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How to Use This Daily Log

This document is our primary reference for the course. It contains all of the material that
we discuss in class along with some supplementary remarks that may not be mentioned in a
class meeting. Each individual day has references, when applicable, to relevant material from
the text Introduction to Linear Algebra (Sixth Edition) by Gilbert Strang. These references
are spread throughout a day’s notes, and you should be consulting both the daily log and
Strang’s text more or less simultaneously.

This log contains several classes of problems.

(!) Problems marked (!) are meant to be attempted immediately. They will directly address
or reinforce something that we covered (or perhaps omitted) in class. It will be to your great
benefit to pause and work (!)-problems as you encounter them.

(?) Problems marked (?) are intentionally more challenging and deeper than (!)-problems.
The (?)-problems will summarize and generalize ideas that we have discussed in class and give
you broader, possibly more abstract perspectives. You should attempt the (?)-problems on a
second rereading of the lecture notes, after you have completed the (!)-problems. Completing
all of the (?)-problems constitutes the minimal preparation for exams.

(+) Problems marked (+) are meant to be more challenging than the (!)- and (?)-problems
and will take you deeper into calculations and proofs and make connections to concepts
across and beyond the course. It will not be necessary to do any (+)-problems to master the
essential material of the course, but your experience may be richer (and more meaningful,
and more fun) by considering them. If you have done all of the (!)- and (?)-problems, and
the required and recommended problems from the textbook, and if you’re still feeling bored
or wondering if something is “missing,” check out the (+)-problems.
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Day 1: Monday, January 6.

Linearity pervades mathematics and science. An “operator” is linear if (1) we can “add”
its inputs and outputs in ways that “respect” all of the “usual” properties of addition of
real numbers, (2) we can “multiply” its inputs and outputs by numbers in ways that, again,
“respect” all of the “usual” properties of multiplication of real numbers, and (3) if the operator
itself “respects” addition and “scalar” multiplication. Lots of quotes, lots of words, here are
some symbols.

Let A be that operator and let x and y be inputs. Then there is a notion of adding x
and y so that x + y is another input and behaves the way that we expect + to behave; for
example, x+ y = y+x. We can also add the outputs Ax and Ay, and this addition behaves
as we expect, e.g., Ax+Ay = Ay +Ax. Here we are using the same symbol + for addition
on both the input side and the output side, even though the inputs and outputs could “live”
in totally different “universes.”

And there is a notion of multiplying inputs and outputs by real numbers, which we denote
by “juxtaposition.” That is, if c is a real number and x is an input, then cx is another input,
and we have properties like c(x+ y) = cx+ cy and (cd)x = c(dx).

Now here is how A respects addition and scalar multiplication:

A(x+ y) = Ax+Ay and A(cx) = c(Ax). (1.1)

These two identities are what we mean by the linearity of A.
You already know some linear operators because you can do arithmetic and calculus. Say

that we define Ax := 2x for real numbers x. Or that we define Af := f ′, with f ′ as the
derivative of a differentiable function f .

1.1 Problem (!). Prove that ifA is defined in either of these ways, then the linear identities
(1.1) hold.

Many, many problems possess a linear structure. The inputs and outputs obey natural
rules of addition and scalar multiplication, and the problem is either governed by or well-
approximated by a linear operator. You’ve already met such problems in calculus. Many
differential equations are linear; a fundamental problem of physics asks us to find functions
f such that f ′′+f = g for a given function g. This compresses as Af = g with Af := f ′′+f
as a linear operator satisfying (1.1). Or maybe you want to approximate a hard problem in
a nice way; you know how to do this with a local linear approximation. If you want to study
a function f around a point x, and f is complicated, study instead f(x+h) ≈ f(x)+f ′(x)h.
Here Ah := f ′(x)h is linear.

Much of the point of calculus is to be wise and linearize; the point of linear algebra is
to understand the linear structure of that approximation. However, this is about as much
calculus as we’ll do in this course. We will focus on a particular kind of linear operator that
arises from linear systems of equations. These are hugely worthwhile problems in and of
themselves, and many other problems that don’t look like linear systems of equations either
hinge obliquely or are well-approximated by such systems. (Unfortunately, or fortunately,
we will not see many, if any, “concrete” examples of applications of such systems—every
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subdiscipline of math, and every scientific discipline allied with math, has its own favorite
examples, and you probably won’t be convinced of the worth of any one of those examples
if you aren’t already convinced.)

We can tease out a tremendous amount of structure and theory from very simple moti-
vating examples, and here will be our favorite for the foreseeable future. Let’s try to solve
the linear system {

x − 2y = 1
3x + 2y = 11.

(1.2)

It’s a system of equations because there is more than one equation, and it’s linear because
the unknowns only appear as the “linear powers” x and y, not x2 or xy or cos(x+ y).

By the way, you didn’t need to get out of bed today and come to class to figure out how
to solve it, but imagine if the system had 50 variables and 50 equations. You’d probably
want a precise and systematic way of approaching it.

1.2 Problem (!). Try to solve (1.2). What does your gut instinct say to do? (If you’re
reading these notes for the first time and haven’t been in class, don’t read below this
problem for our approach just yet—try it by yourself.)

Before we do anything to (1.2), here are some questions that we should ask.

1. Does it have a solution? That is, do there exist numbers x and y that make the two
equalities in (1.2) true?

2. If not, why not? Can we quantify or qualify failure to solve a linear system?

3. Is there only one solution? Is there only one way to choose the values of x and y to make
the two equalities in (1.2) true? That is, is the solution unique?

4. If not, why not? Can we quantify or qualify why a linear system might have more than
one solution?

We will solve (1.2) by transforming it into an “equivalent” system of equations that is
much easier to solve—actually, several “equivalent” systems. We’ll say that two systems are
equivalent if they have precisely the same solutions. And we’ll do this via algebra.

Recall that if a and b are real numbers, then a = b if and only if ac = bc for all nonzero c.
That is, if you know a = b, then you also know ac = bc for all nonzero c (actually for c = 0,
too, although that’s boring). And if you know ac = ab for all nonzero c (actually, for just
one nonzero c), then you can divide to get a = b. In the context of linear systems, scaling
both sides of the same equation by the same nonzero number doesn’t change things. Let’s
multiply the first equation by the very convenient number −3:{

x − 2y = 1
3x + 2y = 11

⇐⇒
{
−3x + 6y = −3
3x + 2y = 11.

Now we’ll use another property of algebra. Recall that if a and b are real numbers, then
a = b if and only if a+ c = b+ c for all real numbers c. That is, if you know a = b, then you
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can add c to both sides to get a+ c = b+ c. And if you know a+ c = b+ c for some c, then
just subtract c from both sides (or add −c to both sides) to get a = b. (Actually, if you’re
watching your language, we said “for all” c, so if you know a + c = b + c for all c, just take
c = 0.)

Thus {
x − 2y = 1
3x + 2y = 11

⇐⇒
{
−3x + 6y = −3
3x + 2y + c = 11 + c

for any c that we like. What if we take c = −3x + 6y on the left and c = −3 on the right?
The first equation says that these two versions of c have to be equal. Thus{

x − 2y = 1
3x + 2y = 11

⇐⇒
{
−3x + 6y = −3
3x + 2y + (−3x+ 6y) = 11 + (−3)

⇐⇒
{
−3x + 6y = −3

8y = 8

⇐⇒
{
−3x + 6y = −3

y = 1

The second equation is extremely transparent, but the first looks worse than it originally
did because of that extra factor of −3. But our work above was redundant; there was no
need to keep that −3 multiplying both sides of the first equation, and we could have divided
by −3 at any time that we wanted. That is,{

x − 2y = 1
3x + 2y = 11

⇐⇒
{
x − 2y = 1

y = 1

What this is saying is that x and y satisfy the first system precisely when they satisfy the
second—and we know what y is from the second system. With this value of y, the first
equation in the second system becomes

x− 2 = 1 ⇐⇒ x = 3.

All of our work boils down to{
x − 2y = 1
3x + 2y = 11

⇐⇒

{
x = 3

y = 1.
(1.3)

This is an existence and uniqueness result for (1.2): there exists a solution (x = 3 and y = 1),
and it is the only solution. Way to go.

1.3 Problem (!). What would you do if I asked you to check that x = 3 and y = 1 solves
(1.2)? Would you repeat all of the work above, or would you just plug in these values and
do arithmetic?
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The preceding work illustrates two incredibly important operations in solving linear sys-
tems: multiply both sides of one equation by the same number, and subtract (or add) a
multiple of one equation to another equation. There’s a third operation—interchanging two
equations, which sounds silly but actually is worthwhile—that we’ll meet later. Eventually
we will encode and view these operations at pretty high and abstract levels.

The preceding work also illustrates something that is incredibly unimportant about linear
systems: what we call the variables. As long as you are consistent, it doesn’t matter if you
write x and y, or x1 and x2, or α and β, and so on. What matters are the coefficients on
the variables and the numbers on the right.

We are going to stack these numbers together as column vectors, which we’ll just
call “lists of numbers” right now. Here are the three important vectors in (1.2), and we’ll
also write them as ordered pairs to make typesetting easier:[

1
3

]
= (1, 3),

[
−2

2

]
= (−2, 2), and

[
1
11

]
= (1, 11).

We’ll do a lot of arithmetic with (column) vectors, and much of it will happen “compo-
nentwise.” We add vectors by adding their corresponding components, so[

1
3

]
+

[
−2

2

]
=

[
1 + (−2)

3 + 2

]
=

[
−1

5

]
.

1.4 Problem (!). Compute 1
0
1

+

0
1
0

 .
Then we can rewrite the original problem (1.2) as{

x − 2y = 1
3x + 2y = 11

⇐⇒
[
x
3x

]
+

[
−2y

2y

]
=

[
1
11

]
.

Big deal, right? All we have done is introduced some new notation; this tells us absolutely
nothing about solving (1.2) that we did not already know. Let’s do one more bit of arithmetic.
There are “common factors” of x and y in some of those vectors, and our gut instinct should
be to factor them out.

So, we define multiplication of a vector by a number (we do not multiply two vectors)
componentwise:

2

[
1
3

]
=

[
2(1)
2(3)

]
=

[
2
6

]
.

When multiplying a vector by a number, we always write the number first:

2

[
1
3

]
, not

[
1
3

]
2 and ca, not ac.
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1.5 Problem (!). Compute

−1

1
0
1

 and 0

0
1
0

 .
Content from Strang’s ILA 6E. See the pictures on pp. v–vi for how to interpret vector
addition and “scalar” multiplication in two dimensions. There is more componentwise
arithmetic on pp. 1–2.

We rewrite (1.2) once again as{
x − 2y = 1
3x + 2y = 11

⇐⇒ x

[
1
3

]
+ y

[
−2

2

]
=

[
1
11

]
.

Again, this offers absolutely no insights into actually solving (1.2)—yet.
The expression

x

[
1
3

]
+ y

[
−2

2

]
is something that we’ll see often: it’s a linear combination of the vectors (1, 3) and
(−2, 2). By the way, this is an example of typesetting a column vector as an ordered pair to
save space. Many important ideas can be phrased in the language of linear combinations.

Content from Strang’s ILA 6E. Page 3 has some pictures of linear combinations. See
also a linear system on p.3 that is written in vector form and then solved with elimination,
as we did (1.2).

Day 2: Wednesday, January 8.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Column vector of length n, linear combination of vectors, m×n matrix, matrix-vector
product

Here are some more precise (well, mostly precise) definitions of concepts from our first pass
at linear systems and vectors. Throughout, we use the following set-theoretic terminology
as a convenient abbreviation: if S is a set and x is an element of S, then we write x ∈ S.
For example, 1 ∈ {1, 2, 3}. We denote by R the set of all real numbers, so 1 ∈ R.

2.1 Undefinition. Let n ≥ 1 be an integer. A column vector of length n is an “ordered
list” of n real numbers, which we call the entries or the components of v. If v is a
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column vector of length n with entries v1, . . . , vn in that order, then we write

v =

v1...
vn

 or v = (v1, . . . , vn).

The set of all column vectors of length n is Rn, and we write

Rn =


v1...
vn


∣∣∣∣∣∣∣ v1, . . . , vn ∈ R

 .

We typically work with n ≥ 2, and we do not distinguish R1 and R, so R1 = R.
Two vectors v, w ∈ Rn are equal if and only if their corresponding entries are equal:v1...

vn

 =

w1
...
wn

 ⇐⇒ vj = wj, j = 1, . . . , n.

Why is this an “undefinition,” not a definition? Because we didn’t give a rigorous definition
of “ordered list.” I like to think of column vectors of length n as functions from the set
{1, . . . , n} to R. That is, if v = (v1, . . . , vn) ∈ Rn, then v is the same as the function
f : {1, . . . , n} → R such that f(j) = vj for j = 1, . . . , n. And since functions are really sets
of ordered pairs, f = {(j, vj)}nj=1. This is probably a useless way to think about column
vectors for day-to-day purposes, but it comforts me to know that there is deeper math behind
that undefinition. If it doesn’t comfort you, it’s okay to move on.

We continue to define vector addition and multiplication by real numbers componentwise,
regardless of the length of the vectors. In particular, if v, w ∈ Rn and c ∈ R, then v+w ∈ Rn

and cv ∈ Rn. However, we only add vectors that have the same number of components, so
something like [

1
2

]
+

3
4
5


is not defined.

2.2 Example. We compute

0

1
2
3

 =

0(1)
0(2)
0(3)

 =

0
0
0

 .
I hope it’s obvious why we want to call the vector on the right the “zero vector in R3.”

2.3 Definition. The zero vector in Rn is the vector 0 whose entries are all 0. Some-
times we will write 0n to emphasize that this is the zero vector with n entries.
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For example,

02 =

[
0
0

]
but 03 =

0
0
0

 .
2.4 Problem (!). (i) Let v ∈ Rn. What is v + 0n?

(ii) Does 02 + 03 make sense?

In studying our motivating toy problem, we encountered a “linear combination” of vectors.
Here is that object in general.

2.5 Definition. Let v1, . . . ,vn ∈ Rm and c1, . . . , cn ∈ R. The linear combination of
v1, . . . ,vn weighted by c1, . . . , cn is the vector v ∈ Rm defined by

v = c1v1 + · · ·+ cnvn.

We may also express this in sigma notation:

v =
n∑
j=1

cjvj.

2.6 Problem (!). Convince yourself that, in the notation of the previous definition, we do
indeed have v ∈ Rm. Also, what are the integers m and n encoding in that definition?

2.7 Problem (!). Let

e1 :=

1
0
0

 , e2 :=

0
1
0

 , and e3 :=

0
0
1

 .
Explain why any v ∈ R3 is a linear combination of e1, e2, and e3.

Content from Strang’s ILA 6E. There are examples of linear combinations with n = 2
on p. vi and p. 2.

So far, none of this (mostly) more precise terminology tells us anything new about solving
linear systems, and, honestly, none of the following is going to help, either. The goal is
to build more terminology so that we can ask questions about linear systems in the right
language.

Here is a major step toward that right language. Recall that our original problem (1.2)
can be written as a system of linear equations or as a vector equation involving a linear
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combination: {
x1 − 2x2 = 1
3x1 + 2x2 = 11

⇐⇒ x1

[
1
3

]
+ x2

[
−2

2

]
=

[
1
11

]
.

Let’s put the coefficient vectors together into a matrix:

A :=

[
1 −2
3 2

]
.

I hope you’ll agree that this is a “square” matrix: it has 2 rows and 2 columns. We most
often think of matrices in terms of columns (though rows are also useful). If we put

a1 :=

[
1
3

]
and a2 :=

[
−2

2

]
,

then we will also write A as
A =

[
a1 a2

]
.

This is sort of a “row vector” of column vectors.
Here is where we are going with all of this. Abbreviate x = (x1, x2) and b = (1, 11). Our

goal is to define a notion of “matrix-vector multiplication” so that if Ax is the “product” of
A and x, then our original problem compresses to

Ax = b.

First, of course, we need some more terminology. We control the “sizes” or “dimensions”
of matrices by counting the numbers of rows and the numbers of columns—and we always
list rows before columns. We’ll say A ∈ R2×2 for the matrix A above, and I hope you believe
that [

1 3 5
2 4 6

]
∈ R2×3 and

1 2
3 4
5 6

 ∈ R3×2.

More generally, we say the following.

2.8 Definition. Let m, n ≥ 1 be integers. An m × n matrix is a rectangular array of
numbers with m rows and n columns. We denote the set of all m× n matrices by Rm×n.

Since a matrix with m rows and 1 column is really just an ordered list of m numbers, we
will not distinguish Rm×1 and Rm, so Rm×1 = Rm. Also, R1×1 = R. But we do not equate
R1×n and Rn.

The (i, j)-entry of a matrix is the entry in row i, column j of that matrix. Sometimes
we will write Aij for the (i, j)-entry of A, although with large matrices it might be clearer
to write Ai,j. Two matrices are equal if and only if they have the same number of rows
and columns and if all of their corresponding entries are equal.

Regarding that last caveat, we have things like

[
1 2 3

]
6=

1
2
3

 = (1, 2, 3).
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2.9 Problem (!). Reread that until it makes sense.

2.10 Example. Let

A =

1 2
3 4
5 6

 .
The (1, 2)-entry of A is 2, and the (2, 1)-entry of A is 3.

Content from Strang’s ILA 6E. A 3× 2 matrix appears on p. vi, and a larger one (what
size?) on p. vii.

As with column vectors, our attempt at defining a matrix is really an undefinition because
we did not rigorously define “rectangular array” of numbers. If you really want to, you
can think of A ∈ Rm×n as the function f : I → R such that f(i, j) = Aij, where I =
{(i, j) | i = 1, . . . ,m, j = 1, . . . , n}. Or as the function g : {1, . . . , n} → Rm such that g(j) =
aj, where aj is the jth column of A, i.e., A =

[
a1 · · · an

]
. Neither way of thinking will

make any of the following any easier.
And as with column vectors, we add matrices and multiply them by real numbers com-

ponentwise.

2.11 Problem (!). Compute 1 2
0 0
−1 −1

+

0 0
3 4
5 6

 and 2

[
1 0 1
0 1 1

]
.

We are finally ready to think about linear systems. With

A :=

[
1 −2
3 2

]
, b =

[
1
11

]
, and x =

[
x1
x2

]
,

how should we define the symbol Ax so that{
x1 − 2x2 = 1
3x1 + 2x2 = 11

⇐⇒ x1

[
1
3

]
+ x2

[
−2

2

]
=

[
1
11

]
⇐⇒ Ax = b?

The answer is pretty much staring us in the face:

Ax := x1

[
1
3

]
+ x2

[
−2

2

]
.

This is something new. This is not a componentwise definition of multiplication. In-
stead, the idea behind matrix-vector multiplication is that we take a linear combination of
the columns of the matrix weighted by the entries of the vector. If we write

A =
[
a1 a2

]
, a1 =

[
1
3

]
, a2 =

[
−2

2

]
,
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then we are saying

Ax =
[
a1 a2

] [x1
x2

]
= x1a1 + x2a2.

Let’s do some computations with this definition of matrix-vector multiplication in words
first: take the linear combination of the columns of the matrix with the weights as the entries
from the vector, all appearing in order.

2.12 Problem (!). Convince yourself that for this to work, the number of columns of the
matrix has to equal the number of entries of the vector.

2.13 Example. (i)
[
1 3 5
2 4 6

]1
0
1

 = 1

[
1
2

]
+ 0

[
3
4

]
+ 1

[
5
6

]
=

[
1
2

]
+

[
0
0

]
+

[
5
6

]
=[

1 + 0 + 5
2 + 0 + 6

]
=

[
6
8

]

(ii)

1 0
0 2
3 0

[2
4

]
= 2

1
0
3

+ 4

0
2
0

 =

2
0
6

+

0
8
0

 =

2 + 0
0 + 8
6 + 0

 =

2
8
6


And now for the definition in symbols.

2.14 Definition. Let A ∈ Rm×n and v ∈ Rn with

A =
[
a1 · · · an

]
and v =

v1...
vn

 .
The matrix-vector product of A and v is

Av =
[
a1 · · · an

] v1...
vn

 = v1a1 + · · ·+ vnan =
n∑
j=1

vjaj.

Content from Strang’s ILA 6E. Examples of matrix-vector multiplication appear on p.
1.

2.15 Problem (!). Let A ∈ Rm×n and v ∈ Rn. How many entries does Av have? Use the
definition of Av from Definition 2.14.

2.16 Problem (?). Let A ∈ Rm×n. Prove that A0n = 0m. Use the definition of A0n from
Definition 2.14.
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2.17 Problem (?). Prove that matrix-vector multiplication is linear in the following
sense: if A ∈ Rm×n, v, w ∈ Rn, and c ∈ R, then

A(v + w) = Av + Aw and A(cv) = c(Av).

This could involve a lot of · · · that might obscure the actual arithmetic going on; if it
makes things more transparent, do it for n = 2 or n = 3 first. However you do it, use the
definition of matrix-vector multiplication from Definition 2.14.

Every linear system compresses as a matrix-vector equation. Suppose there are m equa-
tions in n unknowns. Let x be the column vector of length n that contains all of these
unknowns. Let A be the m × n matrix containing all of the coefficients, so the (i, j)-entry
of A is the coefficient on the jth unknown in the ith equation. Let b be the column vector
of length m that contains the right sides of these equations. Then the problem is

Ax = b.

Our original questions remain the same—how to solve it, how to understand failure to
solve it. The new question is probably Why is writing it as Ax = b any better than the
original way?

Content from Strang’s ILA 6E. Read all of p. 2 right now.

Day 3: Friday, January 10.

No class due to weather. The following problems will reinforce our work on matrices and
matrix-vector multiplication.

3.1 Problem (!). Rewrite each linear system below as a matrix-vector equation Ax = b
for some matrix A ∈ Rm×n and b ∈ Rn. Specify the values of m and n in each case.

(i)
{
x1 + 2x2 + 3x4 = 1

x3 + 4x4 = 2

(ii)


x1 + 2x2 + x3 + 7x4 = 1
2x1 + 4x2 + 2x3 + 14x4 = 2

2x3 + 8x4 = 3

(iii)


x1 = 1
2x1 = 2

x2 = 3
x3 = 4
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(iv)


x1 + 2x2 = 1
2x1 + 4x2 = 2
x1 + 2x2 + 2x3 = 3
7x1 + 14x2 + 8x3 = 4

3.2 Problem (?). Compute each matrix-vector product and then describe in words the
effect of this multiplication. For your description in words, pretend that you are talking
out loud to a classmate about this multiplication, and you do not have any paper or board
to write on; try to use as few symbols as possible in your description.

(i)

1 4 7
2 5 8
3 6 9

0
0
1



(ii)

1 0 0
0 c 0
0 0 1

x1x2
x3

 for any c, x1, x2, x3 ∈ R

(iii)

 1 0 0
−2 1 0
−3 0 1

x1x2
x3

 for any x1, x2, x3 ∈ R

(iv)
[
0 1
1 0

] [
x1
x2

]
for any x1, x2 ∈ R

Day 4: Monday, January 13.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Dot product of vectors in Rn

No class due to conflict with department chair interviews. Please read and work through the
following material—word by word, line by line. Check all calculations and details.

The goal of the class is the same as always: solve Ax = b, and when we can’t solve
it, understand why. Eventually this will take us into understanding just A, apart from any
linear systems. For now, we should try to understand Ax as best as we can. There is another
way of computing matrix-vector products in addition to Definition 2.14. We’ll tease it out
in an example.
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4.1 Example. We compute[
1 −2
3 2

] [
3
1

]
= 3

[
1
3

]
+ 1

[
−2

2

]
=

[
3
9

]
+

[
−2

2

]
=

[
1
11

]
.

This is just checking that x1 = 3 and x2 = 1 solves our original problem{
x1 − 2x2 = 1
3x1 + 2x2 = 11

,

right?
Here is another way of looking at this arithmetic:

3

[
1
3

]
+ 1

[
−2

2

]
=

[
3(1) + 1(−2)
3(3) + 1(2)

]
.

Do you see how the vectors (3, 1) and (1,−2) appear in the first component on the right?
And how (3, 1) and (3, 2) appear in the second component? It’s almost as though the
vector by which we’re multiplying the matrix, and the rows of the matrix viewed as column
vectors, are doing all of the arithmetic.

Let’s introduce a new structure: the dot product of vectors in R2. (Just R2 now for
starters.) Put [

v1
v2

]
·
[
w1

w2

]
:= v1w1 + v2w2.

So we have [
1
−2

]
·
[
3
1

]
= 1(3) + (−2)(1) = 3− 2 = 1

and [
3
2

]
·
[
3
1

]
= 3(3) + 2(1) = 9 + 2 = 11.

Here is the takeaway in words: we can compute a matrix-vector product by taking the
dot product of the rows of the matrix—viewed as column vectors—with the vector in the
product.

Content from Strang’s ILA 6E. Equation (1) on p. 9 defines the dot product of vectors
in R2. See the box above on p. 9 for more dot products.

Let’s generalize this example.

4.2 Definition. The dot product of v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn is

v ·w =

v1...
vn

 ·
w1

...
wn

 = v1w1 + · · ·+ vnwn =
n∑
j=1

vjwj.
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Content from Strang’s ILA 6E. This is equation (2) on p. 9. We won’t talk about
anything else from Section 1.2 for quite a while. The dot product turns out to be the key
to a deeper geometric understanding of Rn, in particular an understanding of angles, but
we won’t need that for some time.

4.3 Example.

3
4
5

 ·
1

0
0

 = 3(1) + 4(0) + 5(0) = 3

I will do my best to reserve the symbol · for the dot product and use “juxtaposition” to
denote multiplication of real numbers, e.g., 3(1), not 3 · 1. But I guess the dot product in
R1 = R is just ordinary multiplication, so no big deal.

4.4 Problem (?). Prove that the dot product is commutative in the sense that v ·w =
w · v for all v, w ∈ Rn. This is how we expect multiplication to behave, that xy = yx for
all numbers x and y, right?

We can use the dot product to “extract” components of a vector. This will be a hugely
useful operation.

4.5 Example. Here is how this works in R3. (I like R3: it’s big enough to be interesting
but not so big that it’s intimidating.) Put

e1 :=

1
0
0

 , e2 :=

0
1
0

 , and e3 :=

0
0
1

 .
These are the standard basis vectors for R3, and we will use them a lot. I claim
that if v = (v1, v2, v3) ∈ R3, then

v · e1 = v1, v · e2 = v2, and v · e3 = v3.

We basically did the first equality in Example 4.3, so here is the second:

v · e2 =

v1v2
v3

 ·
0

1
0

 = v1(0) + v2(1) + v3(0) = v2.

I’ll let you check the third.
Now here is another nice identity: start with v and “expand it”:

v =

v1v2
v3

 =

v10
0

+

 0
v2
0

+

 0
0
v3
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= v1

1
0
0

+ v2

0
1
0

+ v3

0
0
1

 = v1e1 + v2e2 + v3e3

= (v · e1)e1 + (v · e2)e2 + (v · e3)e3 =
3∑
j=1

(v · ej)ej.

This is a really clean representation of a vector in terms of its components and some other,
simpler vectors. We’ll return to such representations many times in the future.

4.6 Problem (+). The standard basis vectors in Rn are the vectors e1, . . . , en ∈
Rn defined as follows: the components of ej are all 0, except for the component in row j,
which is 1.

(i) Write out the standard basis vectors in R5. You should make clear what all of their
entries are.

(ii) Prove that

ej · ek =

{
1, j = k

0, j 6= k.

(iii) Let v ∈ Rn. Prove that

v =
n∑
j=1

(v · ej)ej.

Now that we have an understanding of the mechanics of dot product calculations, we
can examine how the dot product arises in matrix-vector multiplication. All of the ideas
are in Example 4.1. We’ll work with a matrix with three columns to see this a little more
abstractly. Let A ∈ Rm×3 and write

A =

[
a11 a12 a13
∗ ∗ ∗

]
.

I just want to focus on the first row of A, so I’ve listed that out explicitly. The symbols ∗
below denote the remaining m− 1 rows of A. The exact values of the entries in those rows
are wholly unimportant right now. (If it makes you feel better, take m = 2 and replace each
∗ with 0.)

Let v = (v1, v2, v3) ∈ R3. Then

Av =

[
a11 a12 a13
∗ ∗ ∗

]v1v2
v3

 = v1

[
a11
∗

]
+ v2

[
a12
∗

]
+ v3

[
a13
∗

]
=

[
v1a11 + v2a12 + v3a13

∗

]
.

At the risk of being annoying, I am using the same symbol ∗ to denote rows 2 through m of
the columns of A and then the vector Av; I sincerely don’t care what’s going on there right
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now. Here is what we have shown: the first component of Av is

v1a11 + v2a12 + v3a13 =

a11a12
a13

 ·
v1v2
v3

 =

a11a12
a13

 · v,
which is the dot product of the first row of A viewed as a column vector with v.

This generalizes substantially; the proof is just good bookkeeping and good notation.

4.7 Theorem. Let A ∈ Rm×n and v ∈ Rn. The ith component of Av is the dot product of
row i of A viewed as a column vector and v.

4.8 Example. We compute1 4 7
2 5 8
3 6 9

1
0
1

 =

1(1) + 4(0) + 7(1)
2(1) + 5(0) + 8(1)
3(1) + 6(0) + 9(1)

 =

 8
10
12

 .
What do you get if you use Definition 2.14?

Content from Strang’s ILA 6E. Read about the “row picture” and the “column picture”
on p. 19. (The matrix is A given on p. 18.) Strang says it best: to compute Av by hand for
“small” A and v, use dot products, but to understand Av, use the “linear combination of
columns” definition. This is morally similar to the derivative: to compute it by hand, use
the product rule or chain rule or something like that, but to understand it, use the limit
definition.

4.9 Problem (?). Go back and redo each of the matrix-vector products in Example 2.13
and Problem 3.2 with dot products. What do you find easier for work by hand: Definition
2.14 or Theorem 4.7?

Day 5: Wednesday, January 15.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Column space of a matrix

We started thinking about matrices statically: they encode data, specifically the coef-
ficients of a linear system of equations. Now that we can multiply matrices and vectors,
we can think dynamically: matrices act on vectors to produce new vectors. We might even
associate a matrix A ∈ Rm×n with a “map” (dare I say “function”?) that associates each
vector v ∈ Rn with a new vector Av ∈ Rm.
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Matrix-vector multiplication tells us useful things about matrices, not just vectors. I first
claim that matrix-vector multiplication can “extract” the columns of a matrix. Let’s start
small. As before, we’ll write

e1 :=

1
0
0

 , e2 :=

0
1
0

 , and e3 :=

0
0
1

 .
Let A =

[
a1 a2 a3

]
∈ Rm×3. It’s important that A has only three columns, but here the

number of rows doesn’t matter. We compute

Ae1 =
[
a1 a2 a3

] 1
0
0

 = 1a1 + 0a2 + 0a3 = a1 + 0m + 0m = a1.

In words, multiplying by e1 extracted the first column of A.

5.1 Problem (!). With A ∈ Rm×3 as above, show that Ae2 = a2 and Ae3 = a3.

This generalizes nicely.

5.2 Theorem. Let e1, . . . , en ∈ Rn be the standard basis vectors for Rn: the components
of ej are all 0, except for the component in row j, which is 1. Let A ∈ Rm×n. Then Aej is
the jth column of A.

5.3 Problem (?). Prove it!

5.4 Problem (?). Let In ∈ Rn×n be the matrix whose jth column is ej. We might write
In =

[
e1 · · · en

]
. Prove that Inv = v for any v ∈ Rn. We therefore call In the identity

matrix: multiplying v by In just tells you what v is. [Hint: prove it for n = 3 first to
see the pattern of the arithmetic before doing it for n arbitrary.]

Content from Strang’s ILA 6E. Look at the four matrices on p. 18: identity, diagonal,
triangular, symmetric. Why are the last three called what they are?

We can go further than data extraction via matrix-vector multiplication. I like to say that
what things do defines what things are. And what matrices do is multiply vectors! Recall that
two matrices A, B ∈ Rm×n are equal if their corresponding entries are all equal: Aij = Bij

for i = 1, . . . ,m and j = 1, . . . , n. That is a “static” way of viewing matrix equality (and
not a bad way at all). Here is the “dynamic” way: A and B are equal if they always do the
same thing to the same vector.

5.5 Theorem. Let A, B ∈ Rm×n. Then A = B if and only if Av = Bv for all v ∈ Rn.
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Proof. This is an “if and only if” statement, so we need to prove two things. First we want
to assume that A = B and then show that Av = Bv for all v ∈ Rn. This feels pretty silly,
right? We should just be able to “substitute” A in for B. If we want to be pickier and more
precise about what = means here, A = B means that A and B have equal entries, so also
equal columns. That is, A =

[
a1 · · · an

]
and B =

[
b1 · · · bn

]
with aj = bj for all j.

(And what does aj = bj mean? Componentwise equality.) So, if v = (v1, . . . , vn) ∈ Rn, then

Av =
n∑
j=1

vjaj =
n∑
j=1

vjbj = Bv.

Now we want to show that if Av = Bv for all v ∈ Rn, then A = B. The key words here
are “for all.” We can pick any v ∈ Rn that we like, and we will have the equality Av = Bv.
If we want to extract data about A and B, there are good, specific choices for v: take v = ej.
Then Aej = Bej for each j, and so the jth column of A equals the jth column of B. That
means A = B. �

5.6 Problem (!). Are you sure about that? If A, B ∈ Rm×n, and the jth column of A
equals the jth column of B for j = 1, . . . , n, why do we have A = B? [Hint: there are
several versions of equality here: equality of vectors in Rm, equality of matrices in Rm×n,
equality of numbers in R. What role does each version play in answering the question?]

We now have as good an understanding of matrix-vector multiplication as we’re going to
get without doing anything new. Remember that our goal in this course is to understand
the problem Ax = b as best as we can. Our work so far has focused on understanding Ax.
Now it is time to relate b to A.

By definition, Ax is a linear combination of the columns of A weighted by the entries of
x. To have Ax = b, we therefore want to be able to express b as a linear combination of the
columns of A. We give this a special name.

5.7 Definition. The column space of A ∈ Rm×n is the set of all linear combinations
of the columns of A. We denote it by C(A), and every vector in C(A) is a vector in Rm.
Equivalently,

C(A) ={Av | v ∈ Rn} .

Content from Strang’s ILA 6E. The column space is defined at the bottom of p. 20.

5.8 Example. Let

A =

[
2 0
0 3

]
.

Then

C(A) =
{
Av

∣∣ v ∈ R2
}

=

{
v1

[
2
0

]
+ v2

[
0
3

] ∣∣∣∣ v1, v2 ∈ R
}

=

{[
2v1
3v2

] ∣∣∣∣ v1, v2 ∈ R
}
.
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To be able to solve Ax = b for as many b as possible, we want C(A) to be as “large” as
possible. Ideally (perhaps) we would have C(A) = Rm. Then every b ∈ Rm would be in
C(A), so every b ∈ Rm would be a linear combination of the columns of A, and so we could
solve Ax = b for all b ∈ Rm. Whether or not that is true, C(A) consists of all the vectors
in Rm for which we can solve Ax = b. Right now, understanding the column space does
not replace solving Ax = b, and understanding the column space gives us no new tools or
algorithms for solving Ax = b efficiently. That’s coming.

5.9 Example. With A as in Example 5.8, we claim that C(A) = R2. We need to take an
arbitrary b = (b1, b2) ∈ R2 and show b ∈ C(A). That is, we need to find v ∈ R2 such that
Av = b. From Example 5.8, it suffices to find v1, v2 ∈ R such that[

2v1
3v2

]
=

[
b1
b2

]
.

Looking at componentwise equalities, this is equivalent to

2v1 = b1 and 3v2 = b2,

and that is the same as
v1 =

b1
2

and v2 =
b2
3
.

This tells us what v should be for us to have b = Av, and we get something more: there
is only one way to define v in terms of b, because there is only one way to define v1 and
v2 in terms of b1 and b2.

5.10 Problem (?). (i) Prove that

C

([
1 −2
3 2

])
= R2.

[Hint: repeat the work that brought us from (1.2) to (1.3) but instead of having the right
side of that system be (1, 11), use an arbitrary b = (b1, b2).]

(ii) What is

C

([
1 −2 4
3 2 5

])
?

[Hint: don’t reinvent the wheel. You know the column space from the previous part, and
you know that this column space is the set of all linear combinations of the form

v1

[
1
−2

]
+ v2

[
3
2

]
+ v3

[
4
5

]
.

Is there an “easy” value that you can pick for v3 to relate this linear combination to what
would appear in the previous part?]
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Failure in math and life teaches us a lot, and there is a lot to be learned from what
happens when C(A) 6= Rm for A ∈ Rm×n. Here are some problematic A.

5.11 Example. (i) Let

A =

[
2 0
0 0

]
.

If v = (v1, v2), then Av = (2v1, 0). That is, the second component of Av is always 0, so
if b = (b1, b2) ∈ C(A), then b2 = 0. Surely not all vectors in R2 have 0 as their second
component; for example, (1, 1) 6∈ C(A).

(ii) Let

A =

[
1 −2
3 −6

]
.

For v1, v2 ∈ R, we have

v1

[
1
3

]
+ v2

[
−2
−6

]
= v1

[
1
3

]
− 2v2

[
1
3

]
= (v1 − 2v2)

[
1
3

]
.

(You believe that multiplication distributes over addition, right? That c1v + c2v = (c1 +
c2)v?) This calculation says that every b ∈ C(A) is a multiple of (1, 3). Is every vector in
R2 a multiple of (1, 3)? Surely not: something like (0, 1) cannot be written as[

0
1

]
= c

[
1
3

]
.

What goes wrong in an equality like that?

(iii) Let

A =

1 0 3
0 2 4
0 0 0

 .
I think you’ll agree that any b = (b1, b2, b3) ∈ C(A) has b3 = 0; the deadly thing is that
row of all 0. If not, let’s use dot products for a change:1 0 3

0 2 4
0 0 0

v1v2
v3

 =

 1(v1) + 0(v2) + 3v3
0(v1) + 2v2 + 4v3

0(v1) + 0(v2) + 0(v3)

 =

 v1 + 3v3
2v2 + 4v3

0

 .
What really was going on in the previous example? The rows of zeros in the first and

third matrices were problematic, but the column space is about columns.

5.12 Example. Let’s take another look at those matrices. I think it’s easier to start with[
1 −2
3 −6

]
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and recall our arithmetic to see that the second column is −2 times the first column. Then
maybe we’ll recognize that the second column of[

2 0
0 0

]
is 0 times the first column. Even though these matrices have two columns, only one
matters—somehow there is “redundant” data in the matrix!

Is there redundancy in 1 0 3
0 2 4
0 0 0

?

I claim that no column is a multiple of another—this is annoying to check, but it builds
character, so you should do it. (Here’s how to get started: if the first column is c times the
second column, won’t some of the zero and nonzero entries interact badly?) But maybe, if
we’re lucky, we’ll notice patterns relating the third column to the first and second. Because
life is short, I’ll tell you those patterns:3

4
0

 =

3
0
0

+

0
4
0

 = 3

1
0
0

+ 2

0
2
0

 .
The third column is a linear combination of the first two. This is redundancy again: at a
“linear” level, the third column can be recovered from the first two.

In fact, the third column just disappears when looking at the column space:

v1

1
0
0

+ v2

0
2
0

+ v3

3
4
0

 = v1

1
0
0

+ v2

0
2
0

+ v3

3

1
0
0

+ 2

0
2
0


= (v1 + 3v3)

1
0
0

+ (v2 + 2v3)

0
2
0

 .
Content from Strang’s ILA 6E. Look at Examples 1, 2, and 3 on p. 20. Check that we
can always solve A1x = b for any b, and that there is only one choice of x that works.
Then check all of the arithmetic that appears in the statements about A2 and A3.

So why is this bad? Why do “redundant” columns make the column space smaller than
we’d like Do they always do that? And can we be more precise than “redundant”?

5.13 Problem (+). Here is a generalization of these issues.

(i) Let a ∈ R2, c ∈ R, and A =
[
a ca

]
. First explain why every vector in C(A) is a

constant multiple of a. Then find b ∈ R2 such that b 6∈ C(A). (By the way, 6∈ just means



Day 6: Friday, January 17 26

“is not an element of.”) [Hint: what happens if both e1, e2 ∈ C(A)?]

(ii) Let a1, a2 ∈ R3 and c1, c2 ∈ R, and

A =
[
a1 a2 (c1a1 + c2a2)

]
.

First explain why every vector in C(A) can be written as v1a1 + v2a2 for some v1, v2 ∈ R.
If C(A) = R3, does it feel weird that the “three-dimensional” space R3 can be described by
varying only two parameters v1 and v2? Try to find b ∈ R3 such that b 6∈ C(A). I expect
this to be annoying, since I’m not telling you what the entries of a1 and a2 are, but go as
far as you can and see if you get stuck. It’s a +-problem, after all.

Day 6: Friday, January 17.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Span of the vectors v1, . . . ,vn ∈ Rm, matrix with dependent columns (N), matrix with
independent columns (N)

Here was the problem with the matrices in Examples 5.11 and 5.12: one of their columns
was a linear combination of the other columns. Informally, from the point of view of the
column structure of the matrices, there was redundant data. Somehow this prevented the
column space from being as large as possible. Our job is to understand why.

First, now is a good time to review and augment our vocabulary. We want to understand
Ax = b for A ∈ Rm×n, and to be able to solve this we want b ∈ C(A), where

C(A) :={Av | v ∈ Rn} .

If A =
[
a1 · · · an

]
with aj ∈ Rm, we can also write

C(A) ={c1a1 + · · ·+ cnan | c1, . . . , cn ∈ R} .

That is, C(A) is the set of all linear combinations of the columns of A. We may want to
consider such sets of linear combinations not strictly in the context of columns of a matrix.

6.1 Definition. The span of the vectors v1, . . . ,vn ∈ Rm is the set of all linear combina-
tions of these vectors, and we denote it by span(v1, . . . ,vn).

Content from Strang’s ILA 6E. The span of a list of vectors is defined in the box on p.
21.
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6.2 Example. (i) Let a1, . . . , an ∈ Rm. Then C
( [

a1 · · · an
] )

= span(a1, . . . , an).

(ii) Let v ∈ Rm. Then span(v) ={cv | c ∈ R}.

6.3 Problem (!). Prove that span(0) = {0}. That is, the only vector in the span of 0 is
0 itself.

6.4 Problem (?). Let v1, . . . ,vn ∈ Rm. Prove that 0m ∈ span(v1, . . . ,vn).

6.5 Problem (?). Let v1, v2 ∈ Rm and c, c1, c2 ∈ R. Prove that

span(v1, cv1) = span(v1) and span(v1,v2, c1v1 + c2v2) = span(v1,v2).

Explain how these “small” spans illustrate the following general principle: the span of a
list of vectors equals the span of those vectors in the list that are not linear combinations
of other vectors in the list.

The problem with the matrices in Examples 5.11 and 5.12 was twofold: these were matrices
in Rm×m but their column spaces were not all of Rm (so we could not always solve Ax = b
for all b), and one of their columns was in the span of the others. Somehow these problems
are related. We first give a name to the latter situation and then make a conjecture.

6.6 Definition. The columns of a matrix A ∈ Rm×n are dependent if (at least) one
column is in the span of the others, i.e., if (at least) one column is a linear combination
of the other columns. If n = 1 and the matrix only has one column, we say its column is
dependent if it is the zero vector.

The inclusion of the special case of the zero vector when there is only one column (and
when it does not make sense to talk about “span of the others,” because there are no “other”
columns when n = 1) is a bit of a technicality that will be helpful later. For n ≥ 2, here is
the importance of quantifiers: all that it takes for a matrix to have dependent columns is for
one column to be “bad.” And here is our conjecture.

6.7 Conjecture. If the columns of A ∈ Rm×m are dependent, then C(A) 6= Rm.

This conjecture encapsulates the situation of the matrices in Examples 5.11 and 5.12.
Unfortunately, it’s only a conjecture right now, and we don’t yet have the tools to prove it.
And even when we know it’s true, we probably want a way of verifying that the columns
of a matrix are dependent—hopefully a more systematic way than just “getting lucky” and
noticing that one column is a linear combination of the others.

6.8 Problem (!). We can talk about a nonsquare matrix with dependent columns, but



Day 6: Friday, January 17 28

the conjecture was only for a square matrix. Here’s why. Let

A =

[
1 0 0
0 1 0

]
.

Show that C(A) = R2 and that the columns of A are dependent.

6.9 Problem (?). Show that the columns of1 1 0
0 0 1
0 0 0


are dependent. [Hint: v = 1v.] Conclude that if a matrix contains the same column two
or more times, then its columns are dependent.

We probably think that the opposite of “dependent” is “independent,” and so the columns
of a matrix should be “independent” if no column is in the span of the others, i.e., if no
column is a linear combination of the others. This could be hard to check! We’d have to
fix our attention on one column at a time and the compare it to every other column. That
could take forever. Here is a better definition of “independent,” although it requires a little
more technical notation.

6.10 Definition. The columns of A =
[
a1 · · · an

]
∈ Rm×n are independent if a1 6=

0m and if aj is not a linear combination of a1, . . . , aj−1 for j = 2, . . . , n (if, indeed, n ≥ 2).
That is, a1 6= 0m and aj 6∈ span(a1, . . . , aj−1) for j = 2, . . . , n.

In the particular case that n = 1 and A has only one column, then we say that this
column is independent if it is not the zero vector.

I think we better do a concrete example right away.

6.11 Example. Let

A =

1 2 4
0 3 5
0 0 6

 .
Certainly

a1 =

1
0
0

 6= 03.

Next, we want to check that a2 6∈ span(a1). Otherwise, we would have2
3
0

 = c

1
0
0
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for some c ∈ R. Equating the second components, this would mean 3 = 0. Last, we want
to check that a3 6∈ span(a1, a2). Otherwise, we would have4

5
6

 = c1

1
0
0

+ c2

2
3
0

 .
Equating the third components, we would have 6 = 0.

6.12 Problem (!). Where does the algorithm for independence in Definition 6.10 break
down with the matrix 

1 1 2 3
1 0 2 4
0 0 0 5
0 0 0 0

?

6.13 Remark. Why do we exclude the case a1 = 0m so specifically in the definition of
independent columns? Honestly, “because it’s the right thing to do.” This definition of
independent columns is, in a moment, going to give us the correct analogue of Conjecture
6.7. (Well, “correct” once we prove it.)

That’s not very satisfying right now, I realize. Perhaps the better reason to exclude
a1 = 0m is because if any column of a matrix is the zero vector, then the columns are
dependent: that zero column is the linear combination of all the other columns with weights
equal to 0. Think about part (i) of Example 5.11.

And why do we not say that subsequent columns of the matrix beyond the first can’t be
the zero vector? Because the condition aj 6∈ span(a1, . . . , aj−1) excludes that: we know
0m ∈ span(a1, . . . , aj−1) by Problem 6.4, so if aj 6∈ span(a1, . . . , aj−1), then it’s definitely
the case that aj 6= 0m.

Content from Strang’s ILA 6E. Reread p. 20, this time paying attention to dependence
and independence. Then work through the (in)dependence tests on p. 21 for the matrices
A4 and A5. There is one thing here that we have not yet discussed: what does it mean for
only “some” of the columns of A to be independent?

Now here is the analogue of Conjecture 6.7 for a matrix with independent columns.

6.14 Conjecture. If the columns of A ∈ Rm×m are independent, then C(A) = Rm.

6.15 Problem (!). Again, the conjecture is only for square matrices. Explain why the
columns of

A =

1 0
0 1
0 0
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are independent but C(A) 6= R3.

6.16 Problem (?). Here is another reason to prevent the first column from being the zero
vector, beyond Remark 6.13. Suppose that at least one column of A =

[
a1 · · · am

]
∈

Rm×m is the zero vector 0m. Explain why span(a1, . . . , an) can be “described” by at most
m− 1 different parameters and therefore C(A) is at most “(m− 1)-dimensional.”

As with Conjecture 6.7, we do not yet have the tools to prove Conjecture 6.14, nor do we
have a systematic way of verifying that a matrix’s columns are independent. Both conjectures
beg the question of which columns in a matrix really matter—which ones are redundant and
which ones are essential for describing the column space. This will lead to a more general
definition of dependence and independence that can be given beyond the context of matrices.

6.17 Problem (+). Let

A =
[
a1 a2 a3

]
=

1 0 3
0 2 4
0 0 0

 .
Of course, C(A) = span(a1, a2, a3). However, we can be more efficient. Show that we can
write C(A) in the following ways:

C(A) = span(a1, a2), C(A) = span(a2, a3), C(A) = span(a1, a3).

But we can’t beat that: explain why C(A) is not the span of any one column of A.

So, what columns really matter?

Content from Strang’s ILA 6E. Answer: the “independent ones,” as alluded to on pp.
20–22. This will require us to broaden the definition of independence to allow only some of
the columns of the matrix to be independent—that is, some of the columns of a matrix with
dependent columns can still be independent, if we define “independent” correctly. Now is
also a good time to (re)read pp. v–vii up to, but not including, the A = CR section.

Day 7: Wednesday, January 22.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Independent list of vectors (N), dependent list of vectors (N), rank of a matrix

To describe what columns really matter, we need a variation on our notions of dependence
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and independence that free us from thinking solely about vectors as columns of matrices.
Before we state that, we clarify our expectation that a matrix with dependent columns can’t
have independent columns.

7.1 Theorem. Let A ∈ Rm×n. The columns of A are dependent if and only if they are not
independent.

Proof. This is an “if and only if” statement, so we need our logic to go in two directions.
First suppose that the columns of A are dependent; write, as usual, A =

[
a1 · · · an

]
.

We need to show that either a1 = 0m or aj ∈ span(a1, . . . , aj−1) for some j ≥ 2, if indeed
n ≥ 2. If a1 = 0m, then we’re done, so assume a1 6= 0m (and, implicitly, n ≥ 2). This could
get messy in the abstract, so consider the very special case of n = 4 with a3 as a linear
combination of a1 and a4:

a3 = c1a1 + c4a4.

Our program is to look for the jth column as a linear combination of the previous j − 1
columns; it doesn’t look like a3 is a linear combination of a1 and a2 here.

Or is it? Since c4 ∈ R, we have two options: c4 = 0 or c4 6= 0. If c4 = 0, then

a3 = c1a1 = c1a1 + 0a2 ∈ span(a1, a2).

This violates the definition of independent columns with j = 2. If c4 6= 0, some algebra
(which I will leave you to check, please) gives

a4 =

(
−c1
c4

)
a1 + 0a2 +

(
1

c4

)
a3 ∈ span(a1, a2, a3).

Now here is how this works in general (and I am not expecting you to read this unless
you’re curious). Say that the columns of A ∈ Rm×n are dependent and that column ` is a
linear combination of the other columns:

a` =
n∑
k=1
k 6=`

ckak.

Let j be the largest integer such that cj 6= 0. If j = ` − 1, then a` ∈ span(a1, . . . , a`−1).
Otherwise, assume j ≥ `+ 1 (since c` does not exist in the notation above). Then ck = 0 for
k ≥ j + 1, so

a` =

j−1∑
k=1
k 6=`

ckak + cjaj.

Since cj 6= 0, this rearranges to

aj =

(
1

cj

)
a` +

j−1∑
k=1
k 6=`

(
−ck
cj

)
ak ∈ span(a1, . . . , aj−1).
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Here a` is in the list a1, . . . , aj−1 since ` < `+ 1 ≤ j. Glad I didn’t do that in class?
Now for the other direction: if the columns of A are not independent, they are dependent.

First suppose a1 = 0m, so a1 ∈ span(a2, . . . , an) by Problem 6.4. Next suppose aj ∈
span(a1, . . . , aj−1) for some j ≥ 2. Then

aj = c1a1 + · · ·+ cj−1aj−1 = c1a1 + · · ·+ cj−1aj−1 + 0aj+1 + · · ·+ 0an,

and so aj is a linear combination of the other columns. �

This should be fundamentally comforting: “dependent” should mean “not independent.”
Now we free ourselves from talking about columns of matrices by saying exactly the same
thing for lists of vectors.

7.2 Definition. A list of vectors v1, . . . ,vn ∈ Rm is independent if v1 6= 0m and if
vj 6∈ span(v1, . . . ,vj−1). The list is dependent if it is not independent. In particular, a
list consisting of one vector is dependent if and only if that vector is the zero vector.

This vocabulary and the following procedure are the keys to talking efficiently about the
column space of a matrix—to describing it with the minimal amount of data necessary. Say
that we start with a list of vectors and consider its span (like we do with the columns of a
matrix and the column space of that matrix). How can we remove all of the “unnecessary”
vectors from that list so that we arrive at a “sublist” of just enough vectors whose span equals
that of the original list? I hope an example helps. We are going to need the general principle
suggested by Problem 6.5, so you should (re)read, and maybe (re)do, that problem now.

7.3 Example. Consider the following list of vectors in R4:

v1 =


0
0
0
0

 , v2 =


1
0
0
0

 , v3 =


2
0
0
0

 , v4 =


2
3
0
0

 , v5 =


0
1
0
0

 , and v6 =


0
0
0
3

 .
The zero vector contributes nothing to the span:

span(v1, . . . ,v6) = span(v2, . . . ,v6).

Since v2 6= 04, we have span(v1,v2) = span(v2), and also the list consisting of the single
vector v2 is independent.

Next, v3 = 2v2, so span(v1,v2,v3) = span(v2), and the list consisting of the single
vector v2 is still independent. Nothing really new yet.

Onward: we have v4 6∈ span(v2). Why? So, the list v2, v4 is independent and
span(v1,v2,v3,v4) = span(v2,v4).

I claim that v5 ∈ span(v2,v4) and I will leave that for you to check. Thus
span(v1,v2,v3,v4,v5) = span(v2,v4). Last, I claim that v6 6∈ span(v2,v4), and I’ll also
ask you to check that. Thus the list v2, v4, v6 is independent and span(v1, . . . ,v6) =
span(v2,v4,v6).
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In summary, the “sublist” v2, v4, v6 is independent and has the same span as the original
list. This is efficient: we have cut the number of vectors needed to describe the span in
half.

7.4 Problem (!). Check the things that I asked you to check in the previous example.

Here is the general result.

7.5 Lemma. Let v1, . . . ,vn be a list in Rm with at least one nonzero vector in the list.
There exists an independent sublist vj1 , . . . ,vjr of v1, . . . ,vn such that span(vj1 , . . . ,vjr) =
span(v1, . . . ,vn).

In Example 7.3 we had r = 3, j1 = 2, j2 = 4, and j3 = 6.

Proof (of Lemma 7.5). We reduce the list as follows. Let vj1 be the first nonzero vector
in the list. (At least one exists.) So span(v1, . . . ,vj1) = span(vj1). Also, the list vj1 is
independent because vj1 6= 0.

Let vj2 be the first vector in the list that is a multiple of vj1 , i.e., vj2 6∈ span(vj1). So
span(v1, . . . ,vj2) = span(vj1 ,vj2). Also, the list vj1 ,vj2 is independent because vj1 6= 0 and
vj2 6∈ span(vj1).

Let vj3 be the first vector in the list that is not in span(vj1 ,vj2). So span(v1, . . . ,vj3) =
span(vj1 ,vj2 ,vj3). And the list vj1 ,vj2 ,vj3 is independent since vj3 6∈ span(vj1 ,vj2).

Now turn the crank and keep going: eventually we run out of vectors in the list. �

Content from Strang’s ILA 6E. Think once more about the matrices A1 through A5 on
pp. 20–21. Apply the algorithm in the example and lemma above to extract the linearly
independent columns that span the column spaces.

Just because we found one sublist that preserves the span doesn’t mean there isn’t another:
reread, and maybe attempt, Problem 6.17 right now. But that problem suggests the following
conjecture.

7.6 Conjecture. Let A ∈ Rm×n. If C(A) is the span of r independent columns, then any
list of r independent columns of A also spans the column space. No list of fewer than r
columns can span the column space, and any list of more than r columns is dependent.

We don’t have the tools to prove this conjecture yet, but it suggests that there is a
“threshold” for independence and spans: a number of columns that is “just right” to span the
column space efficiently without any redundancy. We give this number a name, even though
we don’t know how to compute it yet.

7.7 Definition. The rank of a matrix A ∈ Rm×n is the length of the longest list of linearly
independent columns of A.
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7.8 Example. The rank of the matrix whose columns are the vectors from Example 7.3 is
3.

Actually, we do know how to compute rank if we start out knowing what it should be.
Here are some of the “worst” matrices from the point of view of redundancy: they have far
more columns than necessary to describe their column spaces. Actually, we only need one
column to span the column space.

7.9 Example. (i) C

([
0 0
0 0

])
= {02}

(ii) C

1 1 1
1 1 1
1 1 1

 = span

1
1
1



(iii) C

1 2 3
1 2 3
1 2 3

 = span

1
1
1

 as each column is a multiple of the first.

What a waste of storage space!

Content from Strang’s ILA 6E. Work through the example on p. 23 with the matrix
A6. We won’t talk about this for some time in class, but the “row rank = column rank”
calculations for 2 × 2 and 3 × 3 rank-1 matrices are good practice, so check the details
yourself.

Perhaps it would be nice if we had a more efficient way of representing such redundant
matrices. Is there a way to extract only the columns that are absolutely necessary for
representing the column space? (And will this help us solve, and understand, linear systems?)

The right approach is a new tool: matrix multiplication and matrix factorizations. Think
about the factoring that you’ve already done in life before linear algebra. You’ve factored
integers into products of powers of primes:

12 = 22(3).

And you’ve factored polynomials into simpler polynomials:

x2 − 4x+ 4 = (x− 2)2.

Both kinds of factorizations reveal (potentially) useful information: what the essential com-
ponents of an integer are, how to find zeros and maybe graph polynomials. If we know how to
multiply matrices, perhaps we can factor them so that only the most important information
comes out in the factorization.

For example, maybe we could have something like1 2 3
1 2 3
1 2 3

 =

1
1
1

 [1 2 3
]
,
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where the first matrix (okay, column vector) is the only column that matters, and the second
matrix (okay, row vector) contains the data needed for constructing all of the columns out of
this first column. This hinges on defining matrix products in such a way that the definition
yields the equality above. How do we do it?

Content from Strang’s ILA 6E. The real goal is to answer the questions posed at the
end of p. 22. We’ll get there.

Day 8: Friday, January 24.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Matrix-matrix product (a.k.a. matrix multiplication)

As we often say, the goal of this course is to study the problem Ax = b for given
A ∈ Rm×n and b ∈ Rm. Ideally we could solve it and find x ∈ Rn that makes this equation
true. If we can’t solve it, we should understand why—can we quantify our failure with further
information about why b doesn’t work, or can we approximate the problem somehow so that
we could solve a related version?

Along the way, we’ve picked up notation and language to manipulate this problem (linear
combinations, spans, matrix-vector multiplication, dot products) and to develop alternate
ways of phrasing it. In particular, we have Ax = b if and only if b ∈ C(A), where C(A) is
the column space of A: the set of all linear combinations of columns of A. Some of those
columns may be redundant and contribute nothing new to the column space, so we are
developing the language of dependent and independent vectors to ensure that we work with
the minimal amount of data necessary to describe those b for which the problem Ax = b
makes sense.

Our next great leap forward will be a notion of multiplying two matrices, not just a matrix
and a vector. We will, in time, reverse-engineer that multiplication to factor matrices to
reveal further useful and meaningful data about matrices, and thus about our fundamental
problem. In fact, matrix multiplication will give us an algorithm for solving Ax = b,
something we haven’t really done yet!

So, what is a “good” definition of matrix multiplication? Starting small might help: let
A ∈ Rm×n and v ∈ Rn. I know we’ve said that Rn 6= Rn×1, and we’ve basically never thought
about n × 1 matrices anyway. But any B ∈ Rn×1 has the form B =

[
b
]
for some b ∈ Rn.

Of course, usually we think of b ∈ Rn and
[
b
]
as being the same object.

Let’s break that pattern. For A ∈ Rm×n and v ∈ Rn, we have Av ∈ Rm. Any C ∈ Rm×1

has the form C =
[
c
]
for some c ∈ Rm. So, I think that we can think of matrix-vector

multiplication Av as matrix-matrix multiplication A
[
v
]
, and through that lens we have

A
[
v
]

=
[
Av
]
.
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What did we do? The matrix-matrix product A
[
v
]
is just the matrix whose only column is

the vector Av.
What if the second factor has more columns? Let B =

[
b1 · · · bp

]
. If we want to

compute AB and continue the pattern above, then we want to multiply each column of B
by A. But if A ∈ Rm×n, then each column of B needs to be in Rn so that we can do that
multiplication. And the matrix-vector product A times column of B yields a vector in Rm.
We don’t care how many columns of B there are, so p can be arbitrary. Thus AB ∈ Rm×p.

8.1 Definition. Let A ∈ Rm×n and B =
[
b1 · · · bp

]
∈ Rn×p. The matrix product

AB is
AB :=

[
Ab1 · · · Abp

]
∈ Rm×p.

Content from Strang’s ILA 6E. Matrix multiplication is defined in equation (1) on p.
27. Work through the examples on that page and p. 28, noting the appearance of the dot
product.

Here is the first reason for this definition and the restriction on the sizes of A and B: we
want this definition to return the usual definition of matrix-vector multiplication when B is
a column vector. There are other good reasons (possibly better reasons). They’re coming.
For now, let’s practice.

8.2 Example. (i) Let

A =

[
1 0
−2 1

]
and B =

[
1 3
2 4

]
.

Both A, B ∈ R2×2, so the product AB is defined and AB ∈ R2×2 as well.
We compute

Ab1 =

[
1 0
−2 1

] [
1
2

]
=

[
1
0

]
and

Ab2 =

[
1 0
−2 1

] [
3
4

]
=

[
3
−2

]
.

Feel free to do this with the original definition of matrix-vector multiplication or dot prod-
ucts. Thus

AB =
[
Ab1 Ab2

]
=

[
1 3
0 −2

]
.

(ii) Let

A =

[
0 1
1 0

]
and B =

[
1 2 3
4 5 6

]
.

Since A ∈ R2×2 and B ∈ R2×3, the product AB is defined and AB ∈ R2×3.
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We compute

Ab1 =

[
0 1
1 0

] [
1
4

]
=

[
4
1

]
,

Ab2 =

[
0 1
1 0

] [
2
5

]
=

[
5
2

]
,

and
Ab3 =

[
0 1
1 0

] [
3
6

]
=

[
6
3

]
.

Thus
AB =

[
Ab1 Ab2 Ab3

]
=

[
4 5 6
1 2 3

]
.

(iii) Let

A =

1 0 0
0 2 0
0 0 3

 and B =

1 4
2 5
3 6

 .
Since A ∈ R3×3 and B ∈ R3×2, the product AB is defined and AB ∈ R3×2.

We compute

Ab1 =

1 0 0
0 2 0
0 0 3

1
2
3

 =

1
4
9


and

Ab2 =

1 0 0
0 2 0
0 0 3

4
5
6

 =

 1
10
18

 .
Thus

AB =
[
Ab1 Ab2

]
=

1 4
4 10
9 18

 .
8.3 Problem (!). Describe in words the effects of computing the three products in the
previous example. [Hint: for part (i), think about subtraction.] Compare your response to
patterns that you observed in Problem 3.2.

Coming out of these examples is a nice fact that helps when computing “small” products
AB by hand.

8.4 Theorem. Let A ∈ Rm×n and B ∈ Rn×p. Then the (i, j)-entry of AB is the dot
product of row i of A (considered as a column vector in Rn) with column j of B.

Proof. We know what AB is at the level of columns: column j of AB is the matrix-vector
product of A with column j of B. So the entry in row i of column j of AB is the dot product



Day 9: Monday, January 27 38

of row i of A (considered as a column vector in Rn) with column j of B. �

8.5 Problem (?). Suppose that A and B are matrices such that the product AB is defined.

(i) If a whole row of A is all 0, what do you know about AB?

(ii) If a whole column of B is all 0, what do you know about AB?

Here is something less nice. We expect that the order in which we multiply real numbers
doesn’t matter: if x, y ∈ R, then xy = yx. Not so for matrices.

8.6 Problem (?). (i) Explain why even if the matrix product AB is defined, the product
BA may not be defined. What do you need to know about A and B for both products AB
and BA to be defined?

(ii) Use the matrices A and B from part (i) of Example 8.2 to show that we may have
AB 6= BA even when these products are both defined.

Is this that big a deal? Is our definition of matrix multiplication wrong? Frankly, no. Ex-
ample 8.2 and Problem 8.3 suggest that matrices fundamentally act not just on vectors but
on other matrices: they are dynamic. We can live without commutativity of matrix multipli-
cation but not without dynamic matrix action. Also, most actions aren’t commutative—try
putting your shoes on before your socks. Order matters.

Content from Strang’s ILA 6E. Check the multiplication in equation (6) on p. 28 for
further reinforcement that AB 6= BA in general. Answer the question at the bottom of
the page.

Day 9: Monday, January 27.

Here is a matrix product that may look a little weird at first glance.

9.1 Example. Let

A =

1
2
3

 and B =
[
1 0 2 3

]
.

The columns of B are vectors in R1, and of course we usually think of these as real numbers:
R = R1(= R1×1). But here it is helpful, if silly, to keep the vector point of view. That is,
we think that

B =
[
b1 b2 b3 b4

]
, where b1 =

[
1
]
, b2 =

[
0
]
, b3 =

[
2
]
, b4 =

[
3
]
.

Now we compute AB by multiplying A against the columns of B. Of course we are going
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to have
AB =

[
Ab1 Ab2 Ab3 Ab4

]
,

so what are these matrix-vector products?
We start with

Ab1 =

1
2
3

 [1] = 1

1
2
3

 =

1
2
3

 .
The second equality is the definition of matrix-vector multiplication Av for A ∈ Rn×1 and
v ∈ R1: it’s a linear combination of one vector. Pretty silly, I know.

Let’s do it again in gory detail:

Ab2 =

1
2
3

 [0] = 0

1
2
3

 =

0
0
0

 .
I think you’ll agree that

Ab3 =

2
4
6

 and Ab4 =

3
6
9

 .
All together,

AB =

1
2
3

 [1 0 2 3
]

=

1 0 2 3
2 0 4 6
3 0 6 9

 .
Just look at that matrix: it’s so redundant! Every column is a multiple of the first, and

the entries of B tell us how to do that multiplication. Far better to keep the matrix factored
as AB so that we can see the important data: the one column in A and the multipliers in
B.

This pattern generalizes nicely: for any a ∈ Rm and c1, . . . , cn−1 ∈ R[
a c1a · · · cn−1a

]
=
[
a
] [

1 c1 · · · cn−1
]
. (9.1)

9.2 Problem (!). Stare at this equality until you believe it. Maybe write something, too.

Content from Strang’s ILA 6E. Read and work through all of the calculations on pp.
29–30 under “Rank One Matrices and A = CR.”

The factorization (9.1) is the sort of factorization that we desire. It takes a matrix with
a lot of redundant data and breaks it up into the important chunks. The first factor in (9.1)
contains the only independent column of the product, and the second factor tells you how
to build the other columns out of that one and only one necessary column. Can we get
something like this for a matrix with more than one independent column and for which the
“building” might be more complicated?
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This is one of those times where it’s helpful to know where you’re going before you get
there.

9.3 Example. We compute 1 0
0 2
0 0

[1 0 3
0 1 2

]
and we do so by thinking very intentionally about columns this time (not dot products,
please, even though that’s faster):1 0

0 2
0 0

[1
0

]
= 1

1
0
0

+ 0

0
2
0

 =

1
0
0

 ,
1 0

0 2
0 0

[0
1

]
= 0

1
0
0

+ 1

0
2
0

 =

0
2
0

 ,
and 1 0

0 1
0 0

[3
2

]
= 3

1
0
0

+ 2

0
2
0

 =

3
4
0

 .
Thus 1 0

0 1
0 0

[1 0 3
0 1 2

]
=

1 0 3
0 2 4
0 0 0

 .
We’ve seen this matrix before. We know that, going from left to right, its first two columns
are linearly independent, and its third column is a linear combination of the two. The
product on the left makes that explicit: the first factor in the product contains the linearly
independent columns, and the second factor tells you how to put those columns together.

The structure of the second factor is interesting. The first two columns of the identity
matrix I2 ∈ R2×2 (Problem 5.4) are there, and I will block them off as follows:[

1 0 3
0 1 2

]
=

[
1 0 3
0 1 2

]
.

The matrix on the right is an example of a partitioned matrix. This is totally
euphemistic and just a nice way of breaking matrices into “submatrices” so that you see
more meaningful patterns in the data.

Let me put

I2 =

[
1 0
0 1

]
and F =

[
3
2

]
.

Then [
1 0 3
0 1 2

]
=
[
I2 F

]
.

This is a block matrix: a matrix whose entries are other matrices. Again, totally
euphemistic, just a convenient way of seeing the most important parts from a bird’s-eye
perspective.
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The factorization above is the dream. We want to take a matrix A ∈ Rm×n with r
independent columns and no more than r independent columns—so the rank of A is r—and
write it as a product A = CR. The matrix C should contain those r independent columns,
so C ∈ Rm×r. We want the matrix R ∈ Rr×n to tell us how to build the columns of A out
of linear combinations of the columns of C. So C times the jth column of R should give us
the jth column of A.

Content from Strang’s ILA 6E. Read “C Contains the First r Independent Columns of
A” on p. 30 and “Matrix Multiplication C times R on pp. 31–32. Check the calculations
in Example 2, equation (10), equation (11), and the box on p. 32. Also jump ahead
to Example 5 on pp. 34–35 (you don’t have to read about that “columns × rows” way of
multiplying matrices). For yet another example, go back to “Matrix Multiplication A = CR
on p. vii. You do not have to feel that you could see these CR-factorizations immediately;
you should agree that the given matrix multiplication works out.

Unfortunately, we still do not have the tools to do prove that such a factorization exists
or to develop an algorithm for computing it “reasonably” and effectively for all but the most
trivial and obvious matrices. This is just like we don’t have efficient tools for checking
dependence or independence of vectors. Let me at least state this factorization as a dream.

9.4 Conjecture. Let A ∈ Rm×n have rank r. Then there exist matrices C ∈ Rm×r and
R ∈ Rr×n such that A = CR. In particular, the columns of C are r independent columns
of A.

Content from Strang’s ILA 6E. If you’re curious, read pp. 32–33 to learn more about
computing R. Feel free to skip that for now. We will revisit this in extensive detail in the
future.

Ideally, we could write
R =

[
Ir F

]
(9.2)

with r as the r × r identity matrix. If r = n and all of the columns of A are independent,
then we just have R = In, and there is no F block present, since no column is a linear
combination of the others in this case. You should think of that F block being possibly
fictitious.

9.5 Problem (!). If A ∈ Rm×n can be written as A = CR with C ∈ Rm×r and R as in
(9.2), and if r < n, what are the dimensions of that F?

This is actually not quite the structure of R all the time. The snag can be that the first
r columns of A may not be the independent ones, and maybe those r independent columns
are “interspersed” throughout A.



Day 9: Monday, January 27 42

9.6 Problem (!). Let a1, a2 ∈ Rm be independent and c1, c2 ∈ R. Compute

[
a1 a2

] [1 c1 0
0 c2 1

]
and comment on the structure of the matrix that results (which columns are independent
and why?).

Content from Strang’s ILA 6E. This is what Strang means by the parenthetical remark
“in correct order” on p. in the displayed equations after “A = CR becomes.”

To get around this, the reality is that we’ll have to write

R =
[
Ir F

]
P

for a “permutation” matrix P that will reshuffle the columns appropriately. We’ll get around
to talking about permutation matrices later, but this will mean that A would have the
factorization

A = C
[
Ir F

]
P.

Is that allowed? Can we multiply three matrices at once? Will it matter which two matrices
we multiply first?

Nope!

9.7 Theorem. Let A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rp×q. Then (AB)C = A(BC).

This theorem says that the order in which you group matrices during multiplication
doesn’t matter: matrix multiplication is associative. Thus we just write ABC and elimi-
nate the parentheses. The order still totally matters, and we should not expect ABC = ACB
or some nonsense like that.

Content from Strang’s ILA 6E. Read “AB times C = A times BC” on p. 29.

The proof of Theorem 9.7 is largely a thankless exercise in juggling parentheses, so I will
leave that for you to suss out.

9.8 Problem (+). (i) Let A ∈ Rm×n, B =
[
b1 · · · bp

]
∈ Rn×p, and v = (v1, . . . , vp) ∈

Rp. Explain why each of the following four equalities is true:

A(Bv) = A(v1b1 + · · ·+ vpbp)

= v1Ab1 + · · ·+ vpAbp [Hint: Problem 2.17]
=
[
Ab1 · · · Abp

]
= (AB)v.

(ii) Let A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rp×q. Let e1, . . . , eq be the standard basis vectors
for Rq (Problem 4.6). Explain why to prove that (AB)C = A(BC), it suffices to show that
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((AB)C)ej = (A(BC))ej.

(iii) Use only the fact that (DE)v = D(Ev) for matrices D, E and vectors v for which
both sides of that equality are defined (as proved above), justify each equality below:

((AB)C)ej = (AB)(Cej) = A(B(Cej)) = A((BC)ej) = (A(BC))ej.

All this being said, we still have no idea of how to compute that “CR-factorization” of
a matrix unless we are really lucky and see the dependence relations among the columns
from the get-go. There is quite a systematic way of doing that, and it is related to proving
Conjectures 6.7 and 6.14, and to developing an explicit algorithm for solving Ax = b when
we can actually solve it. That is, all of our dreams will come true through very related
techniques.

Content from Strang’s ILA 6E. At this point we have learned all the matrix-vector
mechanics that we need to actually solve linear systems (and to understand our failure
when we can’t solve them). Just to be safe, read “Review of AB on p. 29 and make sure
you have no doubts there. Then read “Thoughts on Chapter 1” on p. 38 for a summary of
everything that we’ve done and a hint of what’s to come.

Let’s finally start solving linear systems. We’re going to take a break from matrix
manipulations—very briefly—and look at three linear systems, each of which is in a very
nice form, and which together illustrate the scope of possibilities for solution behavior to
Ax = b.

9.9 Example. (i) We consider [
1 −2
0 8

]
x =

[
1
8

]
.

As a linear system, this reads {
x1 − 2x2 = 1

8x2 = 8

Look familiar? This was our very first problem!
Of course, we “back-solve” or “back-substitute” to get first x2 = 1 and then x1 − 2 = 1,

so x1 = 3. The problem has only one solution:

x =

[
3
1

]
.

(ii) We consider [
1 −2
0 0

]
x =

[
1
8

]
.
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Write it out, and don’t laugh: {
x1 − 2x2 = 1

0 = 8.

Of course this system has no solution, because 0 6= 8.

(iii) We consider [
1 −2
0 0

]
x =

[
1
0

]
.

Write it out, keep laughing: {
x1 − 2x2 = 1

0 = 0.

There is really not much to do, since the second equation is both true and doesn’t involve
unknowns. There’s not much more we can do with the first equation, since we don’t know
the value for x2.

Here is the right, if not obvious, thing to do: rewrite x1 = 1 + 2x2. This says that every
choice of x2 ∈ R gives x1 via this formula. You can pick any x2 that you want, so there
are infinitely many solutions. At the level of vectors, we could write[

x1
x2

]
=

[
1 + 2x2
x2

]
=

[
1
0

]
+

[
2x2
x2

]
=

[
1
0

]
+ x2

[
2
1

]
.

Every value of x2 gives a different solution, and so this problem has infinitely many solu-
tions.

Content from Strang’s ILA 6E. Work through the three systems on p. 40, which have
the same properties as the three above.

The three examples above are paradigmatic in the sense that a linear system has only
one of three general solution “behaviors”: only one solution, no solution, or infinitely many
solutions. This is actually very easy to prove using matrix notation—which is why we use
that notation, to make our lives easier. But the other thing to take from this example is that
the structure of the linear systems was very nice: all of the matrices were “upper-triangular” in
the sense that their entries were 0 below the diagonal. This made back-solving/substituting
very, very easy.

Day 10: Wednesday, January 29.

Content from Strang’s ILA 6E. For a very broad overview of where we’re going, read p.
39. It’s okay if you don’t understand everything on a first pass. Then read the first three
paragraphs on p. 83.

We formalize the situations of Example 9.9.
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10.1 Theorem. Let A ∈ Rm×n and b ∈ Rm. Then one, and only one, of the following is
true.

(i) There exists a unique solution x ∈ Rn to the problem Ax = b. That is, we can solve
the problem, and if Ax1 = b and Ax2 = b for some x1, x2 ∈ Rn, then x1 = x2.

(ii) There is no solution to the problem Ax = b. That is, Ax 6= b for every x ∈ Rn.

(iii) There are infinitely many solutions to Ax = b.

Proof. We want one, and only, one, of three possibilities to hold. One way for this to work
out is to assume that the first two are false and then show why the third must be true.
So, assume that Ax = b has a solution (so the second part is false) but this solution is
not unique (so the first part is false). That is, there are x1, x2 ∈ Rn such that Ax1 = b,
Ax2 = b, and x1 6= x2.

Our goal is to find infinitely many different x ∈ Rn that satisfy Ax = b. Here is the trick.
Like most tricks in math, it may not be obvious at first glance, so you should reread this
proof until it becomes obvious.

Put z := x1 − x2. Then z 6= 0n, since x1 6= x2. And

Az = A(x1 − x2) = Ax1 − Ax2 = b− b = 0m.

The second equality is the linearity of matrix-vector multiplication (Problem 2.17).
Now let c ∈ R be arbitrary and x = x1 + cz. Then

Ax = A(x1 + cz) = Ax1 + A(cz) = Ax1 + c(Az) = b + c0m = b + 0m = b.

The second and third equalities are, again, the linearity of matrix-vector multiplication.
Make sure you understand why all of the other equalities are true.

So why does this give infinitely many solutions? Maybe we should have put xc := x1 + cz
instead to emphasize the dependence of xc on the parameter c. (I guess there might be
conflicts of notation with c = 1 and c = 2?) The point is that each different c ∈ R generates a
different x1+cz ∈ Rn: you can, and should, check that if c1 6= c2, then x1+c1z 6= x1+c2z. �

10.2 Problem (?). (i) Let A ∈ Rm×n. Suppose that there is z ∈ Rn such that z 6= 0n
and Az = 0m. Let b ∈ Rm. Prove that if the problem Ax = b has a solution, it is not
unique.

(ii) Consider the other side of this: if the only solution to Ax = 0m is x = 0n, then
solutions to Ax = b (if they exist) are unique. Here’s why: if Ax1 = b and Ax2 = b, what
does z := x1 − x2 solve? Why does that imply x1 = x2 and thus uniqueness?

(iii) By considering the vector z = (2,−1), explain how the previous part generalizes the
situation in part (iii) of Example 9.9.
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Content from Strang’s ILA 6E. After you do the problem above, reread Example 3 on
p. 40. The vector that Strang calls X is what I call z.

The time has come to systematically solve linear systems! We go all the way back to our
very first example, in which we showed that[

1 −2
3 2

]
x =

[
1
11

]
⇐⇒

[
1 −2
0 8

]
x =

[
1
8

]
.

The latter system was easy to solve with “back-substitution.”
What’s up with the ⇐⇒ ? Why are these two problems equivalent (in the sense that

x solves one of them precisely when it solves the other)? More abstractly, we started with
A ∈ Rm×m (for now A will be square), we wanted to solve Ax = b, and we somehow
converted or “reduced” the problem to Ux = c, where U was upper-triangular. Then we
back-substituted.

10.3 Definition. A matrix U ∈ Rm×m is upper-triangular if all of the entries of U
below the diagonal are 0. That is, the (i, j)-entry of U is 0 when i > j.

10.4 Example. Each matrix below is upper-triangular:

[
1 −2
0 8

]
,

[
0 0
0 0

]
, and

1 2 3
0 4 5
0 0 6

 .
Content from Strang’s ILA 6E. For a longer example of why upper-triangular matrices
are nice for back-substitution, read p. 41 through the “Special note” in the box. I expect
that you are comfortable with this back-substitution method for solving linear systems,
and I will not do examples with it here.

How do you do this? How do you “convert” A ∈ Rm×m into an upper-triangular matrix
U so that we have the equivalence of the problems

Ax = b and Ux = c

for some appropriate c? The point is that the arrows go both ways: Ax = b =⇒ Ux = c
and Ux = c =⇒ Ax = b. Having an arrow go one way in math doesn’t always mean it goes
the other way.

The good news is that we already know how to do this. It’s all contained in the manip-
ulations that we did on our very first problem at the level of equations and variables. The
big idea was subtracting a multiple of one equation from another. We can do all of this at
the level of matrices (and cut out the variables) by subtracting a multiple of one row of a
matrix from another.

Specifically, to turn

A =

[
1 −2
3 2

]
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into
U =

[
1 −2
0 8

]
,

we want to subtract 3 times the first row of A from the second row of A. The revolution of
linear algebra is that we can encode this via matrix multiplication. Whenever we want to “do
something” in this class, you should ask yourself how we can accomplish this by multiplying
by a suitable matrix.

So, what matrix E satisfies
EA = U?

At the very least we need E ∈ Rm×2 since A ∈ R2×2. And we really want m = 2 since
EA = U ∈ R2×2. So, E ∈ R2×2.

Here is where it is wise to think about matrix multiplication as E times the columns of
A. What is E doing to each column? We want

E

[
v1
v2

]
=

[
v1

v2 − 2v1

]
. (10.1)

How can we view the vector on the right as a linear combination with weights given by v1
and v2? The vectors in that linear combination will be the columns of E.

So, work backwards:[
v1

v2 − 3v1

]
=

[
v1

−3v1

]
+

[
0
v2

]
= v1

[
1
−3

]
+ v2

[
0
1

]
.

If we put

E :=

[
1 0
−3 1

]
,

then we have the desired equality (10.1).

10.5 Problem (!). Check that. Then compute EA = U with A and U as above.

Here is how we’re thinking. Assume Ax = b with b = (1, 11). Then EAx = Eb.
Compute EA = U with U as above and Eb = (1, 8) =: c. Then solve Ux = c. That should
give a solution to the original problem Ax = b, and we can always plug it in and check that
it does.

Going in reverse requires a little more thought. Why does solving EAx = Eb give a
solution to Ax = b? It would be nice if we could “cancel” the factor of E from both sides.
We can, and that’s called inverting a matrix, and we’ll do that nice and abstractly soon.

10.6 Problem (?). Put

F :=

[
1 0
3 1

]
.

First explain in words the effect of multiplying Fw for some w ∈ R2. Then check that
FEv = v for all v ∈ R2. Finally, suppose that EAx = Eb, multiply both sides by F , and
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explain why Ax = b.

It feels like we’re doing “elimination” twice: we multiplied EA and then Eb separately.
We can combine all of the data of our problem into one “augmented” matrix: put

[
A b

]
=

[
1 −2 1
3 2 11

]
.

I like to draw a line separating the b column when I’m working with actual numbers. Then
do one matrix multiplication:

E
[
A b

]
=
[
EA Eb

]
=

[
1 −2 1
0 8 8

]
=
[
U c

]
.

From here, solve Ux = c by back-substitution.
I’m going to tell you the path forward, even if it isn’t obvious right now. Here is the

cartoon for A ∈ R3×3. We want to turn A into an upper-triangular matrix U by multiplying
A by the “right” matrices. In the “ideal” case, at the level of rows, we are going to subtract
multiples of row 1 to create 0 entries in rows 2 and below of column 1. Specifically, the
multiples will be based on the (1, 1)-entry, which for now we hope is nonzero.

So we have the conversion  ∗© ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

→
∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 .
I’ve written the changed entries in blue. Now subtract a multiple of the second row from the
third row to create zeros in the second column below the second row. Again, in the “ideal”
case, the multiple will be based on the (2, 2)-entry, which we should hope is nonzero:∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

→
∗ ∗ ∗

0 ∗© ∗
0 0 ∗

 .
Again, the blue entries are new or changed. Because both the second and third rows had 0
in their first column, subtracting a multiple of the second row from the third row did not
destroy that 0 in the first column of the third row. This is the nice upper-triangular structure
that is ideal for back-solving.

How do we accomplish this multiplication? I am going to tell you the answer, which
generalizes all our work with E above. Let A ∈ Rm×n and ` ∈ R. To subtract ` times row j
of A from row i of A (with i 6= j), multiply A by the elimination matrix Eij ∈ Rm×m

whose entries are 1 on the diagonal, −` in the (i, j)-position, and 0 elsewhere. So, Eij is
“almost” the identity matrix, except for the (i, j)-entry.

10.7 Problem (!). Prove that this formula for Eij works by computing the following very
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special case and explaining the effect in words:

E21v, where E21 :=

 1 0 0
−` 1 0

0 0 1

 , v :=

v1v2
v3

 .
Then spend at least five minutes thinking about how using dot products could help you
prove the more general result stated in the paragraph above this problem.

We do an example in glacially slow detail.

10.8 Example. Let

A =

2 1 1
4 3 3
8 7 9

 .
We want to multiply A by “elimination” matrices like the 2 × 2 situation above so that 0
appears in the second and third rows of the first column. To get 0 in the (2, 1)-entry, we
should subtract 2 times the first row from the second. The matrix

E21 :=

 1 0 0
−2 1 0

0 0 1


accomplishes this, and here is what we get:

E21A =

 1 0 0
−2 1 0

0 0 1

2 1 1
4 3 3
8 7 9

 =

2 1 1
0 1 1
8 7 9

 .
I’ll use the idiosyncratic notation2 1 1

4 3 3
8 7 9

 R2 7→ R2−2×R1−−−−−−−−−→
E21

2 1 1
0 1 1
8 7 9

 , E21 :=

 1 0 0
−2 1 0

0 0 1

 .
to represent this. Saying R2 7→ R2− 2× R1 means that row 2 is replaced by row 2 minus
2 times row 1.

Now we want to clear out the (3, 1)-entry, and we can do this by subtracting 4 times
row 1 from row 3. So, we multiply2 1 1

0 1 1
8 7 9

 R3 7→ R3−4×R1−−−−−−−−−→
E31

2 1 1
0 1 1
0 3 5

 , E31 :=

 1 0 0
0 1 0
−4 0 1

 .
Finally, we want to clear out the 3 in the (3, 2)-entry:2 1 1

0 1 1
0 3 5

 R3 7→ R3−3×R2−−−−−−−−−→
E32

2 1 1
0 1 1
0 0 2

 , E32 :=

1 0 0
0 1 0
0 −3 1

 .
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We’re done! Let’s abbreviate E = E32E31E21. The product

EA =

2 1 1
0 1 1
0 0 2

 =: U

is upper-triangular. If we wanted to solve Ax = b for some b ∈ R3, it would suffice to
solve Ux = Eb instead.

Content from Strang’s ILA 6E. Read and work through everything on p. 42 right now.
This is hugely important. Then read p. 45 up to and including equation (7). This is
another example of elimination. Last, read all of p. 49 (but don’t worry about inverses for
now).

We are going to focus on “reducing” A to an upper-triangular form, and I am going to
leave practicing with back-substitution to you. It’s mostly just a longer version of part (i)
of Example 9.9.

10.9 Problem (!). Use the results (and the notation) of Example 10.8 to solve Ax = b,
where b = (0, 1, 5).

10.10 Problem (?). We prefer upper-triangular matrices, in part for consistency, but
“lower-triangular” matrices can be equally nice. Solve2 0 0

1 1 0
2 1 1

x =

2
1
0

 .
10.11 Problem (+). We usually expect that matrix multiplication is not commutative.
However, sometimes it is.

(i) Let `1, `2 ∈ R and put

E21 :=

 1 0 0
−`1 1 0

0 0 1

 and E31 :=

 1 0 0
0 1 0

−`2 0 1

 .
Explain in words what E21 and E31 “do” (i.e., what is the effect of multiplying E21v and
E31v for some v ∈ R3?). Then explain why you think this means that E21E31 = E31E21.
Do the actual matrix multiplication to convince yourself that this is true.

(ii) Let `3 ∈ R and

E32 :=

1 0 0
0 1 0
0 −`3 1

 .
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Without doing any calculations, explain why you should expect E31 and E32 not to com-
mute. Then do the multiplication to check E31E32 6= E32E31.

Day 11: Friday, January 31.

For larger matrices, the pattern of elimination is the same. Use the (1, 1)-entry to “create
zeros” in rows 2 and below of column 1 by subtracting appropriate multiples of row 1 from
those lower rows. Then use the new (2, 2)-entry to “create zeros” in the new rows 3 and below
of the new column 2 by subtracting appropriate multiples of the new row 2 from those new
lower rows. Keep going until you’ve reached the last row and the matrix has been “reduced”
to an upper-triangular structure.

This approach to elimination can break down in two ways. The first is not so bad and
just requires a new kind of matrix to correct things. The second is worse and will prevent
us from solving the linear system.

11.1 Example. What if at the jth step of elimination, the (j, j)-entry is 0, but an entry
further down in column j is not 0? All hope is not lost. Consider2 2 1

4 4 3
8 9 9

 R2 7→ R2−2×R1−−−−−−−−−→
E21

2 2 1
0 0 1
8 9 9

 R3 7→ R3−4×R1−−−−−−−−−→
E31

2 2 1
0 0 1
0 1 5

 .
The matrices E21 and E31 are the same as before in Example 10.8, so I didn’t write them
out again.

The problem is that the (2, 2)-entry is now 0. We can’t use that to eliminate the 3 in the
(3, 2)-entry. But if we could “flip” rows 2 and 3, we’d be done. (This is totally legitimate:
you can interchange the order of equations in a system of equations and not change the
solution structure at all.) If only there were a matrix P ∈ R3×3 such that

P

2 2 1
0 0 1
0 1 5

 =

2 2 1
0 1 5
0 0 1

 .
What we really want is that

P

v1v2
v3

 =

v1v3
v2

 .
We can get P by working backwards and thinking of matrix-vector multiplication as a

linear combination:v1v3
v2

 =

v10
0

+

 0
v3
0

+

 0
0
v2

 = v1

1
0
0

+ v3

0
1
0

+ v2

0
0
1

 =

1 0 0
0 0 1
0 1 0

v1v2
v3

 .
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Are you okay with how I got the last equality? Maybe it would help to rearrange the sum
so that v1, v2, and v3 come in order:

v1

1
0
0

+ v3

0
1
0

+ v2

0
0
1

 = v1

1
0
0

+ v2

0
0
1

+ v3

0
1
0

 .
Here is the result:2 2 1

0 0 1
0 1 5

 R3 7→ R2, R2 7→ R3−−−−−−−−−−−→
P23

2 2 1
0 1 5
0 0 1

 , P23 :=

1 0 0
0 0 1
0 1 0

 .
I am calling this P23 to emphasize that we get it by interchanging columns 2 and 3 of the
identity matrix. We’ll call such a matrix formed by swapping columns of the identity a
permutation matrix.

What we get is that
EA = U, E := P23E31E21

with U upper-triangular. The matrix E is now a little more complicated than in Example
10.8, as we have to include a factor of a permutation matrix, not just an elimination mtrix.

In general, to interchange rows i and j of A ∈ Rm×m, multiply PijA, where Pij ∈ Rm×m

is the matrix whose columns are those of the m × m identity matrix with columns i and
j interchanged. Such a matrix Pij is, again, a permutation matrix. So, if at some
stage of elimination, the diagonal entry that you want to use to eliminate entries below is 0,
but other entries in that column are nonzero, just “permute” the rows to bring that nonzero
entry up to the row that you want. Then eliminate as usual in the remaining rows.

Content from Strang’s ILA 6E. Read “Possible breakdown of elimination” on p. 43 up
to but not including the “Caution!” paragraph. Then read p. 45 after equation (1) and
look at the calculation in “Exchange rows 2 and 3.” These Pij permutation matrices are
special cases of a more general permutation matrix structure, which is the identity matrix
with its columns (equivalently, rows) rearranged in various ways. See pp. 64–65. We won’t
need those more general permutation matrices for a while.

11.2 Problem (!). Explain in words (no need for any calculations) why PijA = PjiA.

11.3 Problem (?). Let P13 ∈ R3×3 be the permutation matrix that interchanges columns
1 and 3 of the 3× 3 identity matrix. Compute P13A and AP13 for an arbitrary A ∈ R3×3.
Then conjecture about what the different effects of multiplying PijA and APij are for an
arbitrary A ∈ Rm×m and an arbitrary permutation matrix Pij ∈ Rm×m that interchanges
columns i and j of the m×m identity matrix. (You do not have to prove your conjecture.)
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11.4 Problem (+). Let A ∈ Rm×n and let S ∈ Rn×d be a matrix whose columns are some
of the columns of the n × n identity matrix. Here d ≥ 1 is any integer, and the columns
of the identity may be repeated, and some columns of the identity may not appear at all.
Describe in words the structure of the matrix AS. [Hint: the letter S might stand for
“selection” matrix—what is being “selected” here?]

Here is the nastier breakdown of elimination: what if at some step, the diagonal entry
that you want to use to eliminate entries below is 0 and all other entries in that column are
0, too? Good news is that you don’t have to do any more elimination on entries in that
column, as they’re already 0. Bad news is that you won’t be able to solve Ax = b for all b.
Here’s a particular example of why.

11.5 Example. Here is a problematic matrix:

A =

1 2 3
2 4 6
0 0 5

 .
We eliminate:1 2 3

2 4 6
0 0 5

 R2 7→ R2−2×R1−−−−−−−−−→
E21

1 2 3
0 0 0
0 0 5

 , E21 :=

 1 0 0
−2 1 0

0 0 1

 .
Maybe it doesn’t look so problematic right now. We would want to use the (2, 2)-entry in
E21A to eliminate the (3, 2)-entry, but the (3, 2)-entry is already 0. So, E21A is already
upper-triangular! Why is this not enough for us to be happy?

Let’s actually try to solve Ax = b for b = (b1, b2, b3) ∈ R3 arbitrary. If Ax = b, then
E21Ax = E21b = (b1, b2 − 2b1, b3). Thus we want1 2 3

0 0 0
0 0 5

x =

 b1
b2 − 2b1
b3

 .
At the level of actual equations, this is

x1 + 2x2 + 3x3 = b1
0 = b2 − 2b1

5x3 = b3.

Look at that second equation: it says b2 − 2b1 = 0, equivalently, b2 = 2b1. Think
about the logic here. We assumed that Ax = b with b = (b1, b2, b3), and we deduced
that b2 = 2b1. This means that b cannot be just any vector in R3; it has to satisfy this
“solvability condition” of b2 = 2b1. Surely not every vector in R3 does this—for example,
take b = (1, 0, 0). So we can’t always solve Ax = b.
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It’s worth interpreting this in the context of the column space. Look at the structure of
A: the second row is twice the first row. More precisely,

Ax =

 x1 + 2x2 + 3x3
2x1 + 4x2 + 6x3

5x3

 =

 x1 + 2x2 + 3x3
2(x1 + 2x2 + 3x3)

5x3

 .
So, if b = (b1, b2, b3) ∈ C(A), then b2 = 2b1. This is exactly the solvability condition that
we deduced from elimination.

11.6 Problem (?). Does the “arrow go the other way”? We have shown

b ∈ C(A) =⇒ b2 = 2b1.

Do we have
b2 = 2b1 =⇒ b ∈ C(A)?

Yes! If b2 = 2b1, then Ax = b is the system
x1 + 2x2 + 3x3 = b1
2x1 + 4x2 + 6x3 = 2b1

5x3 = b3.

Use the third equation to solve for x3, take x2 to be any number that you like, and then
use the first equation to write x1 in terms of the values forced on x3 and chosen for x2.
Why does this also satisfy the second equation automatically?

Content from Strang’s ILA 6E. Read the rest of “Possible Breakdown of Elimination”
on p. 43 starting with “Caution!”

Day 12: Monday, February 3.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Invertible matrix (N), inverse of a matrix

These results will follow and support us for the rest of the course and beyond. Here is an
abstraction of our elimination procedure.

12.1 Theorem (Gaussian elimination). Let A ∈ Rm×m. Then there exist matrices E,
U ∈ Rm×m with the following properties.
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(i) EA = U .

(ii) U is upper-triangular.

(iii) E is the product of elimination matrices Eij and/or permutation matrices Pij.

Proof. If the (1, 1)-entry of A is nonzero, multiply A by elimination matrices E21, . . . , Em1

to subtract multiples of row 1 of A from rows 2 through m of A. Call the product of
these elimination matrices E1. If m = 2, then E1A is upper-triangular. If m ≥ 3 and
the (2, 2)-entry of E1A is nonzero, multiply E1A by elimination matrices E32, . . . , Em2 to
subtract multiples of row 2 of E1A from rows 3 through m of E1A. Call the product of these
elimination matrices E2. If m = 3, then E2E1A is upper-triangular. Otherwise, turn the
crank and keep going.

If at any stage the (j, j)-entry is zero and the entries in column j in rows j + 1 through
m are zero, just proceed to the next step and consider the (j + 1, j + 1)-entry. If the (j, j)-
entry is zero and some entry in rows j + 1 through m of column j is nonzero, multiply by
a permutation matrix so that this nonzero entry is now the (j, j)-entry. Then eliminate as
before. Call the product of the elimination matrices and the permutation matrices Ej. �

What this result says is that if Ax = b, then EAx = Eb, and so Ux = Eb. The upper-
triangular system Ux = Eb is much easier to solve, and so we like it. At least, we like it
when the diagonal entries of U are nonzero.

12.2 Theorem. Let U ∈ Rm×m be an upper-triangular matrix whose diagonal entries are
nonzero. Then for any c ∈ Rm, there exists a unique x ∈ Rm such that Ux = c.

Proof. This is really back-substitution in the abstract. Here’s the proof for m = 3. Take

U =

u11 ∗ ∗
0 u22 ∗
0 0 u33

 ,
where u11, u22, and u33 are nonzero. So if you want to solve Ux = c with c = (c1, c2, c3),
first you’d look at

u33x3 = c3.

Since u33 6= 0, we can divide to find that x3 must be

x3 =
c3
u33

.

Go back up a step and look at

u22x2 + stuff depending on x3 = c2.

The point is that we know what this “stuff” is because we know x3 exactly. Solve this as

x2 =
c2 − stuff

u22
.

This is the only choice for x2. Do the same for x1. �
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But are we really sure that if EA = U , then a solution to Ux = Eb is also a solution
to Ax = b? For small problems, we can check it by plug-and-chug, but why is this true in
general?

The time has come to be sure that we can “invert” E, and this is a good reason to
study matrix inverses in general. We will overall be much more concerned with properties of
inverses than formulas for inverses. There’s an algorithm that will let you do that, and we’ll
see it briefly, but we’ll mostly abide by the slogan “What things do defines what things are.”

Content from Strang’s ILA 6E. Read the first two paragraphs on p. 50.

Here is what we want: why does EAx = Eb imply Ax = b? More abstractly, if E ∈ Rm×m

and Ev = Eb for some v, b ∈ Rm, do we necessarily have v = b? It would be nice if we
could “undo” the “action” of E by multiplying by another matrix. Is there F ∈ Rm×m such
that F (Ev) = v for all v ∈ Rm? If so, then assuming Ev = Eb gives F (Ev) = F (Eb), and
thus v = b as desired.

Look more closely at the equation F (Ev) = v. This just says (FE)v = v. What does
that tell us about the matrix product FE? If (FE)v = v for all v ∈ Rm, then we could take
v = ej as the standard basis vectors. We find (FE)ej = ej, and so the jth column of FE
must be ej: the jth column of the m×m identity matrix. That is, we want FE = Im.

We are actually going to ask for a little bit more in the following definition: that EF = Im
as well. Much later, we’ll see that this extra bit is delightfully redundant—this is a surprise,
since matrix multiplication usually is not commutative.

12.3 Definition. A matrix E ∈ Rm×m is invertible if there exists a matrix F ∈ Rm×m

such that
FE = Im and EF = Im. (12.1)

12.4 Example. (i) Let

E =

[
1 0
−2 1

]
be the elimination matrix that subtracts 2 times the first row from the second row. Can
we invert E? We’re done if we find F ∈ R2×2 such that EF = FE = I2. What should F
be?

This is where it might help to think about E dynamically: what does E do? We just
said it: E subtracts 2 times the first row from the second row. So undoing E should add
two times the first row to the second row. That is,

E

[
v1
v2

]
=

[
v1

v2 − 2v1

]
and

[
v1

(v2 − 2v1) + 2v1

]
=

[
v1
v2

]
.

So maybe

F =

[
1 0
2 1

]
works. Check it yourself.
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(ii) Let

P =

[
0 1
1 0

]
be the permutation matrix that interchanges rows 1 and 2. Undoing P should interchange
those rows again: we want F ∈ R2×2 such that if

P

[
v1
v2

]
=

[
v2
v1

]
, then F

[
v2
v1

]
=

[
v1
v2

]
.

This looks like we should just take F = P . I suggest that you check that P 2 = I2. By the
way, this is the first time we’re using “power” notation for matrix multiplication: P 2 = PP .

Content from Strang’s ILA 6E. Read Examples 4 and 5 on p. 52 about inverting elimi-
nation matrices. Skip the remarks about the inverse of FE in Example 5 for now.

Example 12.4 should be comforting in that it suggests that elimination and permutation
matrices are invertible. We’d probably like to say that their “inverses” are what we expect:
invert subtracting by adding, invert permuting by permuting again. What gives us the right
to say that a matrix has only one inverse? A (nonzero) real number has only one reciprocal
to undo multiplication, but why is this true for matrices?

Here’s why. Suppose that E has “two” inverses F1 and F2, so

F1E = EF1 = F2E = EF2 = Im. (12.2)

We need to show that F1 = F2. Here is a great trick: multiply by 1. You know that 1x = x
for any x ∈ R, and the same is true for matrices.

12.5 Problem (!). Check that AIm = ImA = A for any A ∈ Rm×m.

So,
F1 = F1Im = F1(EF2) = (F1E)F2 = ImF2 = F2. (12.3)

Here is the formal result.

12.6 Theorem. Let E ∈ Rm×m. There exists at most one F ∈ Rm×m satisfying (12.1).

Content from Strang’s ILA 6E. This is Note 2 on p. 50.

We can now talk about “the” inverse of a matrix.

12.7 Definition. Let E ∈ Rm×m be invertible. The inverse of E is the unique matrix F
satisfying

FE = EF = Im,

and we write F = E−1.
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Let’s generalize Example 12.4.

12.8 Theorem. (i) Let Eij ∈ Rm×m be the elimination matrix that subtracts ` times row j
from row i (so 1’s along the diagonal, −` in the (i, j)-entry, and 0 everywhere else). Then
Eij is invertible, and E−1ij is the elimination matrix that adds ` times row j to row i (so
1’s along the diagonal, ` in the (i, j)-entry, and 0 everywhere else).

(ii) Let Pij ∈ Rm×m be the permutation matrix that interchanges rows i and j (so Pij is
the m×m identity matrix with columns i and j interchanged). Then Pij is invertible and
P−1ij = Pij.

Now go back and look very carefully at the calculation in (12.3). We did not use all of
the equalities in (12.2). Instead, we only needed that F1E = Im and EF2 = Im. We might
call F1 a left inverse and F2 a right inverse. Here is what we have proved.

12.9 Corollary. Let E ∈ Rm×m have left and right inverses in the sense that there are F1,
F2 ∈ Rm×m such that

F1E = Im and EF2 = Im.

Then E is invertible and F1 = F2 = E−1.

Proof. Okay, maybe this needs a teensy bit of proof. First, the calculation in (12.3) shows
F1 = F2. Put F = F1. Then the hypotheses give FE = F1E = Im and EF = EF2 = Im,
and so F satisfies Definition 12.7. �

12.10 Remark. We will eventually prove that the existence of a left or right inverse alone is
enough to guarantee the invertibility of a matrix! That is, if E, F ∈ Rm×m with EF = Im,
then both E and F are invertible. We will need some more technology to do that, however.

12.11 Problem (!). We probably expect that undoing the undoing of an action does that
action. Totally makes sense, right? More precisely, if E ∈ Rm×m is invertible, we should
expect that E−1 is also invertible and (E−1)−1 = E. (That’s how exponents work, right?)
Prove this by showing that E satisfies the definition of inverse for E−1. What things do
defines what things are.

12.12 Problem (?). Let E, A ∈ Rm×m. Suppose that EA = Im and E is invertible. Prove
that A is invertible, too.

We are particularly interested in inverting a matrix that is a product of elimination
matrices and permutation matrices. We know that any elimination or permutation matrix
is invertible. More generally, is the product of invertible matrices invertible?

Yes. Suppose that A, B ∈ Rm×m are invertible. We will show that AB is invertible.
Think about action: first you do B to a vector v by multiplying Bv, and then you do A by
multiplying A(Bv) = (AB)v. To undo AB, you probably want to undo A first and then B.
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(Getting dressed, socks go on first, then shoes; getting undressed, shoes come off first, then
socks.) So we might guess that (AB)−1 = B−1A−1. The good news is that we can check this
using the definition:

(B−1A−1)(AB) = B−1(A−1A)B = B−1ImB = B−1B = Im.

12.13 Problem (!). Check that (AB)(B−1A−1) = Im as well.

Here is the formal result.

12.14 Theorem. Let A, B ∈ Rm×m be invertible. Then AB is invertible and (AB)−1 =
B−1A−1.

Content from Strang’s ILA 6E. Read “The Inverse of a Product AB” on pp. 51–52.
Then go back to Example 5 on p. 52. The point for our larger story is that multiplying
elimination matrices together when getting EA = U is not the best of ideas, whereas
computing E−1 is more meaningful.

This seems to be everything that we want. Theorem 12.1 tells us that for any A ∈ Rm×m,
we can always find a product of elimination and/or permutation matrices, which we call E,
such that EA = U is upper-triangular. Now we know that E is invertible. Given b ∈ Rm,
it is usually easier to solve Ux = Eb, and then we have E−1Ux = E−1(Eb), where

E−1U = E−1(EA) = (E−1E)A = ImA = A and E−1(Eb) = (E−1E)b = b.

Thus Ax = b, which is what we always wanted to be sure of.
Invertibility is another way of asking about solvability of linear systems. Suppose that

A ∈ Rm×m is invertible. I claim that Ax = b always has a solution, and that solution is
unique. For uniqueness, work backwards and assume Ax = b; then A−1(Ax) = A−1b, and
so x = A−1b. To check that this is actually a solution, plug in: A(A−1b) = (AA−1)b =
Imb = b.

12.15 Theorem. Let A ∈ Rm×m be invertible and b ∈ Rm. Then the problem Ax = b has
the unique solution x = A−1b.

Content from Strang’s ILA 6E. This is Note 3 on p. 50.

12.16 Problem (!). Hugely important: convince yourself of the following for A ∈ Rm×m.

(i) If there is z ∈ Rm with z 6= 0m and Az = 0m, then A is not invertible.

(ii) If A is invertible, then C(A) = Rm.
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12.17 Problem (?). Often knowing that a matrix is invertible is more useful than having
a formula for that inverse. Here’s a situation in which the presence of an invertible matrix
“keeps things the same.” Let A ∈ Rm×n be any matrix and let B ∈ Rn×n be invertible.
Show that C(AB) = C(A) as follows. First, explain why ABv ∈ C(A) for any v ∈ Rn.
Next, justify the equality Aw = (AB)(B−1w) and explain how that shows that anything
in C(A) is in C(AB).

Content from Strang’s ILA 6E. I am not going to talk about determinants now, or much
later (I hope!), but you should read Note 6 on p. 50 and Example 2 on p. 51 and also think
about the four 2 × 2 matrices in Example 3 on p. 51. Determinants are a quick and easy
way of understanding 2 × 2 matrices, which arise in a lot of applications (e.g., ordinary
differential equations). Try using Note 6 to solve our original problem[

1 −2
3 2

]
x =

[
1
11

]
.
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Using the solution formula x = A−1b from Theorem 12.15 in practice requires us to compute
A−1. This turns out to be “expensive” computationally, rather more so than elimination and
back-substitution.

Content from Strang’s ILA 6E. Read “The Cost of Elimination” on pp. 57–58. The
following link to a section from the fifth edition elaborates on this:

https : //math.mit.edu/ gs/linearalgebra/ila5/linearalgebra5_11− 1.pdf.

The point is that using A−1 to solve Ax = b for A ∈ Rm×m might take around m3

arithmetical operations, but using elimination would take only around m3/3 operations.
If this excites you, take a numerical linear algebra class. Read the beautiful book by
Trefethen & Bau, too.

Let’s go back to elimination in the context of inverses. How does being able to solve a
linear system Ax = b via elimination say anything about the invertibility of A?

We’ll start with the nicest case: upper-triangular. I claim that we can eliminate “upwards”
on an upper-triangular matrix with nonzero diagonal entries to find an invertible matrix E
such that EU = Im. Then U = E−1, and so U is invertible. Here is how this works.

13.1 Example. Let

U =

2 1 1
0 1 1
0 0 2

 .
We met this matrix in Example 10.8. I want to turn U into I3 starting from the bottom.

https://math.mit.edu/~gs/linearalgebra/ila5/linearalgebra5_11-1.pdf
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The first thing to do is to make that entry of 2 in the (3, 3)-slot into a 1. This requires
division by 2 in the third row. Of course we want to encode this, like everything else, via
matrix multiplication. What matrix D ∈ R3×3 does that? We want

D

v1v2
v3

 =

 v1
v2
v3/2

 .
I think you know what to do by now: expand the vector on the right as a linear combination
weighted by v1, v2, and v3, and you’ll see that D should be

D33 =

1 0 0
0 1 0
0 0 1/2

 .
I’m calling it D33 now because the action is happening in the (3, 3)-entry.

So, we have the transformation2 1 1
0 1 1
0 0 2

 R3 7→ (1/2)×R3−−−−−−−−−→
D33

2 1 1
0 1 1
0 0 1

 , D33 =

1 0 0
0 1 0
0 0 1/2

 .
This scaling matrix D33, along with the elimination and permutation matrices, is the
last of the so-called elementary matrices that we need to encode “row operations”
on matrices.

Now we eliminate “upwards.” We want the other entries in column 3 to be 0, so we
subtract multiples of row 3 from rows 1 and 2. (Well, multiples of 1.) We get2 1 1

0 1 1
0 0 1

 R2 7→ R2−R3−−−−−−−−→
E23

2 1 1
0 1 0
0 0 1

 , E23 :=

1 0 0
0 1 −1
0 0 1


R1 7→ R1−R3−−−−−−−−→

E13

2 1 0
0 1 0
0 0 1

 , E13 :=

1 0 −1
0 1 0
0 0 1

 .
And then we’ll subtract a multiple of row 2 from row 1 to make that (1, 2)-entry 0:2 1 0

0 1 0
0 0 1

 R1 7→ R1−R2−−−−−−−−→
E12

2 0 0
0 1 0
0 0 1

 , E12 :=

1 −1 0
0 1 0
0 0 1

 .
Last, we rescale the first row:2 0 0

0 1 0
0 0 1

 R1 7→ (1/2)×R1−−−−−−−−−→
D11

1 0 0
0 1 0
0 0 1

 = I3, D11 :=

1/2 0 0
0 1 0
0 0 1

 .
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We conclude
D11E12E13E23D33U = I3,

so putting
E := D11E12E13E23D33

gives EU = I3. Certainly E is invertible, as all elimination matrices are invertible, and
scaling matrices are invertible when their diagonal entries are nonzero. Then U = E−1I3 =
E−1, and so U is invertible with U−1 = E.

13.2 Problem (?). Let D ∈ Rm×m be diagonal: the (i, j)-entry of D is 0 for i 6= j.
Prove that if all of the diagonal entries of D are nonzero, then D is invertible; give an
explicit formula for D−1.

The arithmetic in Example 13.1 is called Gauss–Jordan elimination. I’ll state
how this works in the abstract.

13.3 Theorem (Gauss–Jordan elimination). Let U ∈ Rm×m be upper-triangular with
nonzero diagonal entries. Then there exists an invertible matrix E ∈ Rm×m, which is the
product of elimination and/or scaling matrices (but not permutation matrices), such that
EU = Im.

Proof. This should feel basically the same as the proof of Theorem 12.1. Multiply U by a
scaling matrix Dmm to divide row m by umm 6= 0 so that the (m,m)-entry of DmmU is 1.
Then subtract multiples of row m from rows m− 1 through 1 to create zeros in rows m− 1
through 1 of column m. Go to the (m−1,m−1)-entry: rescale so that it’s 1, create zeros in
rows m− 2 through 1 of column m− 1 through elimination. Repeat. Let E be the product
of all of the scaling and/or elimination matrices used, in the order that you use them from
the bottom up at each stage. No need for permutation matrices because all of the diagonal
entries are nonzero. �

13.4 Remark. Previously we used “Gaussian elimination” on an arbitrary A ∈ Rm×m to
find an invertible matrix E ∈ Rm×m such that EA = U with U upper-triangular. Now,
in the special case that the diagonal entries of U were nonzero, we used “Gauss–Jordan
elimination” to find another invertible matrix Ẽ such that ẼU = Im, thus ẼEA = Im, so
A is invertible with A−1 = (ẼE)−1.

Content from Strang’s ILA 6E. Page 57 offers an algorithm for computing A−1 by hand
if you really need to do it for a small A. I will never ask you to do that, and Strang
doesn’t even give any problems asking you to do it in this edition—that’s how deprecated
the method is. Far better to understand A−1 than have a formula for it.

13.5 Problem (!). Explain why the matrix A from Example 10.8 is invertible. What is
A−1? (Don’t actually compute it—no one really cares—but express A−1 as the product of
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the inverses of a bunch of elimination, scaling, and/or permutation matrices.)

What we really care about is not a formula for matrix inverses but the existence and
behavior of inverses. We’ve seen a bunch of behaviors already: how the inverse of a product
works, how the inverse is itself invertible, and, admittedly, the special formulas for inverses
of elimination and permutation matrices.

13.6 Theorem. Let U ∈ Rm×m be upper-triangular. Then U is invertible if and only if all
of its diagonal entries are nonzero.

Proof. (⇐=) This is easier, so I’ll do it first. It’s just Gauss–Jordan elimination: since the
diagonal entries of U are nonzero, we can find E ∈ Rm×m invertible such that EU = Im,
thus U = E−1 is invertible.

(=⇒) We are going to use contradiction. What if U is invertible and a diagonal entry is
zero? Something has to go wrong, and I am going to spoil the surprise for you: we are going
to find a nonzero vector x ∈ Rm such that Ux = 0m. This will contradict Theorem 12.15,
which says that since U is invertible, the only solution is x = 0m.

I want to consider two possible structures of U : one where the first diagonal entry is zero
and one where it isn’t, but a zero diagonal entry occurs further down along the diagonal.
Here is the first when m = 4:

U =


0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 .
More generally, U has the form

U =
[
0m Ũ

]
,

where Ũ is “the rest” of U (columns 2 through m). Recall now how we “extract” columns
from a matrix: multiply by the standard basis vectors. So Ue1 is the first column of U ,
where e1 is 1 in row 1 and 0 everywhere else. That is, Ue1 = 0m and e1 6= 0m. That’s the
contradiction.

Next case: a zero entry further down on the diagonal. That is, ujj = 0 for some j ≥ 2
but uii 6= 0 for 1 ≤ i ≤ j − 1. Here is one such possibility when m = 4:

U =


, ∗ / ∗
0 , / ∗
0 0 0 ∗
0 0 0 ∗

 .
By , I mean nonzero entries, and in the notation above j = 3. Now look at the upper-
triangular matrix

Û :=

[
, ∗
0 ,

]
.
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This has nonzero diagonal entries and so we can find x1, x2 ∈ R such that

Û

[
x1
x2

]
=

[
/
/

]
.

But then

x1


,
0
0
0

+ x2


∗
,
0
0

 =


/
/
0
0

 ,
and from that

Ux = 04, x :=


x1
x2
−1

0

 .
So what is the problem? We have found x ∈ R4 such that x 6= 04 but Ux = 04. This

contradicts Theorem 12.15; since U is invertible, the only x that should work there is x = 04.
Here is the generalization of this, which I didn’t do in class, and for which you are not

responsible. As before, assume that there is j ≥ 2 such that ujj = 0 but uii 6= 0 for
1 ≤ i ≤ j − 1. Write

U =

[
Û ûj Ũ
0 0m−j

]
.

Here Û is a (j−1)×(j−1) upper-triangular matrix with nonzero diagonal entries, ûj ∈ Rj−1,
and Ũ contains the remaining columns of U . I am irritatingly using 0 to mean a matrix whose
entries are all 0.

Since the diagonal entries of Û are nonzero, we can find x̂ ∈ Rj−1 such that Û x̂ = ûj.
Then

Ux = 0m, x :=

 x̂
−1

0m−(j+1)

 ,
and so the equation Ux = 0m has a nonzero solution. Thus U cannot be invertible. �

13.7 Problem (+). What goes wrong if a diagonal entry of U ∈ Rm×m is zero? We saw
this in Example 11.5, but it’s worth revisiting in the abstract. There are two possibilities:
either the last diagonal entry is 0 or an entry further up the diagonal is 0, but the entries
below it are nonzero.

(i) In the first case, the bottom row of U is 0. What does that say about the c ∈ Rm×m

for which we can solve Ux = c? And what does that say in the context of Theorem 12.15?
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(ii) In the second case, U might have a structure like the following:

U =


∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 , ∗
0 0 0 ,

 .
As before , 6= 0. Explain why for this particular U , there is an invertible Ẽ ∈ R4×4 such
that ẼU has a row of all 0 entries. [Hint: eliminate upward.] What does this say about
the c ∈ R4 for which we can have Ux = c?

Day 14: Friday, February 7.

The tool that we used in the second part of the proof of Theorem 13.6 is incredibly nice,
and it’s going to resolve some of our long-standing conjectures. First we isolate that part of
the proof for future reference.

14.1 Corollary. Let U ∈ Rm×m be upper-triangular. Suppose that a diagonal entry of U is
nonzero. Then there exists a nonzero vector x ∈ Rm such that Ux = 0m.

Here’s a blast from the past. We’ve said that the columns of a matrix A =
[
a1 · · · an

]
∈

Rm×n are independent if a1 6= 0m and aj 6∈ span(a1, . . . , aj−1). Here A does not have to be
square. This is just a more precise way of saying that no column is a linear combination
of the others, and so independence is a precise way of controlling redundancy in a matrix’s
data. It turns out that independence is intimately connected with the homogeneous
problem Ax = 0m.

14.2 Theorem. The columns of a matrix A ∈ Rm×n are independent if and only if the
only solution to Ax = 0m is x = 0n.

Proof. It’s actually easier to prove

dependent columns ⇐⇒ Ax = 0m has a nonzero solution,

so we’ll do that. (Being negative is much more fun than being positive.)
If the columns are dependent, then one column is a linear combination of the others.

Let x be the vector consisting of the weights from that combination with −1 for the “bad
vector.” That’s the proof in words. In symbols, this is basically the proof of Theorem 7.1.
For simplicity, if A =

[
a1 a2 (c2a2 + c4a4) a4

]
∈ Rm×4, then

A


0
c2
−1
c4

 = c2a2 − (c2a2 + c4a4) + c4a4 = 0m.
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Now suppose that Ax = 0m has a nonzero solution. So, at least one entry of x is nonzero.
Pick any such nonzero entry, divide Ax = 0m by it, and rewrite the corresponding column
of A as a linear combination of the rest. For example, if A =

[
a1 a2 a3 a4

]
∈ Rm×4 with

Ax = 0m, x = (x1, x2, x3, x4), and x3 6= 0, then

0m = Ax = x1a1 + x2a2 + x3a3 + x4a4,

so
x1
x3

a1 +
x2
x3

a2 + a3 +
x4
x3

a4 = 0m.

and thus
a3 =

(
−x1
x3

)
a1 +

(
−x2
x3

)
a2 +

(
−x4
x3

)
a4

is a linear combination of the other columns. �

We could have done this back when we were talking about independence and dependence.
Maybe we should have?

Content from Strang’s ILA 6E. Look at “Independent columns” toward the bottom of
p. 30.

14.3 Problem (?). We are talking a lot right now about square systems: Ax = b with
A ∈ Rm×m. Number of equations = number of variables. Independence and dependence
make sense for all systems, not just square. Prove that if the columns of A ∈ Rm×n are
independent, then if a solution to Ax = b exists (no guarantee that it does!), it is unique.
[Hint: reread the proof of Theorem 10.1 and then the statement of Problem 10.2.]

Remarkably, for a square system, independent columns and invertibility are the same
thing.

14.4 Theorem. A matrix A ∈ Rm×m is invertible if and only if its columns are indepen-
dent.

Proof. (=⇒) By Theorem 14.2, to prove that the columns are independent, we should
assume that Ax = 0m for some x ∈ Rm and show x = 0m. This is almost automatic by
Theorem 12.15, as x = A−10m = 0m.

(⇐=) Assume that the columns are independent, and watch Gaussian elimination rise and
shine! Whether or not the columns of A are independent, we can find an invertible E ∈ Rm×m

such that EA = U with U upper-triangular. Then A = E−1U . If U is also invertible,
Theorem 12.14 guarantees that A is invertible. Theorem 13.6 says that U will be invertible
if its diagonal entries are nonzero.

So are they? What goes wrong if U has a nonzero diagonal entry? Corollary 14.1 goes
wrong: there is x 6= 0m such that Ux = 0m. But then Ax = E−1Ux = E−10m = 0m. This
contradicts the independence of the columns of A. That’s wrong. �
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Let us celebrate this result with a proof of Conjecture 6.14 which conjectured that if A ∈
Rm×m has independent columns, then C(A) = Rm. Theorem 14.4 says that independence
implies invertibility. And if A is invertible, then C(A) = Rm because we can always solve
Ax = b. (We get unique solvability from independence to boot.) This is the victory of
independence: having just enough data in your matrix, and no more, lets you solve Ax = b,
and solve it uniquely.

14.5 Problem (!). How does this lead to a quick proof of Conjecture 6.7? [Hint: “P ⇐⇒
Q” is the same as “not P ⇐⇒ not Q.”]

We have proved a lot of things recently, and all of them are saying basically the same
thing. It can get hard to keep track of all of this, so here’s a summary.

14.6 Theorem (Invertible matrix theorem). Let A ∈ Rm×m. The following statements
are equivalent in the sense that if any one of them is true, then all of the others are true.

(i) A is invertible.

(ii) There is an invertible matrix E such that U := EA is upper-triangular and all of the
diagonal entries of U are nonzero.

(iii) The columns of A are independent.

(iv) The only solution to Ax = 0m is x = 0m.

(v) For any b ∈ Rm, the problem Ax = b always has a unique solution.

14.7 Problem (!). We have essentially proved Theorem 14.6, but the work is spread out
among a number of results. Now is a good opportunity for you to review the logical
connections among those results. Here is a cartoon summarizing those connections, which
you can tease out in the steps below.

(v) =⇒ (i) ⇐⇒ (ii)

⇐
⇒

(iii) ⇐⇒ (iv)

(i) To prove that parts (i) and (ii) are equivalent, use Theorems 12.1, 12.14, and 13.6.

(ii) Review the proof of Theorem 14.4 to remind yourself why parts (i) and (iii) are equiv-
alent.

(iii) Review the proof of Theorem 14.2 to remind yourself why parts (iii) and (iv) are
equivalent.

(iv) Review the argument leading up to Theorem 12.15 to remind yourself why part (i)
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implies part (v). Then argue that (v) implies part (iv), and we know that implies (iii) and
thus part (i).

14.8 Problem (+). Corollary 12.9 told us that A ∈ Rm×m is invertible if and only if A
has left and right inverses, i.e., matrices L, R ∈ Rm×m such that LA = AR = Im. The
upshot of this condition is that we don’t need to verify L = R; all we need is LA = Im and
AR = Im, and ostensibly the matrices L and R don’t have to talk to each other. Here we
show that we only need a left inverse or a right inverse to guarantee invertibility.

(i) Suppose that LA = Im. Prove that the columns of A are linearly independent and
thus A is invertible. [Hint: if Ax = 0m, apply L to both sides and figure out x.]

(ii) Suppose that AR = Im. Let EA = U be upper-triangular for some invertible matrix
E, so UR = E. If U is not invertible, then U has a zero diagonal entry. Problem 13.7 then
implies that for some invertible Ẽ, the product ẼU has a row whose entries are all 0. Use
Problem 8.5 to deduce something about ẼUR, and thus about ẼE. Since Ẽ and E are
invertible, what contradiction results?

(iii) We now can weaken part (v) of Theorem 14.6 slightly, but crucially. It turns out that
A ∈ Rm×m is invertible if and only if the problem Ax = b always has a solution for each
b ∈ Rm. We do not need to require the solution to be unique. Certainly the existence of
a solution is a consequence of invertibility (uniqueness, too). Now suppose that we can
always solve Ax = b. Explain how choosing b to be the standard basis vectors produces a
matrix R such that AR = Im.

14.9 Remark. The nonzero diagonal entries of an upper-triangular matrix are sometimes
called its pivots. The pivots of a general A ∈ Rm×m are the nonzero diagonal entries
of the upper-triangular matrix to which A can always be transformed by elimination and
row interchanges, i.e., by Theorem 12.1. This language is a little perilous, as we never
proved that the matrix U from Theorem 12.1 was unique—could we write E1A = U1 and
E2A = U2 with U1 and U2 both upper-triangular, U1 6= U2, and E1 and E2 as the product
of elimination and/or permutation matrices? What’s important from the point of view of
invertibility is not the exact value of these “pivots” but rather whether they are all nonzero
or not.

14.10 Problem (+). Let A ∈ Rm×m and suppose that E1, E2 ∈ Rm×m are invertible with
E1A and E2A both upper-triangular. Prove that if E1A has no nonzero diagonal entries,
then E2A also has no nonzero diagonal entries. [Hint: what goes wrong if E2A has some
nonzero diagonal entries?] We will eventually prove that E1A and E2A must have the
same number of nonzero diagonal entries, although we need more technology for that.

Content from Strang’s ILA 6E. Page 41 introduces the terminology “pivot.” I personally
feel that the phrase “nonzero pivot” is redundant. Informally, you should think of the
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pivots as “the nonzero things that you multiply by when doing elimination.” Because we
can permute rows even when we don’t need to avoid zero diagonal entries, we can select
an “ideal” pivot at any state of elimination—see “ ‘Partial Pivoting’ to Reduce Roundoff
Errors” on p. 66 and think once more about taking a numerical linear algebra class after
this one.

Day 15: Monday, February 10.

We’ve learned a lot about invertible matrices—in particular that we can always solve Ax = b
with x = A−1b when A is invertible, but that we probably shouldn’t because computing
A−1 is computationally expensive. The alternative is that we do elimination on A so that
U := EA is upper-triangular with nonzero diagonal entries, and then we solve Ux = Eb
via back-substitution. That requires us to compute Eb, too. There is a variation on this
approach that is still computationally less expensive than computing A−1 and that gives us
some new insights into matrix multiplication, so it’s worth learning. We start with a very
concrete example.

15.1 Example. Let

A =

2 1 1
4 3 3
8 7 9

 .
We saw in Example 10.8 that

EA =

2 1 1
0 1 1
0 0 2

 = U,

where
E := E32E31E21

and

E21 :=

 1 0 0
−2 1 0

0 0 1

 , E31 :=

 1 0 0
0 1 0
−4 0 1

 , and E32 :=

1 0 0
0 1 0
0 −3 1

 .
We went further in Example 13.1 and found Ẽ such that ẼU = I3, but that’s less important
here. Rather, the new thing to focus on is the factorization

A = E−1U.

Recall that we originally talked about multiplying matrices with the goal of factoring ma-
trices: breaking matrices into products of simpler matrices to reveal meaningful properties.
What is simpler about the matrices E−1 and U , and what is meaningful about the factor-
ization A = E−1U?
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Certainly U is simpler than A because U is upper-triangular: U has a nice structure
with a lot of simple data—many zero entries. What about E−1? A bad idea is to compute
E as the product E = E32E31E21 and then try to compute E−1 from that. Go ahead and
try it and see how opaque the work is. (I mean, we haven’t really computed a matrix
inverse other than Remark 13.4.) But we do know that

E−1 = (E32E31E21)
−1 = E−121 E

−1
31 E

−1
32 .

And we know what each of these inverses are because they are inverses of elimination
matrices:

E−132 =

1 0 0
0 1 0
0 3 1

 , E−131 =

1 0 0
0 1 0
4 0 1

 , and E−121 =

1 0 0
2 1 0
0 0 1

 .
Now think about what they are doing. Multiplying by E−131 says “Add 4 times row 1 to

row 3”:

E−131 E
−1
32 =

1 0 0
0 1 0
4 0 1

1 0 0
0 1 0
0 3 1

 =

1 0 0
0 1 0
4 3 1

 .
says add 4 times row 1 to row 3. Multiplying by E−121 says “Add 2 times row 1 to row 2”:

E−1 = E−121 E
−1
31 E

−1
32 = E−121

1 0 0
0 1 0
4 3 1

 =

1 0 0
2 1 0
0 0 1

1 0 0
0 1 0
4 3 1

 =

1 0 0
2 1 0
4 3 1

 =: L.

Just look at that matrix L. It’s lower-triangular, because every entry above the
diagonal is 0. And the entries below the diagonal are the negatives of the multipliers from
the original elimination step. This is no accident.

How does this factorization A = LU help? Let’s solve Ax = b with b = (0, 1, 5). Ideally
you did this in Problem 10.9. This problem is the same as LUx = b. Now here is the trick:
abbreviate c := Ux. Then we want Lc = b. The clever idea is to view c as an unknown;
then we can solve Lc = b using back-substitution, and then we solve Ux = c with another
round of back-substitution. Nowhere does elimination hit b.

Let’s go: Lc = b is the system 1 0 0
2 1 0
4 3 1

 c =

0
1
5

 ,
equivalently 

c1 = 0
2c1 + c2 = 1
4c1 + 3c2 + c3 = 5
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The first equation immediately gives c1 = 0, so the second reduces to c2 = 1, and then the
third is 3 + c3 = 5, thus c3 = 2. Hence

c =

0
1
2

 .
Next, Ux = c is the system 2 1 1

0 1 1
0 0 2

x =

0
1
2

 ,
equivalently 

2x1 + x2 + x3 = 0
x2 + x3 = 1

2x3 = 2

The third equation is 2x3 = 2, thus x3 = 1. Then the second equation is x2 + 1 = 1,
so x2 = 0. And the first equation is then 2x1 + 0 + 1 = 0, so 2x1 = −1, and therefore
x1 = −1/2. That is, x = (−1/2, 0, 1).

This example has a number of lessons for us. First, if we can factor A = LU , with L
lower-triangular and U upper-triangular, and where both L and U have all nonzero entries on
their diagonals, then we can solve Ax = b easily by back-substitution and without doing any
elimination calculations on b. Second, we might be able to achieve this “LU -factorization” if
we can reduce A to upper-triangular form using only elimination, not permutation, matrices.
In particular, finding that factor of L involved inverting the product of elimination matrices
that governed that reduction—but we did not multiply all those elimination matrices together
and then calculate the inverse; instead, we used properties of inverses of products and what
elimination matrices do. (It pains me to say this, but brute force isn’t always the best force.)

All of this turns out to be more generally true.

15.2 Theorem (LU-factorization). Suppose that A ∈ Rm×m can be reduced to upper-
triangular form using only elimination, not permutation, matrices. That is, there is
E ∈ Rm×m such that EA = U , where U is upper-triangular and E is a product of only
elimination matrices. Then L := E−1 is lower-triangular, the diagonal entries of L are all
1, and A = LU . Moreover, for any b ∈ Rm, there is x ∈ Rm such that Ax = b if and only
if there is c ∈ Rm such that {

Lc = b

Ux = c.
(15.1)

Proof. We are only going to prove the last sentence. The proof that L is lower-triangular
when E is a product of only elimination matrices is essentially an abstraction of the calcu-
lation in Example 15.1. (Try replacing the multipliers 2, 4, and 3 with arbitrary `21, `31,
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`32 ∈ R and watch the same lower-triangular structure appear. Or check out the readings in
Strang mentioned below.)

Here is the proof of that last sentence, assuming that we have the factorization A = LU .
First, if there is x ∈ Rm such that Ax = b, then LUx = b. Put c = Ux to find Lc = b. So,
both equations in (15.1) are true.

Now suppose that both equations in (15.1) are true. Work backwards:

b = Lc = L(Ux) = (LU)x = Ax.

By the way, the proof of that last sentence did not use at all the fact that L and U are
triangular or that L has diagonal entries equal to 1. However, if we wanted to start by
solving (15.1) and end up with a solution to Ax = b, it would be necessary for L and U to
have all nonzero diagonal entries. �

15.3 Problem (?). Let

A =

[
1 −2
3 2

]
.

Find matrices L, U ∈ R2×2 such that L is lower-triangular, U is upper-triangular, and
A = LU . Let b = (1, 11). Solve Ax = b by first solving Lc = b for some c ∈ R2 and then
solving Ux = c for x ∈ R2.

Content from Strang’s ILA 6E. Here are sketches of the existence of the LU -factorization.
First, reread Example 5 on p. 52 to see again how inverting products of elimination matrices
works. Think carefully about the two bold sentences on “feels an effect” and “feels no effect.”
Do you understand exactly what this means? Then read p. 53 and contrast the calculations
in equations (10) and (11). Which do you like better? Read all of p. 59—and think about
the last paragraph on p. 58: “A proof means that we have not just seen that pattern and
believed it and liked it, but understood it.” This is why we prove things. Another proof of
LU appears on p. 60, using the matrix multiplication technique discussed on p. 34.

So who cares? The work in Example 15.1 probably felt no more efficient than a routine
back-substitution approach (which you did in Problem 10.9, right?) Maybe it felt more
inefficient! That’s a valid feeling. All of our examples in this class are effectively toy problems
designed so that the on-the-fly arithmetic is easy.

But what if you need to solve Ax = bj for many bj? If you have only a finite number of
bj, maybe you could work with a large augmented matrix

[
A b1 · · · bp

]
, do elimination

on A via the matrix E, so EA = U , and then study
[
U Eb1 · · · Ebp

]
. Then you would

have to solve Ux = Ebj by back-substitution. However, it is arguably less computationally
expensive to solve LU = bj by the two-step process above. In particular, it may be the
case∗ that solving Ax = bj is part of a larger iterative process: at the jth step, you get a
∗ I found this StackExchange post really helpful:

https://math.stackexchange.com/questions/266355/necessity-advantage-of-lu-decomposition
over-gaussian-elimination.

https://math.stackexchange.com/questions/266355/necessity-advantage-of-lu-decomposition-over-gaussian-elimination
https://math.stackexchange.com/questions/266355/necessity-advantage-of-lu-decomposition-over-gaussian-elimination
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new bj, but A stays the same. If you want to keep doing this indefinitely, the elimination
calculations Ebj may become expensive. Doing the elimination just once to get A = LU ,
and then solving LUx = bj via the two-step process, may be less expensive.

The LU -factorization works when no row interchanges are needed, i.e., when we can
write EA = U with U upper-triangular and E as a product only of elimination matrices,
not permutation matrices. Basically, it’s possible to “almost” commute permutation and
elimination matrices so that we have PA = LU with P a product of permutation matrices,
L lower-triangular, and U upper-triangular. Figuring out how to get that P factor out front
is a little tricky, and I think this is better covered in a numerical linear algebra course. But
once you know PA = LU , to solve Ax = b, first permute PAx = Pb, and then solve
LUx = Pb as we did above.

Content from Strang’s ILA 6E. See p. 65. This is wholly optional reading and requires
a little more knowledge of permutation matrices than I expect or desire right now.
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Our best successes in this course arguably come from square systems: Ax = b with A ∈
Rm×m and b ∈ Rm, same number of equations as unknowns. We will see that it is with square
systems alone that we have a chance (not a guarantee) for both existence and uniqueness
of solutions—it is possible both to be able to solve the problem and have only one solution
for it. With nonsquare systems—Ax = b, A ∈ Rm×n, b ∈ Rm, m 6= n—we will show that
either existence or uniqueness always fails (maybe both). Understanding how to quantify
and qualify our failures, and how to move on from them, will be the central part of our
forthcoming story. We can see this happen with relatively small systems using relatively few
numbers.

16.1 Example. We consider our favorite problem Ax = b for the variety of A below.

(i) It’s hard to get nicer than

A =

[
1 0
0 1

]
,

because then the unique solution to Ax = b is always just x = b (for b ∈ R2).

(ii) It’s easy to get less nice, though. Take

A =

[
1 0
0 0

]
.

Then existence fails for b with b2 6= 0, while uniqueness also fails. Inspired by Problem
10.2 and the fact that Ae2 = 02, where e2 = (0, 1), we can check that

A

([
b1
0

]
+ ce2

)
=

[
b1
0

]
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for any b1, c ∈ R. Thus solutions, when they exist, are never unique. The dependence of
the columns affects both existence and uniqueness here, per the invertible matrix theorem.

(iii) With

A =

1 0
0 1
0 0

 ,
existence fails for those b ∈ R3 with b3 6= 0. But solutions, when they exist are unique,
because the only solution to Ax = 03 is x = 02. We saw this in Problem 10.2, and it’s
closely related to the independence of the columns. We’ll revisit this soon.

(iv) With

A =

1 0
0 0
0 0


both existence and uniqueness fail, since we can’t solve Ax = (0, 1, 0), while when we can
solve Ax = (b1, 0, 0) with x = (b1, 0), we can also solve it with x = (b1, c) for any c ∈ R.
And the columns are dependent.

(v) With

A =

[
1 0 0
0 1 0

]
we have existence but not uniqueness: take x = (b1, b2, c) to solve Ax = (b1, b2). Again,
dependent columns.

(vi) Last, existence and uniqueness fail for

A =

[
1 0 0
0 0 0

]
.

Once again, we can only solve Ax = b for b2 = 0, and when we can, x = (b1, c2, c3) is a
solution for any c2, c3 ∈ R. Dependent columns are the worst.

Here is what the previous example suggests as we move beyond square systems.

16.2 Conjecture. Let A ∈ Rm×n.

(i) If m > n (more equations than unknowns, more rows than columns, A is taller than it
is wide), then we will always fail to solve Ax = b for some b ∈ Rm. That is, C(A) 6= Rm.
It may or may not be possible to get unique solutions.

(ii) If m < n (more unknowns than equations, more columns than rows, A is wider than
it is tall), then we will never be able to solve Ax = b uniquely. Solutions may or may not
exist in the first place.
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Content from Strang’s ILA 6E. Now is a good time to reread p. 38.

Our successes going forward will hinge in no small part on a new perspective: how vectors
within a given set interact with each other. This may sound weird at first, but trust me that
it will feel completely natural soon. Think about the column space. For A ∈ Rm×n, we have

C(A) ={Av | v ∈ Rn} .

Every vector in C(A) is a vector in Rm. We know very well that controlling the column
space is the key (well, a key) to existence of solutions to Ax = b, for this equation is true if
and only if b ∈ C(A).

We say column space, not column set. The set of columns of A =
[
a1 · · · an

]
∈ Rm×n

is just the set {a1, . . . , an} of at most n vectors (maybe fewer than n, if some of the columns
of A are repeated). A space is more dynamic.

Specifically, the column space behaves well with respect to the fundamental objects of
vector arithmetic. Let w1, w2 ∈ C(A). Then there are v1, v2 ∈ Rn such that w1 = Av1 and
w2 = Av2. So,

w1 + w2 = Av1 + Av2 = A(v1 + v2) ∈ C(A)

since v1 + v2 ∈ Rn. That is, C(A) is “closed under addition”: adding two vectors in C(A)
yields another vector in C(A).

Similarly, if w ∈ C(A) with w = Av for some v ∈ Rn, and if c ∈ R, then

cw = c(Av) = A(cv) ∈ C(A),

since cv ∈ Rn. That is, C(A) is “closed under scalar multiplication”: multiplying a vector in
C(A) by a real number yields another vector in C(A).

Finally, since A0n = 0m, we have 0m ∈ C(A). Thus the column space is never empty, and
in particular it contains one of the most important vectors for vector and matrix arithmetic
alike.

Sets of vectors that have these properties—closure under vector addition and scalar mul-
tiplication and containing the zero vector—are among the most special and useful kinds
of sets. They don’t just exist and contain things; they are dynamic with respect to vec-
tor operations. We’ll see just how special these sets—these spaces—are in the context of
understanding, and maybe even solving, Ax = b for A nonsquare.

Day 17: Friday, February 14.

We took Exam 1.
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Day 18: Monday, February 17.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Null space of a matrix, subspace (N)

The column space governs existence: we can solve Ax = b if and only if b ∈ C(A).
But the column space says nothing about uniqueness: having b ∈ C(A) does not guarantee
that there is only one x such that Ax = b, but rather that there is at least one such x. To
understand uniqueness, we need to study a new set—more precisely, because of its dynamism,
a unique space.

We have discussed the following several times, and you proved it in Problem 10.2.

18.1 Theorem. Let A ∈ Rm×n.

(i) Suppose that the only z ∈ Rn such that Az = 0m is z = 0n. Then for any b ∈ Rm, the
problem Ax = b has at most one solution. (Maybe it has none.)

(ii) Suppose that for all b ∈ Rm, the problem Ax = b has at most one solution. (Maybe
it has none.) Then the only solution to Ax = 0m is x = 0n.

You saw another version of this in Theorem 14.2, right? Rereading that theorem right
now is probably a good idea.

Here is the point: we can understand uniqueness of solutions to the problem Ax = b for
any b by studying the problem for the special case of b = 0m. This motivates the study of
a new dynamic set related to A.

18.2 Definition. Let A ∈ Rm. The null space of A is

N(A) :={v ∈ Rn | Av = 0m} .

18.3 Example. (i) The null space of I2 is just {02}, for if I2v = 02, then since I2v = v,
we just have v = 02.

(ii) Let

A =

1 0
0 1
0 0

 .
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The system Ax = 03 (for x ∈ R2) is just
x1 = 0

x2 = 0

0 = 0,

so N(A) = {02} once again.

18.4 Problem (!). Prove that

N(In) = {0n} and N

([
In
0

])
= {0n}.

In the second, block matrix, you should interpret the symbol 0 as representing one or more
rows of zeros. [Hint: convince yourself that[

A
B

]
x =

[
Ax
Bx

]
whenever A ∈ Rm1×n, B ∈ Rm2×n, and x ∈ Rn.]

18.5 Example. Let

A =

[
1 0 2 3
0 1 0 4

]
.

For x ∈ R4, we have Ax = 02 if and only if{
x1 + 2x3 + 3x4 = 0

x2 + 4x4 = 0

This is not as nice as the square upper-triangular systems that we have previously studied.
There’s no equation with just one variable in it!

The right, if not immediately obvious, strategy is to solve for what we can easily solve
for. The unknowns x1 and x2 have coefficients of 1 on them, so solving for those two
variables in terms of x3 and x4 is easier, comparatively speaking, than solving for x3 or x4.
Gotta solve for something, anyway. We get{

x1 = −2x3 − 3x4

x2 = −4x4,

and if we put x = (x1, x2, x3, x4), then

x =


x1
x2
x3
x4

 =


−2x3 − 3x4
−4x4
x3
x4

 =


−2x3

0
x3
0

+


−3x4
−4x4

0
x4

 = x3


−2

0
1
0

+ x4


−3
−4

0
1

 .
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Think about that for a moment. We have shown that every x ∈ N(A) is a linear
combination of those two vectors on the right. More compactly,

N

([
1 0 2 3
0 1 0 4

])
= C



−2 −3

0 −4
1 0
0 1


 .

(Strictly speaking, we have shown that if x is in the null space of A, then x is in the column
space of that 4×2 matrix. You should check your work and show that each column in that
4× 2 matrix is in N(A).)

Do you see the pattern here? Our original matrix A had the block structure

A =
[
I2 F

]
, F :=

[
2 3
0 4

]
,

and its null space is

N(A) = C

([
−F
I2

])
.

This can’t be an accident.

Content from Strang’s ILA 6E. This example is basically the same as Example 1 on p.
93. Strang calls the columns of 

−2 −3
0 −4
1 0
0 1


the “special solutions” for Ax = 02. What is “special” about these solutions is that they
are linearly independent, and every solution to Ax = 02 is in the span of these solutions.

18.6 Problem (?). Let n > m and F ∈ Rm×(n−m). Prove that

N
([
Im F

])
= C

([
−F
Im

])
.

[Hint: write any x ∈ Rn as x = (xm,xn−m) with xm ∈ Rm and xn−m ∈ Rn−m, and argue
that [

A B
]
x =

[
Axm Bxn−m

]
when A ∈ Rm×m and B ∈ Rm×(n−m).]

18.7 Problem (!). Putting more zero rows into the matrix doesn’t change the null space.
We saw this already in Example 18.3. Adapt the work of Example 18.5 to express the null
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space of 1 0 2 3
0 1 0 4
0 0 0 0


as a column space.

18.8 Problem (+). Let 1 ≤ r < n, F ∈ Rr×(n−r), and

A =

[
Ir F
0 0

]
.

Here the two occurrences of the symbol 0 are meant to represent matrices whose entries
are all the number 0. (What are the dimensions of those matrices?) Prove that

N(A) = C

([
−F
Ir

])
.

We are doing examples and problems in these special forms for a reason, and I’ll tell you
what that reason is soon. Let’s pause from concrete numbers and focus on the dynamic
aspects of the null space. Spoiler: it’s the same dynamism as the column space.

Let A ∈ Rm×n. Suppose v1, v2 ∈ N(A). Then Av1 = 0m and Av2 = 0m, so

A(v1 + v2) = Av1 + Av2 = 0m + 0m = 0m.

Thus v1 + v2 ∈ N(A). Like the column space, the null space is “closed under addition”:
adding two vectors in N(A) yields another vector in N(A).

Similarly, if v ∈ N(A) and c ∈ R, then since Av = 0m, we have

A(cv) = c(Av) = c0m = 0m,

so cv ∈ N(A). That is, the null space is “closed under scalar multiplication”: multiplying a
vector in N(A) by a real number yields another vector in N(A).

Finally, since A0n = 0m, we have 0n ∈ N(A). Thus the null space is never empty, and it
contains one of the most important vectors for vector and matrix arithmetic.

Content from Strang’s ILA 6E. These properties of the null space appear in the very
last paragraph of p. 88.

Subsets of Rn (or Rm, or whatever) that have these three properties—closure under vector
addition, closure under scalar multiplication, presence of the zero vector—are just particu-
larly “nice” for linear algebra. They respect the fundamental arithmetic and algebra that
we do, and they arise often in connection with our fundamental problem of solving and un-
derstanding and approximating Ax = b. So, they deserve a special name that reflects their
dynamism—they are not merely sets but spaces of vectors that interact well together.
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18.9 Definition. A subset V of Rp is a subspace of Rp if the following are true.

(i) [Closure under vector addition] If v, w ∈ V, then v + w ∈ V.

(ii) [Closure under scalar multiplication] If v ∈ V and c ∈ R, then cv ∈ V.

(iii) [Presence of the zero vector] 0p ∈ V.

Content from Strang’s ILA 6E. Page 86 discusses the axioms for a subspace. Examples
1 and 2 on p. 87 present concrete (non)examples of subspaces of Rp.

18.10 Example. Let A ∈ Rm×n.

(i) C(A) = {Av | v ∈ Rn} is a subspace of Rm. We proved this some time ago; the
important thing here is that every vector in C(A) has the form Av ∈ Rm.

(ii) N(A) = {v ∈ Rn | Av = 0m} is a subspace of Rn. It should be obvious from the
definition of N(A) that every vector in the null space is a vector in Rn.

We will eventually show that every subspace is both a column space and a null space
(probably for different matrices). This is a miracle of definitions and algebra: the abstract
conditions of the definition of subspace realize themselves concretely in matrices. For the
purposes of this course, the only important subspaces that we will study will eventually be
column and null spaces. However, there will be times when working with the three axioms
for a subspace will be more convenient than representing the subspace as a particular column
or null space.

18.11 Problem (!). Let

V =


x1x2

1

 ∈ R3

∣∣∣∣∣∣ x1, x2 ∈ R

 .

Explain how each of the three conditions for a subspace fails for V .

Content from Strang’s ILA 6E. Section 3.1 discusses the much more general, and hugely
important, concept of a vector space. This is a set of elements called vectors that
we can add together and multiply by scalars (real or complex numbers), and for which these
operations of vector addition and scalar multiplication basically behave the
way that we expect arithmetic to behave. See the eight axioms on p. 89.

Maybe the two most important vector spaces are the column vectors with n entries,
which, of course, is Rn, and, from calculus, the space of continuous functions on an interval
I ⊆ R, which we denote by C(I). You know from calculus that if f and g are continuous
on I, then so are f + g and cf for any real c. (The space C(I) has the additional algebraic
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operation of function multiplication, fg, whereas we cannot multiply vectors in Rn in
any “natural” way to get another vector in Rn.) The r-times continuously differentiable
functions (functions whose first r derivatives exist and are continuous) form the subspace
Cr(I) of C(I), which is a natural player in differential equations.

The structure of vector spaces transcends matrix problems and provide the “right” frame-
work for understanding the linear structure that pervades calculus. See pp. 84–85 for just
a little on this. We will focus mostly on subspaces of Rn, not general vector spaces, in this
course.

Day 19: Wednesday, February 19.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Reduced row echelon form (RREF) (N), pivot column (of a matrix in RREF), free
column (of a matrix in RREF)

We return to the problem of concretely describing null spaces with a new wrinkle.

19.1 Example. Let

A =

[
1 2 0 3
0 0 1 4

]
.

We proceed as in Example 18.5: assume Ax = 02 and write this as the linear system{
x1 + 2x2 + 3x4 = 0

x3 + 4x4 = 0.

We solve for the variables with the simples coefficients of 1; these are now x1 and x3:{
x1 = −2x2 − 3x4

x3 = −4x4.

Vectorizing, we have

x =


x1
x2
x3
x4

 =


−2x2 − 3x4

x2
−4x4
x4

 =


−2x2
x2
0
0

+


−3x4

0
−4x4
x4

 = x2


−2

1
0
0

+ x4


−3

0
−4

1

 .
Thus

N

([
1 2 0 3
0 0 1 4

])
= C



−2 −3

1 0
0 −4
0 1


 . (19.1)
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All of our previous examples and problems about finding null spaces had the identity
matrix show up in a pretty obvious way. It looks like the 2 × 2 identity is jumbled here.
How can we sort it out?

We’ve handled “jumbled” matrices before. Recall that a permutation matrix P ∈ Rm×m

is a matrix formed by reordering the columns of the m×m identity matrix. If B ∈ Rm×n,
then PB reorders the rows of B per the ordering of the columns in P . With our A in this
example, however, it’s a matter of reordering columns. We’d be happier if the columns of
the 2× 2 identity matrix appeared first in A.

How can we make this happen? If multiplying on the left by a permutation matrix
reorders rows, multiplying on the right reorders columns. Here A ∈ R2×4, so if we multiply
on the right by a permutation matrix P , we better have P ∈ R4×4. What we want is

AP =

[
1 2 0 3
0 0 1 4

]
P =

[
1 0 2 3
0 1 0 4

]
=
[
a1 a3 a2 a4

]
,

and we know that if P =
[
p1 p2 p3 p4

]
, then

AP =
[
Ap1 Ap2 Ap3 Ap4

]
.

So, we better have [
a1 a3 a2 a4

]
=
[
Ap1 Ap2 Ap3 Ap4

]
.

We know that the columns of P are going to be columns of I4, and we know that Aej = aj,
where ej is the jth column of I4, i.e., the jth standard basis vectors. All together, this
says that we should take

P =
[
e1 e3 e2 e4

]
=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


to find [

1 2 0 3
0 0 1 4

]
P =

[
1 0 2 3
0 1 0 4

]
Inverting P , we have

N

([
1 0 2 3
0 1 0 4

])
= N

([
1 0 2 3
0 1 0 4

]
P−1

)
.

How does this compare to what we already know from (19.1)? Example 18.5 taught us
that

N

([
1 0 2 3
0 1 0 4

])
= C



−2 −3

0 −4
1 0
0 1


 ,
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and now we have shown that

N

([
1 0 2 3
0 1 0 4

]
P−1

)
= C



−2 −3

1 0
0 −4
0 1


 .

So where is the permutation on the right?
In the rows! Multiplying on the left by P interchanges rows 2 and 3, and we have

−2 −3
1 0
0 −4
0 1

 = P


−2 −3

0 −4
1 0
0 1

 .
So here is the conclusion:

N

([
1 0 2 3
0 1 0 4

]
P−1

)
= C

P

−2 −3

0 −4
1 0
0 1


 .

Content from Strang’s ILA 6E. This was basically Example 2 on p. 94.

19.2 Problem (+). Let m < n and F ∈ Rm×(n−m). Let P ∈ Rn×n be invertible. Prove
that

N
([
Im F

]
P
)

= C

(
P−1

[
−F
Im

])
.

[Hint: you want to solve
[
Im F

]
Px = 0m. Put y = Px. Now you want to solve[

Im F
]
y = 0m. You know how to do this from Problem 18.6. Along the way, check

that the matrix product in the column space above is actually defined.]

19.3 Problem (!). Adapt the work of Example 19.1 to express the null space of1 2 0 3
0 0 1 4
0 0 0 0


as a column space.

19.4 Problem (+). (i) The previous examples have been a little too perfect in that the
identity matrix that showed up in the RREF was I2, and the “F -block” that showed up
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was also 2× 2. Express the null spaces of1 0 2 3 0
0 1 0 4 0
0 0 0 0 0

 and

1 2 0 3 0
0 0 1 4 0
0 0 0 0 0


as column spaces, and comment on the identity matrix that shows up in those column
spaces.

(ii) Let 1 ≤ r < n and F ∈ Rr×(n−r). Let P ∈ Rn×n be invertible. Prove that

N

([
Ir F
0 0

]
P

)
= C

(
P−1

[
−F
In−r

])
.

As before, the symbols 0 denote matrices whose entries are all 0.

The conclusion from all of the recent problems and examples should be that the null space
is “easy” to describe when the matrix under consideration has one of the following special
forms:

In,

[
In
0

]
,

[
Im F

]
,

[
Ir F
0 0

]
,

[
Im F

]
P, or

[
Ir F
0 0

]
P. (19.2)

Above, P is in practice a permutation matrix (and actually a rather specific kind of permu-
tation matrix), although the only thing that we really required in the null space calculations
was the invertibility of P .

Certainly not every matrix has one of these six forms—common to all of these forms
is the appearance of an identity matrix within the columns of overall matrix. But every
nonzero matrix can be reduced to one of these forms by the elementary row operations that
we already know and love—by Gauss–Jordan elimination. Once again, the major technique
in computational linear algebra is putting zeros in matrices.

19.5 Example. Let

A =

1 2 1 7
2 4 2 14
0 0 2 8

 .
Previously we only performed elementary row operations on square matrices, but they
certainly work on nonsquare matrices, too. We compute1 2 1 7

2 4 2 14
0 0 2 8

 R2 7→ R2−2×R1−−−−−−−−−→
E21

1 2 1 7
0 0 0 0
0 0 2 8

 , E21 :=

 1 0 0
−2 1 0

0 0 1



R2 7→ R3, R37→R2−−−−−−−−−−→
P23

1 2 1 7
0 0 2 8
0 0 0 0

 , P23 :=

1 0 0
0 0 1
0 1 0
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R2 7→ (1/2)×R2−−−−−−−−−→
D22

1 2 1 7
0 0 1 4
0 0 0 0

 , D22 :=

1 0 0
0 1/2 0
0 0 1



R1 7→ R1−R2−−−−−−−−→
E12

1 2 0 3
0 0 1 4
0 0 0 0

 , E12 :=

1 −1 0
0 1 0
0 0 1

 .
That is,

EA =

1 2 0 3
0 0 1 4
0 0 0 0

 , E := E12D22P23E21.

Now put

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and F =

[
2 3
0 4

]
.

Then
EA =

[
I2 F
0 0

]
P =: R0

where the symbol 0 denotes the matrix
[
0 0

]
.

We saw in Problem 19.3 that

N(R0) = N

([
I2 F
0 0

]
P

)
= C

(
P−1

[
−F
I2

])
= C



−2 −3

1 0
0 −4
0 1


 .

This is helpful here because we have EA = R0 with E invertible. If v ∈ N(A), then
Av = 02, so E(Av) = 0m. And then

02 = (EA)v = R0v,

so v ∈ N(R0). Conversely, if v ∈ N(R0), then R0v = 02, so

Av = E−1R0v = E−102 = 02.

Thus N(A) = N(R0). This is a nice auxiliary fact: multiplying on the left by an invertible
matrix does not change the kernel!

All together, we conclude

N

1 2 1 7
2 4 2 14
0 0 2 8

 = C



−2 −3

0 −4
1 0
0 1


 .
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The example above is prototypical: Gauss–Jordan elimination “reduces” any A ∈ Rm×n

to a matrix of the following structure.

19.6 Definition. A matrix R ∈ Rm×n is in reduced row echelon form (RREF)
if it has the following four properties.

Row Property 1. Any nonzero row of R is below any row with nonzero entries.

Row Property 2. If a row contains nonzero entries, the first nonzero entry of that row
is 1, called the leading 1 or the pivot for that row.

Column Property 1. The other entries of any column containing a leading 1 are 0. That
is, a column containing a leading 1 is a column of the m ×m identity matrix Im, equiva-
lently, a standard basis vector for Rm. A column containing a leading 1 is called a pivot
column. A column that is not a pivot column is called a free column.

Column Property 2. If ei and ej are columns of R with i < j, then the first appearance
of ei must occur before any appearance of ej.

19.7 Problem (!). Explain all of the reasons why
1 0 0 0 0
0 3 0 0 1
0 0 0 0 0
2 0 0 0 0
0 0 1 0 0


is not in RREF.

19.8 Problem (!). Explain why 1 0 1
0 1 0
0 0 0


is in RREF and comment on the role of the adjective “first” in Column Property 2 of
Definition 19.6.

Here is the fruit of Gauss–Jordan elimination.

19.9 Theorem. Let A ∈ Rm×n be nonzero (i.e., A has at least one nonzero entry). There
exists an invertible matrix E ∈ Rm×m such that EA is in RREF with one of the following
forms:

(i) In, in which case A is square and invertible;
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(ii)
[
In
0

]
, in which case n < m (more rows than columns);

(iii)
[
Im F

]
, in which case m < n (more columns than rows) and F ∈ Rm×(n−m);

(iv)
[
Im F

]
P , with the same conditions as in form (iii) and P a permutation matrix;

(v)
[
Ir F
0 0

]
, in which case 1 ≤ r ≤ min{m,n} and F ∈ Rr×(n−r);

(vi)
[
Ir F
0 0

]
P , with the same conditions as in form (v) and P a permutation matrix.

This form is unique in the sense that if Ẽ ∈ Rm×m is invertible with ẼA in RREF, then
EA = ẼA. We write EA = rref(A) and call rref(A) the RREF of A.

We are not going to prove this theorem in detail. Existence, again, is just Gauss–Jordan
elimination. Uniqueness is surprisingly more annoying.

19.10 Problem (?). Example 19.5 constructs E ∈ R3×3 such that

E

1 2 1 7
2 4 2 14
0 0 2 8

 =

1 2 0 3
0 0 1 4
0 0 0 0

 .
(i) By revisiting the elementary row operations in that example, explain why E in Theorem
19.9 might not be unique. [Hint: could P23 or D33 have appeared earlier or later?]

(ii) With E from Example 19.5, find a permutation matrix P̃ such that

E

1 2 1 7
2 4 2 14
0 0 2 8

 =

1 0 3 2
0 1 4 0
0 0 0 0

 P̃ .
Contrast this with the result of Example 19.5 and explain how this shows that P and F
from Theorem 19.9 may not be unique.

(iii) Explain why there cannot exist a matrix A ∈ R3×4 such that

rref(A) =

1 0 3 2
0 1 4 0
0 0 0 0




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Conclude that not every permutation matrix P can appear in the forms of Theorem 19.9.

(iv) Give examples of two matrices A 6= B that have the same RREF. [Hint: look no
further than the first form in Theorem 19.9.]
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Content from Strang’s ILA 6E. A reduction to RREF is given at the top of p. 95 and
another is done in Example 2 at the bottom of the page. A third is Example 3 on pp. 97–98,
and this also includes a null space calculation and remarks on the CR-factorization (which
we will revisit shortly). Page 96 gives the algorithm for computing the RREF column by
column. Read p. 142 up to but not including the “Factorization” box.

19.11 Problem (?). Find a matrix A ∈ R3×4 whose entries are all nonzero such that

rref(A) =

1 1 0 1
0 0 1 0
0 0 0 0

 .
Provide a matrix E ∈ R3×3 such that EA = rref(A); you may express E as a product of
elementary matrices, and you do not have to multiply that product out.

19.12 Problem (?). For each of the six RREF forms in Theorem 19.9, find a matrix whose
RREF has that form. Construct your matrix so that it has at least two rows and at least
two columns and that all of its entries are nonzero. For the forms with a permutation
matrix, ensure that a permutation matrix is actually needed in your form (don’t just let P
be the identity, which is a permutation matrix, but a boring one). Give the exact RREF
of each matrix, not just the general form that it has.

Day 20: Friday, February 21.

20.1 Example. For practice with the axioms of the RREF from Definition 19.6, we con-
struct all matrices R ∈ R3×4 that are in RREF and that have pivot columns in columns 2
and 4 only. We proceed via the following steps.

1. Start with the first column (a very good place to start). If any entry is nonzero, that
entry is the leading nonzero entry in its row (can’t start earlier than the first column), and
so column 1 is a pivot column. This is not allowed under the rules of our current game, so
the first column is 03, and therefore

R =

0 ? ? ?
0 ? ? ?
0 ? ? ?

 .
2. The second column is a pivot column, so it is either e1, e2, or e3. Column Property 2
basically tells us that it’s e1. Otherwise, there would be no first appearance of e1 before
e2 or e3.

Here is another way to see this. If column 2 is e2, then

R =

0 0 ? ?
0 1 ? ?
0 0 0 0

 .
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The other two entries in row 1 (in columns 3 and 4) can’t both be 0, as that would violate
Row Property 1. So, at least one of them is nonzero, thus a leading nonzero entry. But
then e1 appears in column 3 or 4, again contradicting Column Property 2.

3. We now know

R =

0 1 ? ?
0 0 ? ?
0 0 ? ?

 .
Look at the third column. If it has a nonzero entry in rows 2 or 3, that is the leading
nonzero entry in that row, and so column 3 is a pivot column. This is not allowed in our
game. However, it doesn’t look like there are any restrictions on the (1, 3)-entry of R, since
that would not be a leading nonzero entry in row 1. Let’s write

R =

0 1 ∗ ?
0 0 0 ?
0 0 0 ?

 .
We have upgraded the (1, 3)-entry from ? to ∗ to emphasize that it can be any number
right now, zero or not.

4. The fourth column is a pivot column, so it is e1, e2, or e3. If it’s e1, then0 1 ∗ 1
0 0 0 0
0 0 0 0

 ,
but then the 1 in the (1, 4)-entry is not the leading nonzero entry in row 1, so column 4 is
not a pivot column after all. If column 4 is e3, then

R =

0 1 ∗ 0
0 0 0 0
0 0 0 1

 ,
and that contradicts Row Property 1. The only choice left is that column 4 is e2.

We conclude that all matrices R ∈ R3×4 that are in RREF with pivot columns in columns
2 and 4 only have the form

R =

0 1 ∗ 0
0 0 0 1
0 0 0 0

 ,
where the (1, 3)-entry is arbitrary. This is a pretty restricted family of matrices.

While our initial interest in the RREF was for the purposes of null spaces (and thus
the question of uniqueness of solutions to Ax = b), the RREF has many other virtues.
First, it helps us prove our longstanding Conjecture 9.4 on the CR-factorization. Recall that
this conjecture says that if A ∈ Rm×n has r independent columns, then A = CR for some
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C ∈ Rm×r and R ∈ Rr×n, where the columns of C are r independent columns of A. We’ll
give a “proof by example” first.

20.2 Example. Let A ∈ R3×4 be any matrix whose RREF is

R0 :=

1 2 0 3
0 0 1 4
0 0 0 0

 .
Here we are writing R0, not R, so we can save R for the factor in the CR-factorization to
come. Then there is an invertible E ∈ R3×3 such that EA = R0, and so A = E−1R0. Write

E−1 =
[
v1 v2 v3

]
,

and be aware that the columns of E−1 are independent.
Then

A = E−1R0 =
[
v1 v2 v3

] 1 2 0 3
0 0 1 4
0 0 0 0

 =
[
v1 2v1 v3 (3v1 + 4v2)

]
.

Importantly, v1 and v2 are independent columns of A! And no other columns of A are
independent along with v1 and v2.

If we stare at this representation of A long enough, hopefully we’ll see

A =
[
v1 2v1 v3 (3v1 + 4v2)

]
=
[
v1 v2

] [1 2 0 3
0 0 1 4

]
.

That’s our CR-factorization! Put

C =
[
v1 v2

]
and R =

[
1 2 0 3
0 0 1 4

]
to see thatA = CR, that C contains the independent columns ofA, and that the dimensions
of C and R check out. And it was no accident that we got R by chopping off the zero rows
of R0.

20.3 Theorem (CR-factorization—Strang). Let A ∈ Rm×n. There exist C ∈ Rm×r and
R ∈ Rr×n with the following properties.

(i) A = CR.

(ii) The columns of C are independent columns of A.

(iii) The column space of A equals the column space of C: C(A) = C(C). That is, the
columns of C together with any columns of A not in C are dependent.
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Proof. Let E ∈ Rm×m be invertible with EA in RREF. Write

EA =

[
Ir F
0 0

]
P.

This is the most general possible form of the RREF. We have 1 ≤ r ≤ min{m,n}. We allow
the zero blocks to be absent (in which case r = m), or the F block to be absent (in which
case r = n), or both. The matrix P is a permutation matrix, and maybe P = In.

Write E−1 =
[
C C̃

]
, where C contains the first r columns of E−1 and C̃ the last m− r

columns. In particular, the columns of C are independent, since they are columns of the
invertible matrix E−1. If m = r, then there is no C̃ block. Then

A =
[
C C̃

] [Ir F
0 0

]
P =

[
C CF

]
P = C

[
Ir F

]
P. (20.1)

Put R :=
[
Ir F

]
P to find A = CR.

The second equality in (20.1) shows that the columns of A are the columns of C and of
CF , since the permutation matrix P only rearranges the ordering of the columns in

[
C CF

]
when multiplying on the right. Thus C(A) = C

( [
C CF

] )
. Now, any column of CF has

the form Cf , where f is a column of F , and vector in the form Cf is therefore a linear
combination of the columns of C, and so Cf ∈ C(C). Thus the columns of A that are not
columns of C are columns of CF , which themselves are linear combinations of the columns
of C, and so C

( [
C CF

] )
= C(C). In particular, C(A) = C(C), and we do not obtain any

more independent columns of A by including columns from CF . �

Content from Strang’s ILA 6E. The second half of p. 96 revisits Example 2 (from p.
95) in the context of CR. Example 3 does the same. Now read the “Review” paragraph
toward the bottom of p. 97, p. 142 up to and now including the “Factorization” box, and
pp. 410–411 up to but not including #3.

The RREF fundamentally tells us about null spaces: for A ∈ Rm×n, if

rref(A) =

[
Ir F
0 0

]
P,

with (as in the proof above), maybe the zero blocks absent (r = m), or the F -block absent
(r = n), or P = In, then

N(A) = C

(
P−1

[
−F
In−r

])
.

Interpret this, maybe bizarrely, as N(A) = {0n} when r = n, as then the F -block is absent
and I0 just doesn’t make sense. This affords us superb control over the null space in the
abstract (although for toy problems that appear on problem sets, quizzes, or exams, this
expression for N(A) may not be worth memorizing).
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Content from Strang’s ILA 6E. This expression for the null space appears in the box on
p. 97 and the subsequent “Review” paragraph. You should now be able to understand and
appreciate all of p. 142 and all of pp. 410–411, including #3. Interpret PT as P−1 for now,
as we haven’t talked about transposes.

Because of the CR-factorization, it seems that the RREF can also tell us about a matrix’s
independent columns. The downside to computing the CR-factorization and extracting those
independent columns is that everything hinges on that matrix E that performs the Gauss–
Jordan elimination. The independent columns of A are some columns from E−1. Computing
E−1 could be nasty, and in the past (with the LU -factorization), we always preferred not
to compute it but leave it factored as a product of elementary matrices. There is a more
transparent way to extract the independent columns of A directly from knowledge of the
RREF.

Day 21: Monday, February 24.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Pivot column (of a matrix in general), free column (of a matrix in general), rank of a
matrix (in terms of number of pivot columns)

Our question is now what rref(A) tells us about C(A) for A ∈ Rm×n. We know how to
use rref(A) to control N(A) and therefore understand uniqueness of solutions to Ax = b.
How can we go back to our fundamental question of existence?

To talk sensibly, we need some new vocabulary, which relies on Definition 19.6.

21.1 Definition. Column j of a matrix is a pivot column of that matrix if column j
of the RREF is a pivot column, and otherwise column j is a free column if column j
in the RREF is a free column.

21.2 Example. Let

A =

1 2 1 7
2 4 2 14
0 0 2 8

 .
A byproduct of Example 19.5 was that

rref(A) =

1 2 0 3
0 0 1 4
0 0 0 0

 = R0.

The pivot columns of R0 are columns 1 and 3, because they contain the leading 1’s; the
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free columns are columns 2 and 4, because they are not pivot columns. The pivot columns
of A are therefore columns 1 and 3 as well; the free columns are columns 2 and 4.

I think it’s clear that the pivot columns of R0 are independent, since they are e1 and e2.
It may not be too hard to see that the pivot columns of A are independent, thanks to that
0 in the (3, 1)-entry of A. I claim that we can see the independence of the pivot columns
of A directly from the RREF without using any particular knowledge of the entries of A.

Write A =
[
a1 a2 a3 a4

]
. We want to show that a1 and a3 are independent, so

assume c1a1 + c2a3 = 03. The goal is c1 = c2 = 0. We know EA = R0 for some invertible
E ∈ R3×3, so we have

E(c1a1 + c2a3) = E03,

and therefore
c1Ea1 + c2Ea3 = 03,

and therefore
c1e1 + c2e2 = 03,

since Ea1 = e1 and Ea3 = e2. The independence of e1 and e2 therefore forces c1 = c2 = 0.
I also claim that a2 and a4 are dependent columns of A in the sense that a2 ∈ span(a1)

and a4 ∈ span(a1, a3). That is, the free columns are in the span of the preceding pivot
columns. Okay, that a2 ∈ span(a1) is pretty obvious from looking at the entries of A, but,
again, say that we didn’t know the exact entries of A, just the RREF. With

R0 =
[
e1 2e1 e2 (3e1 + 4e2)

]
,

we have
a2 = E−1(2e1) = 2E−1e1 = 2a1

and
a4 = E−1(3e1 + 4e2) = 3E−1e1 + 4E−1e2 = 3a1 + 4a3.

That a4 = 3a1 + 4a3 may not have been so obvious from the entries of A.
Since a2, a4 ∈ span(a1, a3), we conclude

C(A) = span(a1, a3).

And since a1 and a3 are independent, we shouldn’t be able to pare this span down any
further—this is the most efficient way to write C(A) as a span of (some) columns of A.

21.3 Problem (!). Use Example 21.2 to explain why C(A) 6= C(rref(A)) in general.

21.4 Remark. In the problem Ax = b, call the unknown xj a pivot variable of A if
column j of A is a pivot column, and call xj a free variable if column j of A is a free
variable. We can phrase the computational procedures of Examples 18.5, 19.1, and 19.5 as
follows. To determine N(A), put A in RREF as R0 and use the equation R0x = 0m to
solve for the pivot variables in terms of the free variables.
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Example 21.2 illustrates a number of important truths about pivot and free columns,
which we summarize in the next theorem. We will not prove this theorem, as the strategy of
proof is essentially that of the example. The results here mostly fall under what people mean
when they say “Elementary row operations preserve linear (in)dependent relations among the
columns of a matrix”—reducing A to its RREF doesn’t change how columns are dependent
or independent.

21.5 Theorem. Let A ∈ Rm×n.

(i) The pivot columns of A are independent.

(ii) The free columns of A are in the span of the pivot columns. More precisely, if the jth
column of A is a free column, then it is in the span of the pivot columns that appear in
the first j − 1 columns of A. (In fact, the weights in the expression of column j of A as a
linear combination of preceding pivot columns are the same as the weights in the expression
of column j of rref(A) as a linear combination of the preceding pivot columns.) If the first
column of A (j = 1) is free, then it is zero.

(iii) The column space of A is the span of the pivot columns of A.

21.6 Remark. It’s not really fair to say that the independent columns of A are the pivot
columns of A. The second and third columns of A from Example 21.2 are independent, as
are the third and fourth, and the first and fourth. In fact, any pair of columns from that A
is independent except for columns 1 and 2. Rather, what we are looking for is the simplest
way to find independent columns of A—and that comes from taking just the pivot columns.

The number of pivot columns in a matrix is a key piece of data for that matrix. Previously
(Definition 7.7) we defined the rank of a matrix as the length of the longest list of linearly
independent columns in that matrix. Nothing wrong with that, but that’s not very efficient.
Here is a more meaningful definition.

21.7 Definition. The rank of a matrix A, denoted rank(A), is the number of pivot
columns in A.

We will check in a moment that this definition of rank agrees with the old one, but first
here are some useful bounds on rank.

21.8 Theorem. Let A ∈ Rm×n. Then 0 ≤ rank(A) ≤ min{m,n}, with rank(A) = 0 only
when A is the zero matrix.

Proof. If rank(A) = 0, then A has no pivot columns, so rref(A) has no pivot columns and
therefore is the zero matrix. Otherwise, rref(A) would have a leading nonzero entry in some
row and thus a pivot column. Then since A = E−1rref(A) for some invertible E ∈ Rm×m, A
is also the zero matrix.

Next, A has n columns, so at most n of them can be pivot columns. Thus rank(A) ≤ n.
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And A has m rows, so rref(A) has m rows, and therefore rref(A) can have at most m leading
1’s, thus at most m pivot columns. And so rank(A) ≤ m. �

21.9 Problem (!). Let R ∈ Rm×n be one of the “canonical” RREF forms from Theorem
19.9. What is the rank of R? (Your answer will involve the numbers m, n, and/or r.)

We should probably check that our new definition of rank agrees with the old. Suppose
that A ∈ Rm×n has r pivot columns. If r = 0, then A is the zero matrix and so has no pivot
columns.

Next suppose that 1 ≤ r ≤ min{m,n}. If r = n, then any list of more than r columns in
A will contain at least one repeated column. Such a list is dependent.

21.10 Problem (?). Explain why. To get yourself started, let v, w ∈ Rm and explain
why the matrix A =

[
v w v

]
has dependent columns. [Hint: think about Ax = 0m.]

Now suppose 1 ≤ r < n. Consider any list of columns from A of length r + 1 or greater.
Here are some subcases. If any column appears two or more times in the list, then the list is
dependent, whether or not the list contains any pivot columns. If r columns in the list are
the r distinct pivot columns, then since the list has at least one more column, that column
must be a free column, thus a linear combination of those r pivot columns, thus the list is
dependent. But what if not all of the pivot columns are in the list? (This could happen,
say, for a matrix with only one pivot column and three free columns.) What if none of the
pivot columns are in the list? I think there’s still a gap in our argument.

Let’s leave it as a conjecture and do something concrete for a change.

21.11 Conjecture. Let A ∈ Rm×n have rank r. Then any list of r+ 1 or more columns of
A is dependent.

21.12 Example. Let

A =

1 2 1 7
2 4 2 14
0 0 2 8

 .
We studied the null space of A in Example 19.5 and the pivot and free columns of A in
Example 21.2. In particular, the latter example showed that columns 1 and 3 are the only
pivot columns, so rank(A) = 2.

Now we study the general problem Ax = b for b = (b1, b2, b3) ∈ R3 arbitrary. For
a small problem like this, the most efficient thing to do is to put the augmented matrix[
A b

]
into RREF in the form

[
R0 Eb

]
, where R0 = rref(A) and EA = R0 with E

invertible.
We basically repeat the steps of Example 19.5, where we were taking b = 03 throughout.

This time, however, we don’t repeat the elementary matrices that do all the elimination.
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We have  1 2 1 7 b1
2 4 2 14 b2
0 0 2 8 b3

 R2 7→ R2−2×R1−−−−−−−−−→

 1 2 1 7 b1
0 0 0 0 b2 − 2b1
0 0 2 8 b3



R2 7→ R3, R3 7→R2−−−−−−−−−−→

 1 2 1 7 b1
0 0 2 8 b3
0 0 0 0 b2 − 2b1



R2 7→ (1/2)×R2−−−−−−−−−→

 1 2 1 7 b1
0 0 1 4 b3/2
0 0 0 0 b2 − 2b1



R1 7→ R1−R2−−−−−−−−→

 1 2 0 3 b1 − b3/2
0 0 1 4 b3/2
0 0 0 0 b2 − 2b1

 .
Then Ax = b is equivalent to

x1 + 2x2 + 3x4 = b1 − b3/2
x3 + 4x4 = b3/2

0 = b2 − 2b1.

The third equation is a “solvability condition”: if Ax = b, then we must have b2 = 2b1.
This is not the first time that we’ve seen this condition, and hopefully it’s apparent from
the row structure of A (the second row is twice the first row). If this condition is met, then
the first two equations allow us to solve for x1 and x3 easily in terms of x2 and x4. We did
this in Example 19.5, but now we have the extra baggage of b. Anyway, we get

x =


x1
x2
x3
x4

 =


(b1 − b3/2)− 2x2 − 3x4

x2
b3/2− 4x4

x4

 =


b1 − b3/2

0
b3/2

0

+ x2


−2

1
0
0

+ x4


−3

0
−4

1

 .
Assuming b2 = 2b1 and taking x2 = x4 = 0, we conclude that one solution to Ax = b

is x? := (b1 − b3/2, 0, b3/2, 0), while all other solutions are x = x? + c1z1 + c2z2, where
we recognize N(A) = C

( [
z1 z2

] )
from Example 19.5. By the way, taking b = 0 (i.e.,

b1 = b2 = b3 = 0), we recover the null space calculation from that example. This structural
pattern in the solution is, like so many other things in this course, no accident.

21.13 Theorem. Let A ∈ Rm×n and b ∈ Rm. Suppose that x? ∈ Rn satisfies Ax? = b.
Then any other solution x ∈ Rn to Ax = b has the form x = x? + z for some z ∈ N(A).
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21.14 Problem (!). Prove it. [Hint: what does x− x? do?]

It looks like we have a “decomposition” from Theorem 21.13 for solutions to Ax = b. Any
solution x is the sum of one “particular” solution and a vector in the null space. As in so
many other places in the course, we need to build some more tools, but eventually we will
be able to say a bit more about what that “particular” solution is doing, and maybe how to
choose it best when we have many options.

Content from Strang’s ILA 6E. Read all of p. 104–105.

Day 22: Wednesday, February 26.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Matrix with full column rank (N), matrix with full row rank (N)

It probably won’t hurt to do another concrete computational example.

22.1 Example. Let

A =


1 2 0
2 4 0
1 2 2
7 14 8

 .
This is, of course, the transpose of the matrix from Examples 19.5 and 21.2, and we’ll talk
about transposes in detail someday. For now, we study Ax = b, b = (b1, b2, b3, b4):

[
A b

]
=


1 2 1 b1
2 4 0 b2
1 2 2 b3
7 14 8 b4

 R2 7→ R2−2×R1−−−−−−−−−→


1 2 0 b1
0 0 0 b2 − 2b1
1 2 2 b3
7 14 8 b4



R3 7→ R3−R1−−−−−−−−→


1 2 0 b1
0 0 0 b2 − 2b1
0 0 2 b3 − b1
7 14 8 b4



R4 7→ R4−7×R1−−−−−−−−−→


1 2 0 b1
0 0 0 b2 − 2b1
0 0 2 b3 − b1
0 0 8 b4 − 7b1
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R4 7→ (1/8)×R4−−−−−−−−−→


1 2 0 b1
0 0 0 b2 − 2b1
0 0 2 b3 − b1
0 0 1 (b4 − 7b1)/8



R3 7→ R3−2×R4−−−−−−−−−→


1 2 0 b1
0 0 0 b2 − 2b1
0 0 0 b3 − b1 − (b4 − 7b1)/4
0 0 1 (b4 − 7b1)/8



R2 7→ R4, R4 7→R2−−−−−−−−−−→


1 2 0 b1
0 0 1 (b4 − 7b1)/8
0 0 0 b3 − b1 − (b4 − 7b1)/4
0 0 0 b2 − 2b1

 .
A byproduct of this calculation is that

rref(A) =


1 2 0
0 0 1
0 0 0
0 0 0

 ,
and so columns 1 and 3 of A are pivot columns, and rank(A) = 2.

The problem Ax = b is then equivalent to
x1 + 2x2 = b1

x3 = (b4 − 7b1)/8
0 = b3 − b1 − (b4 − 7b1)/4
0 = b2 − 2b1

We now have two solvability conditions:

b3 − b1 −
b4 − 7b1

4
= 0 and b2 = 2b1.

The second cleans up nicely to just b3 + 3b1/4 − b4/4 = 0 (check it), and so the two
solvability conditions are

b2 = 2b1 and b4 = 3b1 + 4b3.

If these are met, then the solution x has the form

x =

x1x2
x3

 =

 b1 − 2x2
x2

(b4 − 7b1)/8

 =

 b1
0

(b4 − 7b1)/8

+

−2x2
x2
0

 =

 b1
0

(b4 − 7b1)/8

+ x2

−2
1
0

 .
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A byproduct of this calculation is that

N(A) = C

−2
1
0

 = span

−2
1
0

 .

22.2 Problem (!). Interpret this null space calculation in light of Problem 19.4. [Hint:
here n− r = 1 and the 1× 1 identity matrix is just 1, or

[
1
]
, if you must.]

The previous two examples involved matrices A ∈ Rm×n with 1 ≤ rank(A) < min{m,n}.
Some interesting things happen in the “extreme” case of rank(A) = min{m,n}.

22.3 Example. (i) Here are two matrices A ∈ R2×n with n ≥ 2 and rank(A) = 2:[
1 0
0 1

]
and

[
1 0 0
0 1 0

]
.

I hope you see that each matrix has enough columns to span R2, so in each case C(A) = R2.
That is, we can always solve Ax = b. However, in the second case, the third column is
not a pivot column, so N(A) 6= {03}, and in that case solutions to Ax = b aren’t unique.
We knew that anyway from Corollary 22.7 since the second matrix has more columns than
rows.

(ii) Here are two matrices A ∈ Rm×2 with m ≥ 2 and rank(A) = 2:

[
1 0
0 1

]
and

1 0
0 1
0 0

 .
Same deal as before with I2, of course, but in the second case, while we can’t always solve
Ax = b, we can always do so uniquely, because every column is a pivot column, and so
N(A) = {02}.

Content from Strang’s ILA 6E. Read Example 1 on pp. 105–106 and Example 2 on p.
107.

Here is what these examples teach us.

22.4 Theorem. Let A ∈ Rm×n.

(i) Suppose that m ≤ n and rank(A) = m. Then C(A) = Rm. That is, we can always
solve Ax = b for any b ∈ Rm. In this case, we say that A has full row rank.

(ii) Suppose that n ≤ m and rank(A) = n. Then N(A) = {0n}. That is, if we can solve
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Ax = b for some b ∈ Rm, then the solution x is unique. In this case, we say that A has
full column rank.

Proof. (i) Let R0 = rref(A) and let E ∈ Rm×m be invertible with EA = R0. Let b ∈ Rm.
Then Ax = b if and only if EAx = Eb, so if and only if R0x = Eb. Abbreviate c = Eb, so
the goal is to solve R0x = c.

For example, suppose that A ∈ R3×6 with rank(A) = 3 and

R0 =
[
0 e1 f1 e2 e3 f2

]
with the first column and f1 and f2 all free Abbreviate c = Eb. Then we want to solve

[
0 e1 f1 e2 e3 f2

]

x1
x2
x3
x4
x5
x6

 =

c1c2
c3

 .

One way to do this is just to let the standard basis vectors show up in the end and assign
those vectors the weights c1, c2, c3. We can do this by taking x2 = c1, x4 = c2, and x5 = c3
and putting x1 = x3 = x6 = 0. That is, x = (0, c1, 0, c2, c3, 0).

More generally, if R0 ∈ Rm×n has m pivot columns and thus contains all m columns of
Im at least once, define x by taking xj to be the jth entry of Eb if the jth column of R0 is
the pivot column ej, and otherwise let xj be 0. Then R0x = c. By the work above, Ax = b.

(ii) In this case, every column of A is a pivot column, so all of the columns of A are
independent, and therefore N(A) = {0n}. �

Content from Strang’s ILA 6E. Read the rest of p. 106 starting from “This example is
typical. . ..” Then read all of p. 108.

22.5 Problem (?). Make and fill in a table with the following five columns. The first
column contains the six forms for the RREF from Theorem 19.9. The second column
contains two matrices: one a matrix whose RREF has that form (follow the guidelines of—
and feel free to reuse your matrices from—Problem 19.12) and the other the exact RREF of
that matrix. The third column is “Existence”; put “Always” or “Sometimes” depending on
whether solutions to Ax = b always exist or only sometimes exist when A has that RREF
form. The fourth column is “Uniqueness”; put “Always” or “Never” depending on whether
solutions to Ax = b are unique or not when A has that RREF form. (Why is there no
“Sometimes” for uniqueness?) The fifth column is “Rank”; specify how the rank relates to
m and/or n (be more precise than rank(A) ≤ min{m,n}), and in particular indicate any
RREF form corresponding to full column or row rank.
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22.6 Problem (?). Here is a happy example of how rank is “stable.” Let A ∈ Rm×n

be any matrix and let B ∈ Rm×m be invertible. Explain why rank(BA) = rank(A),
but give an example to show that C(BA) 6= C(A) in general. [Hint: how do the pivot
columns of A become the pivot columns of BA when B is invertible? Think about spans
and independence.]

Here is one more nasty little consequence of rank. Let A ∈ Rm×n with n > m, so there are
more columns then rows, and the problem Ax = b has more unknowns than equations. We
probably expect that if we can solve this problem, the solution should not be unique—there
is too much “freedom” in the problem since the unknowns outnumber the equations telling
them what to do.

And there is. The issue is that with n > m, not every column of A can be a pivot column,
since rank(A) ≤ min{m,n} = m < n. So, some columns of A are free, and therefore the
columns of A are dependent. Thus N(A) 6= {0m}. This is disappointingly robust enough to
stand on its own.

22.7 Theorem. If A ∈ Rm×n with n > m (more columns than rows), then N(A) 6=
{0m}. (Equivalently, and importantly, any list of n > m vectors in Rm is dependent.) In
particular, if a solution to Ax = b exists, then it is never unique.

Content from Strang’s ILA 6E. This is discussed in the “Important” box on p. 98 and
the two paragraphs preceding that. Now read Example 4 on p. 98.

It looks like we have accomplished the major goal of the course: solve Ax = b and
understand when we can’t. We make the augmented matrix

[
A b

]
and use Gauss–Jordan

elimination to reduce A to rref(A) = R0 with b transforming into c along the way. Then
we study

[
R0 c

]
. That is, Ax = b and R0x = c have the same solutions (if any). For the

problem to have a solution, if the ith row of R0 is all zero, then the ith entry of c must be 0.
Assuming those “solvability conditions” to be true, we then rewrite the system R0x = c as a
system of equations and solve for the “free variables” in terms of the “pivot variables” (recall
Remark 21.4). In the special case that A is square, we could just do Gaussian elimination to
convert A to its upper-triangular form U ; if all of the diagonal entry of U are nonzero, then
we can back-substitute. If a diagonal entry is 0, then it’s probably best to go all the way to
RREF to have some control over the null space.

Content from Strang’s ILA 6E. Read all of the “Worked Examples” on pp. 109–110.

Considering all of this good work, I claim that we are now pretty good at solving Ax = b
(especially when A is square and invertible), but we could still be better at understanding
Ax = b, particularly at understanding failure

Question 1. If a solution is not unique, and therefore there are infinitely many solutions,
can we quantify how many “different” solutions there are beyond “infinitely many?”
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Question 2. If N(A) 6= {0n}, can we quantify how many “degrees of freedom” the null
space gives to the problem?

Question 3. If there is no solution for some b, and therefore C(A) 6= Rm, can we quantify
and qualify how much of Rm the column space “misses”?

In short, can we understand more about the structure of N(A) and C(A)?
We basically have the answer with C(A) already. We know that the pivot columns of

A are independent and span C(A). If we remove a pivot column from consideration, then
the remaining pivot columns won’t span C(A), because otherwise the missing pivot column
would be in the span of those remaining pivot columns. Then all of the pivot columns
together would be dependent. This begs some other questions related to the rank, one of
which we raised in Conjecture 21.11. Suppose that A ∈ Rm×n has rank r.

Question 4. Do any r independent columns of A (pivot or not) span C(A)? In other words,
do we really have to use the pivot columns to control C(A) efficiently?

Question 5. Can fewer than r columns of A span C(A)? We know that fewer than r pivot
columns of A can’t span C(A). Can we somehow beat the pivot columns?

Question 6. Can we describe N(A) as a span of some independent vectors (in Rn) or,
equivalently, as a column space of a matrix with full column rank? We know well that the
null space is always a column space by now, just a column space of a slightly complicated
block matrix. If A doesn’t have full column rank and therefore N(A) 6= {0n}, how does the
rank of A show up in understanding N(A)?

To answer these questions (and prove Conjecture 21.11), we need some new tools.

Day 23: Friday, February 28.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Basis (for a subspace of Rp)

Content from Strang’s ILA 6E. You should be very comfortable with the notion of
independence by now. Read pp. 115–117 thoroughly. Think carefully about the “guilty”
remark at the end of p. 117. Which way of saying that the columns of A ∈ Rm×n are
independent feels easier to you—that Ax = 0m forces x = 0n (the “democratic” way) or
that one column of A is a combination of other columns (the “guilty” way)?

You should also be very comfortable with the notion of span by now. Read “Vectors
that Span a Subspace” at the start of p. 118.
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23.1 Example. Let

A =

1 2 1 7
2 4 2 14
0 0 2 8

 .
We know from long experience (Examples 19.5, 21.2, 21.12) that columns 1 and 3 are pivot
columns and therefore are independent and span C(A) and that

N(A) = C



−2 −3

1 0
0 −4
0 1


 .

The columns of this matrix giving N(A) are also independent, for if

x1


−2

1
0
0

+ x2


−3

0
−4

1

 = 04,

then 
∗
x1
∗
x2

 = 04,

thus x1 = x2 = 0. Even though the arithmetic was simple, I intentionally wrote ∗ to
show how much I don’t care about the other entries of that linear combination beside the
“special” ones that just reveal x1 and x2.

The result is the same. While C(A) and N(A) are very different spaces, we have
described them in the same way: as column spaces of matrices with independent columns,
as spans of lists of independent vectors. The vectors in these lists are not unique. Example
21.12 showed that b = (b1, b2, b3) ∈ C(A) if and only if b2 = 2b1. That is,

b =

b1b2
b3

 =

 b12b1
b3

 = b1

1
2
0

+ b3

0
0
1

 .
Thus

C(A) = span

1
2
0

 ,
0

0
1

 = C

1 0
2 0
0 1

 .

The vectors in this span are also independent (check it), but only one is a column of A.
The new result is that we have written C(A) as a span of independent vectors which

were not all columns of A. But the old result is that we still only needed two vectors to do
it.



Day 23: Friday, February 28 104

Here is the pattern that we should be seeing: writing column spaces and null spaces as
spans of independent vectors is an efficient way of describing them. It turns out that we
can always do this, which should not surprise us. The RREF teaches us that the column
space is always the span of the pivot columns, which are always independent. The RREF
also teaches us that we can write the null space as the column space of a “special” kind of
matrix, whose columns always turn out to be independent. (Depending on the form of the
RREF, there are six forms that the null space representation can take. It’s okay if this feels
annoying. But bear in mind that saying “the column space is always the span of the pivot
columns” is actually much vaguer than those forms for the null space!)

23.2 Definition. Let V be a subspace of Rp. A list of vectors v1, . . . ,vd ∈ V is a basis
for V if the following hold.

(i) The vectors v1, . . . ,vd are independent.

(ii) V = span(v1, . . . ,vd).

23.3 Problem (!). Let V be a subspace of Rp. Prove that v1, . . . ,vd ∈ V are a basis for
V if and only if the following are both true.

(i) The matrix
[
v1 · · · vd

]
∈ Rp×d has full column rank.

(ii) V = C
( [

v1 · · · vd
] )

.

23.4 Example. (i) The standard basis vectors for Rn are a basis for Rn. (If they weren’t,
it would be a pretty awful use of the word “basis.”) Here’s the proof for n = 3, which I
think you know by now already. If v ∈ R3, then

v =

v1v2
v3

 = v1e1 + v2e2 + v3e3.

Thus R3 = span(e1, e2, e3). If x1e1 + x2e2 + x3e3 = 03, then with x = (x1, x2, x3), we have
x = 03, thus x1 = x2 = x3 = 0. This is the linear independence of e1, e2, e3.

(ii) The pivot columns of a matrix are a basis for that matrix’s column space. No surprises
here: the pivot columns are independent and they span that matrix’s column space.

(iii) The columns of an invertible matrix A ∈ Rm×m are a basis for Rm. Again, unsurpris-
ing: these columns are independent and C(A) = Rm.

(iv) Let’s do one more null space calculation. Let A ∈ R3×5 with

rref(A) = R̃0P, R̃0 =

1 0 f3 f4 f5
0 1 g3 g4 g5
0 0 0 0 0

 ,



Day 23: Friday, February 28 105

for some f3, f4, f5, g3, g4, g5 ∈ R and a permutation matrix P ∈ R5×5. We know Ax = 03

if and only if R̃0Px = 03. The permutation matrix is annoying, so here’s a trick: put
y = Px. Then Ax = 03 if and only if R̃0y = 03. This turns into the system

y1 + f3y3 + f4y4 + f5y5 = 0
y2 + g3y3 + g4y4 + g5y5 = 0

0 = 0,

which we easily solve as

y =


y1
y2
y3
y4
y5

 =


−f3y3 − f4y4 − f5y5
−g3y3 − g4y4 − g5y5

y3
y4
y5

 = y3


−f3
−g3

1
0
0

+ y4


−f4
−g4

0
1
0

+ y5


−f5
g5
0
0
1

 .
Then

x = P−1y = y3P
−1


−f3
−g3

1
0
0

+ y4P
−1


−f4
−g4

0
1
0

+ y5P
−1


−f5
g5
0
0
1

 ,
and so

N(A) = C

P−1

−f3 −f4 −f5
−g3 −g4 −g5

1 0 0
0 1 0
0 0 1


 .

How does this give a basis for the null space? We’ve already expressed the null space
as a column space, so that takes care of the span; as for independence, if we abbreviate
N(A) = C(P−1B), then we want to show that the columns of P−1B are independent. So,
suppose P−1Bv = 05; then Bv = 05. But this says

∗
∗
∗
v1
v2
v3

 = 05,

from which we get v = 03.
More generally, if for A ∈ Rm×n

rref(A) =

[
Ir F
0 0

]
P,
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this argument shows that the columns of

P−1
[
−F
In−r

]
are a basis for N(A). The great thing is that we didn’t need to know anything about P !
All that mattered was the invertibility of P , not even that P was a permutation matrix.

Content from Strang’s ILA 6E. Read all of “A Basis for a Vector Space” on pp. 118–119.
Every single thing here is important. Then read Worked Example 3.4 A on p. 122. This is
a very important example that you should know how to prove.

Day 24: Monday, March 3.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Trivial subspace of Rp, dimension (of a subspace of Rp)

A basis is fundamentally a “coordinate system” for a subspace: we can “reach” every
vector in the subspace in a unique way “via” the basis. We know this in our hearts with the
standard basis e1, e2 for R2: any x = (x, y) ∈ R2 has the unique form x = xe1 + ye2.

24.1 Theorem. Let V be a subspace of Rp and let v1, . . . ,vd ∈ V be a basis for V. For
any v ∈ V, there are unique c1, . . . , cd ∈ R such that

v = c1v1 + · · ·+ cdvd.

Proof. Let A =
[
v1 · · · vd

]
, so V = C(A). Then any v ∈ V can be written as a linear

combination of the columns of A; this is the existence result for the coefficients ck. We need
to show uniqueness. If there are two sets of coefficients, then we have v = Ax and v = Ay
for some x, y ∈ Rd. But then x− y ∈ N(A) = {0d} since A has independent columns, thus
x = y. �

But this presumes that a subspace has a basis. We know this to be true for the most
important subspaces, column spaces and null spaces, but it turns out that the three subspace
axioms alone guarantee the existence of a basis. To prove that, we need an unsurprising
auxiliary result.

24.2 Lemma. Let V be a subspace. If v1, . . . ,vd ∈ V and c1, . . . , cd ∈ R, then c1v1 + · · ·+
cdvd ∈ V. More generally, span(v1, . . . ,vd) is contained in V.

Proof. This is really an induction argument on d. Here’s why it’s true for d = 3. Since v1,
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v2, v3 ∈ V , the subspace axioms guarantee c1v1, c2v2, c3v3 ∈ V . Then the axioms guarantee
c1v1 + c2v2 ∈ V , and so (c1v1 + c2v2) + c3v3 ∈ V . �

Actually, we need to exclude one kind of subspace from the following existential result
about bases.

24.3 Definition. The trivial subspace of Rp is {0p}.

24.4 Problem (!). Check that {0p} is indeed a subspace of Rp. Why can’t it have a basis?

24.5 Theorem. Let V 6= {0p} be a subspace of Rp. Then V has a basis.

Proof. This is a proof by exhaustion, which means that we’ll exhaust all possible cases and
also ourselves. Since V 6= {0p}, there is v1 ∈ V such that v1 6= 0p. One of two things is true:
either V = span(v1) or V 6= span(v1). In the first case, v1 by itself is a basis for V since it’s
nonzero and therefore independent and also spans V .

In the second case, there is v2 ∈ V such that v2 6∈ span(v1). Since v1 6= 0p, the list
v1, v2 is independent. Once again, one of two things is true: either V = span(v1,v2) or
V 6= span(v1,v2). In the first case, v1, v2 is a basis for V .

In the second case, there is v3 ∈ V such that v3 6∈ span(v1,v2). I think you know what
to do. . .

Assuming V 6= span(v1), one of two things has to happen in the end. First, we could have
a list v1, . . . ,vd ∈ V such that V = span(v1, . . . ,vd), v1 6= 0p and vj 6∈ span(v1, . . . ,vj−1)
for j = 2, . . . , d. In this case, v1, . . . ,vd is a basis for V .

Or, we’ve turned the crank far enough to have an independent list v1, . . . ,vp ∈ V of p
(necessarily distinct!) vectors. If we try to push this one step further, either we’d have
V = span(v1, . . . ,vp), and there’s our basis, or we’d find vp+1 ∈ V such that vp+1 6∈
span(v1, . . . ,vp). I claim the second situation won’t happen. Here’s why.

Put A =
[
v1 · · · vp

]
, so A ∈ Rp×p has independent columns and therefore is invertible.

Thus C(A) = Rp. Lemma 24.2 guarantees that C(A) is contained in V , so all of Rp is
contained in V . But V is contained in Rp, so the only possibility is that V = Rp and
V = C(A). Then v1, . . . ,vp is a basis for Rp after all. �

24.6 Problem (!). Reread the preceding proof and identify exactly where we used the
assumption that V was a subspace.

The point of a basis is efficient representation. Theorem 24.1 gives us part of that ef-
ficiency: there is only one way to represent vectors with respect to a basis. And now we
know there is always a basis. One more big thing remains: the amount of data in a basis is
effectively always the same in that any basis contains the same number of vectors. (Deeper
question: is there a “best” basis for a subspace? What more could we want? Think about
it. . .)
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24.7 Theorem. Let V 6= {0p} be a subspace of Rp. Any basis for V contains the same
number of vectors.

Proof. Say that your basis is a1, . . . , ar and mine is b1, . . . ,bs. So, both a1, . . . , ar and
b1, . . . ,bs are independent and V = span(a1, . . . , ar) and V = span(b1, . . . ,bs). We want
r = s; otherwise, one of us is more efficient than the other, and that’s not right. This will
be a proof by contradiction. We assume r 6= s, and we figure out something wrong. If r 6= s,
then either r < s or s < r. We’ll do the proof for s < r and get a contradiction, and I claim
that “flipping things around” basically shows r < s leads to a contradiction, too.

I want to do two small cases of s < r before giving the abstract proof. This will show
us the pattern. Remember throughout that since V = span(a1, . . . , ar) and each bj ∈ V , we
have aj ∈ span(b1, . . . ,bs). Here we go.

1. s = 1 and r = 2. So a1 = x1b1 and a2 = x2b1. This looks suspiciously like a1 and a2

are both multiples of the same vector b1, which suggests dependence. If we think about
dependence as “nontrivial linear combination adding to zero,” we might “cross-multiply” to
get

x2a1 + (−x1)a2 = x2x1b1 − x1x2b1 = 0p.

Neither of x1 nor x2 can be 0, as otherwise a1 = 0p or a2 = 0p (which contradicts the
independence of a1 and a2), so this is a nontrivial linear combination that adds to the zero
vector. That contradicts the independence of a1 and a2.

2. s = 2 and r = 3. Then we can write

a1 = x1b1 + x2b2 =
[
b1 b2

] [x1
x2

]
,

a2 = y1b1 + y2b2 =
[
b1 b2

] [y1
y2

]
,

and
a3 = z1b1 + z2b2 =

[
b1 b2

] [z1
z2

]
.

Put it all together to get

A = BM, A =
[
a1 a2 a3

]
, B =

[
b1 b2

]
, and C =

[
x1 y1 z1
x2 y2 z2

]
.

Here’s the problem: C ∈ R2×3. This matrix C has more columns than rows. So, there is
w ∈ R3 such that w 6= 03 and Cw = 02. But then

Aw = BCw = B(Cw) = B02 = 0p,

thus w ∈ N(A). Since A has independent columns, N(A) = {0p}. This is the contradiction.

3. We are assuming span(a1, . . . , ar) = span(b1, . . . ,bs) with s < r. Put A =
[
a1 · · · ar

]
and B =

[
b1 · · · bs

]
. Then C(A) is contained in C(B). Write each aj as aj = Bcj for
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some cj ∈ Rs. Then A = BC with C =
[
c1 · · · cr

]
, so C ∈ Rs×r. Since r > s, there is

z ∈ Rr such that z 6= 0r and Cz = 0s. But then Az = BCz = B(Cz) = B0s = 0r. This
contradicts the independence of the columns of A. �

24.8 Problem (?). Reread the third, general step in the previous proof and explain how
it proves the following. If a1, . . . , ar, b1, . . . ,bs ∈ Rp with span(a1, . . . , ar) contained in
span(b1, . . . ,bs), and if r > s, then a1, . . . , ar is dependent.

24.9 Problem (+). Complete the proof of Theorem 24.7 by showing that r < s leads to a
contradiction. [Hint: use Problem 24.8 to interchange the role of a1, . . . , ar and b1, . . . ,bs.]

24.10 Problem (+). Here is a chance to fill in some gaps, answer some old questions,
and prove some lingering conjectures about spans and independence. Let V be a subspace
of Rp with dimension dim(V) = r ≥ 1.

(i) Use Problem 24.8 to prove that any list of more than r vectors in V is dependent.

(ii) Use the previous part to prove that dim(V) ≤ p.

(iii) Prove that any list of r independent vectors in V is a basis for V . [Hint: if not, why
is there a list of r + 1 independent vectors in V?]

(iv) Prove that any list of vectors that spans V contains an independent “sublist” that
spans V (and thus is a basis for V). By “sublist” I mean that if the original list has the
form, say, v1, v2, v3, v4, v5, then the vectors v1, v3, v5 are a sublist. [Hint: put the original
list into a matrix and think about the pivot columns.]

(v) Prove that any list of r vectors that spans V is a basis for V . [Hint: if such a list is
dependent, use the previous part to conclude dim(V) < r.]

Content from Strang’s ILA 6E. Page 120 proves Theorem 24.7. Read the paragraphs
after the boxed “Definition.” Then read Worked Example 3.4 B on p. 122.

Since any (nontrivial) subspace has a basis, and any basis for a (nontrivial) subspace has
the same length, it’s fair to give a name to that length.

24.11 Definition. Let V be a subspace of Rp. The dimension of V, denoted dim(V), is
the length of any basis for that subspace. We define dim({0p}) := 0.

24.12 Example. (i) Since the standard basis e1, . . . , en for Rn contains n vectors,
dim(Rn) = n.

(ii) Let A ∈ Rm×n have rank r ≥ 1. Then dim[C(A)] = r, since A has r pivot columns
and those pivot columns form a basis for A.
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(iii) Let A ∈ Rm×n have rank r ≥ 1. If r = n, then N(A) = {0n}, so in that case
dim[N(A)] = 0. If 1 ≤ r < n, then A has n− r free variables, and we should expect that
this means dim[N(A)] = n− r. (If r = n, we recover the r = n result.) More precisely, we
worked out in part (iv) of Example 23.4 that if

rref(A) =

[
Ir F
0 0

]
P,

then the columns of
P−1

[
−F
In−r

]
are a basis for N(A). There are n− r such columns.

Content from Strang’s ILA 6E. Look at the matrix R0 on p. 130. Then read #2 and #3
on pp. 130–131 on the dimensions of its column and null spaces. Next, look at the matrix
A at the bottom of p. 131 and read about its column and null spaces in #2 and #3 on
pp. 132–133. We’ll come back to the row space and left null space shortly. Read Worked
Example 3.5 B on p. 137.

Day 25: Wednesday, March 5.

Part (iii) of Example 24.12 deserves to stand on its own.

25.1 Theorem (Rank-nullity). Let A ∈ Rm×n. Then

dim[N(A)] + dim[C(A)] = n.

The point is that if you know one of these dimensions, then you know the other. It’s
interesting, and maybe a bit weird, that even though C(A) is not a subspace of Rn (it’s a
subspace of Rm), its dimension still talks to the dimension of N(A) (which is a subspace of
Rn) and the dimension of Rn itself.

25.2 Example. We finally need a larger matrix than our most frequently used, beloved
example. Let

A =

1 2 1 7 0
2 4 2 14 0
0 0 0 2 8

 .
I’ll leave it to you to check that

rref(A) =

1 2 0 3 0
0 0 1 4 0
0 0 0 0 0

 .
We see that A has 2 pivot columns, so rank(A) = dim[C(A)] = 2, and therefore
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dim[N(A)] = 5 − 2 = 3. We can verify this explicitly by computing (I’ll let you do
that)

N(A) = C



−2 −3 0

1 0 0
0 −4 0
0 1 0
0 0 1




and seeing the three independent columns spanning N(A) right there.

The notion of dimension allows us to quantify how much of Rm the column space of
A ∈ Rm×n misses: it misses m − dim[C(A)] “dimensions” of Rm. But what is going on
elsewhere in Rm beyond C(A)? The deeper question is not just how much of Rm does C(A)
miss but rather what exactly in Rm does C(A) miss. Is there a simpler way to characterize
and describe C(A) than just its definition?

We could also ask about Rn and N(A). When v ∈ N(A), we have Av = 0m. For
what w ∈ Rn does A “act nontrivially” with Aw 6= 0m? On what parts of Rn is A “more
interesting”?

It turns out that these questions are “dual” to each other in that if we know how to handle
one of them, we can understand the other pretty quickly. And it also turns out (I think)
that asking how N(A) interacts with the rest of Rn is an easier thing to control.

25.3 Example. Let

A =

[
1 0 0
0 0 0

]
.

Then

N(A) = C

0 0
1 0
0 1

 .

I hope it’s glaringly obvious what’s missing from N(A): e1.
More precisely, let

W = span

1
0
0

 .

Then any x ∈ R3 can be written as

x =

x1x2
x3

 =

x10
0

+

 0
x2
x3

 .
That is, any x ∈ R3 can be written (or, more evocatively, “decomposed”) in the form
x = v + w for v ∈ N(A) and w ∈ W . Think for a moment about why those v and w are
unique; that is, why there is only one way to achieve this “decomposition” of x.
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Can we see W directly from A itself, without passing to the null space? Sure: e1 is the
first row of A. We’re more used to thinking about columns than rows, so let’s flip every
row of A to a column and every column of A to a row by taking the transpose:

AT =

1 0
0 0
0 0

 .
Then we see

W = C(AT).

And so we have written any x ∈ R3 uniquely as a sum of the form x = v+w with v ∈ N(A)
and w ∈ C(AT).

Did we just get really lucky, since the bases for N(A) and C(AT) in the previous example
just involved the coordinate axes for three-dimensional space? Here’s a more complicated
situation. Let

A =

1 2 0 3 0
0 0 1 4 0
0 0 0 0 0

 .
This was the RREF of the original matrix from Example 25.2. Then

N(A) = C



−2 −3 0

1 0 0
0 −4 0
0 1 0
0 0 1




and (flipping columns to rows and rows to columns)

AT =


1 0 0
2 0 0
0 1 0
3 4 0
0 0 0

 ,
so (ignoring that third column, but keeping those first two independent columns)

C(AT) = span




1
2
0
3
0

 ,


0
0
1
4
0


 .

Can we write each x ∈ R5 as x = v + w for some v ∈ N(A) and w ∈ C(AT), and is such a
decomposition of x unique?
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Some notation will compress things helpfully. Let

v1 =


−2

1
0
0
0

 , v2 =


−3

0
−4

1
0

 , v3 =


0
0
0
0
1

 , w1 =


1
2
0
3
0

 , and


0
0
1
4
0

 , (25.1)

so v1, v2, and v3 form a basis for N(A), and w1 and w2 form a basis for C(AT). Let

M =
[
v1 v2 v3 w1 w2

]
, (25.2)

so M ∈ R5×5. If M is invertible, then we can write each x ∈ R5 as x = My for some
(unique!) y ∈ R5. Then

x = (y1v1 + y2v2 + y3v3) + (y4w1 + y5w2) (25.3)

with y1v1 + y2v2 + y3v3 ∈ N(A) and y4w1 + y5w2 ∈ C(AT). That gives the decomposition
of x that we want, and we could probably push it further with an independence argument
to get uniqueness.

So, isM invertible? Do you really want to do the row operations to find out? This matrix
M is a beast! There’s a less obvious approach that will teach us some valuable new things,
and it all hinges on a deeper notion of the dot product. First, I encourage you to review
some hopefully unsurprising dot product arithmetic.

25.4 Problem (?). Show that the dot product has the following properties. All vectors
below are in the same space, e.g., Rp. (If it makes things more concrete for you, do it for
p = 3.)

(i) v ·w = w · v.

(ii) v · (w1 + w2) = (v ·w1) + (v ·w2).

(iii) v · (cw) = c(v ·w).

(iv) v · v ≥ 0.

(v) If v · v = 0, then v = 0. [Hint: if v 6= 0, explain why v · v > 0.]

Next, take a look at the dot products of the vectors in (25.1). I’ll get you started:

v1 ·w1 =


−2

1
0
0
0

 ·


1
2
0
3
0

 = (−2 · 1) + (1 · 2) + (0 · 0) + (0 · 3) + (0 · 0) = −2 + 2 + 0 + 0 + 0 = 0.
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25.5 Problem (!). Check that
vi ·wj = 0

for i = 1, 2, 3 and j = 1, 2.

Why would we think to look for these relations between the bases of N(A) and C(AT)?
One reason might be the transparent relations among the bases from Example 25.3. Those
bases talk to each other so well via dot products—maybe other bases do, too.

Now we’ll show that M from (25.2) is invertible. Assume My = 05; we’ll find y = 05.
We rewrite this as

v + w = 05, v = y1v1 + y2v2 + y3v3, w = y4w1 + y5w2.

I claim that v · w = 0 and that this is a consequence of the dot product arithmetic in
Problem 25.4 and the interaction of vi and wj from Problem 25.5. For example, if y1 = 1
and y2 = y3 = 0, then

v1 · (y4w1 + y5w2) = y4(v1 ·w1) + y5(v1 ·w2) = (y4 · 0) + (y5 · 0) = 0.

You could check this in general, but I don’t think it’s hugely worth your time.
But here is why this matters. We are assuming v + w = 05 with v · w = 0. The great

trick is to take the dot product of both sides with v (although w would also work):

(v + w) · v = 05 · v.

Then we get
(v · v) + (w · v) = 0

and since w · v = 0 this simplifies to

v · v = 0.

Dot product properties tell us v = 05, and so

y1v1 + y2v2 + y3v3 = 05.

The independence of v1, v2, and v3 implies y1 = y2 = y3 = 0, thus v = 05, and so the
equation v + w = 05 reduces to w = 05. That is, y4w1 + y5w2 = 05. Another independence
argument, now for w1 and w2, yields y4 = y5 = 0.

All of this is to say that if My = 05, then y = 05, so M is invertible, and so we
get the desired representation (25.3). Why is this representation unique? We could use
independence, but we can also use dot products.

Day 26: Friday, March 7.
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Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Orthogonal vectors, transpose of a matrix

We know that we can write any x ∈ R5 as x = v+w for some v ∈ N(A) and w ∈ C(AT).
What if we can do so in two ways? Say x = ṽ + w̃ for some ṽ ∈ N(A) and w̃ ∈ C(AT) as
well. Then

05 = x− x = (v + w)− (ṽ + w̃) = (v − ṽ) + (w − w̃)

and so
v − ṽ = w̃ −w.

Unfortunately for all of us, N(A) and C(AT) are subspaces. Since v, ṽ ∈ N(A), we have
v−ṽ ∈ N(A), and likewisew−w̃ ∈ C(AT). Hence v−ṽ ∈ N(A) and v−ṽ = w̃−w ∈ C(AT).

What happens if there is y ∈ R5 such that both y ∈ N(A) and y ∈ C(AT)? Recall that
if v ∈ N(A) and w ∈ C(AT), then v ·w = 0. Taking v = y and w = y, we get y · y = 0,
thus y = 05.

In the situation above, this means v − ṽ = 05, so v = ṽ, but then also w̃ −w = 05, so
w = w̃. This is our desired uniqueness.

Now here is the great thing: all of this generalizes far beyond the specific matrices A just
considered. First, let’s name the feature of dot products that we’ve been using.

26.1 Definition. The vectors v, w ∈ Rn are orthogonal if v ·w = 0.

Next, let’s formalize the notion of transpose.

26.2 Definition (What the transpose is). The transpose of A ∈ Rm×n is the matrix
AT ∈ Rn×m such that the (i, j)-entry of AT is the (j, i)-entry of A. We write

AT
ij = Aji.

26.3 Example. If

A =

[
1 2 3
4 5 6

]
,

then

AT =

1 4
2 5
3 6

 .
Now we can generalize how N(A) and C(AT) interact in general.

26.4 Theorem. Let A ∈ Rm×n, v ∈ N(A), and w ∈ C(AT). Then v ·w = 0.
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Proof. If v ∈ N(A), then Av = 0m. One way to compute Av is by taking dot products of v
with the rows of A viewed as columns in Rn. That Av = 0m says that each such dot product
is 0. Say that the ith row of A, viewed as a column in Rn, is bi ∈ Rn. Then v ·bi = 0 for all
i. Any vector in C(AT) is a linear combination of the rows of A viewed as columns in Rn.
Say that w ∈ C(AT) has the form

w = c1b1 + · · ·+ cmbm.

Then
v ·w = v · (c1b1 + · · ·+ cmbm) = c1(v · b1) + · · ·+ cm(v · bm) = 0. �

This is a perfectly adequate proof based on what AT is: the matrix formed by swapping
the rows and columns of A. This is a “static” way to think about AT—it’s an array of data.
Nothing wrong with that.

But we can be dynamic: what things do defines what things are. Here is what AT does.
Let e1, . . . , en be the standard basis vectors for Rn and ẽ1, . . . , ẽm be the standard basis
vectors for Rm. (I’m putting tildes on the vectors for Rm because the notation ej doesn’t
otherwise indicate what space it’s in. I guess we could stack extra subscripts or superscripts
to indicate n and m but, ew.) So, if n = 4 and m = 3, then

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , and e4 =


0
0
0
1

 ,
while

ẽ1 =

1
0
0

 , ẽ2 =

0
1
0

 , and ẽ3 =

0
0
1

 .
Now recall that multiplying a matrix by standard basis vectors extracts its columns, while

taking the dot product of a vector with standard basis vectors extracts its entries. Since
A ∈ Rm×n, the jth column of A is Aej ∈ Rm, and then Aej · ẽi is the ith entry in that
column. That is,

Aij = Aej · ẽi.

26.5 Problem (!). Suppose that A, B ∈ Rm×n. Certainly if A = B, then

Av ·w = Bv ·w (26.1)

for all v ∈ Rn and w ∈ Rm. Just substitute A for B and plug and chug. Prove that if
(26.1) holds for all v ∈ Rn and w ∈ Rm, then A = B. [Hint: get the standard basis vectors
to show up.]

Likewise, since AT ∈ Rn×m, the jth column of AT is ATẽj ∈ Rn, and then ATẽj · ei is the
ith entry in that column. That is,

AT
ij = ATẽj · ei.
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Thus
ATẽj · ei = AT

ij = AT
ji = Aei · ẽj,

and so
Aei · ẽj = ATẽj · ei.

The commutativity of the dot product (v ·w = w · v) gives

Aei · ẽj = ei · ATẽj. (26.2)

This is what AT does: it pops across the dot product.

26.6 Remark. There are actually two dot products in (26.2). The one on the left is in
Rm, since Aei, ẽj ∈ Rm. The one on the right is in Rn, since ei, ATẽj ∈ Rn.

This “popping” behavior of the transpose is not limited to standard basis vectors.

26.7 Theorem (What the transpose does). Let A ∈ Rm×n, v ∈ Rn, and w ∈ Rm. Then

Av ·w = v · ATw.

Moreover, the transpose is the only matrix in Rn×m to do this: if there is B ∈ Rn×m such
that

Av ·w = v ·Bw (26.3)

for all v ∈ Rn and w ∈ Rm, then B = AT.

26.8 Problem (+). Prove it.

(i) First, with ẽ1, . . . , ẽm as the standard basis vectors for Rm, show

Av · ẽi = v · ATẽi

by expanding v = v1e1 + · · ·+ vnen and using linearity of matrix-vector multiplication and
dot product arithmetic from Problem 25.4. Then show the general result by expanding
w = w1ẽ1 + · · ·+ wmẽm.

(ii) Use Problem 26.5 to show that (26.3).

Here are some nice properties of the transpose that can easily be deduced from what it
does, rather than what it is. These are important, and I expect that you’re going to know
them, but I think they’ll be more meaningful if you prove them yourself.

26.9 Problem (?). (i) Let A ∈ Rm×n. First explain why (AT)T ∈ Rm×n, too. Then use
Problem 26.5 to prove that (AT)T = A by showing that

(AT)Tv ·w = Av ·w
for all v ∈ Rn and w ∈ Rm.
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(ii) Let A ∈ Rm×n and B ∈ Rn×p. First explain why (AB)T, BTAT ∈ Rp×m. Then show
that

(BTAT)v ·w = v · ABw

for all v ∈ Rm and w ∈ Rp. Use the uniqueness result of Theorem 26.7 to conclude
(AB)T = BTAT.

(iii) Let A ∈ Rm×m be invertible. Prove that AT is also invertible with inverse (AT)−1 =
(A−1)T by computing (AA−1)T = ITm and (AA−1)T = AT(A−1)T. What does this tell you?

(iv) Let P ∈ Rm×m be a permutation matrix, so P contains all of the columns of the
identity matrix Im (each column appearing once, and only once) in some order. Argue that
Pv · Pw = v ·w for all v, w ∈ Rm. [Hint: maybe do this for the only non-identity 2 × 2
permutation to get a feel for what’s going on, then generalize.] Conclude PTPv ·w = v ·w
for all v, w ∈ Rm. Why does this imply that P is invertible with P−1 = PT? (Good news:
no more writing P−1 when doing calculations with the abstract form of the RREF!)

Content from Strang’s ILA 6E. Pages 67–68 discuss fundamental properties of the trans-
pose. Pages 68–69 show how the transpose interacts with dot products (I wholly disagree
that · is “unprofessional”—I like that it emphasizes how the dot product takes in two inputs
and how it’s “linear in each input.” I like dot products.). If you have seen integration by
parts in calculus, read Example 2 on p. 69.

Now we can give another proof of Theorem 26.4 that relies on what the transpose does,
rather than is. Let A ∈ Rm×n, v ∈ N(A), and w ∈ C(AT). Then Av = 0m and there is
y ∈ Rm such that w = Ay. We compute

v ·w = v · ATy = Av · y = 0m · y = 0. (26.4)

So slick! The first two dot products were dot products in Rn, but the second two were in
Rm.

Content from Strang’s ILA 6E. Read p. 144 starting with the box “The nullspace of
A . . ..” Then read the “Important” paragraph on p. 145 about the orthogonality of C(A)
and N(AT), which we will discuss in greater detail later, and Example 1. Note that Strang
typically likes to write the dot product as xTy, not x · y.

26.10 Problem (!). Let

A =

1 2 1 7
2 4 2 14
0 0 2 8

 .
Use results from Examples 19.5 and 22.1 to give bases for N(A) and C(AT), and check
directly that the vectors in the basis for N(A) are orthogonal to the vectors in the basis
for C(AT).
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26.11 Problem (+). Here is a much less slick way to show the orthogonality of vectors in
N(A) and C(AT) that reinforces properties of the RREF. Let A ∈ Rm×n with r = rank(A).

(i) If r = n, why do you have very little work to do? Do it.

(ii) From now on suppose r < n. Suppose EA = R0 with E ∈ Rm×m invertible and
R0 = rref(A). Use Problem 12.17 to explain why C(AT) = C(R0). (Don’t get too excited:
remember that in general C(A) 6= C(R0).)

(iii) Write R0 in the very general form

R0 =

[
Ir F
0 0

]
P,

where maybe the F - and/or zero blocks are not present, and P is a permutation matrix
that could be the identity. Then compute

RT
0 = PT

[
Ir 0
FT 0

]
. (26.5)

(iv) Combine some old ideas with part (iv) of Problem 26.9 to show

N(A) = C

(
PT

[
−F
In−r

])
.

Since r < n, that block In−r will always genuinely be present.

(v) Conclude that if v ∈ N(A) and w ∈ C(AT), then there are x ∈ Rn−r and y ∈ Rr such
that

v = PT

[
−F
In−r

]
x and w = PT

[
Ir 0
FT 0

]
y.

Use this to show v ·w = 0. [Hint: an identity from part (iv) of Problem 26.9 will be help
with those common factors of PT.]

Day 27: Monday, March 17.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Row space of a matrix, orthogonal complement of a subspace

It will save us some time (like 3 seconds) to give a different name to C(AT) other than
“column space of A transpose.”
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27.1 Definition. The row space of A ∈ Rm×n is C(AT).

The orthogonality of vectors in N(A) and C(AT) is the key to generalizing the decompo-
sition of Rn that we did for some special matrices and some special n. Let A ∈ Rm×n. For
each x ∈ Rn, we want to find unique v ∈ N(A) and w ∈ C(AT) such that x = v + w. We
need one more fact.

27.2 Theorem. Let A ∈ Rm×n. Then rank(A) = rank(AT).

Informally, “row rank = column rank.” This is a little technical to prove precisely, so we’ll
punt that to a wholly optional problem and give a proof by example. The rank of A is the
number of pivot columns and the number of pivot rows of A. If you look at the RREF, pivot
rows are independent. I mean, just look at

R0 =

1 ∗ 0 ∗ ∗
0 0 1 ∗ ∗
0 0 0 0 0

 .
Two pivot columns, two pivot rows. Then

RT
0 =


1 0 0
∗ 0 0
0 1 0
∗ ∗ 0
∗ ∗ 0

 .
Those first two columns in RT

0 are definitely independent (even though RT
0 isn’t in RREF

anymore). So rank(R0) = 2 and rank(RT
0 ) = 2. Basically, you can see from the structure of

the RREF that
rank[rref(A)] = rank[rref(A)T].

Then you use the fact that A = E−1rref(A) for some invertible matrix E, compute

AT = rref(A)T(E−1)T,

and use the fact (which needs proof) that multiplying on the right by an invertible matrix
doesn’t change rank. Donezo.

27.3 Problem (+). Here’s how you make all of this much more painfully precise. Let
A ∈ Rm×n with rank(A) = r and R0 = rref(A).

(i) Use part (ii) of Problem 26.11 to show that rank(AT) = rank(RT
0 ).

(ii) Suppose that R0 has the very general form

R0 =

[
Ir F
0 0

]
P,
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where maybe the F - and/or zero blocks are not present, and P is a permutation matrix
that could be the identity. Use Problem 22.6 and the invertibility of P from part (iv) of
Problem 26.9 to show that

rank(RT
0 ) = rank

([
Ir 0
FT 0

])
.

(iii) Put all of this together to conclude that rank(A) = rank(AT).

Content from Strang’s ILA 6E. Read #1 on p. 130, #4 on p. 131, #1 on p. 132, and #4
on p. 133. Actually, probably best to reread all of pp. 130–133 and see all four subspaces
talk to each other.

Now we can build a basis for Rn. Suppose that A ∈ Rm×n has rank r. Then dim[N(A)] =
n − r by rank-nullity and dim[C(AT)] = r by the result above. Since (n − r) + r = n, this
should make us feel optimistic.

27.4 Problem (!). (i) Prove that if A has full column rank (r = n), then every x ∈ Rn

can be written uniquely in the form x = v + w for v ∈ N(A) and w ∈ C(AT). [Hint: you
don’t have many choices for v.]

(ii) What happens if r = 0?

Going forward, suppose 1 ≤ r < n. Let v1, . . . ,vn−r be a basis forN(A) and letw1, . . . ,wr

be a basis for C(AT).

27.5 Problem (!). Suppose you know that v1, . . . ,vn−r,w1, . . . ,wr are independent. Why
do they form a basis for Rn? [Hint: what is C

( [
v1 · · · vn−r w1 · · · wr

] )
? Or look

at part (iii) of Problem 24.10.]

I claim that we can check independence using the orthogonality argument that we used
on the matrix M from (25.2), and I think you’ll learn more by doing that yourself.

27.6 Problem (?). Suppose that

y1v1 + · · ·+ yn−rvn−r + z1w1 + · · ·+ zrwr = 0n

for some yj, zj ∈ R. Put

v = y1v1 + · · ·+ yn−rvn−r and w = z1w1 + · · ·+ zrwr.

Explain why v ·w = 0 and v+w = 0n. Obtain v ·v = 0, thus v = 0, and therefore yj = 0
for all j. From this, obtain w = 0n, thus zj = 0 for all j.

This implies that v1, . . . ,vn−r,w1, . . . ,wr form a basis for Rn, and so we can write each
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x ∈ Rn as
x = y1v1 + · · ·+ yn−rvn−r + z1w1 + · · ·+ zrwr

for some yj, zj ∈ R. With

v = y1v1 + · · ·+ yn−rvn−r and w = z1w1 + · · ·+ zrwr,

this shows that x = v + w for some v ∈ N(A) and w ∈ C(AT).

27.7 Problem (?). Prove uniqueness of this decomposition by generalizing the argument
that preceded Definition 26.1.

27.8 Remark. This is one of those times when having a basis for a subspace in the abstract
was very useful. Without knowing precisely the forms of the bases for N(A) (which we could
extract from the RREF of A) or C(AT) (which we could extract from the pivot rows of the
RREF of A), we built a basis for Rn and used that to get our desired decomposition.

Content from Strang’s ILA 6E. “Combining Bases from Subspaces” on p. 147 contains
these “counting” arguments that lead to a basis for all of Rn out of bases for N(A) and
C(AT). Read Examples 3 and 4. Then go back to the box on p. 145 with the inequality
dim(V)+dim(W) ≤ n. Can you prove this? [Hint: start with bases for V andW, and show
that together, the vectors in both bases are still independent.] Can you give an example of
orthogonal subspaces for which the inequality is strict? [Hint: look at some, but not all, of
the standard basis vectors.]

And so we (mostly you, but also me) have proved a pretty big result.

27.9 Theorem. Let A ∈ Rm×n. For each x ∈ Rn there exist unique v ∈ N(A) and
w ∈ C(AT) such that x = v + w. Also, v · w = 0. We summarize this symbolically by
writing

Rn = N(A)⊕C(AT),

and we call Rn the orthogonal direct sum of N(A) and C(AT).

27.10 Problem (!). Let A ∈ Rm×n. Prove that we can write any b ∈ Rm uniquely in the
form b = v + w for some v ∈ C(A) and w ∈ N(AT), and that v ·w = 0. We summarize
this symbolically by writing

Rm = C(A)⊕N(AT).

[Hint: replace A in Theorem 27.9 with AT.]

We should not interpret the dual results Rn = N(A)⊕C(AT) and Rm = C(A)⊕N(AT)
as saying that any vector in Rn or Rm is in one or another of these four fundamental
subspaces N(A), C(AT), C(A), and N(AT) associated with A. Rather, we can build Rn

and Rm out of the four fundamental subspaces.
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27.11 Problem (?). Let

A =

1 2 0 3
0 0 1 4
0 0 0 0

 .
Give an example of a vector v ∈ R4 such that v 6∈ N(A) and v 6∈ C(AT). Then give
an example of w ∈ R3 such that w 6∈ C(A) and w 6∈ N(AT). Feel free to cite prior
examples/problems that specify the four fundamental subspaces for this matrix.

The decomposition Rm = C(A)⊕N(AT) will tell us something valuable about the solv-
ability of Ax = b, if we work at it. I claim that

N(AT) ={v ∈ Rm | v ·w = 0 for all w ∈ C(A)} . (27.1)

We basically saw this when we proved that all vectors in N(A) and C(AT) are orthogonal,
but let’s do it again for practice.

First suppose ATv = 0n and let w ∈ C(A). Then w = Ax for some x ∈ Rn, and we
compute

v ·w = v · Ax = ATv · x = 0n · x = 0.

Now suppose v · w = 0 for all w ∈ C(A). We want to show ATv = 0n. When all else
fails, rewrite what you know. Since C(A) ={Ax | x ∈ Rn}, we have

0 = v · Ax = ATv · x

for all x ∈ Rn. Gloriously, this is enough to get us ATv = 0n.
Here’s why.

27.12 Problem (!). Suppose that v ∈ Rn satisfies v ·w = 0 for all w ∈ Rn. Prove that
v = 0n. [Hint: take advantage of that generous quantifier “for all” and let w be one of the
standard basis vectors.]

I view this problem as another way that the dot product extracts information about
vectors. If you test or measure a given vector against all vectors under the lens of the dot
product and you always get 0, then that given vector is the zero vector. (This makes me feel
like a real scientist using lab instruments.)

We conclude the equality (27.1), which motivates a new kind of structure.

27.13 Definition. Let V be a subset of Rp (not necessarily a subspace). The orthogo-
nal complement of V in Rp is

V⊥ :={w ∈ Rp | v ·w = 0 for all v ∈ V} .

We pronounce the symbol V⊥ as “vee perp.”
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Content from Strang’s ILA 6E. The last paragraph on p. 145 defines orthogonal com-
plements.

27.14 Problem (?). Let V be a subset of Rp. Prove that V⊥ is a subspace of Rp. Convince
yourself that you didn’t need V to be a subspace.

27.15 Example. (i) The equality (27.1) says that

C(A)⊥ = N(AT) (27.2)

for any A ∈ Rm×n.

(ii) Let V = Rp and suppose that w ∈ Rp with v ·w = 0 for all v ∈ Rp. Problem 27.12
says that w = 0p, so (Rp)⊥ = {0p}.

(iii) Let V = {0p}. Then 0p ·w = 0 for any w ∈ Rp, so {0n}⊥ = Rp.

27.16 Problem (!). For A ∈ Rm×n, prove that N(A) = C(AT)⊥.

We just saw the extreme cases of (Rp)⊥ = {0p} and {0p}⊥ = Rp. Thus(
(Rp)⊥

)⊥
= {0p}⊥ = Rp and

(
{0p}⊥

)⊥
= (Rp)⊥ = {0p}.

27.17 Problem (!). Here is a less extreme case in R2. Let V = span(e1), e1 = (1, 0).
Draw pictures to convince yourself that (V⊥)⊥ = V and then prove it.

These examples might make us wonder the following.

27.18 Conjecture. (V⊥)⊥ = V for any subset V of Rp.

In particular, if true Conjecture 27.18 would imply

C(A) =
(
C(A)⊥

)⊥
= N(AT)⊥. (27.3)

This would give us a new way of deciding solvability of Ax = b: check that b is orthogonal
to everything in N(AT). Or that b is orthogonal to a basis for N(AT).

27.19 Problem (!). Let V be a subspace of Rp and let v1, . . . ,vd be a basis for V . Suppose
that v ∈ Rp satisfies v · vj = 0 for j = 1, . . . , d. Prove that v ∈ V⊥.

The point is that if (27.3) is true, then it would give us a different way of describing the
column space. In particular, we might get an easier way of checking that a vector is not in
the column space than doing elementary row operations and going to the RREF.
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27.20 Problem (?). Assuming Conjecture 27.18 to be true, prove the Fredholm al-
ternative: if A ∈ Rm×n and b ∈ Rm, then one, and only one, of the following is true.

(i) b ∈ C(A) and so the problem Ax = b has a solution.

(ii) There is v ∈ Rm such that ATv = 0n and b · v 6= 0.

In the second case, b 6∈ C(A). So who cares? If you want to consider the problem Ax = b
for a bunch of b, I think it might be easier to figure out N(AT) and then see if the b
are orthogonal to every vector in a basis for N(AT). Those orthogonality relations give
“solvability conditions” for Ax = b.

Day 28: Wednesday, March 19.

We are going to prove Conjecture 27.18. First, it is not all that hard to show that any vector
in V is also in (V⊥)⊥. Let v ∈ V . We want to show v ·w = 0 for all w ∈ V⊥. But that is
exactly what it means for w to be a vector in V⊥!

Now let x ∈ (V⊥)⊥. Why do we have x ∈ V? This is a bit harder.

28.1 Problem (!). I want to convince you that this is true in a comfortingly familiar
particular case. Let

A =

1 2 1 7
2 4 2 14
0 0 2 8

 .
Show that if w ∈ N(AT)⊥, then w ∈ C(A). Feel free to refer to Example 21.12 (which
tells you about C(A)) and Example 22.1 (which tells you about N(AT)). Also,

Going forward, we need a bit of a trick. Any subspace V of Rp has the form V = C(B)
for some matrix B ∈ Rp×d, where d = dim(V). Let A = BT, so A ∈ Rd×p and V = C(AT).
Then

V⊥ = C(AT)⊥ = N(A) (28.1)

by Problem 27.16. And by Theorem 27.9, we can write any x ∈ Rp as x = v +w for unique
v ∈ C(AT) = V and w ∈ N(A) = V⊥. (I realize I’m flipping the roles of v and w from that
theorem, but I want to keep v as the label for things in V , which is C(AT). Sue me.) Here
is what we have proved.

28.2 Lemma. Let V be a subspace of Rp. For each x ∈ Rp, there exist unique v ∈ V and
w ∈ V⊥ such that x = v + w.

28.3 Problem (!). If V is a subspace of Rp, prove that dim(V⊥) = p− dim(V).

Here is why all of this jumping around between subspaces and matrices matters. Start
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with a subspace V of Rp and x ∈ (V⊥)⊥. We want to show x ∈ V . The key thing is that V⊥
is also a subspace of Rp. This was Problem 27.14.

Now apply Lemma 28.2 with V⊥ in place of V . So, we can write any x ∈ (V⊥)⊥ as
x = v + w for (unique) v ∈ V and w ∈ V⊥. If we can show w = 0p, then we’ll have
x = v ∈ V . The trick is subtraction:

w = x− v ∈ (V⊥)⊥.

This is because we’re assuming x ∈ (V⊥)⊥, and just above we showed that if v ∈ V , then
v ∈ (V⊥)⊥. But then w ∈ V⊥ and w ∈ (V⊥)⊥. I claim this means w = 0p.

28.4 Problem (?). Prove that if V is a subspace of Rp and v ∈ Rp with both v ∈ V and
v ∈ V⊥, then v = 0p. Draw a picture illustrating this phenomenon in R2.

This completes the proof of Conjecture 27.18.

28.5 Problem (?). Did that feel hard? It always feels hard to me. I wish I could just
start with v ∈ N(AT)⊥ and show v ∈ C(A). Try doing that. Where do you get stuck?

Let’s upgrade the conjecture to a theorem.

28.6 Theorem. Let V be a subspace of Rp. Then (V⊥)⊥ = V.

28.7 Corollary. Let A ∈ Rm×n. Then C(A) = N(AT)⊥.

28.8 Problem (!). A ton of machinery went into proving Corollary 28.7. Spend at least
15 minutes reviewing its proof. Do you understand all of the vocabulary and symbols
involved? How does the logic feel? Did you do all of the (!)- and (?)-problems cited in the
proof?

Here is a summary of all of our work. This answers the question “What is missing beyond
the null space or the column space?” and provides a complete overview of how a matrix in
Rm×n determines the structure of Rn and Rm.

28.9 Theorem (Fundamental theorem of linear algebra). Let A ∈ Rm×n.

(i) Rn = N(A)⊕C(AT)

(ii) Rm = C(A)⊕N(AT)

(iii) N(A) = C(AT)⊥

(iv) C(A) = N(AT)⊥

(v) dim[N(A)] = n− rank(A)
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(vi) rank(A) = rank(AT)

Content from Strang’s ILA 6E. Figure 4.1 on p. 146 says all of this. Study the figure
carefully and read the paragraph following its caption. I like to start reading the figure by
beginning with b, then tracking it back to xr and xn. (The subscript n there is for “null
space,” not the n in Rn.)

28.10 Problem (+). Here is a more general way to view that symbol ⊕. Suppose that V
and W are subspaces of Rp. Write Rp = V ⊕W and say that Rp is the orthogonal direct
sum of V and W if for all x ∈ Rp, there are v ∈ V and w ∈ W such that x = v + w,
and if v · w = 0 for all v ∈ V and w ∈ W . These properties are enough to recover first
uniqueness of the decomposition of x and second W = V⊥.

(i) Use orthogonality and the strategy of the argument preceding Definition 26.1 to prove
that the decomposition is unique.

(ii) We show here that V⊥ =W . Since v ·w = 0 for all v ∈ V and w ∈ W , we know that
if w ∈ W , then w ∈ V⊥. If x ∈ V⊥, write x = v + w for some v ∈ V , w ∈ W , so, since
w ∈ V⊥, too, we get v = x−w ∈ V⊥. Why does this prove x ∈ W?

There is just one major problem with our fundamental theorem: all of these results are
highly existential. We developed those existential results by starting with the null space and
asking “What else is missing from Rn?” Now we’ll start with the column space. Specifically,
it’s great at a theoretical level to say that Rm = C(A) ⊕ N(AT) in the sense that each
b ∈ Rm can be written uniquely as b = v +w for some v ∈ C(A) and w ∈ N(AT) and that
v ·w = 0, but how do we find those v and w explicitly and easily?

First, we only need one of them. For if we know b = v + w, then w = b− v. So how do
we get v?

Well, how do we do anything in this course? We multiply by a matrix. Can we find
P ∈ Rm×m such that if b ∈ Rm, then Pb ∈ C(A) and b − Pb ∈ N(AT). Then we have
b = Pb + (b− Pb) as our decomposition.

28.11 Problem (!). Explain why you expect P 2 = P . (Have we talked about matrix
powers? Just in case: P 2 = PP .) [Hint: what does P do? We have Pb ∈ C(A) and any
b can be written uniquely as b = Pb + w with w ∈ N(AT). If b ∈ C(A) already, what is
that w, and so what should Pb be? Then what is P 2b?]

Content from Strang’s ILA 6E. Read all of pp. 151–152 up to, but not including, “Pro-
jection Onto a Line.” This is the mission statement of Section 4.2, and it’s a very helpful
overview of where we’re going.

It turns out to be very helpful to assume that A has full column rank (= all of its columns
are independent = all of its columns are pivot columns). This is not as huge a restriction
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as you might initially think. After all, C(A) = C(Ã), where Ã is the matrix containing just
the pivot columns of A, and Ã has full column rank. So, if we are going to understand the
decomposition Rm = C(A)⊕N(AT), we may as well do it when A has full column rank.

We’ll do this first in the case that A has only one column, in which case C(A) = span(a)
for some a 6= 0m. This has some transparent geometry and will give a useful auxiliary result
for later.

So here is what we want: given b ∈ Rm, there are (necessarily unique) v ∈ C(A) =
span(a) and w ∈ N(AT) such that b = v + w. Since v ∈ span(a), we can write v = ca for
some c ∈ R. Then

b = ca + w.

Here is a picture of what’s going on when m = 2 and a is a multiple of e1 = (1, 0).

x

y

b

a
x

y

b

aca

w

The two unknowns c ∈ R and w ∈ N(AT) have to satisfy this one equation—not a recipe
for success—but remember that we have an orthogonality condition:

0 = v ·w = (ca) ·w = c(a ·w).

Actually, since a ∈ C(A) and w ∈ N(AT), we always have

a ·w = 0,

so forget about c there. Now we have two equations and two unknowns:{
b = ca + w

a ·w = 0.
(28.2)

A little algebraic trickery will reduce this to one equation: rewrite

w = b− ca

and plug in to get
0 = a · (b− ca).

Rearrange a little:
0 = (a · b)− c(a · a),

and a little more:
c(a · a) = a · b,
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and divide:
c =

a · b
a · a

.

This division is perfectly legal since a 6= 0m, and therefore a · a 6= 0.
We worked backwards, so we should check our work. Certainly(

a · b
a · a

)
a ∈ span(a).

28.12 Problem (!). Let

w = b−
(
a · b
a · a

)
a.

Check that a ·w = 0, so w ∈ C(A)⊥ = N(AT).

28.13 Problem (?). Where is P? This requires a bit of sleight-of-hand. We want

Pb =

(
a · b
a · a

)
a.

Here it is helpful to think of column vectors as m× 1 matrices and the dot product as the
matrix product

a · b = aTb.

It’s also helpful to break our usual convention of how we write scalar multiplication and
allow ca = ac. I don’t like it, either. Show then that(

a · b
a · a

)
a =

1

a · a
(
aaT

)
b,

so
P =

1

a · a
(
aaT

)
.

28.14 Example. Computations with this sort of “projection” onto span(a) can become
bulky, so let’s check how this respects our intuition. Say a = e1 in R2. Of course, we
expect

b =

[
b1
b2

]
= b1e1 +

[
0
b2

]
.

We compute (
e1 · b
e1 · e1

)
e1 =

b1
1
e1 = b1e1.

How nice it was that e1 · e1 = 1.

Content from Strang’s ILA 6E. Read “Projection Onto a Line” from pp. 152–154. Check
Examples 1 and 2.
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Day 29: Friday, March 21.

Now we consider the general case in which A has an arbitrary number of columns. Remember,
though, that A still has full column rank, and so those columns are independent. Again, we
start with b ∈ Rm, and we want to find v ∈ C(A) and w ∈ N(AT) such that

b = v + w and v ·w = 0.

Before, when A had just one column, we rewrote v as a scalar multiple of that column.
Now we can say v = Ax̂ for some x̂ ∈ Rn. (The hat is sort of traditional.) The analogue of
(28.2) is now {

b = Ax̂ + w

aj ·w = 0, j = 1, . . . , n.

That second (set of) equation(s) is the orthogonality ofw to everything inC(A), equivalently,
to the columns of A.

This reduces to n equations:

0 = aj ·w = aj · (b− Ax̂), j = 1, . . . , n.

And now for the trick: rewrite aj = Aej, so

0 = (Aej) · (b− Ax̂) = ej · AT(b− Ax̂), j = 1, . . . , n.

The powerful Problem 27.12 implies that

AT(b− Ax̂) = 0n,

which rearranges to
ATAx̂ = ATb.

If only ATA were invertible, we could peel it off to solve for x̂:

x̂ = (ATA)−1ATb.

If only. Then we would have

v = Ax̂ = A(ATA)−1ATb,

and so putting
P := A(ATA)−1AT

would give Pb ∈ C(A), b− Pb ∈ N(AT), and b = Pb + (b− Pb).
Good news: ATA is invertible here.

29.1 Lemma. Let A ∈ Rm×n have full column rank. Then ATA is invertible.
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Proof. We might initially think ATA = independent rows in AT dotted with independent
columns in A has to give us something good. It does, but the trick is to showN(ATA) = {0n}.
For if ATAx = 0n, then

0 = x · 0n = x · (ATAx) = (Ax) · (Ax),

and so Ax = 0n, thus x ∈ N(A). Since A has full column rank, N(A) = {0n}, so x = 0n.
This is just one of those classical tricks that I never would have thought of myself if someone
else hadn’t shown it to me, but now it feels like instinct. �

Content from Strang’s ILA 6E. This lemma is proved on p. 157. Read the warning at
the top of the page and then the calculations at the bottom of the page of how this breaks
when A has dependent columns.

Bad news: this was a lot of working backward.

29.2 Problem (?). Let A ∈ Rm×n have full column rank and set

PA := A(ATA)−1AT.

(i) Explain why, just from looking at PA, every vector in C(PA) is in C(A).

(ii) Show that P 2
A = PA.

(iii) Conclude that if b ∈ C(A), then PAb ∈ C(A) and thus C(A) = C(PA).

(iv) Show that PT
A = PA.

(v) Justify each of the following equalities:

N(PA) = N(PT
A ) = C(PA)⊥ = C(A)⊥ = N(AT). (29.1)

(vi) Explain why b−PAb ∈ N(PA) for each b ∈ Rm. [Hint: just compute it.] So, it’s also
true that b− PAb ∈ N(AT).

The fruit of this problem is that we can write any b ∈ Rm as

b = v + w, v = PAb, w = b− PAb,

and we’ll have v ∈ C(A) and w ∈ N(AT). Problem 28.10 assures us that this decomposition
is unique.

29.3 Problem (?). If you wanted to find the decomposition of some x ∈ Rn as a sum of
vectors in N(A) and C(AT), discuss how you would use PAT . Is there any relation between
PAT and PT

A , or is that just wishful, and inappropriate, juggling of the symbol T?
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Content from Strang’s ILA 6E. Pages 155–156 develop all of this. I don’t think memo-
rizing equations (5), (6), and (7) is a good idea, or even memorizing the structure of our
PA above. I think it’s more important to be able to replicate the derivation of PA on your
own. Check Worked Example 4.2 A on p. 158.

29.4 Example. None of this will work for my favorite matrix

A =

1 2 1 7
2 4 2 14
0 0 2 8

 ,
since it does not have full column rank. However, we saw in Example 23.1 that C(A) =
C(B), where

B =

1 0
2 0
0 1

 ,
and B does have full column rank. Then we can write any b ∈ R3 uniquely as b = PBb+w,
w = b− PBb ∈ N(AT). We compute

BTB =

[
1 2 0
0 0 1

]1 0
2 0
0 1

 =

[
5 0
0 1

]
,

(BTB)−1 =

[
1/5 0
0 1

]
,

and

PB = B(BTB)−1BT

=

1 0
2 0
0 1

[1/5 0
0 1

] [
1 2 0
0 0 1

]

=

1 0
2 0
0 1

[1/5 2/5 0
0 0 1

]

=

1/5 2/5 0
2/5 4/5 0
0 0 1

 .
I think that was the only time we’ve ever needed an inverse explicitly. How nice that it

was diagonal—what would have happened if I had selected the pivot columns of A instead?
(Think carefully about the fact that the columns of B were orthogonal. . .)
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29.5 Problem (!). For A in the previous example, we know from past experience that
b ∈ C(A) if and only if b2 = 2b1. Check that

PBb · e2 = 2(PBb · e1).

The matrix PA that we cooked up deserves a special name.

29.6 Definition. Let P ∈ Rm×m.

(i) P is a projection if P 2 = P .

(ii) P is an orthogonal projection if P 2 = P and PT = P .

(iii) Let V be a subspace of Rm. The matrix P is an orthogonal projection onto
V if P is an orthogonal projection with C(P ) = V.

29.7 Problem (!). Without doing any matrix calculations, in R3, what do you expect an
orthogonal projection onto span(e1, e2) to be? Now do those calculations.

Day 30: Monday, March 24.

30.1 Example. (i) The m×m matrix whose entries are all 0 and Im are both orthogonal
projections.

(ii) Problem 29.2 shows that PA is an orthogonal projection onto C(A) when A ∈ Rm×n

has full column rank.

(iii) Let V be a subspace of Rm. If V = {0m}, then the matrix P ∈ Rm×m whose entries
are all 0 is an orthogonal projection onto V . Otherwise, let d = dim(V) and let A ∈ Rm×d

be a matrix whose columns are a basis for V . Then PA is an orthogonal projection onto V .

After all of our work, we’d probably like to call PA the orthogonal projection onto C(A).
Is it unique? What an insult it would be if it weren’t. This is asking if there is only one
P ∈ Rm×m such that P 2 = P , PT = P , and C(P ) = C(A). And this is true. You can have
the fun of proving this over the course of two problems.

30.2 Problem (!). Here is a generalization of our orthogonal decomposition results for
the case when you start with an orthogonal projection, whether or not that orthogonal
projection has full rank. Let P ∈ Rm×m be an orthogonal projection and let b ∈ Rm.
Prove that there exists a unique w ∈ N(P ) such that

b = Pb + w and Pb ·w = 0.

[Hint: the desired decomposition forces w = b − Pb, which gives uniqueness. Check that
w ∈ N(P ). Then use the orthogonality of C(P ) and N(PT), or brute-force compute
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Pb · (b− Pb).]

30.3 Problem (?). Let P1, P2 ∈ Rm×m be orthogonal projections with C(P1) = C(P2).
We’ll show P1 = P2 by showing P1b = P2b for all b ∈ Rm. (What things do defines what
things are.)

(i) Use Problem 30.2 to explain why we can write any b ∈ Rm as both

b = P1b + w1 and b = P2b + w2

for some w1 ∈ N(P1) and w2 ∈ N(P2).

(ii) Show that N(P1) = N(P2). [Hint: N(P ) = C(PT)⊥ for any P ∈ Rm×m.]

(iii) Conclude that
P1b− P2b = w2 −w1

and so P1b− P2b ∈ C(P1) and P1b− P2b ∈ N(P1). Invoke Problem 28.4.

We now possess a much deeper understanding of how a matrix induces structure from the
decompositions Rn = N(A) ⊕C(AT) and Rm = C(A) ⊕N(AT) for A ∈ Rm×n, and how to
perform those decompositions via matrix multiplication. We also have the characterization
C(A) = N(AT)⊥ and the resulting “solvability conditions” from the Fredholm alternative
(Problem 27.20). I think this is a great piece of narrative and incorporates some geometry
to boot into our very algebraic world.

What else do we gain from these results? There’s been something of a dichotomy in our
approach to linear systems. Either we can solve Ax = b (uniquely or not) or we can’t.
We’ve focused on the solving part. Otherwise, if Ax = b has no solution, what’s the point
in talking about it?

Very often in life, mathematically or otherwise, we can’t solve the problems that we face.
The next best thing is to solve an easier problem. (If your question is too hard, give up and
ask a different question.) If we can’t solve Ax = b, could we solve a related problem Ax̂ = p
and view that related problem as an approximation to our desired problem? Yes! If we pick
the right problem.

If we’re going to solve Ax̂ = p, we need p ∈ C(A). Is there some “ideal” p to pick relative
to the b that won’t work? Again, yes!

Approximating requires a new concept: the notion of size, which is really a notion of
length. The following definition generalizes the notion that the length of the line segment in
two dimensions from the origin (0, 0) to a point (x, y) is

√
x2 + y2.

30.4 Definition. The norm of v = (v1, . . . , vm) ∈ Rm is

‖v‖ :=
(
v21 + · · ·+ v2m

)1/2
=
√
v · v.
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30.5 Example. If v = (1, 2, 3), then

‖v‖ =
√

12 + 22 + 32 =
√

1 + 4 + 9 =
√

14.

Content from Strang’s ILA 6E. Reread all of p. 9 right now. There are plenty of other
meaningful ways of measuring the length of a vector in Rm that we won’t need. You might
enjoy reading pp. 355–356 up to and including Figure 9.8.

Length and orthogonality interact in a helpful way. You know this already because you
believe the Pythagorean theorem, which the definition of ‖·‖ is basically designed to respect.

a

b
a
2 +
b
2

30.6 Theorem (Pythagorean theorem). Let v, w ∈ Rm with v ·w = 0. Then

‖v + w‖2 = ‖v‖2 + ‖w‖2 .

30.7 Problem (!). Prove it! [Hint: use the definition ‖x‖2 = x · x to compute ‖v + w‖2
and get v ·w = 0 to show up somewhere.]

30.8 Problem (?). Let v, w ∈ Rm with v ·w = 0. Prove that

‖v‖ ≤ ‖v + w‖ .

[Hint: use the Pythagorean theorem to get an expression for ‖v + w‖, and then use the
facts that the square root function is increasing and ‖w‖ ≥ 0.]

Here is how we use this new tool of the norm. We’ll think that two vectors v, w ∈ Rm

are “close” if the difference ‖v −w‖ is “small.”

30.9 Remark. And what exactly does “small” mean? Say ‖v‖ < ε for some ε > 0. Then
since the square root is increasing,

|vj| =
√
v2j ≤

√
v21 + · · ·+ v2m = ‖v‖ < ε.

So if ‖v‖ is “small” in the sense that it’s less than some threshold ε > 0, then each com-
ponent vj is “small” in the same way: |vj| < ε for all j. I think that a vector with small
components is a small vector.
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Given A ∈ Rm×n and b ∈ Rm with b 6∈ C(A), can we find p ∈ C(A) such that b and b
are “close”? Then maybe solving Ax̂ = p will be an adequate substitute for failing to solve
Ax = b.

Gloriously, it’s quite easy to find this p, and it probably won’t surprise you that it involves
the orthogonal projection PAb. Here’s a picture that we drew before, more or less.

x

y

b

a
x

y

b

aPa

b− Pb

Here I’m thinking that

A =
[
a
]
∈ Rm×1, a 6= 0m, and P = PA = P[

a
].

I think the picture makes it clear that the closest vector in C(
[
a
]
) = span(a) to b is Pb.

Let’s prove it. Going forward, we will that A ∈ Rm×n has full column rank: rank(A) = n.
This is what makes the projection PA exist. We can think about the case when A doesn’t
have full column rank later. That is slightly harder, and the following will be hard enough
to start.

Take any v ∈ C(A). We’re going to prove an inequality:

‖b− PAb‖ ≤ ‖b− v‖ . (30.1)

This says that you’ll never make the distance between b and a vector v ∈ C(A) smaller than
when you take v = PAb.

This inequality is equivalent to

‖b− v‖2 ≥ ‖b− PAb‖2 , (30.2)

and so that’s what we’ll prove. We can make PAb show up on the left by adding and
subtracting:

‖b− v‖2 = ‖b− PAb + PAb− v‖2 . (30.3)

Now group things and pay attention:

‖b− PAb + PAb− v‖2 = ‖(b− PAb) + (PAb− v)‖2 . (30.4)

We know b− PAb ∈ N(AT), PAb ∈ C(A), and v ∈ C(A). So, PAb− v ∈ C(A) = N(AT)⊥.
That is, b− PAb and PAb− v are orthogonal. Problem 30.8 implies

‖(b− PAb) + (PAb− v)‖2 = ‖b− PAb‖2 + ‖PAb− v‖2 ≥ ‖b− PAb‖2 . (30.5)

Combine (30.3), (30.4), and (30.5) to get (30.2), and we’re done.
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30.10 Theorem (Least squares). Let A ∈ Rm×n have full column rank: rank(A) = n
and m ≥ n. Then for any b ∈ Rm, the closest vector in C(A) to b is PAb:

‖b− PAb‖ ≤ ‖b− v‖ (30.6)

for any v ∈ C(A). Moreover, with x̂ := (ATA)−1ATb, we have

‖Ax̂− b‖ ≤ ‖Ax− b‖ (30.7)

for any x ∈ Rn, and so the least squares solution x̂ is the best “approximate
solution” to the (possibly unsolvable) problem Ax = b.

Proof. The first inequality (30.6) is just a restatement of our goa (30.1). And the second
inequality (30.7) is just (30.6) with

PAb = Ax̂, x̂ := (ATA)−1ATb,

and v ∈ C(A) replaced by v = Ax for any x ∈ Rn. �

The moral is that if you want to solve Ax = b but can’t, since b 6∈ C(A), and if A has
full column rank, content yourself with solving Ax̂ = PAb. We use the phrase “least squares
solution” because the sum of the squares in ‖Ax̂− b‖ is the smallest of all sums of squares
of the form ‖Ax− b‖.

30.11 Problem (!). If A ∈ Rm×m is invertible, what is x̂? Are you surprised?

Content from Strang’s ILA 6E. Read p. 163 up to and including the box before Example
1. Then read “Minimizing the Error” on pp. 164–165. Skip the “By calculus” section on
pp. 165–166 if you haven’t taken multivariable calculus. Then read “The Big Picture for
Least Squares” on pp. 166–167. Spend some time contrasting Figure 4.7 on p. 166 with
Figure 4.1 back on p. 146. How is b behaving differently between the two figures?

Day 31: Wednesday, March 26.

The crux of least squares is that when we can’t solve Ax = b, we first find the best approx-
imation to b ∈ C(A), which we call p, and then we solve Ax̂ = p. So far, success requires
A to have full column rank.

31.1 Example. Let

A =

1 0
2 0
0 1

 and b =

1
0
0

 .
If y ∈ C(A), then y2 = 2y1; here b 6∈ C(A). We could use the formula from Theorem 30.10
to find the least squares solution x̂ ∈ R2 that makes ‖Ax̂− b‖ as small as possible, but
here I think it might be enlightening to see how the structure of PAb allows us to solve
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Ax̂ = PAb directly.
From Example 29.4, the orthogonal projection onto C(A) is

PA =

1/5 2/5 0
2/5 4/5 0
0 0 1

 .
We compute

PAb =

1/5 2/5 0
2/5 4/5 0
0 0 1

1
0
0

 =

1/5
2/5
0

 .
Then the problem Ax̂ = PAb becomes

x̂1 = 1/5
2x̂1 = 2/5

x̂2 = 0,

which gives x̂1 = 1/5 and x̂2 = 0, so the least squares solution is

x̂ =

[
1/5
0

]
.

Let’s overthink this a little. Saying that this is the least squares solution means
‖Ax̂− b‖ ≤ ‖Ax− b‖ for all x ∈ R2. We’re never going to make ‖Ax− b‖ smaller
than when we choose x = x̂. Let’s compute it—I’ll square to get rid of the square root
(always a good idea):

‖Ax− b‖2 =

∥∥∥∥∥∥
 x12x1
x2

−
1

0
0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
x1 − 1

2x1
x2

∥∥∥∥∥∥
2

= (x1− 1)2 + (2x1)
2 +x22 ≥ (x1− 1)2 + 4x21.

That last inequality holds because x22 ≥ 0. What this says is that ‖Ax− b‖2 is always at
least as large as (x1−1)2+4x21. And what is that? A function of x1 alone! A little calculus,
or graphing the parabola, will convince you that the minimum of f(x1) = (x1 − 1)2 + 4x21
occurs at x1 = 1/5. Thus

‖Ax− b‖2 ≥ (1/5− 1)2 + 4(1/5)2 + 02 = ‖Ax̂− b‖2 ,

exactly as least squares predicts.

31.2 Example. This is probably the most legitimate “application” of linear algebra that
we’ll ever do in this class. You and I know that you can find a line running between any
two points in the plane. Three or more points, maybe, maybe not.

Say that you have m sample points of data: (x1, y1), . . . , (xm, ym). You probably can’t
find a line that passes through all of them, but can you find the line that is “closest” to all
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of them? What does “closest” even mean here? Here’s a picture with m = 4.

x

y

I claim “closest” should mean the line whose “perpendicular distance” from each point
is the smallest. This line has the form y = mx + b. Ideally, we’d have yk = mxk + b for
k = 1, . . . , 4. This really becomes the system of equations

mx1 + b = y1
mx2 + b = y2
mx3 + b = y3
mx4 + b = y4,

and that is the matrix-vector equation
x1 1
x2 1
x3 1
x4 1

[mb
]

=


y1
y2
y3
y4

 .
Remember that in the notation of this problem, xk and yk are given, while m and b are
unknown.

Let

A =


x1 1
x2 1
x3 1
x4 1

 .
We want to do least squares, so A better have independent columns. For that, the first
column shouldn’t be a multiple of the second. The first column is a multiple of the second
precisely when all of the xk’s are the same number. But in that case, all of the data points
have the same x-coordinate, in which case they all lie on the same vertical line. Boring!

So, assume that at least one of the xk’s is not equal to the other. Then you can do least
squares and say that the best choice of slope and y-intercept is

[
m̂

b̂

]
= (ATA)−1AT


y1
y2
y3
y4

 .
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You could compute what m̂ and b̂ are explicitly, or you could go to a computer and replace
thinking with typing.

The takeway for me from this example is that an extremely natural, and important,
application results in a matrix A that transparently has full column rank but not full
row rank. This justifies our emphasis on A having full column rank in the least squares
developments so far.

Content from Strang’s ILA 6E. Least squares for data fitting to lines appears in Example
1 on pp. 163–164, Figure 4.6, and pp. 167–168. Pay careful attention to the utility of
orthogonal columns in A in Example 2 on p. 168. There’s no reason to stop with lines.
What if you wanted to find the “best” parabola approximating a set of data? Add one
more column to A to account for the extra coefficient in the parabola and read p. 170.

Day 32: Friday, March 28.

You took Exam 2.

Day 33: Monday, March 31.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Orthogonal list of vectors, orthonormal list of vectors, orthogonal matrix

Nonetheless, a careful review of the work leading to Theorem 30.10 will convince you that
we didn’t need A to have full column rank to find a best approximation to b.

33.1 Problem (?). Let V be a subspace of Rm and let b ∈ Rm. Find v? ∈ V such that

‖b− v?‖ ≤ ‖b− v‖

for any v ∈ V . [Hint: if V = {0m}, there isn’t much to do. Otherwise, start by writing
V = C(A) for some A ∈ Rm×d with rank(A) = d.]

This vector v? is a best approximation to b. If we’re going to say “best,” we probably
want only one “best,” and this is one of those times when we get just that.

33.2 Problem (!). Use the definition of the norm ‖·‖ to prove the parallelogram
law:

‖v + w‖2 + ‖v −w‖2 = 2 ‖v‖2 + 2 ‖w‖2
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for any v, w ∈ Rm.

33.3 Problem (+). Let V be a subspace of Rm and b ∈ Rm. Problem 33.1 tells us that
there exists a closest point v? ∈ V to b satisfying

‖b− v?‖ ≤ ‖b− v‖ (33.1)

for all v ∈ V . Now we show that there is only one such closest point.

(i) Draw a picture in R2 that convinces you that there should only be one such closest
point. [Hint: copy the pictures in R2 that we’ve been drawing all along.]

(ii) Prove it! Suppose that ṽ? ∈ V also satisfies

‖b− ṽ?‖ ≤ ‖b− v‖ (33.2)

for all v ∈ V . First combine (33.1) and (33.2) to show

‖b− v?‖ = ‖b− ṽ?‖ .

(iii) Explain why you want to show ‖v? − ṽ?‖ = 0. Add and subtract b and use the
parallelogram law (Problem 33.2) to show

‖v? − ṽ?‖2 = 2 ‖b− v?‖2 + 2 ‖b− ṽ?‖2 − 4

∥∥∥∥b− v? + ṽ?
2

∥∥∥∥2 . (33.3)

(iv) Abbreviate
ε := ‖b− v?‖ = ‖b− ṽ?‖ .

Use the fact that v?, ṽ? ∈ V to obtain (v? + ṽ?)/2 ∈ V and thus

ε ≤
∥∥∥∥b− v? + ṽ?

2

∥∥∥∥ . (33.4)

(v) Combine (33.3) and (33.4) to conclude

‖v? − ṽ?‖2 ≤ 2ε2 + 2ε2 − 4ε2 = 0.

So, if A doesn’t have full column rank, we could still find the closest point p ∈ C(A) to b
and then try to solve Ax̂ = p. We will definitely succeed in solving this because p ∈ C(A)!
The challenge is that because A doesn’t have full column rank, we will succeed with too
many degrees of freedom: N(A) 6= {0n}, and so we have many choices for x̂. Which is best?

33.4 Remark. Here is one way of proceeding, motivated by the notion that less complicated
data is probably better than complicated data.

Let A ∈ Rm×n and b ∈ Rm, and, by Problems 33.1 and 33.3, let p ∈ C(A) be the closest
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point in C(A) to b. Let x̂ ∈ Rn satisfy Ax̂ = p. By Theorem 27.9, write x̂ = v̂+ ŵ, where
v̂ ∈ C(AT) and ŵ ∈ N(A). Then Av̂ = p, and so by Theorem 21.13 any other solution ŷ
to Aŷ = p also has the form ŷ = v̂ + ẑ for some ẑ ∈ N(A).

By Problem 30.8, ‖v̂‖ ≤ ‖ŷ‖. That is, v̂ has the smallest norm of any solution ŷ to
Aŷ = p. We might call v̂ the minimum-norm least squares solution.

But how do we find v̂? This requires first finding that x̂ that solves Ax̂ = p, which
requires knowing p; this requires an orthogonal projection onto C(A), which I guess we
could get from writing C(A) = C(B1) for some B1 ∈ Rm×r with full column rank. Then
to get v̂ from x̂, we’d need the orthogonal projection onto C(AT), for which we’d start by
writing C(AT) = C(B2), where B2 ∈ Rn×r. (I don’t think B2 = BT

1 , but am I wrong?)
This seems like a lot of work. It would be nice if there were a simpler formula for

v̂ in terms of A and b, and experience teaches us that such a formula probably involves
multiplying b by a special matrix. This turns out to be true: there is a matrix A+ ∈ Rn×m

such that v̂ = A+b, and this A+ is the pseudoinverse of A.

Content from Strang’s ILA 6E. Page 169 gives a concrete example of what to do when A
doesn’t have full column rank. The construction of the pseudoinverse is best resolved via
the glorious tool of the singular value decomposition. Read the comment at the bottom of
p. 169 for a nice review of the three possibilities for solutions to linear systems.

Optionally (this is wholly, totally optional), read Section 4.5, which details what the
pseudoinverse does. You can skip the example from the “Incidence Matrix of a Graph” on
p. 194. Ideally we will develop the SVD, so the formula for A+ on p. 195 will eventually
make sense.

33.5 Problem (?). Here is the opposite question: what is the best solution when we have
too many solutions? Suppose that A ∈ Rm×n has full row rank, so we can always solve
Ax = b. However, perhaps A is not square, in which case A won’t have full column rank
as well, and so solutions won’t be unique. This sort of arose above in Remark 33.4, and
the idea was to choose the “minimum norm solution.”

First reread that remark carefully; since b ∈ C(A) here, we can assume p = b through-
out, and we may as well dispense with the hats since there is actually a solution to Ax = b
now. Use Problem 29.2 to get the orthogonal projection PAT onto C(AT). Write v = PATx
and conclude v = AT(AAT)−1b. This is our formula for v in terms of A and b.

Here is a summary, in pictures, of everything we’ve done. Literally: these three pictures
encapsulate most of the ideas of the course. In these pictures, which are really fake cartoons,
I’m imagining that all of the four fundamental subspaces are one-dimensional (except in the
second, where the null space of A is trivial), and so we can imagine them as coordinate axes
in a two-dimensional plane.

Best case is that we can solve Ax = b, although maybe N(A) 6= {0n} and we have
infinitely many solutions.



Day 33: Monday, March 31 143

N(A)C(AT) C(A)N(AT)

Ax? = b

Ax = b

Az = 0m

x?

z

x = x? + z

b

Rn = N(A)⊕C(AT) Rm = C(A)⊕N(AT)

Next best case is that while we can’t solve Ax = b, since b 6∈ C(A), A does have full
column rank, so we can do a least squares approximation.

C(A)N(AT)

Ax = b has no solution

Ax̂ = p
x̂

N(A) = {0n}

p

b− p

b

Rn = C(AT) Rm = C(A)⊕N(AT)

Worst case is that we can’t solve Ax = b and A doesn’t have full column rank. Then
while we can approximate Ax = b with the problem Ax̂ = p, where p is the projection of b
onto C(A), this new approximate problem won’t have a unique solution, since N(A) 6= {0n}.
This is why you may want to go learn about the pseudoinverse on your own.
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N(A)C(AT) C(A)N(AT)
Ax = b has no solution

Ax̂ = p

Ax = p

Az = 0m

x̂

p

b− p

b

x = x̂ + z

z

Rn = N(A)⊕C(AT) Rm = C(A)⊕N(AT)

We’re going to switch our focus a little and go back to some old stuff and ask how can
we do better. Actually calculating the orthogonal projection onto a column space can be
annoying, because we have to invert ATA. This could make solving a least squares problem
hard; we know that if A ∈ Rm×n has full column rank and b 6∈ C(A), the best thing to do is
solve Ax̂ = PAb with PA = A(ATA)AT. We do have a solution formula: x̂ = (ATA)−1ATb.
But we know that numerically computing inverses is rarely a good idea. We could think
instead about (ATA)x̂ = ATb. This is the normal equation for our least squares
problem. Maybe an LU -factorization or Gaussian elimination would be more efficient than
doing the inverse.

Content from Strang’s ILA 6E. Reread the first three paragraphs on p. 163.

It turns out that if we ask a little more of A, the projection PA becomes much nicer.
Equivalently, if we have a really good basis for C(A) and stack that basis in a matrix Q,
then since C(A) = C(Q), we just need to compute PQ instead of PA. (This is the uniqueness
of the orthogonal projection onto C(A) = C(Q) from Problem 30.3.)

The right thing to do is exploit geometry further. Long ago (in Problem 4.6) we saw why
the standard basis vectors in Rm were so nice. Since

ej · ek =

{
1, j = k

0, j 6= k

and Rm = span(e1, . . . , em) = C(Im), we have the representation

v = (v · e1)e1 + · · ·+ (v · em)em

for any v ∈ Rm. The actual formulas for the standard basis vectors aren’t what’s special
here; rather, it’s how they interact under the dot product. What’s most important is their
mutual orthogonality.
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33.6 Definition. A list u1, . . . ,un ∈ Rm is orthogonal if

uj · uk = 0

for j 6= k.

To keep things simple, let’s look at an orthogonal list u1, u2, u3 ∈ Rm and say v ∈
span(u1,u2,u3). Then v = c1u1 + c2u2 + c3u3 for some c1, c2, c3 ∈ R. Here’s the trick:

v · u1 = (c1u1 + c2u2 + c3u3) · u1

=
(
(c1u1) · u1

)
+
(
(c2u2) · u1

)
+
(
(c3u3) · u1

)
= c1(u1 · u1) + c2(u2 · u1) + c3(u3 · u1)

= c1(u1 · u1).

If u1 6= 0m, then u1 · u1 = ‖u1‖2 6= 0, and so we have

c1 =
v · u1

‖u1‖2
.

Let’s assume that none of the uj are 0m; otherwise, they contribute nothing worthwhile to
the span. Taking dot products of v against the other uj then yields

cj =
v · uj
‖uj‖2

.

This generalizes to an arbitrary orthogonal list.

33.7 Theorem. Let u1, . . . ,un ∈ Rm be orthogonal and let v ∈ span(u1, . . . ,un). Then

v =

(
v · u1

‖u1‖2

)
u1 + · · ·+

(
v · un
‖un‖2

)
un.

A nice consequence is that any orthogonal list of nonzero vectors is independent. For if
c1u1 + · · ·+ cnun = 0m, then each cj must be 0. (In the theorem above, take v = 0m, so the
dot products collapse to 0.)

33.8 Problem (!). What is the maximum length of any list of orthogonal vectors in Rm?

All that division, however, gets annoying. It’s much more efficient to assume ‖uj‖ = 1
for all j.

33.9 Definition. A list q1, . . . ,qn ∈ Rm is orthonormal if

qj · qk =

{
1, j = k

0, j 6= k.
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The j 6= k condition means that an orthonormal list is orthogonal, while the j = k
condition gives ‖qj‖ =

√
qj · qj = 1.

33.10 Problem (?). Let q1, q2 ∈ Rm be orthonormal and let v ∈ span(q1,q2). Use the
Pythagorean theorem (Theorem 30.6) to show that

‖v‖2 = |v · q1|2 + |v · q2|2.

This generalizes: if q1, . . . ,qn ∈ Rm are orthonormal and v ∈ span(q1, . . . ,qn), then

‖v‖2 = |v · q1|2 + · · ·+ |v · qn|2.

We work with matrices and column spaces as much as we do with lists of vectors and
spans, so let’s stuff those orthonormal vectors into a matrix and get an unfortunate definition.

33.11 Definition. A matrix Q ∈ Rm×n is orthogonal if the columns of Q are or-
thonormal.

I’m sorry that we don’t just say “orthonormal matrix.” Math just isn’t hard enough.

33.12 Example. (i) The identity matrix is always orthogonal.

(ii) Let θ ∈ R and

Q =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Then trig and the Pythagorean identity sin2(θ) + cos2(θ) = 1 say that Q is orthogonal.

Content from Strang’s ILA 6E. Everything on pp. 176–178 is important. I am being
a little more general and calling any matrix, square or not, with orthogonal columns an
“orthogonal matrix.”

Day 34: Wednesday, April 2.

Here is a nice consequence of definitions. Let Q =
[
q1 · · · qn

]
∈ Rm×n be orthogonal.

Then

qi · qj =

{
1, i = j

0, i 6= j.

Remember that row i of QT is just column i of Q, and that the (i, j)-entry of QTQ is the
dot product of row i of QT and column j of Q. That is, the (i, j)-entry of QTQ is qi ·qj, and
so this (i, j)-entry is 1 when i = j (= on the diagonal) and 0 otherwise (= off the diagonal).
This sounds a lot like an identity matrix, and it is! Since Q ∈ Rm×n, we have QT ∈ Rn×m,
and so QTQ ∈ Rn×n.



Day 34: Wednesday, April 2 147

34.1 Theorem. Let Q ∈ Rm×n be orthogonal. Then QTQ = In.

34.2 Problem (!). So is every orthogonal matrix invertible?

34.3 Problem (?). State and prove an analogue of Theorem 34.1 for the case when the
columns of Q are only orthogonal, not orthonormal.

34.4 Problem (!). Is every orthogonal projection (Definition 29.6) an orthogonal matrix?

We can use this property of orthogonal matrices to recover our slick representation from
an orthonormal basis. Let Q ∈ Rm×n be orthogonal and b ∈ C(Q). Then b = Qx for some
x ∈ Rn, and so QTb = QTQx = x. Thus

b = Qx = QQTb.

Now let’s think about multiplication. One way to compute the entries of QTb is to take
the dot product of the rows of QT with b. (This is probably how we usually compute
matrix-vector products by hand.) And the rows of QT are the columns of Q, so

QTb =

q1 · b
...

qn · b

 .
Next, one way to compute QQTb is to take the linear combination of the columns of Q

weighted by the entries of QTb:

b = QQTb =
[
q1 · · · qn

] q1 · b
...

qn · b

 = (q1 · b) + · · ·+ (qn · b).

I love how this brings together two ways of looking at matrix-vector multiplication: the dot
product way for quick and dirty calculations by hand, the linear combination of columns
way to actually understand what’s happening. I’d be scared if this doesn’t make you happy,
too.

Enough old stuff. Here’s the new: orthonormality and orthogonal matrices make least
squares so much easier. Suppose that Q ∈ Rm×n is orthogonal and we want to solve Qx = b,
but b 6∈ C(Q). Then we’d solve the least squares problem

Qx̂ = PQb,

where
PQ = Q(QTQ)−1QT = QI−1n QT = QQT.

Look at that: the orthogonal projection onto C(Q) collapses to QQT. No inverses needed.
This is so nice that I want to emphasize it by itself.
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34.5 Theorem. Let Q =
[
q1 · · · qn

]
∈ Rm×n be orthogonal. Then the orthogonal pro-

jection onto C(Q) is QQT, and every v ∈ C(Q) has the form

v = QQTv = (v · q1) + · · ·+ (v · qn)qn.

Content from Strang’s ILA 6E. You should hold the answer to Worked Example 4.4 B
on p. 185 deep within your heart.

Then the least squares problem is just

Qx̂ = QQTb,

and that says
x̂ = QTb.

Again, no inverses, just transposing and multiplying.

34.6 Problem (!). Reread Example 29.4 and explain how orthonormality made calculating
the projection operator easier. How would things have been more complicated there if we
used the pivot columns of A as the basis for the column space, not the columns of B?

Content from Strang’s ILA 6E. Page 179 through the top of p. 180 discuss least squares
with orthogonal matrices.

It looks like we really win if the important vectors in our problem are orthonormal. But
often they aren’t. If we start with a matrix A, how can we get an “orthonormal basis” for its
column space? If A ∈ Rm×n, is there an orthogonal matrix Q ∈ Rm×n with C(A) = C(Q)?

Yes, and we can construct it explicitly. We’ll go through the procedure in detail for n = 3.
Let v1, v2, v3 ∈ Rm be independent. (Why independent? We want to transform any old
basis into the best kind of basis—the orthonormal basis—and so we may as well start with
independent vectors.) We want to find orthonormal q1, q2, q3 ∈ Rm that “preserve the
span”: 

span(v1) = span(q1)

span(v1,v2) = span(q1,q2)

span(v1,v2,v3) = span(q1,q2,q3).

(34.1)

The first equality suggests that we just define q1 directly in terms of v1. Since we want
‖qj‖ = 1 for each j, and since we know v1 6= 0m (by independence), we put

q1 =
v1

‖v1‖
.

This immediately gives ‖q1‖ = 1, and since q1 is just a (nonzero) multiple of v1, we preserve
the span: span(v1) = span(q1).

Next, we want q2 ∈ Rm such that q2 · q1 = 0 and ‖q2‖ = 1. If we have a vector u2 ∈ Rm

with u2 · q1 = 0 and u2 6= 0m, then we can always normalize and put q2 = u2/ ‖u2‖. Then
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we’ll still have q2 ·q1 = 0. Also, if we know span(v1,v2) = span(q1,u2), then span(v1,v2) =
span(q1,q2).

34.7 Problem (!). Check that: show C
( [
A v

] )
= C

( [
A cv

] )
for any A ∈ Rm×n,

v ∈ Rm, and c ∈ R. (I’m sure you did this at some point in the course already, but do it
again.)

So, we focus on getting u2 · q1 = 0, span(v1,v2) = span(q1,u2), and u2 6= 0m. One of
the big ways to make orthogonality show up is to project. Problem 28.12 tells us that q1

and v − (v · q1)q1 are orthogonal for any v ∈ Rm. (Or you could just check that right now
yourself.) Since we want to get v2 to show up, it’s worth trying

u2 = v2 − (v2 · q1)q1.

This definitely gives u2 · q1 = 0.
Now we check spans. Anything in span(v1,v2) is

x1v1 + x2v2 = c1q1 + x2v2 for some c1 ∈ R, since span(v1) = span(q1)

= c1q1 + x2
(
v2 − (v2 · q1)q1

)
+ x2(v2 · q1)q1

=
(
c1 + x2(v2 · q1)

)
q1 + x2u2

∈ span(q1,u2).

And anything in span(q1,u2) is

y1q1 + y2u2 = y1q1 + y2
(
v2 − (v2 · q1)

)
q1

=
(
y1 − (v2 · q1)

)
q1 + y2v2

= z1v1 + y2v2 since q1 ∈ span(v1)

∈ span(v1,v2).

This proves span(q1,u2) = span(v1,v2).
Finally, we check that u2 6= 0m. Otherwise, we’d have

0m = v2 − (v2 · q1)q1 = v2 + cv1,

since q1 ∈ span(v1). This contradicts the linear independence of v1 and v2. We have
therefore met all of our goals with u2 and so put q2 = u2/ ‖u2‖. Onwards.

We finally want q3 ∈ Rm such that q3 · q2 = 0, q3 · q1 = 0, and span(v1,v2,v3) =
span(q1,q2,q3). Projections get us the orthogonality once again: if B ∈ Rm×n has full
column rank, then v− PBv is orthogonal to every vector in C(B), since v− PBv ∈ N(BT).
(Don’t believe me? Calculate it right now.) Take A = Q2 =

[
q1 q2

]
. Then

u3 = v3 − PQ2v3 = v3 −Q2Q
T
2

will satisfy u3 · q2 = u3 · q1 = 0. Here we are using the fact that if Q is orthogonal, then the
orthogonal projection onto its column space is PQ = QQT.

Now we’ll check span(v1,v2,v3) = span(q1,q2,u3) and u3 6= 0m. Then q3 = u3/ ‖u3‖
will finish the job.
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34.8 Problem (?). Here’s a general way of getting the spans (which, by the way, also takes
care of the spans from constructing u2): show that if A, B ∈ Rm×n with C(A) = C(B)
with rank(B) = n, then

C
( [
A v

] )
= C

( [
B (v − PBv)

] )
for any v ∈ Rm. [Hint: Start with Ax + cv = Ax + c(v − PBv) + cPBv. Explain why
Ax+cPBv ∈ C(B). Next, By+z(v−PBv) = (By−zPBv)+zv. Explain why By−zPBv ∈
C(A).]

Take A =
[
v1 v2

]
, B =

[
q1 q2

]
, and v = v3 to conclude that span(v1,v2,v3) =

span(q1,q2,u3). Now we check u3 6= 0m. Otherwise, we’d have

v3 = Q2Q
T
2v3 ∈ C(Q2) = span(v1,v2).

This contradicts the independence of v1, v2, and v3. So, we conclude with q3 = u3/ ‖u3‖.

Content from Strang’s ILA 6E. Pages 180–181 do Gram–Schmidt for three vectors. See
in particular the 3D drawings in Figure 4.10 on p. 181.
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Here is the general result.

35.1 Theorem (Gram–Schmidt procedure). Let v1, . . . ,vn ∈ Rm be independent. There
exist orthonormal q1, . . . ,qn ∈ Rm such that span(v1, . . . ,vj) = span(q1, . . . ,qj) for j =
1, . . . , n. Specifically,

q1 =
v1

‖v1‖
and qj =

uj
‖uj‖

, j ≥ 2,

where

uj := vj−Qj−1Q
T
j−1vj = vj−

(
(vj·q1)q1+· · ·+(vj·qj−1)qj−1

)
, Qj−1 :=

[
q1 · · · qj−1

]
.

(35.1)

Proof. This is really a proof by induction, but the key ideas are outlined in the n = 3 case
above. The point is that you know how to construct q1, and then you assume that you’ve
constructed through qj with span(v1, . . . ,vj) = span(q1, . . . ,qj) and q1, . . . ,qj orthonormal.
Put uj+1 = vj+1 − QjQ

T
j vj+1. This immediately gives uj+1 · qk = 0 for k = 1, . . . , j, since

v − QjQ
T
j v is orthogonal to anything in C(Qj). For spans, use Problem 34.8 with A =[

v1 · · · vj
]
, B = Qj, and v = uj+1. To be sure that uj+1 6= 0m, suppose otherwise and get

vj+1 = QjQ
T
j vj+1 ∈ C(Qj) = C(A), which contradicts the independence of v1, . . . ,vn. �
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Content from Strang’s ILA 6E. Page 183 presents some pseudocode for computing Gram–
Schmidt. See also the confession on p. 184. Read it and take a numerical linear algebra
class.

My feeling is that to write things out concisely, it’s nice to use the projection QjQ
T
j . To

do calculations by hand, it’s easier to use the second formula for uj in (35.1).

35.2 Problem (?). Using the hypotheses and notation of the Gram–Schmidt procedure,
prove that vj · qj > 0 as follows.

(i) First explain why we just need v ·uj > 0, and check that this is true in the case j = 1.

(ii) For j ≥ 2, rewrite
vj = uj +Qj−1Q

T
j−1vj.

Explain whyQj−1Q
T
j−1vj ·uj = 0. [Hint: Qj−1Q

T
j−1vj = Qj−1(Q

T
j−1vj) and uj ∈ C(Qj−1)

⊥.]

(iii) Conclude that vj · uj = ‖uj‖2.

35.3 Example. Let

v1 =

1
2
0

 , v2 =

1
2
2

 , and v3 =

−2
1
0

 .
I claim that these vectors are independent, and so we can do Gram–Schmidt on them.

Start by computing
‖v1‖ =

√
12 + 22 + 02 =

√
5

and put

q1 =
v1

‖v1‖
=

1√
5

1
2
0

 =

1/
√

5

2/
√

5
0

 .
Then we want to set

u2 = v2 − (v2 · q1)q1.

We compute

v2 · q1 =

1
2
2

 ·
1/
√

5

2/
√

5
0

 =
1√
5

+
4√
5

=
5√
5

=
√

5,

so

u2 =

1
2
2

−√5

1/
√

5

2/
√

5
0

 =

1
2
2

−
1

2
0

 =

0
0
2

 .
Then

‖u2‖ =
√

02 + 02 + 22 = 2,



Day 35: Friday, April 4 152

so we put

q2 =
v2

‖v2‖
=

1

2

0
0
2

 =

0
0
1

 .
Last, we want to set

u3 = v3 − (v3 · q1)q1 − (v3 · q2)q2.

We have

v3 · q1 =

−2
1
0

 ·
1/
√

5

2/
√

5
0

 = − 2√
5

+
2√
5

= 0

and

v3 · q2 =

−2
1
0

 ·
0

0
1

 = 0,

so there’s not much work to do here. Just take

u3 = v3,

compute
‖u3‖ = ‖v3‖ =

√
(−2)2 + 12 + 02 =

√
5,

and set

q3 =
u3

‖u3‖
=

1√
5

−2
1
0

 =

−2/
√

5

1/
√

5
0

 .
The result is that the list q1, q2, q3 is orthonormal and preserves spans in the sense

that (34.1) holds. In particular, since there are three vectors in the list q1, q2, q3, it is an
orthonormal basis for R3. The best basis.

If the original vectors look familiar, that’s because v1 and v2 are the pivot columns of

A =

1 2 1 7
2 4 2 14
0 0 2 8

 ,
as discussed in Examples 19.5, 21.2, and 21.12, while N(AT) = span(v3), per Example
22.1. We already expect that v3 is orthogonal to v1 and v2, and that is shown in the
calculations above. In particular, since span(v1,v2) = span(q1,q2), the list q1, q2 is an
orthonormal basis for C(A). Again, the best basis.

35.4 Problem (?). Let v1, . . . ,vn ∈ Rm.

(i) Suppose that for some integer j with 1 ≤ j ≤ n − 1, the vectors v1, . . . ,vj are inde-
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pendent but vj+1 ∈ span(v1, . . . ,vj), so v1, . . . ,vj+1 are dependent. What happens at the
(j + 1)st step in the Gram–Schmidt process? [Hint: reread the proof of Theorem 35.1.]

(ii) Let j be an integer with 1 ≤ j ≤ n − 1, and now suppose that v1, . . . ,vj+1 are
independent, so you can do Gram–Schmidt through the (j + 1)st step. Suppose that
vj+1 · vk = 0 for k = 1, . . . , j. What now happens at this (j + 1)st step in Gram–Schmidt?
[Hint: think about the third step in Example 35.3.]

That the Gram–Schmidt procedure “preserves spans” is probably not a consequence that
we expected when we originally started out with an independent list and wanted to get
an orthonormal list with the same span as the whole list. (Okay, we expected that one
span would be preserved.) Sometimes accidental consequences are nice. Look at the n = 3
situation.

We have independent vectors v1, v2, v3 ∈ Rm and orthonormal vectors q1, q2, q3 ∈ Rm

such that the spans are preserved:
v1 ∈ span(q1)

v2 ∈ span(q1,q2)

v3 ∈ span(q1,q2,q3).

Since the qk are orthonormal, we have the expansions
v1 = (v1 · q1)q1

v2 = (v2 · q1)q1 + (v2 · q2)q2

v3 = (v3 · q1)q1 + (v3 · q2)q2 + (v3 · q3)q3.

Do you see a “triangular” structure here in my very intentional typesetting?
Let’s work backwards:

v1 = (v1 · q1)q1 =
[
q1 q2 q3

] v1 · q1

0
0

 ,
v2 = (v2 · q1)q1 + (v2 · q2)q2 =

[
q1 q2 q3

] [v2 · q1

v2 · q2

]
,

and

v3 = (v3 · q1)q1 + (v3 · q2)q2 + (v3 · q3)q=

[
q1 q2 q3

] v3 · q1

v3 · q2

v3 · q3

 .
Then [

v1 v2 v3

]
=
[
q1 q2 q3

] (v1 · q1) (v2 · q1) (v3 · q1)
0 (v2 · q2) (v3 · q2)
0 0 (v3 · q3)

 .
Put

A =
[
v1 v2 v3

]
, Q =

[
q1 q2 q3

]
, and R =

(v1 · q1) (v2 · q1) (v3 · q1)
0 (v2 · q2) (v3 · q2)
0 0 (v3 · q3)
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to see that we have factored the matrix A (which has independent columns) into the product
A = QR, with Q orthogonal and R upper-triangular. In fact, the diagonal entries of R are
positive (not just nonzero) by Problem 35.2.

We have a lot of recent knowledge about why orthogonal matrices are nice, and we have
a lot of past knowledge about why upper-triangular matrices with nonzero diagonal entries
are nice. We’ll put all of that together with this “QR-factorization” to obtain the ultimate
form of least squares. Remember, that’s what you do when you can’t do what you want
(which is solve Ax = b, of course).

Content from Strang’s ILA 6E. Page 182 develops the QR-factorization for a matrix
with three independent columns.

Day 36: Monday, April 7.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Eigenvalue, eigenvector, eigenspace, geometric multiplicity

We formalize our third major matrix factorization.

36.1 Theorem (QR-factorization). Let A ∈ Rm×n have independent columns (so A has
full column rank: rank(A) = n). There exist an orthogonal matrix Q ∈ Rm×n and an
upper-triangular matrix R ∈ Rm×n such that A = QR. Specifically, the columns of Q are
the vectors constructed from the columns of A by the Gram–Schmidt procedure, and the
(i, j)-entry of R is aj · qi, where aj is the jth column of A, and qi is the ith column of Q.

We proved the n = 3 case of this. The general proof just hinges on (1) the orthonor-
mality of the vectors produced by Gram–Schmidt, (2) the “span preservation property” that
span(v1, . . . ,vj) = span(q1, . . . ,qj) for each j, not just j = n, and (3) Problem 35.2 to get
the positive diagonal entries in R.

36.2 Example. Let

A =

1 1 −2
2 2 1
0 2 0

 .
We performed Gram–Schmidt on the columns of A in Example 35.3. Collect the Gram–
Schmidt output in

Q =

1/
√

5 0 −2/
√

5

2/
√

5 0 1/
√

5
0 1 0

 .
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If we don’t remember all of the coefficients from the Gram–Schmidt work, we can compute
them quickly (and we only do this for Rij with j ≥ i):

R11 = a1 · q1 =
√

5,

R12 = a2 · q1 =
√

5,

R13 = a3 · q1 = 0,

R22 = a2 · q2 = 2,

R23 = a3 · q2 = 0,

R33 = a3 · q3 =
√

5.

Then

R =


√

5
√

5 0
0 2 0

0 0
√

5

 ,
and we have 1 1 −2

2 2 1
0 2 0

 =

1/
√

5 0 −2/
√

5

2/
√

5 0 1/
√

5
0 1 0


√

5
√

5 0
0 2 0

0 0
√

5


36.3 Problem (!). Let A ∈ Rm×n have independent columns. What is the CR-
factorization of A? When is the R in that factorization the same as the R in the QR-
factorization?

Here is how the QR-factorization is useful for least squares. Start with A ∈ Rm×n with
independent columns and factor A = QR with Q ∈ Rm×n orthogonal and R ∈ Rn×n upper-
triangular with positive diagonal entries.

If b 6∈ C(A), then solving Ax̂ = PAb is the next best thing to solving the unsolvable
problem Ax = b. While we do have a formula for x̂, the annoying thing is that it requires
computing the inverse (ATA)−1. Better to solve a linear system than compute an inverse,
and here is the system you want to solve.

First, expand PA = A(ATA)−1AT, so Ax̂ = PAb becomes

Ax̂ = A(ATA)−1ATb.

Since A has full column rank, if Ax̂ = Ay, then x̂ = y. So, x̂ = (ATA)−1ATb. This is the
formula for x̂ that we previously developed—nothing new here, but I wanted to review it
with you. The right idea is not to stay with this formula but to make life seemingly more
complicated:

(ATA)x̂ = ATb. (36.1)

We could always use Gaussian elimination to solve (36.1). Again, better to solve a linear
system than compute an inverse.
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But this system (36.1) is pretty nice after the QR-factorization. Since A = QR, we have
AT = (QR)T = RTQT, and since Q is orthogonal, we have QTQ = In. Then

ATA = (RTQT)(QR) = RT(QTQ)R = RTInR = RTR.

The problem (36.1) now reads

RTRx̂ = RTQTb. (36.2)

This is great! Since R is upper-triangular with positive diagonal entries, RT is lower-
triangular with positive diagonal entries.

36.4 Problem (?). Prove that. [Hint: recall that RT
ij = Rji. Since R has positive diagonal

entries, Rii > 0. Since R is upper-triangular, Rij = 0 for i > j. To show that RT is
lower-triangular, you want RT

ij = 0 for j > i. Is this true?]

Any triangular matrix with nonzero diagonal entries is invertible, so RT is invertible.
Then (36.2) is just

Rx̂ = QTb.

Again, R is upper-triangular with positive diagonal entries, so we can solve this system by
back-substitution (no need even for Gaussian elimination!) No inverses anywhere in the
actual calculations, just in the theory.

Content from Strang’s ILA 6E. Pages 182–183 discuss how to use the QR-factorization
in least squares. Read the second half of p. 185, which summarizes everything. You don’t
need to read about the pseudoinverses.

Then read about the “victory of orthogonality” on p. 197. Stop with #5 for now, and
there just be able to explain why if Q ∈ Rn×n is orthogonal, so is any power Qk for k ≥ 1.

In the paragraph after that, note the “sum of squares definition of length.” There are
many valid, meaningful ways of defining the length of a vector (pp. 355–356), but the way
that interacts best with the dot product is saying length is ‖v‖ =

√
v · v. As you think

about least squares, keep in mind how length and dot product interact so nicely.

I like to think that courses tell stories, and sometimes stories have abrupt plot twists. Most
of the story of this course has been solving, then understanding, and finally approximating
Ax = b. We’ve introduced a significant amount of vocabulary, notation, and technology to
do this. Now the time has come to ask a different question, mostly about A, and less about
Ax = b (although we will still think about that). I’ve said many times, and I hope you
agree, that matrices are static and dynamic: they encode data and they act on data.

Namely, matrices act by multiplying other matrices and vectors (matrix-matrix multipli-
cation is, of course, matrix-vector multiplication done repeatedly). When we have to choose
between what is right and what is easy in math, we always want what’s easy. What is the
easiest action of a matrix? This is a little subjective, but I’d say it’s when there’s as little
multiplication involved as possible. What if A = λIn for some λ ∈ R? (The Greek letter λ
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is a traditional cultural thing here.) Then multiplying by A is just scalar multiplication by
λ.

The matrix λIn is diagonal with constant diagonal. Maybe the next simplest matrix is
still diagonal but has a nonconstant diagonal, say,

A =

λ1 0 0
0 λ2 0
0 0 λ3

 .
If v = cej for some c ∈ R and j = 1, 2, 3, then Av = cλjej. For these special vectors, A
still acts like scalar multiplication.

The right question to ask in our search for simple matrix operations is where/when/how
does the matrix act just as scalar multiplication? If A ∈ Rn×n, are there v ∈ Rn and λ ∈ R
such that

Av = λv?

36.5 Problem (!). Explain why the equality above only makes sense for square A.

The boring answer is yes when v = 0n. For this reason, we make the following restriction.

36.6 Definition. Let A ∈ Rn×n. A nonzero vector v ∈ Rn is an eigenvector of A
corresponding to the eigenvalue λ ∈ R if

Av = λv.

36.7 Remark. Here’s some linguistic commentary from a footnote on p. 69 of the excellent
Linear Algebra by Meckes and Meckes: “[The words ‘eigenvector’ and ‘eigenvalue’] are
halfway translated from the German words “Eigenvektor” and “Eigenwert.” The German
adjective ‘eigen’ can be translated as ‘own’ or ‘proper,’ so an eigenvector of [a matrix] is
something like ‘the matrix’s very own vector.” ’ Because of these German origins, Tefethen
and Bau’s excellent Numerical Linear Algebra suggests abbreviating “eigenvector” by “ev”
and eigenvalue” by “ew.”

The eigenvalues and eigenvectors of a square matrix encode a huge amount of information
about it, and this will become apparent over time—trust me. Here is one quick application.
Say that we want to compute “matrix powers”: Ak for k ≥ 2. Here A2 = AA, A3 = A2A =
AAA, and so on. If v is an eigenvector corresponding to λ, then

A2v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v,

and, more generally,
Akv = λkv.

This is vastly easier than computing Ak and then multiplying Akv.



Day 36: Monday, April 7 158

Content from Strang’s ILA 6E. Read the first two paragraphs on p. 216 and then all of
p. 217.

To warm up, we’ll think computationally and just try to find eigenvalues and eigenvectors.
Our computations will not exactly be profound. To be fair, all of our matrices in this course
have been “toys”—I’ve selected (or stolen) the entries so that the arithmetic is very easy to
do by hand. But, in the end, it’s all been arithmetic. All of the elementary row operations
and the calculations in the Gram–Schmidt procedure have been, fundamentally, arithmetic:
adding and multiplying numbers. Finding eigenvalues, however, will fundamentally be a
transcendental operation that we won’t be able to resolve, except in very special cases, with
a neat and finite algorithm.

The first thing that you might think is that the “eigenproblem” Av = λv is too hard
because it contains two kinds of unknowns: the vector v ∈ Rn and the scalar λ ∈ R.
What usually happens is that we find the eigenvalues first and then Av = λv becomes the
matrix-vector equation

(A− λIn)v = 0n. (36.3)
We know how to check if this has a nonzero solution. The greater utility of (36.3) is that
is tells us what happens when λ is an eigenvalue: N(A − λIn) 6= {0n}, so A − λIn is not
invertible.

36.8 Example. Let

A =

[
1 1
0 2

]
.

We want to find λ ∈ R such that A− λI2 is not invertible. We have

A− λI2 =

[
1 1
0 2

]
− λ

[
1 0
0 1

]
=

[
1 1
0 2

]
−
[
λ 0
0 λ

]
=

[
(1− λ) 1

0 (2− λ)

]
.

This last matrix is upper-triangular, so we know it’s not invertible (precisely) when a
diagonal entry is zero. This happens when 1−λ = 0 or 2−λ = 0. Thus the eigenvalues are
λ = 1 and λ = 2. Surely it’s no coincidence that the diagonal entries are the eigenvalues.

Just for practice, we find eigenvectors corresponding to the eigenvalue 1. We want to
find v ∈ R2 such that (A− I2)v = 02, and we want v 6= 02 to keep things interesting. We
look at [

0 1
0 1

]
v = 1v.

This becomes the linear system {
v2 = v1

v2 = v2.

The second equation tells us nothing useful (of course v2 = v2, what else would it equal?),
while the first tells us

v =

[
v1
v2

]
=

[
v2
v2

]
= v2

[
1
1

]
.

So, the eigenvectors corresponding to the eigenvalue 1 are all scalar multiples of v = (1, 1).
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Here is the generalization of the eigenvalue result from this example.

36.9 Theorem. Let A ∈ Rn×n be triangular. Then the eigenvalues of A are the diagonal
entries of A.

36.10 Problem (?). Prove it.

The eigenvector calculation in Example 36.8 revealed the eigenvectors corresponding to
a particular eigenvalue as the vectors in a certain span. This generalizes nicely.

36.11 Problem (?). Suppose that λ ∈ R is an eigenvalue of A ∈ Rn×n. The eigenspace
of A corresponding to λ is

E(A, λ) :={v ∈ Rn | Av = λv} .

The geometric multiplicity of λ as an eigenvalue of A is g(A, λ) := dim[E(A, λ)].

(i) Prove that E(A, λ) is a subspace of Rn. [Hint: for extra practice, try proving this in
two ways: from Definition 36.6 alone and by thinking about null spaces.]

(ii) Is every vector in E(A, λ) an eigenvector of A?

Now for some bad news.

36.12 Problem (?). (i) By considering

A =

[
1 1
0 2

]
,

explain why A and its RREF need not have the same eigenvalues.

(ii) Suppose that A, E ∈ Rn×n and U = EA is upper-triangular. Do you expect A and U
to have the same eigenvalues?

Content from Strang’s ILA 6E. Read Example 1 on pp. 218–219. Convince yourself that
if λ is an eigenvalue of A with eigenvector v, then λ2 is an eigenvalue of A2, still with
eigenvector v.
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37.1 Example. Let

A =

[
2 2
2 2

]
.

We could think about A − λI2, or we could think about what an eigenvector v and an
eigenvalue λ do. They satisfy Av = λv. Let’s compute

Av =

[
2 2
2 2

] [
v1
v2

]
= 2(v1 + v2)

[
1
1

]
.

This almost looks like Av = λv, if we pick λ and v correctly. The vector on the right is
(1, 1), so if we try v = (1, 1), then we get Av = 4v. This says that 4 is an eigenvalue with
eigenvector (1, 1).

Is this the only one? Let’s think about (36.3) now. We want A − λI2 to fail to be
invertible, and it looks like A is already not invertible, since its columns are dependent.
We can get just A to show up in A−λI2 by taking λ = 0. Will this be an eigenvalue? Does
Av = 02 have a nontrivial solution? Sure: v = (1,−1). This says that 0 is an eigenvalue
with eigenvector (1,−1).

Here are more generalizations of the previous example for you to consider.

37.2 Problem (?). Let A ∈ Rn×n such that the sum of the entries in any row of A is
always the same value s ∈ R.

(i) Prove that s is an eigenvalue of A. [Hint: for what v ∈ Rn does Av involve adding the
entries in each row?]

(ii) Is 0 always an eigenvalue of A?

37.3 Problem (?). Prove that A ∈ Rn×n is not invertible if and only if 0 is an eigenvalue
of A.

Content from Strang’s ILA 6E. Read Examples 2 and 3 on pp. 221–222.

We’ve seen some special cases of eigenexistence. (Every word is better when you put
“eigen” in front of it.) It turns out that every matrix has at least one eigenvalue. . .it just
may not be real.

This is easiest to see at the 2× 2 level. Let

A =

[
a c
b d

]
∈ R2×2.

Then λ ∈ R is an eigenvalue of A if and only if A− λI2 is not invertible. While we haven’t
stressed it all that much, I know you know that a 2× 2 matrix is not invertible if and only
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if its determinant is 0:
det

([
p q
r s

])
= ps− rq.

So, A− λI2 is not invertible if and only if

0 = det(A− λI2) = det

([
(a− λ) c

b (d− λ)

])
= (a− λ)(d− λ)− cb.

I claim that (a − λ)(d − λ) − cb is just a quadratic in λ, and we have years of experience
studying that:

(a− λ)(d− λ)− cb = ad− aλ− dλ+ λ2 − cb = λ2 − (a+ d)λ+ (ad− bc).

This has a nice structure: the coefficient a + d is the sum of the diagonal entries of A,
which is its trace, denoted tr(A). And ad − bc is its determinant. So, λ is an eigenvalue
of A if and only if

λ2 − tr(A)λ+ det(A) = 0.

This is the characteristic equation of A, and the quadratic on the left is the char-
acteristic polynomial of A.

37.4 Problem (!). Revisit the matrices in Examples 36.8 and 37.1 and compute their
eigenvalues by finding the roots of their characteristic polynomials.

Content from Strang’s ILA 6E. Read pp. 220–222 on determinants. For now, just assume
that A is 2 × 2 throughout. Then read Worked Example 6.1 A on pp. 224–225. Can you
prove in general the statements about the eigenvalues and eigenvectors of A2, A−1, and
A+ cI (with c ∈ R), relative to the eigenvalues and eigenvectors of A?

We have years of painful experience with solving quadratic equations. In particular, they
don’t always have two distinct real solutions, and so we shouldn’t expect a 2 × 2 matrix
always to have two distinct real eigenvalues.

37.5 Example. Let

A =

[
1 1
0 1

]
.

This is upper-triangular with only 1’s on the diagonal, so the only eigenvalue is 1. If
Av = v, then {

v1 + v2 = v1
v2 = v2

The second equation tells us nothing useful, but the first collapses to v2 = 0, so

v =

[
v1
v2

]
=

[
v1
0

]
= v1

[
1
0

]
.
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We can see this at the level of the characteristic equation by computing

det(A− λI2) = det

([
(1− λ) 1

0 (1− λ)

])
= (1− λ)2,

which has only λ = 1 as its (repeated real) root.

37.6 Problem (!). For an arbitrary integer n ≥ 1, give an example of a matrix A ∈ Rn×n

with only one eigenvalue λ ∈ R but such that dim[E(A, λ)] = n.

And quadratic equations don’t always have real roots, even when the coefficients are real.

37.7 Example. Let

A =

[
0 −1
1 0

]
.

Then
det(A− λI2) = det

([
−λ −1

1 −λ

])
= λ2 + 1.

The quadratic equation λ2 + 1 = 0 has λ = ±i as solutions. Here i is the complex
number such that i2 = −1.

We can find an eigenvector for i just as before: solve Av = iv. This becomes the system{
−v2 = iv1

v1 = iv2.

The second equation is slightly easier and gives

v =

[
v1
v2

]
=

[
iv2
v2

]
= v2

[
i
1

]
.

So, all eigenvectors of A corresponding to i are scalar multiples of (i, 1).

37.8 Problem (!). With A from the previous example, find all eigenvectors corresponding
to −i.

We need a more generous notion of eigenvalue and eigenvector than afforded by Definition
36.6. Let

C =
{
x+ iy

∣∣ x, y ∈ R, i2 = −1
}
.

We add and multiply numbers in C by following our noses, combining like terms, and using
i2 = −1:

(1 + 2i) + (3 + 4i) = (1 + 3) + (2i+ 4i) = 4 + 6i

and
(1 + 2i)(3 + 4i) = 1 + 4i+ 6i+ 8i2 = (1− 8) + 10i = −7 + 10i.
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Let Cn be the set of all column vectors with entries in C. We add vectors in Cn componen-
twise and multiply by scalars in C componentwise, too. Nothing changes in the arithmetic.

37.9 Definition (Improvement of Definition 36.6). A scalar λ ∈ C is an eigenvalue
of the matrix A ∈ Rn×n corresponding to the eigenvector v ∈ Cn if

Av = λv.

Content from Strang’s ILA 6E. For a refresher on complex numbers, look at pp. 262–263.
Then Read “Imaginary Eigenvalues on p. 223 and Worked Example 6.1 B on p. 225.

Now we can state more precisely an eigenexistence result.

37.10 Theorem. Let A ∈ Rn×n. There exists at least one λ ∈ C such that λ is an
eigenvalue of A.

We will eventually sketch a proof of this. That proof, however, will not exactly be
constructive—we’re not going to get a simple algorithm for finding eigenvalues. (This is a
really. big. deal. in numerical linear algebra.) More accessible is an upper bound on the
number of eigenvalues that a matrix can have: at most n. This has been achieved in most
of our examples so far.

Here’s why.

37.11 Theorem. Eigenvectors corresponding to distinct eigenvalues are independent.
More precisely, let A ∈ Cn×n and suppose that v1, . . . ,vj ∈ Cn are eigenvectors of A cor-
responding to the distinct eigenvalues λ1, . . . , λj ∈ C. (That is, Avk = λkvk and λk 6= λ`
for k 6= `.) Then v1, . . . ,vk are linearly independent.

Proof. This is really an induction argument on j. For j = 1, there is only one eigenvector,
and that can’t be 0n.

I’ll just do the j = 2 case and stop there. For j = 2, suppose that Av1 = λ1v1,
Av2 = λ2v2, v1 6= 0n, v2 6= 0n, and λ1 6= λ2. Start with c1v1 + c2v2 = 0n. We want to prove
c1 = c2 = 0. We should probably get the eigenvalues to show up, and one way to do that is
to make A show up. We have

A(c1v1 + c2v2) = A0n,

and so
0n = c1Av1 + c2Av2 = c1λ1v1 + c2λ2v2.

We therefore have a sort of system for c1 and c2:{
c1v1 + c2v2 = 0n

c1λ1v1 + c2λ2v2 = 0n.

If v1 and v2 were scalars, we’d try Gaussian elimination, and that sort of still works here.
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Multiply the first equation by λ1 and subtract it from the second equation:

0n = (c1λ1v1 + c2λ2v2)− λ1(c1v1 + c2v2) = c2(λ2 − λ1)v2.

Since v2 6= 0n and λ1 6= λ2 and c2(λ2 − λ1)v2 = 0n, the only possibility is that c2 = 0.
And since we’re assuming c1v1 + c2v2 = 0n, this collapses to c1v1 = 0n. Because v1 6= 0n,
we get c1 = 0, as desired. �

37.12 Problem (+). Prove the j = 3 case, using the j = 2 case. [Hint: assume c1v1 +
c2v2 + c3v3 = 0n, multiply by A, and subtract a multiple by the right λk to conclude
c1v1 + c2v2 = 0n. The j = 2 case says that v1, v2 are independent.]

37.13 Problem (!). Give an example of a matrix A with eigenvalue λ and eigenvectors
v1, v2 that both correspond to λ such that v1, v2 are dependent.

Content from Strang’s ILA 6E. Independence of eigenvectors corresponding to distinct
eigenvalues is proved in the “Fact” at the bottom of p. 234 through the top of p. 235.

Now we can explain why a matrix has at most n distinct eigenvalues. If A ∈ Rn×n has
any more, n + 1 or higher, then there would be a list of at least n + 1 independent vectors
in Rn. This contradicts stuff about dimension.

Day 38: Friday, April 11.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Diagonalizable matrix

This is all of the groundwork that we need to appreciate eigenvalues—hopefully not too
much prep. The best situation is when a matrix has n independent eigenvectors. This defi-
nitely happens if the matrix has n independent eigenvalues, but that’s not strictly necessary
(In has only one eigenvalue but e1, . . . , en are all eigenvectors).

Let’s start small. Say that A ∈ R3×3 has 3 independent eigenvectors v1, v2, v3 ∈ C3.
This means Avk = λkvk for some λk ∈ C, and also vk 6= 03. We’re not requiring λ1, λ2, and
λ3 to be distinct, although that doesn’t hurt. Slap it all together in a matrix:[

Av1 Av2 Av3

]
=
[
λ1v1 λ2v2 λ3v3

]
.

You’ve made it this far in life, so you know how to factor:

A
[
v1 v2 v3

]
=
[
v1 v2 v3

] λ1 0 0
0 λ2 0
0 0 λ3

 .
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(Multiplying by a diagonal matrix on the right = scaling the columns. I always mix this
up!)

Now abbreviate

V =
[
v1 v2 v3

]
and Λ =

λ1 0 0
0 λ2 0
0 0 λ3


so that we have

AV = V Λ.

Here’s the great thing: v1, v2, v3 are independent, so V is invertible. We conclude

A = V ΛV −1.

Nothing here was special about n = 3, and the following holds more generally.

38.1 Theorem (Diagonalization). Let A ∈ Rn×n have n linearly independent eigenvectors
v1, . . . ,vn ∈ Cn corresponding to the eigenvalues λ1, . . . , λn ∈ C. (That is, Avk = λkvk.
We do not require the λk to be distinct.) Put

V =
[
v1 · · · vn

]
and Λ = diag(λ1, . . . , λn) =

λ1 . . .
λn

 .
Then

A = V ΛV −1.

38.2 Definition. A matrix A ∈ Rn×n is diagonalizable if there are an invertible
matrix V ∈ Cn×n and a diagonal matrix Λ ∈ Cn×n such that A = V ΛV −1.

38.3 Problem (?). Prove that if A is diagonalizable, then the columns of V are eigen-
vectors of A corresponding to the eigenvalues given by the diagonal elements of Λ. [Hint:
A = V ΛV −1 means AV = ΛV .]

38.4 Example. Let

A =

[
1 1
0 2

]
.

We saw in Example 36.8 that the eigenvalues of A are 1 and 2 and that v1 = e1 is an
eigenvector corresponding to the eigenvalue 1. I claim that v2 = (1, 1) is an eigenvector
corresponding to the eigenvalue 2. The vectors (1, 0) and (1, 1) are independent—we expect
this from eigentheory and we can check this in any number of ways.

Put
V =

[
1 1
0 1

]
and Λ =

[
1 0
0 2

]
.
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Then
V −1 =

[
1 −1
0 1

]
.

By the way, V is an elimination matrix, so we know how to find its inverse without any
fancy calculations. We should then have[

1 1
0 2

]
=

[
1 1
0 1

] [
1 0
0 2

] [
1 −1
0 1

]
,

and you can check this by hand.

Here is one major upshot of a diagonalizable matrix A = V ΛV −1: computing its powers
is so easy. For example,

A2 = (V ΛV −1)(V ΛV −1) = V Λ(V −1V )ΛV − = V Λ2V −1,

and, more generally,
Ak = V ΛkV −1.

And Λk is so easy to compute: just raise each diagonal entry to the power k.

38.5 Problem (?). Suppose that the eigenvalues of A ∈ R4×4 are 1/2, 1/3, 1/4, and 1/5.
How do the powers Ak behave when k is very large?

Here is another upshot. If your problem revolves around a diagonalizable matrix A =
V ΛV −1, then the columns of V might form the “best basis” of Rn for that problem. (I’m
assuming that the eigenvalues of A are real and that the eigenvectors of A are vectors in Rn,
not Cn here. It’s worthwhile to ask what conditions on A guarantee this.) First, they are a
basis: there are n of them, and they’re independent. Second, they’re eigenvectors of A by
Problem 38.3.

Here is how this helps. I’ll do this at the level of n = 3 first. Any v ∈ R3 has the form
v = c1v1 + c2v2 + c3v3 for some ck ∈ R, and so

Av = A
(
c1v1 + c2v2 + c3v3

)
= c1Av1 + c2Av2 + c3Av3 = c1λ1v1 + c2λ2v2 + c3λ3v3.

So, computing Av is really just a matter of multiplying by the λk. What really mattered
wasn’t v itself but rather its “coordinates” relative to the basis v1, v2, v3.

Here is a way to see this more broadly for an arbitrary n. Suppose A = V ΛV −1 with V ,
Λ ∈ Rn×n Any x ∈ Rn has the form x = V c for some c ∈ Rn, and then

Av = (V ΛV −1)(V c) = V Λ(V −1V )c = V Λc =
[
v1 · · · vn

] λ1c1...
λncn

 = λ1c1v1+· · ·+λncnvn.

Again, the dynamic thing is c, the coordinates of v relative to the basis from V , not v itself.
This begs a good question. What conditions on A guarantee that the eigenvectors can

be chosen to be real (in Rn)? What conditions on A guarantee that we can form a basis
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for Rn from its eigenvectors? (Don’t say A has n distinct real eigenvalues.) And what
conditions on A guarantee that it’s easy to extract the coordinates of an arbitrary vector
relative to the basis that ideally comes from its eigenvectors? (You know the answer to this
one: orthonormal eigenvectors!)

Content from Strang’s ILA 6E. Read all of pp. 232–233. Then think about the four
remarks on pp. 233–234.

Day 39: Monday, April 14.

We don’t really do applications in this class (other than that brief mention in least squares
of fitting a line to data), because the application really is the class: the application of linear
algebra to solving, understanding, and approximating Ax = b, which is a universal equation.
Or maybe the class is the application—I don’t know. Still, I grant that our work so far on
eigenvalues may seem more esoteric and theoretical and less connected to Ax = b than
anything from before.

That’s because it is. Trefethen and Bau’s magnificent Numerical Linear Algebra (pp.
181–182) says the following about eigenvalues:

“Eigenvalue problems have a very different character from the problems involving
square or rectangular systems of linear equations. . .To ask about the eigenvalues
of a [nonsquare matrix] A would be meaningless. Eigenvalue problems make
sense only when the [matrix is square]. This reflects the fact that in applications,
eigenvalues are generally used when a matrix is to be compounded iteratively. . .

Broadly speaking, eigenvalues and eigenvectors are useful for two reasons, one
algorithmic, the other physical. Algorithmically, eigenvalue analysis can simplify
solutions of certain problems by reducing a coupled system to a collection of
scalar problems. Physically, eigenvalue analysis can give insight into the behavior
of evolving systems governed by linear equations. The most familiar examples
in this latter class are the study of resonance (e.g., of musical instruments when
struck or plucked or bowed) and of stability (e.g., of fluid flows subjected to
small perturbations). In such cases eigenvalues tend to be particularly useful for
analyzing behavior for large times t.”

Here is one physical situation in which eigenvalues arise and actually simplify the analysis.
(This is why you took a calculus course before taking linear algebra.) Newton’s second law
(force = mass × acceleration) says that the displacement x of a harmonic oscillator (a
coupled mass-spring system) from its equilibrium location in the absence of external forces
is governed by the second-order constant-coefficient linear homogeneous ordinary differential
equation 

ẍ+ bẋ+ κx = 0

x(0) = x0

ẋ(0) = y0.

(39.1)
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Here the oscillator has mass 1 (which is why the coefficient on the second derivative ẍ =
acceleration is 1), and the spring exerts a restoring force proportional to κ > 0 on the
oscillator. The parameter b ≥ 0 measures the friction that the oscillator experiences as it
moves (and we encode friction into a model as a term proportional to the first derivative
ẋ—the faster you bicycle, the more wind resistance you encounter). This ODE arises because
force = −bẋ− κx equals mass × acceleration = ẍ. If b = 0, then we’re in the magical world
of no friction. That the right side of the ODE is 0 represents the absence of external forces;
the spring force and the friction force (if the latter is present) count as “internal” forces that
arise from the mass-spring system itself. Last, x0 and y0 are the initial displacement and
velocity, respectively, of the oscillator.

One way to understand this ODE is to think about perhaps the simplest nontrivial ODE
that there is and try to learn from that. That ODE is exponential growth:

ẋ = rx.

Here r ∈ R is a proportionality constant that says that the growth rate ẋ of a quantity is
proportional to the amount x present. I hope we all agree that every solution to this ODE
has the form x(t) = Cert for some C ∈ R.

We can make (39.1) look like exponential growth by rewriting it. Here’s the trick: put
y = ẋ, so

ẏ = ẍ = −bẋ− κx = −by − κx.
Now stuff everything into a vector and grind away:[

ẋ
ẏ

]
=

[
y

−by − κx

]
=

[
0 1
−κ −b

] [
x
y

]
.

Put

v =

[
x
y

]
, ẋ =

[
ẋ
ẏ

]
, and A =

[
0 1
−κ −b

]
, and v0 =

[
x0
y0

]
.

Then (39.1) is equivalent to {
v̇ = Av

v(0) = v0.

Content from Strang’s ILA 6E. Page 270 reviews the exponential growth ODE ẋ = rx
and introduces systems of linear ODE in matrix-vector form. Pages 271–272 discuss how to
find solutions using exponentials and eigenvalues. Pages 272–274 turn second-order linear
ODE into linear systems.

If we’re sneaky, we can make eigenvalues and diagonalization show up and reduce this to
a pair of exponential growth ODE. Here’s how. The eigenvalues λ of A must satisfy

λ2 + bλ+ κ = 0,

which looks a lot like the ODE (39.1).
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39.1 Problem (!). Check this.

The quadratic formula tells us that the eigenvalues are

λ± =
−b±

√
b2 − 4κ

2
.

To keep things reasonably simple, I’m going to assume b > 0 and b2 − 4κ > 0. That is,
friction is present (b > 0), and friction is sort of stronger than the spring force (b2− 4κ > 0).
Then the eigenvalues λ± are real, distinct, and negative. (Other choices of b and κ lead to
other eigensituations.)

39.2 Problem (?). Check this. [Hint: since b > 0, we have b =
√
b2, and since b2−4κ > 0

and κ > 0, we have
√
b2 >

√
b2 − 4κ.]

This means that A ∈ R2×2 has two distinct eigenvalues and therefore is diagonalizable.
Write A = V ΛV −1 with Λ = diag(λ+, λ−). Then the ODE v̇ = Av is

v̇ = V ΛV −1v. (39.2)

We will make this ODE “diagonal” with a clever change of variables. Multiply both sides by
V −1 to get

V −1v̇ = ΛV −1v. (39.3)

Now put
w = V −1v. (39.4)

By ẇ I mean the componentwise derivative of w: if w = (w1, w2), then ẇ = (ẇ1, ẇ2). Then
we get

ẇ = V −1v̇. (39.5)

39.3 Problem (?). Check this. Assume

V −1 =

[
a c
b d

]
,

compute V −1v, take its componentwise derivatives, and show that’s equal to V −1v̇.

Finally, set

w0 =

[
w01

w02

]
= V −1v0. (39.6)

Sorry for the weird subscripts. Put (39.2), (39.3), (39.4), (39.5), and (39.6) together to find{
ẇ = Λw

w(0) = w0.
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Now write this out as a system:{
ẇ1 = λ+w1

w1(0) = w01

and

{
ẇ2 = λ−w2

w2(0) = w02.

I hope we agree that

w1(t) = w01e
λ+t and w2(t) = w02e

λ−t.

Now let’s vectorize:

w(t) =

[
w1(t)
w2(t)

]
=

[
w01e

λ+t

w02e
λ−t

]
=

[
eλ+t 0

0 eλ−t

] [
w01

w02

]
=

[
eλ+t 0

0 eλ−t

]
w0.

Let’s go back to our original unknown v = (x, y). Abbreviate

E(t) =

[
eλ+t 0

0 eλ−t

]
.

This says
w(t) = E(t)w0,

and so we recover from (39.4) that

v(t) = Vw(t) = V E(t)w0 = V E(t)V −1v0.

If you chase through the multiplication V E(t)V −1v0 and look at the first component, I
claim this means that the solution x(t) to our original problem (39.1) is a linear combination
of eλ+t and eλ−t. The coefficients would depend, unsurprisingly, on b, κ, x0, and y0.

39.4 Problem (?). Here are two more ways to see this.

(i) Guess that x(t) = eλt solves (39.1), plug this guess into the ODE, and conclude that
λ2 + bλ+ κ = 0.

(ii) All solutions to exponential growth ẋ = rx are multiples of ert. Guess that v(t) = eλtx
solves v̇ = Av for some x ∈ R2, compute v̇(t) = λv(t), and conclude Ax = λx.

Also, this is the only solution to (39.1): if x solves (39.1), then (x, ẋ) = (x, y) = v solves
(39.2), and that has the solution above. But having a formula for something is not the same
as understanding that thing. What is the solution doing over long times? If you believe the
claim of the previous paragraph, since x(t) = c1e

λ+t + c2e
λ−t for some c1, c2 ∈ R, and since

λ± < 0, we have limt→∞ x(t) = 0. This is physically reasonable: x is the displacement of
an oscillator from its equilibrium position, the oscillator is slowed by friction, and no other
forces are contributing to the oscillator’s motion. Eventually it should barely be moving.
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Content from Strang’s ILA 6E. Page 276 discusses the question of stability: that solutions
to ẍ+ bẋ+ κx = 0 converge to the solution x = 0 as t→∞, at least for suitably chosen b
and κ. This page, and all of Section 6.5, operate in the more general framework in which A
from v̇ = Av has complex, nonreal eigenvalues. I’ve skipped that here just to avoid dealing
with the complex exponential. Such a framework shows that solutions to ẍ+ bẋ+ κx = 0
always vanish as t → ∞ when κ ≥ 0 and when b > 0 (i.e., when friction is present), not
just in the more special case of b2 − 4κ > 0. If you want to think more about differential
equations, read p. 285.

But we didn’t need that formula for x to figure this out. Just the formula v(t) =
V E(t)V −1v0 tells us that. The entries of E(t) all approach 0 as t → ∞, so the product
V E(t)V −1v0 should approach 02 as t→∞. Then both x(t) and ẋ(t) = y(t) should go to 0
as t→∞.

You could get all of this using methods from an ODE course just for the second-order
linear ODE (39.1). I claim linear algebra gets you those answers more quickly and more
transparently, though.

Day 40: Wednesday, April 16.

We are going to switch focus a bit and think about determinants. We’ve said several times
that the determinant of

A =

[
a c
b d

]
∈ C2×2

is
det(A) = ad− bc.

The chief virtue of the determinant is that A is invertible if and only if det(A) 6= 0, and also
det(A) shows up in the formula for A−1. Our goal now is to extend this notion of determinant
to an arbitrary square matrix with the goal that, still, the matrix is invertible if and only if
its determinant is nonzero.

Determinants were historically somewhat more important than they are today. Carl
Meyer observes the following in Applied Linear Algebra and Matrix Analysis (pp. 459–460):

[M]uch was written [on determinants] between 1750 and 1900. During this era,
determinants became the major tool used to analyze and solve linear systems,
while the theory of matrices remained relatively undeveloped. But mathematics,
like a river, is everchanging in its course, and major branches can dry up to
become minor tributaries while small trickling brooks can develop into raging
torrents.

Nonetheless, determinants still have some perennially interesting theoretical properties,
and every student of linear algebra should be able to compute the determinant of at least a
3×3 matrix without their brains totally melting. There are many ways to express a formula
for the determinant, and all of them are a bit painful, and none of those formulas tell you
why you’d think of that formula in the first place.
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I firmly believe that what things do defines what things are. Look at the 2×2 determinant
formula above. I think you’ll believe immediately that

det(I2) = 1.

Next, suppose we interchange rows:

det

([
b d
a c

])
= bc− ad = − det(A).

With P12 = P21 as a permutation matrix (that’s not I2), we have

det(P12A) = − det(A).

Finally, and this is a little less obvious, suppose that we scale a row by the same t ∈ C:

det

([
ta tc
b d

])
= tad− tcb = t(ad− bc) = t det(A).

Or suppose that a row is really a sum of two different rows:

det

([
(a1 + a2) (c1 + c2)

b d

])
= det

([
a1 c1
b d

])
+ det

([
a2 c2
b d

])
.

40.1 Problem (!). Okay, that last identity was too annoying for me to do—you can do it.

What this says is that the determinant is “linear in each row”—it respects linear combi-
nations of rows (just like matrix multiplication respects linear combinations). These three
properties really characterize the determinant. By that I mean that if f is a function from
C2×2 to C, and by function I just mean a rule that associates each A ∈ C2×2 with a unique
f(A) ∈ C, and if f satisfies those properties, then f(A) = det(A).

40.2 Theorem. Suppose that f is a function from C2×2 to C such that the following hold.

(i) f(I2) = 1.

(ii) f(P12A) = −f(A) for all A ∈ C2×2.

(iii) If

A1 =

[
a1 c1
b d

]
and A2 =

[
a2 c2
b d

]
and t ∈ R, then

f

([
(a1 + a2) (c1 + c2)

b d

])
= f(A1) + f(A2)

and
f

([
ta1 tc1
b d

])
= tf(A1).
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Then f(A) = det(A) for all A ∈ C2×2.

Content from Strang’s ILA 6E. Page 199 talks about sign reversal for determinants when
interchanging rows. One consequence is that if a matrix has two identical rows, its deter-
minant is 0, since A = PijA, and thus det(A) = − det(A). In the “3 by 3 Determinants,”
start with det(I3) = +1, then start interchanging rows to flip between ±1. On p. 200, if
you believe that the determinant of a diagonal matrix is the product of its entries, do more
row interchanges to get the six determinants there. Finally, start with the full 3×3 matrix
and use linearity in the rows to get equation (1). I think that is a bit hard.

These properties open the way to constructing determinants on Cn×n. We want a function
f from Cn×n to C such that f(I2) = 1, f(PijA) = −f(A) for any permutation matrix Pij
that interchanges two rows (so Pij 6= In), and such that f is “linear in each row.” I claim
that there can be at most one function f that does these three things—if there are two such
functions, call them f and g, then we can prove f(A) = g(A) for all A ∈ Cn×n. And I claim
that these three properties lead to a specific formula for f . (I guess that’s kind of uniqueness,
too, right?)

Content from Strang’s ILA 6E. These three properties appear in equation (5) on p. 206.
Various consequences of these properties are sketched on pp. 205–206.

Best of all, I claim that these three properties mean that A is invertible if and only
if f(A) 6= 0. Here’s a sketch of how you get that last key result. Gaussian elimination
lets us write EA = U , where U is upper-triangular and E is a product of elimination
and permutation matrices. This is Gaussian elimination, not Gauss–Jordan elimination,
and U may not be rref(A), so there are no scaling matrices in E. You first show that f
is “multiplicative”: f(EA) = f(E)f(A) for any E, not just a product of elimination and
permutation matrices. Then you show that |f(E)| = 1. Really, f(Pij) = −1 for any
permutation matrix Pij that interchanges two rows, and f(Eij) = 1 for any elimination
matrix. Then rewrite f(E) as a product of f evaluated at the factors of E. Finally, you
show that f(U) is the product of the diagonal entries of U whenever U is upper-triangular.
All of this takes some work.

Put it all together to show that

|f(A)| = 1 · |f(A)| = |f(E)| · |f(A)| = |f(E)f(A)| = |f(EA)| = |f(U)|.

Since f(A) = 0 if and only if |f(A)| = 0, we have f(A) = 0 if and only if f(U) = 0, which
happens if and only if one of the diagonal entries of U is 0. (Because a product of numbers is
0 if and only if at least one of them is 0. Is that true for matrices?) And A is not invertible
if and only if at least one diagonal entry of U is 0, right? So A is invertible if and only if
f(A) 6= 0.

You can also use those three properties of f to back out, with effort, a formula for f . It
turns out that there are many options for this formula; here is just one, and just for the 3×3
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case:

det

a p x
b q y
c r z

 = a det

([
q y
r z

])
− b det

([
p x
r z

])
+ c det

([
p x
q y

])
.

Bizarre, right?
One way to remember this formula is that we multiply by entries of the first column,

alternate the sign (+, −, +), and, when multiplying by the (i, 1)-entry, multiply against the
determinant of the matrix that results when you remove column 1 and row i from A:

det

a p x
b q y
c r z

 = a det

([
q y
r z

]) a p x
b q y
c r z



− b det

([
p x
r z

]) a p x
b q y
c r z



+ c det

([
p x
q y

]) a p x
b q y
c r z

 .
The point is that you define the determinant of an n× n matrix recursively, in terms of

determinants of (n− 1)× (n− 1) matrices, down to the simplest case of the 2× 2. I don’t
think starting with this formula would ever help you show that A is invertible precisely when
det(A) 6= 0. What things do defines what things are.

40.3 Example. We compute

det

1 0 0
4 2 0
5 6 3

 = 1 det

([
2 0
6 3

]) 1 0 0
4 2 0
5 6 3



− 4 det

([
0 0
6 3

]) 1 0 0
4 2 0
5 6 3



+ 5 det

([
0 0
2 0

]) 1 0 0
4 2 0
5 6 3


= (1 · 6)− (4 · 0) + (5 · 0)
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= 6.

And 6 is the product of the diagonal entries of this lower-triangular matrix, and 6 6= 0, and
this lower-triangular matrix with nonzero diagonal entries is invertible.

Content from Strang’s ILA 6E. Equation (2) on p. 201 does this recursive definition of
the determinant for a 4 × 4 matrix. Equation (5) generalizes this formula to a “cofactor”
expansion in which you can recursively expand the determinant along any row or down
any column.

Last thing: an application to eigenvalues. We know that λ ∈ C is an eigenvalue of
A ∈ Cn×n if and only if A is not invertible. Assuming that we have the determinant defined
on Cn×n, this means that λ is an eigenvalue of A if and only if det(A − λIn) = 0. When
n = 2, we know that det(A− λI2) is a quadratic polynomial.

40.4 Problem (?). Show that

det

1 0 0
4 2 0
5 6 3

− λI3


is a cubic polynomial and that its roots are λ = 1, 2, 3.

It turns out to be the case that det(A− λIn) is an nth degree polynomial—actually, it’s
monic with

det(A− λIn) = λn + a linear combination of lower powers of λ(= 1, λ, λ2, . . . , λn−1).

We call det(A − λIn) the characteristic polynomial of A and det(A − λIn) the
characteristic equation of A.

Here’s a vague explanation of why this is true: you compute det(A − λIn) by taking a
linear combination of the entries of column 1 of A−λIn against determinants of the matrices
formed by removing column 1 and row i (for i = 1, . . . , n) of A − λIn. Multiplying by the
(1, 1)-entry, which is a11 − λ, against the determinant of A− λIn with row 1 and column 1
removed gets λn to show up. Every other term in the sum will have a prefactor from rows
2 through n of column 1, and that prefactor doesn’t have a λ in it, so the other terms have
at most λn−1 in them. All we are doing is adding, subtracting, and multiplying, so the only
way that λ could show up is as a nonnegative integer power (nothing weird like cos(λ) or eλ

in this arithmetic).
Here is why this matters for eigenvalues. It’s a fact, called the fundamental theorem of

algebra, that every polynomial has at least one root in C (maybe not R), and at most n.
This gives the existence of eigenvalues. While it’s nice for theoretical purposes, it’s effectively
useless computationally, as there are no formulas for the roots of a degree n polynomial when
n ≥ 5, and for n ≤ 4 only the quadratic formula is really tractable. Numerically computing
the roots of polynomials is hard, and it’s actually better to take a polynomial, find a matrix
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whose characteristic polynomial is that polynomial (this matrix is called the “companion
matrix” to the polynomial that you started with), and then find the eigenvalues of that
matrix using some eigenvalue algorithm. Go take a numerical linear algebra class!

Content from Strang’s ILA 6E. Pages 220–221 discuss the characteristic polynomial for
matrices of arbitrary size. Then read “Determinant and Trace” on p. 222. See p. 265 for a
matrix with four distinct eigenvalues, some of which are purely imaginary. Last, go to p.
284 for a sketch of one of those numerical eigenvalue algorithms.

Day 41: Friday, April 18.

Here is another application of matrices and diagonalization that has nothing to do with
Ax = b but some things to do with predicting the future. The ODE application did that,
too, but in a “continuous” way: it gave results for every time t. Here we are going to consider
“discretized” time in “chunks.”

The following very idealized toy problem will motivate everything. Suppose that a popu-
lation is divided into sick and well people. At the end of each week, 90% of the well people
stay well and 10% get sick, while 80% of the sick people become well and 20% of the sick
people stay sick. Say that in a given week, the fraction of the population that is well is v1
and the fraction that is sick is v2. So, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1, and v1 + v2 = 1. Then at the
end of that week, the fraction that is well is

.9v1 + .8v2,

while the fraction that is sick is
.1v1 + .2v2.

If we rewrite this in linear algebra language, the well and sick fractions are encoded as[
.9v1 + .8v2
.1v1 + .2v2

]
=

[
.9 .8
.1 .2

] [
v1
v2

]
.

Let
A =

[
.9 .8
.1 .2

]
. (41.1)

If at the start the well/sick fractions are v = (v1, v2), then after k weeks, the well/sick
fractions are Akv. How does this matrix-vector product behave for k large? That will tell
us the eventual fate of this population under this very idealized toy model.

Don’t let the decimals fool you: it is not too hard to calculate that the eigenvalues of A
are 1 and −.1 with corresponding eigenvectors[

8
1

]
and

[
1
−1

]
.

We can therefore diagonalize A as A = V ΛV −1, where Λ = diag(1, .1) and the columns of V
are these eigenvectors. Then Ak = V ΛkV −1, and as k →∞ we have

Λk →
[
1 0
0 0

]
,
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since (.1)k → 0 as k →∞. Thus the well/sick fractions of the population tend to

V

[
1 0
0 0

]
V −1v, (41.2)

and we could calculate this if we had to.
However, this formulaic result is not hugely illuminating, and I think it misses a lot of

the deeper magic here. The first important thing to observe is that A is a matrix with
nonnegative entries (actually, positive entries) whose columns all sum to 1. Then the rows of
AT all sum to 1. We have observed (Example 37.1, Problem 37.2) that such a matrix always
has 1 as an eigenvalue. Turns out this guarantees that 1 is an eigenvalue of A.

41.1 Theorem. Let A ∈ Cn×n. Then A and AT have the same eigenvalues.

Proof. Any λ ∈ C is an eigenvalue of A if and only if A− λIn is not invertible. A matrix is
invertible if and only if its transpose is invertible, so A− λIn is not invertible if and only if
(A− λIn)T is not invertible. And (A− λIn)T = AT − λIn, so (A− λIn)T is not invertible if
and only if λ is an eigenvalue of AT. �

41.2 Problem (!). With A from (41.1), explain why A and AT do not have the same
eigenvectors corresponding to 1.

So, if A ∈ Cn×n is a matrix whose columns sum to 1, an eigenvalue of A is 1. If we
also assume that the entries of A are nonnegative real numbers, then we can get a better
bound on the eigenvalues of A. To do this, we need to introduce a notion of size for complex
numbers.

41.3 Definition. The modulus of x+ iy ∈ C is

|x+ iy| :=
√
x2 + y2.

Basically the modulus satisfies all the familiar properties of absolute value, including the
multiplicative identity

|zw| = |z||w|

and the triangle inequality

|z + w| ≤ |z|+ |w|.

41.4 Lemma. If A ∈ Rn×n has nonnegative entries, and if the entries of each column of
A sum to 1, then any eigenvalue λ ∈ C of A satisfies |λ| ≤ 1.

Proof. Since A and AT have the same eigenvalues, we prove that any eigenvalue λ of AT

satisfies |λ| ≤ 1. We’ll see this most transparently at the level of n = 2. The point is that
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the rows of AT have nonnegative entries and sum to 1, so

AT =

[
a (1− a)
b (1− b)

]
,

where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Assume ATv = λv.
The first row gives

av1 + (1− a)v2 = λv1.

Then
|λv1| = |av1 + (1− a)v2|.

On the left, the multiplicativity of the modulus implies

|λv1| = |λ||v1|,

while on the right, the triangle inequality implies

|av1 + (1− a)v2| ≤ |av1|+ |(1− a)v2| = |a||v1|+ |1− a||v2| = a|v1|+ (1− a)|v2|.

Now let
vmax = max{|v1|, |v2|}.

Then

|λ||v1| = |av1+(1−a)v2| ≤ a|v1|+(1−a)|v2|. ≤ avmax+(1−a)vmax = (a+1−a)vmax = vmax.

Exactly the same argument in the second row shows

|λ||v2| ≤ vmax.

Since either |v1| = vmax or |v2| = vmax, we have

|λ|vmax = vmax.

And since v = (v1, v2) is an eigenvector, we have v 6= 02, so v1 6= 0 or v2 6= 0, thus |v1| > 0
or |v2| > 0, and so vmax > 0. Then we may divide to find |λ| ≤ 1. �

This result confirms what we observed about our A from (41.1): it has nonnegative entries,
its columns sum to 1, and its eigenvalues are 1 and .1.

41.5 Problem (?). Here is another approach that almost proves Lemma 41.4. Let A ∈
Rn×n have columns whose entries sum to 1. Let 1 = (1, . . . , 1), i.e., 1 ∈ Cn is the vector
whose entries are all 1.

(i) Explain why AT1 = 1.

(ii) Let v ∈ Cn. For k = 1, 2, 3, compute Akv · 1. Use these results to conjecture the
value of Akv · 1 for any k.
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(iii) Let λ be an eigenvalue for A with eigenvector v. Compute Akv · 1 in two ways and
argue that λk(v · 1) = v · 1.

(iv) Now suppose λ 6= 1. Since v = λ−1Av, compute v · 1 = λ−1(v · 1) and conclude

The last thing we’ll do is improve on the behavior of Akv with A from (41.1). The
eigenvector corresponding to 1 that (I said) we found was (8, 1), and the nice thing here is
that it has nonnegative entries. We can rescale this eigenvector to v1 = (8/9, 1/9), and you’ll
note 8 + 1 = 9. Keep v2 = (1,−1) as the eigenvector for .1 as before. Now let u = (u1, u2)
be the well/sick fraction of the population, so u2 = 1 − u1. We know that v1 and v2 form
a basis for R2, so we can write u = c1v1 + c2v2 for some c1, c2 ∈ R. But we can do better
than that: c1 = 1. I’ll explain why in a moment.

With c1 = 1, we have

Aku = Ak(v1 + c2v2) = Akv1 + c2A
kv2 = v1 + c2(.1)kv2 → v1

as k → ∞. So, no matter the starting fractions of well and sick people in the population,
after many weeks, the well/sick fractions always settle down to 8/9 and 1/9, respectively. I
think this is much more evocative than what plain old diagonalization got us in (41.2).

41.6 Problem (!). Now here’s why c1 = 1. Suppose u ∈ R and u = (u, 1 − u). With
v1 = (8/9, 1/9) and v2 = (1,−1), prove that u− v1 ∈ span(v2).

Content from Strang’s ILA 6E. Example 2 on p. 235 discusses powers of a Markov matrix.
For an application of diagonalization and matrix powers to a (very mathy) situation, read
about the “Fibonacci numbers” on pp. 236–237. Pages 238–239 generalize this to “iterative”
equations xk+1 = Axk, where you start with a vector x0 and then define subsequent vectors
in this sequence by multiplying their immediate predecessor by A. These examples repeat
the key idea: if A = V ΛV −1, then Ak = V ΛkV −1. Pages 408–409 elaborate on Markov
matrices with a “population” application to rental cars.

41.7 Problem (+). Here is the generalization of Problem 41.6. Let V =
{v ∈ Rn | v · 1 = 0}.

(i) Prove that V is a subspace of Rn of dimension n− 1. [Hint: do this for n = 3 first to
see the pattern. Or think of V as the null space of a matrix with very few rows or columns.]

(ii) Now let v2, . . . ,vn be a basis for V . Suppose that v, u ∈ Rn both satisfy v ·1 = u ·1 =
1. Show that v − u ∈ V and therefore v = u + c2v2 + · · ·+ cnvn for some c2, . . . , cn ∈ R.

41.8 Problem (+). And here is the generalization of this example, with some unnecessary
hypotheses. Let A ∈ Rn×n satisfy the following.

• The entries of A are nonnegative.
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• The entries in each column of A sum to 1.

• The eigenvalue 1 of A has an eigenvector with all nonnegative entries.

• A has n− 1 other independent eigenvectors w2, . . . ,wn, each of which corresponds to an
eigenvalue λ with |λ| < 1.

Suppose that u ∈ Rn satisfies u ·1 = 1 and let Aw1 = w1 with w1 ·1 = 1 as well. Prove
that Aku→ w1 as k →∞ via the following steps.

(i) Explain why 1 has an eigenvector w1 with w1 · 1 = 1.

(ii) Suppose that Ax = λx with λ 6= 0 and λ 6= 1. Show that x ·1 = (x ·1)/λ and conclude
x · 1 = 0. [Hint: since λ 6= 0, x = λ−1Ax.]

(iii) With V from Problem , show that Av ∈ V if v ∈ V .

(iv) Explain why we can write both u = w1 + v and u = x1w1 + ṽ + z, where v, ṽ ∈ V ,
z ∈ N(A), and Akṽ→ 0n as k →∞.

(v) Conclude (1− x1)w1 ∈ V and therefore x1 = 1.

Day 42: Monday, April 21.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Unitary matrix, Hermitian (or self-adjoint) matrix, symmetric matrix, unitarily diag-
onalizable matrix, orthogonally diagonalizable matrix

I think by now you are convinced that having an “eigenbasis” for Rn relative to a matrix
A ∈ Rn×n is nice, both theoretically and practically. That is, we’d like to have n linearly
independent eigenvectors v1, . . . ,vn ∈ Rn for A; then we can diagonalize A. But we can do
even better than this eigenbasis. What’s the best kind of basis (if you’re not thinking about
eigenvalues)? Probably an orthonormal basis! If v1, . . . ,vn are orthonormal, and if each vj
is an eigenvector for λj, then we have expansions like

v = (v · v1)v1 + · · ·+ (v · vn)vn and so Av = λ1(v · v1)v1 + · · ·+ λn(v · vn)vn.

42.1 Problem (?). Suppose that A ∈ Rn×n has n independent eigenvectors v1, . . . ,vn ∈
Rn. Why doesn’t the Gram–Schmidt procedure guarantee that we can produce n orthonor-
mal eigenvectors from these n independent eigenvectors?

We need to be a bit careful here: eigenvectors may have complex, nonreal entries, and
our prior notion of dot product just doesn’t cut it.
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42.2 Example. Here we are still thinking that if v, w ∈ Cn, then v ·w = v1w1+· · ·+vnwn.
This is wrong: let v = (i, 1), so v 6= 02, but

v · v = i2 + 1 = −1 + 1 = 0.

Thus v 6= 02 but ‖v‖ = 0. The “norm” is not behaving the way it should. . .

We need a refinement of our notion of dot product. And for that, we need a new operation
on complex numbers.

42.3 Definition. The complex conjugate of x+ iy ∈ C is

x+ iy := x− iy.

42.4 Example. (i) 1 + 2i = 1− 2i.

(ii) 2 = 2.

(iii) i = −i.

Content from Strang’s ILA 6E. If you need a refresher on complex arithmetic, see p.
262.

42.5 Definition. The dot product of v, w ∈ Cn is

v ·w = v1w1 + · · ·+ vnwn,

and the norm of v ∈ Cn is (still)

‖v‖ =
√
v · v.

Content from Strang’s ILA 6E. This generalized dot product appears on p. 263.

We are using the same symbols for dot product and norm in Cn as in Rn; you should
always think of them as coming with the complex conjugate from now on. The upshot
(tacitly assumed in the preceding definition) is that v · v ≥ 0 for all v ∈ Cn, and so the
square root is defined. Here’s why.

42.6 Lemma. Let z = x+ iy ∈ C. Then zz ≥ 0 with equality if and only if x = y = 0.

42.7 Problem (!). Prove it. Then prove that ‖v‖ = 0 if and only if v = 0n.

All of the other familiar properties of dot product arithmetic from Problem 25.4 hold for
the dot product on Cn, and we won’t belabor the changes here. There’s one key difference,
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though:
v ·w = w · v.

The dot product is no longer “commutative.” This also means that

v · (cw) = c(v ·w).

With this new definition of dot product, we still keep the definitions of orthogonal and
orthonormal the same, and we retain the key fact that a list of orthogonal nonzero vectors
are independent. However, we also need to think about how matrices interact with our new
definition of the dot product. Before, the transpose was the key way that a matrix talked
to the dot product: for A ∈ Rm×n, v ∈ Rn, and w ∈ Rm, we had the essential “popping”
feature

Av ·w = v · ATw.

With the new definition of dot product, the transpose is not enough to make things pop.

42.8 Problem (!). Let

A =

[
1 −i
i 1

]
, v = e1, and w =

[
i
1

]
.

Compute Av ·w and v · ATw. What do you observe?

The right thing to do is to conjugate along with transposing.

42.9 Definition. The conjugate transpose of A ∈ Cm×n is the matrix A∗ ∈ Cn×m

whose (i, j)-entry is the complex conjugate of the (j, i)-entry of A. That is,

A∗ij = Aji.

Content from Strang’s ILA 6E. Page 263 presents the complex transpose. Strang uses
the evocative notation (A)T to emphasize the two operations in forming A∗: conjugating
and transposing. Sometimes people also write AH instead of A∗ to emphasize that the
conjugate transpose is called the “Hermitian adjoint” of A.

42.10 Example. If

A =

[
1 2
i (3 + 4i)

]
,

then
A∗ =

[
1 i
2 3 + 4i

]
=

[
1 −i
2 3− 4i

]
.

The conjugate transpose retains all of the essential properties of the ordinary transpose,
updated for the new notion of the dot product. Honestly, we could have proved all of these
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from the start for the conjugate transpose—we could have run the entire course starting in
C, not in R. Here’s a summary.

42.11 Theorem. Let A ∈ Cm×n.

(i) Av ·w = v · A∗w for all v ∈ Cn and w ∈ Cm.

(ii) (A∗)∗ = A.

(iii) Suppose m = n. Then A is invertible if and only if A∗ is invertible, in which case
(A∗)−1 = (A∗)−1.

(iv) If B ∈ Cn×p, then (AB)∗ = B∗A∗.

(v) Cn = N(A) ⊕ C(A∗) and Cm = C(A) ⊕N(A∗). (Here I mean Cp = V ⊕ W to say
that each x ∈ Cp can be written uniquely as x = v + w for v ∈ V and w ∈ W, and also
v ·w = 0.)

(vi) C(A) = N(A∗)⊥.

(vii) If m = n, then λ ∈ C is an eigenvalue of A if and only if λ ∈ C is an eigenvalue of
A∗.

42.12 Problem (!). Redo the calculations in Problem 42.8 with A∗ in place of AT.

42.13 Problem (+). This shouldn’t be your highest priority right now, but proving the
results in Theorem 42.11 might be a good refresher for you.

Content from Strang’s ILA 6E. Page 264 discusses the fundamental subspaces for a
matrix with complex entries.

Now we have the tools to get back to thinking about eigenstuff. Almost.

42.14 Definition. A matrix Q ∈ Cn×n is unitary if its columns are orthonormal, equiv-
alently, if Q∗Q = In, or if Q is invertible with Q−1 = Q∗.

42.15 Problem (!). Check that those three statements in the preceding definition are, in
fact, equivalent. Then explain why an orthogonal matrix Q ∈ Rn×n is unitary. (We aren’t
going to need nonsquare complex matrices whose columns are orthonormal, so we don’t
bother to extend the definition of unitary matrices to nonsquare ones.)

The dream is that a matrix A ∈ Cn×n has n orthogonal eigenvectors. After rescaling by
their norms, they become n orthonormal eigenvectors. Then A is diagonalizable (orthogonal
eigenvectors are independent) with A = V ΛV −1 as usual. But here we can take V to be
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the matrix of orthonormal eigenvectors, so V −1 = V ∗. Then A = V ΛV ∗. Even better: not
only is A diagonalizable, not only do we have an orthonormal basis for Cn consisting of
eigenvectors of A, we also don’t have to manage a matrix inverse in the diagonalized form
of A.

Here are more words.

42.16 Definition. (i) A matrix A ∈ Cn×n is unitarily diagonalizable if there is
a unitary matrix V ∈ Cn×n and a diagonal matrix Λ ∈ Cn×n such that A = V ΛV ∗.

(ii) If A ∈ Rn×n has the form A = V ΛV T for some orthogonal V ∈ Rn×n and diagonal
Λ ∈ Rn×n, then A is orthogonally diagonalizable.

The goal is now to learn more about when the dream is a reality. When can we unitarily
diagonalize A ∈ Cn×n? Fooling around, we might seize on the role of the conjugate transpose.
If A = V ΛV ∗, then maybe we could learn about A∗. We can:

A∗ = (V ΛV ∗)∗ = (V ∗)∗Λ∗V ∗ = V Λ∗V ∗.

This looks almost exactly like A, except for the Λ∗.
What if A = A∗? Then

V ΛV ∗ = V Λ∗V ∗.

Cancel the factors of V and V ∗ (they’re invertible, after all) to get

Λ = Λ∗.

Here’s what this looks like at the 2× 2 level:[
λ1 0
0 λ2

]
=

[
λ1 0

0 λ2

]
.

More generally, Λ = Λ∗ says that any eigenvalue λ of A satisfies λ = λ. This means that
λ ∈ R.

42.17 Problem (!). Show that if x+ iy = x+ iy, then y = 0, so x+ iy = x ∈ R.

We need yet more words.

42.18 Definition. (i) A matrix A ∈ Cn×n is Hermitian or self-adjoint if A∗ = A.
(The conjugate transpose is sometimes called the “Hermitian adjoint” of A.)

(ii) If A ∈ Rn×n, then A is symmetric if AT = A.

So, the eigenvalues of a Hermitian, unitarily diagonalizable matrix are real.
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42.19 Problem (?). Does the argument above still work if A is Hermitian and diagonaliz-
able but not necessarily unitarily diagonalizable? (So A = A∗ and A = V ΛV −1, but maybe
V −1 6= V ∗.)

It turns out that assuming that A is unitarily diagonalizable is overkill.

42.20 Theorem. The eigenvalues of any Hermitian matrix are real.

Proof. We’re assuming two things: A ∈ Cn×n satisfies A∗ = A, and there are λ ∈ C and
v ∈ Cn with Av = λv and v 6= 0n. (Okay, maybe that was three things.) We want to show
λ = λ.

This is a classical trick, and by “classical” I mean it’s something that I probably wouldn’t
have thought of myself but that you should know how to do. We somehow want to use the
fact that A∗ = A along with the equation Av = λv. But A∗ really shines when we introduce
a dot product. I think the only natural think to take a dot product with is v itself. So, take
the dot product of both sides of Av = λv with v:

Av · v = (λv) · v.

The left side is

Av · v = v · A∗v = v · Av = v · (λv) = λ(v · v).

The right side is just
(λv) · v = λ(v · v).

Equating things, we get
λ(v · v) = λ(v · v).

Since v 6= 0n, we have v · v 6= 0, so we can divide to find

λ = λ.

Thus λ ∈ R. �

Part of the dream has been orthonormal eigenvectors. If the matrix is Hermitian, we
don’t have to work too hard to get that.

42.21 Theorem. Eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues
are orthogonal. More precisely, let A ∈ Cn×n be Hermitian and let λ1, λ2 ∈ C be distinct
eigenvalues of A with corresponding eigenvectors v1, v2 ∈ Cn. (So λ1 6= λ2, Av1 = λ1v1,
and Av2 = λ2v2.) Then v1 · v2 = 0.

Proof. We want to learn about v1 ·v2, and we know about Av1 and Av2 and how A interacts
with the dot product. The trick is to get A into the dot product. As in the previous proof,
we might take the dot product of both sides of Av1 = λ1v1 with v2:

Av1 · v2 = (λ1v1) · v2.
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The left side is

Av1 · v2 = v1 · A∗v2 = v1 · Av2 = v1 · (λ2v2) = λ2(v1 · v2) = λ2(v1 · v2).

Here we are using the prior result that λ2 ∈ R. The right side is just

(λ1v1) · v2 = λ1(v1 · v2).

Equating things, we get
λ2(v1 · v2) = λ1(v1 · v2),

and a little algebra gives
(λ1 − λ2)(v1 · v2) = 0.

Since λ1 6= λ2, we have v1 · v2 = 0. �

Content from Strang’s ILA 6E. Pages 246–247 give slightly different proofs of these two
results for symmetric matrices (i.e., A has real entries, so A∗ = AT = A). Page 264 revisits
these proofs for complex matrices (where you have to use A∗ = (A)T).

We already know that eigenvectors corresponding to distinct eigenvalues are independent;
this result recovers that with more geometry in the special case of a Hermitian matrix. The
point of this excursion into Hermitian matrices is to convince you that they are nice—that if
the dream is n orthonormal eigenvectors, then Hermitian matrices seem close to doing that.
We need one more tool to see just how close they are to the dream, and it involves a nice
resurgence of an old friend: the upper-triangular matrix.

Day 43: Wednesday, April 23.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Normal matrix

Before we do that, a recap: a matrix A ∈ Cn×n is diagonalizable if we can write A =
V ΛV −1 with V ∈ Cn×n invertible and Λ ∈ Cn×n diagonal, in which case the columns
of V are eigenvectors of A corresponding to the eigenvalues on the diagonal of Λ. This
factorization helps us compute powers easily: Ak = V ΛkV −1. Even better is when A is
unitarily diagonalizable and V is unitary: then V −1 = V ∗.

A unitarily diagonalizable matrix is particularly nice from the point of view of computa-
tion and structure. If A = V ΛV ∗, then

Av = λ1(v · v1)v1 + · · ·+ λn(v · vn)vn.

This “separates the action” of A along n eigenvectors and helps us see how each eigenvalue-
eigenvector pair contributes to the total behavior of A. Additionally, doing the matrix
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multiplication in V ΛV ∗ and thinking of each column of V or V ∗ as a matrix in Cn×1, we
have

A = λ1v1v
∗
1 + · · ·+ λnvnv

∗
n.

Remember that each “outer product” vv∗ ∈ Cn×n is a rank 1 matrix. We have therefore
decomposed A as a linear combination of rank 1 matrices.

So, when is a matrix unitarily diagonalizable? Maybe working backwards will help. If
A = V ΛV ∗, what insights does this give us into the behavior of A? We know A∗ = V Λ∗V ∗,
which looks so much like A, and we know that V and V ∗ cancel each other out. This might
motivate us to compute

AA∗ = (V ΛV ∗)(V Λ∗V ∗) = V Λ(V ∗V )Λ∗V ∗ = V ΛΛ∗V ∗.

By the way, multiplying ΛΛ∗ is easy as both factors are diagonal.

43.1 Problem (!). Check that if A = V ΛV ∗, then AA∗ = A∗A. [Hint: why do Λ and Λ∗

commute?]

We conclude that if A is unitarily diagonalizable, then AA∗ = A∗A. A matrix that
commutes with its conjugate transpose has a special name.

43.2 Definition. A matrix A ∈ Cn×n is normal if AA∗ = A∗A.

43.3 Problem (?). (i) Show that every Hermitian matrix is normal.

(ii) Is every normal matrix Hermitian?

So, every unitarily diagonalizable matrix is normal. It also turns out that every normal
matrix is unitarily diagonalizable. This is great! It’s much easier to check if a matrix is
normal—check if the matrix and its conjugate transpose commute—than it is to show that
the matrix has n orthonormal eigenvectors (which would mean it’s unitarily diagonalizable).

We can prove this by appealing to yet another result about matrix factorizations, which
this time holds for all matrices.

43.4 Theorem (Schur). Any matrix can be unitarily triangularized: if A ∈
Cn×n, then there are a unitary matrix V ∈ Cn×n and an upper-triangular matrix T ∈ Cn×n

such that
A = V TV ∗. (43.1)

Proof. This requires induction on n. We prove only the case n = 2.
Let A ∈ C2×2 and let λ ∈ C be an eigenvalue of A with eigenvector v1 ∈ C2; we assume

‖v1‖ = 1. Then v1 6= 02, so we can find w2 ∈ C2 such that v1, w2 is a basis for C2. (Why
can we find w2? This is the “exhaustion” argument from Theorem 24.5.) Use Gram–Schmidt
to convert this list to an orthonormal basis v1, v2 for C2; we keep the first vector v1 the
same, since it has length 1 and that’s how Gram–Schmidt works.
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Now put V =
[
v1 v2

]
. We’re going to show that AV = V T for some upper-triangular

matrix T . We have
AV =

[
Av1 Av2

]
=
[
λv1 Av2

]
.

What’s going on with Av2? There’s not much that we can say other than Av2 = c1v1 +
c2v2 for some c1, c2 ∈ C, since v1, v2 are a basis for C2. (Actually, c1 = Av2 · v1 and
c2 = Av2 · v2 since v1, v2 are an orthonormal basis for C2, but that’s not hugely helpful
here.) Now think about it:

λv1 = λv1 + 0v2 =
[
v1 v2

] [λ
0

]
= V

[
λ
0

]
and

Av2 = c1v1 + c2v2 =
[
v1 v2

] [c1
c2

]
= V

[
c1
c2

]
.

Put it together:

AV =
[
λv1 Av2

]
= V

[
λ c1
0 c2

]
.

That’s our T :
T =

[
λ c1
0 c2

]
. �

43.5 Problem (?). Schur’s theorem didn’t say anything about the eigenvalues of A, but
they’re right there.

(i) Matrices A, B ∈ Cn×n are similar if there is an invertible matrix E ∈ Cn×n such
that A = EBE−1. Prove that similar matrices have the same eigenvalues.

(ii) Do similar matrices necessarily have the same eigenvectors? (That is, if A and B are
similar with common eigenvalue λ, and v is an eigenvector of A corresponding to λ, is v
also an eigenvector of B corresponding to λ?)

(iii) How do the eigenvalues of A appear in the Schur factorization (43.1)?

(iv) In the Schur factorization (43.1), are the columns of V always eigenvectors of A?

Content from Strang’s ILA 6E. Go back to pp. 235–236 and read about similar matrices.
The website has a proof of Schur’s theorem that works for a real matrix A and gets a real
factor V :

https : //math.mit.edu/ gs/linearalgebra/ila6/lafe_schur03.pdf.

Now we show that if A is normal, then A is unitarily diagonalizable. We know that since
A is normal, we have AA∗ = A∗A. And Schur tells us A = V TV ∗ for some unitary V and
upper-triangular T . Put it together:

(V TV ∗)(V TV ∗)∗ = (V TV ∗)∗(V TV ∗).

https://math.mit.edu/~gs/linearalgebra/ila6/lafe_schur03.pdf
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Compute:
V T (V ∗V )T ∗V ∗ = V T ∗(V ∗V )TV ∗.

And compute again:
V TT ∗V ∗ = V T ∗TV ∗.

And use the invertibility of V and V ∗ to get

TT ∗ = T ∗T.

This is enough to show that T is diagonal, not just upper-triangular. (In words, a normal
upper-triangular matrix is diagonal.)

43.6 Problem (?). This is not so hard to check in the 2×2 case but requires a thoughtful
analysis of the individual entries (use dot products) of TT ∗ and T ∗T in the general case.
Let

T =

[
a c
0 d

]
.

Compute TT ∗ and T ∗T , compare entries, and conclude c = 0, so T is diagonal.

So, when A is normal, the upper-triangular factor T from the Schur factorization really
is diagonal: with T = Λ, we have A = V ΛV ∗. Thus A is unitarily diagonalizable. This
characterization of unitarily diagonalizable matrices has a special name.

43.7 Theorem (Spectral theorem). A matrix is unitarily diagonalizable if and only if it
is normal.

In particular, all Hermitian matrices are unitarily diagonalizable.

Content from Strang’s ILA 6E. Page 258 outlines the spectral theorem with an emphasis
on real matrices.

We have shown that every Hermitian matrix has real eigenvalues. There are still lots of
possibilities for real numbers. In our ODE application, it was helpful that the eigenvalues
were negative real numbers (that’s what made the displacement of the oscillator slow down to
0 as time went on—more exactly, it was the negativity of the real part of the eigenvalues. . .).
If we want the matrix to be invertible, we better not have 0 as an eigenvalue.

What guarantees that the eigenvalues of a Hermitian matrix are nonnegative or maybe
positive? Once again, we can learn some stuff by working backwards. Suppose that A ∈ Cn×n

is Hermitian with nonnegative eigenvalues. The spectral theorem says that A is unitarily
diagonalizable, so A = V ΛV ∗, and the diagonal entries of Λ are nonnegative.

Here’s the trick: in the past, we learned stuff about Hermitian matrices by working with
dot products of the form Av · v. Let’s do that again:

Av · v = V ΛV ∗v · v = ΛV ∗v · V ∗v.

Now put w = V ∗v. I claim that Λw ·w ≥ 0.
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43.8 Problem (?). Show it. [Hint: do it for the 2 × 2 case first—think about what the
product Λw is when Λ is diagonal, then what the dot product Λw ·w is, and then why the
nonnegativity of the diagonal entries of Λ matters.]

Here is what we have shown: if A is Hermitian with nonnegative eigenvalues, then Av·v ≥
0 for all v ∈ Cn. It turns out that the reverse is true. And everything is true if you replace
“nonnegative” with “positive” and ≥ with >.

Day 44: Friday, April 25.

Vocabulary from today

You should memorize the definition of each term, phrase, or concept below and be able
to provide a concrete example of each and a nonexample for those marked “N.”

Numerical range, positive (semi)definite matrix

44.1 Theorem. Let A ∈ Cn×n be Hermitian.

(i) If Av · v ≥ 0 for all v ∈ Cn, then the eigenvalues of A are all nonnegative.

(ii) If Av · v > 0 for all v ∈ Cn with v 6= 0n, then the eigenvalues of A are all positive.

Proof. We prove part (i) only and leave the very similar proof of part (ii) as an exercise.
Suppose that λ ∈ R is an eigenvalue of A; since A is Hermitian, λ is real. Let v ∈ Cn be an
eigenvector, so Av = λv. We estimate and compute

0 ≤ Av · v = (λv) · v = λ(v · v) = λ ‖v‖2 .
Since v is an eigenvector, v 6= 0n, and so ‖v‖ > 0. Dividing by ‖v‖2, we retain the inequality
and get 0 ≤ λ. �

44.2 Problem (!). Prove part (ii) of Theorem 44.1. [Hint: change ≤ to <.]

The two situations in the previous theorem deserve their own name.

44.3 Definition. (i) A matrix A ∈ Cn×n is positive definite if A is Hermitian and
Av · v > 0 for all v ∈ Cn with v 6= 0n.

(ii) A matrix A ∈ Cn×n is positive semidefinite if A is Hermitian and Av · v ≥ 0
for all v ∈ Cn.

We have shown that a Hermitian matrix with positive eigenvalues is positive definite and
a Hermitian matrix with nonnegative eigenvalues is positive semidefinite.
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44.4 Problem (!). Have we? Go back and make sure we did. This characterizes Hermitian
matrices with positive/nonnegative eigenvalues: they are the positive (semi)definite ones.

Numbers of the form Av · v have shown up often enough that they deserve their own
name.

44.5 Definition. The numerical range of A ∈ Cn×n is{
Av · v
‖v‖2

∣∣∣∣ v ∈ Cn, v 6= 0n

}
.

44.6 Problem (!). (i) Characterize positive (semi)definiteness as a statement about the
numerical range.

(ii) Prove that if λ ∈ C is an eigenvalue of A ∈ Cn×n, then λ is also an element of the
numerical range of A. Explain how this gives a way of expressing an eigenvalue in terms
of its corresponding eigenvector.

44.7 Problem (?). A complex number z is positive if z = |z| =
√
zz and z 6= 0 and

nonnegative if we just have z =
√
zz. A positive (semi)definite matrix has a morally

similar factorization.

(i) Let A ∈ Cn×n be positive semidefinite. Since A is Hermitian, the spectral theorem
allows the factorization A = QΛQ∗ with Q unitary. Think about the structure of Λ and
factor A as A = B∗B for some B ∈ Cn×n.

(ii) Let A ∈ Cn×n have the form A = B∗B for some B ∈ Cm×n. Prove that A is positive
semidefinite.

(iii) In the previous part, what condition on B guarantees that A is positive definite, not
just positive semidefinite? How does the B from part (i) meet that condition when that A
is positive definite?

Content from Strang’s ILA 6E. This discussion of positive definite matrices corresponds
to Tests 1 and 2 on p. 247. The previous problem is Test 3 on pp. 249–250 (skip the
determinants). Positive semidefinite matrices appear on p. 253; skip the “Law of Inertia.”

Pages 286–292 present the SVD. Example computations appear on pp. 287 and 291.
Some geometric aspects are discussed on pp. 288 and 292. Page 290 presents a compact
proof starting from the notion that if the SVD exists, then these are the properties of its
factors. Pages 302–303 discuss how the SVD leads to a “best approximation” to a matrix
(see also the reduced form on p. 289). This is the foundation of the image compression
application (pp. 299–301).
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