈ C2(R). Suppose also that f ′(0) = 0 and there is
M > 0 such that

|f ′′(t)| ≤M for all t ∈ R.
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Show that
|f(x)− f(y)| ≤M

(
|x|+ |y|

)
|x− y|.

By considering the special case f(x) = x2, explain why we might call this a “difference
of squares” estimate. [Hint: use Example 2.16 to rewrite the difference f(x) − f(y) as an
integral involving f ′ and expose the factor x − y. That is, f(x) − f(y) = (x − y)I(x, y),
where I(x, y) represents this integral. Since f ′(0) = 0, we have I(x, y) = I(x, y) − (x −
y)
∫ 1

0
f ′(0) dt Rewrite this difference as an integral from 0 to 1 of some integrand (which

involves f ′) and apply Example 2.16 again to that integrand so that, in the end, I(x, y) is
a double integral involving f ′′.]

Day 3: Friday, January 10.

No class due to weather. You should read the material below on your own and work through
it line by line.

We have now built enough machinery to study elementary ODE, all of which will reappear
in our study of genuine PDE. It will We proceed through three kinds of first-order problems—
specifically, all are initial value problems (IVP).

The first is the direct integration problem{
y′ = f(t), t ∈ I
y(0) = y0.

(3.1)

Here I ⊆ R is an interval with 0 ∈ I, f ∈ C(I) is a given function, and y0 ∈ R is also
specified. The goal is to find a differentiable function y on I such that y′(t) = f(t) for all
t ∈ I. (In general, when solving an ODE, one wants a differentiable function y defined on
an interval that “makes the ODE true” when values from that interval are substituted in.
Also, the domain of a solution should be an interval to reflect the physical ideal that time
should be “unbroken”—and because it makes things nice mathematically. In particular, the
interval should contain 0 so that we can evaluate y(0) and find y(0) = y0. Last, the derivative
should be continuous to reflect the physical ideal that the rates of change do not vary too
much—and because it makes things nice mathematically.)

We work backwards. Assume that the problem has a solution y, so y′(t) = f(t) for all
t ∈ I. For t ∈ I fixed, integrate both sides of this equality from 0 to t to find∫ t

0

y′(τ) dτ =

∫ t

0

f(τ) dτ.

Be very careful to change the variable of integration from t to τ (or anything other than t),
since t is now in the limit of integration. We cannot do anything more for the integral on
the right, but on the left FTC2 gives∫ t

0

y′(τ) dτ = y(t)− y(0) = y(t)− y0.

That is,

y(t)− y0 =
∫ t

0

f(τ) dτ,
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and so

y(t) = y0 +

∫ t

0

f(τ) dτ. (3.2)

Thus if y solves the IVP (3.1), then y has the form above. This is a uniqueness result:
the only possible solution is this one. But is this really a solution?

3.1 Problem (!). Use FTC1 and properties of integrals to check that defining y by (3.2)
solves (3.1).

We write this up formally.

3.2 Theorem. Let I ⊆ R be an interval with 0 ∈ I, let f ∈ C(I), and let y0 ∈ R. The only
solution to {

y′ = f(t)

y(0) = y0

is

y(t) = y0 +

∫ t

0

f(τ) dτ.

3.3 Example. To solve {
y′ = e−t

2

y(0) = 0,

we integrate:

y(t) = 0 +

∫ t

0

e−τ
2

dτ =

∫ t

0

e−τ
2

dτ.

We stop here, because we cannot evaluate this integral in terms of “elementary functions.”
(Long ago with times tables, working with t2 was hard; then that got easier, but we got
older and wiser and sadder and took trig, and working with sin(t) was hard. Now we are
even older, and by the end of the course, working with

∫ t
0
f(τ) dτ should feel just as natural

as working with any function defined in more “elementary” terms.)

Day 4: Monday, January 13.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 4–6 review first-order linear ODE via integrating factors. This is not the method
that we used in class, and I don’t think it will be very helpful when we want to apply
these ODE techniques to PDE. You might try redoing the textbook’s examples with
variation of parameters.

Now we make the ODE more complicated and introduce y-dependence on the left side:
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we study the linear first-order problem{
y′ = ay + f(t)

y(0) = y0.

Again, f ∈ C(I) for some interval I ⊆ R with 0 ∈ I, and a, y0 ∈ R. The function f is
sometimes called the forcing or driving term. And, again, the expression y′ = ay+f(t)
means that we want y to satisfy y′(t) = ay(t) + f(t) for all t in the domain of y (which
hopefully will turn out to be I). If a = 0, this reduces to a direct integration problem, and
it would be nice if our final solution formula will respect that.

To motivate our solution approach, we first suppose f = 0 and consider the exponential
growth problem

y′ = ay.

Calculus intuition suggests that all solutions have the form y(t) = Ceat, where necessarily
C = y(0) = y0. Problem 2.12 proves this using a (nonobvious) algebraic trick, but we will
also see this as a consequence of the more general result below that includes the driving
term.

The valuable, if surprising, idea that has come down to us through the generations is to
replace the constant C with an unknown function u and guess that

y(t) = u(t)eat

solves the more general problem y′ = ay + f(t). This is the first appearance of an ansatz
in this course—that is, we have made a guess that a solution has a particular form.

Now the goal is to solve for u. Under the ansatz y(t) = u(t)eat, we compute, with the
product rule,

y′(t) = u′(t)eat + u(t)aeat,

and we substitute that into our ODE y′ = ay + f(t). Then we need

u′(t)eat + u(t)aeat = au(t)eat + f(t).

The same term u(t)aeat appears on both sides (this is a hint that we made the right ansatz),
and we subtract it, leaving

u′(t)eat = f(t).

We solve for things by getting them by themselves, so divide to find

u′(t) = e−atf(t).

This is an ODE for u, but it would be nice if it had an initial condition. We know
y(t) = u(t)eat and y(0) = y0, so

y0 = y(0) = u(0)ea0 = u(0).

That is, u must solve the direct integration problem{
u′ = e−atf(t)

u(0) = y0,
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and so, from our previous work,

u(t) = y0 +

∫ t

0

e−aτf(τ) dτ.

Returning to the ansatz y(t) = u(t)eat, we have

y(t) = eat
(
y0 +

∫ t

0

e−aτf(τ) dτ

)
,

and so we have proved another theorem. By the way, we call it “variation of parameters”
because we have “varied” the parameter y0 in the solution to the linear homogeneous IVP
(i.e., the solution y(t) = y0e

at when f = 0) via the ansatz y(t) = u(t)eat, with u replacing
y0.

4.1 Theorem (Variation of parameters). Let f ∈ C(I) for some interval I ⊆ R with
0 ∈ I and a, y0 ∈ R. Then the only solution to{

y′ = ay + f(t)

y(0) = y0
(4.1)

is

y(t) = eat
(
y0 +

∫ t

0

e−aτf(τ) dτ

)
. (4.2)

Is it?

4.2 Problem (!). (i) Check that the function y in (4.2) actually solves (4.1). (Does y
satisfy y′(t) = ay(t) + f(t) for all t in some interval containing 0? Do we have y(0) = y0?
Is y′ continuous?)

(ii) Check that we recover the direct integration result of Theorem 3.2 from Theorem 4.1
when a = 0.

By the way, the ODE y′ = ay + f(t) is sometimes more precisely called a first-order
constant coefficient linear ODE. It is constant-coefficient because the coefficient
a on y is a constant real number. This ODE is homogeneous if f(t) = 0 for all t
and otherwise nonhomogeneous. The uniqueness part of Theorem 4.1 proves that all
solutions to y′ = ay have the form y(t) = y(0)eat. Sometimes this is established with
separation of variables, which we will consider shortly.

4.3 Example. We study {
y′ = 2y + 3e−4t

y(0) = 1,

and rather than just use the formula from (4.2), we repeat the “variation of parameters”
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argument with the concrete data at hand. The corresponding homogeneous problem is
y′ = 2y, which has the solutions y(t) = Ce2t, and so we guess that our nonhomogeneous
problem has the solution y(t) = u(t)e2t. Substituting this into both sides of the ODE, we
want

u′(t)e2t + u(t)(2e2t) = 2u(t)e2t + 3e−4t,

thus
u′(t)e2t = 3e−4t,

and so
u′(t) = 3e−6t.

With the initial condition u(0) = y(0) = 1, this is the direct integration problem{
u′ = 3e−6t

u(0) = 1,

and the solution to that is

u(t) = 1 +

∫ t

0

3e−6τ dτ = 1 +
3e−6τ

−6

∣∣∣∣τ=t
τ=0

= 1 +
3e−6t − 3

−6
=

3

2
+
e−6t

2
.

Thus the solution to the original IVP is

y(t) = e2t
(
3

2
+
e−6t

2

)
.

4.4 Problem (?). We probably expect physically that two objects in motion that start
“close” together should remain “close” together, at least for “some” time. We might call
this “continuous dependence on initial conditions.” Suppose that u and v solve{

u′ = au+ f(t)

u(0) = u0
and

{
v′ = av + f(t)

v(0) = v0.

That is, u and v solve the same ODE but with possibly different initial conditions.

(i) Prove that
|u(t)− v(t)| ≤ eat|u0 − v0|. (4.3)

This estimate controls how close u and v are at time t in terms of how close u0 and v0 are.

(ii) Suppose a < 0. What does (4.3) say about the behavior of different solutions to
y′ = ay + f(t) as t→∞?

Our experience with ODE in general, and our concrete work with the linear problem,
tell us that initial conditions should determine solutions uniquely. But sometimes in both
ODE and PDE, one is less concerned with the initial state of the solution and more with
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its behavior at a “boundary.” For example, what is the long-time asymptotic behavior of a
solution? Does it have a limit at infinity, or does it settle down into some coherent shape?
Here is a toy problem of how boundary behavior determines the solution.

4.5 Example. Let f ∈ C(R). All solutions to y′ = f(t) are

y(t) = y(0) +

∫ t

0

f(τ) dτ.

What, if any, choices for the initial condition y(0) guarantee

lim
t→∞

y(t) = 0?

We want

lim
t→∞

(
y(0) +

∫ t

0

f(τ) dτ

)
= 0.

By the basic algebra of limits, this happens if and only if (1) the limit

lim
t→∞

∫ t

0

f(τ) dτ

exists and (2) the identity

y(0) + lim
t→∞

∫ t

0

f(τ) dτ = 0

holds.
We have discovered something new: the condition (1) must be met. That is to say,

the improper integral
∫∞

0
f(τ) dτ must converge. Nowhere in the statement of the “end

behavior problem” {
y′ = f(t)

limt→∞ y(t) = 0
(4.4)

was it made explicit that f must be improperly integrable on [0,∞). But if this is true,
we have shown that any solution to (4.4) must satisfy y(0) = −

∫∞
0
f(τ) dτ, and so any

solution to (4.4) satisfies the IVP{
y′ = f(t)

y(0) = −
∫∞

0
f(τ) dτ.

Is the reverse true?

4.6 Problem (!). Assume the following.

(i) f ∈ C(R) is improperly integrable on [0,∞), i.e., limb→∞
∫ b

0
f exists.

(ii) Improper integrals respect the “algebraic” properties of definite integrals from Theorem
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2.1, and that the derivative of t 7→
∫∞
t
f is −f(t).

Prove that the only solution to {
y′ = f(t)

limt→∞ y(t) = 0

is
y(t) = −

∫ ∞
t

f(τ) dτ.

4.7 Problem (?). Here is a variation on variation of parameters that turns out to be
useful. We can replace the equality in exponential growth with an inequality and still get
the result that we expect. More precisely, suppose that y ∈ C1(R) satisfies{

y′(t) ≤ ay(t), t ∈ R
y(0) = 00 ≤ y(t), t ∈ R

for some a ∈ R. Then y = 0, which is what we would expect if we had = instead of ≤;
this result with the inequality is called Gronwall’s inequality. Here is how to prove
this.

(i) Make the ansatz y(t) = eatu(t) and show that u solves
u′(t) ≤ 0, t ∈ R
u(0) = 0

0 ≤ u(t), t ∈ R.

(ii) Deduce from this that u(t) = 0. [Hint: consider rewriting 0 ≤ u(t) = u(0)+
∫ t

0
u′(τ) dτ

and getting an upper bound on the right side.]

Day 5: Wednesday, January 15.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 2–3 review separation of variables for ODE.

5.1 Example. Now we consider the more general “end behavior” problem{
y′ = ay + f(t)

limt→∞ y(t) = 0,
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where a > 0. Any solution to the ODE must meet

y(t) = eat
(
y(0) +

∫ t

0

e−aτf(τ) dτ

)
,

and so our solution is the product of two functions, one of which blows up as t→∞ (since
limt→∞ e

at =∞ for a > 0). We probably want the other factor in the product to tend to
0 as t→∞; if that factor limited, say, to a nonzero constant, then the whole limit would
be ∞ times that constant, which would definitely not be 0.

Indeed, we can see this using the definition of limit: if we assume limt→∞ y(t) = 0, then
there is M > 0 such that if t ≥M , then |y(t)| ≤ 1. From the formula for y, we find∣∣∣∣y(0) + ∫ t

0

e−aτf(τ) dτ

∣∣∣∣ ≤ e−at.

Since a > 0, this inequality and the squeeze theorem imply

lim
t→∞

(
y(0) +

∫ t

0

e−aτf(τ) dτ

)
= 0,

and thus

y(0) = −
∫ ∞
0

e−aτf(τ) dτ and y(t) = −eat
∫ ∞
t

e−aτf(τ) dτ.

This directly generalizes the case of a = 0. In fact, we get a little more freedom here, in
that for a > 0, it is easier for

∫∞
0
e−aτf(τ) dτ to exist (see below). We leave the case a < 0

as a (possibly surprising) exercise.

5.2 Problem (?). Suppose that y solves y′ = ay + f(t) with a < 0 and limt→∞ y(t) = 0.
As in the previous example, there is M > 0 such that for all t ≥M , we have∣∣∣∣y(0) + ∫ t

0

e−aτf(τ) dτ

∣∣∣∣ ≤ e−at.

However, since −a > 0, this does not imply any convergence of the integral term to y(0)
as t→∞.

(i) What if we consider t→ −∞? Adapt the work in Example 5.1 to relate limt→−∞ y(t),
if this limit exists, and y(0), in the case that y′ = ay + f(t) with a < 0.

(ii) Consider the concrete problem

y′ = −2y + 3e−t.

Show that every solution to this problem satisfies limt→∞ y(t) = 0, and thus the boundary
condition as t→∞ is of no help in specifying the initial condition.
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5.3 Problem (+). We clarify a remark from the previous example about improper inte-
grals. In the following, let a > 0.

(i) Suppose that f ∈ C(R) is absolutely integrable on [0,∞); that is,∫ ∞
0

|f | := lim
b→∞

∫ b

0

|f |

converges. Show that
∫∞

0
e−aτf(τ) dτ converges as well.

(ii) Suppose that f ∈ C(R) is bounded on [0,∞); that is, there is M > 0 such that

|f(t)| ≤M

for all t ≥ 0. Show that
∫∞

0
e−aτf(τ) dτ still converges. Give an example to show that f

need not be absolutely integrable on [0,∞).

Now we move to separable ODE. Before defining and solving this kind of ODE in
general, we do a pedestrian, but illustrative, example. And before doing that, we need to
review a fact about continuity that will resurface many times in this course.

5.4 Lemma. Let I ⊆ R be an interval and let f ∈ C(I). Suppose that f(t0) 6= 0 for some
t0 ∈ I. Then there exists δ > 0 such that f(t) 6= 0 for t ∈ (t0 − δ, t0 + δ) ∩ I.

Proof. We start with “proof by picture,” which is always a good way to get an idea for the
“real” proof. By continuity, the graph of f “near” t0 should be “close” to f(t0), and so the
graph should be above the t-axis.

t

f(t)

t0

f(t0)

Here is the more rigorous proof. By continuity and the assumption f(t0) > 0, there is
δ > 0 such that if t ∈ (t0 − δ, t0 + δ) ∩ I, then |f(t)− f(t0)| < f(t0)/2. (In the language of
classical δ-ε proofs, we are taking ε = f(t0)/2 here.) This inequality is equivalent to

f(t0)

2
< f(t) <

3f(t0)

2
,

and so f(t) > f(t0)/2 > 0 for t ∈ (t0 − δ, t0 + δ) ∩ I.
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If f(t0) < 0, put g(t) := |f(t)| and use the previous argument to conclude that g(t) > 0
for t ∈ t0 − δ, t0 + δ) ∩ I, thus f(t) < 0 for those t. �

5.5 Example. We study {
y′ = y2

y(0) = y0.

If y0 = 0, then we can take y(t) = 0 for all t to get a solution; indeed, y′(t) = 0 and
(y(t))2 = 02 = 0 for all t.

Otherwise, suppose y0 6= 0. That is, y(0) 6= 0. By continuity—since a solution y to this
IVP is defined and differentiable at 0, thus continuous at 0—for t ≈ 0 we have y(t) 6= 0.
Thus we can divide to find

y′(t)

(y(t))2
= 1. (5.1)

This is the first big idea of separation of variables: “separate the variables” so that all
appearances of the unknown function y and its derivative are together on one side. The
second big idea is to integrate.

Specifically, since (5.1) holds for all t ≈ 0, we can integrate∫ t

0

y′(τ)

(y(τ))2
dτ =

∫ t

0

1 dτ. (5.2)

Note our good grammar: we are integrating from 0 to t, so we have changed the independent
variable from t in (5.1) to τ above. We substitute u = y(τ) on the left and use the initial
condition y(0) = y0 to find∫ t

0

y′(τ)

(y(τ))2
dτ =

∫ y(t)

y(0)

du

u2
=

∫ y(t)

y0

u−2 du = −u−1
∣∣u=y(t)
u=y0

=
1

y0
− 1

y(t)
.

Returning to (5.2), we find
1

y0
− 1

y(t)
= t,

and so we solve for y(t) as

y(t) =

(
1

y0
− t
)−1

.

Recalling that a formula alone is not sufficient to describe a function, we also establish the
domain of this solution. As a formula alone, y above is defined on R \ {y−10 }, but that is
not an interval. Remember that we want the domain of the solution to this IVP to be an
interval containing 0. The largest intervals in R \ {y−10 } (go big or go home) are (−∞, y−10 )
and (y−10 ,∞). Which interval we use depends on whether y0 < 0 or y0 > 0; if y0 < 0, then
y−10 < 0, too, so 0 6∈ (−∞, y−10 ) but 0 ∈ (y−10 ,∞). The reverse holds when y0 > 0, and so
there we take the domain to be (−∞, y−10 ).

Both situations illustrate a “blow-up in finite time.” If we send t to the boundary of
the domain, then the solution explodes to ±∞. For example, when y0 > 0, the solution is
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defined on (−∞, y−10 ), and we have

lim
t→(y−1

0 )−
y(t) = lim

t→(y−1
0 )−

1

y−10 − t
=∞.

Note that here we are only using the limit from the left.

Now we generalize this work substantially. Let f and g be continuous functions (quite
possibly on different subintervals of R), and consider the IVP{

y′ = f(t)g(t)

y(0) = y0.

If g(y0) = 0, then we claim that y(t) = y0 is a solution to this IVP, which we call an
equilibrium solution.

5.6 Problem (!). Prove that.

Suppose that g(y0) 6= 0. Since g is continuous, for y “close to” y0, we have g(y) 6= 0. In
fact, g(y) is either positive for all y close to y0 or negative for all y close to y0.

Now we work backward. Assume that y solves this IVP with g(y0) 6= 0. Since y is
continuous and y(0) = y0, for t close to 0, we have y(t) close to y0, and thus g(y(t)) 6= 0. We
can then divide to find that for t close to 0, y must also satisfy

y′(t)

g(y(t))
= f(t).

This is the heart of separation of variables: division. And division is only possible when the
denominator is nonzero. We integrate both sides from 0 to t, still keeping t close to 0:∫ t

0

y′(τ)

g(y(τ))
dτ =

∫ t

0

f(τ) dτ. (5.3)

There is not much more that we can say about the integral on the right, but on the left
we take the composition g ◦ y as a hint to substitute u = y(t). This yields∫ t

0

y′(τ)

g(y(τ))
dτ =

∫ y(t)

y(0)

du

g(u)
=

∫ y(t)

y0

du

g(u)
. (5.4)

Combining (5.3) and (5.4), we conclude that if y solves the separable IVP with y0 6= 0, then
for t sufficiently close to 0, we have∫ y(t)

y0

du

g(u)
=

∫ t

0

f(τ) dτ.

We rewrite this one more time. Put

H(y, t) :=

∫ y

y0

du

g(u)
−
∫ t

0

f(τ) dτ. (5.5)
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Here the domain of H is all y such that g(u) 6= 0 for u between y0 and y and all t such that
f is defined between 0 and t. Thus if y solves the separable IVP with y0 6= 0, then for t
sufficiently close to 0, we have

H(y(t), t) = 0.

This is an implicit equation for y.

5.7 Problem (!). Consider the exponential growth problem{
y′ = ay

y(0) = y0,

where we assume y0 > 0 (but place no restrictions on a). In the context of this specific
problem, what is the function H from (5.5)? Use this function H, and the assumption
y0 > 0, to show, as expected, that y(t) = y0e

at.{
y′ = ry

y(0) = y0

is y(t) = y0e
rt. (Here r ∈ R is a fixed parameter.)

It would be nice if, in general, we could reverse our logic and conclude that if H(y(t), t) =
0, then y solves the separable IVP. More generally, why should we be able to solve H(y, t) =
0?

5.8 Problem (+). The implict function theorem says the following. Let a, b,
c ∈ R with a < b and c > 0. Let H be defined on D :=

{
(y, t) ∈ R2

∣∣ a < y < b, |t| < c
}
,

and suppose that the partial derivatives Hy and Ht exist and are continuous on D. Suppose
that H(y0, 0) = 0 for some y0 ∈ (a, b) with Hy(y0, 0) 6= 0. Then there exist δ, ε > 0 and a
continuously differentiable function Y : (−δ, δ)→ (y0 − ε, y0 + ε) such that H(y, t) = 0 for
|t| < δ and |y − y0| < ε if and only if y = Y (t). In particular, Y (0) = y0.

We use the implicit function theorem to prove the existence of solutions to separable
IVP.

(i) For practice, consider H(y, t) := y2 + t2 − 1. Check that H(1, 0) = 0 and Hy(1, 0) 6= 0
and conclude that H(Y (t), t) = 0 for some function Y defined on a subinterval (−δ, δ).
Then do algebra and find an explicit formula for Y .

(ii) In this part and the following, consider the separable problem{
y′ = f(t)g(y)

y(0) = y0,

where g is continuous on (a, b), f is continuous on (−c, c), and y0 ∈ (a, b) with g(y0) 6= 0.
Without loss of generality, we will assume g(y) > 0 for y ∈ (a, b). Our goal is to solve the
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implicit equation

H(y, t) :=

∫ y

y0

du

g(u)
−
∫ t

0

f(τ) dτ = 0

First check that H(y0, 0) = 0 and Hy(y0, 0) 6= 0, and obtain the existence of a function Y
meeting the conclusions of the implicit function theorem with Y (0) = 1. (In particular, we
get Y (0) = y0.)

(iii) Now we show that Y solves the original ODE. Differentiate the identityH(Y (t), t) = 0
with respect to t, use the multivariable chain rule and FTC1, and conclude that Y ′ =
f(t)g(Y ).

(iv) It turns out that just from H(Y (0), 0) = 0 we can obtain Y (0) = y0, even without the
implicit function theorem. To see this, use properties of integrals to show thatH(Y (0), 0) =
0 implies ∫ Y (0)

y0

du

g(u)
= 0.

Suppose that Y (0) 6= y0 and use the monotonicity of the integral and the fact that g(u) > 0
for u between y0 and Y (0) to obtain a contradiction.

Day 6: Friday, January 17.

Material from Basic Partial Differential Equations by Bleecker & Csordas

There are many examples of second-order constant-coefficient linear ODE on pp. 6–13.
Example 8, while worth reading, is probably more complicated than any problem that
we will encounter at this level for some time.

The final kind of ODE that we need to review for this course is the second-order constant-
coefficient linear problem, which reads

ay′′ + by′ + cy = f(t),

with a, b, c ∈ R, a 6= 0 (so that the problem is genuinely second-order), and f continuous on
some interval containing 0. One can prove the following theorem by recasting the second-
order linear problem as a first-order linear system and developing an analogue of variation
of parameters for that system, which requires some matrix manipulations but not too much
fuss otherwise. We will not purse the linear system/matrix approach here.

6.1 Theorem. Let a, b, c ∈ R with a 6= 0 and f ∈ C(I) with 0 ∈ I. There exists a unique
solution y ∈ C2(I) to the IVP 

ay′′ + by′ + cy = f(t)

y(0) = y0

y′(0) = y1.
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This theorem does not tell us in the slightest a formula for y. That will come later in
the case f 6= 0, as we simply do not need it right now. Instead, we will focus largely on the
homogeneous problem with f = 0. The uniqueness result is a consequence of the following.

6.2 Lemma. Let a, b, c ∈ R with a 6= 0. The only solution y ∈ C2(R) to
ay′′ + by′ + cy = 0

y(0) = 0

y′(0) = 0

(6.1)

is y = 0.

6.3 Problem (!). Use Lemma 6.2 to prove Theorem 6.1. [Hint: suppose that the IVP in
the theorem has two solutions, say, u and v. What IVP does z := u− v satisfy?]

6.4 Problem (+). This problem outlines a proof of Lemma 6.2. Suppose that y solves
(??). Put

z(t) :=
(y(t))2 + (y′(t))2

2
.

Show that z′ = (1 − c)yy′ − b(y′)2. Then use the inequality AB ≤ (A2 + B2)/2, valid for
all A, B ∈ R, to find a > 0 such that z′ ≤ az. Apply Gronwall’s inequality from Problem
4.7 to conclude z = 0.

Taking Theorem 6.1 for granted, we now focus on the homogeneous case of f = 0. Here
one studies the characteristic equation

aλ2 + bλ+ c = 0

and develops solution patterns based on the root structure. They are the following.

Root structure Solution structure

Two distinct real roots λ1 6= λ2 y(t) = c1e
λ1t + c2e

λ2t

One repeated real root λ0 y(t) = c1e
λ0t + c2te

λ0t

Two complex conjugate roots α± iβ (β 6= 0) y(t) = eαt
(
c1 cos(βt) + c2 sin(βt)

)
That any of these solution patterns actually works can be checked by directly substituting

it into the ODE and using the structure of a, b, and c that results from the root pattern.
For example, in the repeated real root case one has b2 − 4ac = 0, thus c = b2/4a, and
also λ0 = −b/2. So, one would need to show that y(t) = c1e

−(b/2)t + c2te
−(b/2)t solves

ay′′ + by′ + (b2/4a)y = 0. This is mostly a lot of thankless algebra—so thankless that we do
not even spell it out as a problem.
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6.5 Example. (i) The characteristic equation of y′′ − y = 0 is λ2 − 1 = 0. Factoring the
difference of perfect squares, we have λ = ±1. These are distinct real roots, so all solutions
are y(t) = c1e

t + c2e
−t.

(ii) The characteristic equation of y′′ = 0 is λ2 = 0, so λ = 0. This is a repeated real root,
so all solutions are y(t) = c1e

0t + c2te
0t = c1 + c2t. (Of course, we could directly integrate

twice to get the same result.)

(iii) The characteristic equation of y′′ + y = 0 is λ2 + 1 = 0, so λ2 = −1 and thus λ = ±i.
These are complex conjugate roots with α = 0 (which is certainly allowed) and β = 1. All
solutions are y(t) = e0t

(
c1 cos(t) + c2 sin(t)

)
= c1 cos(t) + c2 sin(t).

6.6 Example. Let λ ∈ R. The IVP
y′′ + λ2y = 0

y(0) = y0

y′(0) = y1

governs the motion of an undamped, undriven simple harmonic oscillator (at least when
λ > 0). We can extract two solution formulas:

y(t) =


y0 + y1t, λ = 0

y0 cos(λt) +
y1
λ
sin(λt),

λ 6= 0.

It would be nice if these were really “the same.” We might wonder what happens in the
limit as λ→ 0 with t fixed. Certainly limλ→0 y0 cos(λt) = y0, and L’Hospital’s rule gives

lim
λ→0

sin(λt)

λ
= t.

This should be comforting: the solution appears to be continuous in λ. Is there a more
efficient way to write it? In particular, can we make a factor of t appear in the second term
when λ 6= 0? Certainly:

sin(λt)

λ
= t

(
sin(λt)

λt

)
when t 6= 0. Put

sinc(x) :=

{
sin(x)/x, x 6= 0

1, x = 0.

L’Hospital’s rule ensures continuity of sinc; it is, in fact, infinitely differentiable.
For t 6= 0, we then have

y(t) = y0 cos(λt) + y1t sinc(λt).

This formula is also valid at t = 0, since it reduces to y0 = y(0) there.
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6.7 Example. We can prove uniqueness of solutions to
y′′ + λ2y = 0

y(0) = 0

y′(0) = 0

directly, without relying on Lemma 6.2. What is really valuable here is not the uniqueness
result but the trick that we use to get it: multiply through by a derivative. This will
resurface from time to time in our study of actual PDE.

Specifically, if y′′+λ2y = 0, then y′′y′+λ2yy′ = 0. It may not be obvious at first glance,
since doing calculus in reverse probably feels unusual, but

yy′ = ∂t

[
y2

2

]
.

And, similarly,

y′′y′ = ∂t

[
(y′)2

2

]
Thus

1

2
∂t[y

2 + (y′)2] = 0,

and so y2 + (y′)2 is constant. We only know the value of y and y′ at one point: t = 0. And
so

(y(t))2 + (y′(t))2 = (y(0))2 + (y′(0))2 = 0

for all t.
Now here is another trick: if a, b ∈ R, and if a2 + b2 = 0, then a = b = 0. Otherwise

if a 6= 0 or b 6= 0, then a2 > 0 or b2 > 0, and then we would have 0 < a2 + b2 = 0, a
contradiction. In particular, y(t) = 0 for any t.

6.8 Problem (+). Generalize the preceding work as follows. Let V ∈ C1(R) with V(r) > 0
for all r 6= 0, V(0) = 0, and V ′(0) = 0. Show that the only solution to the IVP

y′′ + V ′(y) = 0

y(0) = 0

y′(0) = 0

is y = 0. [Hint: for existence, be sure to explain why y = 0 is actually a solution. For
uniqueness, suppose that y solves the IVP, multiply by y′, and obtain that (y′)2/2 + V(y)
is constant. What is its value? What does that tell you about V(y)?]

6.9 Problem (+). If we change the ODE from y′′+λ2y to y′′−λ2y, the formula in Example
6.6 and the uniqueness proof in Example 6.7 will not work. We adapt them here.



Day 7: Wednesday, January 22 33

(i) The hyperbolic sine and cosine, respectively, are

sinh(x) :=
ex − e−x

2
and cosh(x) :=

ex + e−x

2
.

Show that the solution to the IVP 
y′′ − λ2y = 0

y(0) = y0

y′(0) = y1

can be written in the form

y(t) = y0 cosh(λt) +
y1
λ
sinh(λt).

(ii) Prove that the only solution to
y′′ − λ2y = 0

y(0) = 0

y′(0) = 0

is y = 0 using the following steps. Put z(t) := y(t/λ) and show that z′′ − z = 0 with
z(0) = z′(0) = 0. Show next that (z′+ z)′ = z′+ z, so z′(t) + z(t) = Cet for some constant
C. Take t = 0 to conclude C = 0, so z′ = −z. How does this help?

Day 7: Wednesday, January 22.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Section 1.2 contains a variety of PDE that are, more or less, really ODE (or that can be
solved with ODE ideas and no fancy new PDE ones). Examples 1 through 6 are worth
reading and attempting; pay no attention to the “general” vs. “generic” distinction
for solutions. Pages 48–50 focus specifically on PDE that are ODE. A version of the
transport equation is derived on pp. 85–86 under “An application to gas flow.”

We are finally ready to study some PDE, although the first few will be artificial PDE
that are really ODE. We begin with a convention.

7.1 Undefinition. A function u is a solution to a PDE if u solves that PDE at each
point in its domain and if every (mixed) partial derivative of u up to the highest-order
derivative in the PDE exists and is continuous.
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7.2 Example. From this convention, it is probably obvious that if u solves the transport
equation

ut + ux = 0,

then all (both) of its first partial derivatives need to exist; we also require ut and ux to
be continuous. It is perhaps less obvious from this convention that if u solves the heat
equation

ut = uxx,

then the derivatives utt, utx, and uxt also need to exist and be continuous (in which case
utx = uxt), since the highest order of a derivative appearing in the heat equation is 2.

Here is some useful notation to control continuous differentiability. Below, the mention
of R2 is not so special; rather, virtually all of our PDE will be posed in R2 for simplicity.

7.3 Definition. Let D ⊆ R2 and let r ≥ 0 be an integer. Denote by Cr(D) the set of
all r-times continuously differentiable functions on D whose (mixed) partial
derivatives of up to order r exist and are continuous on D.

So, if we have a PDE posed on D ⊆ R2 and the highest order of the derivative in that
PDE is r, we want the solution to be in Cr(D).

Here are some examples in which we use ODE techniques. The major change is that initial
data will now be functions, and we will have to consider the regularity of those functions.

7.4 Example. We study the PDE

u2t + u2x = 0.

This is a nonlinear PDE, but with a sufficiently nice domain it simplifies radically. Re-
gardless of the domain, the remarks at the end of Example 6.7 tell us that u must meet
ut = ux = 0.

(i) First suppose that we want to solve this PDE on R2. We expect that since u is constant
in both x and t, it is simply constant. Here is why. Fix x0 ∈ R and set v(t) = u(x0, t). By
the way, in the future we might refer to this function v as u(x0, ·); this notation tells us to
think of the x-variable as fixed at x0, while the t-variable is the only independent variable
now.

Then v′ = 0 on R, so v is constant. In particular, v(t) = v(0) for all t, so u(x0, t) =
u(x0, 0) for all x0, t ∈ R. The same logic shows that given t0 ∈ R, we have u(x, t0) = u(0, t0)
for all x ∈ R. Thus u(x, t) = u(x, 0) = u(0, 0) for all (x, t) ∈ R2.

(ii) Now suppose that we want to solve this PDE on

D :=
{
(x, t) ∈ R2

∣∣ x2 + t2| < 1 or |(x− 3)2 + t2| < 1
}
.



Day 7: Wednesday, January 22 35

This is the set drawn below.

x

t

3

Perhaps inspired by Problem 2.11, we can put

u(x, t) :=

{
0, x2 + t2 < 1

3, (x− 3)2 + t2 < 1

to see that ux = ut = 0 but u is not constant.

(iii) What is missing in the previous situation is better geometric control. The set in the
previous part is not “connected”—it is obviously in two “distinct” parts. We will get the
result that we want (ut = ux = 0 implies that u is constant) if we assume more on the
geometry. Say that D ⊆ R2 is connected if we can find a path in D that connects any
two points in D. That is, given (x1, t1), (x2, t2) ∈ D, there are functions γ1, γ2 ∈ C1([0, 1])
such that{

γ1(0) = x1

γ2(0) = t1,

{
γ1(1) = x2

γ2(1) = t2,
and (γ1(t), γ2(t)) ∈ D for all t ∈ D.

Say that D is connected and u ∈ C1(D) with ux = ut = 0; we show that u is constant.
Pick (x1, t1), (x2, t2) ∈ D and γ1, γ2 satisfying the above and set

v(s) := u(γ1(s), γ2(s))

for s ∈ [0, 1]. The multivariable chain rule gives

v′(s) = ux(γ1(s), γ2(s))γ
′
1(s) + ut(γ1(s), γ2(s))γ

′
2(s) = 0

and so, since v is defined on an interval, v is constant. Thus

u(x1, t1) = v(0) = v(1) = u(x2, t2).

7.5 Example. Cautioned by that domain problem, we solve{
ut = u, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.
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This is really a “family” of ODE “indexed” by x; for each x, we want to solve{
ut(x, t) = u(x, t), −∞ < t <∞
u(x, 0) = f(x).

Of course this is the same as {
y′ = y

y(0) = y0,

and so our solution to the PDE is

u(x, t) = f(x)et.

Since ux must exist and be continuous, we want f ∈ C1(R). Thus we need to be more
careful and restrictive with the initial data for a PDE than we were for an ODE.

7.6 Problem (!). Find all solutions to the following PDE. [Hint: Example 6.6 and Problem
6.9.] What regularity is necessary for f and g?

(i)


utt + x2u = 0 −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞

(ii)


utt − x2u = 0 −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞

These PDE were really ODE because derivatives with respect to only one variable ap-
peared in them. Now we derive from (nebulous) physical principles our first genuine PDE.

Consider a substance that moves or flows along an infinite path parallel to a horizontal
line—maybe a pollutant moving through a stream, maybe cars along a road, maybe gas
through a pipe. We think of the path as the real line R = (−∞,∞). The substance enters
the path from “far away” on the left and flows to the right; once on the path, the substance
does not leave the path, and there are no other sources for the substance along the path. (If
the path is a road and the substance is cars, there are no on or off ramps.)

Suppose that we measure position along this path by the variable x, and let u(x, t) be
the density of the substance at position x and time t. Usually density = mass/volume, but
this may feel strange—how can there be volume at a single point in space? We will adopt
the one-dimensional point of view that u measures density via the approximation

u(x, t) ≈ the amount of the substance between points x− h and x+ h on the path at time t
2h

(7.1)
when h > 0 is small.

Let a < b. A Riemann sum argument suggests that the amount of the substance between
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position a and position b on the path is∫ b

a

u(x, t) dx, (7.2)

and we will take this as the definition of “amount.”

7.7 Remark. Here is that argument. Divide the interval [a, b] into the n subintervals
[xk, xk+1] for k = 0, . . . , n− 1 with

xk := a+

(
b− a
n

)
k.

For xk ≤ x ≤ xk+1, we have u(x, t) ≈ u(xk, t) if n is large and the subinterval is small
(and if u is continuous).

u(xk, t) amount of substance
unit length

× (xk+1 − xk) length = u(xk, t)(xk+1 − xk) amount.

So, over all of [a, b], there is approximately

n∑
k=0

u(xk, t)(xk+1 − xk) amount,

and this is a Riemann sum for the integral
∫ b
a
u(x, t) dx.

7.8 Problem (!). Use Problem 2.9 to explain why if the amount of substance in [a, b] is
given by (7.2), then the approximation (7.1) is valid.

Thus the rate of change of the amount of the substance between positions a and b at time
t is

∂t

[∫ b

a

u(x, t) dx

]
.

Without knowing u, this is not a very helpful quantity, but the following is true. For a
“sufficiently nice” function u, we have

∂t

[∫ b

a

u(x, t) dx

]
=

∫ b

a

ut(x, t) dx. (7.3)

This equality is called “differentiating under the integral,” and it will be a hugely useful
technique for us in the future. Broadly, it is a refinement of the notion that integrals are
approximately sums, and derivatives commute with finite sums. We will revisit this at
length in the future. For now, accept it as true and note that the variable of integration is
not the same as the variable of differentiation, so we cannot invoke either of the fundamental
theorems to simplify (7.3) further.
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A partial derivative has entered the stage, and we should be happy. But we have nothing
to compare this partial derivative to, no equality, and so we do not yet have a PDE. We
therefore introduce something new: let q(x, t) be the rate of change of the amount of this
substance at position x and time t. We call q the flux of this substance. Previously we
consider the rate of change of the amount of the substance within a spatial region; now we
are considering the rate of change of the substance at a single point in space. This, too, is
a little strange: is the substance zero-dimensional so that it can exist at a single point in
space? We adopt another one-dimensional point of view: q measures this rate of change if

q(x, t) ≈ the amount of substance that passes through point x between times t− k and t+ k

2k

for k > 0.
Consider any “interval” [a, b] on the path. The substance enters the interval at position

a with rate q(a, t) and leaves the interval at position b with rate q(b, t). Remember that the
substance is not added to or removed from the path at all, so entering from the left and
leaving from the right is the only way that the amount of the substance in [a, b] can change.
Thus the rate of change of the amount of the substance in [a, b] is “rate in minus rate out”
(a good paradigm for population models in ODE!), and so that rate is

q(a, t)− q(b, t) = −
∫ b

a

qx(x, t) dx.

Here we have rewritten the difference as an integral (a good trick!) to make things consonant
with our previous calculation of the rate of change in (7.3). That is,∫ b

a

ut(x, t) dx = −
∫ b

a

qx(x, t) dx,

and so ∫ b

a

[
ut(x, t) + qx(x, t)

]
dx = 0. (7.4)

Now here is a marvelous fact about integrals.

7.9 Problem (?). Let I ⊆ R be an interval and let g ∈ C(I) such that∫ b

a

g = 0

for all a, b ∈ I with a ≤ b. Prove that g(x) = 0 for all x ∈ I. [Hint: fix a ∈ I and let
G(x) :=

∫ x
a
g. What do you know about G′? Calculate it in two ways.]

We combine this result and the fact that a and b were arbitrary to conclude from (7.4)
that

ut(x, t) + qx(x, t) = 0

for all x and t. This is good, because it is an equation, and a PDE at that, but not so good in
that we have two quantities (density and flux) and only one equation—not usually a recipe
for success.
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Day 8: Friday, January 24.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 58–67 treat the somewhat broader problem aux + but + cu = f(x, t). We will
work our way up to this full problem. The book also has a slightly different approach
via the early introduction of characteristic curves (which we will meet later when we
allow the coefficients a, b, and c to depend on space and/or time). Reading pp. 58–61
(stopping with Example 1) and comparing it to our approach below is a worthwhile
exercise.

One way of proceeding is to assume that flux is somehow related to density, which is not
unreasonable—surely the density should somehow affect the rate of change of the amount of
the substance. Perhaps the simplest relation is linear: assume

q(x, t) = cu(x, t)

for some constant c. Then u must satisfy

ut + cux = 0.

This is (one version of) the transport equation, and we will study it in detail.
We solve the transport equation with c = 1 and claim that from this solution we can

obtain all solutions to the more general problem with c 6= 1. We defer the study of this claim
until later.

So, consider the problem {
ut + ux = 0, (x, t) ∈ R2

u(x, 0) = f(x), x ∈ R.

To avoid irrelevant strangeness with the domain, we are looking for solutions defined on all
of R2. The key to success here is to recognize the presence of some hidden coefficients:

ut + ux = (1 · ut) + (1 · ux).

This is really a dot product:

(1 · ut) + (1 · ux) =
(
ux
ut

)
·
(
1
1

)
.

The first vector is the gradient of u, ∇u = (ux, ut), and so we have

∇u ·
(
1
1

)
= 0.

This dot product is the directional derivative: it measures how fast u is changing
in the direction of the vector (1, 1), and the equality above says that u is really constant in
that direction.
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What does this mean? Fix (x, t) ∈ R2. “Moving” through (x, t) in the direction of the
vector (1, 1) means moving along the line parametrized by(

x
t

)
+ s

(
1
1

)
. (8.1)

And u should be constant on any such line (as drawn in blue below).

x

t

(x+ s, t+ s)

That is, for any s, s̃ ∈ R, we have

u(x+ s, t+ s) = u(x+ s̃, t+ s̃). (8.2)

Is there a point on the line through (x, t) parallel to (1, 1) that is particularly “convenient”?
Possibly the points with least data—with one coordinate equal to 0.

Can we pick s and/or s̃ in a “convenient” way to exploit these coordinates? Why should
we? We might add some data to the problem and impose the initial condition

u(x, 0) = f(x).

Then in (8.2) we could take s ∈ R arbitrary and s̃ = −t to get

u(x+ s, t+ s) = u(x− t, 0) = f(x− t).

And we may as well put s = 0 to conclude

u(x, t) = f(x− t).

We can do this more efficiently and cut out some of the handwaving. With (x, t) ∈ R2

still fixed, we put
v(s) := u(x+ s, t+ s)

and compute, via the multivariable chain rule, that

v′(s) = ux(x+ s, t+ s) + ut(x+ s, t+ s) = 0
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for all s. Thus v is constant. In particular,

u(x, t) = v(0) = v(s)

for any s. We can make the initial condition show up by taking t+ s = 0, thus s = −t. That
is,

u(x, t) = v(−t) = u(x− t, t− t) = u(x− t, 0) = f(x− t).

We have proved a theorem.

8.1 Theorem. Let f ∈ C1(R) and suppose that u solves{
ut + ux = 0, (x, t) ∈ R2

u(x, 0) = f(x), x ∈ R.
(8.3)

Then
u(x, t) = f(x− t).

This is a uniqueness result: the only possible solution to the IVP (8.3) is the one above.
But is it really a solution?

8.2 Problem (!). Check that. Be sure to explain the importance of the regularity require-
ment f ∈ C1(R).

So, here is our first reason for adoring the transport equation: it is a genuine PDE (that
is not an ODE) and we know all of its solutions. The second reason is that these solutions
respect our physical intuition: it turns out that the initial data f just gets “propagated”—
dare we say, “transported”—along the x-axis. This is best seen through some pictures.

Here is a graph for the initial data f .

x

u(x, 0) = f(x)

Consider the solution u at time t1 > 0. Then u(x, t1) = f(x− t1), and this graph is just the
graph of f “shifted” by t1 units to the right.

x

u(x, t1) = f(x− t1)

t1
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We let time evolve more and the graph gets shifted more.

x

u(x, t2) = f(x− t2)

t2

What we are really seeing here is the structure of a “traveling wave”—a fixed profile steadily
translated in the same direction. We will explore the traveling wave structure of solutions
to PDE much more in the future.

More generally, we claim that the only solution to{
ut + cux = 0, (x, t) ∈ R2

u(x, 0) = f(x), x ∈ R

is
u(x, t) = f(x− ct).

That this u is a solution can be checked as in Problem 8.2. (Do that.) That this u is the
only solution still needs proof, which we will provide later.

Also, we do not really need an initial condition: every solution to ut + cux = 0 has the
form

u(x, t) = p(x− ct)
for some function p. Just take p(X) = u(X, 0).

8.3 Example. The only solution to{
ut + 3ux = 0, (x, t) ∈ R2

u(x, 0) = sin(x), x ∈ R

is
u(x, t) = sin(x− 3t).

We can take advantage of the diverse, flexible geometry of our domain R2 to specify the
behavior of a solution not via an initial condition (i.e., via its behavior on the x-axis) but via
a “side condition” in which we prescribe the solution’s behavior on a one-dimensional curve
in R2—that is, on a parametrized set {(x(s), t(s)) | s ∈ I} for some interval I ⊆ R.

8.4 Example. We consider the problem{
ut + 3ux = 0, (x, t) ∈ R2

u(s, s) = sin(s), s ∈ R.

This prescribes the behavior of u on the line x = t. We know that if ut + 3ux = 0, then
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u(x, t) = p(x− 3t), where p(X) = u(X, 0). Working backward, if we have a solution with
the side condition, then

sin(s) = u(s, s) = p(s− 3s) = p(−2s).

All we have to do is figure out p. Here is where some algebraic trickery helps: put
X = −2s, so s = −X/2. Then

p(X) = p(−2s) = sin(s) = sin

(
−X

2

)
= − sin

(
X

2

)
.

And there is p.
So, we expect that the solution is

u(x, t) = p(x− 3t) = − sin

(
x− 3t

2

)
,

and we could always check that explicitly.

8.5 Problem (!). In what sense is any initial condition a side condition?

Here is a PDE with a side condition that does not admit any solution.

8.6 Example. Suppose that u solves{
ut + 3ux = 0, −∞ < x, t <∞
u(3s, s) = sin(s), −∞ < s <∞.

Then u has the form u(x, t) = p(x− 3t) for some p ∈ C1(R), and this p must satisfy

sin(s) = u(3s, s) = p(3s− 3s) = p(0) (8.4)

for all s ∈ R. This is impossible, as sin(·) is not constant. For example, (8.4) would require
0 = sin(0) = p(0) = sin(π/2) = 1.

8.7 Problem (?). The following two statements are true.

(i) Suppose that σ ∈ C(R) is strictly monotonic (i.e., σ is either strictly increasing or
strictly decreasing). Then there exists h ∈ C(R) such that

h(σ(s)) = s and σ(h(S)) = S for all s, S ∈ R.

Such a function h is, of course, the inverse of σ; this result says that a continuous strictly
monotonic function on R has a continuous inverse.

(ii) Let σ ∈ C1(R) and h ∈ C(R) such that σ′(s) 6= 0 for all s ∈ R and σ(h(S)) = S for all
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S ∈ R. Then h ∈ C1(R) and
h′(S) =

1

σ′(h(S))
(8.5)

for all S ∈ R. (The identity (8.5) is, hopefully, exactly what we expect by differentiating
both sides of σ(h(S)) = S and using the chain rule. The novelty here is that h is not
initially assumed to be differentiable.)

Use these facts to show that {
ut + 3ux = 0, (x, t) ∈ R2

u(s,−s3) = sin(s), s ∈ R

has a solution of the form
u(x, t) = sin(h(x− 3t))

for some h ∈ C1(R).

Day 9: Monday, January 27.

Our work with side conditions has been strictly algebraic; now we consider the interaction
of the side condition curve with the geometry of the PDE.

9.1 Example. We revisit the side conditions of Examples 8.4 and 8.6 more geometrically.
Recall that all solutions to ut + 3ux = 0 have the form u(x, t) = f(x − 3t) for some
f ∈ C1(R), and, since this transport equation is equivalent to

0 =

(
ux
ut

)
·
(
3
1

)
= ∇u ·

(
3
1

)
,

solutions u are constant on lines parallel to (3, 1), i.e., lines with slope 1/3.

(i) We graph in blue lines with slope 1/3. Any solution u to ut + 3ux = 0 is constant on
these lines. Now we demand that u meet the side condition u(s, s) = g(s) for some function
g. We graph in black the line parametrized by (s, s) with s ∈ R, i.e., the line t = x. We
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note that this black line intersects each blue line exactly once.

x

t

Since u is constant on each blue line, its value on any such line equals its value at the
intersection of the blue line with the black line. There is only one such intersection, and
so there is no ambiguity in the value of u.

(ii) Again we graph in blue lines with slope 1/3. And, again, any solution u to ut+3ux = 0
is constant on these lines. Now we demand that u meet the side condition u(3s, s) = g(s)
for some function g. We graph in black the curve parametrized by (3s, s) with s ∈ R,
i.e., the line t = x/3. This black line completely overlaps with the line of slope 1/3 that
intersects the origin (0, 0).

x

t

The problem is that u is supposed to be constant on all blue lines, and the black line
now—but u is also supposed to agree with g on the black line. If g is not constant, a
contradiction will result.
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9.2 Problem (?). (i) Revisit the side condition problem from Problem 8.7. Draw the side
condition curve (s,−s3) and discuss how it intersects lines of slope 1/3.

(ii) What goes wrong with the problem{
ut + 3ux = 0, (x, t) ∈ R2

u(s, s2) = sin(s), s ∈ R?

Discuss the failure of this problem algebraically (the values s = 0 and s = 1/3 will be
useful) and geometrically; include a sketch of how the side condition curve interacts with
lines of slope 1/3. Contrast that interaction with the situation in Example 8.6 and the
geometry discussed in part (ii) of Example 9.1.

We will explore these graphical phenomena more generally later in the context of char-
acteristics as part of our study of variable-coefficient linear problems, e.g., PDE of the form
ut + c(x, t)ux = 0. Now we return to the dangling problem of solving the more general
transport equation. Consider the IVP{

aut + bux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

(9.1)

Here a, b 6= 0 to avoid the trivial case of a PDE that is really an ODE. Everything that
we did for ut + ux = 0 could be replicated by recognizing that this transport equation is
equivalent to

∇u ·
(
b
a

)
= 0.

The only challenge would be the extra notation of a and b throughout.
However, to illustrate a valuable PDE technique that will serve us well with more compli-

cated problems, we do not do this. Instead, suppose that we only know our previous result
that {

vt + vx = 0, −∞ < x, t <∞
v(x, 0) = g(x), −∞ < x <∞.

⇐⇒ v(x, t) = g(x− t). (9.2)

How can we use (9.2) to solve (9.1)? (In (9.2), we are using v and g, not u and f , in an
effort not to overwork notation.)

This technique is rescaling. First, we simplify the problem as much as possible by
noting that, since b 6= 0, the IVP (9.1) is equivalent to{

ut + cux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞,

c =
b

a
. (9.3)

Now we assume that u solves (9.3). The key step is to define a new function via

U(X,T ) := u(αX, βT ),
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where α, β ∈ R are fixed constants whose value we will determine later. Specifically, we
would like to choose them conveniently so that U solves an IVP like (9.2), which we fully
understand.

We compute

UX(X,T ) = αux(αX, βT ) and UT (X,T ) = βut(αX, βT ).

We hope that UT + UX = 0. We compute further

UT (X,T ) + UX(X,T ) = βut(αX, βT ) + αux(αX, βT ).

Since we know
ut(x, t) + cux(x, t) = 0

for all (x, t) ∈ R2, if we take β = 1 and α = c, then we have

UT (X,T ) + UX(X,T ) = ut(cX, T ) + cux(cX, T ) = 0.

And since c 6= 0, we can always express u in terms of U . That is, we have

U(X,T ) = u(cX, T ) and u(x, t) = U
(x
c
, t
)
. (9.4)

We are just missing an initial condition. We want to prescribe U(X, 0) = F (X) for some
function F , and this means

F (X) = U(X, 0) = u(cX, 0) = f(cX).

To avoid overworking our variables, maybe we should define F via another symbol entirely,
like F (S) = f(cS).

Then U satisfies{
UT + UX = 0, −∞ < X, T <∞
U(X, 0) = F (X), −∞ < X <∞,

F (S) := f(cS),

and so by (9.2) we have

U(X,T ) = F (X − T ) = f(c(X − T )).

By (9.4), we conclude

u(x, t) = U
(x
c
, t
)
= f

(
c
(x
c
− t
))

= f(x− ct).

And if we really want to go back to (9.1), we find

u(x, t) = f

(
x− b

a
t

)
= f

(
ax− bt

a

)
.

This rescaling trick can be employed more generally as follows. Suppose that u = u(x, t)
solves a “complicated” PDE. Put U(X,T ) = γu(αX, βT ) and choose α, β, and γ (above
γ = 1 because the transport equation was linear) so that U solves a “simpler” PDE. Use the
relationship u(x, t) = γ−1U(α−1x, β−1t) to recover u from knowledge of U .
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9.3 Problem. The heat equation for u = u(x, t) is

ut − κuxx = 0, −∞ < x <∞, t ≥ 0,

where κ > 0. (The importance of nonnegative time will be discussed later.) Suppose that
u solves the heat equation and define U(X,T ) = u(αX, βT ) for α, β ∈ R. What values of
α and β make U solve the “simpler” heat equation

UT − UXX = 0?

9.4 Problem (+). Let a, b, c, A, B, C 6= 0. The most general version of theKorteweg–
de Vries (KdV) equation for u = u(x, t) is

aut + buxxx + cuux = 0, −∞ < x, t <∞.

Suppose that u solves the KdV equation and define U(X,T ) = γu(αX, βT ). What values
of α, β, and γ make U solve the KdV equation

AUT +BUXXX + CUUX = 0?

The point of this change of variables is that if we know how to solve KdV with one set of
coefficients, then we know how to solve it with any other.

9.5 Problem (+). Let a, b, α, β, γ ∈ R with both a 6= 0 and b 6= 0 and at least one of α
or β nonzero. Let f ∈ C(R). Suppose that u solves aux + but = 0. What conditions on a,
b, α, β, and γ ensure that u(x, t) = f(x) whenever αx+βt = γ? Interpret these conditions
geometrically as well as algebraically.

We now consider the nonhomogeneous transport equation:{
ut + ux = g(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

Going back to the derivation of the (homogeneous) transport equation, one can think of g
as a “source” (or “sink”) term for the substance moving along the path—if the substance is
cars and the path is a road, a nonzero g corresponds to on/off ramps along the road. This
problem will be valuable to us for at least three reasons: (1) it illustrates and motivates
some useful techniques with definite integrals, (2) its solution will be a key step in solving
the (homogeneous) wave equation later, and (3) its solution form will motivate a surprisingly
helpful idea for solving the nonhomogeneous wave equation later, too.

We get down to business and repeat our prior successful strategy. Fix x, t ∈ R and set

v(s) := u(x+ s, t+ s),

so

v′(s) = ux(x+ s, t+ s) + ut(x+ s, t+ s) = g(x+ s, t+ s) and v(0) = u(x, t).
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Direct integration implies

v(s) = v(0) +

∫ s

0

v′(σ) dσ = u(x, t) +

∫ s

0

g(x+ σ, t+ σ) dσ.

That is,

u(x+ s, t+ s) = u(x, t) +

∫ s

0

g(x+ σ, t+ σ) dσ

for all x, t, s ∈ R. (We are running out of variables, and σ looks and sounds like s.)
As before, we choose s conveniently with s = −t to make the initial condition at u(x, 0)

show up:

u(x− t, 0) = u(x, t) +

∫ −t
0

g(x+ σ, t+ σ) dσ,

and so

f(x− t) = u(x, t) +

∫ −t
0

g(x+ σ, t+ σ) dσ.

One more rearrangement yields

u(x, t) = f(x− t)−
∫ −t
0

g(x+ σ, t+ σ) dσ.

It will pay off to clean up the integral a bit. The following is the nonobvious result of
trial and error, but one motivation is that it would be nice to see the “x − t” structure in
the integrand as well as in f . We can get this by substituting τ = t+ σ (for lack of a better
variable of integration), so

τ(0) = t, τ(−t) = 0, dτ = dσ, and σ = τ− t.

Then

−
∫ −t
0

g(x+ σ, t+ σ) dσ = −
∫ 0

t

g(x− t+ τ, τ) dτ =

∫ t

0

g(x− t+ τ, τ) dτ.

We summarize our work.

9.6 Theorem. Let f ∈ C1(R) and g ∈ C(R2) and suppose that u solves{
ut + ux = g(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

(9.5)

Then

u(x, t) = f(x− t) +
∫ t

0

g(x− t+ τ, τ) dτ. (9.6)
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9.7 Problem (?). The integral term in (9.6) may look strange. Here is a way to see it as
an analogue of something more familiar.

(i) Fix a ∈ R and f ∈ C(R). For t, t0 ∈ R, put P(t)y0 := eaty0. Show that{
y′ = ay

y(0) = y0
⇐⇒ y(t) = P(t)y0

and {
y′ = ay + f(t)

y(0) = 0
⇐⇒ y(t) =

∫ t

0

P(t− τ)f(τ) dτ.

[Hint: just import results from Theorem 4.1.]

(ii) For t, x ∈ R and f ∈ C(R), let P(t, x)f := f(x− t). Show that{
ut + ux = 0, (x, t) ∈ R2

u(x, 0) = f(x), x ∈ R
⇐⇒ u(x, t) = P(t, x)f

and {
ut + ux = g(x, t), (x, t) ∈ R2

u(x, 0) = 0, x ∈ R
⇐⇒ u(x, t) =

∫ t

0

P(t− τ, x)g(·, τ) dτ.

Here g ∈ C1(R2) and g(·, τ) denotes the map X 7→ g(X, τ). [Hint: just import results from
Theorem 9.6.]

We can think of each P as a “propagator” that, in the case of the homogeneous problems,
“propagates” the initial data forward in time and thereby gives a formula for homogeneous
solutions. Here is how the propagator shows up in the nonhomogeneous problems. Recall
that one version of the convolution of the functions φ, ψ ∈ C(R) is the map (φ∗ψ)(t) :=∫ t

0
φ(t−τ)ψ(τ) dτ. The results above show that a particular solution to the nonhomogeneous

problems (specifically, the solution with 0 initial condition) is given by convolving the
propagtor (in time) with the driving term. This “convolve with propagator” approach will
help us make useful (and correct) guesses about solving more complicated nonhomogeneous
problems. We can also think of the propagators as linear operators: for each fixed t, P(t)
is a linear operator on R (which is not very exciting: just scalar multiplication), whereas
for each t and x, P(t, x) is a linear operator on C(R) that maps a function f to the scalar
f(x − t). (Thus P(t, x) is really the “evaluate at x − t” linear functional in that it maps
the vector space C(R) to the underlying scalars R.)
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Day 10: Wednesday, January 29.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Appendix A.3 discusses Leibniz’s rule at length (and in more detail than you are
required to know). The examples on pp. 683–684 show how the rule can fail if the
integrand is not sufficiently nice. A more general version of the rule appears on p. 687
and encompasses improper integrals, which we will eventually find useful. Lemma 1
on p. 177 gives a proof similar to ours for calculating ∂t

[∫ t
0
f(t, s) ds

]
. A generalization

of this appears in equation (12) on p. 688.
Page 281 provides cultural and historical context for the wave equation. Pages

282–285 exhaustively derive the wave equation from physical principles. Pages 300–
302 derive D’Alembert’s formula using a slightly different approach from ours in class.
Read Examples 3 and 4 on pp. 303–304.

However, we did not show that any function u in the form (9.6) actually solves (9.5). This
requires computing both

∂x

[∫ t

0

g(x− t+ τ, τ) dτ

]
and ∂t

[∫ t

0

g(x− t+ τ, τ) dτ

]
.

We did something like the x-derivative in (7.3) when deriving the transport equation, but
we never justified it, and the t-derivative looks even more complicated, since t appears in
both the limit of integration and the integrand.

The time has come to sort this out. Consider the more abstract situation of calculating
the derivative

∂x

[∫ b

a

f(x, s) ds

]
.

Here h is defined on {
(x, s) ∈ R2

∣∣ a ≤ s ≤ b, x ∈ I
}
,

where I is some interval. For the integral to exist, we want the map

[a, b]→ R : s 7→ f(x, s)

to be continuous for each x ∈ I. We might abbreviate this map by f(x, ·) and say that we
want f(x, ·) ∈ C([a, b]).

So what is the derivative, assuming that we do not recall (7.3)? The integral is approxi-
mately a Riemann sum, and derivatives and sums interact nicely:∫ b

a

f(x, s) ds ≈
n∑
k=1

f(x, sk)(sk − sk−1)

for a partition {sk}nk=1 of the interval [a, b]. Certainly

∂x

[
n∑
k=1

f(x, sk)(sk − sk−1)

]
=

n∑
k=1

fx(x, sk)(sk − sk−1),
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and
n∑
k=1

fx(x, sk)(sk − sk−1) ≈
∫ b

a

fx(x, s) ds,

so perhaps

∂x

[∫ b

a

f(x, s) ds

]
=

∫ b

a

fx(x, s) ds?

With some extra hypotheses, and work, this turns out to be true. The crux of the problem
is an “interchange of limits” argument, the sort that permeates much of analysis. Using the
definition of the derivative (and algebraically rearranging some terms on the left), this boils
down to showing

lim
h→0

∫ b

a

f(x+ h, s)− f(x, s)
h

ds =

∫ b

a

lim
h→0

f(x+ h, s)− f(x, s)
h

ds. (10.1)

What properties of integrals give us the right to do this?

10.1 Theorem (Leibniz’s rule for differentiating under the integral). Let I ⊆ R be an
interval and a, b ∈ R with a ≤ b. Let D :=

{
(x, s) ∈ R2

∣∣ x ∈ I, a ≤ s ≤ b
}
. Suppose that

f ∈ C(D) and that fx exists on D with fx ∈ C(D). Then the map

J : I → R : x 7→
∫ b

a

f(x, s) ds

is defined and differentiable on J and

J ′(x) =
∫ b

a

fx(x, s) ds.

10.2 Problem (?). Here is a sketch of the proof, up to some tricky estimates.

(i) Chase through the algebra of difference quotients and integrals to show that it suffices
to establish (10.1) to prove Leibniz’s rule.

(ii) Go further and show (using, perhaps, Problem 2.17) that to prove (10.1), it suffices
to establish that

lim
h→0

∫ b

a

∫ 1

0

[
fx(x+ th, s)− fx(x, s)

]
dt ds = 0. (10.2)

(iii) Proving (10.2) takes some careful work with uniform continuity on compact subsets
of R2, and that is beyond the scope of our class. However, show that if fxx exists and is
continuous on D and if there is M > 0 such that |fxx(x, s)| ≤ M for all (x, s) ∈ D, then
(10.2) holds. [Hint: use Problem 2.17 again and watch out for the triple integral that shows
up.]



Day 10: Wednesday, January 29 53

10.3 Problem (!). Let

φ(x) :=

∫ 1

0

s cos(s2 + x) ds.

Calculate φ′ in two ways in two ways: first by evaluating the integral with FTC2 and dif-
ferentiating the result and second by differentiating under the integral and then simplifying
the result with FTC2. (The point is to convince you that differentiating under the integral
gives the right answer.)

If g ∈ C1(R2), then Leibniz’s rule justifies the calculation

∂x

[∫ t

0

g(x− t+ τ, τ) dτ

]
=

∫ t

0

gx(x− t+ τ, τ) dτ

by taking f(x, s) = g(x − t + s, s) with t ∈ R fixed. The hypothesis g ∈ C1(R2) is, by the
way, stronger than what we had in Theorem 9.6. (It is also asking more of g than we did of
the forcing term in the ODE from Theorem 4.1. PDE are hard.)

We still need to calculate

∂t

[∫ t

0

g(x− t+ τ, τ) dτ

]
,

and now the variable of differentiation appears in both the limit of integration (which should
remind us of FTC1) and in the integrand (which should remind us of Leibniz’s rule). To do
this, it suffices to know how to compute

∂t

[∫ t

0

f(t, s) ds

]
,

as we could then take f(t, s) = g(x− t+ s, s) with x fixed.
Here is the trick: we introduce a fake variable and set

F (x, t) :=

∫ x

0

f(t, s) ds.

Then ∫ t

0

f(t, s) ds = F (t, t),

so by the multivariable chain rule

∂t

[∫ t

0

f(t, s) ds

]
= Fx(t, t) + Ft(t, t).

But
Fx(t, t) = ∂x

[∫ x

0

f(t, s) ds

] ∣∣∣∣
x=t

= f(t, t)

by FTC1 and

Ft(t, t) = ∂t

[∫ x

0

f(t, s) ds

] ∣∣∣∣
x=t

=

∫ t

0

ft(t, s) ds

by Leibniz’s rule.
We have proved the following.
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10.4 Lemma. Let f ∈ C1(R2). Then

∂t

[∫ t

0

f(t, s) ds

]
= f(t, t) +

∫ t

0

ft(t, s) ds

for all t ∈ R.

10.5 Problem (?). Use this lemma to show that if g ∈ C1(R2), then

u(x, t) :=

∫ t

0

g(x− t+ τ, τ) dτ

solves {
ut + ux = g(x, t), −∞ < x, t <∞
u(x, 0) = 0, −∞ < x <∞.

10.6 Problem (?). Find all solutions to{
ut + cux + ru = g(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞.

where f ∈ C1(R), g ∈ C1(R2), and c, r ∈ R. [Hint: as always, start with v(s) := u(x +
cs, t + s) for x, t ∈ R fixed and find an ODE for v.] This transport equation models the
propagation of a substance where the amount of the substance on the path can change
both from the “source/sink” term g and in proportion r to the amount of substance on the
path.

10.7 Problem (+). Let c ∈ R and f ∈ C1(R). Suppose that u solves{
ut + cux = 0, x, t ∈ R
u(x, 0) = f(x), x ∈ R.

Fix x0, x1, t0, t1 ∈ R and let

J (t) :=
∫ x1+c(t−t1)

x0+c(t−t0)
u(s, t) ds.

Give two proofs that J is constant as follows. (We might call the transport equation a
“conservation law” because the quantity J is constant, or “conserved.”)

(i) Use substitution to show

J (t) =
∫ x−ct1

x0−ct0
f(τ) dτ.
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(ii) Compute J ′ by differentiating under the integral and recalling that u(b, t)− u(a, t) =∫ b
a
ux(s, t) ds.

We now ommence our study of a new PDE: the wave equation. In the immortal
words of G. B. Whitham from his staggering Linear and Nonlinear Waves,

“[A] wave is any recognizable signal that is transferred from one part of [a]
medium, to another with a recognizable velocity of propagation. The signal
may be any feature of the disturbance, such as a maximum or an abrupt
change in some quantity, provided that it can be clearly recognized and its
location at any time can be determined. The signal may distort, change
its magnitude, and change its velocity provided it is still recognizable.”

The initial value problem (IVP) for the wave equation on R reads
utt = uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞.

Here f , g : R → R are given functions. This IVP models the motion of an infinitely long
string that moves in the vertical direction only: let u(x, t) be the displacement of the string
from its rest position at position x along its length and time t. The function f models the
initial displacement and g the initial velocity. While a finite string is of course physically
much more realistic, we will see that finite length leads to some complicated, and possibly
unsatisfying, boundary conditions; mathematically, the infinite string is rather “nicer” (if
more unrealistic physically).

We can solve the IVP by noticing a formal similarity to the difference of perfect squares:
u solves the wave equation if and only if

utt − uxx = 0,

and we might rewrite this in “operator” notation as

(∂2t − ∂2x)u = 0,

and then factor that as
(∂t − ∂x)(∂t + ∂x)u = 0.

What this means is that if u solves utt = uxx, and if we define v := ut + ux, then v solves

vt − vx = 0.

10.8 Problem (!). Prove that.

The function v therefore solves a transport equation. Since

v(x, 0) = ut(x, 0) + ux(x, 0) = g(x) + ∂x[u](x, 0) = g(x) + ∂x[f ](x) = g(x) + f ′(x),
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the function v really solves {
vt − vx = 0, −∞ < x, t <∞
v(x, 0) = g(x) + f ′(x).

We know that the solution to this problem is

v(x, t) = g(x+ t) + f ′(x+ t).

Consequently, the solution u to the original wave equation utt = uxx must also solve

ut + ux = v(x, t) = g(x+ t) + f ′(x+ t).

Since u(x, 0) = f(x), we meet another transport equation:{
ut + ux = g(x+ t) + f ′(x+ t), −∞ < x, t <∞
u(x, 0) = f(x).

We know from Theorem 9.6 that the solution to{
ut + ux = h(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞

is

u(x, t) = f(x− t) +
∫ t

0

h(x− t+ τ, τ) dτ.

With
h(x, t) = g(x+ t) + f ′(x+ t),

we have

h(x− t+ τ, τ) = g((x− t+ τ) + τ) + f ′((x− t+ τ) + τ) = g(x− t+ 2τ) + f ′(x− t+ 2τ).

Thus the solution u to the wave equation utt = uxx is

u(x, t) = f(x− t) +
∫ t

0

[
g(x− t+ 2τ) + f ′(x− t+ 2τ)

]
dτ.

This would probably benefit from some cleaning up.
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We change variables in the integral with

s = x− t+ 2τ, ds = 2 dτ, s(0) = x− t, s(t) = x+ t,

to find
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∫ t

0

[
g(x− t+ 2τ) + f ′(x− t+ 2τ)

]
dτ =

1

2

∫ x+t

x−t

[
g(s) + f ′(s)

]
ds

=
f(x+ t)− f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds.

We conclude

u(x, t) = f(x−t)+f(x+ t)− f(x− t)
2

+
1

2

∫ x+t

x−t
g(s) ds =

f(x+ t) + f(x− t)
2

+
1

2

∫ x+t

x−t
g(s) ds.

Here is a slightly more general result.

11.1 Theorem (D’Alembert’s formula). Let f ∈ C2(R) and g ∈ C1(R) and c > 0. The
only solution u ∈ C2(R2) to

utt = c2uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞

(11.1)

is the function

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g. (11.2)

11.2 Problem (?). Prove this.

(i) First, check that u as defined in (11.2) actually solves the wave IVP (11.1). Explain
why the regularity assumptions f ∈ C2(R) and g ∈ C1(R) are necessary.

(ii) Next, develop the result for c 6= 1 from the work above by assuming that u solves
(11.1) and setting U(X,T ) = u(αX, βT ) for some α, β ∈ R. Choose α and β so that U
solves UTT = UXX and use the work above (updating the initial conditions as needed) to
find a formula for U . From that, develop the formula (11.2) for u.

11.3 Example. We solve the wave IVP (11.1) for c = 1 and some choices of f and g and
graph some results.

(i) Take
f(x) = 2e−x

2

and g(x) = 0.

D’Alembert’s formula tells us that the solution is

u(x, t) =
2e−(x+t)

2 − 2e−(x−t)
2

2
+

1

2

∫ x+t

x−t
0 ds = e−(x+t)

2

+ e−(x−t)
2

.
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Here are some plots.

x

u(x, 0) t = 0

x

u(x, 1) t = 1

x

u(x, 2) t = 2

x

u(x, 4) t = 4

It looks like the initial condition u(x, 0) = 2e−x
2

has split into two smaller “pulses,”
one moving to the right and the other to the left. This is exactly what the formula
u(x, t) = e−(x+t)

2−e−(x−t)2 says: as t increases, the graph of x 7→ e−(x+t)
2

moves to the left,
while x 7→ e−(x−t)

2

moves to the right. However, the graph of u(·, t) is not really just the
graph of x 7→ e−(x+t)

2

superimposed on the graph of x 7→ e−(x−t)
2

; there is an interaction
between the two graphs due to the sum in the definition of u. Nonetheless, this interaction
is very “weak” for x or t large because e−s

2

is very small when |s| is very large.

(ii) Take
f(x) = 10e−x

2

and g(x) = cos(x).

D’Alembert’s formula tells us that the solution is

u(x, t) =
10e−(x+t)

2
+ 10e−(x−t)

2

2
+

1

2

∫ x+t

x−t
cos(s) ds

= 5
(
e−(x+t)

2

+ e−(x−t)
2)

+

(
sin(x+ t)− sin(x− t)

)
2

.

Here are some graphs.

x

u(x, 0) t = 0

x

u(x, 1) t = 1
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x

u(x, 3) t = 3

x

u(x, 9) t = 9

Again, it looks like the initial condition “splits” into two “smaller” pulses that travel
to the right and left; now there is more “noise” between them due to the nonzero initial
condition on ut. In particular, the pulses are not nearly as “identical” as they were for the
previous initial data; contrast times 1, 3, and 9 with the previous pulses for times 1, 2, and
4.

Here is why this “counterpropagating pulse” phenomenon happens. Rewrite D’Alembert’s
formula as

f(x+ ct) + f(x− ct)
2

+
1

2c

∫ x+ct

x−ct
g =

1

2

(
f(x+ ct) +

∫ x+ct

0

g

)
+

1

2

(
f(x− ct) +

∫ 0

x−ct
g

)
and abbreviate

L(X) :=
1

2

(
f(X) +

1

c

∫ X

0

g

)
and R(X) :=

1

2

(
f(X)− 1

c

∫ X

0

g

)
.

Then if u solves utt = c2uxx, we can write

u(x, t) = L(x+ ct) +R(x− ct). (11.3)

This is the superposition of the “profiles” L and R with L translated left with “speed” c
and R translated “right.” And this is why the graphs in Example 11.3 break up into two
“counterpropagating” profiles.

11.4 Remark. The profiles F and G above are definitely not the initial data f and g in
general. In fact, the formula (11.3) makes sense without any initial data. Just assume
that u solves utt = c2uxx and artificially introduce the initial conditions f(x) := u(x, 0)
and g(x) := ut(x, 0). Then the work above shows that u satisfies (11.3), and we can forget
about f and g if we want.

The structure in (11.3) is really a sum of traveling waves.
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11.5 Definition. A function u : R2 → R is a traveling wave if there exist a function
p : R→ R and c ∈ R such that

u(x, t) = p(x− ct)

for all x, t ∈ R. The function p is the profile and the scalar c is the wave speed.

The idea of a traveling wave is that the profile p is translated, or “travels,” via the shift
by −ct. In particular, if c > 0, then as time increases, the graph of x 7→ u(x, t) is just the
graph of p translated to the right by ct units.

11.6 Problem (!). Explain why all solutions to the homogeneous transport equation ut+
ux = 0 are traveling waves but solutions to the wave equation are typically not traveling
waves.

When studying a PDE in the unknown function u = u(x, t), the process of guessing that
u is a traveling wave of the form u(x, t) = p(x − ct) and then figuring out the permissible
profile(s) p and wave speed(s) c, if any, is called making a traveling wave ansatz for
that PDE. (In general, an ansatz for a PDE is an educated guess that a solution has a
particular form.)

11.7 Example. For the sake of a toy problem, we pause from our study of the wave
equation and consider a nonlinear transport equation:

ux + ut + u2 = 0.

We make the traveling wave ansatz u(x, t) = p(x− ct) for a profile function p = p(X) and
a wave speed c ∈ R. The multivariable chain rule tells us that

ux(x, t) = p′(x− ct) and ut(x, t) = −cp′(x− ct).

Thus p and c must satisfy

p′(x− ct)− cp′(x− ct) + [p(x− ct)]2 = 0

for all x, t ∈ R. If we take x = X and t = 0, which we are free to do, we see that p must
satisfy

(1− c)p′(X) + [p(X)]2 = 0,

or, more succinctly,
(1− c)p′ + p2 = 0.

This is actually a separable ODE, and we can rewrite it as

(1− c)p′ = −p2.

The equilibrium solution is p(X) = 0. When c = 1, we have −p2 = 0, and so again
p(X) = 0. From now on, assume c 6= 1 and p 6= 0. Separating variables and integrating,
we find ∫ X

0

p′(s)

(p(s))2
ds =

∫ X

0

1

c− 1
ds,
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thus ∫ p(X)

p(0)

σ−2 dσ =
X

c− 1

and so
(p(0))−1 − (p(X))−1 =

X

c− 1
.

We conclude

p(X) =

(
(p(0))−1 − X

c− 1

)−1
.

Replacing p(0) with an arbitrary K ∈ R, we conclude that traveling wave solutions are

u(x, t) =

(
K +

x− ct
1− c

)−1
.

11.8 Problem (?). Find all other solutions to ut + ux + u2 = 0. [Hint: put v(s) =
u(x+ s, t+ s) and find a separable ODE for v.]

11.9 Problem (!). We have said (and proved) that all solutions to the transport equation
ut + ux = 0 are traveling waves, but make a traveling wave ansatz u(x, t) = p(x − ct)
anyway and solve for p and c. What is special about the case c = 1?

11.10 Problem (?). Make a traveling wave ansatz u(x, t) = p(x−ct) for the KdV equation
ut + uxxx + uux = 0 and find, but do not solve, an ODE that p must satisfy.

Day 12: Monday, February 3.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 326–327 give physical motivation for the driven wave equation. Pages 327–328
give a different motivation for Duhamel’s formula (i.e., the “propagator operators”).
Page 329 states and proves the formula, and Example 6 on p. 330 goes through the
calculations for concrete initial and driving data.

We will continue making traveling wave ansatzes for other PDE that we meet and inter-
preting those solutions physically and mathematically in the broader context of those equa-
tions. Now we return to the wave equation and tease out more properties from D’Alembert’s
formula.

Common jargon for the wave equation is that it “exhibits finite propagation speed.” Phys-
ically, this means that data or disturbances in one part of the fictitious infinite string take
some time to affect other parts of the string. Here is what this means mathematically.

Suppose that the initial data f and g have compact support in the sense that there
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is R > 0 such that
f(s) = 0 and g(s) = 0 for |s| > R.

In other words, f and g can only be nonzero on the interval [−R,R]. (Here we are using s
for the independent variable of f and g to avoid confusion with x.) In more other words,
the only “data” carried by f and g exists on this finite interval.

s

f(s)

−R R

If the string is governed by utt = c2uxx, then we expect that c > 0 is the speed of the wave(s)
moving through the string. After t units of time, data or disturbances should only propagate
ct units along the x-axis from where they were at time 0. This is born out by D’Alembert’s
formula.

Fix t > 0 and suppose that R+ ct < x. Then this position x is more than ct units outside
the “support” of f and g. We do not expect the data or disturbances from f and g to reach
position x in only this time t. Now here is the math: since R+ ct < x and c, t > 0, we have

R < R + 2ct < x+ ct, R < x− ct, and R < x− ct < x+ ct.

Since f(s) = 0 for s > R, we have

f(x+ ct) + f(x− ct)
2

= 0.

Also, since g(s) = 0 on (R,∞) and [x− ct, x+ ct] ⊆ (R,∞), we have∫ x+ct

x−ct
g(s) ds = 0.

D’Alembert’s formula then implies that u(x, t) = 0.
Here is what we have proved.

12.1 Corollary (Finite propagation speed for the wave equation). Let f ∈ C2(R) and
g ∈ C1(R) have compact support with f(s) = g(s) = 0 for |s| > R. Let c > 0. If u solves
the wave IVP (11.1), then u(x, t) = 0 for |x| > R + c|t|.

12.2 Problem (!). Review the work preceding the corollary and check that it holds for
|x| > R + c|t|, not just for x > R + ct as we actually worked out above.



Day 12: Monday, February 3 63

12.3 Problem (?). Formulate and prove a finite propagation speed result for the transport
IVP {

ut + cux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞

that is similar to Corollary 12.1.

Now we take up the study of the driven or nonhomogeneous wave equation:
utt = uxx + h(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞,

(12.1)

where we assume, as usual, f ∈ C2(R) and g ∈ C1(R) and, at the minimum, h ∈ C(R2). We
develop our solution method by first noting some (probably non-obvious) patterns among
the driven linear equations that we have previously solved.

1. The first-order linear nonhomogeneous IVP at the ODE level “splits” into the sum of two
“easier” problems:{

y′ = ay + f(t)

y(0) = y0
=

{
y′ = ay

y(0) = y0
+

{
y′ = ay + f(t)

y(0) = 0.

This sum is wholly euphemistic; the point is that the solution to the “full” IVP is the sum
of solutions to the “simpler” IVP. They are “simpler” because the first has no driving term
(but has a “harder” initial condition), while the second has an “easier” initial condition (but
a “harder” driving term).

Of course, the solution to {
y′ = ay

y(0) = y0

is
y(t) = eaty0,

and the solution to {
y′ = ay + f(t)

y(0) = 0

is

y(t) = eat
∫ t

0

e−aτf(τ) dτ.

The key to everything is rewriting this second solution:

eat
∫ t

0

e−aτf(τ) dτ =

∫ t

0

ea(t−τ)f(τ) dτ.
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We recognize the presence of the first solution within the second solution via a notational
sleight-of-hand: put

P(t) := eat,

so

eaty0 = P(t)y0 and
∫ t

0

ea(t−τ)f(τ) dτ =

∫ t

0

P(t− τ)f(τ) dτ.

We think of P as a “propagator operator” for the homogeneous problem in that it “propagates”
the initial data y0 to where it should be at time t (namely, to eaty0). The solution to the full
nonhomogeneous IVP is therefore

y(t) = P(t)y0 +
∫ t

0

P(t− τ)f(τ) dτ.

2. The nonhomogeneous transport IVP similarly “splits”:{
ut = −ux + g(x, t)

u(x, 0) = f(x)
=

{
ut = −ux
u(x, 0) = f(x)

+

{
ut = −ux + g(x, t)

u(x, 0) = 0.

Here we are writing the −ux term on the right to suggest that these problems are really
“families” of ODE in t “indexed” by x ∈ R. For example, if we fix x ∈ R and put v(t) = u(x, t),
then the transport equation is v′ = −ux + g(x, t), which is morally an ODE in t.

Our hard work has shown that the solution to{
ut = −ux
u(x, 0) = f(x)

is
u(x, t) = f(x− t),

while the solution to {
ut = −ux + g(x, t)

u(x, 0) = 0

is

u(x, t) =

∫ t

0

g(x− t+ τ, τ) dτ.

We introduce a new “propagator” that is “indexed” by x via

P(t, x)f := f(x− t).

Then the solution to {
ut = −ux
u(x, 0) = f(x)

is
u(x, t) = P(t, x)f.
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Now fix τ and denote by g(·, τ) the map

g(·, τ) : R→ R : X 7→ g(X, τ).

Then we can recognize the propagator in the solution to{
ut = −ux + g(x, t)

u(x, 0) = 0

via

u(x, t) =

∫ t

0

g(x− t+ τ, τ) dτ =

∫ t

0

g(x− (t− τ), τ) dτ =

∫ t

0

P(t− τ, x)g(·, τ) dτ.

The solution to the full nonhomogeneous transport IVP is therefore

u(x, t) = P(t, x)f +

∫ t

0

P(t− τ, x)(·, τ) dτ.

Hopefully we see a pattern: the solution to the nonhomogeneous problem is the sum of
the propagator applied to the initial data and the integral of the propagator “shifted by t−τ”
applied to the driving term.

This pattern is not wholly helpful for the driven wave equation, however, because that
problem has two initial conditions. The right idea is to turn to the dreaded variation of
parameters formula for second-order linear ODE. Here is a version of that formula that we
typically do not see in standard ODE classes, as checking it requires differentiating under
the integral.

12.4 Theorem (Variation of parameters). Let b, c ∈ R and let f ∈ C(R). Suppose that
P ∈ C2(R) solves 

P ′′ + bP ′ + cP = 0

P(0) = 0

P ′(0) = 1.

Then for y0, y1 ∈ R, the only solution to the IVP
y′′ + by′ + cy = f(t)

y(0) = y0

y′(0) = y1

(12.2)

is

y(t) = P ′(t)y0 + P(t)(y1 + y0b) +

∫ t

0

P(t− τ)f(τ) dτ. (12.3)

In particular, the functions

z(t) := P ′(t)y0 + P(t)(y1 + y0b) and y?(t) :=

∫ t

0

P(t− τ)f(τ) dτ
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solve the respective IVP
z′′ + bz′ + cz = 0

z(0) = y0

z′(0) = y1

and


y′′? + by′? + cy? = f(t)

y?(0) = 0

y′?(0) = 0.

(12.4)

Proving this theorem is challenging. First, one needs a uniqueness result for second-
order linear IVP to guarantee the “only” result; we will not pursue that here. Second (or
maybe first), what is the motivation for this formula? It is much less obvious than variation
of parameters for first-order linear IVP, which effectively falls out from the product rule.
The slickest way of proceeding for the second-order case is to convert that problem into a
first-order linear system, which then has much in common with first-order (scalar) problems.

12.5 Problem (+). (i) Check that the formula (12.3) does yield a solution to (12.2).
[Hint: Lemma 10.4. For the initial condition, use P ′′ + bP ′ + cP = 0 to compute P ′′(0).]

(ii) Let λ ∈ R \ {0}. What does Theorem 12.4 say about the solution to
y′′ + λ2y = f(t)

y(0) = y0

y′(0) = y1?

How does this resemble Problem 6.9?

Inspired by the propagators for ODE and the transport equation, we revisit the wave
equation. The solution to the homogeneous problem

utt = uxx, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞,

is given by D’Alembert’s formula:

u(x, t) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds.

This morally resembles the first two terms of the solution (12.3) to the homogeneous second-
order linear ODE (in the case b = 0) in that the initial data appears in each term separately.
If we stare a little longer, we might see a resemblance between the terms in that

∂t

[
1

2

∫ x+t

x−t
g(s) ds

]
=
g(x+ t) + g(x− t)

2
.

This is a consequence of a more general FTC identity.



Day 13: Wednesday, February 5 67

12.6 Problem (?). Let I, J ⊆ R be intervals. Let f ∈ C(I) and a, b ∈ C1(J) with a(t),
b(t) ∈ I for all t ∈ J . Show that

∂t

[∫ b(t)

a(t)

f

]
= f(b(t))b′(t)− f(a(t))a′(t).

[Hint: FTC1 + properties of integrals + chain rule.]

Now define

P(t, x)g := 1

2

∫ x+t

x−t
g(s) ds. (12.5)

The result above shows
∂t[P(t, x)f ] =

f(x+ t) + f(x− t)
2

,

and so D’Alembert’s formula compresses to

u(x, t) = ∂t[P(t, x)f ] + P(t, x)g.

This strongly resembles the first two terms in (12.3)!
Consequently, by analogy with (12.4) we are led to conjecture that

u(x, t) :=

∫ t

0

P(t− τ, x)h(·, τ) dτ (12.6)

solves 
utt = uxx + h(x, t), −∞ < x, t <∞
u(x, 0) = 0, −∞ < x <∞
ut(x, 0) = 0, −∞ < x <∞,

We will check the PDE and leave the initial conditions as an exercise.

Day 13: Wednesday, February 5.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Example 6 on pp. 307–308 and the remark on p. 308 discusses how to solve the semi-
infinite string problem with the boundary condition ux(0, t) = 0.

To do this, we need the identities

∂x

[∫ t

0

φ(x, t, τ) dτ

]
=

∫ t

0

φx(x, t, τ) dτ and ∂t

[∫ t

0

φ(x, t, τ) dτ

]
= φ(x, t, t)+

∫ t

0

φt(x, t, τ) dτ

for suitably well-behaved φ.
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Then with u from (12.6), we have

uxx(x, t) = ∂2x

[∫ t

0

P(t− τ, x)h(·, τ) dτ
]
=

∫ t

0

∂2x
[
P(t− τ, x)h(·, τ)

]
dτ.

Here we use the formula (12.5) to compute

P(t− τ, x)h(·, τ) = 1

2

∫ x+(t−τ)

x−(t−τ)
h(s, τ) ds =

1

2

∫ x+t−τ

x−t+τ

h(s, τ) ds,

and therefore, for τ fixed,

∂x
[
P(t− τ, x)h(·, τ)

]
=

1

2
∂x

[∫ x+t−τ

x−t+τ

h(s, τ) ds

]
=
h(x+ t− τ, τ)− h(x− t+ τ, τ)

2

and

∂2x
[
P(t−τ, x)h(·, τ)

]
= ∂x

[
h(x+ t− τ, τ)− h(x− t+ τ, τ)

2

]
=
hx(x+ t− τ, τ)− hx(x− t+ τ, τ)

2
.

Thus

uxx(x, t) =
1

2

∫ t

0

[
hx(x+ t− τ, τ)− hx(x− t+ τ, τ)

]
dτ. (13.1)

Now we work on the time derivative. We have

ut(x, t) = ∂t

[∫ t

0

P(t− τ, x)h(·, τ) dτ
]
= P(t− t, x)h(·, t) +

∫ t

0

∂t
[
P(t− τ, x)h(·, τ)

]
dτ.

We compute

P(t− t, x)h(·, t) = P(0, x)h(·, t) = 1

2

∫ x+0

x−0
h(s, t) ds =

1

2

∫ x

x

h(s, t) ds = 0

and, for τ fixed,

∂t
[
P(t− τ, x)h(·, τ)

]
=

1

2
∂t

[∫ x+t−τ

x−t+τ

h(s, τ) ds

]
=
h(x+ t− τ, τ) + h(x− t+ τ, τ)

2
.

Then

ut(x, t) =
1

2

∫ t

0

[
h(x+ t− τ, τ) + h(x− t+ τ, τ)

]
dτ,

so

utt(x, t) =
h(x+ t− t, t) + h(x− t+ t, t)

2
+

1

2

∫ t

0

∂t
[
h(x+ t− τ, τ) + h(x− t+ τ, τ)

]
dτ.

Certainly
h(x+ t− t, t) + h(x− t+ t, t)

2
=
h(x, t) + h(x, t)

2
= h(x, t),
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while∫ t

0

∂t
[
h(x+ t− τ, τ) + h(x− t+ τ, τ)

]
dτ =

∫ t

0

[
hx(x+ t− τ, τ)− hx(x− t+ τ, τ)

]
dτ.

All together,

utt(x, t) = h(x, t) +
1

2

∫ t

0

[
hx(x+ t− τ, τ)− hx(x− t+ τ, τ)

]
dτ = h(x, t) + uxx(x, t),

after comparison to (13.1).

13.1 Problem (?). (i) Show that the function u defined in (12.6) satisfies

u(x, 0) = ut(x, 0) = 0

for all x ∈ R, and conclude that the function

u(x, t) = ∂t[P(t, x)f ] + P(t, x)g +
∫ t

0

P(t− τ, x)h(·, τ) dτ (13.2)

solves the driven wave equation
utt = uxx + h(x, t), −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞
ut(x, 0) = g(x), −∞ < x <∞.

(ii) Show that the solution to the driven wave equation is unique. [Hint: if u and v both
solve it, what IVP does their difference w := u− v solve, and why does that imply w = 0?]

Any actual calculations with the formula (13.2) for concrete initial and driving terms f ,
g, and h boil down to computing antiderivatives, and there is probably not much insight to
be gained from such manipulations at this point in life. Instead, here is a way to recognize
the formula (12.6) as a double integral.

13.2 Problem (?). Let h ∈ C(R2) and let x, t ∈ R. Let D(x, t) be the region in R2

consisting of the boundary and interior of the triangle whose endpoints are (x − t, 0),
(x+ t, 0), and (x, t). Show that∫ t

0

P(t− τ, x)h(·, τ) dτ =
1

2

∫∫
D(x,t)

h,

with the propagator P defined in (12.5). [Hint: start by drawing D(x, t). For simplicity in
solving this problem, you may assume x > 0 and t > 0, although the result is valid for all
x and t.]
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13.3 Problem (+). Rederive the solution formula

u(x, t) =

∫ t

0

P(t− τ, x)h(·, τ) dτ

for the driven wave equation (with zero initial conditions) by “factoring” the wave equation
as in our derivation of D’Alembert’s formula and using results from the transport equation.
That is, assume utt − uxx = h(x, t), put v = ut + ux, solve for v, and then solve for u.

As an illustration of more properties of D’Alembert’s formula (and, really, more properties
of functions and integrals), we introduce our first boundary condition and study the “semi-
infinite” string. Suppose that one end of the string is fixed at x = 0, so u(0, t) = 0 for all t,
and the string extends infinitely to the right for x > 0. We take initial data valued only for
x ≥ 0 and consider the IVP-BVP

utt = uxx, 0 ≤ x <∞, t ∈ R
u(x, 0) = f(x), 0 ≤ x <∞
ut(x, 0) = g(x), 0 ≤ x <∞
u(0, t) = 0, t ∈ R

(13.3)

There are two new wrinkles in this problem. The first is the presence of the boundary
condition u(0, t) = 0. We call this a boundary condition because it specifies what the
solution is doing at the left endpoint, or “boundary,” of its x-domain.

The second is that f and g are only defined on [0,∞). If f and g were defined on all of
R, we could just use D’Alembert’s formula. The problem is that D’Alembert’s formula does
not make sense when f and g are only defined on [0,∞); for example, taking x = 1 in the
formula, we would need to know the values of f at 1± t for all t ∈ R, thus f would have to
be defined on all of R. (Even restricting to nonnegative time does not help due to the ±t
terms.)

The right idea is to work backward and extend spatial dependence in x from [0,∞) to all
of R. We will assume that we have a solution u to (13.3) and that we can construct functions
ũ, f̃ , and g̃ such that the following hold.

1. ũ(x, t) = u(x, t) for all x ≥ 0 and t ∈ R. Likewise, f̃(x) = f(x) and g̃(x) = g(x) for all
x ≥ 0.

2. f̃ ∈ C2(R) and g̃ ∈ C1(R).

3. ũ ∈ C2(R2) solves 
ũtt = ũxx, −∞ < x, t <∞
ũ(x, 0) = f̃(x), −∞ < x <∞
ũt(x, 0) = g̃(x), −∞ < x <∞.

Then D’Alembert’s formula implies

ũ(x, t) =
f̃(x+ t) + f̃(x− t)

2
+

1

2

∫ x+t

x−t
g̃(s) ds. (13.4)
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Taking x ≥ 0, we get a formula for u as well.

But how do we get these extensions, and why are they sufficiently differentiable for ev-
erything to work? There are many ways to extend a function from [0,∞) to all of R. For
example, putting

f̃(x) =

{
f(x), x ≥ 0

0, x < 0
(13.5)

is certainly an extension of f , and maybe one that makes sense (it keeps the initial data
“turned off” for x < 0), but it may not be twice continuously differentiable, especially
depending on the behavior of f at 0. It will pay off to learn more about what (13.3) tells us
about f and g, especially in the context of the boundary condition.

To begin, if we have a solution u to (13.3), our usual conventions about the continuous
differentiability of u imply f = u(·, 0) ∈ C2([0,∞)) and g = ut(·, 0) ∈ C1([0,∞)). Recall that
the convention here is that at the left endpoint 0 we only assume that limits from the right
hold, e.g.,

lim
x→0+

f(x) = f(0), lim
h→0+

f(0 + h)− f(0)
h

= f ′(0), lim
x→0+

f ′(x) = f ′(0), and so on.

Moreover, we may compute
f(0) = u(0, 0) = 0,

where the first equality is the initial condition and the second is the boundary condition.
Likewise,

g(0) = ut(0, 0) = ∂t[u(0, t)]
∣∣
t=0

= 0.

Again, the first equality is the initial condition, and the second is the boundary condition.
These calculations immediately tell us something new that the “ordinary” wave equation did
not require: f(0) = g(0) = 0. Not every f ∈ C2([0,∞)) or g ∈ C1([0,∞)) will be compatible
with the problem (13.3). What else might the structure of (13.3) tell us about f and g, in
particular so that we get meaningful extensions of them to R?

Day 14: Friday, February 7.

We return to the question of how to extend correctly the initial data f and g for (13.3) to
functions defined on all of R. We know that if this problem has a solution, the new feature
of the boundary condition means that f and g must satisfy f(0) = g(0) = 0. Is there
anything else that we can learn about f and g? We could try taking derivatives. We have
f ′(x) = ux(x, 0), and ux does not appear in the wave equation, but

f ′′(x) = uxx(x, 0) = utt(x, 0).

In particular, f ′′(0) = utt(0, 0), and

utt(0, 0) = ∂2t [u(0, t)]
∣∣
t=0

= 0

by the boundary condition. Thus f ′′(0) = 0.
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14.1 Problem (?). Can you obtain any information about g′ or g′′ from (13.3)? [Hint:
no. Why?]

We will refer to these properties of f and g as compatibility conditions for (13.3):
if the problem has a solution, then the initial data needs to meet

f(0) = g(0) = f ′′(0) = 0. (14.1)

It does not appear (Problem 14.1) that we can eke out anything else on f and g, and so
trying to extend one of these functions naively via (13.5) will not really work.

14.2 Problem (?). Why not? If f ∈ C2([0,∞)) and

f̃(x) :=

{
f(x), x ≥ 0

0, x < 0

is twice-continuously differentiable at 0, what does that imply about the value of f ′(0)?
Does that agree with what, if anything, (13.5) demands about f ′(0)?

The right idea is something new: symmetry. Often in mathematics it is helpful to intro-
duce and/or exploit some kind of symmetric or “reflective” structure. Even and odd functions
are designed for just that.

14.3 Definition. (i) A function h : R → R is even if h(−x) = h(x) for all x ∈ R and
odd if h(−x) = −h(x) for all x ∈ R.

(ii) The even extension (reflection) of a function h : [0,∞)→ R is the function

he : R→ R : x 7→

{
h(x), x ≥ 0

h(−x), x < 0,

and the odd extension (reflection) of h : [0,∞)→ R is the function

ho : R→ R : x 7→

{
h(x), x ≥ 0

−h(−x), x < 0.

Below the original function h is sketched in black and the even and odd extensions are
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continued in blue.

x

he(x)

x

ho(x)

14.4 Problem (!). Check that he is actually even and ho is actually odd.

Which of these extensions should we use on the initial data in (13.3)? Some further
properties of even and odd functions will help us make the decision.

14.5 Problem (!). (i) Suppose that h ∈ C1(R) is even. Prove that h′ is odd. [Hint:
differentiate both sides of h(x) = −h(−x).]

(ii) Suppose that h ∈ C1(R) is odd. Prove that h′ is even. [Hint: differentiate both sides
of h(x) = h(−x).]

(iii) Suppose that h : R→ R is odd. Prove that h(0) = 0. [Hint: if h(x) = −h(−x), what
happens when x = 0?]

The fact that the compatibility conditions (14.1) require f(0) = f ′′(0) = g(0) = 0 suggest
that we use odd extensions, as the second derivative of an odd function will be odd and thus
vanish at 0. So here is our task: assume that u solves (13.3), put

ũ(x, t) =

{
u(x, t), x ≥ 0, t ∈ R
−u(−x, t), x < 0, t ∈ R,

fo(x) =

{
f(x), x ≥ 0

−f(−x), x < 0,

and go(x) =

{
g(x), x ≥ 0

−g(−x), x < 0,

show that fo ∈ C2([0,∞)) and go ∈ C1([0,∞), show that ũ ∈ C2(R2), and show that
ũtt = ũxx, −∞ < x, t <∞
ũ(x, 0) = fo(x), −∞ < x <∞
ũt(x, 0) = go(x), −∞ < x <∞.
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Not too much to ask, right? We can then use D’Alembert’s formula as in (13.4) to get a
formula for ũ in terms of fo and go, thus a formula for u in terms of f and g if we really need
that. (By the way, we are sticking with ũ, not uo, to avoid too many subscripts.)

Basically all of the challenges here boil down to studying what happens when x = 0. This
is the challenge of every piecewise function that we ever met in calculus: not so much what is
happening on the individual “pieces” (usually the functions are pretty nice there) but rather
what is happening where the pieces “meet” (usually this involves consideration of both left
and right limits). Here is one kind of result that we need; the value of the following proof
for our course is that it provides a healthy review of difference quotients and left and right
limits.

14.6 Lemma. Let g ∈ C1([0,∞)) with g(0) = 0. Then go ∈ C1(R).

Proof. The chain rule tells us that go ∈ C1(R \ {0}) with

g′o(x) =

{
g′(x), x > 0

g′(−x), x < 0.

We need to consider carefully what happens at x = 0.
Since g ∈ C1([0,∞)) with g(0) = 0, we know

0 = g(0) = lim
x→0+

g(x) and g′(0) = lim
h→0+

g(0 + h)− g(0)
h

= lim
h→0+

g(h)

h
.

We first want to show that
lim
h→0±

go(0 + h)− go(0)
h

exist and are equal.
For h > 0, we have

go(0 + h)− go(0)
h

=
go(h)

h
=
g(h)

h
=
g(0 + h)− g(0)

h

and so
lim
h→0+

go(0 + h)− go(0)
h

= lim
h→0+

g(0 + h)− g(0)
h

= g′(0).

Next, for h < 0,

go(0 + h)− go(0)
h

=
−g(−h)

h
=
g(0− h)− g(0)

−h
.

Here is the only time that we really needed g(0) = 0. This permitted the second equality
and the shuffling of the factor of −1 into the denominator. Thus

lim
h→0−

go(0 + h)− go(0)
h

= lim
h→0−

g(0− h)− g(0)
−h

= lim
h→0+

g(0 + h)− g(0)
h

= g′(0).
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Here we have used the helpful fact that

lim
h→0−

φ(−h) = lim
h→0+

φ(h).

Thus the desired limits from the left and right exist and are equal, and so go is differen-
tiable on all of R with

g′o(x) =

{
g′(x), x ≥ 0

g′(−x), x < 0.

Now we check continuity at x = 0:

lim
x→0+

g′o(x) = lim
x→0+

g′(x) = g′(0),

while
lim
x→0−

g′o(x) = lim
x→0−

g′(−x) = lim
x→0+

g′(x) = g′(0).

This finishes the proof of continuity of g′o. �

Everything else is essentially “more of the same”: careful examination of left and right
limits at x = 0.

14.7 Problem (+). Do all that.

(i) Show that if f ∈ C2([0,∞)) with f(0) = f ′′(0) = 0, then fo ∈ C2(R). [Hint: try to
reduce the argument to repeated invocations of Lemma 14.6, or develop something new for
even functions.]

(ii) Show that if
utt = uxx, 0 ≤ x <∞, t ∈ R
u(x, 0) = f(x), 0 ≤ x <∞
ut(x, 0) = g(x), 0 ≤ x <∞
u(0, t) = 0, t ∈ R

and ũ(x, t) =

{
u(x, t), x ≥ 0, t ∈ R
−u(−x, t), x < 0, t ∈ R,

then ũ ∈ C2(R2) and 
ũtt = ũxx, −∞ < x, t <∞
ũ(x, 0) = f̃(x), −∞ < x <∞
ũt(x, 0) = g̃(x), −∞ < x <∞.

[Hint: again, this is mostly careful consideration of left and right limits at x = 0.]

We should be careful with the flow of logic here. We have proved that if the wave equation
for the semi-infinite string has a solution u, then a suitable extension of u solves the wave
equation for the infinite string; in the process this gives us a formula for u. But why is there
a solution for the semi-infinite problem in the first place? Is that formula from the extension
process really a solution?



Day 14: Friday, February 7 76

We are thinking that

u(x, t) =
fo(x+ t) + fo(x− t)

2
+

1

2

∫ x+t

x−t
go(s) ds

with x ≥ 0 and t ∈ R. Since fo ∈ C2(R) and go ∈ C1(R), we not need to do any new work to
check that uxx = utt, u(x, 0) = f(x), and gt(x, 0) = g(x) for 0 ≤ x <∞ and t ∈ R. Rather,
why does this formula meet the boundary condition u(0, t) = 0 for all t?

We compute

fo(0 + t) + fo(0− t) = fo(t) + fo(−t) = fo(t)− fo(t) = 0

by the oddness of fo. Next, we want
∫ t
−tgo(s) ds = 0. This is also true by oddness.

14.8 Problem (?). Show that if h ∈ C(R) is odd, then∫ a

−a
h = 0

for any a ∈ R. [Hint: substitute.] Draw a picture indicating why this should be true in
general (caution: picture 6= proof).

14.9 Example. We solve 
utt = uxx, 0 ≤ x <∞, t ∈ R
u(x, 0) = 4x3e−x

2

ut(x, 0) = 0

u(0, t) = 0.

Here the initial data is already odd, so we do not need to go to any great lengths to calculate
odd extensions. Indeed, D’Alembert’s formula for the infinite string with initial data given
by the odd extensions says

u(x, t) = 2(x+ t)3e−(x+t)
2

+ 2(x− t)3e−(x−t)2 .
Below we graph the solution for various time values.

x

u(x, 0) t = 0

x

u(x, 1) t = 1

x

u(x, 2) t = 2

x

u(x, 5) t = 5



Day 15: Monday, February 10 77

As before, we see that the solution splits up into two counterpropagating pulses, but
now they are clearly reflections or “images” of each other through the vertical axis.

So there we are: the “odd extension method” showed that a solution to the semi-infinite
wave equation can be extended to a solution to an infinite wave equation, at which point
D’Alembert’s formula could be invoked, and conversely good old calculus proves that that
formula does indeed solve all of the semi-infinite wave equation—most notably the new
feature of the boundary conditions.

14.10 Problem (+). Solve the problem
utt = uxx, 0 ≤ x <∞, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x <∞
ut(x, 0) = g(x), 0 ≤ x <∞
ux(0, t) = 0, −∞ < t <∞,

where f ∈ C2([0,∞)) and g ∈ C1([0,∞)). This problem models a semi-infinite string where
the left endpoint is allowed to move vertically. [Hint: try even extensions for f and g.
What “compatibility” conditions arise?]

Day 15: Monday, February 10.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 310–311 discuss solving the finite string wave equation with the “method of
images.” Theorem 3 contains the main result. It is not really necessary to assume that
fper
o and gpero are as regular as the theorem does; such regularity is forced on them by
the “compatibility conditions,” without which the problem really does not make sense.

Theorem 1 on p. 289 proves uniqueness for the finite string problem via energy
estimates. The remark on pp. 290–291 explains how to interpret that energy integral
in terms of classical kinetic + potential energy.

We now consider the most physically realistic, but also most mathematically complicated,
situation: the finite string. Assume that a string of length L > 0 is constrained to move
vertically with its endpoints fixed. If u(x, t) is the displacement of the string from its equi-
librium position at time t and spatial position x ∈ [0, L], this means u(0, t) = u(L, t) = 0 for
all t. We arrive at the initial-boundary value problem (IVP-BVP)

utt = uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x ≤ L

ut(x, 0) = g(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, −∞ < t <∞.

(15.1)

As usual, f and g are the initial data, and we assume f ∈ C2([0, L]) and g ∈ C1([0, L]).
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(Why? We want a solution u to this problem to be twice continuously differentiable on{
(x, t) ∈ R2

∣∣ 0 ≤ x ≤ L, t ∈ R
}
. This forces f = u(·, 0) ∈ C2([0, L]) and the same for g.)

Our success with the semi-infinite string suggests that we extend f and g carefully to
R and use D’Alembert’s formula. By “carefully,” we mean that the extensions should be
sufficiently differentiable, and our experience with the semi-infinite problem suggests that
this regularity will rely also on knowing some exact values of f and g at 0, and maybe L.

15.1 Problem (!). Prove that if (15.1) has a solution, then the “compatibility conditions”

f(0) = g(0) = f(L) = g(L) = f ′′(0) = f ′′(L) = 0 (15.2)

are all true.

That all of these values vanish at x = 0 suggests again odd extensions. The problem is
that the solution and the initial data are only defined on [0, L], so at best we could do odd
extensions to [−L,L].

x

f(x)

L

x

fo(x)

L−L

Here is the new idea. We are going to extend the odd extensions from [−L,L] to (−∞,∞)
periodically. Informally, we “copy and paste” the graphs from [−L,L] to the intervals [(2k+
1)L, (2k + 3)L] for k ∈ Z. For the initial data, call these periodic extensions fper

o and gpero ;
we require them to satisfy

fper
o (x+ 2L) = fper

o (x) and gpero (x+ 2L) = gpero (x)
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for all x ∈ R.

x

fper
o (x)

L−L L−L 2L−2L

Likewise, assuming that a solution u to (15.1) exists, let ũ(·, t) be its odd extension to [L,L]
and then let ũper(·, t) be the periodic extension to R. If ũper ∈ C2(R2), fper

o ∈ C2(R), and
gpero ∈ C1(R), and if 

ũpertt = ũperxx , −∞ < x, t <∞
ũper(x, 0) = fper

o (x), −∞ < x <∞
ũpert (x, 0) = gpero (x), −∞ < x <∞,

(15.3)

then we can invoke D’Alembert’s formula. Conversely, we would need to check that the
formula satisfies (15.1), in particular the boundary conditions.

The hard part is no longer differentiability at x = 0, or, indeed, at x = 2Lk for k ∈ Z. We
handled that with the differentiability of odd extensions when we studied the semi-infinite
problem. The new challenge is differentiability at x = L, and, more generally, x = (2k+1)L
for k ∈ Z. However, this is not a terrible challenge. We are assuming

f(L) = f ′′(L) = g(L) = 0,

and the suggestive sketches above illustrate a more general truth: the odd periodic extensions
are “odd at L.”

More precisely, it turns out to be the case that fper
o (L− x) = −fper

o (L+ x) for 0 ≤ x leL.
(If L = 0, this would just be oddness.) Here is a closer sketch.

x

fper
o (x)

L 2LL− x L+ x

We leave checking the minutiae as a nontrivial, but manageable, problem.

15.2 Problem (+). Carry out the details of the program above, assuming f ∈ C2([0, L])
and g ∈ C1([0, L]) with (15.2) true. Remember that at the endpoints x = 0, L, we only
know limits from the left/right for f and g and their derivatives.
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(i) Show that gpero ∈ C1(R). It may help to argue first that gpero is “odd” about L in the
sense that gpero (L − x) = −gpero (L + x) for 0 ≤ x ≤ L. Use this to show that gpero is
continuously differentiable at x = L. From this, argue by periodicity that gpero ∈ C1(R).

(ii) Prove that fper
o ∈ C2(R). [Hint: try to invoke the previous part.]

(iii) Solve 
utt = uxx, −∞ < x, t <∞
u(x, 0) = fper

o (x), −∞ < x <∞
ut(x, 0) = gpero (x), −∞ < x <∞

with D’Alembert’s formula and check that the formula meets the boundary conditions
ũper(0, t) = ũper(L, t) = 0. [Hint: use the oddness of fper

o , and also of gpero , at L, as
discussed above.]

The point of these extension methods is less the actual results and formulas and more the
methods themselves—how to reduce a new problem to one already solved, and what tech-
niques from calculus (left and right limits) appear along the way. Both extension procedures
for the semi-infinite and finite wave equations are simultaneously existence and uniqueness
results. There is another uniqueness, but not existence, method for the finite equation that
is worth knowing. We study what is called an “energy integral.” In the mathematical jargon,
an “energy integral” refers to the integral (definite or improper) of some nonnegative func-
tion that, through the right lens, might represent some physical notion of “energy,” kinetic
or potential (whatever that means).

Here is how this arises. Suppose that u and v both solve finite string problems with the
same initial data:
utt = uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f(x), 0 ≤ x ≤ L

ut(x, 0) = g(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0

and


vtt = vxx, 0 ≤ x ≤ L, −∞ < t <∞
v(x, 0) = f(x), 0 ≤ x ≤ L

vt(x, 0) = g(x), 0 ≤ x ≤ L

v(0, t) = v(L, t) = 0.

Put w := u− v.

15.3 Problem (!). Check that
wtt = wxx, 0 ≤ x ≤ L, −∞ < t <∞
w(x, 0) = 0, 0 ≤ x ≤ L

wt(x, 0) = 0, 0 ≤ x ≤ L

w(0, t) = w(L, t) = 0.

(15.4)

We would like to show that w = 0. To do this, we set

E(t) :=

∫ L

0

[
wt(x, t)

2 + wx(x, t)
2
]
dx.
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This is our “energy integral”; it is the integral of a nonnegative quantity. We claim that E is
differentiable and E ′(t) = 0 for all t.

We will check this later. For now, here is how it helps. If E ′ = 0, this means that E is
constant; one helpful value is probably t = 0, so we compute

E(t) = E(0) =

∫ L

0

[
wt(x, 0)

2 + wx(x, 0)
2
]
dx

for all t. From the initial conditions, wt(x, 0) = 0 and, since w(x, 0) = 0 for all x, we have
wx(x, 0) = 0 for all x, too. Thus E(0) = 0. And, since E is constant, so too do we have
E(t) = 0 for all t.

Now, observe that each E(t) is the integral of a nonnegative function. This is important.

15.4 Problem (?). Let a, b ∈ R with a < b and f ∈ C([a, b]) with f(x) ≥ 0 for each
x ∈ [a, b]. If

∫ b
a
f = 0, show that f(x) = 0 for all x ∈ [a, b]. [Hint: suppose f(x0) 6= 0 for

some x0 ∈ [a, b]. Draw a picture. What does this imply about the value of
∫ b
a
f? Turn the

picture into a proof. Continuity will play a role.]

This problem, together with the result E(t) = 0 and the definition of E(t), implies

wt(x, t)
2 + wx(x, t)

2 = 0 (15.5)

for all x ∈ [0, L] and t ∈ R. We saw in Example 7.4 that (15.5) implies w = 0. (More
precisely, that example presumed that (15.5) holds for all x, t ∈ R; what really matters is
that (15.5) holds for x ∈ I and t ∈ J , with I, J ⊆ R intervals.)

Our last task is to justify the earlier claim that E ′ = 0. We have

E ′(t) = ∂t

[∫ L

0

[
wt(x, t)

2 + wx(x, t)
2
]
dx

]
=

∫ L

0

∂t
[
wt(x, t)

2 + wx(x, t)
2
]
dx

= 2

∫ L

0

[
wt(x, t)wtt(x, t) + wx(x, t)wxt(x, t)

]
dx.

We replace wtt with wxx from the wave equation, so the integrand is

wt(x, t)wtt(x, t) + wx(x, t)wxt(x, t) = wt(x, t)wxx(x, t) + wx(x, t)wxt(x, t).

Here is the tricky recognition: it would be nice if this were a perfect derivative in x. We
have

wt(x, t)wxx(x, t) + wx(x, t)wxt(x, t) = wt(x, t)∂x[wx](x, t) + wx(x, t)∂x[wt](x, t).

Perhaps we would see the product rule more clearly by rewriting

wt(x, t)∂x[wx](x, t)+wx(x, t)∂x[wt](x, t) = ∂x[wx](x, t)wt(x, t)+wx(x, t)∂x[wt](x, t) = ∂x[wxwt](x, t).

Thus

E ′(t) = 2

∫ L

0

∂x[wxwt](x, t) dx = 2wx(L, t)wt(L, t)− 2wx(0, t)wt(0, t).
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We are given the boundary conditions w(0, t) = w(L, t) = 0 for all t, so differentiating we
have wt(0, t) = wt(L, t) = 0 for all t. While we know nothing about wx, this is enough to
conclude

E ′(t) = 2wx(L, t) · 0− 2wx(0, t) · 0 = 0,

and that is all that we need.

15.5 Problem (?). We did not introduce energy integrals with the transport equation
because we did not really consider boundary conditions on that PDE. However, just for
practice with differentiating under the integral, assume that ut + ux = 0 and let a, b ∈ R.
In each case, the identity yy′ = (y2/2)′, for y ∈ C1(R), will be helpful.

(i) Let

E1(t) :=

∫ b

a

u(x, t)2 dx.

Show that E ′1(t) = u(a, t)− u(b, t).

(ii) Let

E2(t) :=

∫ b

a

(
ut(x, t)

2 + ux(x, t)
2
)
dx.

Show that E ′2(t) = 2
(
ut(a, t)

2 − ut(b, t)2
)
.

Day 16: Wednesday, February 12.

Much of our work has concerned initial value problems. We are given initial-in-time data,
and we build solutions out of that data. Often we obtain uniqueness results: there is only
one solution to the differential equation at hand with the given initial data (Theorem 3.2,
Theorem 4.1, Problem 6.8, Theorem 8.1, Theorem 9.6, Theorem 11.1, Theorem 12.4, Problem
13.1). Once uniqueness is established, a natural follow-up question is that of “continuous
dependence on initial conditions.” Very informally, this is motivated by the slogan if two
things start “close together” and move according to the “same rules,” then they should remain
“close together” at least for “some time.”

We study this in the context of the wave equation. First, for functions f , g ∈ C(R), we
define the “wave operator” W [f, g] by

W [f, g](x, t) :=
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds. (16.1)

Now let f1, f2 ∈ C2(R) and g1, g2 ∈ C1(R). Suppose that u and v solve the wave IVP
utt = uxx, −∞ < x, t <∞
u(x, 0) = f1(x), −∞ < x <∞
ut(x, 0) = g1(x), −∞ < x <∞

and


vtt = vxx, −∞ < x, t <∞
v(x, 0) = f2(x), −∞ < x <∞
vt(x, 0) = g2(x), −∞ < x <∞.

(16.2)

If f1 and f2 are “close,” and if g1 and g2 are “close,” will u and v be “close”?
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First we spell out what we mean by “close.” We assume there are δ, ε > 0 such that

|f1(x)− f2(x)| < δ and |g1(x)− g2(x)| < ε

for all x ∈ R. This means that the graph of f2 lies between the graphs of f1 − δ and f1 + δ,
a sort of “δ-tube” centered on the graph of f1; equivalently, the graph of f1 − f2 lies in the
“strip” between −δ and δ. The same, of course, holds for g1 and g2 with δ replaced by ε.
(Later we will see that there are other ways of measuring closeness of functions via different
“norms” on function spaces—many involve integrals as a measurement of “averaging.”)

x

f1(x)− δ

f2(x)

f1(x) + δ

x

f1(x)− f2(x)

x = δ

x = −δ

16.1 Problem (!). Suppose that u and v solve the wave IVP in (16.2). Let w = u − v,
f = f1 − f2, and g = g1 − g2. Show that w =W [f, g] with W defined in (16.1).

Our task is now to control the size of w, ideally in terms of δ and ε. We use the notation
of the preceding problem. Since w =W [f, g], we have

|w(x, t)| ≤ |f(x+ t) + f(x− t)|
2

+
1

2

∣∣∣∣∫ x+t

x−t
g(s) ds

∣∣∣∣ .
The triangle inequality on the first term implies

|f(x+ t) + f(x− t)| ≤ |f(x+ t)|+ |f(x− t)|,

and then the triangle inequality on f implies

|f(x+ t)| = |f1(x+ t)− f2(x+ t)| < δ,

and the same for |f(x− t)|. All together,

|f(x+ t) + f(x− t)|
2

<
δ + δ

2
= δ.
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We estimate the integral with the triangle inequality for integrals (Problem 2.4):∣∣∣∣∫ x+t

x−t
g(s) ds

∣∣∣∣ ≤ ∫ x+t

x−t
|g(s)| ds,

at least if x− t ≤ x+ t, i.e., if t ≥ 0. Since

|g(s)| = |g1(s)− g2(s)| < ε

for all s ∈ R, this implies ∣∣∣∣∫ x+t

x−t
g(s) ds

∣∣∣∣ ≤ ∫ x+t

x−t
ε ds = 2tε

when t ≥ 0.

16.2 Problem (!). Show that if t < 0, then∣∣∣∣∫ x+t

x−t
g(s) ds

∣∣∣∣ < 2|t|ε.

We conclude

|u(x, t)− v(x, t)| = |w(x, t)| = |W [f, g](x, t)| < δ + |t|ε. (16.3)

This shows that for any fixed time t ∈ R, the solutions u and v are uniformly close in x in a
manner depending precisely on how close the initial conditions are.

However, this estimate is less than ideal because it depends on time t. As t → ±∞,
δ + |t|ε→∞, and so perhaps over long times the solutions u and v could grow apart.

16.3 Problem (?). Here is a somewhat silly example of how this could occur. Let δ, ε > 0.
Take f1 = g1 = 0 and f2(x) = δ/2 and g2(x) = ε/2. Show that if u and v solve (16.2), then

u(x, t) = 0 and v(x, t) =
δ + εt

2
.

Check explicitly that (16.3) still holds, but explain informally how u and v “grow apart”
in time.

Day 17: Friday, February 14.

We took Exam 1.

Day 18: Monday, February 17.
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Material from Basic Partial Differential Equations by Bleecker & Csordas

The corollary on p. 314 deduces continuous dependence on initial conditions for the
finite string problem from Theorem 5 on pp. 313–314. That theorem proves the hard-
won estimate with the independent-of-time upper bound δ + 2Lε that we eke out.

While we only stated and did not really discuss the heat equation (yet), there is
a wealth of information in the book. Pages 121–125 give a derivation of the heat
equation from physical principles and present one very special solution.

The factor of |t| in (16.3) arose from from estimating the integral term in W [f, g]. A
recurring tension in analysis is whether estimates or equalities are preferable; perhaps, de-
pending on g, we could get sharper control over

∫ x+t
x−tg(s) ds by actually computing it. It

turns out that we can get a better estimate than (16.3) if we ask a different question, and
so we focus on the finite string problem. (The question of continuous dependence on initial
conditions for the semi-infinite string would yield the same estimate as above.)

Let L > 0 and let u and v now solve
utt = uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f1(x), 0 ≤ x ≤ L

ut(x, 0) = g1(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, −∞ < t <∞

and


vtt = vxx, 0 ≤ x ≤ L, −∞ < t <∞
v(x, 0) = f2(x), 0 ≤ x ≤ L

vt(x, 0) = g2(x), 0 ≤ x ≤ L

v(0, t) = v(L, t) = 0, −∞ < t <∞.
(18.1)

Put f = f1 − f2 and g = g1 − g2, and let f̃o and g̃o be the 2L-periodic, odd extensions, i.e.,

f̃o(x) =

{
f(x), 0 ≤ x ≤ L

−f(−x), −L ≤ x < 0
and f̃o(x+ 2L) = f̃o(x), x ∈ R.

Assume that the initial data satisfies all the hypotheses necessary for w =W [f̃o, g̃o] to solve
wtt = wxx, −∞ < x, t <∞
w(x, 0) = f̃o(x), −∞ < x <∞
wt(x, 0) = f̃o(x), −∞ < x <∞,

so, restricted to [0, L], w also solves
wtt = wxx, 0 ≤ x ≤ L, −∞ < t <∞
w(x, 0) = f(x), 0 ≤ x ≤ L

wt(x, 0) = g(x), 0 ≤ x ≤ L

w(0, t) = w(L, t) = 0, −∞ < t <∞.

And now we start to estimate. Assume there are δ, ε > 0 such that

|f1(x)− f2(x)| < δ and |g1(x)− g2(x)| < ε

for all x ∈ [0, L].
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18.1 Problem (!). Explain why

|f̃o(x)| < δ and |g̃o(x)| < ε

for all x ∈ R.

It follows as before that ∣∣∣∣∣ f̃o(x+ t) + f̃o(x− t)
2

∣∣∣∣∣ < δ

for all x, t ∈ R. The difference is that the integral term in W [f̃o, g̃o] will be much better
behaved.

Here is how we do not get that better behavior: do what we did before and expect
something to change. We could estimate∣∣∣∣∫ x+t

x−t
g̃o(s) ds

∣∣∣∣ < 2|t|ε

exactly as for the infinite string using the triangle inequality for integrals, and that still
produces the annoying factor of t in the estimate. We can do better by using the special
structure of g̃o here: it is odd and 2L-periodic in addition to enjoying the estimate |g̃o(s)| < ε
for all s.

To cut down on writing, we let h ∈ C(R) be odd and 2L-periodic with |h(x)| < ε for all
x. We claim that ∫ c+2L

c

h = 0 (18.2)

for all c ∈ R; in words, the integral of h over any interval of length 2L vanishes.

18.2 Problem (?). Prove this. [Hint: use the results of Problems 2.18 and 14.8.]

Here is what we will show: the value of
∫ b
a
f is bounded by a constant multiple of ε

independent of a and b (but dependent on L). We start with a suggestive proof by picture.
Here −2L < a < −L and 2L < b < 3L.

x

h(x)

L−L L−L 2L−2L 3L−3L a b

We expand ∫ b

a

h =

∫ −L
a

h+

∫ L

−L
h+

∫ b

L

h. (18.3)
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By (18.2), or the cancelation of positive and negative areas from the picture,
∫ L
−Lh = 0.

Thus by the triangle inequality for real numbers and the triangle inequality for integrals,∣∣∣∣∫ b

a

h

∣∣∣∣ = ∣∣∣∣∫ −L
a

h+

∫ b

L

h

∣∣∣∣ ≤ ∣∣∣∣∫ −L
a

h

∣∣∣∣+ ∣∣∣∣∫ b

L

h

∣∣∣∣ ≤ ∫ −L
a

|h|+
∫ b

L

|h|.

Now we use the estimate on h and actually evaluate some integrals:∣∣∣∣∫ b

a

h

∣∣∣∣ ≤ ∫ −L
a

|h|+
∫ b

L

|h| <
∫ −L
a

ε+

∫ b

L

ε = ε(−L− a) + ε(b− L).

Since −2L < a < −L, we have L < −a < 2L, and so 0 < −L − a < L. Since L < b < 3L,
we have 0 < b− L < 2L. And so∣∣∣∣∫ b

a

h

∣∣∣∣ < ε(−L− a) + ε(b− L) < Lε+ 2Lε = 3Lε. (18.4)

Here is what happens more generally, beyond the special case of this picture. Let a, b ∈ R
with a < b. Divide R into intervals of the form [(2j+1)L, (2j+3)L) with j ∈ Z. Then there
are j, k ∈ Z such that

(2j + 1)L ≤ a < (2j + 3)L and (2k + 1)L ≤ b < (2k + 3)L. (18.5)

In the picture above, we have −3L ≤ a < −L and L ≤ b < 3L, so there j = −2 and k = 0.
In the general case, since a < b, it follows that j ≤ k.

18.3 Problem (!). Does it? If a < b, then the inequalities above imply (2j + 1)L ≤ a <
b < (2k + 3)L. Manipulate this into j < k + 1. Since j and k are integers, this means
j ≤ k.

Now we expand the integral again:∫ b

a

h =

∫ (2j+3)L

a

h+

(∫ (2j+5)L

(2j+3)L

h+

∫ (2j+7)L

(2j+5)L

h+ · · ·+
∫ (2k+1)L

(2k−1)L
h+

∫ (2k+3)L

(2k+1)L

h

)
+

∫ b

(2k+3)L

h.

The parenthetical sum here boiled down to the single integral
∫ L
−Lh in the toy calculation

(18.3). Every integral in the parenthetical sum is 0 by (18.2). Thus∣∣∣∣∫ b

a

h

∣∣∣∣ =
∣∣∣∣∣
∫ (2j+3)L

a

h+

∫ b

(2k+3)L

h

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ (2j+3)L

a

h

∣∣∣∣∣+
∣∣∣∣∫ b

(2k+3)L

h

∣∣∣∣ ≤ ∫ (2j+3)L

a

|h|+
∫ b

(2k+3)L

|h|

<

∫ (2j+3)L

a

ε+

∫ b

(2k+3)L

ε = ε((2j + 3)L− a) + ε(b− (2k + 3)L).

The estimates (18.5) imply

(2j + 3)L− a < 2L and b− (2k + 3)L < 2L.
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All together, ∣∣∣∣∫ b

a

h

∣∣∣∣ < ε((2j + 3)L− a) + ε(b− (2k + 3)L) < 2Lε+ 2Lε = 4Lε.

This is a slightly worse estimate (in that the right side is larger) than our toy calculation
that gave us (18.4).

18.4 Problem (!). Why? What was special about the positioning of a in that toy drawing?
Why will that not always be the case, as compared to (18.5)?

But it is not a big deal. The point is that the size of
∫ b
a
h is indeed controlled by a constant

multiple of ε, with the constant independent of a and b.
At last, here is how this is useful. All along the goal has been to estimate

∫ x+t
x−tg̃o(s) ds.

We know that g̃o is continuous, odd, and 2L-periodic with |g̃o(s)| < ε for all s ∈ R. Our
work above therefore implies (with a = x− t and b = x+ t) that∣∣∣∣∫ x+t

x−t
g̃o(s) ds

∣∣∣∣ < 4Lε.

With u and v as solutions to (18.1), all of our work implies

|u(x, t)− v(x, t)| < δ + 2Lε

for all x ∈ [0, L] and t ∈ R. This is the uniform-in-time estimate that we were lacking for
the infinite string wave equation.

It has taken us some time, but now we can state a general result for wave IVP.

18.5 Theorem. (i) Let f1, f2 ∈ C2(R) and g1, g2 ∈ C1(R). Suppose that δ, ε > 0 with

|f1(x)− f2(x)| < δ and |g1(x)− g2(x)| < ε

for all x ∈ R. Let u and v solve
utt = uxx, −∞ < x, t <∞
u(x, 0) = f1(x), −∞ < x <∞
ut(x, 0) = g1(x), −∞ < x <∞

and


vtt = vxx, −∞ < x, t <∞
v(x, 0) = f2(x), −∞ < x <∞
vt(x, 0) = g2(x), −∞ < x <∞.

(18.6)

Then
|u(x, t)− v(x, t)| < δ + |t|ε

for all x, t ∈ R.

(ii) Let L > 0 and f1, f2 ∈ C2([0, L]) and g1, g2 ∈ C1([0, L]) with

f1(x) = f ′′1 (x) = f2(x) = f ′′2 (x) = g1(x) = g2(x) = 0

for x = 0, L. Suppose that δ, ε > 0 with

|f1(x)− f2(x)| < δ and |g1(x)− g2(x)| < ε
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for all x ∈ R. Let u and v solve
utt = uxx, 0 ≤ x ≤ L, −∞ < t <∞
u(x, 0) = f1(x), 0 ≤ x ≤ L

ut(x, 0) = g1(x), 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0, −∞ < t <∞

and


vtt = vxx, 0 ≤ x ≤ L, −∞ < t <∞
v(x, 0) = f2(x), 0 ≤ x ≤ L

vt(x, 0) = g2(x), 0 ≤ x ≤ L

v(0, t) = v(L, t) = 0, −∞ < t <∞.
(18.7)

Then
|u(x, t)− v(x, t)| < δ + 2Lε

for all x, t ∈ R.

18.6 Problem (?). State and prove an analogue of part (i) of Theorem 18.5 for the
transport equation. Is your estimate uniform in time?

We begin our study of the heat equation on the line:{
ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞.

Broadly, the heat equation models the distribution of heat in an infinitely long rod; the
function f specifies the initial heat distribution along the rod. As with the wave equation,
we start with this physically unrealistic situation of an infinite spatial domain, and eventually
we will move to the more physically realistic (and mathematically complicated) “finite” rod.

The heat equation might look superficially similar to the wave equation; after all, both
have the term uxx on one side of the equation. We might even think that the heat equation
is simpler than the wave equation in that only one time derivative appears. Not so! The
“imbalance” of derivatives in the heat equation vastly complicates it; in particular, we will
only get results for t ≥ 0, and things will be rather complicated at t = 0. We will not
have such a sweeping D’Alembert’s formula for the heat equation, and both existence and
uniqueness of solutions becomes much trickier here.

In fact, we need entirely new tools to tackle the heat equation. Our success with the
transport and wave equations arose fundamentally from familiar calculus. Now we need
unfamiliar calculus. We start by building some machinery in two areas that may appear
to have nothing to do with the heat equation, or PDE in general: the essential calculus
of complex-valued functions of a real variable (good news: it is the same as the essential
calculus of real-valued functions of a real variable, so there should be no surprises there) and
improper integrals (more good news: we just need the essentials from calculus, and there
should be no surprises there, either).
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Day 19: Wednesday, February 19.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Pages 415–418 give an overview of transforms, including but not limited to the Fourier.
This is extremely worthwhile reading for the mathematical cultural background that
it provides. Integrability and the Fourier transform are defined on p. 423; note the
symmetric limit in (8), which is not how we defined improper integrals. See also the
remark on the Cauchy principal value at the bottom of p. 423/top of p. 424.

Many of the “nice” function properties that we are assuming today are spelled out
in Section 7.2. We will revisit quite a few of these as we layer more rigor over our
Fourier analysis. Our derivation of the heat equation solution appears on pp. 460–461,
with plenty of references to other parts of Chapter 7 that we have not quite discussed
yet (including convolutions).

Here is a terrible definition of complex numbers.

19.1 Undefinition. C =
{
x+ iy

∣∣ x, y ∈ R, i2 = −1
}
.

This definition is terrible because it provides no explanation of what the string of symbols
x+ iy actually means or why such an object i actually exists. We just assume the existence
of complex numbers and that their arithmetical properties act as they should.

19.2 Definition. Let z ∈ C with z = x + iy for some x, y ∈ R. The real part of
z is Re(z) := x; the imaginary part of z is Im(z) := y; and the modulus of z is
|z| :=

√
Re(z)2 + Im(z)2. That is, |x+ iy| =

√
x2 + y2.

We define equality of z, w ∈ C as z = w if and only if both Re(z) = Re(w) and
Im(z) = Im(w).

19.3 Example. With z = 2+ i and w = 1−3i, we multiply as we would with real numbers
and remember i2 = −1:

zw = (2+i)(1−3i) = (2+ i)1+(2+i)(−3i) = 2+ i−6i−3i2 = 2−5i−3(−1) = 2−5i+3

= 5− 5i = 5(1− i).

Since the modulus satisfies |zw| = |z||w|, we have (with z = 5 and w = 1− i, now)

|5(1− i)| = |5||1− i| = |5||1 + (−1)i| = |5|
√
2.

Here is a crash course in complex calculus. Let I ⊆ R be an interval and let f : I → C
be a function. Put

f1(t) := Re[f(t)] and f2(t) := Im[f(t)].

Then f1, f2 : I → R are functions, and real-valued functions at that, and f(t) = f1(t)+if2(t).
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Now we do calculus.

19.4 Definition. With the notation above, we say that

(i) limt→a f(t) = L if limt→a f1(t) = Re[L] and limt→a f2(t) = Im[L] (with a = ±∞ al-
lowed);

(ii) f is continuous if f1 and f2 are continuous;

(iii) f is differentiable if f1 and f2 are differentiable, and we define

f ′(t) := f ′1(t) + if ′2(t);

(iv) if f is continuous (in the sense of the above), then for any a, b ∈ I, we define∫ b

a

f :=

∫ b

a

f1 + i

∫ b

a

f2.

We now allow Cr(I) to denote the set of r-times continuously differentiable functions from
I ⊆ R to C.

From these definitions, one can prove that all the familiar computational rules of real-
valued calculus hold, e.g., the product and chain rules for differentiation, the linearity of the
integral in the integrand, and the fundamental theorem of calculus. We will do none of that
explicitly and just assume that everything works as it should.

Our most important complex-valued function of a real variable is the following version of
the exponential.

19.5 Definition. For t ∈ R, let eit := cos(t) + i sin(t).

Motivation for this definition comes from inserting it into the power series for the (real)
exponential, doing some algebra, and recognizing the series for sine and cosine.

19.6 Example. Here is how calculus works for the exponential. Let f(t) := eit. Then,
with the notation above, f1(t) = cos(t) and f2(t) = sin(t), so

f ′(t) = − sin(t) + i cos(t) = i2 sin(t) + i cos(t) = i[i sin(t) + cos(t)] = ieit.

That is, the chain rule formula

f ′(t) = ∂t[e
it] = eit∂t[it] = eiti

works as we expect.
Now we integrate:∫ 2π

0

f =

∫ 2π

0

cos(t) dt+ i

∫ 2π

0

sin(t) dt = 0 + i0 = 0.
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We also have∫ 2π

0

f =

∫ 2π

0

eit dt =
1

i

∫ 2π

0

ieit dt =
1

i

∫ 2π

0

f ′(t) dt =
1

i
[f(2π)− f(0)] = 1

i
[1− 1] = 0.

Here we are using the identity e2πik = 1 for all k ∈ Z.

Now we develop further results on integrals.

19.7 Definition. Let f ∈ C(R). Suppose that both of the limits∫ 0

−∞
f := lim

a→−∞

∫ a

0

f and
∫ ∞
0

f := lim
b→∞

∫ b

0

f

exist. Then we say that f is integrable, and we define∫ ∞
−∞

f :=

∫ 0

−∞
f +

∫ ∞
0

f.

19.8 Example. Let f(t) = e−|t| and a < 0 and b > 0. We compute some integrals:∫ 0

a

f =

∫ 0

a

e−|t| dt =

∫ 0

a

et dt = e0 − ea = 1− ea

and ∫ b

0

f =

∫ b

0

e−|t| dt =

∫ b

0

e−t dt = −(e−b − e−0) = 1− e−b.

Then

lim
a→−∞

∫ 0

a

f = lim
a→−∞

(1− ea) = 1 and lim
b→∞

∫ b

0

f = lim
b→∞

(1− e−b) = 1,

so
∫ 0

−∞f =
∫∞

0
f = 1. Thus f is integrable and∫ ∞

−∞
f = 1 + 1 = 2.

It is often both difficult to establish that f is integrable and unnecessary to calculate
∫∞
−∞f

exactly. Instead, the following tests usually suffice. They hinge on integrating nonnegative
functions.

19.9 Definition. A function f ∈ C(R) is absolutely integrable if |f | is integrable.
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19.10 Theorem. Let f ∈ C(R).

(i) [Absolute integrability implies integrability] If f is absolutely integrable, then so
is f , and the triangle inequality holds:∣∣∣∣∫ ∞

−∞
f

∣∣∣∣ ≤ ∫ ∞
−∞
|f |.

(ii) [Comparison test] Suppose that g ∈ C(R) is absolutely integrable with |f(t)| ≤ |g(t)|
for all t. Then f is absolutely integrable with∫ ∞

−∞
|f | ≤

∫ ∞
−∞
|g|.

19.11 Example. Let f ∈ C(R) be absolutely integrable. Let k ∈ R and put hk(t) :=
f(t)eikt. Since |eis| = 1 for all s ∈ R (check it), we have

|hk(t)| = |f(t)eikt| = |f(t)||eikt| = |f(t)|,

and so by the comparison test (with actual equality holding), the functions h and |h| are
integrable.

19.12 Problem (?). Let a > 0 and let f(x) = e−ax
2

. Show that f is integrable. [Hint:
first find C > 0 such that eax−ax

2 ≤ C for 0 ≤ x ≤ 1. Then argue that e−ax
2 ≤ e−ax for

x ≥ 1. Put these estimates together to show e−ax
2 ≤ (C + 1)e−ax for x ≥ 0.]

19.13 Problem (+). It is important in the definition of the improper integral to spec-
ify the convergence of the integrals

∫ 0

−∞f and
∫∞

0
f separately. If f ∈ C(R) and if

limR→∞
∫ R
−R f exists, then we call this limit the Cauchy principal value of the

improper integral of f over (−∞,∞), and we might write

P.V.

∫ ∞
−∞

f := lim
R→∞

∫ R

−R
f.

(i) Give an example of f ∈ C(R) such that limR→∞
∫ R
−R f exists and yet f is not integrable.

(ii) If, however, f is integrable, then
∫∞
−∞f = P.V.

∫∞
−∞f . Here is why. Assume that

f ∈ C(R) is integrable and let ε > 0. Explain why there exists R0 > 0 such that if R > R0,
then ∣∣∣∣∫ 0

−∞
f −

∫ 0

−R
f

∣∣∣∣ < ε

2
and

∣∣∣∣∫ ∞
0

f −
∫ R

0

f

∣∣∣∣ < ε

2
.

Use this to show that ∣∣∣∣∫ ∞
−∞

f −
∫ R

−R
f

∣∣∣∣ < ε,
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and conclude that
∫∞
−∞f = limR→∞

∫ R
−Rf .

(iii) Something special happens when we try to integrate a nonnegative function. The
following is true in general: if g : [0,∞) → [0,∞) is continuous, increasing (g(x1) ≤ g(x2)
for 0 ≤ x1 ≤ x2), and bounded above (there is M > 0 such that 0 ≤ g(x) ≤ M for all
x ≥ 0), then limx→∞ g(x) exists. The proof of this result depends on the completeness of
the real numbers, but drawing a picture probably suggests why it is true. Draw such a
picture. Then use this result to show that if f : R → [0,∞) is continuous, and if there is
M > 0 such that

∣∣∫ R
−Rf

∣∣ ≤ M for all R ≥ 0, then f is integrable. [Hint: apply the result
to the functions R 7→

∫ R
0
f and R 7→

∫ 0

−Rf .]

(iv) Prove that if f ∈ C(R) and if limR→∞
∫ R
−R|f | exists, then f is absolutely integrable.

We introduce the critical tool of the Fourier transform and deploy it on the heat equation.
We take an “eat dessert first” approach (inspired by Tim Hsu’s Fourier Series, Fourier
Transforms, and Function Spaces: A Second Course in Analysis). Specifically, here is our
strategy.

1. We define the Fourier transform for continuous, absolutely integrable functions. Eventu-
ally we will relax the continuity requirement to piecewise continuity.

2. We apply the Fourier transform to the heat equation.

3. ???.

4. We get a candidate solution formula for the heat equation.

5. We check that this candidate is actually a solution (i.e., by doing calculus).

Example 19.11 assures us that the following definition makes sense. (Does it?)

19.14 Definition. Let f : R→ C be continuous with |f | integrable (Definition 19.7). The
Fourier transform of f at k ∈ R is

f̂(k) :=
1√
2π

∫ ∞
−∞

f(x)e−ikx dx.

We sometimes write F[f ](k) = f̂(k).

The factor of 1/
√
2π is a bit of a “fudge factor” that makes some calculations and identities

later easier and more transparent, at the cost of making others harder and more opaque.
Life is a series of compromises.

Previously we have said that integrals extract useful data about functions and also rep-
resent functions. We have not seen all that much extraction of useful data, but it turns out
that the Fourier modes f̂(k) will tell us a variety of useful facts about f . The Fourier
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transform also “represents” f in the following sense. Here, for the first of many times, we
will use the weasel word “nice” to refer to a property of functions that we will fill in later in
our subsequent, more rigorous treatment of Fourier transforms.

19.15 Untheorem. Let f : R→ C be “nice.” Then

f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eikx dk.

That is, for suitable f , we can recover f from its Fourier transform.
Since this is a course in differential equations, we should wonder how the Fourier transform

interacts with the derivative. Quite nicely, thank you for asking.
If f is differentiable, and if both f and f ′ are “nice,” then we should be able to represent

f ′ (not just f) via its Fourier transform:

f ′(x) =
1√
2π

∫ ∞
−∞

f̂ ′(k)eikx dk.

But we should also be able to calculate f ′ from the Fourier representation of f and differen-
tiation under the integral:

f ′(x) = ∂x

[
1√
2π

∫ ∞
−∞

f̂(k)eikx dk

]
=

1√
2π

∫ ∞
−∞

∂x[f̂(k)e
ikx] dk =

1√
2π

∫ ∞
−∞

ikf̂(k)eikx dk.

Equating these two putative representations of f ′ and doing a little algebra, we find∫ ∞
−∞

[f̂ ′(k)− ikf̂(k)]eikx dk = 0

for all x ∈ R.

Day 20: Friday, February 21.

Material from Basic Partial Differential Equations by Bleecker & Csordas

Example 6 on pp. 425–426 computes the Fourier transform of the Gaussian. Example
1 on pp. 124–125 discusses the heat kernel, and p. 461 shows how the heat kernel
satisfies the heat equation itself.

Now here is a “nice” property of Fourier integrals. We should think of the transform as
an “instrument” that we apply to functions, and the results we get are those Fourier modes.
If the results are always 0, the input should always be 0.
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20.1 Untheorem. Let g : R→ C be “nice” and suppose that∫ ∞
−∞

g(k)eikx dk = 0

for all x ∈ R. Then g(k) = 0 for all k ∈ R.

It follows that
f̂ ′(k) = ikf̂(k).

This is immensely important: under the lens of the Fourier transform, differentiation becomes
“multiply by ik.” We might say

∂̂x[·] = ik × (̂·).

We can extend this to the second derivative (and higher derivatives) for “nice” functions:

f̂ ′′(k) = (̂f ′)′(k) = ikf̂ ′(k) = (ik)2f̂(k) = −k2f̂(k).

This is all that we need to know about the Fourier transform to apply it with abandon
to the heat equation. Suppose that u solves{

ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞

and that u and f are “nice.” We apply the Fourier transform to u “spatially” or “in the
x-variable.” Consequently, “nice” should mean, at least, that u(·, t) is integrable for each
t > 0 (where u(·, t) is the map x 7→ u(x, t)) and also that f is integrable.

Put
û(k, t) =

1√
2π

∫ ∞
−∞

u(x, t)e−ikx dx.

We should think of t as just a parameter in the integrand; all of the action is happening with
x. Then

ûxx(k, t) = −k2û(k, t).

In the time variable, we recognize differentiation under the integral:

ût(k, t) =
1√
2π

∫ ∞
−∞

ut(x, t)e
−ikx dx =

1√
2π

∫ ∞
−∞

∂t[u(x, t)e
−ikx] dx

= ∂t

[
1√
2π

∫ ∞
−∞

u(x, t)e−ikx dx

]
= ∂t[û](k, t).

To avoid confusion, we will not write this as ût(k, t). All together, we expect that a “nice”
solution u to the heat equation with “nice” initial data f will satisfy{

∂t[û](k, t) = −k2û(k, t)
û(k, 0) = f̂(k).
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This is really a family of IVP at the ODE level parametrized in k ∈ R. (We posed the
heat equation only for t > 0, but we can solve this IVP for all t, so we might as well consider
all t here.) The notation may be burdensome, but all this is asking us to do is solve{

y′ = −k2y
y(0) = f̂(k)

for each k ∈ R. Certainly we know how to do that: y(t) = f̂(k)e−k
2t. And so û should

satisfy
û(k, t) = f̂(k)e−k

2t.

Now we can recover u from û by Untheorem 19.15:

u(x, t) =
1√
2π

∫ ∞
−∞

û(k, t)eikx dk =
1√
2π

∫ ∞
−∞

f̂(k)e−k
2teikx dk. (20.1)

This may well be a valid candidate for a solution formula!

20.2 Problem (?). (i) Fix t > 0 and x ∈ R and define g(k) := f̂(k)e−k
2teikx. Show that if

f̂ is integrable or bounded (bounded meaning the existence ofM > 0 such that |f̂(k)| ≤M
for all k), then g is integrable, and so the integral on the right in (20.1) converges. (It
will turn out that if f is integrable, then f̂ is always bounded, although not necessarily
integrable.)

(ii) Assume that we may differentiate under the integral on the right in (20.1) with respect
to x and t as much as we want for x ∈ R and t > 0. Show that u as defined by (20.1)
satisfies ut = uxx.

(iii) Show that u as defined by (20.1) meets u(x, 0) = f(x). [Hint: Untheorem 19.15.]

20.3 Problem (?). Repeat the work above for the transport IVP{
ut + ux = 0, −∞ < x, t <∞
u(x, 0) = f(x), −∞ < x <∞

and recover the expected, beloved formula u(x, t) = f(x − t). [Hint: apply the Fourier
transform to u in x and get an ODE-type IVP for û. Solve it. Then recover u from its
Fourier transform via Untheorem 19.15. Do some algebra in the integrand and recognize
the integral as the Fourier transform of f .]

Now we begin the laborious process of verifying that (20.1) actually gives a formula for a
solution to the heat equation. Problem 20.2 ensures that, if |f | is integrable, then the formula
actually converges to a real number for each x ∈ R and t > 0. (What goes wrong if t ≤ 0?
This is one mathematical reason to take t > 0 in our statement of the heat equation—we do
it because it leads to a problem that we can solve!)
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We first replace f̂(k) in (20.1) by its integral definition and find

u(x, t) =
1√
2π

∫ ∞
−∞

(
1√
2π

∫ ∞
−∞

f(y)e−iky dy

)
e−k

2teikx dk.

Here we are writing the variable of integration in the definition of f̂(k) as y so as not to
overwork x. This cleans up slightly to

u(x, t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(y)e−ikye−k
2teikx dy dk. (20.2)

We might note that the factor of f(y) is the only factor in the integrand that does not depend
on k. If we interchange the order of integration (a dicey move—is Fubini’s theorem valid for
double improper integrals?), then we could probably pull it out of one integral:

u(x, t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(y)e−ikye−k
2teikx dk dy =

1

2π

∫ ∞
−∞

f(y)

(∫ ∞
−∞

e−ikye−k
2teikx dk

)
dy.

We focus on the integral in parentheses. Collect the complex exponentials into one:∫ ∞
−∞

e−ikye−k
2teikx dk =

∫ ∞
−∞

e−k
2teik(x−y) dk.

Pull in that factor of 1/2π and define

H(s, t) :=
1

2π

∫ ∞
−∞

e−k
2teiks dk.

Problem 19.12 and the comparison test ensure that this integral converges. Then our solution
candidate should be

u(x, t) =

∫ ∞
−∞

H(x− y, t)f(y) dy. (20.3)

Now we need to check that this integral converges and that it is sufficiently differentiable in
x and t. Doing so will require a much deeper understanding of H, which turns out to be
quite a nice function.

We start by cleverly rewriting H:

H(s, t) =
1

2π

∫ ∞
−∞

e−k
2teiks dk =

1√
2π

(
1√
2π

∫ ∞
−∞

e−(k
√
t)2e−i(−s)k dk

)
.

While this may not have been the obvious move, it shows that H(s, t) is basically a Fourier
transform (with the unusual notational choice of using s for the Fourier variable but k for
the variable of integration). Specifically, put

G(X) := e−X
2

.
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This is a “Gaussian”-type function, and one of its chief virtues is that it decays extremely
fast as X → ±∞.

X

e−X
2

Now let G(
√
t·) be the function

G(
√
t·) : R→ R : k 7→ e−(k

√
t)2 .

Then
H(s, t) =

1√
2π
Ĝ(
√
t·)(−s). (20.4)

Problem 20.2 ensures that this Fourier transform really is defined. So what is it?
The form of this transform first motivates us to think about transforms of “scaled” func-

tions. Let g : R→ C be continuous with |g| integrable, and let α ∈ R. Denote by g(α·) the
map

g(α·) : R→ C : x 7→ g(αx).

20.4 Problem (!). Explain why |g(α·)| is integrable.

Then, by definition,

ĝ(α·)k =
1√
2π

∫ ∞
−∞

g(αx)e−ikx dx.

How can we relate ĝ(α·) to ĝ? One idea is to make just g show up in the integrand. Substitute
u = αx to find, formally,∫ ∞

−∞
g(αx)e−ikx dx =

1

α

∫ α·∞

α·(−∞)

g(u)e−i(k/α)u du.

If α > 0, we should then expect

ĝ(α·)k =
1

α
ĝ

(
k

α

)
. (20.5)

20.5 Problem (?). Clean this up using the following more general approach. Let h : R→
C be continuous and integrable and let α ∈ R \ {0}. Prove that∫ ∞

−∞
h(αx) dx =

1

|α|

∫ ∞
−∞

h(s) ds.

What does this say about ĝ(α·) for α 6= 0 and |g| integrable? [Hint: study the integrals∫ 0

a
h(αx) dx and

∫ b
0
h(αx) dx. Change variables and pay attention to how the sign of α
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affects the limits of integration.]

20.6 Problem (?). Let g : R → C be continuous with |g| integrable. Let d ∈ R. Prove
that the “shifted map”

Sdg : R→ C : x 7→ g(x+ d)

is integrable with∫ ∞
−∞

g(x+ d) dx =

∫ ∞
−∞

g(u) du and Ŝdg(k) = eikdĝ(k).

[Hint: for integrability, it may be easier to prove that the limits in Definition 19.7 exist and
then use Problem 19.13 to express

∫∞
−∞S

df = limR→∞
∫ R
−RS

df .]

We combine (20.4) and (20.5) to obtain

H(s, t) =
1√
2π
Ĝ(
√
t·)(−s) = 1√

2π

(
1√
t

)
Ĝ
(
− s√

t

)
. (20.6)

So, what is Ĝ?
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